
MQSeries®

Intercommunication

SC33-1872-03

IBM

MQSeries®

Intercommunication

SC33-1872-03

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix E.
Notices” on page 641.

Fourth edition (March 2000)

This edition applies to the following products:
v MQSeries for AIX® V5.1
v MQSeries for AS/400® V5.1
v MQSeries for AT&T GIS UNIX® V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS, V2.2.1.1
v MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX), V2.2.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/390® V2.1
v MQSeries for OS/2® Warp V5.1
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA™ V2.1
v MQSeries for Windows V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT, V5.1

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1993, 2000 . All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|

|

Contents

Figures xi

Tables xiii

About this book xv
Who this book is for xv
What you need to know to understand this book. . xv
How to use this book xvi

Appearance of text in this book xvi
Terms used in this book. xvii

Summary of changes xix
Changes for this edition (SC33-1872-03) xix
Changes for the previous edition (SC33-1872-02) xix
Changes for the second edition (SC33-1872-01) . . xx

Part 1. Introduction 1

Chapter 1. Concepts of
intercommunication 3
What is intercommunication? 3

How does distributed queuing work? 3
Distributed queuing components 7

Message channels. 7
Message channel agents 9
Transmission queues 10
Channel initiators and listeners 10
Channel-exit programs 12

Dead-letter queues 13
Remote queue definitions. 14
How to get to the remote queue manager 14

Multi-hopping 14
Sharing channels 14
Using different channels 15
Using clustering 16

Chapter 2. Making your applications
communicate 17
How to send a message to another queue manager 17

Defining the channels 18
Defining the queues 19
Sending the messages 20
Starting the channel 20

Triggering channels. 20
Safety of messages 22

Fast, nonpersistent messages 22
Undelivered messages 23

Chapter 3. More about
intercommunication 25
Addressing information 25
What are aliases? 25

Queue name resolution 26

Queue manager alias definitions 26
Outbound messages - remapping the queue
manager name 26
Outbound messages - altering or specifying the
transmission queue 27
Inbound messages - determining the destination 27

Reply-to queue alias definitions 28
What is a reply-to queue alias definition? . . . 28
Reply-to queue name 29

Networks 29
Channel and transmission queue names 29
Network planner 31

Part 2. How intercommunication
works 33

Chapter 4. MQSeries
distributed-messaging techniques . . . 35
Message flow control 35

Queue names in transmission header 36
How to create queue manager and reply-to
aliases 36

Putting messages on remote queues 37
More about name resolution 38

Choosing the transmission queue 39
Receiving messages. 40

Receiving alias queue manager names 40
Passing messages through your system 41

Method 1: Using the incoming location name . . 42
Method 2: Using an alias for the queue manager 42
Method 3: Selecting a transmission queue . . . 42
Using these methods 42

Separating message flows 42
Concentrating messages to diverse locations . . . 44
Diverting message flows to another destination . . 45
Sending messages to a distribution list 46
Reply-to queue 47

Reply-to queue alias example 48
How the example works 50
How the queue manager makes use of the
reply-to queue alias. 51
Reply-to queue alias walk-through 51

Networking considerations 52
Return routing 53
Managing queue name translations 53
Message sequence numbering 54

Sequential retrieval of messages 55
Sequence of retrieval of fast, nonpersistent
messages 56

Loopback testing 56

Chapter 5. DQM implementation 57
Functions of DQM 57
Message sending and receiving 58

© Copyright IBM Corp. 1993, 2000 iii

||

Channel parameters 59
Channel status and sequence numbers 59

Channel control function 59
Preparing channels 60
Channel states 62
Stopping and quiescing channels (not MQSeries
for Windows). 67
Stopping and quiescing channels (MQSeries for
Windows) 68
Restarting stopped channels 69
In-doubt channels 69
Problem determination 71

What happens when a message cannot be
delivered? 71
Initialization and configuration files 73

OS/390 without CICS 73
OS/390 using CICS. 73
Windows NT 73
OS/2, Digital OpenVMS, Tandem NSK, OS/400
and UNIX systems 73
VSE/ESA 75

Data conversion 75
Writing your own message channel agents 75

Chapter 6. Channel attributes 77
Channel attributes in alphabetical order 77

Alter date (ALTDATE). 78
Alter time (ALTTIME) 78
Auto start (AUTOSTART). 78
Batch interval (BATCHINT) 79
Batch size (BATCHSZ). 79
Channel name (CHANNEL) 80
Channel type (CHLTYPE) 81
CICS profile name 81
Cluster (CLUSTER) 81
Cluster namelist (CLUSNL) 82
Connection name (CONNAME) 82
Convert message (CONVERT) 83
Description (DESCR) 84
Disconnect interval (DISCINT) 84
Heartbeat interval (HBINT) 85
Long retry count (LONGRTY) 85
Long retry interval (LONGTMR) 85
LU 6.2 mode name (MODENAME) 86
LU 6.2 transaction program name (TPNAME) . . 86
Maximum message length (MAXMSGL) 87
Maximum transmission size 87
Message channel agent name (MCANAME) . . 87
Message channel agent type (MCATYPE) . . . 88
Message channel agent user identifier
(MCAUSER) 88
Message exit name (MSGEXIT) 88
Message exit user data (MSGDATA) 89
Message-retry exit name (MREXIT) 89
Message-retry exit user data (MRDATA) 89
Message retry count (MRRTY) 89
Message retry interval (MRTMR) 89
Network-connection priority (NETPRTY) . . . 90
Nonpersistent message speed (NPMSPEED) . . 90
Password (PASSWORD) 90
PUT authority (PUTAUT). 90

Queue manager name (QMNAME) 91
Receive exit name (RCVEXIT) 91
Receive exit user data (RCVDATA) 92
Security exit name (SCYEXIT) 92
Security exit user data (SCYDATA) 93
Send exit name (SENDEXIT). 93
Send exit user data (SENDDATA) 93
Sequence number wrap (SEQWRAP) 93
Sequential delivery 93
Short retry count (SHORTRTY) 93
Short retry interval (SHORTTMR) 94
Target system identifier 94
Transaction identifier 94
Transmission queue name (XMITQ) 94
Transport type (TRPTYPE) 95
User ID (USERID) 95

Chapter 7. Example configuration
chapters in this book 97
Network infrastructure 98
Communications software 98
How to use the communication examples 99

IT responsibilities 100

Part 3. DQM in MQSeries for OS/2
Warp, Windows NT, Digital
OpenVMS, Tandem NSK, and UNIX
systems 101

Chapter 8. Monitoring and controlling
channels on distributed platforms . . 105
The DQM channel control function 105
Functions available 106
Getting started with objects. 108

Creating objects 108
Creating default objects 108
Creating a channel 109
Displaying a channel 110
Displaying channel status 110
Starting a channel 110
Renaming a channel 111

Channel attributes and channel types 111
Channel functions 112

Chapter 9. Preparing MQSeries for
distributed platforms 117
Transmission queues and triggering 117

Creating a transmission queue. 117
Triggering channels 117

Channel programs 119
Other things to consider 119

Undelivered-message queue 119
Queues in use 120
Multiple message channels per transmission
queue 120
Security of MQSeries objects 120
System extensions and user-exit programs. . . 121

iv MQSeries Intercommunication

Running channels and listeners as trusted
applications 121

What next? 122

Chapter 10. Setting up communication
for OS/2 and Windows NT 123
Deciding on a connection 123
Defining a TCP connection 124

Sending end. 124
Receiving on TCP 124

Defining an LU 6.2 connection 126
Sending end for OS/2 127
Sending end for Windows NT 127
Receiving on LU 6.2 127

Defining a NetBIOS connection 128
Defining the MQSeries local NetBIOS name . . 129
Establishing the queue manager NetBIOS
session, command, and name limits 130
Establishing the LAN adapter number 130
Initiating the connection 130
Target listener 131

Defining an SPX connection 131
Sending end. 131
Receiving on SPX 132
IPX/SPX parameters 133

Chapter 11. Example configuration -
IBM MQSeries for OS/2 Warp 137
Configuration parameters for an LU 6.2 connection 137

Configuration worksheet 137
Explanation of terms 140

Establishing an LU 6.2 connection 142
Defining local node characteristics 142
Connecting to a peer system 150
Connecting to a host system 153
Verifying the configuration 157
What next? 158

Establishing a TCP connection. 158
What next? 159

Establishing a NetBIOS connection 160
Establishing an SPX connection 160

IPX/SPX parameters 160
SPX addressing. 161
Using the SPX KEEPALIVE option 162
Receiving on SPX 162

MQSeries for OS/2 Warp configuration. 162
Basic configuration 163
Channel configuration 163
Running channels as processes or threads . . . 167

Chapter 12. Example configuration -
IBM MQSeries for Windows NT 169
Configuration parameters for an LU 6.2 connection 169

Configuration worksheet 170
Explanation of terms 172

Establishing an LU 6.2 connection 174
Configuring the local node 174
Adding a connection 176
Adding a partner 178
Adding a CPI-C entry 179

Configuring an invokable TP 179
What next? 181

Establishing a TCP connection. 181
What next? 181

Establishing a NetBIOS connection 181
Establishing an SPX connection 182

IPX/SPX parameters 182
SPX addressing. 183
Receiving on SPX 183

MQSeries for Windows NT configuration 184
Default configuration 184
Basic configuration 184
Channel configuration 185
Automatic startup 189
Running channels as processes or threads . . . 189

Chapter 13. Setting up communication
in UNIX systems 191
Deciding on a connection 191
Defining a TCP connection 191

Sending end. 191
Receiving on TCP 192

Defining an LU 6.2 connection 194
Sending end. 195
Receiving on LU 6.2 195

Chapter 14. Example configuration -
IBM MQSeries for AIX 197
Configuration parameters for an LU 6.2 connection 197

Configuration worksheet 197
Explanation of terms 200

Establishing a session using Communications
Server for AIX V5 202

Configuring your node 202
Configuring connectivity to the network . . . 203
Defining a local LU 205
Defining a transaction program 206

Establishing a TCP connection. 209
What next? 209

Establishing a UDP connection 209
What next? 209

MQSeries for AIX configuration 209
Basic configuration 210
Channel configuration 210

Chapter 15. Example configuration -
IBM MQSeries for DIGITAL UNIX
(Compaq Tru64 UNIX) 215
Establishing a TCP connection. 215

What next? 215
MQSeries for DIGITAL UNIX (Compaq Tru64
UNIX) configuration 215

Basic configuration 216
Channel configuration 216

Chapter 16. Example configuration -
IBM MQSeries for HP-UX 219
Configuration parameters for an LU 6.2 connection 219

Configuration worksheet 219

Contents v

|
||
||
||

Explanation of terms 222
Establishing a session using HP SNAplus2 . . . 223

SNAplus2 configuration 223
APPC configuration 227
HP-UX operation 237
What next? 237

Establishing a TCP connection. 237
What next? 237

MQSeries for HP-UX configuration 238
Basic configuration 238
Channel configuration 238

Chapter 17. Example configuration -
IBM MQSeries for AT&T GIS UNIX
Version 2.2 243
Configuration parameters for an LU 6.2 connection 243

Configuration worksheet 243
Explanation of terms 246

Establishing a connection using AT&T GIS SNA
Server 246

Defining local node characteristics 247
Connecting to a partner node 249
Configuring a remote node 249
What next? 251

Establishing a TCP connection. 251
What next? 251

MQSeries for AT&T GIS UNIX configuration . . . 251
Basic configuration 252
Channel configuration 252

Chapter 18. Example configuration -
IBM MQSeries for Sun Solaris 257
Configuration parameters for an LU 6.2 connection 257

Configuration worksheet 257
Explanation of terms 260

Establishing a connection using SunLink Version
9.1 261

SunLink 9.1 base configuration 261
Configuring a PU 2.1 server 262
Adding a LAN connection 263
Configuring a connection to a remote PU . . . 264
Configuring an independent LU 265
Configuring a partner LU 267
Configuring the session mode 268
Configuring a transaction program 269
CPI-C side information 270
What next? 271

Establishing a TCP connection. 271
What next? 271

MQSeries for Sun Solaris configuration 271
Basic configuration 272
Channel configuration 272

Chapter 19. Setting up communication
in Digital OpenVMS systems 277
Deciding on a connection 277
Defining a TCP connection 278

Sending end. 278
Receiving channels using Compaq (DIGITAL)
TCP/IP services (UCX) for OpenVMS 278

Receiving channels using Cisco MultiNet for
OpenVMS 279
Receiving channels using Attachmate PathWay
for OpenVMS 280
Receiving channels using Process Software
Corporation TCPware 280

Defining an LU 6.2 connection 281
SNA configuration. 281
Specifying SNA configuration parameters to
MQSeries. 283
Sample MQSeries configuration 284
Problem solving 285

Defining a DECnet Phase IV connection 285
Sending end. 286
Receiving on DECnet Phase IV 286

Defining a DECnet Phase V connection. 286

Chapter 20. Setting up communication
in Tandem NSK 289
Deciding on a connection 289
SNA channels 289

LU 6.2 responder processes. 291
TCP channels 291
Communications examples 292

SNAX communications example 292
ICE communications example 299
TCP/IP communications example 303

Chapter 21. Message channel
planning example for distributed
platforms 305
What the example shows 305

Queue manager QM1 example 307
Queue manager QM2 example 308

Running the example. 309
Expanding this example 309

Chapter 22. Example SINIX and
DC/OSx configuration files 311
Configuration file on bight 312
Configuration file on forties 313
Working configuration files for Pyramid DC/OSx 313

Output of dbd command 314

Part 4. DQM in MQSeries for
OS/390. 319

Chapter 23. Monitoring and
controlling channels on OS/390 . . . 321
The DQM channel control function 321
Using the panels and the commands 322

Using the initial panel 322
Managing your channels 324

Defining a channel 324
Altering a channel definition 325
Displaying a channel definition 325
Displaying information about DQM 326
Deleting a channel definition 326

vi MQSeries Intercommunication

Starting a channel initiator 327
Stopping a channel initiator 328
Starting a channel listener 329
Stopping a channel listener 329
Starting a channel 330
Testing a channel 331
Resetting message sequence numbers for a
channel 332
Resolving in-doubt messages on a channel . . 333
Stopping a channel 334
Displaying channel status 335
Displaying cluster channels. 337

Chapter 24. Preparing MQSeries for
OS/390 339
Setting up communication 339

TCP setup 339
APPC/MVS setup 341

Defining DQM requirements to MQSeries 342
Defining MQSeries objects 342

Synchronization queue 343
Channel command queues 343

Channel operation considerations 344
OS/390 Automatic Restart Management (ARM) 344

Chapter 25. Message channel
planning example for OS/390 345
What the example shows 345

Queue manager QM1 example 346
Queue manager QM2 example 347

Running the example. 349
Expanding this example 349

Chapter 26. Monitoring and
controlling channels in OS/390 with
CICS 351
The DQM channel control function 351

CICS regions 352
Starting DQM panels 352

The Message Channel List panel 353
Keyboard functions 353
Selecting a channel 354
Working with channels 354
Creating a channel 356
Altering a channel. 356
Browsing a channel 356
Renaming a channel 357
Selected menu-bar choice 357
Edit menu-bar choice 367
View menu-bar choice 371
Help menu-bar choice 372

The channel definition panels 372
Channel menu-bar choice 373
Help menu-bar choice 373

Channel settings panel fields 374
Details of sender channel settings panel . . . 376
Details of receiver channel settings panel . . . 377
Details of server channel settings panel. . . . 378
Details of requester channel settings panel. . . 379

Chapter 27. Preparing MQSeries for
OS/390 when using CICS 381
Setting up CICS communication for MQSeries for
OS/390 381

Connecting CICS systems 381
Defining an LU 6.2 connection 382
Installing the connection. 383
Communications between CICS systems
attached to one queue manager 383

Defining DQM requirements to MQSeries 384
Defining MQSeries objects 384

Multiple message channels per transmission
queue 384

Channel operation considerations 385

Chapter 28. Message channel
planning example for OS/390 using
CICS 387

Chapter 29. Example configuration -
IBM MQSeries for OS/390 395
Configuration parameters for an LU 6.2 connection 395

Configuration worksheet 396
Explanation of terms 398

Establishing an LU 6.2 connection 400
Defining yourself to the network 400
Defining a connection to a partner 402
What next? 402

Establishing an LU 6.2 connection using CICS . . 402
Defining a connection 402
Defining the sessions 403
Installing the new group definition 404
What next? 404

Establishing a TCP connection. 404
What next? 405

MQSeries for OS/390 configuration 405
Channel configuration 405
Defining a local queue 409
Defining a remote queue 412
Defining a sender channel when not using CICS 413
Defining a receiver channel when not using
CICS 415
Defining a sender channel using CICS 417
Defining a receiver channel using CICS . . . 418

Part 5. DQM in MQSeries for
AS/400 421

Chapter 30. Monitoring and
controlling channels in MQSeries for
AS/400 423
The DQM channel control function 423
Operator commands 424
Getting started 426
Creating objects 426
Creating a channel 426
Starting a channel 429
Selecting a channel 430

Contents vii

||

Browsing a channel 430
Renaming a channel 432
Work with channel status 432
Work-with-channel choices 434
Panel choices 435

F6=Create 435
2=Change 436
3=Copy 436
4=Delete 437
5=Display 437
8=Work with Status 437
13=Ping 437
14=Start 437
15=End 438
16=Reset 439
17=Resolve 439

Chapter 31. Preparing MQSeries for
AS/400 441
Creating a transmission queue. 441
Triggering channels 443
Channel programs. 445
Channel states on OS/400 446
Other things to consider 447

Undelivered-message queue 447
Queues in use 447
Maximum number of channels 447
Multiple message channels per transmission
queue 447
Security of MQSeries for AS/400 objects . . . 447
System extensions and user-exit programs. . . 448

Chapter 32. Setting up communication
for MQSeries for AS/400 449
Deciding on a connection 449
Defining a TCP connection 449

Receiving on TCP 450
Defining an LU 6.2 connection 451

Initiating end (Sending) 452
Initiated end (Receiver) 455

Chapter 33. Example configuration -
IBM MQSeries for AS/400 459
Configuration parameters for an LU 6.2 connection 459

Configuration worksheet 459
Explanation of terms 462

Establishing an LU 6.2 connection 464
Local node configuration 464
Connection to partner node 465
What next? 469

Establishing a TCP connection. 469
Adding a TCP/IP interface 469
Adding a TCP/IP loopback interface 469
Adding a default route 470
What next? 470

MQSeries for AS/400 configuration 471
Basic configuration 471
Channel configuration 471
Defining a queue 475
Defining a channel 476

Chapter 34. Message channel
planning example for OS/400 477
What the example shows 477

Queue manager QM1 example 478
Queue manager QM2 example 480

Running the example. 482
Expanding this example 482

Part 6. DQM in MQSeries for
VSE/ESA 483

Chapter 35. Example configuration -
MQSeries for VSE/ESA 485
Configuration parameters for an LU 6.2 connection 485

Configuration worksheet 485
Explanation of terms 487

Establishing an LU 6.2 connection 488
Defining a connection 488
Defining a session 488
Installing the new group definition 489
What next? 489

Establishing a TCP connection. 490
MQSeries for VSE/ESA configuration 490

Configuring channels. 490
Defining a local queue 493
Defining a remote queue 495
Defining a SNA LU 6.2 sender channel 497
Defining a SNA LU6.2 receiver channel. . . . 498
Defining a TCP/IP sender channel 500
Defining a TCP receiver channel 501

Part 7. Further intercommunication
considerations 503

Chapter 36. Channel-exit programs 505
What are channel-exit programs? 505

Processing overview 506
Channel security exit programs 507
Channel send and receive exit programs . . . 512
Channel message exit programs 514
Channel message retry exit program. 516
Channel auto-definition exit program 516
Transport-retry exit program 517

Writing and compiling channel-exit programs . . 518
MQSeries for OS/390 without CICS 520
MQSeries for OS/390 using CICS. 521
MQSeries for AS/400 521
MQSeries for OS/2 Warp 522
Windows 3.1 client 524
MQSeries for Windows NT server, MQSeries
client for Windows NT, and MQSeries client for
Windows 95 and Windows 98 524
MQSeries for Windows 526
MQSeries for AIX 526
MQSeries for Compaq (DIGITAL) OpenVMS 528
MQSeries for DIGITAL UNIX (Compaq Tru64
UNIX) 529
MQSeries for HP-UX 530

viii MQSeries Intercommunication

|
||

MQSeries for AT&T GIS UNIX 531
MQSeries for Sun Solaris 532
MQSeries for SINIX and DC/OSx 532
MQSeries for Tandem NonStop Kernel 533

Supplied channel-exit programs using DCE
security services 537

What do the DCE channel-exit programs do? 537
How do the DCE channel-exit programs work? 538
How to use the DCE channel-exit programs . . 540

Chapter 37. Channel-exit calls and
data structures 543
Data definition files 544
MQ_CHANNEL_EXIT - Channel exit 546

Syntax. 546
Parameters 546
Usage notes 548
C invocation. 549
COBOL invocation 549
PL/I invocation 549
RPG invocation (ILE) 549
RPG invocation (OPM) 550
System/390® assembler invocation 550

MQ_CHANNEL_AUTO_DEF_EXIT - Channel
auto-definition exit 551

Syntax. 551
Parameters 551
Usage notes 551
C invocation. 552
COBOL invocation 552
RPG invocation (ILE) 552
RPG invocation (OPM) 552
System/390 assembler invocation. 552

MQXWAIT - Wait 553
Syntax. 553
Parameters 553
C invocation. 554
System/390 assembler invocation. 554

MQ_TRANSPORT_EXIT - Transport retry exit . . 555
Syntax. 555
Parameters 555
Usage notes 555
C invocation. 555

MQCD - Channel data structure 556
Fields 558
C declaration 580
COBOL declaration 582
PL/I declaration 584
ILE RPG declaration 585
OPM RPG declaration 587
System/390 assembler declaration 589

MQCXP - Channel exit parameter structure . . . 591
Fields 591
C declaration 601
COBOL declaration 601
PL/I declaration 602
ILE RPG declaration 602
OPM RPG declaration 603
System/390 assembler declaration 604

MQTXP - Transport-exit data structure 605
Fields 605

C declaration 608
MQXWD - Exit wait descriptor structure 609

Fields 609
C declaration 610
System/390 assembler declaration 610

Chapter 38. Problem determination in
DQM 611
Error message from channel control 611
Ping 611
Dead-letter queue considerations 612
Validation checks 612
In-doubt relationship 613
Channel startup negotiation errors 613
When a channel refuses to run 613

Triggered channels 614
Conversion failure. 615
Network problems 615
Dial-up problems 615

Retrying the link 615
Retry considerations 615

Data structures 616
User exit problems 616
Disaster recovery 616
Channel switching. 617
Connection switching. 617
Client problems 617

Terminating clients 617
Error logs 618

Error logs for OS/2 and Windows NT 618
Error logs on UNIX systems 618
Error logs on DOS, Windows 3.1, and Windows
95 and Windows 98 clients 618
Error logs on OS/390. 619
Error logs on MQSeries for Windows 619
Error logs on MQSeries for VSE/ESA 619
Error logs on MQSeries for Tandem NSK . . . 619

Part 8. Appendixes 621

Appendix A. Channel planning form 623
How to use the form 623

Appendix B. Constants for channels
and exits 627
List of constants 627

MQ_* (Lengths of character string and byte
fields) 627
MQCD_* (Channel definition structure length) 628
MQCD_* (Channel definition structure version) 628
MQCDC_* (Channel data conversion) 628
MQCF_* (Channel capability flags) 628
MQCHT_* (Channel type) 628
MQCXP_* (Channel-exit parameter structure
identifier). 628
MQCXP_* (Channel-exit parameter structure
version) 629
MQMCAT_* (MCA type) 629
MQNPMS_* (Nonpersistent message speed) . . 629

Contents ix

||

MQPA_* (Put authority) 629
MQSID_* (Security identifier) 629
MQSIDT_* (Security identifier type) 630
MQTXP_* (Transport retry exit structure
identifier). 630
MQTXP_* (Transport retry exit version) . . . 630
MQXCC_* (Exit response) 630
MQXPT_* (Transmission protocol type). . . . 630
MQXR_* (Exit reason) 630
MQXR2_* (Secondary exit response) 630
MQXT_* (Exit identifier). 631
MQXUA_* (Exit user area) 631
MQXWD_* (Exit wait descriptor structure
identifier). 631
MQXWD_* (Exit wait descriptor version) . . . 631

Appendix C. Queue name resolution 633
What is queue name resolution? 635

How queue name resolution works 636

Appendix D. Configuration file stanzas
for distributed queuing 637

Appendix E. Notices 641
Programming interface information 642
Trademarks 643

Glossary of terms and abbreviations 645

Bibliography 659
MQSeries cross-platform publications 659
MQSeries platform-specific publications 661
Softcopy books 662

BookManager format 662
HTML format 662
Portable Document Format (PDF) 662
PostScript format 662
Windows Help format 662

MQSeries information available on the Internet . . 662
Related publications 662

Programming 662
OS/390 662
CICS 662
OS/400 663
Digital. 663
SNA 663
SINIX 663

Index 665

Sending your comments to IBM . . . 679

x MQSeries Intercommunication

|
||
||

Figures

1. Overview of the components of distributed
queuing 4

2. Sending messages 5
3. Sending messages in both directions 6
4. A cluster of queue managers 7
5. A sender-receiver channel 8
6. A cluster-sender channel 8
7. A requester-server channel 9
8. A requester-sender channel. 9
9. Channel initiators and listeners 11

10. Sequence in which channel exit programs are
called 13

11. Passing through intermediate queue managers 14
12. Sharing a transmission queue 15
13. Using multiple channels 15
14. The concepts of triggering 21
15. Queue manager alias 27
16. Reply-to queue alias used for changing reply

location 28
17. Network diagram showing all channels 30
18. Network diagram showing QM-concentrators 32
19. A remote queue definition is used to resolve a

queue name to a transmission queue to an
adjacent queue manager 38

20. The remote queue definition allows a different
transmission queue to be used 39

21. Receiving messages directly, and resolving
alias queue manager name 40

22. Three methods of passing messages through
your system 41

23. Separating messages flows 43
24. Combining message flows on to a channel 44
25. Diverting message streams to another

destination 45
26. Reply-to queue name substitution during PUT

call 47
27. Reply-to queue alias example 49
28. Distributed queue management model . . . 58
29. Channel states 62
30. Flows between channel states 63
31. What happens when a message cannot be

delivered 72
32. MQSeries channel to be set up in the example

configuration chapters in this book. 97
33. Local LU window 205
34. Mode window 206
35. CPI-C side information file for SunLink

Version 9.0 271
36. The message channel example for OS/2,

Windows NT, and UNIX systems 306
37. The operations and controls initial panel 322
38. Listing channels. 323
39. Starting a system function 327
40. Stopping a function control 328
41. Starting a channel 330
42. Testing a channel 331

43. Resetting channel sequence numbers 332
44. Resolving in-doubt messages 333
45. Stopping a channel 334
46. Listing channel connections 336
47. Displaying channel connections - first panel 337
48. Displaying channel connections - second

panel 337
49. Listing cluster channels 338
50. The message channel example for MQSeries

for OS/390 345
51. Sample configuration of channel control and

MCA 352
52. The Message Channel List panel 353
53. The Message Channel List panel pull-down

menus 355
54. The Channel pull-down menu 357
55. Sender/server Stop action window 360
56. Requester/receiver Stop action window 361
57. The Reset Channel Sequence Number action

window 363
58. The Resolve Channel action window 364
59. An example of a sender channel Display

Channel Status window 365
60. An example of a receiver channel Display

Channel Status window 365
61. The Ping action window 366
62. The Exit confirmation secondary window 367
63. The Copy action window 368
64. The Create action window 369
65. Example of default values during Create for a

channel 369
66. The Delete action window 370
67. The Find a Channel action window 370
68. The Include search criteria action window 371
69. The Help pull-down menu 372
70. The Help choice pull-down menu. 373
71. The sender channel settings panel. 376
72. The sender channel settings panel - screen 2 376
73. The receiver channel settings panel 377
74. The receiver channel settings panel - screen 2 377
75. The server channel settings panel 378
76. The server channel settings panel - screen 2 378
77. The requester channel settings panel 379
78. The requester channel settings panel - screen

2 379
79. CICS LU 6.2 connection definition 383
80. Connecting two queue managers in MQSeries

for OS/390 using CICS 387
81. Sender settings (1) 389
82. Sender settings (2) 390
83. Connection definition (1). 390
84. Connection definition (2). 391
85. Connection definition (1). 391
86. Connection definition (2). 392
87. Receiver channel settings (1) 392
88. Receiver channel settings (2) 393

© Copyright IBM Corp. 1993, 2000 xi

89. Channel Initiator APPL definition 401
90. Channel Initiator initialization parameters 401
91. Channel Initiator initialization parameters 405
92. Create channel (1) 427
93. Create channel (2) 428
94. Create channel (3) 428
95. Create channel (4) 429
96. Work with channels 430
97. Display a TCP/IP channel (1) 431
98. Display a TCP/IP channel (2) 431
99. Display a TCP/IP channel (3) 432

100. Channel status (1) 433
101. Channel status (2) 433
102. Channel status (3) 434
103. Create a queue (1) 441
104. Create a queue (2) 442
105. Create a queue (3) 442
106. Create a queue (4) 443
107. Create process (1) 444
108. Create process (2) 445
109. LU 6.2 communication setup panel - initiating

end 452
110. LU 6.2 communication setup panel - initiated

end 455
111. LU 6.2 communication setup panel - initiated

end 456
112. The message channel example for MQSeries

for AS/400 477
113. Channel configuration panel 501
114. Security exit loop 506
115. Example of a send exit at the sender end of

message channel 506
116. Example of a receive exit at the receiver end

of message channel 507
117. Sender-initiated exchange with agreement 509
118. Sender-initiated exchange with no agreement 510
119. Receiver-initiated exchange with agreement 511
120. Receiver-initiated exchange with no

agreement. 511
121. Sample source code for a channel exit on

OS/2 522

122. Sample DEF file for a channel exit on OS/2 523
123. Sample make file for a channel exit on OS/2 523
124. Sample source code for a channel exit on

Windows 3.1 524
125. Sample source code for a channel exit on

Windows NT, Windows 95, or Windows 98 . 525
126. Sample DEF file for Windows NT, Windows

95, Windows 98, or Windows 526
127. Sample source code for a channel exit on

Windows 526
128. Sample source code for a channel exit on AIX 527
129. Sample compiler and loader commands for

channel exits on AIX 527
130. Sample export file for AIX 528
131. Sample make file for AIX 528
132. Sample source code for a channel exit on

Digital OVMS 528
133. Sample source code for a channel exit on

DIGITAL UNIX 530
134. Sample compiler and loader commands for

channel exits on DIGITAL UNIX 530
135. Sample source code for a channel exit on

HP-UX. 531
136. Sample compiler and loader commands for

channel exits on HP-UX 531
137. Sample source code for a channel exit on

AT&T GIS UNIX 531
138. Sample compiler and loader commands for

channel exits on AT&T GIS UNIX. 532
139. Sample source code for a channel exit on Sun

Solaris 532
140. Sample compiler and loader commands for

channel exits on Sun Solaris. 532
141. Sample source code for a channel exit on

SINIX and DC/OSx 533
142. Sample compiler and loader commands for

channel exits on SINIX and DC/OSx. . . . 533
143. Security exit flows 538
144. Name resolution 633
145. qm.ini stanzas for distributed queuing 638

xii MQSeries Intercommunication

|
||
|
||

Tables

1. Example of channel names 30
2. Three ways of using the remote queue

definition object 37
3. Reply-to queue alias 51
4. Queue name resolution at queue manager

QMA 54
5. Queue name resolution at queue manager

QMB 54
6. Reply-to queue name translation at queue

manager QMA 54
7. Functions available in OS/2, Windows NT,

Digital OpenVMS, Tandem NSK, and UNIX
systems 106

8. Channel attributes for the channel types in
OS/2, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems 111

9. Channel programs for OS/2 and Windows
NT 119

10. Channel programs for UNIX systems, Digital
OpenVMS, and Tandem NSK 119

11. Default outstanding connection requests on
OS/2 and Windows NT 125

12. Settings on the local OS/2 or Windows NT
system for a remote queue manager platform . 126

13. Default outstanding connection requests on
OS/2 and Windows NT 132

14. Configuration worksheet for Communications
Manager/2 138

15. Configuration worksheet for MQSeries for
OS/2 Warp 164

16. Configuration worksheet for IBM
Communications Server for Windows NT . . 170

17. Configuration worksheet for MQSeries for
Windows NT 185

18. Default outstanding connection requests 193
19. Settings on the local UNIX system for a

remote queue manager platform 194
20. Configuration worksheet for Communications

Server for AIX 197
21. Configuration worksheet for MQSeries for

AIX 211
22. Configuration worksheet for MQSeries for

DIGITAL UNIX (Compaq Tru64 UNIX) . . . 216
23. Configuration worksheet for HP SNAplus2 219
24. Configuration worksheet for MQSeries for

HP-UX. 239

25. Configuration worksheet for AT&T GIS SNA
Services 243

26. Configuration worksheet for MQSeries for
AT&T GIS UNIX 253

27. Configuration worksheet for SunLink Version
9.1 257

28. Configuration worksheet for MQSeries for
Sun Solaris 272

29. Channel tasks 324
30. Settings on the local OS/390 system for a

remote queue manager platform 341
31. Program and transaction names 351
32. Message Channel List menu-bar choices 354
33. Menu-bar choices on channel panels 372
34. Channel attribute fields per channel type 374
35. Settings for LU 6.2 TP name on the local

OS/390 system for a remote queue manager
platform 374

36. Configuration worksheet for OS/390 using
LU 6.2 396

37. Configuration worksheet for MQSeries for
OS/390 406

38. Channel attribute fields per message channel
type. 435

39. Program and transaction names 445
40. Channel states on OS/400 446
41. Settings on the local OS/400 system for a

remote queue manager platform 451
42. Configuration worksheet for SNA on an

AS/400 system 460
43. Configuration worksheet for MQSeries for

AS/400 472
44. Configuration worksheet for VSE/ESA using

APPC 485
45. Configuration worksheet for MQSeries for

VSE/ESA 490
46. Channel exits available for each channel type 505
47. Identifying API calls 514
48. Fields in MQCD 556
49. Fields in MQCXP 591
50. Fields in MQTXP 605
51. Fields in MQXWD 609
52. Channel planning form 625
53. Channel planning form 626

© Copyright IBM Corp. 1993, 2000 xiii

|
||

||

xiv MQSeries Intercommunication

About this book

This book describes intercommunication between MQSeries products. It introduces
the concepts of intercommunication; transmission queues, message channel agent
programs, and communication links, that are brought together to form message
channels. It describes how geographically separated queue managers are linked
together by message channels to form a network of queue managers. It discusses
the distributed-queuing management (DQM) facility of IBM® MQSeries, which
provides the services that enable applications to communicate via queue managers.

DQM provides communications that conform to the MQSeries Message Channel
Protocol. Each MQSeries product has its own implementation of this specification,
and this book is concerned with these implementations.

Who this book is for
This book is for anyone needing a description of DQM. In addition, the following
readers are specifically addressed:
v Network planners responsible for designing the overall queue manager network.
v Local channel planners responsible for implementing the network plan on one

node.
v Application programmers responsible for designing applications that include

processes, queues, and channels, perhaps without the assistance of a systems
administrator.

v Systems administrators responsible for monitoring the local system, controlling
exception situations, and implementing some of the planning details.

v System programmers with responsibility for designing and programming the
user exits.

What you need to know to understand this book
To use and control DQM you need to have a good knowledge of MQSeries in
general. You also need to understand the MQSeries products for the specific
platforms you will be using, and the communications protocols that will be used
on those platforms.

© Copyright IBM Corp. 1993, 2000 xv

How to use this book
This book has the following parts:

“Part 1. Introduction” on page 1
Introduces the concepts of MQSeries intercommunication.

“Part 2. How intercommunication works” on page 33
Describes the functions performed by the distributed-queuing management
(DQM) facilities. Read this part to understand DQM’s role in the context of
MQSeries.

“Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems” on page 101

Is specific to MQSeries products on distributed platforms. It helps you to
install and customize DQM on these platforms. It explains how to establish
message channels to other systems and how to manage and control them.

“Part 4. DQM in MQSeries for OS/390” on page 319
Is specific to MQSeries for OS/390. It helps you to install and customize
DQM. It explains how to establish message channels to other systems and
how to manage and control them.

“Part 5. DQM in MQSeries for AS/400” on page 421
Is specific to MQSeries for AS/400. It helps you to install and customize
DQM. It explains how to establish message channels to other systems and
how to manage and control them.

“Part 6. DQM in MQSeries for VSE/ESA” on page 483
Is specific to MQSeries for VSE/ESA. It contains an example of how to set
up communication to other systems.

“Part 7. Further intercommunication considerations” on page 503
Tells you about channel exit programs, which are an optional feature of
DQM that allow you to add your own facilities to distributed queuing. It
gives some guidance on the problems you may experience, how to
recognize these problems, and what to do about them.

The Appendixes
contain extra information that is pertinent to DQM:

Appendix A. Channel planning form gives an explanation of one suggested
method of planning and maintaining DQM objects and channels.

Appendix B. Constants for channels and exits gives the values of named
constants that apply to the channels and exits in the MQI that are
discussed in this book.

Appendix C. Queue name resolution provides a detailed description of
name resolution by queue managers. You need to understand this process
in order to take full advantage of DQM.

Appendix D. Configuration file stanzas for distributed queuing gives
information about the configuration file stanzas that relate to distributed
queuing.

Appearance of text in this book
This book uses the following type styles:
CompCode

Example of the name of a parameter of a call

About this book

xvi MQSeries Intercommunication

Terms used in this book
In the body of this book, the following shortened names are used:

CICS® The CICS Transaction Server for OS/390 (CICS/Enterprise Systems
Architecture) product. (Note that, unlike other MQSeries books, this book
does not use the term generically to include other CICS products such as
CICS for VSE/ESA.)

OS/2 OS/2 Warp

OS/390
In general, function described in this book as supported by MQSeries for
OS/390 is also supported by MQSeries for MVS/ESA™.

The term “UNIX systems” is used to denote the following UNIX operating
systems:
v AIX
v AT&T GIS UNIX
v Digital UNIX (Compaq Tru64 UNIX)
v HP-UX
v SINIX and DC/OSx
v Sun Solaris

Throughout this book, the name mqmtop has been used to represent the name of
the base directory where MQSeries is installed on UNIX systems.
v For AIX, the name of the actual directory is /usr/mqm
v For other UNIX systems, the name of the actual directory is /opt/mqm

There is a glossary and a bibliography at the back of the book.

About this book

About this book xvii

|

About this book

xviii MQSeries Intercommunication

Summary of changes

This information describes changes to the MQSeries product and changes to this
edition of the MQSeries Intercommunication book.

Changes since the previous edition of the book are marked in the left-hand margin
with vertical bars.

Changes for this edition (SC33-1872-03)
This edition of MQSeries Intercommunication includes:
v Addition of support for MQSeries for AS/400 V5.1.
v Addition of support for MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX),

V2.2.1.
v Addition of support for MQSeries for Tandem NonStop Kernel, V2.2.0.1.

Changes for the previous edition (SC33-1872-02)
The previous edition of MQSeries Intercommunication applies to the following
versions and releases of MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V4R2M1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for VSE/ESA V2.1
v MQSeries for Windows NT V5.1

Major new function supplied with each of these MQSeries products is summarized
below:
v Additional new function and changes in MQSeries for OS/390

– Automatic Restart Manager (ARM).
– TCP OpenEdition® sockets interface.
– Screens in “Chapter 23. Monitoring and controlling channels on OS/390” on

page 321.
v MQSeries queue manager clusters implemented on MQSeries for AIX, HP-UX,

OS/2 Warp, OS/390, Sun Solaris, and Windows NT.
v Using the TCP listener backlog option on UNIX systems.
v Additional new function in MQSeries for AIX, V5.1

– The UDP transport protocol is supported.
– Sybase databases can participate in global units of work.
– Multithreaded channels are supported.
– “Configuration parameters for an LU 6.2 connection” on page 197.

v Additional new function in MQSeries for HP-UX, V5.1
– MQSeries for HP-UX, V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
– Multithreaded channels are supported.
– Both HP-UX kernel threads and DCE threads are supported.

© Copyright IBM Corp. 1993, 2000 xix

|

|
|

|

|

|
|

|

|

v Additional new function in MQSeries for Sun Solaris, V5.1
– MQSeries for Sun Solaris, V5.1 runs on both Sun Solaris V2.6 and Sun Solaris

7.
– Sybase databases can participate in global units of work.
– Multithreaded channels are supported.
– “Establishing a connection using SunLink Version 9.1” on page 261.

v Windows NT registry—now used to hold all configuration and related data. The
contents of any configuration (.INI) files from previous MQSeries installations of
MQSeries for Windows NT products are migrated into the registry; the .INI files
are then deleted.

v “MQSeries for VSE/ESA configuration” on page 490.
v Transport-retry exit program for MQSeries for AIX V5.1 and MQSeries for

Windows V2.0.
v ADOPTNEWMCA, ADOPTNEWMCATIMEOUT, and ADOPTNEWMCACHECK

configuration stanzas.

Changes for the second edition (SC33-1872-01)
Major changes for the second edition include:
v Addition of support for MQSeries for AS/400 V4R2.
v Addition of support for MQSeries for Tandem NonStop Kernel, V2.2.
v Addition of an example LU 6.2 configuration using IBM Communications Server

for Windows NT.
v Technical improvements throughout the book.

Changes

xx MQSeries Intercommunication

Part 1. Introduction

Chapter 1. Concepts of intercommunication . . . 3
What is intercommunication? 3

How does distributed queuing work? 3
What do we call the components? 4
Components needed to send a message . . . 5
Components needed to return a message . . . 5
Cluster components 6

Distributed queuing components 7
Message channels. 7

Sender-receiver channels 8
Server-receiver channel 8
Cluster-sender channels. 8
Requester-server channel 9
Requester-sender channel 9
Cluster-receiver channels 9

Message channel agents 9
Transmission queues 10
Channel initiators and listeners 10
Channel-exit programs 12

Dead-letter queues 13
Remote queue definitions. 14
How to get to the remote queue manager 14

Multi-hopping 14
Sharing channels 14
Using different channels 15
Using clustering 16

Chapter 2. Making your applications
communicate 17

How to send a message to another queue manager 17
Defining the channels 18
Defining the queues 19
Sending the messages 20
Starting the channel 20

Triggering channels. 20
Safety of messages 22

Fast, nonpersistent messages 22
Undelivered messages 23

Chapter 3. More about intercommunication . . . 25
Addressing information 25
What are aliases? 25

Queue name resolution 26
Queue manager alias definitions 26

Outbound messages - remapping the queue
manager name 26
Outbound messages - altering or specifying the
transmission queue 27
Inbound messages - determining the destination 27

Reply-to queue alias definitions 28
What is a reply-to queue alias definition? . . . 28
Reply-to queue name 29

Networks 29
Channel and transmission queue names 29
Network planner 31

This part of the book introduces MQSeries intercommunication. The description in
this part is general, and is not restricted to a particular platform or system.

Note: Some references are made to individual MQSeries products. Details are
given only for the products that this edition of the book applies to (see the
edition notice for information about which MQSeries products these are).

© Copyright IBM Corp. 1993, 2000 1

Introduction

2 MQSeries Intercommunication

Chapter 1. Concepts of intercommunication

This chapter introduces the concepts of intercommunication in MQSeries.
v The basic concepts of intercommunication are explained in “What is

intercommunication?”
v The objects that you need for intercommunication are described in “Distributed

queuing components” on page 7.

This chapter goes on to introduce:
v “Dead-letter queues” on page 13
v “Remote queue definitions” on page 14
v “How to get to the remote queue manager” on page 14

What is intercommunication?
In MQSeries, intercommunication means sending messages from one queue
manager to another. The receiving queue manager could be on the same machine
or another; nearby or on the other side of the world. It could be running on the
same platform as the local queue manager, or could be on any of the platforms
supported by MQSeries. This is called a distributed environment. MQSeries handles
communication in a distributed environment such as this using Distributed Queue
Management (DQM).

The local queue manager is sometimes called the source queue manager and the
remote queue manager is sometimes called the target queue manager or the partner
queue manager.

How does distributed queuing work?
Figure 1 on page 4 shows an overview of the components of distributed queuing.

© Copyright IBM Corp. 1993, 2000 3

1. An application uses the MQOPEN call to open a queue so that it can put
messages on it.

2. A queue manager has a definition for each of its queues, specifying information
such as the maximum number of messages allowed on the queue.

3. If the messages are destined for a queue on a remote system, the local queue
manager holds them in a message store until it is ready to forward them to the
remote queue manager. This can be transparent to the application.

4. Each queue manager contains communications software called the moving
service component; through this, the queue manager can communicate with
other queue managers.

5. The transport service is independent of the queue manager and can be any one
of the following (depending on the platform):
v Systems Network Architecture Advanced Program-to Program

Communication (SNA APPC)
v Transmission Control Protocol/Internet Protocol (TCP/IP)
v Network Basic Input/Output System (NetBIOS)
v Sequenced Packet Exchange (SPX)
v User-Datagram Protocol (UDP)

What do we call the components?
1. MQSeries applications put messages onto a local queue, that is, a queue on the

same queue manager.
2. A queue manager has a definition for each of its queues. It may also have

definitions for queues that are owned by other queue managers. These are
called remote queue definitions.

3. If the messages are destined for a remote queue manager, the local queue
manager stores them on a transmission queue until it is ready to send them to
the remote queue manager. A transmission queue is a special type of local
queue on which messages are stored until they can be successfully transmitted
and stored at the remote queue manager.

4. The software that handles the sending and receiving of messages is called the
Message Channel Agent (MCA).

Transport Service

Q M 1 QM2

M ov in g
S erv ice

M ov in g
S erv ice

QUEUE
DEFNS

QUEUE
DEFNS

M essage
S tore

M essage
S tore

MQOPEN

Figure 1. Overview of the components of distributed queuing

What is intercommunication?

4 MQSeries Intercommunication

5. Messages are transmitted between queue managers on a channel. A channel is a
one-way communication link between two queue managers. It can carry
messages destined for any number of queues at the remote queue manager.

Components needed to send a message
If a message is to be sent to a remote queue manager, the local queue manager
needs definitions for a transmission queue and a channel.

Each end of a channel has a separate definition, defining it, for example, as the
sending end or the receiving end. A simple channel consists of a sender channel
definition at the local queue manager and a receiver channel definition at the
remote queue manager. These two definitions must have the same name, and
together constitute one channel.

There is also a message channel agent (MCA) at each end of a channel.

Each queue manager should have a dead-letter queue. Messages are put on this
queue if, for some reason, they cannot be delivered to their destination.

Figure 2 shows the relationship between queue managers, transmission queues,
channels, and MCAs.

Components needed to return a message
If your application requires messages to be returned from the remote queue
manager, you need to define another channel, to run in the opposite direction
between the queue managers, as shown in Figure 3 on page 6.

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel

Dead Letter QueueDead Letter Queue

QM2

Application
Queues

Application

Figure 2. Sending messages

What is intercommunication?

Chapter 1. Concepts of intercommunication 5

Cluster components
An alternative to the traditional MQSeries network is the use of clusters. Clusters
are supported on V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT and MQSeries for OS/390 only.

A cluster is a network of queue managers that are logically associated in some
way. You can group queue managers in a cluster so that queue managers can make
the queues that they host available to every other queue manager in the cluster.
Assuming you have the necessary network infrastructure in place, any queue
manager can send a message to any other queue manager in the same cluster
without the need for explicit channel definitions, remote-queue definitions, or
transmission queues for each destination. Every queue manager in a cluster has a
single transmission queue that transmits messages to any other queue manager in
the cluster. Each queue manager needs to define only one cluster-receiver channel
and one cluster-sender channel.

Figure 4 on page 7 shows the components of a cluster called CLUSTER:
v CLUSTER contains three queue managers, QM1, QM2, and QM3.
v QM1 and QM2 host repositories of information about the queue managers and

queues in the cluster.
v QM2 and QM3 host some cluster queues, that is, queues that are accessible to

any other queue manager in the cluster.
v Each queue manager has a cluster-receiver channel called TO.qmgr on which it

can receive messages.
v Each queue manager also has a cluster-sender channel on which it can send

information to one of the repository queue managers.
v QM1 and QM3 send to the repository at QM2 and QM2 sends to the repository

at QM1.

Q M 1

M essage Flow
M C A M C A

Tra nsm iss io n
Q ueue

Channels

M essage Flow
M C A M C A

QM2

A pplica t ion
Q ueue

Tra nsm iss io n
Q ueue

A pp lica t ion
Q ueue

Figure 3. Sending messages in both directions

What is intercommunication?

6 MQSeries Intercommunication

|
|
|

As with distributed queuing, you use the MQPUT call to put a message to a queue
at any queue manager. You use the MQGET call to retrieve messages from a local
queue.

For further information about clusters, see the MQSeries Queue Manager Clusters
book.

Distributed queuing components
This section describes the components of distributed queuing. These are:
v Message channels
v Message channel agents
v Transmission queues
v Channel initiators and listeners
v Channel-exit programs

Message channels
Message channels are the channels that carry messages from one queue manager to
another.

Do not confuse message channels with MQI channels. There are two types of MQI
channel, server-connection and client-connection. These are discussed in the
MQSeries Clients book.

The definition of each end of a message channel can be one of the following types:
v Sender
v Receiver
v Server
v Requester
v Cluster sender
v Cluster receiver

CLUSTER

QM2QM1 TO.QM1

TO.QM3

TO.QM2

QM3

Figure 4. A cluster of queue managers

What is intercommunication?

Chapter 1. Concepts of intercommunication 7

A message channel is defined using one of these types defined at one end, and a
compatible type at the other end. Possible combinations are:
v Sender-receiver
v Requester-server
v Requester-sender (callback)
v Server-receiver
v Cluster sender-cluster receiver

Sender-receiver channels
A sender in one system starts the channel so that it can send messages to the other
system. The sender requests the receiver at the other end of the channel to start.
The sender sends messages from its transmission queue to the receiver. The
receiver puts the messages on the destination queue.

Server-receiver channel
This is similar to sender-receiver but applies only to fully qualified servers, that is
server channels that have the connection name of the partner specified in the
channel definition. Channel startup must be initiated at the server end of the link.
The illustration of this is similar to the illustration in Figure 5.

Cluster-sender channels
In a cluster, each queue manager has a cluster-sender channel on which it can send
cluster information to one of the repository queue managers. Queue managers can
also send messages to other queue managers on cluster-sender channels.

Q M 1

M essage Flow
M C A M C A

Tra nsm iss io n
Q ueue

Channel A pplica t ion
Q ueues

RECEIVERSENDER
S ession In it ia tion

QM2

Figure 5. A sender-receiver channel

Message
Flow

QM2QM1

SYSTEM.
CLUSTER.
TRANSMIT.
QUEUE

Application
Queues

TO.QM2
MCA MCA

Figure 6. A cluster-sender channel

Distributed queuing components

8 MQSeries Intercommunication

Requester-server channel
A requester in one system starts the channel so that it can receive messages from
the other system. The requester requests the server at the other end of the channel
to start. The server sends messages to the requester from the transmission queue
defined in its channel definition.

A server channel can also initiate the communication and send messages to a
requester, but this applies only to fully qualified servers, that is server channels that
have the connection name of the partner specified in the channel definition. A fully
qualified server may either be started by a requester, or may initiate a
communication with a requester.

Requester-sender channel
The requester starts the channel and the sender terminates the call. The sender
then restarts the communication according to information in its channel definition
(this is known as callback). It sends messages from the transmission queue to the
requester.

Cluster-receiver channels
In a cluster, each queue manager has a cluster-receiver channel on which it can
receive messages and information about the cluster. The illustration of this is
similar to the illustration in Figure 6 on page 8.

Message channel agents
A message channel agent (MCA) is a program that controls the sending and receiving
of messages. There is one message channel agent at each end of a channel. One

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel Application
Queues

QM2

Session InitiationSERVER REQUESTER

Figure 7. A requester-server channel

QM1

Message Flow

MCA MCA

Transmission

Queue

Channel
Application

Queues

QM2

Session Initiation

SENDER REQUESTERCallback

Figure 8. A requester-sender channel

Distributed queuing components

Chapter 1. Concepts of intercommunication 9

MCA takes messages from the transmission queue and puts them on the
communication link. The other MCA receives messages and delivers them to the
remote queue manager.

A message channel agent is called a caller MCA if it initiated the communication or,
otherwise, is called a responder MCA. A caller MCA may be associated with a
sender, server (fully qualified), or requester channel. A responder MCA, may be
associated with any type of message channel.

Transmission queues
A transmission queue is a special type of local queue used to store messages
temporarily before they are transmitted by the MCA to the remote queue manager.
In a distributed-queuing environment, you need to define one transmission queue
for each sending MCA.

You specify the name of the transmission queue in a remote queue definition, (see
“Remote queue definitions” on page 14). If you do not specify the name, the queue
manager looks for a transmission queue with the same name as the remote queue
manager.

You can specify the name of a default transmission queue for the queue manager.
This is used if you do not specify the name of the transmission queue, and a
transmission queue with the same name as the remote queue manager does not
exist.

Channel initiators and listeners
A channel initiator acts as a trigger monitor for sender MCAs, because a transmission
queue may be defined as a triggered queue. When a message arrives on a
transmission queue that satisfies the triggering criteria for that queue, a message is
sent to the initiation queue, triggering the channel initiator to start the appropriate
sender MCA. You can also start server MCAs in this way if you specified the
connection name of the partner in the channel definition. This means that channels
can be started automatically, based upon messages arriving on the appropriate
transmission queue.

You need a channel listener program to start receiving (responder) MCAs.
Responder MCAs are started in response to a startup request from the sending
MCA; the channel listener detects incoming network requests and starts the
associated channel.

Figure 9 on page 11 shows how channel initiators and channel listeners are used.

Distributed queuing components

10 MQSeries Intercommunication

The implementation of channel initiators is platform specific.
v On OS/390 without CICS, there is one channel initiator for each queue manager

and it runs as a separate address space. You start it using the MQSeries
command START CHINIT, which you would normally issue as part of your
queue manager startup. It monitors the system-defined queue
SYSTEM.CHANNEL.INITQ, which is the initiation queue for all the
transmission queues.

v On OS/390, if you are using CICS for distributed queuing, there is no channel
initiator. To implement triggering, use the CICS trigger monitor transaction,
CKTI, to monitor the initiation queue.

v MQSeries for Windows does not support triggering and does not have channel
initiators.

v On other platforms, you can start as many channel initiators as you like,
specifying a name for the initiation queue for each one. Normally you need only
one initiator. V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT allows you to start three, by default, but you can
change this value. On these platforms that support clustering, when you start a
queue manager, a channel initiator is automatically started too.

The channel initiator is also required for other functions, discussed later in this
book.

The implementation of channel listeners is platform specific.
v Use the channel listener programs provided by MQSeries if you are using native

OS/390 communications for distributed queuing, MQSeries for Compaq
(DIGITAL) OpenVMS, MQSeries for Tandem NonStop Kernel, or MQSeries for
Windows,

v If you are using CICS for distributed queuing on OS/390, you do not need a
channel listener because CICS provides this function.

v On OS/400, use the channel listener program provided by MQSeries if you are
using TCP/IP. If you are using SNA, you do not need a listener program. SNA
starts the channel by invoking the receiver program on the remote system.

v On OS/2 and Windows NT, you can use either the channel listener program
provided by MQSeries, or the facilities provided by the ‘operating system’ (for
example, Attach manager for LU 6.2 communications on OS/2). If performance
is important in your environment and if the environment is stable, you can
choose to run the MQSeries listener as a trusted application as described in

MCA MCA

Transmission
Queue

Channel

QM2

Initiation
Queue

CHANNEL
INITIATOR

QM1

CHANNEL
LISTENER

START

SESSION
REQUEST

Figure 9. Channel initiators and listeners

Distributed queuing components

Chapter 1. Concepts of intercommunication 11

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

“Running channels and listeners as trusted applications” on page 121. See the
MQSeries Application Programming Guide for information about trusted
applications.

v On UNIX systems, use the channel listener program provided by MQSeries or
the facilities provided by the ‘operating system’ (for example, inetd for TCP/IP
communications).

Channel-exit programs
If you want to do some additional processing (for example, encryption or data
compression) you can write your own channel-exit programs, or sometimes use
SupportPacs. The Transaction Processing SupportPacs library for MQSeries is
available on the Internet at: > >

http://www.ibm.com/software/ts/mqseries/txppacs/

MQSeries calls channel-exit programs at defined places in the processing carried
out by the MCA. There are six types of channel exit:

Security exit
Used for security checking.

Message exit
Used for operations on the message, for example, encryption prior to
transmission.

Send and receive exits
Used for operations on split messages, for example, data compression and
decompression.

Message-retry exit
Used when there is a problem putting the message to the destination

Channel auto-definition exit
Used to modify the supplied default definition for an automatically
defined receiver or server-connection channel.

Transport-retry exit
Used to suspend data being sent on a channel when communication is not
possible.

The sequence of processing is as follows:
1. The security exits are called after the initial data negotiation between both ends

of the channel. These must end successfully for the startup phase to complete
and to allow messages to be transferred.

2. The message exit is called by the sending MCA, and then the send exit is called
for each part of the message that is transmitted to the receiving MCA.

3. The receiving MCA calls the receive exit when it receives each part of the
message, and then calls the message exit when the whole message has been
received.

This is illustrated in Figure 10 on page 13.

Distributed queuing components

12 MQSeries Intercommunication

The message-retry exit is used to determine how many times the receiving MCA will
attempt to put a message to the destination queue before taking alternative action.
This exit program is described in “MQ_CHANNEL_EXIT - Channel exit” on
page 546. It is not supported on MQSeries for Windows.

For more information about channel exits, see “Chapter 36. Channel-exit programs”
on page 505.

Dead-letter queues
The dead-letter queue (or undelivered-message queue) is the queue to which
messages are sent if they cannot be routed to their correct destination. Messages
are put on this queue when they cannot be put on the destination queue for some
reason (for example, because the queue does not exist, or because it is full).
Dead-letter queues are also used at the sending end of a channel, for
data-conversion errors.

We recommend that you define a dead-letter queue for each queue manager. If you
do not, and the MCA is unable to put a message, it is left on the transmission
queue and the channel is stopped.

Also, if fast, nonpersistent messages (see “Fast, nonpersistent messages” on
page 22) cannot be delivered and no DLQ exists on the target system, these
messages are discarded.

However, using dead-letter queues can affect the sequence in which messages are
delivered, and so you may choose not to use them.

Dead-letter queues are not supported on MQSeries for Windows.

QM1

MCA MCA

Transmission
Queue

Application
Queues

QM2

Message Flow

Channel

SECURITY SECURITY

MESSAGEMESSAGE

SEND RECEIVE

MESSAGE
RETRY

Figure 10. Sequence in which channel exit programs are called

Distributed queuing components

Chapter 1. Concepts of intercommunication 13

Remote queue definitions
Whereas applications can retrieve messages only from local queues, they can put
messages on local queues or remote queues. Therefore, as well as a definition for
each of its local queues, a queue manager may have remote queue definitions. These
are definitions for queues that are owned by another queue manager. The
advantage of remote queue definitions is that they enable an application to put a
message to a remote queue without having to specify the name of the remote
queue or the remote queue manager, or the name of the transmission queue. This
gives you location independence.

There are other uses for remote queue definitions, which will be described later.

How to get to the remote queue manager
You may not always have one channel between each source and target queue
manager. Consider these alternative possibilities.

Multi-hopping
If there is no direct communication link between the source queue manager and
the target queue manager, it is possible to pass through one or more intermediate
queue managers on the way to the target queue manager. This is known as a
multi-hop.

You need to define channels between all the queue managers, and transmission
queues on the intermediate queue managers. This is shown in Figure 11.

Sharing channels
As an application designer, you have the choice of 1) forcing your applications to
specify the remote queue manager name along with the queue name, or 2) creating
a remote queue definition for each remote queue to hold the remote queue manager
name, the queue name, and the name of the transmission queue. Either way, all
messages from all applications addressing queues at the same remote location have

Transmission
Queue

Application
Queue

Message Flow
MCA MCA

Message Flow
MCA MCA

Message Flow
MCA MCA

Message Flow
MCA MCA

Transmission
Queue

Transmission
Queue

Application
Queue

Transmission
Queue

QM2

ChannelsChannels

QM1 QM3

Figure 11. Passing through intermediate queue managers

Remote queue definitions

14 MQSeries Intercommunication

their messages sent through the same transmission queue. This is shown in
Figure 12.

Figure 12 illustrates that messages from multiple applications to multiple remote
queues can use the same channel.

Using different channels
If you have messages of different types to send between two queue managers, you
can define more than one channel between the two. There are times when you
need alternative channels, perhaps for security purposes, or to trade off delivery
speed against sheer bulk of message traffic.

To set up a second channel you need to define another channel and another
transmission queue, and create a remote queue definition specifying the location
and the transmission queue name. Your applications can then use either channel
but the messages will still be delivered to the same target queues. This is shown in
Figure 13.

When you use remote queue definitions to specify a transmission queue, your
applications must not specify the location (that is, the destination queue manager)
themselves. If they do, the queue manager will not make use of the remote queue
definitions. Remote queue definitions make the location of queues and the
transmission queue transparent to applications. Applications can put messages to a

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel

Dead Letter Queue

QM2

Application
Queues

Remote queue
definitions

Figure 12. Sharing a transmission queue

QM1

Message Flow
MCA MCA

Transmission
Queue

Channels

Message Flow
MCA MCA

QM2

Transmission
Queue

Application
Queue

Application
Queue

Figure 13. Using multiple channels

Getting to remote queue manager

Chapter 1. Concepts of intercommunication 15

logical queue without knowing where the queue is located and you can alter the
physical queue without having to change your applications.

Using clustering
Every queue manager within a cluster defines a cluster-receiver channel and when
another queue manager wants to send a message to that queue manager, it defines
the corresponding cluster-sender channel automatically. For example, if there is
more that one instance of a queue in a cluster, the cluster-sender channel could be
defined to any of the queue managers that host the queue. MQSeries uses a
workload management algorithm that uses a round-robin routine to select the best
queue manager to route a message to. For more information about this, see the
MQSeries Queue Manager Clusters book.

Getting to remote queue manager

16 MQSeries Intercommunication

Chapter 2. Making your applications communicate

This chapter provides more detailed information about intercommunication
between MQSeries products. Before reading this chapter it is helpful to have an
understanding of channels, queues, and the other concepts introduced in
“Chapter 1. Concepts of intercommunication” on page 3.

This chapter covers the following topics:
v “How to send a message to another queue manager”
v “Triggering channels” on page 20
v “Safety of messages” on page 22

How to send a message to another queue manager
This section describes the simplest way to send a message from one queue
manager to another.

Before you do this you need to do the following:
1. Check that your chosen communication protocol is available.
2. Start the queue managers.
3. Start the channel initiators.
4. Start the listeners.

On MQSeries for Windows, instead of steps 2, 3, and 4, you start a connection,
which includes a queue manager, channels, and a listener. See the MQSeries for
Windows User’s Guide for more information.

You also need to have the correct MQSeries security authorization (except on
MQSeries for Windows) to create the objects required.

To send messages from one queue manager to another:
v Define the following objects on the source queue manager:

– Sender channel
– Remote queue
– Initiation queue (required on OS/390, otherwise optional)
– Transmission queue
– Dead-letter queue (recommended)
– Process (required on OS/390, otherwise optional)

v Define the following objects on the target queue manager:
– Receiver channel
– Target queue
– Dead-letter queue (recommended)

You can use several different methods to define these objects, depending on your
MQSeries platform:

OS/390 or MVS/ESA
If you are using native OS/390 communications, you can use the
Operation and Control panels or information from the MQSeries Command
Reference book. If you are using CICS for distributed queuing, you must
use the supplied CICS application CKMC for channels.

© Copyright IBM Corp. 1993, 2000 17

OS/400®

You can use the panel interface, the control language (CL) commands
described in the MQSeries for AS/400 System Administration, MQSeries
commands described in the MQSeries Command Reference book, or the
programmable command format (PCF) commands described in the
MQSeries Programmable System Management book.

MQSeries for Windows
You can use MQSC commands, PCF commands, or the MQSeries
properties dialog. Not all MQSC and PCF commands are supported; see
the MQSeries for Windows User’s Guide.

Note: On MQSeries for Windows there is no initiation queue, dead-letter
queue, or process.

OS/2, Windows NT, UNIX systems, and Digital OpenVMS
You can use the MQSeries commands described in the MQSeries Command
Reference book, or the PCF commands described in the MQSeries
Programmable System Management book. On Windows NT only, you can also
use the graphical user interfaces, the MQSeries explorer and the MQSeries
Web Administration.

Tandem NSK
You can use MQSC commands, PCF commands, or the Message Queue
Management facility. See the MQSeries for Tandem NonStop Kernel System
Management Guide for more information about the control commands and
the Message Queue Management facility.

VSE/ESA
You can use the panel interface as described in the MQSeries for VSE/ESA
System Management Guide.

The different methods are described in more detail in the platform-specific parts of
this book.

Defining the channels
To send messages from one queue manager to another, you need to define two
channels; one on the source queue manager and one on the target queue manager.

On the source queue manager
Define a channel with a channel type of SENDER. You need to specify the
following:
v The name of the transmission queue to be used (the XMITQ attribute).
v The connection name of the partner system (the CONNAME attribute).
v The name of the communication protocol you are using (the TRPTYPE

attribute). For V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT, and MQSeries for Windows, you do not
have to specify this. You can leave it to pick up the value from your
default channel definition. On MQSeries for Windows the protocol must
be TCP or UDP. On MQSeries for VSE/ESA, the protocol must be TCP
or LU 6.2; you can choose T or L accordingly on the Maintain Channel
Definition menu.

Details of all the channel attributes are given in “Chapter 6. Channel
attributes” on page 77.

Sending messages

18 MQSeries Intercommunication

|
|
|
|
|
|

|
|
|
|
|
|
|
|

On the target queue manager
Define a channel with a channel type of RECEIVER, and the same name as
the sender channel.

Specify the name of the communication protocol you are using (the
TRPTYPE attribute). For V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and MQSeries for Windows, you do
not have to specify this. You can leave it to pick up the value from your
default channel definition. On MQSeries for Windows the protocol must be
TCP. If you are using CICS to define a channel, you cannot specify
TRPTYPE. Instead you should accept the defaults provided. On MQSeries
for VSE/ESA, you can choose T (TCP) or U (UDP) on the Maintain
Channel Definition menu.

Note that other than on MQSeries for Windows, receiver channel
definitions can be generic. This means that if you have several queue
managers communicating with the same receiver, the sending channels can
all specify the same name for the receiver, and one receiver definition will
apply to them all.

When you have defined the channel, you can test it using the PING CHANNEL
command. This command (which is not supported on MQSeries for Windows)
sends a special message from the sender channel to the receiver channel and
checks that it is returned.

Defining the queues
To send messages from one queue manager to another, you need to define up to
six queues; four on the source queue manager and two on the target queue
manager.

On the source queue manager

v Remote queue definition
In this definition you specify the following:

Remote queue manager name
The name of the target queue manager.

Remote queue name
The name of the target queue on the target queue manager.

Transmission queue name
The name of the transmission queue. You do not have to specify
this. If you do not, a transmission queue with the same name as
the target queue manager is used, or, if this does not exist, the
default transmission queue is used. You are advised to give the
transmission queue the same name as the target queue manager
so that the queue is found by default.

v Initiation queue definition
Not supported on MQSeries for Windows, required on OS/390, and is
optional on other platforms. On OS/390 you must use the initiation
queue called SYSTEM.CHANNEL.INITQ and you are recommended to
do so on other platforms also.

v Transmission queue definition
A local queue with the USAGE attribute set to XMITQ. If you are using
the MQSeries for AS/400 V5.1 native interface, the USAGE attribute is
*TMQ.

Sending messages

Chapter 2. Making your applications communicate 19

|

|

|

|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|

v Dead-letter queue definition—recommended (not applicable to MQSeries
for Windows)
Define a dead-letter queue to which undelivered messages can be
written.

On OS/390 you should also define a process if you want your channels to
be triggered automatically. (See “Triggering channels”.)

On the target queue manager

v Local queue definition
The target queue. The name of this queue must be the same as that
specified in the remote queue name field of the remote queue definition
on the source queue manager.

v Dead-letter queue definition—recommended (not applicable to MQSeries
for Windows)
Define a dead-letter queue to which undelivered messages can be
written.

Sending the messages
When you put messages on the remote queue defined at the source queue
manager, they are stored on the transmission queue until the channel is started.
When the channel has been started, the messages are sent to the target queue on
the remote queue manager.

Starting the channel
Start the channel on the sending queue manager using the START CHANNEL
command. When you start the sending channel, the receiving channel is started
automatically (by the listener) and the messages are sent to the target queue. Both
ends of the message channel must be running for messages to be transferred.

Because the two ends of the channel are on different queue managers, they could
have been defined with different attributes. To resolve any differences, there is an
initial data negotiation between the two ends when the channel starts. In general,
the two ends of the channel agree to operate with the attributes needing the fewer
resources, thus enabling larger systems to accommodate the lesser resources of
smaller systems at the other end of the message channel.

The sending MCA splits large messages before sending them across the channel.
They are reassembled at the remote queue manager. This is transparent to the user.

Triggering channels
This explanation is intended as an overview of triggering concepts. You can find a
complete description in the MQSeries Application Programming Guide.

For platform-specific information see the following:
v For OS/2, Windows NT, UNIX systems, Digital OpenVMS, and Tandem NSK,

“Triggering channels” on page 117
v For OS/390 without CICS, “Defining MQSeries objects” on page 342
v For OS/390 using CICS, “How to trigger channels” on page 358
v For OS/400, “Triggering channels” on page 443

Triggering is not supported on MQSeries for Windows.

Sending messages

20 MQSeries Intercommunication

|
|

|
|

|
|

|

|

|
|
|

|
|

|
|

|

|
|
|
|
|
|

The objects required for triggering are shown in Figure 14. It shows the following
sequence of events:
1. The local queue manager places a message from an application or from a

message channel agent (MCA) on the transmission queue.
2. When the triggering conditions are fulfilled, the local queue manager places a

trigger message on the initiation queue.
3. The long-running channel initiator program monitors the initiation queue, and

retrieves messages as they appear.
4. The trigger monitor processes the trigger messages according to information

contained in them. This information may include the channel name, in which
case a special type of trigger monitor called a channel initiator starts the
corresponding MCA.

5. The local application or the MCA, having been triggered, retrieves the
messages from the transmission queue.

To set up this scenario, you need to:
v Create the transmission queue with the name of the initiation queue (that is,

SYSTEM.CHANNEL.INITQ) in the corresponding attribute.
v Ensure that the initiation queue (SYSTEM.CHANNEL.INITQ) exists.
v Ensure that the channel initiator program is available and running. The trigger

monitor program must be provided with the name of the initiation queue in its
start command. On OS/390 without CICS, the name of the initiation queue is
fixed, so is not used on the start command.

v Create the process definition for the triggering, if it does not exist, and ensure
that its UserData field contains the name of the channel it serves. For V5.1 of
MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
the process definition is optional (it is not supported on MQSeries for
VSE/ESA). Instead, you can specify the channel name in the TriggerData
attribute of the transmission queue. V5.1 of MQSeries for AIX, AS/400, HP-UX,

Application

Program

4. Queue server started

Transmission queue

Initiation queue

1.

puts
message
on queue

Queue manager Application

Channel
initiator
(Long
running)

5.

message
retrieved

Local or
MCA

Local program
startedby
trigger monitor

or
MCA startedby
channel initiator2. trigger message

3.
trigger
message
retrieved

Figure 14. The concepts of triggering

Triggering channels

Chapter 2. Making your applications communicate 21

|
|
|
|
|
|

OS/2 Warp, Sun Solaris, and Windows NT allow the channel name to be
specified as blank, in which case the first available channel definition with this
transmission queue is used.

v Ensure that the transmission queue definition contains the name of the process
definition to serve it, (if applicable), the initiation queue name, and the
triggering characteristics you feel are most suitable. The trigger control attribute
allows triggering to be enabled, or not, as necessary.

Notes:

1. An initiation queue and trigger process can be used to trigger any number of
channels.

2. Any number of initiation queues and trigger processes can be defined.
3. A trigger type of FIRST is recommended, to avoid flooding the system with

channel starts.

Safety of messages
In addition to the usual recovery features of MQSeries, distributed queue
management ensures that messages are delivered properly by using a syncpoint
procedure coordinated between the two ends of the message channel. If this
procedure detects an error, it closes the channel to allow you to investigate the
problem, and keeps the messages safely in the transmission queue until the
channel is restarted.

The syncpoint procedure has an added benefit in that it attempts to recover an
in-doubt situation when the channel starts up. (In-doubt is the status of a unit of
recovery for which a syncpoint has been requested but the outcome of the request
is not yet known.) Also associated with this facility are the two functions:
1. Resolve with commit or backout
2. Reset the sequence number

The use of these functions occurs only in exceptional circumstances because the
channel recovers automatically in most cases.

Fast, nonpersistent messages
In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, MQSeries for OS/390 without CICS and MQSeries for Windows
V2.1, the nonpersistent message speed (NPMSPEED) channel attribute can be used
to specify that any nonpersistent messages on the channel are to be delivered
quickly. For more information about this attribute, see “Nonpersistent message
speed (NPMSPEED)” on page 90. If a channel terminates while fast, nonpersistent
messages are in transit, the messages may be lost and it is up to the application to
arrange for their recovery if required. Similarly, if the MQPUT command fails for
any reason, the messages are lost.

Every effort is made to deliver fast, nonpersistent messages safely. Unless there is a
problem with the message, such as a data-conversion problem or a message-size
problem, the message is delivered. The safety of an individual message is not
affected by sequence-number problems or problems with other messages in the
same batch.

In MQSeries for Compaq (DIGITAL) OpenVMS fast messages are defined
differently. To enable fast messages on a channel, of type sender, server, receiver, or
requester, set the following definitions at both ends of the channel after the
CHLTYPE:

Triggering channels

22 MQSeries Intercommunication

|
|
|

|
|
|
|
|
|
|
|
|

DESCR(‘>>> description’) +

Specifying >>> as the first characters in the channel description defines the channel
as fast for nonpersistent messages.

Note: If the other end of the channel does not support the option, the channel runs
at normal speed.

Undelivered messages
For information about what happens when a message cannot be delivered, see
“What happens when a message cannot be delivered?” on page 71.

Safety of messages

Chapter 2. Making your applications communicate 23

Introduction

24 MQSeries Intercommunication

Chapter 3. More about intercommunication

This chapter mentions three aliases:
v Remote queue definition
v Queue manager alias definition
v Reply-to queue alias definition

These are all based on the remote queue definition object introduced in “Remote
queue definitions” on page 14.

This discussion does not apply to alias queues. These are described in the MQSeries
Application Programming Guide.

This chapter also discusses “Networks” on page 29.

Addressing information
In a single-queue-manager environment, the address of a destination queue is
established when an application opens a queue for putting messages to. Because
the destination queue is on the same queue manager, there is no need for any
addressing information.

In a distributed environment the queue manager needs to know not only the
destination queue name, but also the location of that queue (that is, the queue
manager name), and the route to that remote location (that is, the transmission
queue). When an application puts messages that are destined for a remote queue
manager, the local queue manager adds a transmission header to them before
placing them on the transmission queue. The transmission header contains the
name of the destination queue and queue manager, that is, the addressing
information. The receiving channel removes the transmission header and uses the
information in it to locate the destination queue.

You can avoid the need for your applications to specify the name of the destination
queue manager if you use a remote queue definition. This definition specifies the
name of the remote queue, the name of the remote queue manager to which
messages are destined, and the name of the transmission queue used to transport
the messages.

What are aliases?
Aliases are used to provide a quality of service for messages. The queue manager
alias enables a system administrator to alter the name of a target queue manager
without causing you to have to change your applications. It also enables the
system administrator to alter the route to a destination queue manager, or to set up
a route that involves passing through a number of other queue managers
(multi-hopping). The reply-to queue alias provides a quality of service for replies.

Queue manager aliases and reply-to queue aliases are created using a
remote-queue definition that has a blank RNAME. These definitions do not define
real queues; they are used by the queue manager to resolve physical queue names,
queue manager names, and transmission queues.

Alias definitions are characterized by having a blank RNAME.

© Copyright IBM Corp. 1993, 2000 25

Queue name resolution
Queue name resolution occurs at every queue manager each time a queue is
opened. Its purpose is to identify the target queue, the target queue manager
(which may be local), and the route to that queue manager (which may be null).
The resolved name has three parts: the queue manager name, the queue name,
and, if the queue manager is remote, the transmission queue.

When a remote queue definition exists, no alias definitions are referenced. The
queue name supplied by the application is resolved to the name of the destination
queue, the remote queue manager, and the transmission queue specified in the
remote queue definition. For more detailed information about queue name
resolution, see “Appendix C. Queue name resolution” on page 633.

If there is no remote queue definition and a queue manager name is specified, or
resolved by the name service, the queue manager looks to see if there is a queue
manager alias definition that matches the supplied queue manager name. If there
is, the information in it is used to resolve the queue manager name to the name of
the destination queue manager. The queue manager alias definition can also be
used to determine the transmission queue to the destination queue manager.

If the resolved queue name is not a local queue, both the queue manager name
and the queue name are included in the transmission header of each message put
by the application to the transmission queue.

The transmission queue used usually has the same name as the resolved queue
manager, although this may be changed by a remote queue definition or a queue
manager alias definition. If you have not defined a transmission queue with the
name of the resolved queue manager and there is no transmission queue defined
by the remote queue definitions or queue manager alias definitions, but you have
defined a default transmission queue, the default transmission queue is used.

Note: Names of queue managers running on OS/390 are limited to four
characters.

Queue manager alias definitions
Queue manager alias definitions apply when an application that opens a queue to
put a message, specifies the queue name and the queue manager name.

Queue manager alias definitions have three uses:
v When sending messages, remapping the queue manager name
v When sending messages, altering or specifying the transmission queue
v When receiving messages, determining whether the local queue manager is the

intended destination for those messages

Outbound messages - remapping the queue manager name
Queue manager alias definitions can be used to remap the queue manager name
specified in an MQOPEN call. For example, an MQOPEN call specifies a queue
name of THISQ and a queue manager name of YOURQM. At the local queue
manager there is a queue manager alias definition like this:
DEFINE QREMOTE (YOURQM) RQMNAME(REALQM)

This shows that the real queue manager to be used, when an application puts
messages to queue manager YOURQM, is REALQM. If the local queue manager is
REALQM, it puts the messages to the queue THISQ, which is a local queue. If the

What are aliases?

26 MQSeries Intercommunication

|

local queue manager is not called REALQM, it routes the message to a
transmission queue called REALQM. The queue manager changes the transmission
header to say REALQM instead of YOURQM.

Outbound messages - altering or specifying the transmission
queue

Figure 15 shows a scenario where messages arrive at queue manager ‘QM1’ with
transmission headers showing queue names at queue manager ‘QM3’. In this
scenario, ‘QM3’ is reachable by multi-hopping through ‘QM2’.

All messages for ‘QM3’ are captured at ‘QM1’ with a queue manager alias. The
queue manager alias is named ‘QM3’ and contains the definition ‘QM3 via
transmission queue QM2’. The definition looks like this:
DEFINE QREMOTE (QM3) RNAME() RQMNAME(QM3) XMITQ(QM2)

The queue manager puts the messages on transmission queue ‘QM2’ but does not
make any alteration to the transmission queue header because the name of the
destination queue manager, ‘QM3’, does not alter.

All messages arriving at ‘QM1’ and showing a transmission header containing a
queue name at ‘QM2’ are also put on the ‘QM2’ transmission queue. In this way,
messages with different destinations are collected onto a common transmission
queue to an appropriate adjacent system, for onward transmission to their
destinations.

Inbound messages - determining the destination
A receiving MCA opens the queue referenced in the transmission header. If a
queue manager alias definition exists with the same name as the queue manager
referenced, then the queue manager name received in the transmission header is
replaced with the RQMNAME from that definition.

This has two uses:
v Directing messages to another queue manager
v Altering the queue manager name to be the same as the local queue manager

QM1 QM2

Queue

QueueQueue 'QM2' 'QM3'

'QM3'

Local system Adjacent system Remote

system

to

QM3

Adjacent

system

Channel in A

Channel in B Channel out 1 Channel out 2

Figure 15. Queue manager alias

Queue manager alias definitions

Chapter 3. More about intercommunication 27

Reply-to queue alias definitions
When an application needs to reply to a message it may look at the data in message
descriptor of the message it received to find out the name of the queue to which it
should reply. It is up to the sending application to suggest where replies should be
sent and to attach this information to its messages. This has to be coordinated as
part of your application design.

What is a reply-to queue alias definition?
A reply-to queue alias definition specifies alternative names for the reply
information in the message descriptor. The advantage of this is that you can alter
the name of a queue or queue manager without having to alter your applications.
Queue name resolution takes place at the sending end, before the message is put to
a queue.

Note: This is an unusual use of queue-name resolution. It is the only situation in
which name resolution takes place at a time when a queue is not being
opened.

Normally an application specifies a reply-to queue and leaves the reply-to queue
manager name blank. The queue manager fills in its own name at put time. This
works well except when you want alternate channels to be used for replies. In this
situation, the queue manager names specified in transmission-queue headers do
not match “real” queue manager names but are re-specified using queue manager
alias definitions. In order to return replies along similar alternate routes, it is
necessary to map reply-to queue data as well, using reply-to queue alias
definitions.

In the example in Figure 16:
1. The application puts a message using the MQPUT call and specifying the

following in the message descriptor:
ReplyToQ=‘Reply_to’
ReplyToQMgr=‘’

Application

Inquiring

Queue manager 'QM1' Queue manager 'QM2'

Queue Queue

Queue 'Answer'

'QM3_relief''QM3_relief'

Local system

Queue 'Inquiry'

Remote systemAdjacent system

Queue 'Reply_to'

QueueQueue 'QM1_relief''QM1_relief'

Channel_out_1 Channel_out_2

Channel_in_2Channel_in_1

Figure 16. Reply-to queue alias used for changing reply location

Reply-to queue alias definitions

28 MQSeries Intercommunication

Note that ReplyToQMgr must be blank in order for the reply-to queue alias to
be used.

2. You create a reply-to queue alias definition called ‘Reply_to’, which contains
the name ‘Answer’, and the queue manager name ‘QM1_relief’.
DEFINE QREMOTE ('Reply_to') RNAME ('Answer')

RQMNAME ('QM1_relief')

3. The messages are sent with a message descriptor showing ReplyToQ=‘Answer’
and ReplyToQMgr=‘QM1_relief’.

4. The application specification must include the information that replies are to be
found in queue ‘Answer’ rather than ‘Reply_to’.

To prepare for the replies you have to create the parallel return channel. This
involves defining:
v At QM2, the transmission queue named ‘QM1_relief’

DEFINE QLOCAL ('QM1_relief') USAGE(XMITQ)

v At QM1, the queue manager alias queue ‘QM1_relief’
DEFINE QREMOTE ('QM1_relief') RNAME() RQMNAME(QM1)

This queue manager alias queue terminates the chain of parallel return channels
and captures the messages for QM1.

If you think you might want to do this at sometime in the future, arrange for your
applications to use the alias name from the start. For now this is a normal queue
alias to the reply-to queue, but later it can be changed to a queue manager alias.

Reply-to queue name
Care is needed with naming reply-to queues. The reason that an application puts a
reply-to queue name in the message is that it can specify the queue to which its
replies will be sent. But when you create a reply-to queue alias definition with this
name, you cannot have the actual reply-to queue (that is, a local queue definition)
with the same name. Therefore, the reply-to queue alias definition must contain a
new queue name as well as the queue manager name, and the application
specification must include the information that its replies will be found in this
other queue.

The applications now have to retrieve the messages from a different queue from
the one they named as the reply-to queue when they put the original message.

Networks
So far this book has covered creating channels between your system and any other
system with which you need to have communications, and creating multi-hop
channels to systems where you have no direct connections. The message channel
connections described in the scenarios are shown as a network diagram in
Figure 17 on page 30.

Channel and transmission queue names
You can give transmission queues any name you like, but to avoid confusion, you
can give them the same names as the destination queue manager names, or queue
manager alias names, as appropriate, to associate them with the route they use.
This gives a clear overview of parallel routes that you create through intermediate
(multi-hopped) queue managers.

Reply-to queue alias definitions

Chapter 3. More about intercommunication 29

This is not quite so clear-cut for channel names. The channel names in Figure 17
for QM2, for example, must be different for incoming and outgoing channels. All
channel names may still contain their transmission queue names, but they must be
qualified to make them unique.

For example, at QM2, there is a QM3 channel coming from QM1, and a QM3
channel going to QM3. To make the names unique, the first one may be named
‘QM3_from_QM1’, and the second may be named ‘QM3_from_QM2’. In this way,
the channel names show the transmission queue name in the first part of the name,
and the direction and adjacent queue manager name in the second part of the
name.

A table of suggested channel names for Figure 17 is given in Table 1.

Table 1. Example of channel names
Route name Queue managers

hosting channel
Transmission queue name Suggested channel name

QM1 QM1 & QM2 QM1 (at QM2) QM1.from.QM2

QM1 QM2 & QM3 QM1 (at QM3) QM1.from.QM3

QM1_fast QM1 & QM2 QM1_fast (at QM2) QM1_fast.from.QM2

QM1_relief QM1 & QM2 QM1_relief (at QM2) QM1_relief.from.QM2

QM1_relief QM2 & QM3 QM1_relief (at QM3) QM1_relief.from.QM3

QM2 QM1 & QM2 QM2 (at QM1) QM2.from.QM1

QM2_fast QM1 & QM2 QM2_fast (at QM1) QM2_fast.from.QM1

QM3 QM1 & QM2 QM3 (at QM1) QM3.from.QM1

QM3 QM2 & QM3 QM3 (at QM2) QM3.from.QM2

QM3_relief QM1 & QM2 QM3_relief (at QM1) QM3_relief.from.QM1

QM3_relief QM2 & QM3 QM3_relief (at QM2) QM3_relief.from.QM2

Notes:

1. On MQSeries for OS/390, queue manager names are limited to 4 characters.

QM2

QM2 fast

Q M 1

QM1 fast

Q M 1 re lie f

QM3

Q M 3 relie f

Q M 1

Q M 1 relie f

QM3

Q M 3 relie f

'Q M 1 ' 'Q M 2 ' 'Q M 3 '

Figure 17. Network diagram showing all channels

Networks

30 MQSeries Intercommunication

2. You are strongly recommended to name all the channels in your network
uniquely. As shown in Table 1 on page 30, including the source and target
queue manager names in the channel name is a good way to do this.

Network planner
This chapter has discussed application designer, systems administrator, and
channel planner functions. Creating a network assumes that there is another,
higher level function of network planner whose plans are implemented by the other
members of the team.

If an application is used widely, it is more economical to think in terms of local
access sites for the concentration of message traffic, using wide-band links between
the local access sites, as shown in Figure 18.

In this example there are two main systems and a number of satellite systems (The
actual configuration would depend on business considerations.) There are two
concentrator queue managers located at convenient centers. Each QM-concentrator
has message channels to the local queue managers:
v QM-concentrator 1 has message channels to each of the three local queue

managers, QM1, QM2, and QM3. The applications using these queue managers
can communicate with each other through the QM-concentrators.

v QM-concentrator 2 has message channels to each of the three local queue
managers, QM4, QM5, and QM6. The applications using these queue managers
can communicate with each other through the QM-concentrators.

v The QM-concentrators have message channels between themselves thus allowing
any application at a queue manager to exchange messages with any other
application at another queue manager.

Networks

Chapter 3. More about intercommunication 31

'Q M -
C oncentra tor

1 '
'Q M 1 ' 'Q M 3 '

'Q M -
C oncentra tor

2 '
'Q M 4 ' 'Q M 6 '

'Q M 2 '

'Q M 5 '

Figure 18. Network diagram showing QM-concentrators

Introduction

32 MQSeries Intercommunication

Part 2. How intercommunication works

Chapter 4. MQSeries distributed-messaging
techniques 35
Message flow control 35

Queue names in transmission header 36
How to create queue manager and reply-to
aliases 36

Putting messages on remote queues 37
More about name resolution 38

Choosing the transmission queue 39
Receiving messages. 40

Receiving alias queue manager names 40
Passing messages through your system 41

Method 1: Using the incoming location name . . 42
Method 2: Using an alias for the queue manager 42
Method 3: Selecting a transmission queue . . . 42
Using these methods 42

Separating message flows 42
Concentrating messages to diverse locations . . . 44
Diverting message flows to another destination . . 45
Sending messages to a distribution list 46
Reply-to queue 47

Reply-to queue alias example 48
Definitions used in this example at QM1 . . 49
Definitions used in this example at QM2 . . 50
Put definition at QM1 50
Put definition at QM2 50

How the example works 50
How the queue manager makes use of the
reply-to queue alias. 51
Reply-to queue alias walk-through 51

Networking considerations 52
Return routing 53
Managing queue name translations 53
Message sequence numbering 54

Sequential retrieval of messages 55
Sequence of retrieval of fast, nonpersistent
messages 56

Loopback testing 56

Chapter 5. DQM implementation 57
Functions of DQM 57
Message sending and receiving 58

Channel parameters 59
Channel status and sequence numbers 59

Channel control function 59
Preparing channels 60

Auto-definition of channels 60
Defining other objects 61
Starting a channel (not MQSeries for
Windows) 61
Starting a channel on MQSeries for Windows 61

Channel states 62
Current and active 62
Channel errors 65
Checking that the other end of the channel is
still available 66

Stopping and quiescing channels (not MQSeries
for Windows). 67
Stopping and quiescing channels (MQSeries for
Windows) 68
Restarting stopped channels 69
In-doubt channels 69
Problem determination 71

Command validation 71
Processing problems 71
Messages and codes 71

What happens when a message cannot be
delivered? 71
Initialization and configuration files 73

OS/390 without CICS 73
OS/390 using CICS. 73
Windows NT 73
OS/2, Digital OpenVMS, Tandem NSK, OS/400
and UNIX systems 73

MQSeries configuration file 74
Queue manager configuration file 74

VSE/ESA 75
Data conversion 75
Writing your own message channel agents 75

Chapter 6. Channel attributes 77
Channel attributes in alphabetical order 77

Alter date (ALTDATE). 78
Alter time (ALTTIME) 78
Auto start (AUTOSTART). 78
Batch interval (BATCHINT) 79
Batch size (BATCHSZ). 79
Channel name (CHANNEL) 80
Channel type (CHLTYPE) 81
CICS profile name 81
Cluster (CLUSTER) 81
Cluster namelist (CLUSNL) 82
Connection name (CONNAME) 82
Convert message (CONVERT) 83
Description (DESCR) 84
Disconnect interval (DISCINT) 84
Heartbeat interval (HBINT) 85
Long retry count (LONGRTY) 85
Long retry interval (LONGTMR) 85
LU 6.2 mode name (MODENAME) 86
LU 6.2 transaction program name (TPNAME) . . 86
Maximum message length (MAXMSGL) 87
Maximum transmission size 87
Message channel agent name (MCANAME) . . 87
Message channel agent type (MCATYPE) . . . 88
Message channel agent user identifier
(MCAUSER) 88
Message exit name (MSGEXIT) 88
Message exit user data (MSGDATA) 89
Message-retry exit name (MREXIT) 89
Message-retry exit user data (MRDATA) 89
Message retry count (MRRTY) 89

© Copyright IBM Corp. 1993, 2000 33

Message retry interval (MRTMR) 89
Network-connection priority (NETPRTY) . . . 90
Nonpersistent message speed (NPMSPEED) . . 90
Password (PASSWORD) 90
PUT authority (PUTAUT). 90
Queue manager name (QMNAME) 91
Receive exit name (RCVEXIT) 91
Receive exit user data (RCVDATA) 92
Security exit name (SCYEXIT) 92
Security exit user data (SCYDATA) 93
Send exit name (SENDEXIT). 93
Send exit user data (SENDDATA) 93
Sequence number wrap (SEQWRAP) 93
Sequential delivery 93
Short retry count (SHORTRTY) 93

Short retry interval (SHORTTMR) 94
Target system identifier 94
Transaction identifier 94
Transmission queue name (XMITQ) 94
Transport type (TRPTYPE) 95
User ID (USERID) 95

Chapter 7. Example configuration chapters in
this book 97
Network infrastructure 98
Communications software 98
How to use the communication examples 99

IT responsibilities 100

This part of the book gives more details about how intercommunication works.
The description in this part is general, and is not restricted to a particular platform
or system.

Intercommunication

34 MQSeries Intercommunication

Chapter 4. MQSeries distributed-messaging techniques

This chapter describes techniques that are of use when planning channels. It
introduces the concept of message flow control and explains how this is arranged
in distributed queue management (DQM). It gives more detailed information about
the concepts introduced in the preceding chapters and starts to show how you
might use distributed queue management. This chapter covers the following topics:
v “Message flow control”
v “Putting messages on remote queues” on page 37
v “Choosing the transmission queue” on page 39
v “Receiving messages” on page 40
v “Passing messages through your system” on page 41
v “Separating message flows” on page 42
v “Concentrating messages to diverse locations” on page 44
v “Diverting message flows to another destination” on page 45
v “Sending messages to a distribution list” on page 46
v “Reply-to queue” on page 47
v “Networking considerations” on page 52
v “Return routing” on page 53
v “Managing queue name translations” on page 53
v “Message sequence numbering” on page 54
v “Loopback testing” on page 56

Message flow control
Message flow control is a task that involves the setting up and maintenance of
message routes between queue managers. This is very important for routes that
multi-hop through many queue managers.

You control message flow using a number of techniques that were introduced in
“Chapter 2. Making your applications communicate” on page 17. If your queue
manager is in a cluster, message flow is controlled using different techniques as
described in the MQSeries Queue Manager Clusters book.

This chapter describes how you use your system’s queues, alias queue definitions,
and message channels to achieve message flow control.

You make use of the following objects:
v Transmission queues
v Message channels
v Remote queue definition
v Queue manager alias definition
v Reply-to queue alias definition

The queue manager and queue objects are described in the MQSeries System
Administration book for MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, in the MQSeries for AS/400 V5.1 System Administration book for
MQSeries for AS/400, or in the MQSeries System Management Guide for your
platform. Message channels are described in “Message channels” on page 7. The
following techniques use these objects to create message flows in your system:
v Putting messages to remote queues
v Routing via particular transmission queues
v Receiving messages

© Copyright IBM Corp. 1993, 2000 35

|
|
|
|
|
|
|
|
|

v Passing messages through your system
v Separating message flows
v Switching a message flow to another destination
v Resolving the reply-to queue name to an alias name

Note
All the concepts described in this chapter are relevant for all nodes in a
network, and include sending and receiving ends of message channels. For
this reason, only one node is illustrated in most examples, except where the
example requires explicit cooperation by the administrator at the other end of
a message channel.

Before proceeding to the individual techniques it is useful to recap on the concepts
of name resolution and the three ways of using remote queue definitions. See
“Chapter 3. More about intercommunication” on page 25.

Queue names in transmission header
The queue name used by the application, the logical queue name, is resolved by
the queue manager to the destination queue name, that is, the physical queue
name. This destination queue name travels with the message in a separate data
area, the transmission header, until the destination queue has been reached after
which the transmission header is stripped off.

You will be changing the queue manager part of this queue name when you create
parallel classes of service. Remember to return the queue manager name to the
original name when the end of the class of service diversion has been reached.

How to create queue manager and reply-to aliases
As discussed above, the remote queue definition object is used in three different
ways. Table 2 on page 37 explains how to define each of the three ways:
v Using a remote queue definition to redefine a local queue name.

The application provides only the queue name when opening a queue, and this
queue name is the name of the remote queue definition.
The remote queue definition contains the names of the target queue and queue
manager, and optionally, the definition can contain the name of the transmission
queue to be used. If no transmission queue name is provided, the queue
manager uses the new queue manager name for the transmission queue name. If
a transmission queue of this name is not defined, but a default transmission
queue is defined, the default transmission queue is used.

v Using a remote queue definition to redefine a queue manager name.
The application, or channel program, provides a queue name together with the
remote queue manager name when opening the queue.
If you have provided a remote queue definition with the same name as the
queue manager name, and you have left the queue name in the definition blank,
then the queue manager will substitute the queue manager name in the open
call with the queue manager name in the definition.
In addition, the definition can contain the name of the transmission queue to be
used. If no transmission queue name is provided, the queue manager takes the
new queue manager name for the transmission queue name. If a transmission
queue of this name is not defined, but a default transmission queue is defined,
the default transmission queue is used.

Message flow control

36 MQSeries Intercommunication

|
|
|
|
|

v Using a remote queue definition to redefine a reply-to queue name.
Each time an application puts a message to a queue, it may provide the name of
a reply-to queue for answer messages but with the queue manager name blank.
If you provide a remote queue definition with the same name as the reply-to
queue then the local queue manager replaces the reply-to queue name with the
queue name from your definition.
You may provide a queue manager name in the definition, but not a
transmission queue name.

Table 2. Three ways of using the remote queue definition object

Usage Queue manager
name

Queue name Transmission
queue name

1. Remote queue definition (on OPEN call)

Supplied in the call blank or local QM (*) required -

Supplied in the definition required required optional

2. Queue manager alias (on OPEN call)

Supplied in the call (*) required and
not local QM

required -

Supplied in the definition required blank optional

3. Reply-to queue alias (on PUT call)

Supplied in the call blank (*) required -

Supplied in the definition optional optional blank

Note: (*) means that this name is the name of the definition object

For a formal description, see “Appendix C. Queue name resolution” on page 633.

Putting messages on remote queues
In a distributed-queuing environment, a transmission queue and channel are the
focal point for all messages to a location whether the messages originate from
applications in your local system, or arrive through channels from an adjacent
system. This is shown in Figure 19 on page 38 where an application is placing
messages on a logical queue named ‘QA_norm’. The name resolution uses the
remote queue definition ‘QA_norm’ to select the transmission queue ‘QMB’, and
adds a transmission header to the messages stating ‘QA_norm at QMB’.

Messages arriving from the adjacent system on ‘Channel_back’ have a transmission
header with the physical queue name ‘QA_norm at QMB’, for example. These
messages are placed unchanged on transmission queue QMB.

The channel moves the messages to an adjacent queue manager.

Message flow control

Chapter 4. MQSeries distributed-messaging techniques 37

Your part in this scenario is to:
v Define the message channel from the adjacent system
v Define the message channel to the adjacent system
v Create the transmission queue ‘QMB’
v Define the remote queue object ‘QA_norm’ to resolve the queue name used by

applications to the desired destination queue name, destination queue manager
name, and transmission queue name

In a clustering environment, you only need to define a cluster-receiver channel at
the local queue manager. You do not need to define a transmission queue or a
remote queue object. For information about this, see the MQSeries Queue Manager
Clusters book.

More about name resolution
The effect of the remote queue definition is to define a physical destination queue
name and queue manager name; these names are put in the transmission headers
of messages.

Incoming messages from an adjacent system have already had this type of name
resolution carried out by the original queue manager, and have the transmission
header showing the physical destination queue name and queue manager name.
These messages are unaffected by remote queue definitions.

Q ueue 'Q A n o rm '

A pp lica tion 'Q M A '

Channel back

Local system

Q ueue
Q A norm at Q M B

Q A n o rm
Q A norm at Q M B via Q M B

Channel out

Channe l to adjacent system

'Q M B '

Adjacent
system

Figure 19. A remote queue definition is used to resolve a queue name to a transmission
queue to an adjacent queue manager. Note: The dashed outline represents a remote queue
definition. This is not a real queue, but a name alias that is controlled as though it were a
real queue.

Messages on remote queues

38 MQSeries Intercommunication

Choosing the transmission queue

In a distributed-queuing environment, when you need to change a message flow
from one channel to another, use the same system configuration as shown in
Figure 19 on page 38. Figure 20 shows how you use the remote queue definition to
send messages over a different transmission queue, and therefore over a different
channel, to the same adjacent queue manager.

In Figure 20, you provide:
v The remote queue object ‘QA_norm’ to choose:

– Queue ‘QA_norm’ at the remote queue manager
– Transmission queue ‘TX1’
– Queue manager ‘QMB_priority’

v The transmission queue ‘TX1’. Specify this in the definition of the channel to the
adjacent system

Messages are placed on transmission queue ‘TX1’ with a transmission header
containing ‘QA_norm at QMB_priority’, and are sent over the channel to the
adjacent system.

The channel_back has been left out of this illustration because it would need a
queue manager alias; this is discussed in the following example.

In a clustering environment, you do not need to define a transmission queue or a
remote queue definition. For more information about this, see the MQSeries Queue
Manager Clusters book.

Queue 'QA norm'

Application 'QMA'

Local system

Queue

QA norm

Channel out

Channel to adjacent system

'TXI'

Adjacent

system

QA norm at

QMB priority via TXI

Figure 20. The remote queue definition allows a different transmission queue to be used

Choosing the transmission queue

Chapter 4. MQSeries distributed-messaging techniques 39

Receiving messages

As well as arranging for messages to be sent, you also arrange for messages to be
received from adjacent queue managers. Received messages contain the physical
name of the destination queue manager and queue in the transmission header.
They are treated exactly the same as messages from a local application that
specifies both queue manager name and queue name. Because of this, you need to
ensure that messages entering your system do not have an unintentional name
resolution carried out. See Figure 21 for this scenario.

For this scenario, you prepare:
v Message channels to receive messages from adjacent queue managers
v A queue manager alias definition to resolve an incoming message flow,

‘QMB_priority’, to the local queue manager name, ‘QMB’
v The local queue, ‘QA_norm’, if it does not already exist

Receiving alias queue manager names
The use of the queue manager alias definition in this illustration has not selected a
different destination queue manager. Messages passing through this local queue
manager and addressed to ‘QMB_priority’ are intended for queue manager ‘QMB’.
The alias queue manager name is used to create the separate message flow.

Queue 'Q A n o rm '

App lica tion ' Q M B '

Channel back

Local system

Q A norm at
Q M B prior ity

Q A norm

Q A norm at Q M B

Q M B priority to Q M B

Adjacent
system

Channel back Queue 'Q M B pr io r i ty '

Figure 21. Receiving messages directly, and resolving alias queue manager name

Receiving messages

40 MQSeries Intercommunication

Passing messages through your system

Following on from the technique shown in Figure 21 on page 40, where you saw
how an alias flow is captured, Figure 22 illustrates the ways networks are built up
by bringing together the techniques we have discussed.

The scenario shows a channel delivering three messages with different
destinations:
1. ‘QMB at QMC’
2. ‘QMB at QMD_norm’
3. ‘QMB at QMD_PRIORITY’

You need to pass the first message flow through your system unchanged; the
second message flow through a different transmission queue and channel, while
reverting the messages from the alias queue manager name ‘QMD_norm’ to the
physical location ‘QMD’; and the third message flow simply chooses a different
transmission queue without any other change.

In a clustering environment, all messages are passed through the cluster
transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE. This is illustrated in
Figure 4 on page 7.

The following methods describe techniques applicable to a distributed-queuing
environment:

Queue 'TX1'

Local system

Queue

Channel out

'QMD norm'

Queue Channel out'QMC'

Queue 'QMD fast'

Queue

Channel out

'QMD PRIORITY'

Adjacent
system

Adjacent
system

'QMB'

Channel in

Channel in

Channel in

Figure 22. Three methods of passing messages through your system

Passing messages through system

Chapter 4. MQSeries distributed-messaging techniques 41

Method 1: Using the incoming location name
When you need to receive messages with a transmission header containing another
location name, the simplest preparation is to have a transmission queue with that
name, ‘QMC’ in this example, as a part of a channel to an adjacent queue manager.
The messages are delivered unchanged.

Method 2: Using an alias for the queue manager
The second method is to use the queue manager alias object definition, but specify
a new location name, ‘QMD’, as well as a particular transmission queue, ‘TX1’.
This action:
v Terminates the alias message flow set up by the queue manager name alias

‘QMD_norm’. That is the named class of service ‘QMD_norm’.
v Changes the transmission headers on these messages from ‘QMD_norm’ to

‘QMD’.

Method 3: Selecting a transmission queue
The third method is to have a queue manager alias object defined with the same
name as the destination location, ‘QMD_PRIORITY’, and use the definition to
select a particular transmission queue, ‘QMD_fast’, and therefore another channel.
The transmission headers on these messages remain unchanged.

Using these methods
For these scenarios, you prepare the:
v Input channel definitions
v Output channel definitions
v Transmission queues:

– QMC
– TX1
– QMD_fast

v Queue manager alias definitions:
– QMD_norm with ‘QMD_norm to QMD via TX1’
– QMD_PRIORITY with ‘QMD_PRIORITY to QMD_PRIORITY via QMD_fast’

Note
None of the message flows shown in the example changes the destination
queue. The queue manager name aliases simply provide separation of
message flows.

Separating message flows
In a distributed-queuing environment, the need to separate messages to the same
queue manager into different message flows can arise for a number of reasons. For
example:
v You may need to provide a separate flow for very large, large, medium, and

small messages. This also applies in a clustering environment and, in this case,
you may create clusters that overlap. There are a number of reasons you might
do this, for example:
– To allow different organizations to have their own administration.
– To allow independent applications to be administered separately.

Passing messages through system

42 MQSeries Intercommunication

– To create a class of service. For example you could have a cluster called
STAFF that is a subset of the cluster called STUDENTS. When you put a
message to a queue advertised in the STAFF cluster, a restricted channel is
used. When you put a message to a queue advertised in the STUDENTS
cluster, either a general channel or a restricted channel may be used.

– To create test and production environments.
v It may be necessary to route incoming messages via different paths from the

path of the locally generated messages.
v Your installation may require to schedule the movement of messages at certain

times (for example, overnight) and the messages then need to be stored in
reserved queues until scheduled.

In the example shown in Figure 23, the two incoming flows are to alias queue
manager names ‘QMC_small’ and ‘QMC_large’. You provide these flows with a
queue manager alias definition to capture these flows for the local queue manager.
You have an application addressing two remote queues and you need these
message flows to be kept separate. You provide two remote queue definitions that
specify the same location, ‘QMC’, but specify different transmission queues. This
keeps the flows separate, and nothing extra is needed at the far end as they have
the same destination queue manager name in the transmission headers. You
provide:
v The incoming channel definitions
v The two remote queue definitions QB_small and QB_large
v The two queue manager alias definitions QMC_small and QMC_large
v The three sending channel definitions
v Three transmission queues: TX_small, TX_large, and TX_external

Queue 'QMC small'

Application

'QMB'

Channel back

Local system

Queue

QB at QMC small

QB large

Channel out'TX small'

Adjacent
system

Adjacent
system

Queue 'QB large'

Queue Channel out'TX large'

Queue 'QMC large'

Queue Channel out'TX external'

Channel back
QB at QMC large

Queue 'QB small'
'QB small'

Figure 23. Separating messages flows

Separating message flows

Chapter 4. MQSeries distributed-messaging techniques 43

Coordination with adjacent systems
When you use a queue manager alias to create a separate message flow, you
need to coordinate this activity with the system administrator at the remote
end of the message channel to ensure that the corresponding queue manager
alias is available there.

Concentrating messages to diverse locations

Figure 24 illustrates a distributed-queuing technique for concentrating messages
that are destined for various locations on to one channel. Two possible uses would
be:
v Concentrating message traffic through a gateway
v Using wide bandwidth highways between nodes

In this example, messages from different sources, local and adjacent, and having
different destination queues and queue managers, are flowed via transmission
queue ‘TX1’ to queue manager QMC. Queue manager QMC delivers the messages
according to the destinations, one set to a transmission queue ‘QMD’ for onward

Queue 'QME'

Application

'QME'

Channel back

Local system

Queue

QB at QME

Channel back

Channel out

Channel out

Channel out

'QMD'

Adjacent

system

QB at QMD

QB at QME

Adjacent

system

Queue

Queue 'QA'

'QMC'

'QMB'

Queue

Queue 'QB'

'QA'

'TX1'Queue

Local queue

QA

QB

Figure 24. Combining message flows on to a channel

Separating message flows

44 MQSeries Intercommunication

transmission to queue manager QMD, another set to a transmission queue ‘QME’
for onward transmission to queue manager QME, while other messages are put on
the local queue ‘QA’.

You provide:
v Channel definitions
v Transmission queue TX1
v Remote queue definitions:

– QA with ‘QA at QMC via TX1’
– QB with ‘QB at QMD via TX1’

v Queue manager alias definition:
– QME with ‘QME via TX1’

Your colleague controlling QMC provides:
v Receiving channel definition with the same channel name
v Transmission queue QMD with associated sending channel definition
v Transmission queue QME with associated sending channel definition

Diverting message flows to another destination

Figure 25 illustrates how you can redefine the destination of certain messages.
Incoming messages to QMA are destined for ‘QB at QMC’. They would normally
arrive at QMA and be placed on a transmission queue called QMC which would
have been part of a channel to QMC. QMA must divert the messages to QMD, but
is able to reach QMD only over QMB. This method is useful when you need to
move a service from one location to another, and allow subscribers to continue to
send messages on a temporary basis until they have adjusted to the new address.

The method of rerouting incoming messages destined for a certain queue manager
to a different queue manager uses:
v A queue manager alias to change the destination queue manager to another

queue manager, and to select a transmission queue to the adjacent system
v A transmission queue to serve the adjacent queue manager
v A transmission queue at the adjacent queue manager for onward routing to the

destination queue manager

You provide:
v Channel_back definition
v Queue manager alias object definition QMC with QB at QMD via QMB

Adjacent
system

Adjacent systemLocal system Adjacent system

Queue 'QMD'

QB at QMC

'QMA'

Channel back

Queue

'QMB'

Channel Channel 'QB'

'QMD'

'QMB'

Queue 'QMC'

Queue

Local queue

Figure 25. Diverting message streams to another destination

Concentrating messages

Chapter 4. MQSeries distributed-messaging techniques 45

v Channel_out definition
v The associated transmission queue QMB

Your colleague who controls QMB provides:
v The corresponding channel_back definition
v The transmission queue, QMD
v The associated channel definition to QMD

You can use aliases within a clustering environment. For information about this,
see the MQSeries Queue Manager Clusters book.

Sending messages to a distribution list
In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
an application can send a message to several destinations with a single MQPUT
call. This applies in both a distributed-queuing environment and a clustering
environment. You have to define the destinations in a distribution list, as described
in the MQSeries Application Programming Guide.

Not all queue managers support distribution lists. When an MCA establishes a
connection with a partner, it determines whether or not the partner supports
distribution lists and sets a flag on the transmission queue accordingly. If an
application tries to send a message that is destined for a distribution list but the
partner does not support distribution lists, the sending MCA intercepts the
message and puts it onto the transmission queue once for each intended
destination.

A receiving MCA ensures that messages sent to a distribution list are safely
received at all the intended destinations. If any destinations fail, the MCA
establishes which ones have failed so that it can generate exception reports for
them and can try to resend the messages to them.

Diverting message flows

46 MQSeries Intercommunication

Reply-to queue

A complete remote queue processing loop using a reply-to queue is shown in
Figure 26. This applies in both a distributed-queuing environment and a clustering
environment. The details are as shown in Table 6 on page 54.

The application opens QA at QMB and puts messages on that queue. The messages
are given a reply-to queue name of QR, without the queue manager name being
specified. Queue manager QMA finds the reply-to queue object QR and extracts
from it the alias name of QRR and the queue manager name QMA_class1. These
names are put into the reply-to fields of the messages.

Reply messages from applications at QMB are addressed to QRR at QMA_class1.
The queue manager alias name definition QMA_class1 is used by the queue
manager to flow the messages to itself, and to queue QRR.

This scenario depicts the way you give applications the facility to choose a class of
service for reply messages, the class being implemented by the transmission queue
QMA_class1 at QMB, together with the queue manager alias definition,
QMA_class1 at QMA. In this way, you can change an application’s reply-to queue
so that the flows are segregated without involving the application. That is, the
application always chooses QR for this particular class of service, and you have the
opportunity to change the class of service with the reply-to queue definition QR.

You create:
v Reply-to queue definition QR
v Transmission queue object QMB
v Channel_out definition
v Channel_back definition
v Queue manager alias definition QMA_class1
v Local queue object QRR, if it does not exist

Your colleague at the adjacent system creates the:

Queue

'QMA class1'

Application QMB

'E'

Local system

QA at QMB
reply-to
QR QA at QMB

QMA Application

Adjacent system

'QR'

Queue

Queue 'QA'

'F '

'QMB'Queue

Queue

Queue 'QRR'

'QMA class1'
QRR at
QMA class1

Figure 26. Reply-to queue name substitution during PUT call

Reply-to queue

Chapter 4. MQSeries distributed-messaging techniques 47

v Receiving channel definition
v Transmission queue object QMA_class1
v Associated sending channel

Your application programs use:
v Reply-to queue name QR in put calls
v Queue name QRR in get calls

In this way, you may change the class of service as necessary, without involving
the application, by changing the reply-to alias ‘QR’, together with the transmission
queue ‘QMA_class1’ and queue manager alias ‘QMA_class1’.

If no reply-to alias object is found when the message is put on the queue, the local
queue manager name is inserted in the blank reply-to queue manager name field,
and the reply-to queue name remains unchanged.

Name resolution restriction
Because the name resolution has been carried out for the reply-to queue at
‘QMA’ when the original message was put, no further name resolution is
allowed at ‘QMB’, that is, the message is put with the physical name of the
reply-to queue by the replying application.

Note that the applications must be aware of the naming convention that the name
they use for the reply-to queue is different from the name of the actual queue
where the return messages are to be found.

For example, when two classes of service are provided for the use of applications
with reply-to queue alias names of ‘C1_alias’, and ‘C2_alias’, the applications use
these names as reply-to queue names in the message put calls, but the applications
will actually expect messages to appear in queues ‘C1’ and ‘C2’, respectively.

However, an application is able to make an inquiry call on the reply-to alias queue
to check for itself the name of the real queue it must use to get the reply messages.

Reply-to queue alias example
This example illustrates the use of a reply-to alias to select a different route
(transmission queue) for returned messages. The use of this facility requires the
reply-to queue name to be changed in cooperation with the applications.

As shown in Figure 27 on page 49, the return route must be available for the reply
messages, including the transmission queue, channel, and queue manager alias.

Reply-to queue

48 MQSeries Intercommunication

This example is for requester applications at ‘QM1’ that send messages to server
applications at ‘QM2’. The servers’ messages are to be returned through an
alternative channel using transmission queue ‘QM1_relief’ (the default return
channel would be served with a transmission queue ‘QM1’).

The reply-to queue alias is a particular use of the remote queue definition named
‘Answer_alias’. Applications at QM1 include this name, ‘Answer_alias’, in the
reply-to field of all messages that they put on queue ‘Inquiry’.

Reply-to queue definition ‘Answer_alias’ is defined as ‘Answer at QM1_relief’.
Applications at QM1 expect their replies to appear in the local queue named
‘Answer’.

Server applications at QM2 use the reply-to field of received messages to obtain
the queue and queue manager names for the reply messages to the requester at
QM1.

Definitions used in this example at QM1
The system supervisor at QM1 must ensure that the reply-to queue ‘Answer’ is
created along with the other objects. The name of the queue manager alias, marked
with a ‘*’, must agree with the queue manager name in the reply-to queue alias
definition, also marked with an ‘*’.

Queue 'Answer alias'

Queue 'QM2'

Queue

Channel out

'Inquiry'

Queue

Queue 'Answer'

'QM1'

Queue 'Inquiry'

Queue 'QM1 relief'

'QM2'

Channel back'QM1 relief'

Q= 'Answer '
QM='QM1 rel ief '

Figure 27. Reply-to queue alias example

Reply-to queue

Chapter 4. MQSeries distributed-messaging techniques 49

Object Definition
Local transmission queue QM2
Remote queue definition Object name Inquiry

Remote queue manager name QM2
Remote queue name Inquiry
Transmission queue name QM2 (DEFAULT)

Queue manager alias Object name QM1_relief *
Queue manager name QM1
Queue name (blank)

Reply-to queue alias Object name Answer_alias
Remote queue manager name QM1_relief *
Remote queue name Answer

Definitions used in this example at QM2
The system supervisor at QM2 must ensure that the local queue exists for the
incoming messages, and that the correctly named transmission queue is available
for the reply messages.

Object Definition
Local queue Inquiry
Transmission queue QM1_relief

Put definition at QM1
Applications fill the reply-to fields with the reply-to queue alias name, and leave
the queue manager name field blank.

Field Content
Queue name Inquiry
Queue manager name (blank)
Reply-to queue name Answer_alias
Reply-to queue manager (blank)

Put definition at QM2
Applications at QM2 retrieve the reply-to queue name and queue manager name
from the original message and use them when putting the reply message on the
reply-to queue.

Field Content
Queue name Answer
Queue manager name QM1_relief

How the example works
In this example, requester applications at QM1 always use ‘Answer_alias’ as their
reply-to queue in the relevant field of the put call, and they always retrieve their
messages from the queue named ‘Answer’.

The reply-to queue alias definitions are available for use by the QM1 system
supervisor to change the name of the reply-to queue ‘Answer’, and of the return
route ‘QM1_relief’.

Changing the queue name ‘Answer’ is normally not useful because the QM1
applications are expecting their answers in this queue. However, the QM1
supervisor is able to change the return route (class of service), as necessary.

Reply-to queue

50 MQSeries Intercommunication

How the queue manager makes use of the reply-to queue alias
Queue manager QM1 retrieves the definitions from the reply-to queue alias when
the reply-to queue name, included in the put call by the application, is the same as
the reply-to queue alias, and the queue manager part is blank.

The queue manager replaces the reply-to queue name in the put call with the
queue name from the definition. It replaces the blank queue manager name in the
put call with the queue manager name from the definition.

These names are carried with the message in the message descriptor.

Table 3. Reply-to queue alias

Field name Put call Transmission header

Queue name Answer_alias Answer

Queue manager name (blank) QM1_relief

Reply-to queue alias walk-through
To complete this example, let us take a walk through the process, from an
application putting a message on a remote queue at queue manager ‘QM1’,
through to the same application removing the reply message from the alias
reply-to queue.

1. The application opens a queue named ‘Inquiry’, and puts messages to it. The
application sets the reply-to fields of the message descriptor to:

Reply-to queue name Answer_alias
Reply-to queue manager name (blank)

2. Queue manager ‘QM1’ responds to the blank queue manager name by
checking for a remote queue definition with the name ‘Answer_alias’. If none
is found, the queue manager places its own name, ‘QM1’, in the reply-to
queue manager field of the message descriptor.

3. If the queue manager finds a remote queue definition with the name
‘Answer_alias’, it extracts the queue name and queue manager names from
the definition (queue name=‘Answer’ and queue manager name=
‘QM1_relief’) and puts them into the reply-to fields of the message descriptor.

4. The queue manager ‘QM1’ uses the remote queue definition ‘Inquiry’ to
determine that the intended destination queue is at queue manager ‘QM2’,
and the message is placed on the transmission queue ‘QM2’. ‘QM2’ is the
default transmission queue name for messages destined for queues at queue
manager ‘QM2’.

5. When queue manager ‘QM1’ puts the message on the transmission queue, it
adds a transmission header to the message. This header contains the name of
the destination queue, ‘Inquiry’, and the destination queue manager, ‘QM2’.

6. The message arrives at queue manager ‘QM2’, and is placed on the ‘Inquiry’
local queue.

7. An application gets the message from this queue and processes the message.
The application prepares a reply message, and puts this reply message on the
reply-to queue name from the message descriptor of the original message.
This is:

Reply-to queue name Answer
Reply-to queue manager name QM1_relief

Reply-to queue

Chapter 4. MQSeries distributed-messaging techniques 51

8. Queue manager ‘QM2’ carries out the put command, and finding that the
queue manager name, ‘QM1_relief’, is a remote queue manager, it places the
message on the transmission queue with the same name, ‘QM1_relief’. The
message is given a transmission header containing the name of the destination
queue, ‘Answer’, and the destination queue manager, ‘QM1_relief’.

9. The message is transferred to queue manager ‘QM1’ where the queue
manager, recognizing that the queue manager name ‘QM1_relief’ is an alias,
extracts from the alias definition ‘QM1_relief’ the physical queue manager
name ‘QM1’.

10. Queue manager ‘QM1’ then puts the message on the queue name contained in
the transmission header, ‘Answer’.

11. The application extracts its reply message from the queue ‘Answer’.

Networking considerations
In a distributed-queuing environment, because message destinations are addressed
with just a queue name and a queue manager name, the following rules apply:
1. Where the queue manager name is given, and the name is different from the

local queue manager’s name:
v A transmission queue must be available with the same name, and this

transmission queue must be part of a message channel moving messages to
another queue manager, or

v A queue manager alias definition must exist to resolve the queue manager
name to the same, or another queue manager name, and optional
transmission queue, or

v If the transmission queue name cannot be resolved, and a default
transmission queue has been defined, the default transmission queue is used.

2. Where only the queue name is supplied, a queue of any type but with the same
name must be available on the local queue manager. This queue may be a
remote queue definition which resolves to: a transmission queue to an adjacent
queue manager, a queue manager name, and an optional transmission queue.

To see how this works in a clustering environment, see the MQSeries Queue
Manager Clusters book.

Consider the scenario of a message channel moving messages from one queue
manager to another in a distributed-queuing environment.

The messages being moved have originated from any other queue manager in the
network, and some messages may arrive that have an unknown queue manager
name as destination. This can occur when a queue manager name has changed or
has been removed from the system, for example.

The channel program recognizes this situation when it cannot find a transmission
queue for these messages, and places the messages on your undelivered-message
(dead-letter) queue. It is your responsibility to look for these messages and arrange
for them to be forwarded to the correct destination, or to return them to the
originator, where this can be ascertained.

Exception reports are generated in these circumstances, if report messages were
requested in the original message.

Reply-to queue

52 MQSeries Intercommunication

Name resolution convention
It is strongly recommended that name resolution that changes the identity of
the destination queue, (that is, logical to physical name changing), should
only occur once, and only at the originating queue manager.

Subsequent use of the various alias possibilities should be used only when
separating and combining message flows.

Return routing
Messages may contain a return address in the form of the name of a queue and
queue manager. This applies in both a distributed-queuing environment and a
clustering environment. This address is normally specified by the application that
creates the message, but may be modified by any application that subsequently
handles the message, including user exit applications.

Irrespective of the source of this address, any application handling the message
may choose to use this address for returning answer, status, or report messages to
the originating application.

The way these response messages is routed is not different from the way the
original message is routed. You need to be aware that the message flows you
create to other queue managers will need corresponding return flows.

Physical name conflicts
The destination reply-to queue name has been resolved to a physical queue
name at the original queue manager, and must not be resolved again at the
responding queue manager.

This is a likely possibility for name conflict problems that can only be
prevented by a network-wide agreement on physical and logical queue
names.

Managing queue name translations
This description is mainly provided for application designers and channel planners
concerned with an individual system that has message channels to adjacent
systems. It takes a local view of channel planning and control.

When you create a queue manager alias definition or a remote queue definition,
the name resolution is carried out for every message carrying that name, regardless
of the source of the message. To oversee this situation, which may involve large
numbers of queues in a queue manager network, you keep tables of:
v The names of source queues and of source queue managers with respect to

resolved queue names, resolved queue manager names, and resolved
transmission queue names, with method of resolution

v The names of source queues with respect to:
– Resolved destination queue names
– Resolved destination queue manager names
– Transmission queues
– Message channel names

Networking considerations

Chapter 4. MQSeries distributed-messaging techniques 53

– Adjacent system names
– Reply-to queue names

Note: The use of the term source in this context refers to the queue name or the
queue manager name provided by the application, or a channel program
when opening a queue for putting messages.

An example of each of these tables is shown in Table 4, Table 5, and Table 6.

The names in these tables are derived from the examples in this chapter, and this
table is not intended as a practical example of queue name resolution in one node.

Table 4. Queue name resolution at queue manager QMA
Source queue
specified when
queue is opened

Source queue manager
specified when queue is
opened

Resolved queue
name

Resolved queue
manager name

Resolved transmission
queue name

Resolution type

QA_norm - QA_norm QMB QMB Remote queue

(any) QMB - - QMB (none)

QA_norm - QA_norm QMB TX1 Remote queue

QB QMC QB QMD QMB Queue manager alias

Table 5. Queue name resolution at queue manager QMB
Source queue
specified when
queue is opened

Source queue manager
specified when queue is
opened

Resolved queue
name

Resolved queue
manager name

Resolved transmission
queue name

Resolution type

QA_norm - QA_norm QMB - (none)

QA_norm QMB QA_norm QMB - (none)

QA_norm QMB_PRIORITY QA_norm QMB - Queue manager alias

(any) QMC (any) QMC QMC (none)

(any) QMD_norm (any) QMD_norm TX1 Queue manager alias

(any) QMD_PRIORITY (any) QMD_PRIORITY QMD_fast Queue manager alias

(any) QMC_small (any) QMC_small TX_small Queue manager alias

(any) QMC_large (any) QMC_large TX_external Queue manager alias

QB_small QMC QB_small QMC TX_small Remote queue

QB_large QMC QB_large QMC TX_large Remote queue

(any) QME (any) QME TX1 Queue manager alias

QA QMC QA QMC TX1 Remote queue

QB QMD QB QMD TX1 Remote queue

Table 6. Reply-to queue name translation at queue manager QMA
Application design Reply-to alias definition

Local QMGR Queue name for messages Reply-to queue alias name Redefined to

QMA QRR QR QRR at QMA_class1

Message sequence numbering
The message sequence numbering function is useful in some environments,
especially when messages are to be guaranteed to be delivered, delivered without
duplication, and stored in the same order as they were taken from the transmission
queue. Each message sent using message sequencing is tagged with an individual
sequence number, which is increased by one for each message sent. The sequence
number is assigned by the sending channel. In some implementations, this
sequence number is then regarded as a permanent attribute of the message, and is
retained by the receiving channel; in other implementations, it is removed by the
receiving channel.

Managing queue name translations

54 MQSeries Intercommunication

Cooperating channels must be capable of:
v Respecting the sequential delivery attribute in their channel definition record
v Identifying or assigning a sequence number for each message sent or received
v Recording the sequence number assigned to the last message committed, on

hardened media for use in recovery
v Recording the sequence numbers such that they can be read by status

commands for problem resolution
v Detecting out-of-sequence conditions, such as duplicate numbers or gaps, and

returning an appropriate error indication

Sequence numbering is incompatible with the use of multiple channels to serve
one transmission queue.

The sequence number of the last committed message or LUWID is recorded at the
receiving end of a channel. This number is used at the sending end when
sequential delivery of messages has been selected. It is also used during
resequencing, on startup and restarts, to ensure that both ends of the link agree on
which messages have been transferred successfully.

The number stored at the sending end is incremented by one before being used;
this means that the current sequence number is the number of the last message
sent, and the numbering is independent of the instance of the MCA.

Sequential retrieval of messages
If an application puts a sequence of messages to the same destination queue, those
messages can be retrieved in sequence by a single application with a sequence of
get operations, if, for local queuing, the following conditions are met:
v All of the put requests were done from the same application
v All of the put requests were either from the same unit of work, or all the put

requests were made outside of a unit of work
v The application getting the message does not deliberately change the order of

retrieval, for example by specifying a particular MsgId or CorrelId or by using
message priorities

v Only one application is doing get operations to retrieve the messages from the
destination queue, unless the applications doing the get operations ensure, for
example, by specifying a CorrelId, that a single application always gets all of
the messages in each sequence put by a sending application

v Only one channel is serving the transmission queue
v The messages are not nonpersistent messages on a fast channel

Note: Messages from other tasks and units of work may be interspersed with the
sequence, even where the sequence was put from within a single unit of
work.

The order is preserved for remote queuing, but only if the configuration is such
that there can be only one path for the messages in the sequence, from the
application making the put request, through its queue manager, through
intercommunication, to the destination queue manager and the target queue.

Note: Messages that are destined for remote queues can also become out of
sequence if one or more of them is put to a dead-letter queue (for example,
if a queue is temporarily full).

Message sequence numbering

Chapter 4. MQSeries distributed-messaging techniques 55

If there is a possibility that some messages may be sent via a different path, for
example because of reconfiguration, the order at the destination cannot be
guaranteed.

Sequence of retrieval of fast, nonpersistent messages
In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, Windows V2.1, and Windows NT, nonpersistent messages on a fast channel
may overtake persistent messages on the same channel and so arrive out of
sequence. The receiving MCA puts the nonpersistent messages on the destination
queue immediately and makes them visible. Persistent messages are not made
visible until the next syncpoint.

Loopback testing
Loopback testing is a technique on non-OS/390 platforms that allows you to test a
communications link without actually linking to another machine. You set up a
connection between two queue managers as though they are on separate machines,
but you test the connection by looping back to another process on the same
machine. This means that you can test your communications code without
requiring an active network.

The way you do this depends on which products and protocols you are using. For
example the command to allow TCP/IP loopback testing on OS/2 without a
network, is:
ifconfig lo ipaddress

On Windows NT, you can use the “loopback” adapter.

Refer to the documentation for the products you are using for more information.

Message sequence numbering

56 MQSeries Intercommunication

Chapter 5. DQM implementation

This chapter describes the implementation of the concepts introduced in
“Chapter 2. Making your applications communicate” on page 17.

Distributed queue management (DQM):
v Enables you to define and control communication channels between queue

managers
v Provides you with a message channel service to move messages from a type of

local queue, known as a transmission queue, to communication links on a local
system, and from communication links to local queues at a destination queue
manager

v Provides you with facilities for monitoring the operation of channels and
diagnosing problems, using panels, commands, and programs

This chapter discusses:
v “Functions of DQM”
v “Message sending and receiving” on page 58
v “Channel control function” on page 59
v “What happens when a message cannot be delivered?” on page 71
v “Initialization and configuration files” on page 73
v “Data conversion” on page 75
v “Writing your own message channel agents” on page 75

Functions of DQM
Distributed queue management has these functions:
v Message sending and receiving
v Channel control
v Initialization file
v Data conversion
v Channel exits

Channel definitions associate channel names with transmission queues,
communication link identifiers, and channel attributes. These are kept in a channel
definition file (CDF), implemented in different ways on different platforms.
Message sending and receiving is controlled by programs known as message channel
agents (MCAs), which use the channel definitions to start up and control
communication.

The MCAs in turn are controlled by DQM itself. The structure is platform
dependent, but typically includes listeners and trigger monitors, together with
operator commands and panels.

A message channel is a one-way pipe for moving messages from one queue manager
to another. Thus a message channel has two end-points, represented by a pair of
MCAs. Each end-point has a definition of its end of the message channel. For
example, one end would define a sender, the other end a receiver.

© Copyright IBM Corp. 1993, 2000 57

For details of how to define channels, see:
v “Chapter 8. Monitoring and controlling channels on distributed platforms” on

page 105
v “Chapter 23. Monitoring and controlling channels on OS/390” on page 321
v “Chapter 26. Monitoring and controlling channels in OS/390 with CICS” on

page 351
v “Chapter 30. Monitoring and controlling channels in MQSeries for AS/400” on

page 423

For information about channel exits, see “Chapter 36. Channel-exit programs” on
page 505.

Message sending and receiving
Figure 28 shows the relationships between entities when messages are transmitted,
and shows the flow of control.

Notes:

1. There is one MCA per channel, depending on the platform. There may be one
or more channel control functions for a given queue manager.

Commands

Channel
Initiator

Listener

Message
Channel

Agent
(MCA)

Message
Channel

Agent
(MCA)

User
Exits

User
Exits

Queue

Queue

Queue

Operator

Channel Control
Function

Communications
Network

Transmission

Initiation

Local

File Channel definitions

Synchronization
Information

Status

Commands

Status

SENDING RECEIVING

TO ADJACENT QUEUE MANAGER

Messages

MessagesMessages

Tr igger
message

Status Commands

Messages

Messages

Queue Local

Queue Local

Figure 28. Distributed queue management model

Functions of DQM

58 MQSeries Intercommunication

2. The implementation of MCAs and channel control functions is highly platform
dependent; they may be programs or processes or threads, and they may be a
single entity or many comprising several independent or linked parts.

3. All components marked with a star can use the MQI.

Channel parameters
An MCA receives its parameters in one of several ways:
v If started by a command, the channel name is passed in a data area. The MCA

then reads the channel definition directly to obtain its attributes.
v For sender, and in some cases server channels, the MCA can be started

automatically by the queue manager trigger. The channel name is retrieved from
the trigger process definition, where applicable, and is passed to the MCA. The
remaining processing is the same as that described above.

v If started remotely by a sender, server, requester, or client-connection, the
channel name is passed in the initial data from the partner message channel
agent. The MCA reads the channel definition directly to obtain its attributes.

Certain attributes not defined in the channel definition are also negotiable:

Split messages
If one end does not support this, split messages will not be sent.

Conversion capability
If one end cannot perform the necessary code page conversion or numeric
encoding conversion when needed, the other end must handle it. If neither
end supports it, when needed, the channel cannot start.

Distribution list support
If one end does not support distribution lists, the partner MCA sets a flag
in its transmission queue so that it will know to intercept messages
intended for multiple destinations.

Channel status and sequence numbers
Message channel agent programs keep records of the current sequence number and
logical unit of work number for each channel, and of the general status of the
channel. Some platforms allow you to display this status information to help you
control channels.

Channel control function
The channel control function provides facilities for you to define, monitor, and
control channels. Commands are issued through panels, programs, or from a
command line to the channel control function. The panel interface also displays
channel status and channel definition data.

Note: For the channel control function on MQSeries for OS/2 Warp, Windows NT,
Windows V2.1, UNIX systems, Digital OpenVMS, and Tandem NSK, you
can use Programmable Command Formats or those MQSeries commands
(MQSC) and control commands that are detailed in “Chapter 8. Monitoring
and controlling channels on distributed platforms” on page 105.

The commands fall into the following groups:
v Channel administration
v Channel control
v Channel status monitoring

Message sending and receiving

Chapter 5. DQM implementation 59

Channel administration commands deal with the definitions of the channels. They
enable you to:
v Create a channel definition
v Copy a channel definition
v Alter a channel definition
v Delete a channel definition

Channel control commands manage the operation of the channels. They enable you
to:
v Start a channel
v Stop a channel
v Re-synchronize with partner (in some implementations)
v Reset message sequence numbers
v Resolve an in-doubt batch of messages
v Ping; send a test communication across the channel (not on MQSeries for

Windows)

Channel monitoring displays the state of channels, for example:
v Current channel settings
v Whether the channel is active or inactive
v Whether the channel terminated in a synchronized state

Preparing channels
Before trying to start a message channel or MQI channel, you must make sure that
all the attributes of the local and remote channel definitions are correct and
compatible. “Chapter 6. Channel attributes” on page 77 describes the channel
definitions and attributes.

Although you set up explicit channel definitions, the channel negotiations carried
out when a channel starts up may override one or other of the values defined. This
is quite normal, and transparent, and has been arranged like this so that otherwise
incompatible definitions can work together.

Auto-definition of channels
In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, and
OS/390 (cluster-receiver and cluster-sender channels only), if there is no
appropriate channel definition, then for a receiver or server-connection channel
that has auto-definition enabled, a definition is created automatically. The
definition is created using:
1. The appropriate model channel definition, SYSTEM.AUTO.RECEIVER or

SYSTEM.AUTO.SVRCONN. The model channel definitions for auto-definition
are the same as the system defaults, SYSTEM.DEF.RECEIVER and
SYSTEM.DEF.SVRCONN, except for the description field, which is
“Auto-defined by” followed by 49 blanks. The systems administrator can
choose to change any part of the supplied model channel definitions.

2. Information from the partner system. The partner’s values are used for the
channel name and the sequence number wrap value.

3. A channel exit program, which you can use to alter the values created by the
auto-definition. See “Channel auto-definition exit program” on page 516.

The description is then checked to determine whether it has been altered by an
auto-definition exit or because the model definition has been changed. If the first
44 characters are still “Auto-defined by” followed by 29 blanks, the queue manager
name is added. If the final 20 characters are still all blanks the local time and date
are added.

Channel control function

60 MQSeries Intercommunication

Once the definition has been created and stored the channel start proceeds as
though the definition had always existed. The batch size, transmission size, and
message size are negotiated with the partner.

Defining other objects
Before a message channel can be started, both ends must be defined (or enabled
for auto-definition) at their respective queue managers. The transmission queue it
is to serve must be defined to the queue manager at the sending end, and the
communication link must be defined and available. In addition, it may be
necessary for you to prepare other MQSeries objects, such as remote queue
definitions, queue manager alias definitions, and reply-to queue alias definitions,
so as to implement the scenarios described in “Chapter 2. Making your
applications communicate” on page 17.

For information about MQI channels, see the MQSeries Clients book.

Starting a channel (not MQSeries for Windows)
A channel can be caused to start transmitting messages in one of four ways. It can
be:
v Started by an operator (not receiver or server-connection channels).
v Triggered from the transmission queue (sender, and possibly server channels

only). You will need to prepare the necessary objects for triggering channels.
v Started from an application program (not receiver or server-connection

channels).
v Started remotely from the network by a sender, requester, server, or

client-connection channel. Receiver, and possibly server and requester channel
transmissions, are started this way; so are server-connection channels. The
channels themselves must already be started (that is, enabled).

Note: Because a channel is ‘started’ it is not necessarily transmitting messages, but,
rather, it is ‘enabled’ to start transmitting when one of the four events
described above occurs. The enabling and disabling of a channel is achieved
using the START and STOP operator commands.

Starting a channel on MQSeries for Windows
On MQSeries for Windows you start channels in the following ways:
v Using the start connection function of the MQSeries for Windows properties

dialog. This function starts the components defined for the connection. The
components are a queue manager, and optionally, a channel group. The channel
group can contain the listener and up to eight channels. See the MQSeries for
Windows User’s Guide.

v Using the START CHANNEL MQSC command or, in Version 2.1, the START
CHANNEL PCF command. This command starts just the specified channel. The
queue manager must already be running.

Channel control function

Chapter 5. DQM implementation 61

Channel states
Figure 29 shows the hierarchy of all possible channel states, and Figure 30 on
page 63 shows the links between them. These apply to all types of message
channel. On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris,
and Windows NT, these states apply also to server-connection channels.

Current and active
The channel is “current” if it is in any state other than inactive. A current channel
is “active” unless it is in RETRYING, STOPPED, or STARTING state.

Current

Stopped Starting Retrying Active

Requesting Running Paused

Inactive

Channel

StoppingBindingInitializing

Figure 29. Channel states

Channel control function

62 MQSeries Intercommunication

Notes:

1. When a channel is in one of the six states highlighted in Figure 30
(INITIALIZING, BINDING, REQUESTING, RUNNING, PAUSED, or
STOPPING), it is consuming resource and a process or thread is running; the

Check limits if
retrying

Transferring or ready
to transfer

Waiting until time
for next attempt

Status
OK

Error or STOP request or
disconnect interval expires

Disconnect interval expires

One attempt to
establish session fails

STOP command,
non-retryable error
or retry l imit reached

BINDING

RUNNING

STOPPING

RETRYING

STOPPED
Disabled

Establishing session and
initial data exchange

REQUESTING

Retryable error, one
attempt failed, retry
count not exhausted

Waiting for
message-retry

interval

PAUSED

STARTING

START command

TRIGGER

REMOTE INITIATION

CHANNEL INITIATOR

or

or

or

INITIALIZING

Start
channel

INACTIVE

Figure 30. Flows between channel states

Channel control function

Chapter 5. DQM implementation 63

|
|
|

channel is active. (INITIALIZING occurs only on V5.1 of MQSeries for AIX,
AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT. PAUSED does not
occur on OS/390.)

2. When a channel is in STOPPED state, the session may be active because the
next state is not yet known.

Specifying the maximum number of current channels: You can specify the
maximum number of channels that can be current at one time. This is the number
of channels that have entries in the channel status table, including channels that
are retrying and channels that are disabled (that is, stopped). Specify this in the
channel initiator parameter module for OS/390, the queue manager initialization
file for OS/400, the queue manager configuration file for OS/2, Tandem NSK, and
UNIX systems, or the registry for Windows NT. For more information about the
values you set using the initialization or the configuration file see “Appendix D.
Configuration file stanzas for distributed queuing” on page 637. For more
information about specifying the maximum number of channels, see the MQSeries
System Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT, the MQSeries for AS/400 V5.1 System Administration book
for MQSeries for AS/400, or the MQSeries System Management Guide for your
platform.

Notes:

1. On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
Windows NT, server-connection channels are included in this number.

2. A channel must be current before it can become active. If a channel is started,
but cannot become current, the start fails.

3. If you are using CICS for distributed queuing on OS/390, you cannot specify
the maximum number of channels.

4. MQSeries for Windows does not support the qm.ini file. The maximum number
of current channels and the maximum number of active channels is eight.

Specifying the maximum number of active channels: You can also specify the
maximum number of active channels (except on MQSeries for OS/390 using CICS
and MQSeries for Windows). You can do this to prevent your system being
overloaded by a large number of starting channels. If you use this method, you
should set the disconnect interval attribute to a low value to allow waiting
channels to start as soon as other channels terminate.

Each time a channel that is retrying attempts to establish connection with its
partner, it must become an active channel. If the attempt fails, it remains a current
channel that is not active, until it is time for the next attempt. The number of times
that a channel will retry, and how often, is determined by the retry count and retry
interval channel attributes. There are short and long values for both these
attributes. See “Chapter 6. Channel attributes” on page 77 for more information.

When a channel has to become an active channel (because a START command has
been issued, or because it has been triggered, or because it is time for another retry
attempt), but is unable to do so because the number of active channels is already
at the maximum value, the channel waits until one of the active slots is freed by
another channel instance ceasing to be active. If, however, a channel is starting
because it is being initiated remotely, and there are no active slots available for it at
that time, the remote initiation is rejected.

Whenever a channel, other than a requester channel, is attempting to become
active, it goes into the STARTING state. This is true even if there is an active slot

Channel control function

64 MQSeries Intercommunication

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|

immediately available, although in this case it will only be in STARTING state for
a very short time. However, if the channel has to wait for an active slot, it is in
STARTING state while it is waiting.

Requester channels do not go into STARTING state. If a requester channel cannot
start because the number of active channels is already at the limit, the channel
abends.

Whenever a channel, other than a requester channel, is unable to get an active slot,
and so waits for one, a message is written to the log or the OS/390 console, and an
event is generated. When a slot is subsequently freed and the channel is able to
acquire it, another message and event are generated. Neither of these events and
messages are generated if the channel is able to acquire a slot straightaway.

If a STOP CHANNEL command is issued while the channel is waiting to become
active, the channel goes to STOPPED state. A Channel-Stopped event is raised as
usual.

On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
Windows NT, server-connection channels are included in the maximum number of
active channels.

For more information about specifying the maximum number of active channels,
see the MQSeries System Administration book for V5.1 of MQSeries for AIX, HP-UX,
OS/2 Warp, Sun Solaris, and Windows NT, the MQSeries for AS/400 V5.1 System
Administration book for MQSeries for AS/400, the MQSeries for Windows User’s
Guide, or the MQSeries System Management Guide for your platform.

Channel errors
Errors on channels cause the channel to stop further transmissions. If the channel
is a sender or server, it goes to RETRY state because it is possible that the problem
may clear itself. If it cannot go to RETRY state, the channel goes to STOPPED state.
For sending channels, the associated transmission queue is set to GET(DISABLED)
and triggering is turned off. (A STOP command takes the side that issued it to
STOPPED state; only expiry of the disconnect interval will make it end normally
and become inactive.) Channels that are in STOPPED state need operator
intervention before they will restart (see “Restarting stopped channels” on page 69).

Note: For Digital OpenVMS, OS/2 Warp, OS/400, UNIX systems, Tandem NSK,
and Windows NT, in order for retry to be attempted a channel initiator must
be running. On platforms other than V5.1 of MQSeries for AIX, AS/400,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, the channel initiator
must be monitoring the initiation queue specified in the transmission queue
that the channel is using. MQSeries for Windows does not have a channel
initiator; restarts are controlled by the MQSeries properties daemon task
running in the background.

“Long retry count (LONGRTY)” on page 85 describes how retrying works. If the
error clears, the channel restarts automatically, and the transmission queue is
reenabled. If the retry limit is reached without the error clearing, the channel goes
to STOPPED state. A stopped channel must be restarted manually by the operator.
If the error is still present, it does not retry again. When it does start successfully,
the transmission queue is reenabled.

On MQSeries for AIX, HP-UX, OS/2 Warp, OS/390 without CICS, Sun Solaris, and
Windows NT, if the channel initiator or queue manager stops while a channel is in

Channel control function

Chapter 5. DQM implementation 65

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

RETRYING or STOPPED status, the channel status is remembered when the
channel initiator or queue manager is restarted.

On MQSeries for OS/2 Warp, Windows NT, OS/400, Tandem NSK, and UNIX
systems, if a channel is unable to put a message to the target queue because that
queue is full or put inhibited, the channel can retry the operation a number of
times (specified in the message-retry count attribute) at a given time interval
(specified in the message-retry interval attribute). Alternatively, you can write your
own message-retry exit that determines which circumstances cause a retry, and the
number of attempts made. The channel goes to PAUSED state while waiting for
the message-retry interval to finish.

See “Chapter 6. Channel attributes” on page 77 for information about the channel
attributes, and “Chapter 36. Channel-exit programs” on page 505 for information
about the message-retry exit.

Checking that the other end of the channel is still available
In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, and Windows NT, you can use the heartbeat-interval channel attribute to
specify that flows are to be passed from the sending MCA when there are no
messages on the transmission queue. This is described in “Heartbeat interval
(HBINT)” on page 85.

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, VSE/ESA, and Windows NT, if you are using TCP as your transport
protocol, you can use the SO_KEEPALIVE option on the TCP/IP socket. If you
specify this option, TCP periodically checks that the other end of the connection is
still available, and if it is not, the channel is terminated.

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
if you are using TCP as your transport protocol, the receiving end of inactive
connections can also be closed if no data is received for a period of time. This
period of time is determined according to the HBINT (heartbeat interval) value.

The timeout value is set as follows:
1. For an initial number of flows, before any negotiation has taken place, the

timeout is twice the HBINT value from the channel definition.
2. When the channels have negotiated a HBINT value, the timeout is set to twice

this value.

Notes:

1. If either of the above values is zero, then there is no timeout.
2. For connections that do not support heartbeats, the HBINT value is negotiated

to zero in step 2 and hence there is no timeout, so we must use TCP/IP
KEEPALIVE.

3. For client connections, heartbeats are only flowed from the server when the
client issues an MQGET call with wait; none are flowed during other MQI calls.
Therefore, you are not recommended to set the heartbeat interval too small for
client channels. For example, if the heartbeat is set to ten seconds, an MQCMIT
call will fail (with MQRC_CONNECTION_BROKEN) if it takes longer than
twenty seconds to commit because no data will have been flowed during this
time. This can happen with large units of work. However, it should not happen
if appropriate values are chosen for the heartbeat interval because only MQGET
with wait should take significant periods of time.

Channel control function

66 MQSeries Intercommunication

4. Aborting the connection after twice the heartbeat interval is valid because we
expect flows (data or heartbeat) at least every heartbeat interval. If the
heartbeat interval is set too small, however, problems can occur, especially if
channel exits are in use. For example, if the HBINT value is one second, and a
send or receive exit is used, the receiving end will only wait for two seconds
before aborting the channel. This may not be long enough if the sending MCA
spends a long time in the send exit, perhaps encrypting the message.

If you have unreliable channels that are suffering from TCP errors, use of
SO_KEEPALIVE will mean that your channels are more likely to recover.

You can specify time intervals to control the behavior of the SO_KEEPALIVE
option. When you change the time interval, only TCP/IP channels started after the
change are affected. The value that you choose for the time interval should be less
than the value of the disconnect interval for the channel.

For more information about using the SO_KEEPALIVE option on OS/390, see the
MQSeries for OS/390 System Management Guide. For other platforms, see the chapter
about setting up communications for your platform in this manual.

Stopping and quiescing channels (not MQSeries for Windows)
Message channels are designed to be long-running connections between queue
managers with orderly termination controlled only by the disconnect interval
channel attribute. This mechanism works well unless the operator needs to
terminate the channel before the disconnect time interval expires. This can occur in
the following situations:
v System quiesce
v Resource conservation
v Unilateral action at one end of a channel

In this case, an operator command is provided to allow you to stop the channel.
The command provided varies by platform, as follows:

For OS/390 without CICS:
The STOP CHANNEL MQSC command or the Stop a channel panel

For OS/390 using CICS:
The Stop option on the Message Channel List panel

For OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems:
The STOP CHANNEL MQSC or PCF command

For OS/400:
ENDMQMCHL or the END option on the WRKMQMCHL panel

For VSE/ESA:
The CLOSE command from the MQMMSC panel or MQCL transaction
closes (rather than stops) the channel.

For all of these commands there is a FORCE and a QUIESCE option. The FORCE
option attempts to stop the channel immediately and may require the channel to
resynchronize when it restarts because the channel may be left in doubt. The
QUIESCE option attempts to end the current batch of messages and then terminate
the channel. Note that both of these options leave the channel in a STOPPED state,
requiring operator intervention to restart it.

Stopping the channel at the sending end is quite effective but does require operator
intervention to restart. At the receiving end of the channel, things are much more

Channel control function

Chapter 5. DQM implementation 67

|
|

difficult because the MCA is waiting for data from the sending side, and there is
no way to initiate an orderly termination of the channel from the receiving side; the
stop command is pending until the MCA returns from its wait for data.

Consequently there are three recommended ways of using channels, depending
upon the operational characteristics required:
v If you want your channels to be long running, you should note that there can be

orderly termination only from the sending end. When channels are interrupted,
that is, stopped, operator intervention (a START CHANNEL command) is
required in order to restart them.

v If you want your channels to be active only when there are messages for them
to transmit, you should set the disconnect interval to a fairly low value. Note
that the default setting is quite high and so is not recommended for channels
where this level of control is required. Because it is difficult to interrupt the
receiving channel, the most economical option is to have the channel
automatically disconnect and reconnect as the workload demands. For most
channels, the appropriate setting of the disconnect interval can be established
heuristically.

v For MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, and Windows NT, you can use the heartbeat-interval attribute to cause
the sending MCA to send a heartbeat flow to the receiving MCA during periods
in which it has no messages to send. This releases the receiving MCA from its
wait state and gives it an opportunity to quiesce the channel without waiting for
the disconnect interval to expire. Give the heartbeat interval a lower value than
the value of the disconnect interval.

Notes:

1. It is particularly advisable to set the disconnect interval to a low value, or to
use heartbeats, for server channels. This is to allow for the case where the
requester channel ends abnormally (for example, because the channel was
canceled) when there are no messages for the server channel to send. In this
case, the server does not detect that the requester has ended (it will only do
this the next time it tries to send a message to the requester). While the
server is still running, it holds the transmission queue open for exclusive
input in order to get any more messages that may arrive on the queue. If an
attempt is made to restart the channel from the requester, the start request
receives an error because the server still has the transmission queue open for
exclusive input. It is necessary to stop the server channel, and then restart
the channel from the requester again.

2. On OS/390, without CICS, and on V5.1 of MQSeries for AIX, AS/400,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, server-connection
channels can also be stopped like receiver channels.

Stopping and quiescing channels (MQSeries for Windows)
On MQSeries for Windows you can stop or quiesce channels in the following
ways:
v Using the stop connection function of the MQSeries for Windows properties

dialog. This function stops the queue manager and any channels. Channels are
forced to stop if necessary and may go into in-doubt status if a batch of
messages is currently in transit. Any fast, nonpersistent messages that are in
transit are lost.

Channel control function

68 MQSeries Intercommunication

v Using the STOP CHANNEL MQSC command or, in Version 2.1, the STOP
CHANNEL PCF command. You can specify a FORCE or QUIESCE option on
this command. Using this command stops just the specified channel and leaves
the queue manager running.

Restarting stopped channels
When a channel goes into STOPPED state (either because you have stopped the
channel manually using one of the methods given in “Stopping and quiescing
channels (not MQSeries for Windows)” on page 67, or because of a channel error)
you have to restart the channel manually.

To do this, issue one of the following commands:

For MQSeries for OS/390 without CICS:
The START CHANNEL MQSC command or the Start a channel panel

For MQSeries for OS/390 using CICS:
The Start option on the Message Channel List panel

For MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK,
and UNIX systems:

The START CHANNEL MQSC or PCF command

For MQSeries for AS/400:
The START command on the WRKMQMCHL panel, the STRMQMCHL
command, or the START CHANNEL MQSC or PCF command

For MQSeries for Windows:
The START CHANNEL MQSC command, in Version 2.1 the START
CHANNEL PCF command, or the start connection function of the
MQSeries properties dialog.

For MQSeries for VSE/ESA:
The OPEN command from the MQMMSC panel or MQCL transaction
opens (rather than restarts) the channel.

For sender or server channels, when the channel entered the STOPPED state, the
associated transmission queue was set to GET(DISABLED) and triggering was set
off. When the start request is received, these attributes are reset automatically. On
V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and
MQSeries for OS/390 without CICS, if the channel initiator or queue manager
stops while a channel is in RETRYING or STOPPED status, the channel status is
remembered when the channel initiator or queue manager is restarted. On other
platforms (apart from MQSeries for Windows), if the channel initiator or queue
manager is restarted the status is lost and you have to alter the queue attributes
manually to reenable triggering of the channel.

Note: If you are using CICS for distributed queuing on OS/390, these queue
attributes are not reset automatically; you always have to alter them
manually when you restart a channel.

In-doubt channels
Observe the distinction between a channel being in doubt, which means that it is
in doubt with its partner channel about which messages have been sent and
received, and the queue manager being in doubt about which messages should be
committed to a queue.

Channel control function

Chapter 5. DQM implementation 69

Normally, all resolution of in-doubt situations on channels is handled
automatically. Even if communication is lost, leaving the channel in doubt with a
batch of messages at the sender whose receipt status is unknown, the situation will
be resolved when communications are reestablished. Sequence number and
LUWID records are kept for this purpose. (In fact, channels are only in doubt for
the short period at the end of a batch while LUWID information is exchanged, and
no more than one batch of messages can be in doubt for each channel.)

In exceptional circumstances it is possible to manually resynchronize the channel.
(In this case, the term manual may refer to operators or to programs that contain
MQSeries system management commands.) The manual resynchronization process
works as follows. MQSC commands are used in this description; you can use the
PCF equivalents instead.
1. On platforms other than MQSeries for Windows, use the DISPLAY CHSTATUS

command to find the last-committed logical unit of work ID (LUWID) for each
side of the channel. Do this using the following commands:
v For the in-doubt side of the channel:

DISPLAY CHSTATUS(name) SAVED CURLUWID

You can use the CONNAME and XMITQ parameters to further identify the
channel.

v For the receiving side of the channel:
DISPLAY CHSTATUS(name) SAVED LSTLUWID

You can use the CONNAME parameter to further identify the channel.

The commands are different because only one side (the sending side) of the
channel can be in doubt. The receiving side is never in doubt.

On MQSeries for AS/400, the DISPLAY CHSTATUS command can be executed
from a file using the STRMQMMQSC command. Alternatively, the Work with
MQM Channel Status CL command, WRKMQMCHST, provides similar
function.

On MQSeries for Windows, the DISPLAY CHSTATUS command is not
supported. Instead, use the Status button on the Components tab of the
MQSeries for Windows properties dialog.

2. If you find that the two LUWIDs are the same, the receiving side has
committed the unit of work that the sender considers to be in doubt. Therefore,
the sending side can remove the in-doubt messages from the transmission
queue and reenable it. This is done with the following channel RESOLVE
command:
RESOLVE CHANNEL(name) ACTION(COMMIT)

3. If you find that the two LUWIDs are different, the receiving side has not
committed the unit of work that the sender considers to be in doubt. On some
platforms you can find out how many messages are in doubt by displaying the
saved channel status. The sending side needs to retain the in-doubt messages
on the transmission queue and resend them. This is done with the following
channel RESOLVE command:
RESOLVE CHANNEL(name) ACTION(BACKOUT)

On MQSeries for AS/400, the Resolve MQM Channel command,
RSVMQMCHL, provides a similar function.

Channel control function

70 MQSeries Intercommunication

|
|
|
|

|
|

Once this process is complete the channel will no longer be in doubt. This means
that, if required, the transmission queue can be used by another channel.

Problem determination
There are two distinct aspects to problem determination:
v Problems discovered when a command is being submitted
v Problems discovered during operation of the channels

Command validation
Commands and panel data must be free from errors before they are accepted for
processing. Any errors found by the validation are immediately notified to the user
by error messages.

Problem diagnosis begins with the interpretation of these error messages and
taking the recommended corrective action.

Processing problems
Problems found during normal operation of the channels are notified to the system
console or the system log or, for MQSeries for Windows, the channel log. Problem
diagnosis begins with the collection of all relevant information from the log, and
continues with analysis to identify the problem.

Confirmation and error messages are returned to the terminal that initiated the
commands, when possible.

Messages and codes
Where provided, the Messages and Codes manual of the particular platform can help
with the primary diagnosis of the problem.

What happens when a message cannot be delivered?
Figure 31 on page 72 shows the processing that occurs when an MCA is unable to
put a message to the destination queue. (Note that the options shown do not apply
on all platforms.)

Channel control function

Chapter 5. DQM implementation 71

As shown in the figure, the MCA can do several things with a message that it
cannot deliver. The action taken is determined by options specified when the
channel is defined and on the MQPUT options for the message.

1. Message-retry
If the MCA is unable to put a message to the target queue for a reason that
could be transitory (for example, because the queue is full), the MCA has
the option to wait and retry the operation later. You can determine if the
MCA waits, for how long, and how many times it retries.
v You can specify a message-retry time and interval for MQPUT errors

when you define your channel. If the message cannot be put to the
destination queue because the queue is full, or is inhibited for puts, the
MCA retries the operation the number of times specified, at the time
interval specified.

v You can write your own message-retry exit. The exit enables you to
specify under what conditions you want the MCA to retry the MQPUT
or MQOPEN operation. Specify the name of the exit when you define
the channel.

Message-retry is not available on MQSeries for OS/390, MQSeries for
Windows, or MQSeries for VSE/ESA.

2. Return-to-sender
If message-retry was unsuccessful, or a different type of error was
encountered, the MCA can send the message back to the originator.

To enable this, you need to specify the following options in the message
descriptor when you put the message to the original queue:
v The MQRO_EXCEPTION_WITH_FULL_DATA report option

MQPUT

DLQ Handler

MCA MCA
Transient Failure

Retry Exit

Application

Queue

Transmission

Queue

Transmission

Queue

Message Flow

Dead Letter

Queue

2 3

1

QM2QM1 Channels

RTS

Figure 31. What happens when a message cannot be delivered

Undelivered messages

72 MQSeries Intercommunication

v The MQRO_DISCARD_MSG report option
v The name of the reply-to queue and reply-to queue manager

If the MCA is unable to put the message to the destination queue, it
generates an exception report containing the original message, and puts it
on a transmission queue to be sent to the reply-to queue specified in the
original message. (If the reply-to queue is on the same queue manager as
the MCA, the message is put directly to that queue, not to a transmission
queue.)

Return-to-sender is not available on OS/390 or VSE/ESA.

3. Dead-letter queue
If a message cannot be delivered or returned, it is put on to the dead-letter
queue. You can use the DLQ handler to process the message. This is
described in theMQSeries System Administration book for V5.1 of MQSeries
for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, the MQSeries
for AS/400 V5.1 System Administration book for MQSeries for OS/400, or in
the MQSeries System Management Guide for your platform. (The DLQ
handler is not supported on OS/390.)

If the dead-letter queue is not available, the sending MCA leaves the
message on the transmission queue, and the channel stops. On a fast
channel, nonpersistent messages that cannot be written to a dead-letter
queue are lost.

Dead-letter queues are not supported on MQSeries for Windows.

Initialization and configuration files
The handling of channel initialization data depends on your MQSeries platform.

OS/390 without CICS
In MQSeries for OS/390 without CICS, initialization and configuration information
is in the channel initiator parameter module CSQXPARM. You can also put
commands in the CSQINPX initialization input data set, which is processed every
time you start the channel initiator if you specify the optional DD statement
CSQINPX in the channel initiator started task procedure. See the MQSeries for
OS/390 System Management Guide for information about both of these.

OS/390 using CICS
In MQSeries for OS/390 using CICS there is no channel initiator.

Windows NT
On MQSeries for Windows NT, the registry file holds basic configuration
information about the MQSeries installation. That is, information relevant to all of
the queue managers on the MQSeries system and also information relating to
individual queue managers.

OS/2, Digital OpenVMS, Tandem NSK, OS/400 and UNIX
systems

On MQSeries for OS/2 Warp, MQSeries for Compaq (DIGITAL) OpenVMS,
MQSeries for Tandem NonStop Kernel, OS/400 and MQSeries on UNIX systems,
there are configuration files to hold basic configuration information about the
MQSeries installation.

Undelivered messages

Chapter 5. DQM implementation 73

|

|
|
|
|
|
|
|
|

There are two configuration files: one applies to the machine, the other applies to
an individual queue manager.

MQSeries configuration file
This holds information relevant to all of the queue managers on the MQSeries
system. The file is called MQSINI on Tandem NSK and mqs.ini on other platforms.
It is fully described in the MQSeries System Administration book for MQSeries for
AIX, MQSeries for HP-UX, MQSeries for OS/2 Warp, and MQSeries for Sun
Solaris, in the MQSeries for AS/400 V5.1 System Administration book for MQSeries
for AS/400, or in the MQSeries System Management Guide for your platform.

Queue manager configuration file
The queue manager configuration file holds configuration information relating to
one particular queue manager. The file is called QMINI on Tandem NSK, and
qm.ini on other platforms.

It is created during queue manager creation and may hold configuration
information relevant to any aspect of the queue manager. Information held in the
file includes details of how the configuration of the log differs from the default in
MQSeries configuration file.

The queue manager configuration file is held in the root of the directory tree
occupied by the queue manager. On MQSeries for Windows NT, the qm.ini file is
held in the registry. For example, for the DefaultPath attributes, the queue manager
configuration files for a queue manager called QMNAME would be:

For OS/2:
c:\mqm\qmgrs\QMNAME\qm.ini

For UNIX systems:
/var/mqm/qmgrs/QMNAME/qm.ini

For Digital OpenVMS:
mqs_root:[mqm.qmgrs.QMNAME]qm.ini

For Tandem NSK:

The file is held in the subvolume of the queue manager. For example, the path and
name for a configuration file for a queue manager called QMNAME could be
$VOLUME.QMNAMED.QMINI.

An excerpt of a qm.ini file follows. It specifies that the TCP/IP listener is to listen
on port 2500, the maximum number of current channels is to be 200 and the
maximum number of active channels is to be 100.

TCP:
Port=2500

CHANNELS:
MaxChannels=200
MaxActiveChannels=100

Note: For Tandem NSK, the format of the qm.ini file is slightly different. For more
details about this, see the MQSeries for Tandem NonStop Kernel System
Management Guide.

For OS/400:
/QIBM/UserData/mqm/qmgrs/QMNAME/qm.ini

Initialization and configuration files

74 MQSeries Intercommunication

|
|
|
|
|
|

|
|
|

|

|

For more information about qm.ini files see “Appendix D. Configuration file
stanzas for distributed queuing” on page 637. For more information about QMINI
files see the MQSeries for Tandem NonStop Kernel System Management Guide.

VSE/ESA
There is no qm.ini file on VSE/ESA. Instead, use the Configuration main menu on
the MQMMCFG panel to configure the queue manager.

Data conversion
An MQSeries message consists of two parts:
v Control information in a message descriptor
v Application data

Either of the two parts may require data conversion when sent between queues on
different queue managers. For information about data conversion, see the MQSeries
Application Programming Guide.

Writing your own message channel agents
MQSeries products other than MQSeries for Windows allow you to write your
own message channel agent (MCA) programs or to install one from an
independent software vendor. You might want to do this to make an MQSeries
product interoperate over your own, proprietary communications protocol or to
send messages over a protocol that MQSeries does not support. (You cannot write
your own MCA to interoperate with an MQSeries-supplied MCA at the other end.)

If you decide to use an MCA that was not supplied by MQSeries, you need to
consider the following.

Message sending and receiving
You need to write a sending application that gets messages from wherever
your application puts them, for example from a transmission queue (see
the MQSeries Application Programming Reference book), and sends them out
on a protocol with which you want to communicate. You also need to
write a receiving application that takes messages from this protocol and
puts them onto destination queues. The sending and receiving applications
use the message queue interface (MQI) calls, not any special interfaces.

You need to ensure that messages are delivered once and once only.
Syncpoint coordination can be used to help with this.

Channel control function
You need to provide your own administration functions to control
channels. You cannot use MQSeries channel administration functions either
for configuring (for example, the DEFINE CHANNEL command) or
monitoring (for example, DISPLAY CHSTATUS) your channels.

Initialization file
You need to provide your own initialization file, if you require one.

Application data conversion
You will probably want to allow for data conversion for messages you
send to a different system. If so, use the MQGMO_CONVERT option on
the MQGET call when retrieving messages from wherever your application
puts them, for example the transmission queue.

Initialization and configuration files

Chapter 5. DQM implementation 75

|

User exits
Consider whether you need user exits. If so, you can use the same
interface definitions that MQSeries uses.

Triggering
If your application puts messages to a transmission queue, you can set up
the transmission queue attributes so that your sending MCA is triggered
when messages arrive on the queue.

Channel initiator
You may need to provide your own channel initiator.

Writing message channel agents

76 MQSeries Intercommunication

Chapter 6. Channel attributes

The previous chapters have introduced the basic concepts of the product, the
business perspective basis of its design, its implementation, and the control
features.

This chapter describes the channel attributes held in the channel definitions. This is
product-sensitive programming interface information.

You choose the attributes of a channel to be optimal for a given set of
circumstances for each channel. However, when the channel is running, the actual
values may have changed during startup negotiations. See “Preparing channels” on
page 60.

Many attributes have default values, and you can use these for most channels.
However, in those circumstances where the defaults are not optimal, refer to this
chapter for guidance in selecting the correct values.

Note: In MQSeries for AS/400, most parameters can be specified as *SYSDFTCHL,
which means that the value is taken from the system default channel in
your system.

Channel attributes in alphabetical order
MQSeries for some platforms may not implement all the attributes shown in the
list. Exceptions and platform differences are mentioned in the individual attribute
descriptions, where relevant.

The keyword that you can specify in MQSC is shown in brackets for each attribute.
(Attributes that apply only to MQSeries for OS/390 with CICS do not have MQSC
keywords.)

The attributes are arranged in alphabetical order, as follows:

Attribute See page...

Auto start (AUTOSTART) 78
Alter date (ALTDATE) 78
Alter time (ALTTIME) 78
Batch interval (BATCHINT) 79
Batch size (BATCHSZ) 79
Channel name (CHANNEL) 80
Channel type (CHLTYPE) 81
CICS profile name 81
Cluster (CLUSTER) 81
Cluster namelist (CLUSNL) 82
Connection name (CONNAME) 82
Convert message (CONVERT) 83
Description (DESCR) 84
Disconnect interval (DISCINT) 84
Heartbeat interval (HBINT) 85
Long retry count (LONGRTY) 85
Long retry interval (LONGTMR) 85

© Copyright IBM Corp. 1993, 2000 77

Attribute See page...

LU 6.2 mode name (MODENAME) 86
LU 6.2 transaction program name (TPNAME) 86
Maximum message length (MAXMSGL) 87
Maximum transmission size 87
Message channel agent name (MCANAME) 87
Message channel agent type (MCATYPE) 88
Message channel agent user identifier (MCAUSER) 88
Message exit name (MSGEXIT) 88
Message exit user data (MSGDATA) 89
Message-retry exit name (MREXIT) 89
Message-retry exit user data (MRDATA) 89
Message retry count (MRRTY) 89
Message retry interval (MRTMR) 89
Nonpersistent message speed (NPMSPEED) 90
Network-connection priority (NETPRTY) 90
Password (PASSWORD) 90
PUT authority (PUTAUT) 90
Queue manager name (QMNAME) 91
Receive exit name (RCVEXIT) 91
Receive exit user data (RCVDATA) 92
Security exit name (SCYEXIT) 92
Security exit user data (SCYDATA) 93
Send exit name (SENDEXIT) 93
Send exit user data (SENDDATA) 93
Sequence number wrap (SEQWRAP) 93
Sequential delivery 93
Short retry count (SHORTRTY) 93
Short retry interval (SHORTTMR) 94
Target system identifier 94
Transmission queue name (XMITQ) 94
Transport type (TRPTYPE) 95
User ID (USERID) 95

Alter date (ALTDATE)
This is the date on which the definition was last altered, in the form yyyy-mm-dd.

This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390, OS/400, Sun
Solaris, and Windows NT only.

Alter time (ALTTIME)
This is the time at which the definition was last altered, in the form hh:mm:ss.

This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390, OS/400, Sun
Solaris, and Windows NT only.

Auto start (AUTOSTART)
In MQSeries for Tandem NonStop Kernel there is no SNA listener process. Each
channel initiated from a remote system must have its own, unique TP name on
which it can listen. Such channels must be defined to MQSC with the attribute
AUTOSTART(ENABLED) to ensure that there is an LU 6.2 responder process
listening on this TP name whenever the queue manager is started.

Channel attributes

78 MQSeries Intercommunication

|
|

|
|

SNA channels defined AUTOSTART(DISABLED) do not listen for incoming SNA
requests. LU 6.2 responder processes are not started for such channels.

Batch interval (BATCHINT)
In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, and MQSeries for OS/390 without CICS, you can specify a period of
time, in milliseconds, during which the channel will keep a batch open even if
there are no messages on the transmission queue. You can specify any number of
milliseconds, from zero through 999 999 999. The default value is zero.

If you do not specify a batch interval, the batch closes when the number of
messages specified in BATCHSZ has been sent or when the transmission queue
becomes empty. On lightly loaded channels, where the transmission queue
frequently becomes empty the effective batch size may be much smaller than
BATCHSZ.

You can use the BATCHINT attribute to make your channels more efficient by
reducing the number of short batches. Be aware, however, that you may slow
down the response time, because batches will last longer and messages will remain
uncommitted for longer.

If you specify a BATCHINT, batches close only when one of the following
conditions is met:
v The number of messages specified in BATCHSZ have been sent.
v There are no more messages on the transmission queue and a time interval of

BATCHINT has elapsed while waiting for messages (since the first message of
the batch was retrieved).

Note: BATCHINT specifies the total amount of time that is spent waiting for
messages. It does not include the time spent retrieving messages that are
already available on the transmission queue, or the time spent transferring
messages.

This attribute applies only to sender, cluster-sender, server, and cluster-receiver
channels.

Batch size (BATCHSZ)
The batch size is the maximum number of messages to be sent before a syncpoint
is taken. The batch size does not affect the way the channel transfers messages;
messages are always transferred individually, but are committed or backed out as a
batch.

To improve performance, you can set a batch size to define the maximum number
of messages to be transferred between two syncpoints. The batch size to be used is
negotiated when a channel starts up, and the lower of the two channel definitions
is taken. On some implementations, the batch size is calculated from the lowest of
the two channel definitions and the two queue manager
MAXUMSGS/MAXSMSGS values. The actual size of a batch can be less than this;
for example, a batch completes when there are no messages left on the
transmission queue or the batch interval expires.

A large value for the batch size increases throughput, but recovery times are
increased because there are more messages to back out and resend. The default

Auto start (AUTOSTART)

Chapter 6. Channel attributes 79

|
|
|
|
|

|
|

BATCHSZ is 50, and you are advised to try that value first. You might choose a
lower value for BATCHSZ if your communications are unreliable, making the need
to recover more likely.

Syncpoint procedure needs a unique logical unit of work identifier to be
exchanged across the link every time a syncpoint is taken, to coordinate batch
commit procedures.

If the synchronized batch commit procedure is interrupted, an in-doubt situation
may arise. In-doubt situations are resolved automatically when a message channel
starts up. If this resolution is not successful, manual intervention may be necessary,
making use of the RESOLVE command.

Some considerations when choosing the number for batch size:
v If the number is too large, the amount of queue space taken up on both ends of

the link becomes excessive. Messages take up queue space when they are not
committed, and cannot be removed from queues until they are committed.

v If there is likely to be a steady flow of messages, you can improve the
performance of a channel by increasing the batch size. However, this has the
negative effect of increasing restart times, and very large batches may also affect
performance.

v If message flow characteristics indicate that messages arrive intermittently, a
batch size of 1 with a relatively large disconnect time interval may provide a
better performance.

v The number may be in the range 1 through 9999. However, for data integrity
reasons, channels connecting to any of the current platforms, as described in this
book, should specify a batch size greater than 1. (A value of 1 is for use with
Version 1 products, apart from MQSeries for MVS/ESA.)
For OS/390 using CICS it must also be at least 3 less than the value set by the
DEFINE MAXSMSGS command.

v Even though nonpersistent messages on a fast channel do not wait for a
syncpoint, they do contribute to the batch-size count.

Channel name (CHANNEL)
Specifies the name of the channel definition. The name can contain up to 20
characters, although as both ends of a message channel must have the same name,
and other implementations may have restrictions on the size, the actual number of
characters may have to be smaller.

Where possible, channel names should be unique to one channel between any two
queue managers in a network of interconnected queue managers.

The name must contain characters from the following list:

Alphabetic (A-Z, a-z; note that uppercase and lowercase are significant)
Numerics (0-9)
Period (.)
Forward slash (/)
Underscore (_)
Percentage sign (%)

Batch size (BATCHSZ)

80 MQSeries Intercommunication

|
|
|

|
|
|
|

|
|

Notes:

1. Embedded blanks are not allowed, and leading blanks are ignored.
2. On systems using EBCDIC Katakana, you cannot use lowercase characters.

Channel type (CHLTYPE)
Specifies the type of the channel being defined. The possible channel types are:

Message channel types:
v Sender
v Server (not MQSeries for VSE/ESA)
v Cluster-sender (MQSeries for OS/390 without CICS, V5.1 of MQSeries

for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
only)

v Receiver
v Requester (not MQSeries for VSE/ESA)
v Cluster-receiver (MQSeries for OS/390 without CICS, V5.1 of MQSeries

for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
only)

MQI channel types:

v Client-connection (MQSeries for OS/2 Warp, Windows NT, UNIX
systems, VSE/ESA, DOS, Windows 3.1, Windows 95, and Windows 98
only)

Note: Client-connection channels can also be defined on OS/390 for use
on other platforms.

v Server-connection (not MQSeries for OS/390 using CICS)

The two ends of a channel must have the same name and have compatible types:
v Sender with receiver
v Requester with server
v Requester with sender (for Call_back)
v Server with receiver (server is used as a sender)
v Client-connection with server-connection
v Cluster-sender with cluster-receiver

CICS profile name
This is for OS/390 using CICS only, to give extra definition for the session
characteristics of the connection when CICS performs a communication session
allocation, for example to select a particular COS.

The name must be known to CICS and be one to eight alphanumeric characters
long.

Cluster (CLUSTER)
The name of the cluster to which the channel belongs. The maximum length is 48
characters conforming to the rules for naming MQSeries objects.

This parameter is valid only for cluster-sender and cluster-receiver channels. Up to
one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of the
values is nonblank, the other must be blank.

This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390 without CICS,
OS/400, Sun Solaris, and Windows NT only.

Channel name (CHANNEL)

Chapter 6. Channel attributes 81

|
|
|

|
|
|

|
|

Cluster namelist (CLUSNL)
The name of the namelist that specifies a list of clusters to which the channel
belongs.

This parameter is valid only for cluster-sender and cluster-receiver channels. Up to
one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of the
values is nonblank, the other must be blank.

This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390 without CICS,
OS/400, Sun Solaris, and Windows NT only.

Connection name (CONNAME)
This is the communications connection identifier. It specifies the particular
communications link to be used by this channel.

This attribute is required for sender channels, requester channels, and
client-connection channels. It does not apply to receiver or server-connection
channel types.

It is optional for server channels, except on OS/390 using CICS where it is
required in the channel definition, but is ignored unless the server is initiating the
conversation.

For OS/390 using CICS this attribute names the CICS communication connection
identifier for the session to be used for this channel. The name is one to four
alphanumeric characters long.

Otherwise, the name is up to 48 characters for OS/390, 264 characters for other
platforms, and:

If the transport type is TCP
This is either the hostname or the network address of the remote machine.
For example, (MACH1.ABC.COM) or (19.22.11.162). It may include the port
number, for example (MACHINE(123)).

If the transport type is UDP
For MQSeries for AIX and MQSeries for Windows V2.0 only, UDP is an
alternative to TCP. As with TCP/IP, it is either the hostname or the
network address of the remote machine.

If the transport type is LU 6.2
For Version 5.1 of MQSeries for OS/2, OS/400, Windows NT, and UNIX
systems, give the fully-qualified name of the partner LU if the TPNAME
and MODENAME are specified. For other versions or if the TPNAME and
MODENAME are blank, give the CPI-C side information object name as
described in the section in this book about setting up communication for
your platform.

On OS/390 there are two forms in which to specify the value:
v Logical unit name

The logical unit information for the queue manager, comprising the
logical unit name, TP name, and optional mode name. This can be
specified in one of 3 forms:
luname, for example IGY12355

luname/TPname, for example IGY12345/APING

luname/TPname/modename, for example IGY12345/APINGD/#INTER

Cluster namelist (CLUSNL)

82 MQSeries Intercommunication

|
|

|
|
|
|
|
|

For the first form, the TP name and mode name must be specified for
the TPNAME and MODENAME attributes; otherwise these attributes
must be blank.

Note: For client-connection channels, only the first form is allowed.
v Symbolic name

The symbolic destination name for the logical unit information for the
queue manager, as defined in the side information data set. The
TPNAME and MODENAME attributes must be blank.

Note: For cluster-receiver channels, the side information is on the other
queue managers in the cluster. Alternatively, in this case it can be
a name that a channel auto-definition exit can resolve into the
appropriate logical unit information for the local queue manager.

For Digital OpenVMS, specify the Gateway Node name, the Access Name
to the channel program, and the TPNAME used to invoke the remote
program. For example: CONNAME('SNAGWY.VMSREQUESTER(HOSTVR)').

For Tandem NonStop Kernel, the value depends on whether SNAX or ICE
is used; see “Chapter 20. Setting up communication in Tandem NSK” on
page 289.

If the transmission protocol is NetBIOS
This is the NetBIOS name defined on the remote machine.

If the transmission protocol is SPX
This is an SPX-style address consisting of a 4-byte network address, a
6-byte node address and a 2-byte socket number. Enter these in
hexadecimal, with the network and node addresses separated by a fullstop
and the socket number in brackets. For example:
CONNAME('0a0b0c0d.804abcde23a1(5e86)')

If the socket number is omitted, the default MQSeries SPX socket number
is used. The default is X'5E86'.

Note: The definition of transmission protocol is contained in “Transport type
(TRPTYPE)” on page 95.

Convert message (CONVERT)
Application message data is usually converted by the receiving application.
However, if the remote queue manager is on a platform that does not support data
conversion, use this channel attribute to specify that the message should be
converted into the format required by the receiving system before transmission.

This attribute applies only to sender, cluster-sender, server, and cluster-receiver
channels and does not apply to MQSeries for OS/390 with CICS or MQSeries for
Windows.

The possible values are ‘yes’ and ‘no’. If you specify ‘yes’, the application data in
the message is converted before sending if you have specified one of the
appropriate built-in format names (see the MQSeries Application Programming
Guide). If you specify ‘no’, the application data in the message is not converted
before sending.

Connection name (CONNAME)

Chapter 6. Channel attributes 83

Description (DESCR)
This contains up to 64 bytes of text that describes the channel definition.

Note: The maximum number of characters is reduced if the system is using a
double byte character set (DBCS).

Use characters from the character set identified by the coded character set
identifier (CCSID) for the queue manager to ensure that the text is translated
correctly if it is sent to another queue manager.

Disconnect interval (DISCINT)
This is a time-out attribute, specified in seconds, for the server, cluster-sender,
sender, and cluster-receiver channels. The interval is measured from the point at
which a batch ends, that is when the batch size is reached or when the batch
interval expires and the transmission queue becomes empty. If no messages arrive
on the transmission queue during the specified time interval, the channel closes
down. (The time is approximate.)

The close-down exchange of control data between the two ends of the channel
includes an indication of the reason for closing. This ensures that the
corresponding end of the channel remains available to start up again.

On all platforms except OS/390 with CICS, you can specify any number of seconds
from zero through 999 999 where a value of zero means no disconnect; wait
indefinitely.

In OS/390 using CICS, you can specify any number of seconds from zero through
9999 where a value of zero means disconnect as soon as the transmission queue is
empty.

Note: Performance is affected by the value specified for the disconnect interval.

A very low value (a few seconds) may cause excessive overhead in
constantly starting up the channel. A very large value (more than an hour)
could mean that system resources are unnecessarily held up. For V5.1 of
MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows
NT and MQSeries for OS/390 without CICS, you can also specify a
heartbeat interval, so that when there are no messages on the transmission
queue, the sending MCA will send a heartbeat flow to the receiving MCA,
thus giving the receiving MCA an opportunity to quiesce the channel
without waiting for the disconnect interval to expire. For these two values to
work together effectively, the heartbeat interval value must be significantly
lower than the disconnect interval value.

A value for the disconnect interval of a few minutes is a reasonable value to
use. Change this value only if you understand the implications for
performance, and you need a different value for the requirements of the
traffic flowing down your channels.

For more information, see “Stopping and quiescing channels (not MQSeries
for Windows)” on page 67.

Description (DESCR)

84 MQSeries Intercommunication

|
|
|
|
|
|
|
|
|
|
|

Heartbeat interval (HBINT)
This attribute applies to V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT and MQSeries for OS/390 without CICS. You can
specify the approximate time between heartbeat flows that are to be passed from a
sending MCA when there are no messages on the transmission queue. Heartbeat
flows unblock the receiving MCA, which is waiting for messages to arrive or for
the disconnect interval to expire. When the receiving MCA is unblocked it can
disconnect the channel without waiting for the disconnect interval to expire.
Heartbeat flows also free any storage buffers that have been allocated for large
messages and close any queues that have been left open at the receiving end of the
channel.

The value is in seconds and must be in the range 0 through 999 999. A value of
zero means that no heartbeat flows are to be sent. The default value is 300. To be
most useful, the value should be significantly less than the disconnect interval
value.

This attribute is valid for sender, cluster-sender, server, receiver, cluster-receiver,
and requester channels. Other than on OS/390 and OS/400, it also applies to
server-connection and client-connection channels. On these channels, heartbeats
flow when a server MCA has issued an MQGET command with the WAIT option
on behalf of a client application.

Long retry count (LONGRTY)
Specify the maximum number of times that the channel is to try allocating a
session to its partner. If the initial allocation attempt fails, the short retry count
number is decremented and the channel retries the remaining number of times. If
it still fails, it retries a long retry count number of times with an interval of
long retry interval between each try. If it is still unsuccessful, the channel closes
down. The channel must subsequently be restarted with a command (it is not
started automatically by the channel initiator).

(Retry is not attempted if the cause of failure is such that a retry is not likely to be
successful.)

If the channel initiator or queue manager stops while the channel is retrying, the
short retry count and long retry count are reset when the channel initiator or queue
manager is restarted.

The long retry count attribute is valid only for channel types of sender,
cluster-sender, server, and cluster-receiver. It is also valid for requester channels on
OS/390 if you are using CICS. It may be set from zero through 999 999 999. On
OS/390 using CICS, it may be set from zero through 999, and the long and short
retries have the same count.

Note: For OS/2, OS/400, UNIX systems, and Windows NT, in order for retry to be
attempted a channel initiator must be running. The channel initiator must be
monitoring the initiation queue specified in the transmission queue that the
channel is using.

Long retry interval (LONGTMR)
The approximate interval in seconds that the channel is to wait before retrying to
establish connection, during the long retry mode.

Heartbeat interval (HBINT)

Chapter 6. Channel attributes 85

|
|
|
|
|
|
|
|
|
|

The interval between retries may be extended if the channel has to wait to become
active.

The channel tries to connect long retry count number of times at this long
interval, after trying the short retry count number of times at the short retry
interval.

This is valid only for channel types of sender, cluster-sender, server, and
cluster-receiver. It is also valid for requester channels on OS/390 if you are using
CICS. It may be set from zero through 999 999. On OS/390 using CICS, it may be
set from zero through 999.

LU 6.2 mode name (MODENAME)
This is for use with LU 6.2 connections. It gives extra definition for the session
characteristics of the connection when a communication session allocation is
performed.

When using side information for SNA communications, the mode name is defined
in the CPI-C Communications Side Object or APPC side information and this
attribute should be left blank; otherwise, it should be set to the SNA mode name.

The name must be one to eight alphanumeric characters long.

It is not valid for receiver or server-connection channels.

LU 6.2 transaction program name (TPNAME)
This is for use with LU 6.2 connections. It is the name, or generic name, of the
transaction program (MCA) to be run at the far end of the link.

When using side information for SNA communications, the transaction program
name is defined in the CPI-C Communications Side Object or APPC side
information and this attribute should be left blank. Otherwise, this name is
required by sender channels and requester channels except on OS/390 using CICS
where it is required in the channel definition but is ignored unless the server is
initiating the conversation.

On platforms other then Tandem NSK, the name can be up to 64 characters long.
See “Chapter 20. Setting up communication in Tandem NSK” on page 289 for more
information about that platform.

If the remote system is MQSeries for OS/390 using CICS, the transaction is:
v CKRC when you are defining a sender channel, or a server channel that acts as

a sender
v CKSV when you are defining a requester channel of a requester-server pair
v CKRC when you are defining a requester channel of a requester-sender pair

On other platforms, this should be set to the SNA transaction program name,
unless the CONNAME contains a side-object name in which case it should be set
to blanks. The actual name is taken instead from the CPI-C Communications Side
Object, or the APPC side information data set.

This information is set in a different way on other platforms; see the section in this
book about setting up communication for your platform.

Long retry interval (LONGTMR)

86 MQSeries Intercommunication

Maximum message length (MAXMSGL)
Specifies the maximum length of a message that can be transmitted on the channel.

On AIX, HP-UX, OS/2 Warp, OS/400, Sun Solaris, Windows NT, and VSE/ESA,
specify a value greater than or equal to zero, and less than or equal to the
maximum message length for the queue manager. See the MAXMSGL parameter of
the MQSeries Command Reference book for more information. On other platforms,
specify a value greater than or equal to zero, and less than or equal to 4 194 304
bytes.

Because various implementations of MQSeries systems exist on different platforms,
the size available for message processing may be limited in some applications. This
number must reflect a size that your system can handle without stress. When a
channel starts up, the lower of the two numbers at each end of the channel is
taken.

Notes:

1. If splitting of messages is not supported at either end of a channel, the
maximum message size cannot be greater than the negotiated maximum
transmission size.

2. The IBM MQSeries products that this edition of the book applies to all support
message splitting. Other MQSeries products do not support message splitting.

3. For a comparison of the functions available, including the different maximum
message lengths available see the MQSeries Planning Guide and the MQSeries
Application Programming Guide.

4. You may use a maximum message size of 0 which will be taken to mean that
the size is to be set to the local queue manager maximum value.

Maximum transmission size
If you are using CICS for distributed queuing on OS/390, you can specify the
maximum transmission size, in bytes, that your channel is allowed to use when
transmitting a message, or part of a message. When a channel starts up, this value
is negotiated between the sending and receiving channels and the lower of the two
values is agreed. The maximum size is 32 000 bytes on TCP/IP, but the maximum
usable size is 32 000 bytes less the message descriptor. On VSE/ESA, the
maximum size is 64 000 bytes on SNA.

Use this facility to ensure that system resources are not exceeded by your channels.
Set this value in conjunction with the maximum message size, remembering to
allow for message descriptors. An error situation may be created if the message
size is allowed to exceed the transmission size, and message splitting is not
supported.

Notes:

1. If channel startup negotiation results in a size less than the minimum required
for the local channel program, no messages can be transferred.

2. The IBM MQSeries products that this edition of the book applies to all support
message splitting. Other MQSeries products do not support message splitting.

Message channel agent name (MCANAME)
This attribute is reserved and should not be used.

Maximum message length (MAXMSGL)

Chapter 6. Channel attributes 87

|
|
|
|
|
|

Message channel agent type (MCATYPE)
For MQSeries for AIX, AS/400, Windows NT, HP-UX, OS/2, and Sun Solaris, this
attribute may be specified as a ‘process’ or a ‘thread’. This parameter is valid for
channel types of sender, cluster-sender (on V5.1 of MQSeries for AIX, AS/400,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT only), server, requester, or
cluster-receiver. On MQSeries for OS/390, it is supported only for channels with a
channel type of cluster-receiver. The MCA type is used when the channel is started
locally to determine how the channel is run.

Advantages of running as a process include:
v Isolation for each channel providing greater integrity
v Job authority specific for each channel
v Control over job scheduling

Advantages of threads include:
v Much reduced use of storage
v Easier configuration by typing on the command line
v Faster execution - it is quicker to start a thread than to instruct the operating

system to start a process

For channel types of sender, server, and requester, the default is ‘process’. For
channel types of cluster-sender and cluster-receiver, the default is ‘thread’. These
defaults can change during your installation.

If you specify ‘process’ on the channel definition, a runmqchi process is started. If
you specify ‘thread’, the MCA runs on a thread of the MQCHI process. On the
machine that receives the inbound allocates, the MCA runs as a thread or process
depending on whether you specify inetd or MQLSR.

Message channel agent user identifier (MCAUSER)
This is not valid for OS/390 using CICS; it is not valid for channels of
client-connection type.

This attribute is the user identifier (a string) to be used by the MCA for
authorization to access MQSeries resources, including (if PUT authority is DEF)
authorization to put the message to the destination queue for receiver or requester
channels.

On MQSeries for Windows NT, the user identifier may be domain-qualified by
using the format, user@domain, where the domain must be either the Windows NT
domain of the local system or a trusted domain.

If this attribute is blank, the MCA uses its default user identifier.

Message exit name (MSGEXIT)
Specifies the name of the user exit program to be run by the channel message exit.
In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT this can be a list of names of programs that are to be run in
succession. Leave blank, if no channel message exit is in effect.

The format and maximum length of this attribute depend on the platform, as for
“Receive exit name (RCVEXIT)” on page 91.

MCA type (MCATYPE)

88 MQSeries Intercommunication

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|

The message exit is not supported on client-connection or server-connection
channels.

Message exit user data (MSGDATA)
Specifies user data that is passed to the channel message exits.

In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, you can run a sequence of message exits. The limitations on the user
data length and an example of how to specify MSGDATA for more than one exit
are as shown for RCVDATA. See “Receive exit user data (RCVDATA)” on page 92.

On other platforms the maximum length of the string is 32 characters.

Message-retry exit name (MREXIT)
Specifies the name of the user exit program to be run by the message-retry user
exit. Leave blank if no message-retry exit program is in effect.

The format and maximum length of the name depend on the platform, as for
“Receive exit name (RCVEXIT)” on page 91.

This parameter is only valid for receiver, cluster-receiver, and requester channels. It
is not supported on MQSeries for OS/390 or MQSeries for Windows.

Message-retry exit user data (MRDATA)
This is passed to the channel message-retry exit when it is called.

This parameter is only valid for receiver, cluster-receiver, and requester channels. It
is not supported on MQSeries for OS/390 or MQSeries for Windows.

Message retry count (MRRTY)
This is the number of times the channel will retry before it decides it cannot
deliver the message.

This attribute controls the action of the MCA only if the message-retry exit name is
blank. If the exit name is not blank, the value of MRRTY is passed to the exit for
the exit’s use, but the number of retries performed (if any) is controlled by the exit,
and not by this attribute.

The value must be in the range 0 to 999 999 999. A value of zero means that no
retries will be performed.

This parameter is only valid for receiver, cluster-receiver, and requester channels. It
is not supported on MQSeries for OS/390 or MQSeries for Windows.

Message retry interval (MRTMR)
This is the minimum interval of time that must pass before the channel can retry
the MQPUT operation. This time interval is in milliseconds.

This attribute controls the action of the MCA only if the message-retry exit name is
blank. If the exit name is not blank, the value of MRTMR is passed to the exit for
the exit’s use, but the retry interval is controlled by the exit, and not by this
attribute.

Message exit name (MSGEXIT)

Chapter 6. Channel attributes 89

|
|
|
|

The value must be in the range 0 to 999 999 999. A value of zero means that the
retry will be performed as soon as possible (provided that the value of MRRTY is
greater than zero).

This parameter is only valid for receiver, cluster-receiver, and requester channels. It
is not supported on MQSeries for OS/390 or MQSeries for Windows.

Network-connection priority (NETPRTY)
The priority for the network connection. Distributed queuing will choose the path
with the highest priority if there are multiple paths available. The value must be in
the range 0 through 9; 0 is the lowest priority.

This parameter is valid only for cluster-receiver channels.

This parameter is valid only on AIX, HP-UX, OS/2 Warp, OS/390 without CICS,
OS/400, Sun Solaris, and Windows NT.

Nonpersistent message speed (NPMSPEED)
For V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, MQSeries for OS/390 without CICS, and MQSeries for Windows
V2.1, you can specify the speed at which nonpersistent messages are to be sent.
You can specify either ‘normal’ or ‘fast’. The default is ‘fast’, which means that
nonpersistent messages on a channel need not wait for a syncpoint before being
made available for retrieval. The advantage of this is that nonpersistent messages
become available for retrieval far more quickly. The disadvantage is that because
they do not wait for a syncpoint, messages may be lost if there is a transmission
failure or if the channel stops when the messages are in transit. See “Fast,
nonpersistent messages” on page 22.

This attribute is valid for sender, cluster-sender, server, receiver, cluster-receiver,
and requester channels.

Password (PASSWORD)
You can specify a password of maximum length 12 characters, although only the
first 10 characters are used.

The password may be used by the MCA when attempting to initiate a secure LU
6.2 session with a remote MCA. It is valid for channel types of sender, server,
requester, or client-connection.

This does not apply to MQSeries for OS/390 except for client-connection channels,
and does not apply to MQSeries for Windows.

PUT authority (PUTAUT)
Use this field to choose the type of security processing to be carried out by the
MCA when executing 1) an MQPUT command to the destination queue (for
message channels) ,or 2) an MQI call (for MQI channels). (PUT security is not
supported on MQSeries for Windows.)

You can choose one of the following:
Process security, also called default authority (DEF)

Default user ID is used.

Message retry interval (MRTMR)

90 MQSeries Intercommunication

|
|

|
|
|
|
|
|
|
|
|
|

On OS/390, this might involve using both the user ID received from the
network and that derived from MCAUSER.

On other platforms, with Process security, you choose to have the queue
security based on the user ID that the process is running under. If
MCAUSER is not blank, the user ID has the value of MCAUSER;
otherwise, the user ID is that of the process, or user, running the MCA at
the receiving end of the message channel.

The queues are opened with this user ID, and the open option
MQOO_SET_ALL_CONTEXT.

Context security (CTX)
Alternate user ID is used from the context information associated with a
message.

On OS/390, this may involve also using either the user ID received from
the network, or the user ID derived from MCAUSER, or both.

The UserIdentifier in the message descriptor is moved into the
AlternateUserId field in the object descriptor. The queue is opened with
the open options MQOO_SET_ALL_CONTEXT and
MQOO_ALTERNATE_USER_AUTHORITY.

Only Message Channel Agent security (ONLYMCA)
This is supported on OS/390 only and is the same as process security but
any user ID received from the network is not used.

Alternate Message Channel Agent security (ALTMCA)
This is supported on OS/390 only and is the same as context security but
any user ID received from the network is not used.

This parameter is only valid for receiver, requester, cluster-receiver, and
server-connection channels. Context security and alternate message channel agent
security are not supported on server-connection channels.

Further details about context fields and open options can be found in the MQSeries
Application Programming Guide. Further details about security can be found in the
MQSeries System Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, the MQSeries for AS/400 V5.1 System
Administration book for MQSeries for AS/400, the MQSeries for Windows User’s
Guide, or in the MQSeries System Management Guide or MQSeries Administration
Guide for your platform.

Queue manager name (QMNAME)
This applies to a channel of client-connection type only. It is the name of the queue
manager or queue manager group to which an MQSeries client application can
request connection.

Receive exit name (RCVEXIT)
Specifies the name of the user exit program to be run by the channel receive user
exit. In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT this can be a list of names of programs that are to be run in
succession. Leave blank, if no channel receive user exit is in effect.

The format and maximum length of this attribute depend on the platform:
v On OS/390 it is a load module name, maximum length 8 characters, except for

client-connection channels where the maximum length is 128 characters.
v On OS/400 it is of the form:

PUT authority (PUTAUT)

Chapter 6. Channel attributes 91

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

libname/progname

when specified in CL commands.

When specified in MQSeries Commands (MQSC) it has the form:
progname libname

where progname occupies the first 10 characters, and libname the second 10
characters (both blank-padded to the right if necessary). The maximum length of
the string is 20 characters.

v On OS/2 and Windows it is of the form:
dllname(functionname)

where dllname is specified without the suffix “.DLL”. The maximum length of
the string is 40 characters.

v On UNIX systems, Digital OpenVMS, and Tandem NSK it is of the form:
libraryname(functionname)

The maximum length of the string is 40 characters.

In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT you can specify a list of receive, send, or message exit program
names. The names should be separated by a comma, a space, or both. For example:
RCVEXIT(exit1 exit2)
MSGEXIT(exit1,exit2)
SENDEXIT(exit1, exit2)

In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT the total length of the string of exit names and strings of user data
for a particular type of exit is limited to 500 characters. In MQSeries for AS/400
you can list up to 10 exit names.

Receive exit user data (RCVDATA)
Specifies user data that is passed to the receive exit.

In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, you can run a sequence of receive exits. The string of user data for a
series of exits should be separated by a comma, spaces, or both. For example:
RCVDATA(exit1_data exit2_data)
MSGDATA(exit1_data,exit2_data)
SENDDATA(exit1_data, exit2_data)

In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT the length of the string of exit names and strings of user data is
limited to 500 characters. In MQSeries for AS/400 you can specify up to 10 exit
names and the length of user data for each is limited to 32 characters.

On other platforms the maximum length of the string is 32 characters.

Security exit name (SCYEXIT)
Specifies the name of the exit program to be run by the channel security exit.
Leave blank if no channel security exit is in effect.

Receive exit name (RCVEXIT)

92 MQSeries Intercommunication

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

The format and maximum length of the name depend on the platform, as for
“Receive exit name (RCVEXIT)” on page 91.

Security exit user data (SCYDATA)
Specifies user data that is passed to the security exit. The maximum length is 32
characters.

Send exit name (SENDEXIT)
Specifies the name of the exit program to be run by the channel send exit. In V5.1
of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
this can be a list of names of programs that are to be run in sequence. Leave blank
if no channel send exit is in effect.

The format and maximum length of this attribute depend on the platform, as for
“Receive exit name (RCVEXIT)” on page 91.

Send exit user data (SENDDATA)
Specifies user data that is passed to the send exit.

In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, you can run a sequence of send exits. The limitations on the user
data length and an example of how to specify SENDDATA for more than one exit,
are as shown for RCVDATA. See “Receive exit user data (RCVDATA)” on page 92.

On other platforms the maximum length of the string is 32 characters.

Sequence number wrap (SEQWRAP)
This is the highest number the message sequence number reaches before it restarts
at 1. In OS/390 using CICS, this number is of interest only when sequential
delivery of messages is selected. It is not valid for channel types of
client-connection or server-connection.

The value of the number should be high enough to avoid a number being reissued
while it is still being used by an earlier message. The two ends of a channel must
have the same sequence number wrap value when a channel starts up; otherwise,
an error occurs.

The value may be set from 100 through 999 999 999 (1 through 9 999 999 for
OS/390 using CICS).

Sequential delivery
This applies only to OS/390 using CICS. Set this to ‘YES’ when using sequential
numbering of messages. If one side of the channel requests this facility, it must be
accepted by the other side.

There could be a performance penalty associated with the use of this option.

For other platforms, the MCA always uses message sequence numbering.

Short retry count (SHORTRTY)
Specify the maximum number of times that the channel is to try allocating a
session to its partner. If the initial allocation attempt fails, the short retry count is
decremented and the channel retries the remaining number of times with an

Security exit name (SCYEXIT)

Chapter 6. Channel attributes 93

|
|
|
|

|
|
|
|

interval, defined in the short retry interval attribute, between each attempt. If it
still fails, it retries long retry count number of times with an interval of
long retry interval between each attempt. If it is still unsuccessful, the channel
terminates.

(Retry is not attempted if the cause of failure is such that a retry is not likely to be
successful.)

If the channel initiator or queue manager stops while the channel is retrying, the
short retry count and long retry count are reset when the channel initiator or queue
manager is restarted.

The short retry count attribute is valid only for channel types of sender,
cluster-sender, server, and cluster-receiver. It is also valid for requester channels on
OS/390 if you are using CICS. It may be set from zero through 999 999 999 (1
through 999 for OS/390 using CICS, and the long and short retries have the same
count).

Note: For MQSeries for OS/2 Warp, OS/400, UNIX systems, and Windows NT, in
order for retry to be attempted a channel initiator must be running. The
channel initiator must be monitoring the initiation queue specified in the
transmission queue that the channel in using.

Short retry interval (SHORTTMR)
Specify the approximate interval in seconds that the channel is to wait before
retrying to establish connection, during the short retry mode.

The interval between retries may be extended if the channel has to wait to become
active.

This attribute is valid only for channel types of sender, cluster-sender, server, and
cluster-receiver. It is also valid for requester channels on OS/390 if you are using
CICS. It may be set from zero through 999 999. (0 through 999 for OS/390 using
CICS).

Target system identifier
This is for OS/390 using CICS only. It identifies the particular CICS system where
the sending or requesting channel transaction is to run.

The default is blank, which means the CICS system where you are logged on. The
name may be one through four alphanumeric characters.

Transaction identifier
This only applies to OS/390 using CICS.

The name of the local CICS transaction that you want to start. If you do not
specify a value, the name of the supplied transaction for the channel type is used.

Transmission queue name (XMITQ)
The name of the transmission queue from which messages are retrieved. This is
required for channels of type sender or server, it is not valid for other channel
types.

Short retry count (SHORTRTY)

94 MQSeries Intercommunication

Provide the name of the transmission queue to be associated with this sender or
server channel, that corresponds to the queue manager at the far side of the
channel. The transmission queue may be given the same name as the queue
manager at the remote end.

Transport type (TRPTYPE)
This does not apply to OS/390 using CICS.

The possible values are:

LU62 LU 6.2

TCP TCP/IP (1)

UDP UDP (2)

NETBIOS NetBIOS (3)

SPX SPX (3)

Notes:

1. MQSeries for Windows Version 2.1 supports TCP only.

2. UDP is supported on MQSeries for AIX and MQSeries for Windows Version 2.0 only.

3. For use on OS/2 and Windows NT. Can also be used on OS/390 for defining
client-connection channels for use on OS/2 and Windows NT.

User ID (USERID)
On V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, you can specify a task user identifier of 20 characters. On other
platforms, you can specify a task user identifier of maximum length 12 characters,
although only the first 10 characters are used.

The user ID may be used by the MCA when attempting to initiate a secure SNA
session with a remote MCA. It is valid for channel types of sender, server,
requester, or client-connection.

This does not apply to MQSeries for OS/390 except for client-connection channels.

Transmission queue name (XMITQ)

Chapter 6. Channel attributes 95

|
|
|
|

Intercommunication

96 MQSeries Intercommunication

Chapter 7. Example configuration chapters in this book

Throughout the following parts of the book, there is a series of chapters containing
examples of how to configure the various platforms to communicate with each
other. These chapters describe tasks performed to establish a working MQSeries
network. The tasks were to establish MQSeries sender and receiver channels to
enable bi-directional message flow between the platforms over all supported
protocols.

Figure 32 is a conceptual representation of a single channel and the MQSeries
objects associated with it.

This is a simple example, intended to introduce only the basic elements of the
MQSeries network. It does not demonstrate the use of triggering which is
described in “Triggering channels” on page 20.

The objects in this network are:
v A remote queue
v A transmission queue
v A local queue
v A sender channel

Appl1 and Appl2 are both application programs; Appl1 is putting messages and
Appl2 is receiving them.

Appl1 puts messages to a remote queue. The definition for this remote queue
specifies the name of a target queue manager, a local queue on that queue
manager, and a transmission queue on this the local queue manager.

When the queue manager receives the request from Appl1 to put a message to the
remote queue, it looks at the queue definition and sees that the destination is
remote. It therefore puts the message straight onto the transmission queue

Transmission

queue

Sender

channel

Local

queue

Remote

queue

MQPUT MQGET

Appl1 Appl2

Queue manager 1 Queue manager 2

Figure 32. MQSeries channel to be set up in the example configuration chapters in this book

© Copyright IBM Corp. 1993, 2000 97

specified in the definition. The message remains on the transmission queue until
the channel becomes available, which may happen immediately.

A sender channel has in its definition a reference to one, and one only,
transmission queue. When a channel is started, and at other times during its
normal operation, it will look at this transmission queue and send any messages
on it to the target system. The message has in its transmission header details of the
destination queue and queue manager.

The intercommunication examples in the following chapters describe in detail the
creation of each of the objects described above, for a variety of platform
combinations.

On the target queue manager, definitions are required for the local queue and the
receiver side of the channel. These objects operate independently of each other and
so can be created in any sequence.

On the local queue manager, definitions are required for the remote queue, the
transmission queue, and the sender side of the channel. Since both the remote
queue definition and the channel definition refer to the transmission queue name,
it is advisable to create the transmission queue first.

Network infrastructure
The configuration examples assume that all the systems are connected to a Token
Ring network with the exception of OS/390 and VSE/ESA, which communicate
via a 3745 (or equivalent) that is attached to the Token Ring, and Sun Solaris,
which is on an adjacent local area network (LAN) also attached to the 3745.

It is also assumed that, for SNA, all the required definitions in VTAM® and
network control program (NCP) are in place and activated for the LAN-attached
platforms to communicate over the wide area network (WAN).

Similarly, for TCP, it is assumed that nameserver function is available, either via a
domain nameserver or via locally held tables (for example a host file).

Communications software
Working configurations are given in the following chapters for the following
network software products:
v SNA

– Communications Manager/2 Version 1.11
– Communications Server for Windows NT, Version 5.0
– AIX Communications Server, V5.0
– Hewlett-Packard SNAplus2
– AT&T GIS SNA Services Version 2.06 or later
– OS/400 Version 4 Release 4
– SunLink Peer-to-Peer Version 9.1
– OS/390 Version 2 Release 4
– CICS/VSE® Version 2 Release 1

Example configurations

98 MQSeries Intercommunication

|

v TCP
– TCP for OS/2 Version 2
– Microsoft Windows NT Version 4 or later
– AIX Version 4 Release 1.4
– HP-UX Version 10.2 or later
– AT&T GIS UNIX Release 2.03.01
– Sun Solaris Release 2.4
– OS/400 Version 4 Release 4
– TCP for OS/390
– Digital UNIX Version 4.0 or later

v NetBIOS
v SPX
v UDP

How to use the communication examples
The following chapters contain example configurations:
v “Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp” on

page 137
v “Chapter 12. Example configuration - IBM MQSeries for Windows NT” on

page 169
v “Chapter 14. Example configuration - IBM MQSeries for AIX” on page 197
v “Chapter 15. Example configuration - IBM MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX)” on page 215
v “Chapter 16. Example configuration - IBM MQSeries for HP-UX” on page 219
v “Chapter 17. Example configuration - IBM MQSeries for AT&T GIS UNIX

Version 2.2” on page 243
v “Chapter 18. Example configuration - IBM MQSeries for Sun Solaris” on

page 257
v “Chapter 29. Example configuration - IBM MQSeries for OS/390” on page 395
v “Chapter 33. Example configuration - IBM MQSeries for AS/400” on page 459
v “Chapter 35. Example configuration - MQSeries for VSE/ESA” on page 485

The information in the example-configuration chapters describes the tasks that
were carried out on a single platform, to set up communication to another of the
platforms, and then describes the MQSeries tasks to establish a working channel to
that platform. Wherever possible, the intention is to make the information as
generic as possible. Thus, to connect any two MQSeries queue managers on
different platforms, you should need to refer to only the relevant two chapters.
Any deviations or special cases are highlighted as such. Of course, you can also
connect two queue managers running on the same platform (on different machines
or on the same machine). In this case, all the information can be derived from the
one chapter.

The examples only cover how to set up communications where clustering is not
being used. For information about setting up communications while using
clustering, see the MQSeries Queue Manager Clusters book. The communications’
configuration values given here still apply.

Each chapter contains a worksheet in which you can find the parameters used in
the example configurations. There is a short description of each parameter and
some guidance on where to find the equivalent values in your system. When you
have a set of values of your own, record these in the spaces on the worksheet. As
you proceed through the chapter, you will find cross-references to these values as
you need them.

Communications software

Chapter 7. Example configuration chapters in this book 99

|

|

Notes:

1. Example queue manager names usually reflect the platform that the queue
manager runs on, but MVS is used for both OS/390 and MVS/ESA, which are
essentially the same.

2. The sequence number wrap value for sender definitions defaults to 999999999
for Version 2 MQSeries products.

3. For connections to MQSeries for OS/390 the examples, in general, cover only
connection without using CICS. See “Chapter 27. Preparing MQSeries for
OS/390 when using CICS” on page 381 for information about connecting using
CICS.

IT responsibilities
Because the IT infrastructure can vary greatly between organizations, it is difficult
to indicate who, within an organization, controls and maintains the information
required to complete each parameter value. To understand the terminology used in
the following chapters, consider the following guidelines as a starting point.
v System administrator is used to describe the person (or group of people) who

installs and configures the software for a specific platform.
v Network administrator is used to describe the person who controls LAN

connectivity, LAN address assignments, network naming conventions, and so on.
This person may be in a separate group or may be part of the system
administration group.
In most OS/390 installations, there is a group responsible for updating the
ACF/VTAM®, ACF/NCP, and TCP/IP software to support the network
configuration. The people in this group should be the main source of
information needed when connecting any MQSeries platform to MQSeries for
OS/390. They may also influence or mandate network naming conventions on
LANs and you should verify their span of control before creating your
definitions.

v A specific type of administrator, for example CICS administrator is indicated in
cases where we can more clearly describe the responsibilities of the person.

The example-configuration chapters do not attempt to indicate who is responsible
for and able to set each parameter. In general, several different people may be
involved.

Using communication examples

100 MQSeries Intercommunication

Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital
OpenVMS, Tandem NSK, and UNIX systems

Chapter 8. Monitoring and controlling channels
on distributed platforms 105
The DQM channel control function 105
Functions available 106
Getting started with objects. 108

Creating objects 108
Creating default objects 108

How are default objects created? 109
Changing the default objects 109

Creating a channel 109
Create channel example 109

Displaying a channel 110
Display channel examples 110

Displaying channel status 110
Display channel status examples 110

Starting a channel 110
Renaming a channel 111

Channel attributes and channel types 111
Channel functions 112

Create 113
Change 113
Delete 113
Display 113
Display Status 113
Ping 113
Start 114
Stop 115
Reset 116
Resolve 116

Chapter 9. Preparing MQSeries for distributed
platforms 117
Transmission queues and triggering 117

Creating a transmission queue. 117
Triggering channels 117

Example definitions for triggering 118
Examples for V5.1 of MQSeries for AIX,
HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT 118
Starting the channel initiator 118
Stopping the channel initiator 118

Channel programs 119
Other things to consider 119

Undelivered-message queue 119
Queues in use 120
Multiple message channels per transmission
queue 120
Security of MQSeries objects 120

On UNIX systems, Digital OpenVMS, and
Tandem NSK 120
On Windows NT 121
User IDs across systems 121
User IDs on OS/2 121

System extensions and user-exit programs. . . 121

Running channels and listeners as trusted
applications 121

What next? 122

Chapter 10. Setting up communication for OS/2
and Windows NT 123
Deciding on a connection 123
Defining a TCP connection 124

Sending end. 124
Receiving on TCP 124

Using the TCP/IP listener 124
Using the TCP listener backlog option . . . 125
Using the MQSeries listener 125
Using the TCP/IP SO_KEEPALIVE option 126

Defining an LU 6.2 connection 126
Sending end for OS/2 127
Sending end for Windows NT 127
Receiving on LU 6.2 127

Using the RUNMQLSR command 127
Using Communications Manager/2 on OS/2 128
Using Microsoft SNA Server on Windows NT 128

Defining a NetBIOS connection 128
Defining the MQSeries local NetBIOS name . . 129
Establishing the queue manager NetBIOS
session, command, and name limits 130
Establishing the LAN adapter number 130
Initiating the connection 130
Target listener 131

Defining an SPX connection 131
Sending end. 131

Using the SPX KEEPALIVE option (OS/2
only) 132

Receiving on SPX 132
Using the TCP listener backlog option . . . 132
Using the MQSeries listener 133

IPX/SPX parameters 133
OS/2 134
DOS and Windows 3.1 client 134
Windows NT 135
Windows 95 and Windows 98 135

Chapter 11. Example configuration - IBM
MQSeries for OS/2 Warp 137
Configuration parameters for an LU 6.2 connection 137

Configuration worksheet 137
Explanation of terms 140

Establishing an LU 6.2 connection 142
Defining local node characteristics 142

Configuring a DLC 144
Configuring the local node 145
Adding a local LU. 147
Adding a transaction program definition . . 147
Configuring a mode 148

Connecting to a peer system 150

© Copyright IBM Corp. 1993, 2000 101

||

Adding a peer connection 150
Defining a partner LU 151

Connecting to a host system 153
Adding a host connection 154
Defining a partner LU 155

Verifying the configuration 157
What next? 158

Establishing a TCP connection. 158
What next? 159

Establishing a NetBIOS connection 160
Establishing an SPX connection 160

IPX/SPX parameters 160
IPX 161
SPX 161

SPX addressing. 161
Using the SPX KEEPALIVE option 162
Receiving on SPX 162

Using the MQSeries listener 162
MQSeries for OS/2 Warp configuration. 162

Basic configuration 163
Channel configuration 163

MQSeries for OS/2 Warp sender-channel
definitions using SNA 166
MQSeries for OS/2 Warp receiver-channel
definitions using SNA 166
MQSeries for OS/2 Warp sender-channel
definitions using TCP 166
MQSeries for OS/2 Warp receiver-channel
definitions using TCP/IP 166
MQSeries for OS/2 Warp sender-channel
definitions using NetBIOS 167
MQSeries for OS/2 Warp receiver-channel
definitions using NetBIOS 167
MQSeries for OS/2 Warp sender-channel
definitions using IPX/SPX 167
MQSeries for OS/2 Warp receiver-channel
definitions using IPX/SPX 167

Running channels as processes or threads . . . 167

Chapter 12. Example configuration - IBM
MQSeries for Windows NT 169
Configuration parameters for an LU 6.2 connection 169

Configuration worksheet 170
Explanation of terms 172

Establishing an LU 6.2 connection 174
Configuring the local node 174
Adding a connection 176
Adding a partner 178
Adding a CPI-C entry 179
Configuring an invokable TP 179
What next? 181

Establishing a TCP connection. 181
What next? 181

Establishing a NetBIOS connection 181
Establishing an SPX connection 182

IPX/SPX parameters 182
SPX addressing. 183
Receiving on SPX 183

Using the MQSeries listener 183
MQSeries for Windows NT configuration 184

Default configuration 184

Basic configuration 184
Channel configuration 185

MQSeries for Windows NT sender-channel
definitions using SNA 187
MQSeries for Windows NT receiver-channel
definitions using SNA 187
MQSeries for Windows NT sender-channel
definitions using TCP/IP 188
MQSeries for Windows NT receiver-channel
definitions using TCP 188
MQSeries for Windows NT sender-channel
definitions using NetBIOS 188
MQSeries for Windows NT receiver-channel
definitions using NetBIOS 188
MQSeries for Windows NT sender-channel
definitions using SPX. 188
MQSeries for Windows NT receiver-channel
definitions using SPX. 189

Automatic startup 189
Running channels as processes or threads . . . 189

Chapter 13. Setting up communication in UNIX
systems 191
Deciding on a connection 191
Defining a TCP connection 191

Sending end. 191
Receiving on TCP 192

Using the TCP/IP listener 192
Using the TCP listener backlog option . . . 193
Using the MQSeries listener 193
Using the TCP/IP SO_KEEPALIVE option 194

Defining an LU 6.2 connection 194
Sending end. 195
Receiving on LU 6.2 195

Chapter 14. Example configuration - IBM
MQSeries for AIX 197
Configuration parameters for an LU 6.2 connection 197

Configuration worksheet 197
Explanation of terms 200

Establishing a session using Communications
Server for AIX V5 202

Configuring your node 202
Configuring connectivity to the network . . . 203
Defining a local LU 205
Defining a transaction program 206

Establishing a TCP connection. 209
What next? 209

Establishing a UDP connection 209
What next? 209

MQSeries for AIX configuration 209
Basic configuration 210
Channel configuration 210

MQSeries for AIX sender-channel definitions
using SNA 213
MQSeries for AIX receiver-channel
definitions using SNA 213
MQSeries for AIX TPN setup 213
MQSeries for AIX sender-channel definitions
using TCP 213

DQM in distributed platforms

102 MQSeries Intercommunication

MQSeries for AIX receiver-channel
definitions using TCP 214
MQSeries for AIX sender-channel definitions
using UDP 214
MQSeries for AIX receiver-channel
definitions using UDP 214

Chapter 15. Example configuration - IBM
MQSeries for DIGITAL UNIX (Compaq Tru64
UNIX) 215
Establishing a TCP connection. 215

What next? 215
MQSeries for DIGITAL UNIX (Compaq Tru64
UNIX) configuration 215

Basic configuration 216
Channel configuration 216

MQSeries for DIGITAL UNIX (Compaq Tru64
UNIX) sender-channel definitions using
TCP/IP 218
MQSeries for DIGITAL UNIX (Compaq Tru64
UNIX) receiver-channel definitions using
TCP/IP 218

Chapter 16. Example configuration - IBM
MQSeries for HP-UX 219
Configuration parameters for an LU 6.2 connection 219

Configuration worksheet 219
Explanation of terms 222

Establishing a session using HP SNAplus2 . . . 223
SNAplus2 configuration 223

Defining a local node. 225
Adding a Token Ring Port 225
Defining a local LU 226

APPC configuration 227
Defining a remote node 227
Defining a partner LU 228
Defining a link station 229
Defining a mode 231
Adding CPI-C information 233
Adding a TP definition using HP SNAplus2
Release 5 235
Adding a TP definition using HP SNAplus2
Release 6 235

HP-UX operation 237
What next? 237

Establishing a TCP connection. 237
What next? 237

MQSeries for HP-UX configuration 238
Basic configuration 238
Channel configuration 238

MQSeries for HP-UX sender-channel
definitions using SNA 241
MQSeries for HP-UX receiver-channel
definitions using SNA 241
MQSeries for HP-UX invokable TP setup . . 241
MQSeries for HP-UX sender-channel
definitions using TCP 241
MQSeries for HP-UX receiver-channel
definitions using TCP/IP 242

Chapter 17. Example configuration - IBM
MQSeries for AT&T GIS UNIX Version 2.2 . . . 243
Configuration parameters for an LU 6.2 connection 243

Configuration worksheet 243
Explanation of terms 246

Establishing a connection using AT&T GIS SNA
Server 246

Defining local node characteristics 247
Configuring the SNA subsystem 247
Defining a mode 248
Defining a local Transaction Program . . . 248

Connecting to a partner node 249
Configuring a remote node 249

Defining a partner LU 250
Adding a CPI-C Side Entry. 250

What next? 251
Establishing a TCP connection. 251

What next? 251
MQSeries for AT&T GIS UNIX configuration . . . 251

Basic configuration 252
Channel configuration 252

MQSeries for AT&T GIS UNIX
sender-channel definitions using SNA . . . 255
MQSeries for AT&T GIS UNIX
receiver-channel definitions using SNA . . . 255
MQSeries for AT&T GIS UNIX
sender-channel definitions using TCP . . . 255
MQSeries for AT&T GIS UNIX
receiver-channel definitions using TCP/IP . . 255

Chapter 18. Example configuration - IBM
MQSeries for Sun Solaris 257
Configuration parameters for an LU 6.2 connection 257

Configuration worksheet 257
Explanation of terms 260

Establishing a connection using SunLink Version
9.1 261

SunLink 9.1 base configuration 261
Configuring a PU 2.1 server 262
Adding a LAN connection 263
Configuring a connection to a remote PU . . . 264
Configuring an independent LU 265
Configuring a partner LU 267
Configuring the session mode 268
Configuring a transaction program 269

Invokable TP path 270
CPI-C side information 270
What next? 271

Establishing a TCP connection. 271
What next? 271

MQSeries for Sun Solaris configuration 271
Basic configuration 272
Channel configuration 272

MQSeries for Sun Solaris sender-channel
definitions using SNA 275
MQSeries for Sun Solaris receiver-channel
definitions using SNA 275
MQSeries for Sun Solaris sender-channel
definitions using TCP 275
MQSeries for Sun Solaris receiver-channel
definitions using TCP/IP 275

DQM in distributed platforms

Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems 103

|
||
||
||
|
|
||
|
|
||

Chapter 19. Setting up communication in Digital
OpenVMS systems 277
Deciding on a connection 277
Defining a TCP connection 278

Sending end. 278
Receiving channels using Compaq (DIGITAL)
TCP/IP services (UCX) for OpenVMS 278

Using the TCP/IP SO_KEEPALIVE option 279
Receiving channels using Cisco MultiNet for
OpenVMS 279
Receiving channels using Attachmate PathWay
for OpenVMS 280
Receiving channels using Process Software
Corporation TCPware 280

Defining an LU 6.2 connection 281
SNA configuration. 281

Defining access names 282
Specifying SNA configuration parameters to
MQSeries. 283

Passing parameters to sender and requester
channel pairs 283
Running senders and requesters 283
Passing parameters to servers and receivers 283
Running servers and receivers 284
Ending the SNA Listener process 284

Sample MQSeries configuration 284
Problem solving 285

Defining a DECnet Phase IV connection 285
Sending end. 286
Receiving on DECnet Phase IV 286

Defining a DECnet Phase V connection. 286

Chapter 20. Setting up communication in
Tandem NSK 289
Deciding on a connection 289

SNA channels 289
LU 6.2 responder processes. 291

TCP channels 291
Communications examples 292

SNAX communications example 292
SCF SNA line configuration file 292
SYSGEN parameters 294
SNAX/APC process configuration 295
Channel definitions 299

ICE communications example 299
Configuring the ICE process 299
Defining the line and APC information . . . 300
Channel definitions for ICE. 303

TCP/IP communications example 303
TCPConfig stanza in QMINI 303
Defining a TCP sender channel 303
Defining a TCP receiver channel 304
Defining a TCP/IP sender channel on the
remote system 304

Chapter 21. Message channel planning example
for distributed platforms 305
What the example shows 305

Queue manager QM1 example 307
Queue manager QM2 example 308

Running the example. 309
Expanding this example 309

Chapter 22. Example SINIX and DC/OSx
configuration files 311
Configuration file on bight 312
Configuration file on forties 313
Working configuration files for Pyramid DC/OSx 313

Output of dbd command 314

This part of the book describes the MQSeries distributed queue management
function for MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem
NSK, and UNIX systems. The information given may not all apply to MQSeries for
Windows. You should refer to theMQSeries for Windows User’s Guidefor information
about that product. For information about the MQSeries distributed queue
management function for MQSeries for OS/390, see“Part 4. DQM in MQSeries for
OS/390” on page 319. For information about the MQSeries distributed queue
management function for MQSeries for AS/400, see“Part 5. DQM in MQSeries for
AS/400” on page 421.

DQM in distributed platforms

104 MQSeries Intercommunication

|
|
|
|
|
|
|
|
|

Chapter 8. Monitoring and controlling channels on distributed
platforms

For DQM you need to create, monitor, and control the channels to remote queue
managers. You can use the following types of command to do this:

The MQSeries commands (MQSC)
You can use the MQSC as single commands in an MQSC session in OS/2,
Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems. To
issue more complicated, or multiple, commands the MQSC can be built
into a file that you then run from the command line. For full details see the
MQSeries Command Reference book. This chapter gives some simple
examples of using MQSC for distributed queuing.

Control commands
You can also issue control commands at the command line for some of these
functions. Reference material for these commands is contained in the
MQSeries System Administration book for V5.1 of MQSeries for AIX, HP-UX,
OS/2 Warp, Sun Solaris, and Windows NT, or in the MQSeries System
Management Guide for your platform.

Programmable command format commands
See the MQSeries Programmable System Management book for information
about using these commands.

Message Queue Management facility
On Tandem NSK, you can use the Message Management facility. See the
MQSeries for Tandem NonStop Kernel System Management Guide for
information about this facility.

IBM MQSeries Explorer
On Windows NT, you can use an MMC snap-in called the MQSeries
Explorer. This provides a graphical administration interface to perform
administrative tasks as an alternative to using control commands or MQSC
commands.

Each queue manager has a DQM component for controlling interconnections to
compatible remote queue managers.

For a list of the functions available to you when setting up and controlling
message channels, using the two types of commands, see Table 7 on page 106.

The DQM channel control function
The channel control function provides the interface and function for administration
and control of message channels between systems.

It consists of commands, programs, a file for the channel definitions, and a storage
area for synchronization information. The following is a brief description of the
components.
v The channel commands are a subset of the MQSeries Commands (MQSC).
v You use MQSC and the control commands to:

– Create, copy, display, change, and delete channel definitions

© Copyright IBM Corp. 1993, 2000 105

– Start and stop channels, ping, reset channel sequence numbers, and resolve
in-doubt messages when links cannot be re-established

– Display status information about channels
v The channel definition file (CDF), amqrfcda.dat:

– Is indexed on channel name
– Holds channel definitions

v A storage area holds sequence numbers and logical unit of work (LUW) identifiers.
These are used for channel synchronization purposes.

Functions available
Table 7 shows the full list of MQSeries functions that you may need when setting
up and controlling channels. The channel functions are explained in this chapter.

For more details of the control commands that you issue at the command line, see
the MQSeries System Administration book for V5.1 of MQSeries for AIX, HP-UX,
OS/2 Warp, Sun Solaris, and Windows NT, or the MQSeries System Management
Guide for your platform.

The MQSC commands are fully described in the MQSeries Command Reference book.

Table 7. Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems

Function Control
commands

MQSC MQSeries
Explorer
equivalent?

MQSeries Service
snap-in
equivalent?

Queue manager functions

Change queue manager ALTER QMGR Yes No

Create queue manager crtmqm Yes Yes

Delete queue manager dltmqm Yes Yes

Display queue manager DISPLAY QMGR Yes No

End queue manager endmqm Yes Yes

Ping queue manager PING QMGR No No

Start queue manager strmqm Yes Yes

Add a queue manager to Windows
NT Service Control Manager

No Yes

Command server functions

Display command server dspmqcsv No Yes

End command server endmqcsv No Yes

Start command server strmqcsv No Yes

Queue functions

Change queue ALTER QALIAS
ALTER QLOCAL
ALTER QMODEL
ALTER
QREMOTE

Yes No

Clear queue CLEAR QLOCAL
CLEAR QUEUE

Yes No

Channel control function

106 MQSeries Intercommunication

|
|
|
|

Table 7. Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems (continued)

Function Control
commands

MQSC MQSeries
Explorer
equivalent?

MQSeries Service
snap-in
equivalent?

Create queue DEFINE QALIAS
DEFINE QLOCAL
DEFINE
QMODEL
DEFINE
QREMOTE

Yes No

Delete queue DELETE QALIAS
DELETE
QLOCAL
DELETE
QMODEL
DELETE
QREMOTE

Yes No

Display queue DISPLAY QUEUE Yes No

Process functions

Change process ALTER PROCESS Yes No

Create process DEFINE
PROCESS

Yes No

Delete process DELETE
PROCESS

Yes No

Display process DISPLAY
PROCESS

Yes No

Channel functions

Change channel ALTER
CHANNEL

Yes No

Create channel DEFINE
CHANNEL

Yes No

Delete channel DELETE
CHANNEL

Yes No

Display channel DISPLAY
CHANNEL

Yes No

Display channel status DISPLAY
CHSTATUS

Yes No

End channel STOP CHANNEL Yes Yes

Ping channel PING CHANNEL Yes No

Reset channel RESET
CHANNEL

Yes No

Resolve channel RESOLVE
CHANNEL

Yes No

Run channel runmqchl START
CHANNEL

Yes Yes

Run channel initiator runmqchi START CHINIT
(not Tandem
NSK)

No Yes

Functions available

Chapter 8. Monitoring and controlling channels on distributed platforms 107

Table 7. Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems (continued)

Function Control
commands

MQSC MQSeries
Explorer
equivalent?

MQSeries Service
snap-in
equivalent?

Run listener runmqlsr (not
AT&T GIS UNIX
and Digital UNIX)

START LISTENER
(not Tandem
NSK)

No Yes

End listener endmqlsr (OS/2,
Windows NT,
AIX, HP-UX, Sun
Solaris, and SINIX
and DC/OSx
only)

No Yes

Getting started with objects
Use the MQSeries commands (MQSC) or the MQSeries Explorer on Windows NT
to:
1. Define message channels and associated objects
2. Monitor and control message channels

The objects you may need to define are:
v Transmission queues
v Remote queue definitions
v Queue manager alias definitions
v Reply-to queue alias definitions
v Reply-to local queues
v Processes for triggering (MCAs)
v Message channel definitions

Channels must be completely defined, and their associated objects must exist and
be available for use, before a channel can be started. This chapter shows you how
to do this.

In addition, the particular communication link for each channel must be defined
and available before a channel can be run. For a description of how LU 6.2,
TCP/IP, NetBIOS, SPX, and DECnet links are defined, see the particular
communication guide for your installation. See also the example configuration
chapters in this book.

Creating objects
Use MQSC to create the queue and alias objects: transmission queues, remote
queue definitions, queue manager alias definitions, reply-to queue alias definitions,
and reply-to local queues.

Also create the definitions of processes for triggering (MCAs) in a similar way.

For an example showing how to create all the required objects see “Chapter 21.
Message channel planning example for distributed platforms” on page 305.

Creating default objects
In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
default objects are created automatically when a queue manager is created. These
objects are queues, channels, a process definition, and administration queues. They

Functions available

108 MQSeries Intercommunication

correspond to the objects that are created when you run the amqscoma.tst sample
command file on earlier releases of these products and on other MQSeries
products.

How are default objects created?
When you use the CRTMQM command to create a queue manager, the command
also initiates a program to create a set of default objects.
1. Each default object is created in turn. The program keeps a count of how many

objects are successfully defined, how many already existed and were replaced,
and how many unsuccessful attempts there were.

2. The program displays the results to you and if any errors occurred, directs you
to the appropriate error log for details.

When the program has finished running, you can use the STRMQM command to
start the queue manager.

See the MQSeries System Administration book for information about the CRTMQM
and STRMQM commands and a list of default objects.

Changing the default objects
Once the default objects have been created, you can replace them at any time by
running the STRMQM command with the -c option. When you specify the -c
option, the queue manager is started temporarily while the objects are created and
is then shut down again. You must use the STRMQM command again, without the
-c option, if you want to start the queue manager.

If you wish to make any changes to the default objects, you can create your own
version of the old amqscoma.tst file and edit it.

Creating a channel
To create a new channel you have to create two channel definitions, one at each
end of the connection. You create the first channel definition at the first queue
manager. Then you create the second channel definition at the second queue
manager, on the other end of the link.

Both ends must be defined using the same channel name. The two ends must have
compatible channel types, for example: Sender and Receiver.

To create a channel definition for one end of the link use the MQSC command
DEFINE CHANNEL. Include the name of the channel, the channel type for this
end of the connection, a connection name, a description (if required), the name of
the transmission queue (if required), and the transmission protocol. Also include
any other attributes that you want to be different from the system default values
for the required channel type, using the information you have gathered previously.

You are provided with help in deciding on the values of the channel attributes in
“Chapter 6. Channel attributes” on page 77.

Note: You are very strongly recommended to name all the channels in your
network uniquely. Including the source and target queue manager names in
the channel name is a good way to do this.

Create channel example
DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) +
DESCR('Sender channel to QM2') +
CONNAME(QM2) TRPTYPE(TCP) XMITQ(QM2) CONVERT(YES)

Getting started

Chapter 8. Monitoring and controlling channels on distributed platforms 109

|
|

In all the examples of MQSC the command is shown as it would appear in a file of
commands, and as it would be typed in OS/2, Windows NT, UNIX systems,
Digital OpenVMS, or Tandem NSK. The two methods look identical, except that to
issue a command interactively, you must first start an MQSC session. Type
runmqsc, for the default queue manager, or runmqsc qmname where QMNAME is the
name of the required queue manager. Then type any number of commands, as
shown in the examples.

For portability, you should restrict the line length of your commands to 72
characters. Use a concatenation character as shown to continue over more than one
line. On Tandem NSK use Ctrl-y to end the input at the command line, or enter
exit or quit. On OS/2, Windows NT, or Digital OpenVMS use Ctrl-z. On UNIX
systems, use Ctrl-d. Alternatively, on V5.1 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, use the end command.

Displaying a channel
Use the MQSC command DISPLAY CHANNEL, specifying the channel name, the
channel type (optional), and the attributes you want to see, or specifying that all
attributes are to be displayed. In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT the ALL parameter of the DISPLAY CHANNEL
command is assumed by default if no specific attributes are requested and the
channel name specified is not generic.

The attributes are described in “Chapter 6. Channel attributes” on page 77.

Display channel examples
DISPLAY CHANNEL(QM1.TO.QM2) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.*) TRPTYPE,CONVERT

DISPLAY CHANNEL(*) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.QMR34) ALL

Displaying channel status
Use the MQSC command DISPLAY CHSTATUS, specifying the channel name and
whether you want the current status of channels or the status of saved
information.

Display channel status examples
DISPLAY CHSTATUS(*) CURRENT

DISPLAY CHSTATUS(QM1.TO.*) SAVED

Note that the saved status does not apply until at least one batch of messages has
been transmitted on the channel. In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT status is also saved when a channel is stopped
(using the STOP CHL command) and when the queue manager is ended.

Starting a channel
For applications to be able to exchange messages you must start a listener program
for inbound connections (or, in the case of UNIX systems, create a listener
attachment). In OS/2, Windows NT, and Tandem NSK, use the runmqlsr command
to start the MQSeries listener process. Any inbound requests for channel

Getting started

110 MQSeries Intercommunication

attachment start MCAs as threads of this listener process. In Digital OpenVMS,
each receiver or server channel requires a listener process that then starts a channel
process.
runmqlsr -t tcp -m QM2

For outbound connections you must start the channel in one of the following three
ways:
1. Use the MQSC command START CHANNEL, specifying the channel name, to

start the channel as a process or a thread, depending on the MCATYPE
parameter. (If channels are started as threads, they are threads of a channel
initiator, which must have been started previously using the runmqchi
command.)
START CHANNEL(QM1.TO.QM2)

2. Use the control command runmqchl to start the channel as a process.
runmqchl -c QM1.TO.QM2 -m QM1

3. Use the channel initiator to trigger the channel.

Renaming a channel
To rename a message channel, use MQSC to carry out the following steps:
1. Use STOP CHANNEL to stop the channel.
2. Use DEFINE CHANNEL to create a duplicate channel definition with the new

name.
3. Use DISPLAY CHANNEL to check that it has been created correctly.
4. Use DELETE CHANNEL to delete the original channel definition.

If you decide to rename a message channel, remember that a channel has two
channel definitions, one at each end. Make sure you rename the channel at both
ends at the same time.

Channel attributes and channel types
The channel attributes for each type of channel are shown in Table 8. The channel
attributes are described in detail in “Chapter 6. Channel attributes” on page 77.
Client-connection channels and server-connection channels are described in the
MQSeries Clients book.

Table 8. Channel attributes for the channel types in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX
systems

Attribute field SDR SVR RCVR RQSTR CLNT-
CONN

SVR-
CONN

CLUS-
SDR

CLUS-
RCVR

Batch interval U U U U

Batch size U U U U U U

Channel name U U U U U U U U

Cluster U U

Cluster namelist U U

Channel type U U U U U U U U

Connection name U U U U U U

Convert message U U U U

Description U U U U U U U U

Disconnect interval U U U U

Heartbeat interval U U U U U U U U

Getting started

Chapter 8. Monitoring and controlling channels on distributed platforms 111

|
|
|
|

Table 8. Channel attributes for the channel types in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX
systems (continued)

Attribute field SDR SVR RCVR RQSTR CLNT-
CONN

SVR-
CONN

CLUS-
SDR

CLUS-
RCVR

Long retry count U U U U

Long retry interval U U U U

LU 6.2 Transaction
program name

U U U U U U

Maximum message
length

U U U U U U

Message channel agent
type

U U U U U U

Message channel agent
user

U U U U U U U U

Message exit name U U U U U U

Message exit user data U U U U U U

Message-retry exit
name

U U U U

Message-retry exit user
data

U U U U

Message retry count U U U U

Message retry interval U U U U

Mode name U U U U U U

Network-connection
priority

U U

Nonpersistent message
speed

U U U U U U

Password U U U U U

PUT authority U U U

Queue manager name U

Receive exit U U U U U U U U

Receive exit user data U U U U U U U U

Security exit U U U U U U U U

Security exit user data U U U U U U U U

Send exit U U U U U U U

Send exit user data U U U U U U U U

Sequence number wrap U U U U U U

Short retry interval U U U U

Short retry count U U U U

Transport type U U U U U U

Transmission queue U U

User ID U U U U U

Channel functions
The channel functions available are shown in Table 7 on page 106. Here some more
detail is given about the channel functions.

Channel attributes and types

112 MQSeries Intercommunication

Create
You can create a new channel definition using the default values supplied by
MQSeries, specifying the name of the channel, the type of channel you are
creating, the communication method to be used, the transmission queue name and
the connection name.

The channel name must be the same at both ends of the channel, and unique
within the network. However, you should restrict the characters used to those that
are valid for MQSeries object names.

Change
Use the MQSC command ALTER CHANNEL to change an existing channel
definition, except for the channel name, or channel type.

Delete
Use the MQSC command DELETE CHANNEL to delete a named channel.

Display
Use the MQSC command DISPLAY CHANNEL to display the current definition
for the channel.

Display Status
The MQSC command DISPLAY CHSTATUS displays the status of a channel
whether the channel is active or inactive. It applies to all message channels. It does
not apply to MQI channels other than server-connection channels on V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT. See
“Displaying channel status” on page 110.

Information displayed includes:
v Channel name
v Communication connection name
v In-doubt status of channel (where appropriate)
v Last sequence number
v Transmission queue name (where appropriate)
v The in-doubt identifier (where appropriate)
v The last committed sequence number
v Logical unit of work identifier
v Process ID
v Thread ID (OS/2 and Windows NT only)

Ping
Use the MQSC command PING CHANNEL to exchange a fixed data message with
the remote end. This gives some confidence to the system supervisor that the link
is available and functioning.

Ping does not involve the use of transmission queues and target queues. It uses
channel definitions, the related communication link, and the network setup. It can
only be used if the channel is not currently active.

It is available from sender and server channels only. The corresponding channel is
started at the far side of the link, and performs the startup parameter negotiation.
Errors are notified normally.

The result of the message exchange is presented as Ping complete or an error
message.

Channel functions

Chapter 8. Monitoring and controlling channels on distributed platforms 113

Ping with LU 6.2: When Ping is invoked, by default no USERID or password
flows to the receiving end. If USERID and password are required, they can be
created at the initiating end in the channel definition. If a password is entered into
the channel definition, it is encrypted by MQSeries before being saved. It is then
decrypted before flowing across the conversation.

Start
Use the MQSC command START CHANNEL for sender, server, and requester
channels. It should not be necessary where a channel has been set up with queue
manager triggering.

Also use the START CHANNEL command for receiver channels that have a
disabled status, and on V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, for server-connection channels that have a disabled status.
Starting a receiver or server-connection channel that is in disabled status resets the
channel and allows it to be started from the remote channel.

When started, the sending MCA reads the channel definition file and opens the
transmission queue. A channel start-up sequence is executed, which remotely starts
the corresponding MCA of the receiver or server channel. When they have been
started, the sender and server processes await messages arriving on the
transmission queue and transmit them as they arrive.

When you use triggering or run channels as threads, you will need to start the
channel initiator to monitor the initiation queue. Use the runmqchi command for
this.

However, TCP and LU 6.2 do provide other capabilities:
v For TCP on OS/2, Digital OpenVMS, and UNIX systems, inetd (or an equivalent

TCP/IP service on OpenVMS) can be configured to start a channel. This will be
started as a separate process.

v For LU 6.2 in OS/2, using Communications Manager/2 it is possible to
configure the Attach Manager to start a channel. This will be started as a
separate process.

v For LU 6.2 in UNIX systems, configure your SNA product to start the LU 6.2
responder process.

v For LU 6.2 in Windows NT, using SNA Server you can use TpStart (a utility
provided with SNA Server) to start a channel. This will be started as a separate
process.

v For LU 6.2 in Digital OpenVMS systems, use the runmqlsr command to start the
LU 6.2 responder process.

v For LU 6.2 in Tandem NSK, the strmqm command normally starts the LU 6.2
responder process if your channel is defined AUTOSTART (ENABLED). To start
the process manually, use the runmqsc or runmqchl command.

Use of the Start option always causes the channel to re-synchronize, where
necessary.

For the start to succeed:
v Channel definitions, local and remote, must exist. If there is no appropriate

channel definition for a receiver or server-connection channel, a default one is
created automatically if the channel is auto-defined. See “Channel
auto-definition exit program” on page 516.

v Transmission queue must exist, and have no other channels using it.

Channel functions

114 MQSeries Intercommunication

|
|
|

v MCAs, local and remote, must exist.
v Communication link must be available.
v Queue managers must be running, local and remote.
v Message channel must not be already running.

A message is returned to the screen confirming that the request to start a channel
has been accepted. For confirmation that the start command has succeeded, check
the error log, or use DISPLAY CHSTATUS. The error logs are:

OS/2 and Windows NT
\mqm\qmgrs\qmname\errors\AMQERR01.LOG (for each queue manager called
qmname)

\mqm\qmgrs\@SYSTEM\errors\AMQERR01.LOG (for general errors)

Note: On Windows NT, you still also get a message in the Windows NT
application event log.

Digital OpenVMS
MQS_ROOT:[MQM.QMGRS.QMNAME.ERRORS]AMQERR01.LOG (for each queue
manager called qmname)

MQS_ROOT:[MQM.QMGRS.$SYSTEM.ERRORS]AMQERR01.LOG (for general errors)

Tandem NSK
The location of the error logs depends on whether the queue manager
name is known and whether the error is associated with a client.
v If the queue manager name is known and the queue manager is

available:
<QMVOL>.<SUBVOL>L.MQERRLG1

v If the queue manager is not available:
<MQSVOL>.ZMQSSYS.MQERRLG1

UNIX systems
/var/mqm/qmgrs/qmname/errors/AMQERR01.LOG (for each queue manager
called qmname)

/var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG (for general errors)

Stop
Use the MQSC command STOP CHANNEL to request the channel to stop activity.
Any channel type is disabled by this command. The channel will not start a new
batch of messages until the operator starts the channel again. (For information
about restarting stopped channels, see “Restarting stopped channels” on page 69.)

You can select the type of stop you require:

Stop quiesce example:
STOP CHANNEL(QM1.TO.QM2) MODE(QUIESCE)

This command requests the channel to close down in an orderly way. The current
batch of messages is completed and the syncpoint procedure is carried out with
the other end of the channel.

Note: If the channel is idle this command will not terminate a receiving channel.

Stop force example:
STOP CHANNEL(QM1.TO.QM2) MODE(FORCE)

Channel functions

Chapter 8. Monitoring and controlling channels on distributed platforms 115

Normally, this option should not be used. It terminates the channel process or
thread. The channel does not complete processing the current batch of messages,
and can, therefore, leave the channel in doubt. In general, it is recommended that
operators use the quiesce stop option.

Reset
Use the MQSC command RESET CHANNEL to change the message sequence
number. This command is available for any message channel, but not for MQI
channels (client-connection or server-connection). The first message starts the new
sequence the next time the channel is started.

If the command is issued on a sender or server channel, it informs the other side
of the change when the channel is restarted.

Resolve
Use the MQSC command RESOLVE CHANNEL when messages are held in-doubt
by a sender or server, for example because one end of the link has terminated, and
there is no prospect of it recovering. The RESOLVE CHANNEL command accepts
one of two parameters: BACKOUT or COMMIT. Backout restores messages to the
transmission queue, while Commit discards them.

The channel program does not try to establish a session with a partner. Instead, it
determines the logical unit of work identifier (LUWID) which represents the
in-doubt messages. It then issues, as requested, either:
v BACKOUT to restore the messages to the transmission queue; or
v COMMIT to delete the messages from the transmission queue.

For the resolution to succeed:
v The channel must be inactive
v The channel must be in doubt
v The channel type must be sender or server
v A local channel definition must exist
v The local queue manager must be running

Channel functions

116 MQSeries Intercommunication

Chapter 9. Preparing MQSeries for distributed platforms

This chapter describes the MQSeries preparations required before DQM can be
used in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems.
It includes “Transmission queues and triggering” and “Channel programs” on
page 119.

Transmission queues and triggering
Before a channel (other than a requester channel) can be started, the transmission
queue must be defined as described in this chapter, and must be included in the
message channel definition.

In addition, where needed, the triggering arrangement must be prepared with the
definition of the necessary processes and queues.

Creating a transmission queue
Define a local queue with the USAGE attribute set to XMITQ for each sending
message channel. If you want to make use of a specific transmission queue in your
remote queue definitions, create a remote queue as shown below.

To create a transmission queue, use the MQSeries Commands (MQSC), as shown
in the following examples:

Create transmission queue example
DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') USAGE(XMITQ)

Create remote queue example
DEFINE QREMOTE(PAYROLL) DESCR('Remote queue for QM2') +
XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

The recommended name for the transmission queue is the queue manager name
on the remote system, as shown in the examples above.

Triggering channels
An overview of triggering is given in “Triggering channels” on page 20, while it is
described in depth in the MQSeries Application Programming Guide. This description
provides you with information specific to MQSeries for OS/2 Warp, Windows NT,
Digital OpenVMS, Tandem NSK, and UNIX systems.

You can create a process definition in MQSeries, defining processes to be triggered.
Use the MQSC command DEFINE PROCESS to create a process definition naming
the process to be triggered when messages arrive on a transmission queue. The
USERDATA attribute of the process definition should contain the name of the
channel being served by the transmission queue.

Alternatively, for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, you can eliminate the need for a process definition by specifying the
channel name in the TRIGGERDATA attribute of the transmission queue.

If you do not specify a channel name, the channel initiator searches the channel
definition files until it finds a channel that is associated with the named
transmission queue.

© Copyright IBM Corp. 1993, 2000 117

|
|
|

Example definitions for triggering
Define the local queue (Q3), specifying that trigger messages are to be written to
the default initiation queue SYSTEM.CHANNEL.INITQ, to trigger the application
(process P1) that starts channel (QM3.TO.QM4):
DEFINE QLOCAL(QM4) TRIGGER INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(P1) USAGE (XMITQ)

Define the application (process P1) to be started:
DEFINE PROCESS(P1) USERDATA(QM3.TO.QM4)

Examples for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT
Define the local queue (Q3), specifying that trigger messages are to be written to
the initiation queue (IQ) to trigger the application that starts channel
(QM3.TO.QM4):
DEFINE QLOCAL(QM4) TRIGGER INITQ(SYSTEM.CHANNEL.INITQ) USAGE (XMITQ)

Starting the channel initiator
Triggering is implemented using the channel initiator process. On MQSeries for
AT&T, Digital OpenVMS, SINIX and DC/OSx, and Tandem NSK, this process is
started with the run channel initiator command, runmqchi, or (on distributed
platforms except Tandem NSK) with the MQSC command START CHINIT. For
example, to use the runmqchi command to start the default initiation queue for
the default queue manager, enter:
runmqchi

Whichever command you use, specify the name of the initiation queue on the
command, unless you are using the default initiation queue. For example, to use
the runmqchi command to start queue IQ for the default queue manager, enter:
runmqchi -q IQ

To use the START CHINIT command (not on Tandem NSK), enter:
START CHINIT INITQ(IQ)

Note: Tandem NSK also allows control of the channel initiator from the PATHWAY
environment. This is the recommended method. For more information about
this, see the MQSeries for Tandem NonStop Kernel System Management Guide.

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, a
channel initiator is started automatically and the number of channel initiators that
you can start is limited. The default limit is 3. You can change this using
MAXINITIATORS in the qm.ini file for AIX, HP-UX, OS/2 Warp, and Sun Solaris,
and in the registry for Windows NT.

See the MQSeries System Administration book for V5.1 of MQSeries for AIX, HP-UX,
OS/2 Warp, Sun Solaris, and Windows NT, or the MQSeries System Management
Guide for your platform, for details of the run channel initiator command, and the
other control commands.

Stopping the channel initiator
The default channel initiator is started automatically when you start a queue
manager. Similarly, it is stopped automatically when a queue manager is stopped.

However, if you need to stop a channel initiator but not the queue manager, you
should inhibit the queue that the initiator queue is reading from. To do this, you
disable the GET attribute of the initiation queue. To restart the channel initiator,
simply use the runmqchi command.

Transmission queues and triggering

118 MQSeries Intercommunication

|
|
|
|
|
|

|

|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

The consequences of stopping a channel initiator are:
v If you stop the only channel initiator running, no channels that you have

attempted to start will be retried.
v If you have more than one channel initiator running, channels that have a

transmission queue configured with this initiation queue are not automatically
started. However, those channels configured for connection retries will continue
to be retried.

Channel programs
There are different types of channel programs (MCAs) available for use at the
channels. The names are shown in the following tables.

Table 9. Channel programs for OS/2 and Windows NT

Program name Direction of connection Communication

RUNMQLSR Inbound Any

ENDMQLSR Any

AMQCRS6A Inbound LU 6.2

AMQCRSTA Inbound TCP

RUNMQCHL Outbound Any

RUNMQCHI Outbound Any

Table 10. Channel programs for UNIX systems, Digital OpenVMS, and Tandem NSK

Program name Direction of connection Communication

amqcrs6a (MQLU6RES on
Tandem NSK only)

Inbound LU 6.2

amqcrsta (MQTCPRES (on
Tandem NSK only)

Inbound TCP and DECnet for Digital
OpenVMS

runmqchl Outbound TCP for UNIX systems

runmqlsr Inbound LU 6.2 for Digital OpenVMS
and Tandem NSK and TCP
for UNIX systems

runmqchi Outbound Any

RUNMQLSR (Run MQSeries listener), ENDMQLSR (End MQSeries listener), and
RUNMQCHL (Run MQSeries channel) are control commands that you can enter at
the command line. AMQCRS6A and AMQCRSTA are programs that, if you are
using SNA, you define as transaction programs, or, if you are using TCP, you
define in the INETD.LST file for OS/2 or Windows NT or the inetd.conf file for
UNIX systems. Examples of the use of these channel programs are given in the
following chapters.

Other things to consider
Here are some other topics that you should consider when preparing MQSeries for
distributed queue management.

Undelivered-message queue
A DLQ handler is provided with MQSeries for OS/2 Warp and Windows NT, and
with MQSeries on UNIX systems, Digital OpenVMS, and Tandem NSK. See the

Transmission queues and triggering

Chapter 9. Preparing MQSeries for distributed platforms 119

|

|
|

|
|
|
|

|

|
|

MQSeries System Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, or the MQSeries System Management Guide for
your platform, for information about this.

Queues in use
MCAs for receiver channels may keep the destination queues open even when
messages are not being transmitted; this results in the queues appearing to be “in
use”.

Multiple message channels per transmission queue
It is possible to define more than one channel per transmission queue, but only
one of these channels can be active at any one time. This is recommended for the
provision of alternative routes between queue managers for traffic balancing and
link failure corrective action.

Security of MQSeries objects
This section deals with remote messaging aspects of security.

You need to provide users with authority to make use of the MQSeries facilities,
and this is organized according to actions to be taken with respect to objects and
definitions. For example:
v Queue managers can be started and stopped by authorized users
v Applications need to connect to the queue manager, and have authority to make

use of queues
v Message channels need to be created and controlled by authorized users
v Objects are kept in libraries, and access to these libraries may be restricted

The message channel agent at a remote site needs to check that the message being
delivered originated from a user with authority to do so at this remote site. In
addition, as MCAs can be started remotely, it may be necessary to verify that the
remote processes trying to start your MCAs are authorized to do so. There are
three possible ways for you to deal with this:
1. Specify PUTAUT=CTX in the channel definition to indicate that messages must

contain acceptable context authority, otherwise they will be discarded.
2. Implement user exit security checking to ensure that the corresponding message

channel is authorized. The security of the installation hosting the corresponding
channel ensures that all users are properly authorized, so that you do not need
to check individual messages.

3. Implement user exit message processing to ensure that individual messages are
vetted for authorization.

On UNIX systems, Digital OpenVMS, and Tandem NSK
Administration users must be part of the mqm group on your system (including
root) if this ID is going to use MQSeries administration commands. In Digital
OpenVMS, the user must hold the mqm identifier.

You should always run amqcrsta as the “mqm” user ID.

User IDs on UNIX systems, Digital OpenVMS: In Digital OpenVMS, all user IDs
are displayed in uppercase. The queue manager converts all uppercase or mixed
case user identifiers into lowercase, before inserting them into the context part of a
message, or checking their authorization. All authorizations should therefore be
based only on lowercase identifiers.

Other things to consider

120 MQSeries Intercommunication

|
|
|

On Windows NT
Administration users must be part of both the mqm group and the administrators
group on your Windows NT system if this ID is going to use MQSeries
administration commands.

User IDs on Windows NT systems: On Windows NT, if there is no message exit
installed, the queue manager converts any uppercase or mixed case user identifiers
into lowercase, before inserting them into the context part of a message, or
checking their authorization. All authorizations should therefore be based only on
lowercase identifiers.

User IDs across systems
Platforms other than Windows NT and UNIX systems use uppercase characters for
user IDs. To allow Windows NT and UNIX systems to use lowercase user IDs, the
following conversions are carried out by the message channel agent (MCA) on
these platforms:

At the sending end
The alpha characters in all user IDs are converted to uppercase, if there is
no message exit installed.

At the receiving end
The alpha characters in all user IDs are converted to lowercase, if there is
no message exit installed.

Note that the automatic conversions are not carried out if you provide a message
exit on UNIX systems and Windows NT for any other reason.

User IDs on OS/2
The user identifier service enables queue managers running under OS/2 to obtain
a user-defined user ID. This is described in the MQSeries Programmable System
Management book.

System extensions and user-exit programs
A facility is provided in the channel definition to allow extra programs to be run at
defined times during the processing of messages. These programs are not supplied
with MQSeries, but may be provided by each installation according to local
requirements.

In order to run, these user-exit programs must have predefined names and be
available on call to the channel programs. The names of the user-exit programs are
included in the message channel definitions.

There is a defined control block interface for handing over control to these
programs, and for handling the return of control from these programs.

The precise places where these programs are called, and details of control blocks
and names, are to be found in “Part 7. Further intercommunication considerations”
on page 503.

Running channels and listeners as trusted applications
If performance is an important consideration in your environment and your
environment is stable, you can choose to run your channels and listeners as
trusted, that is, using the fastpath binding. There are two factors that influence
whether or not channels and listeners run as trusted.

Other things to consider

Chapter 9. Preparing MQSeries for distributed platforms 121

v The environment variable MQ_CONNECT_TYPE=FASTPATH or
MQ_CONNECT_TYPE=STANDARD. This is case sensitive. If you specify a
value that is not valid it is ignored.

v MQIBindType in the Channels stanza of the qm.ini or registry file. You can set
this to FASTPATH or STANDARD and it is not case sensitive. The default is
STANDARD.

You can use MQIBindType in association with the environment variable to achieve
the desired affect as follows:

MQIBindType Environment variable Result

STANDARD UNDEFINED STANDARD

FASTPATH UNDEFINED FASTPATH

STANDARD STANDARD STANDARD

FASTPATH STANDARD STANDARD

STANDARD FASTPATH STANDARD

FASTPATH FASTPATH FASTPATH

In summary, there are only two ways of actually making channels and listeners
run as trusted:
1. By specifying MQIBindType=FASTPATH in qm.ini or registry and not

specifying the environment variable.
2. By specifying MQIBindType=FASTPATH in qm.ini or registry and setting the

environment variable to FASTPATH.

You are recommended to run channels and listeners as trusted only in a stable
environment in which you are not, for example, testing applications or user exits
that may abend or need to be cancelled. An errant application could compromise
the integrity of your queue manager. However, if your environment is stable and if
performance is an important issue, you may choose to run channels and listeners
as trusted.

Note: If you are using MQSeries for Compaq (DIGITAL) OpenVMS the option on
the MQ_CONNECT_TYPE is FAST, not FASTPATH.

What next?
When you have made the preparations described in this chapter you are ready to
set up communications. Proceed to one of the following chapters, depending on
what platform you are using:
v “Chapter 10. Setting up communication for OS/2 and Windows NT” on

page 123
v “Chapter 13. Setting up communication in UNIX systems” on page 191
v “Chapter 19. Setting up communication in Digital OpenVMS systems” on

page 277
v “Chapter 20. Setting up communication in Tandem NSK” on page 289

Other things to consider

122 MQSeries Intercommunication

Chapter 10. Setting up communication for OS/2 and
Windows NT

DQM is a remote queuing facility for MQSeries. It provides channel control
programs for the queue manager which form the interface to communication links,
controllable by the system operator. The channel definitions held by
distributed-queuing management use these connections.

When a distributed-queuing management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this. You may also find it helpful to refer to “Chapter 11. Example configuration -
IBM MQSeries for OS/2 Warp” on page 137 or “Chapter 12. Example configuration
- IBM MQSeries for Windows NT” on page 169.

For UNIX systems see “Chapter 13. Setting up communication in UNIX systems”
on page 191. For Digital OpenVMS, see “Chapter 19. Setting up communication in

Digital OpenVMS systems” on page 277.

Deciding on a connection
There are four forms of communication for MQSeries for OS/2 Warp and
Windows NT:
v TCP
v LU 6.2
v NetBIOS
v SPX

Each channel definition must specify only one protocol as the Transmission
protocol (Transport Type) attribute. One or more protocols may be used by a queue
manager.

For MQSeries clients, it may be useful to have alternative channels using different
transmission protocols. See the MQSeries Clients book.

© Copyright IBM Corp. 1993, 2000 123

Defining a TCP connection
The channel definition at the sending end specifies the address of the target. A
listener program must be run at the receiving end.

Sending end
Specify the host name, or the TCP address of the target machine, in the Connection
name field of the channel definition. The port to connect to will default to 1414.
Port number 1414 is assigned by the Internet Assigned Numbers Authority to
MQSeries.

To use a port number other than the default, change the connection name field
thus:
Connection Name OS2ROG3(1822)

where 1822 is the port required. (This must be the port that the listener at the
receiving end is listening on.)

You can change the default port number by specifying it in the queue manager
configuration file (qm.ini) for MQSeries for OS/2 Warp and the registry for
MQSeries for Windows NT:
TCP:
Port=1822

For more information about the values you set using qm.ini, see “Appendix D.
Configuration file stanzas for distributed queuing” on page 637.

Receiving on TCP
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect incoming
network requests and start the associated channel.

You should use either the TCP/IP listener (INETD) (not for Windows NT) or the
MQSeries listener.

Using the TCP/IP listener
To use INETD to start channels on OS/2, two files must be configured:
1. Add a line in the TCPIP\ETC\SERVICES file:

MQSeries 1414/tcp

where 1414 is the port number required for MQSeries. You can change this but
it must match the port number specified at the sending end.

2. Add a line to the TCPIP\ETC\INETD.LST file:
MQSeries tcp C:\MQM\BIN\AMQCRSTA [-m QMName]

The last part in square brackets is optional and is not required for the default
queue manager. If your MQSeries for OS/2 Warp is installed on a different
drive, replace the C: above with the correct drive letter.

It is possible to have more than one queue manager on the machine. You must add
a line to each of the two files, as above, for each of the queue managers. For
example:
MQSeries2 1822/tcp

Defining a TCP connection

124 MQSeries Intercommunication

Now stop, and then start the inetd program, before continuing.

Using the TCP listener backlog option
When receiving on TCP, a maximum number of outstanding connection requests is
set. This can be considered a backlog of requests waiting on the TCP port for the
listener to accept the request. The default listener backlog values are shown in
Table 11.

Table 11. Default outstanding connection requests on OS/2 and Windows NT

Platform Default listener backlog value

OS/2 Warp 10

Windows NT Server 100

Windows NT Workstation 5

If the backlog reaches the values shown in Table 11, the TCP/IP connection is
rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state and
retrying the connection at a later time.

For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
reason code from MQCONN and should retry the connection at a later time.

However, to avoid this error, you can add an entry in the qm.ini file or in the
registry for Windows NT:
TCP:
ListenerBacklog = n

This overrides the default maximum number of outstanding requests (see Table 11)
for the TCP/IP listener.

Note: Some operating systems support a larger value than the default. If necessary,
this can be used to avoid reaching the connection limit.

To run the listener with the backlog option switched on, use the RUNMQLSR -B
command. For information about the RUNMQLSR command, see the MQSeries System
Administration book.

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:
RUNMQLSR -t tcp [-m QMNAME] [-p 1822]

The square brackets indicate optional parameters; QMNAME is not required for the
default queue manager, and the port number is not required if you are using the
default (1414).

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page 121.
See the MQSeries Application Programming Guide for information about trusted
applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

Defining a TCP connection

Chapter 10. Setting up communication for OS/2 and Windows NT 125

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

Using the TCP/IP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page 66) you need to add the
following entry to your queue manager configuration file (qm.ini):
TCP:

KeepAlive=yes

If you are using OS/2, you must then issue the following command:
inetcfg keepalive=value

where value is the time interval in minutes.

On Windows NT, the TCP configuration registry value for KeepAliveTime controls
the interval that elapses before the connection will be checked. The default is two
hours. For information about changing this value, see the Microsoft article TCP/IP
and NBT Configuration Parameters for Windows NT 3.5 (PSS ID number Q120642).

Defining an LU 6.2 connection
SNA must be configured so that an LU 6.2 conversation can be established
between the two machines. Then proceed as follows.

See the Multiplatform APPC Configuration Guide for OS/2 examples, and the
following table for information.

Table 12. Settings on the local OS/2 or Windows NT system for a remote queue manager
platform

Remote platform TPNAME TPPATH

OS/390 or
MVS/ESA
without CICS

The same as in the corresponding
side information on the remote
queue manager.

-

OS/390 or
MVS/ESA using
CICS

CKRC (sender) CKSV (requester)
CKRC (server)

-

OS/400 The same as the compare value in
the routing entry on the OS/400
system.

-

OS/2 As specified in the OS/2 Run
Listener command, or defaulted
from the OS/2 queue manager
configuration file.

<drive>:\mqm\bin\amqcrs6a

UNIX systems The same as in the corresponding
side information on the remote
queue manager.

mqmtop/bin/amqcrs6a

Windows NT As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup on
Windows NT.

<drive>:\mqm\bin\amqcrs6a

Defining a TCP connection

126 MQSeries Intercommunication

If you have more than one queue manager on the same machine, ensure that the
TPnames in the channel definitions are unique.

Sending end for OS/2
Establish a valid session between the two machines. The local LU that MQSeries
uses is decided in the following order:
1. Specify the LU that will be used. In the queue manager configuration file

(qm.ini), under the LU 6.2 section add the line:
LOCALLU = Your_LU_Name

For more information about the values you set using qm.ini, see “Appendix D.
Configuration file stanzas for distributed queuing” on page 637.

2. Specify the environment variable:
APPNLLU = Your_LU_Name

3. If this has not been specified, your default LU will be used.

When you define an MQSeries channel that will use the LU 6.2 connection, the
Connection name (CONNAME) channel attribute specifies the fully-qualified name
of the partner LU. as defined in the local Communications Manager/2 profile.

SECURITY PROGRAM is always used when MQSeries attempts to establish an
SNA session.

Sending end for Windows NT
Create a CPI-C side object (symbolic destination) from the administration
application of the LU 6.2 product you are using, and enter this name in the
Connection name field in the channel definition. Also create an LU 6.2 link to the
partner.

In the CPI-C side object enter the partner LU Name at the receiving machine, the
TP Name and the Mode Name. For example:
Partner LU Name OS2ROG2
Partner TP Name recv
Mode Name #INTER

Receiving on LU 6.2
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect incoming
network requests and start the associated channel. You start this listener program
with the RUNMQLSR command, giving the TpName to listen on. Alternatively,
you can use Attach Manager in Communications Manager/2 for OS/2, or TpStart
under SNA Server for Windows NT.

Using the RUNMQLSR command
Example of the command to start the listener:
RUNMQLSR -t LU62 -n RECV [-m QMNAME]

where RECV is the TpName that is specified at the other (sending) end as the
“TpName to start on the remote side”. The last part in square brackets is optional
and is not required for the default queue manager.

It is possible to have more than one queue manager running on one machine. You
must assign a different TpName to each queue manager, and then start a listener
program for each one. For example:

Defining an LU 6.2 connection

Chapter 10. Setting up communication for OS/2 and Windows NT 127

RUNMQLSR -t LU62 -m QM1 -n TpName1
RUNMQLSR -t LU62 -m QM2 -n TpName2

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page 121.
See the MQSeries Application Programming Guide for information about trusted
applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:
ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

Using Communications Manager/2 on OS/2
If you are going to use Attach Manager in Communications Manager/2 to start the
listener program, you must specify the Program parameter string or parm_string in
addition to the TPNAME and TPPATH.

You can do this using the panel configuration in Communications Manager/2 or,
alternatively, you can edit your NDF file directly (see the heading “Define
Transaction Programs” in the Multiplatform APPC Configuration Guide).

Panel configuration: These are the entries required on the TP definition panel:
Transaction Program (TP) name : AMQCRS6A
OS/2 program path and file name: c:\mqm\bin\amqcrs6a.exe
Program parameter string : -n AMQCRS6A

NDF file configuration: Your node definitions file (.ndf) must contain a define_tp
command. The following example shows what must be included:
define_tp
tp_name(AMQCRS6A)
filespec(c:\mqm\bin\amqcrs6a.exe)
parm_string(-n AMQCRS6A -m QM1)

Using Microsoft SNA Server on Windows NT
You can use TpSetup (from the SNA Server SDK) to define an invokable TP that
then drives amqcrs6a.exe, or you can set various registry values manually. The
parameters that should be passed to amqcrs6a.exe are:
-m QM -n TpName

where QM is the Queue Manager name and TpName is the TP Name. See the
Microsoft SNA Server APPC Programmers Guide or the Microsoft SNA Server CPI-C
Programmers Guide for more information.

Defining a NetBIOS connection
MQSeries uses three types of NetBIOS resource when establishing a NetBIOS
connection to another MQSeries product: sessions, commands, and names. Each of
these resources has a limit, which is established either by default or by choice
during the installation of NetBIOS.

Each running channel, regardless of type, uses one NetBIOS session and one
NetBIOS command. The IBM NetBIOS implementation allows multiple processes
to use the same local NetBIOS name. Therefore, only one NetBIOS name needs to
be available for use by MQSeries. Other vendors’ implementations, for example

Defining an LU 6.2 connection

128 MQSeries Intercommunication

Novell’s NetBIOS emulation, require a different local name per process. Verify your
requirements from the documentation for the NetBIOS product you are using.

In all cases, ensure that sufficient resources of each type are already available, or
increase the maximums specified in the configuration. Any changes to the values
will require a system restart.

During system startup, the NetBIOS device driver displays the number of sessions,
commands, and names available for use by applications. These resources are
available to any NetBIOS-based application that is running on the same system.
Therefore, it is possible for other applications to consume these resources before
MQSeries needs to acquire them. Your LAN network administrator should be able
to clarify this for you.

Defining the MQSeries local NetBIOS name
The local NetBIOS name used by MQSeries channel processes can be specified in
three ways. In order of precedence they are:
1. The value specified in the -l parameter of the RUNMQLSR command, for

example:
RUNMQLSR -t NETBIOS -l my_station

2. The MQNAME environment variable whose value is established by the
command:

SET MQNAME=my_station

You can set the MQNAME value for each process. Alternatively, you may set it
at a system level — in the CONFIG.SYS file on OS/2 or in the Windows NT
registry.

If you are using a NetBIOS implementation that requires unique names, you
must issue a SET MQNAME command in each window in which an MQSeries
process is started. The MQNAME value is arbitrary but it must be unique for
each process.

3. The NETBIOS stanza in the queue manager configuration file qm.ini or in the
Windows NT registry. For example:

NETBIOS:

LocalName=my_station

Notes:

1. Due to the variations in implementation of the NetBIOS products supported,
you are advised to make each NetBIOS name unique in the network. If you do
not, unpredictable results may occur. If you have problems establishing a
NetBIOS channel and there are error messages in the queue-manager error log
showing a NetBIOS return code of X'15', review your use of NetBIOS names.

2. On Windows NT you cannot use your machine name as the NetBIOS name
because Windows NT already uses it.

3. Sender channel initiation requires that a NetBIOS name be specified either via
the MQNAME environment variable or the LocalName in the qm.ini file or in
the Windows NT registry.

Defining a NetBIOS connection

Chapter 10. Setting up communication for OS/2 and Windows NT 129

Establishing the queue manager NetBIOS session, command,
and name limits

The queue manager limits for NetBIOS sessions, commands, and names can be
specified in two ways. In order of precedence they are:
1. The values specified in the RUNMQLSR command:

-s Sessions
-e Names
-o Commands

If the -m operand is not specified in the command, the values will apply only
to the default queue manager.

2. The NETBIOS stanza in the queue manager configuration file qm.ini or in the
Windows NT registry. For example:

NETBIOS:

NumSess=Qmgr_max_sess
NumCmds=Qmgr_max_cmds
NumNames=Qmgr_max_names

Establishing the LAN adapter number
For channels to work successfully across NetBIOS, the adapter support at each end
must be compatible. MQSeries allows you to control the choice of adapter number
(lana) by using the AdapterNum value in the NETBIOS stanza of your qm.ini file
or the Windows NT registry and by specifying the -a parameter on the runmqlsr
command.

The default LAN adapter number used by MQSeries for NetBIOS connections is 0.
Verify the adapter number being used on your system as follows:

On OS/2 the adapter number used by NetBIOS on your system can be viewed in
the PROTOCOL.INI file or the LANTRAN.LOG file found in the \IBMCOM
directory.

On Windows NT view the information displayed in the NetBIOS Interface pop-up
window. This is accessible by selecting the Network option, which is one of many
options displayed when opening the Control icon from the Main Window.
Windows NT can assign multiple ‘logical’ adapter numbers to one physical LAN
adapter. The installation default for ‘logical’ adapter number 0 is NetBIOS running
over a TCP network, not a Token-Ring network. This is not necessary for
MQSeries. You should select logical adapter number 1, which is native NetBIOS.
MQSeries for Windows NT uses the ‘logical’ adapter number for communication.

Specify the correct value in the NETBIOS stanza of the queue manager
configuration file, qm.ini, or the Windows NT registry:

NETBIOS:
AdapterNum=n

where n is the correct LAN adapter number for this system.

Initiating the connection
To initiate the connection, follow these steps at the sending end:
1. Define the NetBIOS station name using the MQNAME or LocalName value as

described above.

Defining a NetBIOS connection

130 MQSeries Intercommunication

2. Verify the LAN adapter number being used on your system and specify the
correct file using the AdapterNum as described above.

3. In the ConnectionName field of the channel definition, specify the NetBIOS
name being used by the target listener program. On Windows NT, NetBIOS
channels must be run as threads. Do this by specifying MCATYPE(THREAD) in
the channel definition.
DEFINE CHANNEL (chname) CHLTYPE(SDR) +

TRPTYPE(NETBIOS) +
CONNAME(your_station) +
XMITQ(xmitq) +
MCATYPE(THREAD) +
REPLACE

Target listener
At the receiving end, follow these steps:
1. Define the NetBIOS station name using the MQNAME or LocalName value as

described above.
2. Verify the LAN adapter number being used on your system and specify the

correct file using the AdapterNum as described above.
3. Define the receiver channel:

DEFINE CHANNEL (chname) CHLTYPE(RCVR) +
TRPTYPE(NETBIOS) +
REPLACE

4. Start the MQSeries listener program to establish the station and make it
possible to contact it. For example:
RUNMQLSR -t NETBIOS -l your_station [-m qmgr]

This command establishes your_station as a NetBIOS station waiting to be
contacted. The NetBIOS station name must be unique throughout your
NetBIOS network.

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page 121.
See the MQSeries Application Programming Guide for information about trusted
applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:
ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

Defining an SPX connection
The channel definition at the sending end specifies the address of the target. A
listener program must be run at the receiving end.

Sending end
If the target machine is remote, specify the SPX address of the target machine in
the Connection name field of the channel definition.

The SPX address is specified in the following form:
network.node(socket)

Defining a NetBIOS connection

Chapter 10. Setting up communication for OS/2 and Windows NT 131

where:
network

Is the 4-byte network address of the network on which the remote machine
resides,

node Is the 6-byte node address, which is the LAN address of the LAN adapter
in the remote machine

socket Is the 2-byte socket number on which the remote machine will listen.

If the local and remote machines are on the same network then the network
address need not be specified. If the remote end is listening on the default socket
(5E86) then the socket need not be specified.

An example of a fully specified SPX address specified in the CONNAME
parameter of an MQSC command is:

CONNAME('00000001.08005A7161E5(5E87)')

In the default case, where the machines are both on the same network, this
becomes:

CONNAME(08005A7161E5)

The default socket number may be changed by specifying it in the queue manager
configuration file (qm.ini) or the Windows NT registry:
SPX:
Socket=5E87

For more information about the values you set using qm.ini or the Windows NT
registry, see “Appendix D. Configuration file stanzas for distributed queuing” on
page 637.

Using the SPX KEEPALIVE option (OS/2 only)
If you want to use the KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page 66) you need to add the
following entry to your queue manager configuration file (qm.ini):
SPX:

KeepAlive=yes

You can use the timeouts described in “IPX/SPX parameters” on page 133 to adjust
the behavior of KEEPALIVE.

Receiving on SPX
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect incoming
network requests and start the associated channel.

You should use the MQSeries listener.

Using the TCP listener backlog option
When receiving on TCP/IP, a maximum number of outstanding connection
requests is set. This can be considered a backlog of requests waiting on the TCP/IP
port for the listener to accept the request. The default listener backlog values are
shown in Table 13.

Table 13. Default outstanding connection requests on OS/2 and Windows NT

Platform Default listener backlog value

OS/2 Warp 10

Defining an SPX connection

132 MQSeries Intercommunication

Table 13. Default outstanding connection requests on OS/2 and Windows NT (continued)

Platform Default listener backlog value

Windows NT Server 100

Windows NT Workstation 5

If the backlog reaches the values in Table 13 on page 132, the reason code,
MQRC_Q_MGR_NOT_AVAILABLE is received when trying to connect to the
queue manager using MQCONN or MQCONNX. If this happens, it is possible to
try to connect again.

However, to avoid this error, you can add an entry in the qm.ini file or in the
registry for Windows NT:
TCP:
ListenerBacklog = n

This overrides the default maximum number of outstanding requests (see Table 13
on page 132) for the TCP/IP listener.

Note: Some operating systems support a larger value than the default. If necessary,
this can be used to avoid reaching the connection limit.

To run the listener with the backlog option switched on, use the RUNMQLSR -B
command. For information about the RUNMQLSR command, see the MQSeries System
Administration book.

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:
RUNMQLSR -t spx [-m QMNAME] [-x 5E87]

The square brackets indicate optional parameters; QMNAME is not required for the
default queue manager, and the socket number is not required if you are using the
default (5E86).

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page 121.
See the MQSeries Application Programming Guide for information about trusted
applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:
ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

IPX/SPX parameters
In most cases the default settings for the IPX/SPX parameters will suit your needs.
However, you may need to modify some of them in your environment to tune its
use for MQSeries. The actual parameters and the method of changing them varies
according to the platform and provider of SPX communications support. The
following sections describe some of these parameters, particularly those that may
influence the operation of MQSeries channels and client connections.

Defining an SPX connection

Chapter 10. Setting up communication for OS/2 and Windows NT 133

OS/2
Please refer to the Novell Client for OS/2 documentation for full details of the use
and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

IPX:

sockets (range = 9 - 128, default 64)
This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

SPX:

sessions (default 16)
This specifies the total number of simultaneous SPX connections. Each
MQSeries channel or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or
client connections you need to run.

retry count (default = 12)
This controls the number of times an SPX session will resend
unacknowledged packets. MQSeries does not override this value.

verify timeout, listen timeout, and abort timeout (milliseconds)
These timeouts adjust the ‘Keepalive’ behavior. If an SPX sending end does
not receive anything within the ‘verify timeout’ period, it sends a packet to
the receiving end. It then waits for the duration of the ‘listen timeout’ for a
response. If it still does not receive a response, it sends another packet and
expects a response within the ‘abort timeout’ period.

DOS and Windows 3.1 client
Please refer to the Novell Client for DOS and MS Windows documentation for full
details of the use and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

IPX:

sockets (default = 20)
This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

retry count
This controls the number of times unacknowledged packets will be resent.
MQSeries does not override this value.

SPX:

connections (default 15)
This specifies the total number of simultaneous SPX connections. Each
MQSeries channel or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or
client connections you need to run.

Defining an SPX connection

134 MQSeries Intercommunication

Windows NT
Please refer to the Microsoft documentation for full details of the use and setting of
the NWLink IPX and SPX parameters. The IPX/SPX parameters are in the
following paths in the registry:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

Windows 95 and Windows 98
Please refer to the Microsoft documentation for full details of the use and setting of
the IPX and SPX parameters. You access them by selecting Network option in the
control panel, then double-clicking on IPX/SPX Compatible Transport.

Defining an SPX connection

Chapter 10. Setting up communication for OS/2 and Windows NT 135

DQM in distributed platforms

136 MQSeries Intercommunication

Chapter 11. Example configuration - IBM MQSeries for OS/2
Warp

This chapter gives an example of how to set up communication links from
MQSeries for OS/2 Warp to MQSeries products on the following platforms:
v Windows NT
v AIX
v Digital UNIX
v HP-UX
v AT&T GIS UNIX1

v Sun Solaris
v OS/400
v OS/390 or MVS/ESA without CICS
v VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it guides
you through the following tasks:
v “Establishing an LU 6.2 connection” on page 142
v “Establishing a TCP connection” on page 158
v “Establishing a NetBIOS connection” on page 160
v “Establishing an SPX connection” on page 160

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for OS/2 Warp configuration” on
page 162.

See “Chapter 7. Example configuration chapters in this book” on page 97 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 14 on page 138 presents a worksheet listing all the parameters needed to set
up communication from OS/2 to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

This chapter shows how to use the values on the worksheet for:
v “Defining local node characteristics” on page 142
v “Connecting to a peer system” on page 150
v “Connecting to a host system” on page 153
v “Verifying the configuration” on page 157

Configuration worksheet
Use the following worksheet to record the values you will use for this
configuration. Where numbers appear in the Reference column they indicate that
the value must match that in the appropriate worksheet elsewhere in this book.

1. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993, 2000 137

|

|

The examples that follow in this chapter refer back to the values in the ID column
of this table. The entries in the Parameter Name column are explained in
“Explanation of terms” on page 140.

Table 14. Configuration worksheet for Communications Manager/2

ID Parameter Name Reference Example Used User Value

Definition for local node

«1¬ Configuration name EXAMPLE

«2¬ Network ID NETID

«3¬ Local node name OS2PU

«4¬ Local node ID (hex) 05D 12345

«5¬ Local node alias name OS2PU

«6¬ LU name (local) OS2LU

«7¬ Alias (for local LU name) OS2QMGR

«8¬ Local transaction program (TP) name MQSERIES

«9¬ OS/2 program path and file name c:\mqm\bin\amqcrs6a.exe

«10¬ LAN adapter address 10005AFC5D83

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 170, as indicated.

«11¬ Link name WINNT

«12¬ LAN destination address (hex) «9¬ 08005AA5FAB9

«13¬ Partner network ID «2¬ NETID

«14¬ Partner node name «3¬ WINNTCP

«15¬ LU name «5¬ WINNTLU

«16¬ Alias (for remote LU name) NTQMGR

«17¬ Mode «17¬ #INTER

«18¬ Remote transaction program name «7¬ MQSERIES

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 197, as indicated.

«11¬ Link name RS6000

«12¬ LAN destination address (hex) «8¬ 123456789012

«13¬ Partner network ID «1¬ NETID

«14¬ Partner node name «2¬ AIXPU

«15¬ LU name «4¬ AIXLU

«16¬ Alias (for remote LU name) AIXQMGR

«17¬ Mode «17¬ #INTER

«18¬ Remote transaction program name «6¬ MQSERIES

Connection to an HP-UX system

The values in this section of the table must match those used in Table 23 on page 219, as indicated.

«11¬ Link name HPUX

«12¬ LAN destination address (hex) «8¬ 100090DC2C7C

«13¬ Partner network ID «4¬ NETID

«14¬ Partner node name «2¬ HPUXPU

«15¬ LU name «5¬ HPUXLU

«16¬ Alias (for remote LU name) HPUXQMGR

«17¬ Mode «6¬ #INTER

«18¬ Remote transaction program name «7¬ MQSERIES

OS/2 and LU 6.2

138 MQSeries Intercommunication

Table 14. Configuration worksheet for Communications Manager/2 (continued)

ID Parameter Name Reference Example Used User Value

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in Table 25 on page 243, as indicated.

«11¬ Link name GIS

«12¬ LAN destination address (hex) «8¬ 10007038E86B

«13¬ Partner network ID «2¬ NETID

«14¬ Partner node name «3¬ GISPU

«15¬ LU name «4¬ GISLU

«16¬ Alias (for remote LU name) GISQMGR

«17¬ Mode «15¬ #INTER

«18¬ Remote transaction program name «5¬ MQSERIES

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 27 on page 257, as indicated.

«11¬ Link name SOLARIS

«12¬ LAN destination address (hex) «5¬ 08002071CC8A

«13¬ Partner network ID «2¬ NETID

«14¬ Partner node name «3¬ SOLARPU

«15¬ LU name «7¬ SOLARLU

«16¬ Alias (for remote LU name) SOLQMGR

«17¬ Mode «17¬ #INTER

«18¬ Remote transaction program name «8¬ MQSERIES

Connection to an AS/400 system

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

«11¬ Link name AS400

«12¬ LAN destination address (hex) «4¬ 10005A5962EF

«13¬ Partner network ID «1¬ NETID

«14¬ Partner node name «2¬ AS400PU

«15¬ LU name «3¬ AS400LU

«16¬ Alias (for remote LU name) AS4QMGR

«17¬ Mode «17¬ #INTER

«18¬ Remote transaction program name «8¬ MQSERIES

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 36 on page 396, as indicated.

«11¬ Link name HOST0001

«12¬ LAN destination address (hex) «8¬ 400074511092

«13¬ Partner network ID «2¬ NETID

«14¬ Partner node name «3¬ MVSPU

«15¬ LU name «4¬ MVSLU

«16¬ Alias (for remote LU name) MVSQMGR

«17¬ Mode «10¬ #INTER

«18¬ Remote transaction program name «7¬ MQSERIES

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 44 on page 485, as indicated.

«11¬ Link name HOST0001

OS/2 and LU 6.2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 139

Table 14. Configuration worksheet for Communications Manager/2 (continued)

ID Parameter Name Reference Example Used User Value

«12¬ LAN destination address (hex) «5¬ 400074511092

«13¬ Partner network ID «1¬ NETID

«14¬ Partner node name «2¬ VSEPU

«15¬ LU name «3¬ VSELU

«16¬ Alias (for remote LU name) VSEQMGR

«17¬ Mode #INTER

«18¬ Remote transaction program name «4¬ MQ01 MQ01

Explanation of terms
«1¬ Configuration name

This is the name of the OS/2 file that will hold the configuration.

If you are adding to or modifying an existing configuration it will be the
name previously specified.

If you are creating a new configuration then you can specify any
8-character name that obeys the normal rules for file naming.

«2¬ Network ID
This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network ID works
with the local node name to uniquely identify a system. Your network
administrator will tell you the value.

«3¬ Local node name
This is the unique Control Point name for this workstation. Your network
administrator will assign this to you.

«4¬ Local node ID (hex)
This is a unique identifier for this workstation. On other platforms it is
often referred to as the exchange ID (XID). Your network administrator will
assign this to you.

«5¬ Local node alias name
This is the name by which your local node will be known within this
workstation. This value is not used elsewhere, but it is recommended that
it be the same as «3¬, the local node name.

«6¬ LU name (local)
An LU manages the exchange of data between systems. The local LU name
is the name of the LU on your system. Your network administrator will
assign this to you.

«7¬ Alias (for local LU name)
The name by which your local LU will be known to your applications. You
choose this name yourself. It can be 1-8 characters long. This value is used
during MQSeries configuration, when entries are added to the qm.ini file.

«8¬ Local transaction program (TP) name
MQSeries applications trying to converse with this workstation will specify
a symbolic name for the program to be run at the receiving end. This will
have been defined on the channel definition at the sender. The TP name is
also used during MQSeries configuration, when entries are added to the
qm.ini file. For simplicity, wherever possible use a transaction program

OS/2 and LU 6.2

140 MQSeries Intercommunication

name of MQSERIES, or in the case of a connection to VSE/ESA, where the
length is limited to 4 bytes, use MQTP.

See Table 12 on page 126 for more information.

«9¬ OS/2 program path and file name
This is the path and name of the actual program to be run when a
conversation has been initiated with this workstation. The example shown
on the worksheet assumes that MQSeries is installed in the default
directory, c:\mqm. The configuration pairs this name with the symbolic
name «8¬.

«10¬ LAN adapter address
This is the address of your token-ring card. When using the default
address, the exact value can be found in the LANTRAN.LOG file found in
the \IBMCOM directory.

For example:
Adapter 0 is using node address 10005AFC5D83

«11¬ Link name
This is a meaningful symbolic name by which the connection to a partner
node is known. It is used only inside Communications Manager/2 setup
and is specified by you. It can be 1-8 characters in length.

«16¬ Alias (for remote LU name)
This is a value known only on this workstation and is used to represent
the fully qualified partner LU name. You supply the value.

«17¬ Mode
This is the name given to the set of parameters that control the APPC
conversation. This name must be defined at each point in the network
between the local and partner LUs. Your network administrator will assign
this to you.

OS/2 and LU 6.2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 141

Establishing an LU 6.2 connection
This section describes how to establish an LU 6.2 connection using
Communications Manager/2 Version 1.11. You may use any of the supported LU
6.2 products for this platform. The panels would look different from those shown
but most of their content would be similar.

Defining local node characteristics
To set up the local node you need to perform these tasks:
1. Configure a DLC.
2. Configure the local node.
3. Add a local LU.
4. Add a transaction program definition.
5. Configure a mode.

To define the local node characteristics:
1. Start the Communications Manager/2 Installation and Setup program by

typing CMSETUP on an OS/2 command line, and pressing Enter.

2. Press OK to continue.

3. Press Setup to create or modify a configuration.

Using Communications Manager/2

142 MQSeries Intercommunication

4. Specify a name (up to 8-characters) for a new configuration file «1¬, or select
the one that you wish to update. The following examples guide you through
the creation of a new configuration file. Treat them as a guide if you are
modifying an existing configuration.

5. Press Yes.

6. Press Yes.
In this example we set up connections using APPC over Token-ring. The
following screen appears in two stages. When you first see it, highlight the line:
APPC APIs through Token-ring

The complete screen appears as shown below.

Using Communications Manager/2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 143

7. Press Configure....

Configuring a DLC

1. Complete the values for Network ID («2¬) and Local node name («3¬).
a.

b. Select End node - no network node server.
c. Click on Advanced.

d. Select DLC - Token-ring or other LAN types and press Configure....

Using Communications Manager/2

144 MQSeries Intercommunication

e. Enter the value for C&SM LAN ID. This should be the same value as the
Network ID entered earlier («2¬).

f. Leave the remaining default values and press OK.

Configuring the local node

1. Select SNA local node characteristics and press Configure....

2. Complete the value for Local node ID (hex) («4¬) using the values in your
configuration worksheet.

Using Communications Manager/2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 145

3. Press Options...

4. Complete the value for Local node alias name («5¬) and press OK.

5. Press OK.

6. Select SNA features and press Configure....

Using Communications Manager/2

146 MQSeries Intercommunication

Adding a local LU

1. Select Local LUs and press Create....

2. Complete the fields LU name («6¬) and Alias («7¬).
3. Press OK.

Adding a transaction program definition

1. Select Transaction program definitions and press Create....

Using Communications Manager/2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 147

2. Complete the values for Transaction program (TP) name («8¬) and OS/2
program path and file name («9¬). If you are going to use Attach Manager to
start the listener program, specify the Program parameter string, for example
-m OS2 -n MQSERIES.

3. Press Continue....

4. Specify that the program is to be run in the Background and that it is to be
Non-queued, Attach Manager started.

5. Press OK.

Configuring a mode

1. Select Modes and #INTER and press Change....

Using Communications Manager/2

148 MQSeries Intercommunication

2. Ensure that the default values match those shown above and press Cancel.

3. Press Close to close the SNA Features List window.

Local configuration is complete.

The following sections describe how to create connections to other nodes.

Using Communications Manager/2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 149

Connecting to a peer system
To set up a connection to a peer system the steps are:
1. Adding a peer connection
2. Defining a partner LU

Start from the Communications Manager Profile List panel.

Select SNA connections and press Configure....

Adding a peer connection

1. Select To peer node and press Create....

Using Communications Manager/2

150 MQSeries Intercommunication

2. Select Token-ring or other LAN types and press Continue....

3. Specify a Link name («11¬) and check Activate at startup.
4. Complete the fields LAN destination address (hex) («12¬), Partner network ID

(«13¬), and Partner node name («14¬).

5. Press Define Partner LUs....

Defining a partner LU

1. Complete the fields Network ID («13¬), LU name («15¬), and Alias («16¬).
2. Press Add.

Using Communications Manager/2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 151

3. Press OK.

4. Press OK.

5. Press Close.

Using Communications Manager/2

152 MQSeries Intercommunication

If you have connections to make to other platforms repeat this section as
appropriate.

If you have made all the connections you require proceed to “Verifying the
configuration” on page 157 to complete Communications Manager/2 configuration.

Connecting to a host system
To set up a connection to a host system, for example OS/390 or VSE/ESA, the
steps are:
1. Adding a host connection
2. Defining a partner LU

Start from the Communications Manager Profile List panel.

Select SNA connections and press Configure....

Using Communications Manager/2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 153

Adding a host connection

1. Select To host and press Create....

2. Select Token-ring or other LAN types and press Continue....

3. Specify a Link name («11¬) and check Activate at startup.
4. Complete the fields LAN destination address (hex) («12¬), Partner network ID

(«13¬), and Partner node name («14¬).

Using Communications Manager/2

154 MQSeries Intercommunication

5. Press Define Partner LUs....

Defining a partner LU

1. Complete the fields Network ID («13¬), LU name («15¬), and Alias («16¬).
2. Press Add

3. Press OK.

Using Communications Manager/2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 155

4. Press OK.

5. Press Close.

If you have connections to make to other platforms, proceed to the appropriate
section.

If you have made all the connections you require proceed to “Verifying the
configuration” on page 157 to complete Communications Manager/2 configuration.

Using Communications Manager/2

156 MQSeries Intercommunication

Verifying the configuration

1. Press Close to close the Communications Manager Profile List panel.

2. Press Close.

3. Press Yes.

Using Communications Manager/2

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 157

4. Press OK.

5. Press Close.

What next?
The LU 6.2 connection is now established. You are ready to complete the
configuration. Go to “MQSeries for OS/2 Warp configuration” on page 162.

Establishing a TCP connection
1. From your desktop, open the TCP Icon View.

The icons you see may vary from those shown above, depending on how you
have installed the product.

2. Start the TCP Configuration program.
3. On the Network page, ensure that the IP Address and Subnet Mask fields

have been completed.
4. Select the Autostart tab.

Using Communications Manager/2

158 MQSeries Intercommunication

5. Ensure that inetd is selected.
6. Select the Hostnames tab.
7. Ensure that This machine’s hostname, Local domain name, and Nameserver

address have been completed.
8. Close the configuration notebook.

Note: You may see a panel warning that the inetd superserver has been
selected without selecting servers. Press No to indicate that you do not
wish to correct this.

9. Press Save to save the changes made.
10. Verify that the \MPTN\ETC\SERVICES file, which is located on the drive

where you installed IBM Multi-Protocol Transport Services (MPTS), contains
the following line:
MQSeries 1414/tcp # MQSeries Chan'l Listener

If this line is not present, add it.
11. Verify that the file \MPTN\ETC\INETD.LST, located on the same drive

contains the following line:
MQSeries tcp c:\mqm\bin\amqcrsta [-m QMName]

If this line is not present, add it. Note that this assumes you have installed
MQSeries on the default drive and in the default directories.

12. (Re)start the inetd superserver, either by rebooting OS/2 or by stopping any
existing inetd superserver and then entering start inetd on the command
line.

What next?
The TCP connection is now established. You are ready to complete the
configuration. Go to “MQSeries for OS/2 Warp configuration” on page 162.

OS/2 and TCP

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 159

Establishing a NetBIOS connection
A NetBIOS connection is initiated from a queue manager that uses the
ConnectionName parameter on its channel definition to connect to a target listener.
To set up a NetBIOS connection, follow these steps:
1. At each end of the channel specify the local NetBIOS name to be used by the

MQSeries channel processes, in the queue manager configuration file qm.ini or
in the registry for Windows NT. For example, the NETBIOS stanza in qm.ini at
the sending end might look like this:
NETBIOS:
LocalName=O2NETB1

and at the receiving end:
NETBIOS:
LocalName=O2NETB2

2. At each end of the channel, look at the LANTRAN.LOG file in the \IBMCOM
directory to see what LAN adapter number is used by NetBIOS on your
system. If it is not 0, which MQSeries uses by default, specify the correct value
in the NETBIOS stanza of the qm.ini file or of the registry for Windows NT. For
example:
NETBIOS:
AdapterNum=1

3. At the sending end, define a channel specifying the NetBIOS name being used
at the other end of the channel. For example:
DEFINE CHANNEL (OS2.WINNT.NET) CHLTYPE(SDR) +

TRPTYPE(NETBIOS) +
CONNAME(O2NETB2) +
XMITQ(WINNT) +
REPLACE

4. At the receiving end, define the corresponding receiver channel. For example:
DEFINE CHANNEL (OS2.WINNT.NET) CHLTYPE(RCVR) +

TRPTYPE(NETBIOS) +
REPLACE

5. At the receiving end, start the MQSeries listener:
runmqlsr -t netbios

Optionally you may specify values for the queue manager name, NetBIOS local
name, number of sessions, number of names, and number of commands. See
“Defining a NetBIOS connection” on page 128 for more information about
setting up NetBIOS connections.

Establishing an SPX connection
This section discusses the following topics:
v IPX/SPX parameters
v SPX addressing
v Using the SPX KEEPALIVE option
v Receiving on SPX

IPX/SPX parameters
In most cases the default settings for the IPX/SPX parameters will suit your needs.
However, you may need to modify some of them in your environment to tune its
use for MQSeries. The actual parameters and the method of changing them varies
according to the platform and provider of SPX communications support. The

OS/2 and NetBIOS

160 MQSeries Intercommunication

following sections describe some of these parameters, particularly those that may
influence the operation of MQSeries channels and client connections.

Please refer to the Novell Client for OS/2 documentation for full details of the use
and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

IPX
sockets (range = 9 - 128, default 64)

This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

SPX
sessions (default 16)

This specifies the total number of simultaneous SPX connections. Each
MQSeries channel or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or
client connections you need to run.

retry count (default = 12)
This controls the number of times an SPX session will resend
unacknowledged packets. MQSeries does not override this value.

verify timeout, listen timeout, and abort timeout (milliseconds)
These timeouts adjust the ‘Keepalive’ behavior. If an SPX sending end does
not receive anything within the ‘verify timeout’ period, it sends a packet to
the receiving end. It then waits for the duration of the ‘listen timeout’ for a
response. If it still does not receive a response, it sends another packet and
expects a response within the ‘abort timeout’ period.

SPX addressing
MQSeries uses the SPX address of each machine to establish connectivity. The SPX
address is specified in the following form:

network.node(socket)

where
network

Is the 4-byte network address of the network on which the remote machine
resides,

node Is the 6-byte node address, which is the LAN address of the LAN adapter
in the remote machine

socket Is the 2-byte socket number on which the remote machine will listen.

The default socket number used by MQSeries is 5E86. You can change the default
socket number by specifying it in the queue manager configuration file qm.ini or
the Windows NT registry. If you have taken the default options for installation, the
qm.ini file for queue manager OS2 is found in c:\mqm\qmgs\os2. The lines in
qm.ini might read:
SPX:
SOCKET=n

OS/2 and SPX

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 161

For more information about values you can set in qm.ini, see “Appendix D.
Configuration file stanzas for distributed queuing” on page 637.

The SPX address is later specified in the CONNAME parameter of the sender
channel definition. If the MQSeries systems being connected reside on the same
network, the network address need not be specified. Similarly, if the remote system
is listening on the default socket number (5E86), it need not be specified. A fully
qualified SPX address in the CONNAME parameter would be:
CONNAME('network.node(socket)')

but if the systems reside on the same network and the default socket number is
used, the parameter would be:
CONNAME(node)

A detailed example of the channel configuration parameters is given in “MQSeries
for OS/2 Warp configuration”.

Using the SPX KEEPALIVE option
If you want to use the KEEPALIVE option you need to add the following entry to
your queue manager configuration file (qm.ini) or the Windows NT registry:
SPX:

KeepAlive=yes

You can use the timeout parameters described above to adjust the behavior of
KEEPALIVE.

Receiving on SPX
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect incoming
network requests and start the associated channel.

You should use the MQSeries listener.

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:
RUNMQLSR -t spx

Optionally you may specify the queue manager name or the socket number if you
are not using the defaults.

MQSeries for OS/2 Warp configuration
Notes:

1. You can use the sample program AMQSBCG to display, to the stdout spool, the
contents and headers of all the messages in a queue. For example:
AMQSBCG q_name qmgr_name

displays the contents of the queue q_name defined in queue manager qmgr_name.
2. The MQSeries command used to start the TCP listener is:

runmqlsr -t tcp

The listener enables receiver channels to start automatically in response to a
start request from an inbound sender channel.

OS/2 and SPX

162 MQSeries Intercommunication

3. You can start any channel from the command prompt using the command
runmqchl -c channel.name

4. Error logs can be found in the directories \mqm\qmgrs\qmgrname\errors,
\mqm\qmgrs\@system\errors, and \mqm\errors. In all cases, the most recent
messages are at the end of amqerr01.log.

5. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

Basic configuration
1. Create the queue manager from the OS/2 command line using the command:

crtmqm -u dlqname -q os2

where:
os2 Is the name of the queue manager
-q Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects, and sets
the DEADQ attribute of the queue manager.

2. For SNA channels add an LU 6.2 stanza to the queue manager’s qm.ini file:
LU62:
TPName=MQSERIES «8¬
LocalLU=OS2QMGR «7¬

If you have taken the default options for installation, the qm.ini file for queue
manager os2 is found in c:\mqm\qmgrs\os2.

3. Start the queue manager from the OS/2 command line using the command:
strmqm os2

where os2 is the name given to the queue manager when it was created.

Channel configuration
The following sections detail the configuration to be performed on the OS/2 queue
manager to implement the channel described in Figure 32 on page 97. In each case
the MQSC command is shown.

Examples are given for connecting MQSeries for OS/2 Warp and MQSeries for
Windows NT. If you wish connect to another MQSeries product use the
appropriate set of values from the table in place of those for Windows NT.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects
throughout this book. All others are keywords and should be entered as
shown.

OS/2 configuration

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 163

Table 15. Configuration worksheet for MQSeries for OS/2 Warp

Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name OS2

«B¬ Local queue name OS2.LOCALQ

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 185, as indicated.

«C¬ Remote queue manager name «A¬ WINNT

«D¬ Remote queue name WINNT.REMOTEQ

«E¬ Queue name at remote system «B¬ WINNT.LOCALQ

«F¬ Transmission queue name WINNT

«G¬ Sender (SNA) channel name OS2.WINNT.SNA

«H¬ Sender (TCP/IP) channel name OS2.WINNT.TCP

«I¬ Receiver (SNA) channel name «G¬ WINNT.OS2.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ WINNT.OS2.TCP

«K¬ Sender (NetBIOS) channel name OS2.WINNT.NET

«L¬ Sender (SPX) channel name OS2.WINNT.SPX

«M¬ Receiver (NetBIOS) channel name «K¬ WINNT.OS2.NET

«N¬ Receiver (SPX) channel name «L¬ WINNT.OS2.SPX

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 211, as indicated.

«C¬ Remote queue manager name «A¬ AIX

«D¬ Remote queue name AIX.REMOTEQ

«E¬ Queue name at remote system «B¬ AIX.LOCALQ

«F¬ Transmission queue name AIX

«G¬ Sender (SNA) channel name OS2.AIX.SNA

«H¬ Sender (TCP/IP) channel name OS2.AIX.TCP

«I¬ Receiver (SNA) channel name «G¬ AIX.OS2.SNA

«J¬ Receiver (TCP) channel name «H¬ AIX.OS2.TCP

Connection to MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

The values in this section of the table must match those used in Table 22 on page 216, as indicated.

«C¬ Remote queue manager name «A¬ DECUX

«D¬ Remote queue name DECUX.REMOTEQ

«E¬ Queue name at remote system «B¬ DECUX.LOCALQ

«F¬ Transmission queue name DECUX

«H¬ Sender (TCP) channel name DECUX.OS2.TCP

«J¬ Receiver (TCP) channel name «H¬ OS2.DECUX.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 24 on page 239, as indicated.

«C¬ Remote queue manager name «A¬ HPUX

«D¬ Remote queue name HPUX.REMOTEQ

«E¬ Queue name at remote system «B¬ HPUX.LOCALQ

«F¬ Transmission queue name HPUX

«G¬ Sender (SNA) channel name OS2.HPUX.SNA

«H¬ Sender (TCP) channel name OS2.HPUX.TCP

«I¬ Receiver (SNA) channel name «G¬ HPUX.OS2.SNA

OS/2 configuration

164 MQSeries Intercommunication

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 15. Configuration worksheet for MQSeries for OS/2 Warp (continued)

Parameter Name Reference Example Used User Value

«J¬ Receiver (TCP) channel name «H¬ HPUX.OS2.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 26 on page 253, as indicated.

«C¬ Remote queue manager name «A¬ GIS

«D¬ Remote queue name GIS.REMOTEQ

«E¬ Queue name at remote system «B¬ GIS.LOCALQ

«F¬ Transmission queue name GIS

«G¬ Sender (SNA) channel name OS2.GIS.SNA

«H¬ Sender (TCP) channel name OS2.GIS.TCP

«I¬ Receiver (SNA) channel name «G¬ GIS.OS2.SNA

«J¬ Receiver (TCP) channel name «H¬ GIS.OS2.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

«C¬ Remote queue manager name SOLARIS

«D¬ Remote queue name SOLARIS.REMOTEQ

«E¬ Queue name at remote system «B¬ SOLARIS.LOCALQ

«F¬ Transmission queue name SOLARIS

«G¬ Sender (SNA) channel name OS2.SOLARIS.SNA

«H¬ Sender (TCP/IP) channel name OS2.SOLARIS.TCP

«I¬ Receiver (SNA) channel name «G¬ SOLARIS.OS2.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ SOLARIS.OS2.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 43 on page 472, as indicated.

«C¬ Remote queue manager name AS400

«D¬ Remote queue name AS400.REMOTEQ

«E¬ Queue name at remote system «B¬ AS400.LOCALQ

«F¬ Transmission queue name AS400

«G¬ Sender (SNA) channel name OS2.AS400.SNA

«H¬ Sender (TCP/IP) channel name OS2.AS400.TCP

«I¬ Receiver (SNA) channel name «G¬ AS400.OS2.SNA

«J¬ Receiver (TCP) channel name «H¬ AS400.OS2.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 37 on page 406, as indicated.

«C¬ Remote queue manager name MVS

«D¬ Remote queue name MVS.REMOTEQ

«E¬ Queue name at remote system «B¬ MVS.LOCALQ

«F¬ Transmission queue name MVS

«G¬ Sender (SNA) channel name OS2.MVS.SNA

«H¬ Sender (TCP) channel name OS2.MVS.TCP

«I¬ Receiver (SNA) channel name «G¬ MVS.OS2.SNA

«J¬ Receiver (TCP) channel name «H¬ MVS.OS2.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 45 on page 490, as indicated.

OS/2 configuration

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 165

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 15. Configuration worksheet for MQSeries for OS/2 Warp (continued)

Parameter Name Reference Example Used User Value

«C¬ Remote queue manager name VSE

«D¬ Remote queue name VSE.REMOTEQ

«E¬ Queue name at remote system «B¬ VSE.LOCALQ

«F¬ Transmission queue name VSE

«G¬ Sender channel name OS2.VSE.SNA

«I¬ Receiver channel name «G¬ VSE.OS2.SNA

MQSeries for OS/2 Warp sender-channel definitions using SNA
def ql (WINNT) «F¬

usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) + «D¬
rname(WINNT.LOCALQ) + «E¬
rqmname(WINNT) + «C¬
xmitq(WINNT) + «F¬
replace

def chl (OS2.WINNT.SNA) chltype(sdr) + «G¬
trptype(lu62) +
conname('NETID.WINNTLU') + «13¬.«15¬
xmitq(WINNT) + «F¬
modename('#INTER') + «17¬
tpname('MQSERIES') + «18¬
replace

MQSeries for OS/2 Warp receiver-channel definitions using SNA
def ql (OS2.LOCALQ) replace «B¬

def chl (WINNT.OS2.SNA) chltype(rcvr) + «I¬
trptype(lu62) +
replace

MQSeries for OS/2 Warp sender-channel definitions using TCP
def ql (WINNT) + «F¬

usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) + «D¬
rname(WINNT.LOCALQ) + «E¬
rqmname(WINNT) + «C¬
xmitq(WINNT) + «F¬
replace

def chl (OS2.WINNT.TCP) chltype(sdr) + «H¬
trptype(tcp) +
conname(remote_tcpip_hostname) +
xmitq(WINNT) + «F¬
replace

MQSeries for OS/2 Warp receiver-channel definitions using
TCP/IP
def ql (OS2.LOCALQ) replace «B¬

def chl (WINNT.OS2.TCP) chltype(rcvr) + «J¬
trptype(tcp) +
replace

OS/2 configuration

166 MQSeries Intercommunication

MQSeries for OS/2 Warp sender-channel definitions using
NetBIOS
def ql (WINNT) + «F¬

usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) + «D¬
rname(WINNT.LOCALQ) + «E¬
rqmname(WINNT) + «C¬
xmitq(WINNT) + «F¬
replace

def chl (OS2.WINNT.NET) chltype(sdr) + «K¬
trptype(netbios) +
conname(remote NetBIOS name) +
xmitq(WINNT) + «F¬
replace

MQSeries for OS/2 Warp receiver-channel definitions using
NetBIOS
def ql (OS2.LOCALQ) replace «B¬

def chl (WINNT.OS2.NET) chltype(rcvr) + «M¬
trptype(netbios) +
replace

MQSeries for OS/2 Warp sender-channel definitions using
IPX/SPX
def ql (WINNT) + «F¬

usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) + «D¬
rname(WINNT.LOCALQ) + «E¬
rqmname(WINNT) + «C¬
xmitq(WINNT) + «F¬
replace

def chl (OS2.WINNT.SPX) chltype(sdr) + «L¬
trptype(spx) +
conname('network.node(socket)') +
xmitq(WINNT) + «F¬
replace

MQSeries for OS/2 Warp receiver-channel definitions using
IPX/SPX
def ql (OS2.LOCALQ) replace «B¬

def chl (WINNT.OS2.SPX) chltype(rcvr) + «N¬
trptype(spx) +
replace

Running channels as processes or threads
MQSeries for OS/2 Warp provides the flexibility to run sender channels as OS/2
processes or OS/2 threads. This is specified in the MCATYPE parameter on the
sender channel definition. Each installation should select the type appropriate for
their application and configuration. Factors affecting this choice are discussed
below.

Most installations will select to run their sender channels as threads, because the
virtual and real memory required to support a large number of concurrent channel
connections will be reduced. When the MQSeries listener process (started via the

OS/2 configuration

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 167

RUNMQLSR command) exhausts the available private memory needed, an
additional listener process will need to be started to support more channel
connections. When each channel runs as a process, additional processes are
automatically started, avoiding the out-of-memory condition.

If all channels are run as threads under one MQSeries listener, a failure of the
listener for any reason will cause all channel connections to be temporarily lost.
This can be prevented by balancing the threaded channel connections across two or
more listener processes, thus enabling other connections to keep running. If each
sender channel is run as a separate process, the failure of the listener for that
process will affect only that specific channel connection.

A NetBIOS connection needs a separate process for the Message Channel Agent.
Therefore, before you can issue a START CHANNEL command, you must start the
channel initiator, or you may start a channel using the RUNMQCHL command.

OS/2 configuration

168 MQSeries Intercommunication

Chapter 12. Example configuration - IBM MQSeries for
Windows NT

This chapter gives an example of how to set up communication links from
MQSeries for Windows NT to MQSeries products on the following platforms:
v OS/2
v AIX
v Digital UNIX
v HP-UX
v AT&T GIS UNIX2

v Sun Solaris
v OS/400
v OS/390 or MVS/ESA without CICS
v VSE/ESA

This chapter first describes the parameters needed for an LU 6.2 connection, then it
guides you through the following tasks:
v “Establishing an LU 6.2 connection” on page 174
v “Establishing a TCP connection” on page 181
v “Establishing a NetBIOS connection” on page 181
v “Establishing an SPX connection” on page 182

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for Windows NT configuration”
on page 184.

See “Chapter 7. Example configuration chapters in this book” on page 97 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 16 on page 170 presents a worksheet listing all the parameters needed to set
up communication from Windows NT to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

The steps required to set up an LU 6.2 connection are described, with numbered
cross references to the parameters on the worksheet. These steps are:
v “Configuring the local node” on page 174
v “Adding a connection” on page 176
v “Adding a partner” on page 178
v “Adding a CPI-C entry” on page 179
v “Configuring an invokable TP” on page 179

2. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993, 2000 169

|

|

Configuration worksheet
Use this worksheet to record the values you use for your configuration. Where
numbers appear in the Reference column they indicate that the value must match
that in the appropriate worksheet elsewhere in this book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page 172.

Table 16. Configuration worksheet for IBM Communications Server for Windows NT

ID Parameter Name Reference Example Used User Value

Definition for local node

«1¬ Configuration name NTCONFIG

«2¬ Network Name NETID

«3¬ Control Point Name WINNTCP

«4¬ Local Node ID (hex) 05D 30F65

«5¬ LU Name (local) WINNTLU

«6¬ LU Alias (local) NTQMGR

«7¬ TP Name MQSERIES

«8¬ Command line c:\mqm\bin\amqcrs6a.exe

«9¬ LAN adapter address 08005AA5FAB9

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 138, as indicated.

«10¬ Connection OS2

«11¬ Remote Network Address «10¬ 10005AFC5D83

«12¬ Network Name «2¬ NETID

«13¬ Control Point Name «3¬ OS2PU

«14¬ Remote Node ID «4¬ 05D 12345

«15¬ LU Alias (remote) OS2QMGR

«16¬ LU Name «6¬ OS2LU

«17¬ Mode «17¬ #INTER

«18¬ CPI-C Name OS2CPIC

«19¬ Partner TP Name «8¬ MQSERIES

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 197, as indicated.

«10¬ Connection AIX

«11¬ Remote Network Address «8¬ 123456789012

«12¬ Network Name «1¬ NETID

«13¬ Control Point Name «2¬ AIXPU

«14¬ Remote Node ID «3¬ 071 23456

«15¬ LU Alias (remote) AIXQMGR

«16¬ LU Name «4¬ AIXLU

«17¬ Mode «14¬ #INTER

«18¬ CPI-C Name AIXCPIC

«19¬ Partner TP Name «6¬ MQSERIES

Connection to an HP-UX system

The values in this section of the table must match those used in Table 23 on page 219, as indicated.

«10¬ Connection HPUX

«11¬ Remote Network Address «8¬ 100090DC2C7C

Windows NT and LU 6.2

170 MQSeries Intercommunication

Table 16. Configuration worksheet for IBM Communications Server for Windows NT (continued)

ID Parameter Name Reference Example Used User Value

«12¬ Network Name «4¬ NETID

«13¬ Control Point Name «2¬ HPUXPU

«14¬ Remote Node ID «3¬ 05D 54321

«15¬ LU Alias (remote) HPUXQMGR

«16¬ LU Name «5¬ HPUXLU

«17¬ Mode «17¬ #INTER

«18¬ CPI-C Name HPUXCPIC

«19¬ Partner TP Name «7¬ MQSERIES

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in Table 25 on page 243, as indicated.

«10¬ Connection GIS

«11¬ Remote Network Address «8¬ 10007038E86B

«12¬ Network Name «2¬ NETID

«13¬ Control Point Name «3¬ GISPU

«14¬ Remote Node ID «9¬ 03E 00018

«15¬ LU Alias (remote) GISQMGR

«16¬ LU Name «4¬ GISLU

«17¬ Mode «15¬ #INTER

«18¬ CPI-C Name GISCPIC

«19¬ Partner TP Name «5¬ MQSERIES

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 27 on page 257, as indicated.

«10¬ Connection SOLARIS

«11¬ Remote Network Address «5¬ 08002071CC8A

«12¬ Network Name «2¬ NETID

«13¬ Control Point Name «3¬ SOLARPU

«14¬ Remote Node ID «6¬ 05D 310D6

«15¬ LU Alias (remote) SOLARQMGR

«16¬ LU Name «7¬ SOLARLU

«17¬ Mode «17¬ #INTER

«18¬ CPI-C Name SOLCPIC

«19¬ Partner TP Name «8¬ MQSERIES

Connection to an AS/400 system

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

«10¬ Connection AS400

«11¬ Remote Network Address «4¬ 10005A5962EF

«12¬ Network Name «1¬ NETID

«13¬ Control Point Name «2¬ AS400PU

«14¬ Remote Node ID

«15¬ LU Alias (remote) AS400QMGR

«16¬ LU Name «3¬ AS400LU

«17¬ Mode «17¬ #INTER

«18¬ CPI-C Name AS4CPIC

«19¬ Partner TP Name «8¬ MQSERIES

Windows NT and LU 6.2

Chapter 12. Example configuration - IBM MQSeries for Windows NT 171

Table 16. Configuration worksheet for IBM Communications Server for Windows NT (continued)

ID Parameter Name Reference Example Used User Value

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 36 on page 396, as indicated.

«10¬ Connection MVS

«11¬ Remote Network Address «8¬ 400074511092

«12¬ Network Name «2¬ NETID

«13¬ Control Point Name «3¬ MVSPU

«14¬ Remote Node ID

«15¬ LU Alias (remote) MVSQMGR

«16¬ LU Name «4¬ MVSLU

«17¬ Mode «10¬ #INTER

«18¬ CPI-C Name MVSCPIC

«19¬ Partner TP Name «7¬ MQSERIES

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 44 on page 485, as indicated.

«10¬ Connection MVS

«11¬ Remote Network Address «5¬ 400074511092

«12¬ Network Name «1¬ NETID

«13¬ Control Point Name «2¬ VSEPU

«14¬ Remote Node ID

«15¬ LU Alias (remote) VSEQMGR

«16¬ LU Name «3¬ VSELU

«17¬ Mode #INTER

«18¬ CPI-C Name VSECPIC

«19¬ Partner TP Name «4¬ MQ01 MQ01

Explanation of terms
«1¬ Configuration Name

This is the name of the file in which the Communications Server
configuration is saved.

«2¬ Network Name
This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network name
works with the Control Point Name to uniquely identify a system. Your
network administrator will tell you the value.

«3¬ Control Point Name
In Advanced Peer-to-Peer® Networking (APPN)®, a control point is
responsible for managing a node and its resources. A control point is also a
logical unit (LU). The Control Point Name is the name of the LU and is
assigned to your system by the network administrator.

«4¬ Local Node ID (hex)
Some SNA products require partner systems to specify a node identifier
that uniquely identifies their workstation. The two systems exchange this
node identifier in a message unit called the exchange identifier (XID). Your
network administrator will assign this ID for you.

Windows NT and LU 6.2

172 MQSeries Intercommunication

«5¬ LU Name (local)
A logical unit (LU) is software that serves as an interface or translator
between a transaction program and the network. An LU manages the
exchange of data between transaction programs. The local LU Name is the
name of the LU on your workstation. Your network administrator will
assign this to you.

«6¬ LU Alias (local)
The name by which your local LU will be known to your applications. You
choose this name yourself. It can be 1-8 characters long.

«7¬ TP Name
MQSeries applications trying to converse with your workstation specify a
symbolic name for the program that is to start running. This will have
been defined on the channel definition at the sender. For simplicity,
wherever possible use a transaction program name of MQSERIES, or in the
case of a connection to VSE/ESA, where the length is limited to 4 bytes,
use MQTP.

See Table 12 on page 126 for more information.

«8¬ Command line
This is the path and name of the actual program to be run when a
conversation has been initiated with your workstation. The example shown
on the worksheet assumes that MQSeries is installed in the default
directory, c:\mqm. The configuration pairs this name with the symbolic
name «7¬ when you use TPSETUP (which is part of the SNA Server
software developers kit).

«9¬ LAN adapter address
This is the address of your token-ring card. To discover this type net
config server at a command prompt. The address appears in the output.
For example:
Server is active on 08005AA5FAB9

«10¬ Connection
This is a meaningful symbolic name by which the connection to a partner
node is known. It is used only within SNA Server administration and is
specified by you.

«15¬ LU Alias (remote)
This is a value known only in this server and is used to represent the fully
qualified partner LU name. You supply the value.

«17¬ Mode
This is the name given to the set of parameters that control the APPC
conversation. An entry with this name and a similar set of parameters
must be defined at each partner system. Your network administrator will
tell you this name.

«18¬ CPI-C Name
This is the name given to a locally held definition of a partner application.
You supply the name and it must be unique within this server. The name
is specified in the CONNAME attribute of the MQSeries sender channel
definition.

Windows NT and LU 6.2

Chapter 12. Example configuration - IBM MQSeries for Windows NT 173

Establishing an LU 6.2 connection
This section describes how to establish an LU 6.2 connection using IBM
Communications Server for Windows NT, Version 5.0. You may use any of the
supported LU 6.2 products for this platform. The panels of other products will not
be identical to those shown here, but most of their content will be similar.

Configuring the local node
To configure the local node, follow these steps:
1. From the Scenarios pull-down of the Communications Server SNA Node

Configuration window, select the CPI-C, APPC or 5250 Emulation scenario.

The CPI-C, APPC or 5250 Emulation scenario window is displayed.
2. Click on Configure Node, then click on New. The Define the Node property

sheet is displayed.

Using IBM Communications Server

174 MQSeries Intercommunication

3. In the Fully qualified CP name field on the Basic page, enter the unique ID of
the network to which you are connected («2¬) and the control point name («3¬).
Click on OK to continue.

4. From the SNA Node Configuration window, click on Configure Local LU 6.2,
then click on New. The Define a Local LU 6.2 window is displayed.

Using IBM Communications Server

Chapter 12. Example configuration - IBM MQSeries for Windows NT 175

5. In the Local LU name field on the Basic page, enter the name of the LU on
your workstation («5¬). In the Local LU alias field, enter the name by which
your local LU will be known to your applications («6¬). Click on OK to
continue.

Adding a connection
To add a connection, follow these steps:
1. From the SNA Node Configuration window, select Configure Devices, select

LAN as the DLC type, then click on New. The Define a LAN Device property
sheet is displayed.

2. If you have the LLC2 protocol installed with Communications Server for
Windows NT, the Adapter number list box lists the available LAN adapters.
See the help file INLLC40.HLP (Windows NT 4.0) or INLLC35.HLP (Windows
NT 3.51) in the Communications Server installation directory for LLC2
installation instructions.

3. The default values displayed on the Define a LAN Device Basic page may be
accepted. Click on OK to continue.

4. From the SNA Node Configuration window, select Configure Connections,
select LAN as the DLC type, then click on New. The Define a LAN Connection
property sheet is displayed.

Using IBM Communications Server

176 MQSeries Intercommunication

5. In the Destination address field on the Basic page, enter the LAN address of
the system to which you are connecting («11¬). Select the Advanced page.

6. In the Block ID field on the Advanced page, enter the local node ID (hex)
(«4¬). Select the Security page.

Using IBM Communications Server

Chapter 12. Example configuration - IBM MQSeries for Windows NT 177

7. In the Adjacent CP name field on the Security page, enter the network name
and control point name of the remote node («12¬ and «13¬). In the Adjacent CP
type field, enter APPN Node. You do not need to complete the Adjacent node ID
field for a peer-to-peer connection. Click on OK to continue. Take note of the
default link name used to identify this new definition (for example, LINK0000).

Adding a partner
To add a partner LU definition, follow these steps:
1. From the SNA Node Configuration window, select Configure Partner LU 6.2,

then click on New. The Define a Partner LU 6.2 property sheet is displayed.

2. In the Partner LU name field on the Basic page, enter the network name («12¬)
and LU name of the remote system («16¬). In the Partner LU alias field, enter
the remote LU alias («15¬). In the Fully qualified CP name fields, enter the
network name and control point name of the remote system («12¬ and «13¬).
Click on OK to continue.

Using IBM Communications Server

178 MQSeries Intercommunication

Adding a CPI-C entry
To add a CPI-C Side information entry, follow these steps:
1. From the SNA Node Configuration window, select Configure CPI-C Side

Information, then click on New. The Define a CPI-C Side Information property
sheet is displayed.

2. In the Symbolic destination name field of the Basic page, enter the CPI-C
name («18¬). In the Mode name field, enter the mode value («17¬). Enter either
a fully qualified partner LU name («12¬.«16¬) or a partner LU alias («15¬)
depending on what you choose in the CPI-C Side Information property sheet.
In the TP name field, enter the partner TP name («19¬). Click on OK to
continue.

Configuring an invokable TP
To add a Transaction Program (TP) definition, follow these steps:
1. From the SNA Node Configuration window, select Configure Transaction

Programs, then click on New. The Define a Transaction Program property sheet
is displayed.

Using IBM Communications Server

Chapter 12. Example configuration - IBM MQSeries for Windows NT 179

2. In the TP name field on the Basic page, enter the transaction program name
(«7¬). In the Complete pathname field, enter the actual path and name of the
the program that will be run when a conversation is initiated with your
workstation («8¬). When you are happy with the settings, click on OK to
continue.

3. In order to be able to stop the MQSeries Transaction Program, you need to start
it in one of the following ways:
a. Check Service TP on the Basic page. This starts the TP programs at

Windows NT startup and will run the programs under the system user ID.
b. Check Dynamically loaded on the Advanced page. This dynamically loads

and starts the programs as and when incoming SNA conversation requests
arrive. It will run the programs under the same user ID as the rest of
MQSeries.

Note: To use dynamic loading, it is necessary to vary the user ID under
which the MQSeries SNA Transaction program runs. To do this, set
the Attach Manager to run under the desired user context by
modifying the startup parameters within the Control Panel in the
Services applet for the AppnNode service.

c. Issue the MQSeries command, runmqlsr, to run the channel listener process.

Communications Server has a tuning parameter called the Receive_Allocate
timeout parameter that is set in the Transaction Program. The default value of this
parameter is 3600 and this indicates that the listener will only remain active for
3600 seconds, that is, 1 hour. You can make your listener run for longer than this
by increasing the value of the Receive_Allocate timeout parameter. You can also
make it run ‘forever’ by specifying zero.

Using IBM Communications Server

180 MQSeries Intercommunication

What next?
The SNA configuration task is complete. From the File pull-down, select Save and
specify a file name under which to save your SNA configuration information, for
example, NTCONFIG («1¬). When prompted, select this configuration as the
default.

From the SNA Node Operations application, start the node by clicking the Start
node button on the toolbar. Specify the file name of the configuration you just
saved. (It should appear in the file-name box by default, because you identified it
as your default configuration.) When the node startup is complete, ensure that
your link to the remote node has been established by selecting the Connections
button on the toolbar, then find the link name you configured (for example,
LINK0000). The link should be active if the remote node is active waiting for the
link to be established.

A complementary SNA setup process is required on the node to which you are
connecting before you can attempt MQSeries server-to-server message
transmissions.

The LU 6.2 connection is now established. You are ready to complete the
configuration. Go to “MQSeries for Windows NT configuration” on page 184.

Establishing a TCP connection
The TCP stack that is shipped with Windows NT does not include an inet daemon
or equivalent.

The MQSeries command used to start a TCP listener is:
runmqlsr -t tcp

The listener must be started explicitly before any channels are started.

What next?
When the TCP/IP connection is established, you are ready to complete the
configuration. Go to “MQSeries for Windows NT configuration” on page 184.

Establishing a NetBIOS connection
A NetBIOS connection is initiated from a queue manager that uses the
ConnectionName parameter on its channel definition to connect to a target listener.
To set up a NetBIOS connection, follow these steps:
1. At each end of the channel specify the local NetBIOS name to be used by the

MQSeries channel processes, in the Windows NT registry or in the queue
manager configuration file qm.ini. For example, the NETBIOS stanza in the
Windows NT registry at the sending end might look like this:
NETBIOS:
LocalName=WNTNETB1

and at the receiving end:
NETBIOS:
LocalName=WNTNETB2

Each MQSeries process must use a different local NetBIOS name. Do not use
your machine name as the NetBIOS name because Windows NT already uses it.

Using IBM Communications Server

Chapter 12. Example configuration - IBM MQSeries for Windows NT 181

2. At each end of the channel, verify the LAN adapter number being used on
your system. The MQSeries for Windows NT default for logical adapter
number 0 is NetBIOS running over a TCP/IP network. To use native NetBIOS
you need to select logical adapter number 1. See “Establishing the LAN adapter
number” on page 130.
Specify the correct LAN adapter number in the NETBIOS stanza of the the
Windows NT registry. For example:
NETBIOS:
AdapterNum=1

3. So that sender channel initiation will work, specify the local NetBIOS name via
the MQNAME environment variable:
SET MQNAME=WNTNETB1I

This name must be unique.
4. At the sending end, define a channel specifying the NetBIOS name being used

at the other end of the channel. For example:
DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(SDR) +

TRPTYPE(NETBIOS) +
CONNAME(WNTNETB2) +
XMITQ(OS2) +
MCATYPE(THREAD) +
REPLACE

You must specify the option MCATYPE(THREAD) because, on Windows NT, sender
channels must be run as threads.

5. At the receiving end, define the corresponding receiver channel. For example:
DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(RCVR) +

TRPTYPE(NETBIOS) +
REPLACE

6. Start the channel initiator because each new channel is started as a thread
rather than as a new process.
runmqchi

7. At the receiving end, start the MQSeries listener:
runmqlsr -t netbios

Optionally you may specify values for the queue manager name, NetBIOS local
name, number of sessions, number of names, and number of commands. See
“Defining a NetBIOS connection” on page 128 for more information about
setting up NetBIOS connections.

Establishing an SPX connection
This section discusses the following topics:
v IPX/SPX parameters
v SPX addressing
v Receiving on SPX

IPX/SPX parameters
Please refer to the Microsoft documentation for full details of the use and setting of
the NWLink IPX and SPX parameters. The IPX/SPX parameters are in the
following paths in the registry:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

Windows NT and NetBIOS

182 MQSeries Intercommunication

SPX addressing
MQSeries uses the SPX address of each machine to establish connectivity. The SPX
address is specified in the following form:

network.node(socket)

where
network

Is the 4-byte network address of the network on which the remote machine
resides,

node Is the 6-byte node address, which is the LAN address of the LAN adapter
in the remote machine

socket Is the 2-byte socket number on which the remote machine will listen.

The default socket number used by MQSeries is 5E86. You can change the default
socket number by specifying it in the the Windows NT registry or in the queue
manager configuration file qm.ini. If you have taken the default options for
installation, the qm.ini file for queue manager OS2 is found in c:\mqm\qmgs\os2.
The lines in the Windows NT registry might read:
SPX:
SOCKET=n

For more information about values you can set in qm.ini, see “Appendix D.
Configuration file stanzas for distributed queuing” on page 637.

The SPX address is later specified in the CONNAME parameter of the sender
channel definition. If the MQSeries systems being connected reside on the same
network, the network address need not be specified. Similarly, if the remote system
is listening on the default socket number (5E86), it need not be specified. A fully
qualified SPX address in the CONNAME parameter would be:
CONNAME('network.node(socket)')

but if the systems reside on the same network and the default socket number is
used, the parameter would be:
CONNAME(node)

A detailed example of the channel configuration parameters is given in “MQSeries
for Windows NT configuration” on page 184.

Receiving on SPX
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect incoming
network requests and start the associated channel.

You should use the MQSeries listener.

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:
RUNMQLSR -t spx

Optionally you may specify the queue manager name or the socket number if you
are not using the defaults.

Windows NT and SPX

Chapter 12. Example configuration - IBM MQSeries for Windows NT 183

MQSeries for Windows NT configuration
Notes:

1. You can use the sample program, AMQSBCG, to display the contents and
headers of all the messages in a queue. For example:
AMQSBCG q_name qmgr_name

displays the contents of the queue q_name defined in queue manager qmgr_name.

Alternatively, you can use the message browser in the MQSeries Explorer.
2. The MQSeries command used to start the TCP/IP listener is:

runmqlsr -t tcp

The listener enables receiver channels to start automatically in response to a
start request from an inbound sender channel.

3. You can start any channel from the command prompt using the command
runmqchl -c channel.name

4. Error logs can be found in the directories \mqm\qmgrs\qmgrname\errors and
\mqm\qmgrs\@system\errors. In both cases, the most recent messages are at
the end of amqerr01.log.

5. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

Default configuration
You can create a default configuration by using either the First Steps application or
the MQSeries Postcard application to guide you through the process. For
information about this, see the MQSeries System Administration book.

Basic configuration
You can create and start a queue manager from the MQSeries Explorer or from the
command prompt.

If you choose the command prompt:
1. Create the queue manager using the command:

crtmqm -u dlqname -q winnt

where:

winnt Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname
Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.
2. Start the queue manager using the command:

strmqm winnt

where winnt is the name given to the queue manager when it was created.

Windows NT configuration

184 MQSeries Intercommunication

Channel configuration
The following sections detail the configuration to be performed on the Windows
NT queue manager to implement the channel described in Figure 32 on page 97.

In each case the MQSC command is shown. Either start runmqsc from a command
prompt and enter each command in turn, or build the commands into a command
file.

Examples are given for connecting MQSeries for Windows NT and MQSeries for
OS/2 Warp. If you wish to connect to another MQSeries product use the
appropriate set of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects
throughout this book. All others are keywords and should be entered as
shown.

Table 17. Configuration worksheet for MQSeries for Windows NT

Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name WINNT

«B¬ Local queue name WINNT.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 164, as indicated.

«C¬ Remote queue manager name «A¬ OS2

«D¬ Remote queue name OS2.REMOTEQ

«E¬ Queue name at remote system «B¬ OS2.LOCALQ

«F¬ Transmission queue name OS2

«G¬ Sender (SNA) channel name WINNT.OS2.SNA

«H¬ Sender (TCP/IP) channel name WINNT.OS2.TCP

«I¬ Receiver (SNA) channel name «G¬ OS2.WINNT.SNA

«J¬ Receiver (TCP) channel name «H¬ OS2.WINNT.TCP

«K¬ Sender (NetBIOS) channel name WINNT.OS2.NET

«L¬ Sender (SPX) channel name WINNT.OS2.SPX

«M¬ Receiver (NetBIOS) channel name «K¬ OS2.WINNT.NET

«N¬ Receiver (SPX) channel name «L¬ OS2.WINNT.SPX

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 211, as indicated.

«C¬ Remote queue manager name «A¬ AIX

«D¬ Remote queue name AIX.REMOTEQ

«E¬ Queue name at remote system «B¬ AIX.LOCALQ

«F¬ Transmission queue name AIX

«G¬ Sender (SNA) channel name WINNT.AIX.SNA

«H¬ Sender (TCP) channel name WINNT.AIX.TCP

«I¬ Receiver (SNA) channel name «G¬ AIX.WINNT.SNA

«J¬ Receiver (TCP) channel name «H¬ AIX.WINNT.TCP

Connection to MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

The values in this section of the table must match those used in Table 22 on page 216, as indicated.

Windows NT configuration

Chapter 12. Example configuration - IBM MQSeries for Windows NT 185

|

|

Table 17. Configuration worksheet for MQSeries for Windows NT (continued)

Parameter Name Reference Example Used User Value

«C¬ Remote queue manager name «A¬ DECUX

«D¬ Remote queue name DECUX.REMOTEQ

«E¬ Queue name at remote system «B¬ DECUX.LOCALQ

«F¬ Transmission queue name DECUX

«H¬ Sender (TCP) channel name DECUX.WINNT.TCP

«J¬ Receiver (TCP) channel name «H¬ WINNT.DECUX.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 24 on page 239, as indicated.

«C¬ Remote queue manager name «A¬ HPUX

«D¬ Remote queue name HPUX.REMOTEQ

«E¬ Queue name at remote system «B¬ HPUX.LOCALQ

«F¬ Transmission queue name HPUX

«G¬ Sender (SNA) channel name WINNT.HPUX.SNA

«H¬ Sender (TCP) channel name WINNT.HPUX.TCP

«I¬ Receiver (SNA) channel name «G¬ HPUX.WINNT.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ HPUX.WINNT.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 26 on page 253, as indicated.

«C¬ Remote queue manager name «A¬ GIS

«D¬ Remote queue name GIS.REMOTEQ

«E¬ Queue name at remote system «B¬ GIS.LOCALQ

«F¬ Transmission queue name GIS

«G¬ Sender (SNA) channel name WINNT.GIS.SNA

«H¬ Sender (TCP/IP) channel name WINNT.GIS.TCP

«I¬ Receiver (SNA) channel name «G¬ GIS.WINNT.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ GIS.WINNT.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

«C¬ Remote queue manager name SOLARIS

«D¬ Remote queue name SOLARIS.REMOTEQ

«E¬ Queue name at remote system «B¬ SOLARIS.LOCALQ

«F¬ Transmission queue name SOLARIS

«G¬ Sender (SNA) channel name WINNT.SOLARIS.SNA

«H¬ Sender (TCP) channel name WINNT.SOLARIS.TCP

«I¬ Receiver (SNA) channel name «G¬ SOLARIS.WINNT.SNA

«J¬ Receiver (TCP) channel name «H¬ SOLARIS.WINNT.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 43 on page 472, as indicated.

«C¬ Remote queue manager name AS400

«D¬ Remote queue name AS400.REMOTEQ

«E¬ Queue name at remote system «B¬ AS400.LOCALQ

«F¬ Transmission queue name AS400

«G¬ Sender (SNA) channel name WINNT.AS400.SNA

«H¬ Sender (TCP) channel name WINNT.AS400.TCP

Windows NT configuration

186 MQSeries Intercommunication

|||||

|||||

|||||

|||||

|||||

|||||

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 17. Configuration worksheet for MQSeries for Windows NT (continued)

Parameter Name Reference Example Used User Value

«I¬ Receiver (SNA) channel name «G¬ AS400.WINNT.SNA

«J¬ Receiver (TCP) channel name «H¬ AS400.WINNT.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 37 on page 406, as indicated.

«C¬ Remote queue manager name MVS

«D¬ Remote queue name MVS.REMOTEQ

«E¬ Queue name at remote system «B¬ MVS.LOCALQ

«F¬ Transmission queue name MVS

«G¬ Sender (SNA) channel name WINNT.MVS.SNA

«H¬ Sender (TCP) channel name WINNT.MVS.TCP

«I¬ Receiver (SNA) channel name «G¬ MVS.WINNT.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ MVS.WINNT.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 45 on page 490, as indicated.

«C¬ Remote queue manager name VSE

«D¬ Remote queue name VSE.REMOTEQ

«E¬ Queue name at remote system «B¬ VSE.LOCALQ

«F¬ Transmission queue name VSE

«G¬ Sender channel name WINNT.VSE.SNA

«I¬ Receiver channel name «G¬ VSE.WINNT.SNA

MQSeries for Windows NT sender-channel definitions using SNA
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (WINNT.OS2.SNA) chltype(sdr) + «G¬
trptype(lu62) +
conname(OS2CPIC) + «18¬
xmitq(OS2) + «F¬
replace

MQSeries for Windows NT receiver-channel definitions using
SNA
def ql (WINNT.LOCALQ) replace «B¬

def chl (OS2.WINNT.SNA) chltype(rcvr) + «I¬
trptype(lu62) +
replace

Windows NT configuration

Chapter 12. Example configuration - IBM MQSeries for Windows NT 187

|||||

|||||

MQSeries for Windows NT sender-channel definitions using
TCP/IP
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (WINNT.OS2.TCP) chltype(sdr) + «H¬
trptype(tcp) +
conname(remote_tcpip_hostname) +
xmitq(OS2) + «F¬
replace

MQSeries for Windows NT receiver-channel definitions using
TCP
def ql (WINNT.LOCALQ) replace «B¬

def chl (OS2.WINNT.TCP) chltype(rcvr) + «J¬
trptype(tcp) +
replace

MQSeries for Windows NT sender-channel definitions using
NetBIOS
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (WINNT.OS2.NET) chltype(sdr) + «K¬
trptype(netbios) +
conname(remote_system_NetBIOS_name) +
xmitq(OS2) + «F¬
replace

MQSeries for Windows NT receiver-channel definitions using
NetBIOS
def ql (WINNT.LOCALQ) replace «B¬

def chl (OS2.WINNT.NET) chltype(rcvr) + «M¬
trptype(tcp) +
replace

MQSeries for Windows NT sender-channel definitions using SPX
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (WINNT.OS2.SPX) chltype(sdr) + «L¬

Windows NT configuration

188 MQSeries Intercommunication

trptype(spx) +
conname('network.node(socket)') +
xmitq(OS2) + «F¬
replace

MQSeries for Windows NT receiver-channel definitions using
SPX
def ql (WINNT.LOCALQ) replace «B¬

def chl (OS2.WINNT.SPX) chltype(rcvr) + «N¬
trptype(tcp) +
replace

Automatic startup
MQSeries for Windows NT allows you to automate the startup of a queue manager
and its channel initiator, channels, listeners, and command servers. Use the IBM
MQSeries Services snap-in to define the services for the queue manager. When you
have successfully completed testing of your communications setup, set the relevant
services to automatic within the snap-in. This file can be read by the supplied
MQSeries service when the system is started.

For more information about this, see the MQSeries System Administration book.

Running channels as processes or threads
MQSeries for Windows NT provides the flexibility to run sender channels as
Windows NT processes or Windows NT threads. This is specified in the MCATYPE
parameter on the sender channel definition. Each installation should select the type
appropriate for their application and configuration. Factors affecting this choice are
discussed below.

Most installations will select to run their sender channels as threads, because the
virtual and real memory required to support a large number of concurrent channel
connections will be reduced. When the MQSeries listener process (started via the
RUNMQLSR command) exhausts the available private memory needed, an
additional listener process will need to be started to support more channel
connections. When each channel runs as a process, additional processes are
automatically started, avoiding the out-of-memory condition.

If all channels are run as threads under one MQSeries listener, a failure of the
listener for any reason will cause all channel connections to be temporarily lost.
This can be prevented by balancing the threaded channel connections across two or
more listener processes, thus enabling other connections to keep running. If each
sender channel is run as a separate process, the failure of the listener for that
process will affect only that specific channel connection.

A NetBIOS connection needs a separate process for the Message Channel Agent.
Therefore, before you can issue a START CHANNEL command, you must start the
channel initiator, or you may start a channel using the RUNMQCHL command.

Windows NT configuration

Chapter 12. Example configuration - IBM MQSeries for Windows NT 189

DQM in distributed platforms

190 MQSeries Intercommunication

Chapter 13. Setting up communication in UNIX systems

DQM is a remote queuing facility for MQSeries. It provides channel control
programs for the queue manager which form the interface to communication links,
controllable by the system operator. The channel definitions held by
distributed-queuing management use these connections.

When a distributed-queuing management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this. You may also find it helpful to refer to the following chapters:
v “Chapter 14. Example configuration - IBM MQSeries for AIX” on page 197
v “Chapter 15. Example configuration - IBM MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX)” on page 215
v “Chapter 16. Example configuration - IBM MQSeries for HP-UX” on page 219
v “Chapter 17. Example configuration - IBM MQSeries for AT&T GIS UNIX

Version 2.2” on page 243
v “Chapter 18. Example configuration - IBM MQSeries for Sun Solaris” on

page 257

For OS/2 and Windows NT, see “Chapter 10. Setting up communication for OS/2
and Windows NT” on page 123. For Digital OpenVMS, see “Chapter 19. Setting up
communication in Digital OpenVMS systems” on page 277. For Tandem NSK, see
“Chapter 20. Setting up communication in Tandem NSK” on page 289.

Deciding on a connection
There are three forms of communication for MQSeries on UNIX systems:
v TCP
v LU 6.2
v UDP (MQSeries for AIX only)

Each channel definition must specify one only as the transmission protocol
(Transport Type) attribute. One or more protocols may be used by a queue
manager.

For MQSeries clients, it may be useful to have alternative channels using different
transmission protocols. See the MQSeries Clients book.

Defining a TCP connection
The channel definition at the sending end specifies the address of the target. The
inetd daemon is configured for the connection at the receiving end.

Sending end
Specify the host name, or the TCP address of the target machine, in the Connection
Name field of the channel definition. The port to connect to will default to 1414.
Port number 1414 is assigned by the Internet Assigned Numbers Authority to
MQSeries.

© Copyright IBM Corp. 1993, 2000 191

|
|

To use a port number other than the default, change the connection name field
thus:
Connection Name REMHOST(1822)

where REMHOST is the hostname of the remote machine and 1822 is the port number
required. (This must be the port that the listener at the receiving end is listening
on.)

Alternatively you can change the port number by specifying it in the queue
manager configuration file (qm.ini):
TCP:
Port=1822

For more information about the values you set using QM.INI, see “Appendix D.
Configuration file stanzas for distributed queuing” on page 637.

Receiving on TCP
You should use either the TCP/IP listener (INETD) or the MQSeries listener.

Using the TCP/IP listener
To use INETD to start channels on UNIX, two files must be configured:
1. Add a line in the /etc/services file:

MQSeries 1414/tcp

where 1414 is the port number required by MQSeries.

Note: To edit the /etc/services file, you must be logged in as a superuser or
root. You can change this, but it must match the port number specified at
the sending end.

2. Add a line in the inetd.conf file to call the program amqcrsta:
MQSeries stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta
[-m Queue_Man_Name]

The updates are active after inetd has reread the configuration files. To do this,
issue the following commands from the root user ID:
v On AIX:

refresh -s inetd

v On HP-UX:
inetd -c

v On other UNIX systems:
kill -1 <process number>

When the listener program started by INETD inherits the locale from INETD, it is
possible that the MQMDE will not be honored and will be placed on the queue as
message data. To ensure that the MQMDE is honored (merged), you must set the
locale correctly. The locale set by INETD may not match that chosen for other
locales used by MQSeries processes. To set the locale:
1. Create a shell script which sets the locale environment variables LANG,

LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME, and
LC_MESSAGES to the locale used for other MQSeries process.

2. In the same shell script, call the listener program.
3. Modify the inetd.conf file to call your shell script in place of the listener

program.

Defining a TCP connection

192 MQSeries Intercommunication

|
|
|
|
|

|
|
|

|

|
|

It is possible to have more than one queue manager on the server machine. You
must add a line to each of the two files, as above, for each of the queue managers.
For example:
MQSeries1 1414/tcp
MQSeries2 1822/tcp

MQSeries2 stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta -m QM2

This avoids error messages being generated if there is a limitation on the number
of outstanding connection requests queued at a single TCP port. For information
about the number of outstanding connection requests, see “Using the TCP listener
backlog option”.

Using the TCP listener backlog option
When receiving on TCP, a maximum number of outstanding connection requests is
set. This can be considered a backlog of requests waiting on the TCP port for the
listener to accept the request. The default listener backlog values are shown in
Table 18.

Table 18. Default outstanding connection requests

Platform Default listener backlog value

AIX V4.2 or later 100

AIX V4.1 10

HP-UX 20

Sun Solaris 100

All others 5

If the backlog reaches the values shown in Table 18, the TCP/IP connection is
rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state and
retrying the connection at a later time.

For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
reason code from MQCONN and should retry the connection at a later time.

However, to avoid this error, you can add an entry in the qm.ini file:
TCP:
ListenerBacklog = n

This overrides the default maximum number of outstanding requests (see Table 18)
for the TCP/IP listener.

Note: Some operating systems support a larger value than the default. If necessary,
this can be used to avoid reaching the connection limit.

To run the listener with the backlog option switched on, use the RUNMQLSR -B
command. For information about the RUNMQLSR command, see the MQSeries System
Administration book.

Using the MQSeries listener
To run the listener supplied with MQSeries, which starts new channels as threads,
use the runmqlsr command. For example:
runmqlsr -t tcp [-m QMNAME] [-p 1822]

Defining a TCP connection

Chapter 13. Setting up communication in UNIX systems 193

The square brackets indicate optional parameters; QMNAME is not required for the
default queue manager, and the port number is not required if you are using the
default (1414).

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page 121.
See the MQSeries Application Programming Guide for information about trusted
applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:
endmqlsr [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

Using the TCP/IP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page 66) you must the add the
following entry to your queue manager configuration file (QM.INI) or the
Windows NT registry:
TCP:

KeepAlive=yes

On some UNIX systems, you can define how long TCP waits before checking that
the connection is still available, and how frequently it retries the connection if the
first check fails. This is either a kernel tunable parameter, or can be entered at the
command line. See the documentation for your UNIX system for more information.

On MQSeries for SINIX and DC/OSx you can set the TCP keepalive parameters by
using the idtune and idbuild commands to modify the TCP_KEEPCNT and
TCP_KEEPINT values for the kernel configuration. The default configuration is to
retry 7 times at 7200 second (2 hourly) intervals.

Defining an LU 6.2 connection
SNA must be configured so that an LU 6.2 conversation can be established
between the two machines.

See the Multiplatform APPC Configuration Guide and the following table for
information.

Table 19. Settings on the local UNIX system for a remote queue manager platform

Remote platform TPNAME TPPATH

OS/390 or
MVS/ESA
without CICS

The same as the corresponding
TPName in the side information on
the remote queue manager.

-

OS/390 or
MVS/ESA using
CICS

CKRC (sender) CKSV (requester)
CKRC (server)

-

OS/400 The same as the compare value in
the routing entry on the OS/400
system.

-

Defining a TCP connection

194 MQSeries Intercommunication

Table 19. Settings on the local UNIX system for a remote queue manager
platform (continued)

Remote platform TPNAME TPPATH

OS/2 As specified in the OS/2 Run
Listener command, or defaulted
from the OS/2 queue manager
configuration file.

<drive>:\mqm\bin\amqcrs6a

UNIX systems The same as the corresponding
TPName in the side information on
the remote queue manager.

mqmtop/bin/amqcrs6a

Windows NT As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup on
Windows NT.

<drive>:\mqm\bin\amqcrs6a

If you have more than one queue manager on the same machine, ensure that the
TPnames in the channel definitions are unique.

Sending end
v On UNIX systems other than SINIX, and DC/OSx, create a CPI-C side object

(symbolic destination) and enter this name in the Connection name field in the
channel definition. Also create an LU 6.2 link to the partner.
In the CPI-C side object enter the partner LU name at the receiving machine, the
transaction program name and the mode name. For example:
Partner LU Name REMHOST
Remote TP Name recv
Service Transaction Program no
Mode Name #INTER

On HP-UX, use the APPCLLU environment variable to name the local LU that
the sender should use. On Sun Solaris, set the APPC_LOCAL_LU environment
variable to be the local LU name.

SECURITY PROGRAM is used, where supported by CPI-C, when MQSeries
attempts to establish an SNA session.

v On SINIX, create an XSYMDEST entry in SNA configuration file (the TRANSIT
KOGS file), for example:
XSYMDEST sendMP01,

RLU = forties,
MODE = MODE1,
TP = recvMP01,
TP-TYP = USER,
SEC-TYP = NONE

See the MQSeries for SINIX and DC/OSx System Management Guide for more
information about the TRANSIT KOGS file.

v On DC/OSx, create an entry in the /etc/opt/lu62/cpic_cfg file, for example:
sendMP01 <local LU name> <remote LU name> <mode name> <remote TP name>

Receiving on LU 6.2
v On UNIX systems other than SINIX, and DC/OSx, create a listening attachment

at the receiving end, an LU 6.2 logical connection profile, and a TPN profile.

Defining an LU 6.2 connection

Chapter 13. Setting up communication in UNIX systems 195

In the TPN profile, enter the full path to the executable and the Transaction
Program name:
Full path to TPN executable mqmtop/bin/amqcrs6a
Transaction Program name recv
User ID 0

On systems where you can set the User ID, you should specify a user who is a
member of the mqm group. On HP-UX, set the APPCTPN (transaction name)
and APPCLLU (local LU name) environment variables (you can use the
configuration panels for the invoked transaction program). On Sun Solaris, set
the APPC_LOCAL_LU environment variable to be the local LU name.

On Sun Solaris, amqcrs6a requires the option -n tp_name, where tp_name is the
TP name on the receiving end of the SNA connection. It is the value of the
tp_path variable in the SunLink configuration file.

You may need to use a queue manager other than the default queue manager. If
so, define a command file that calls:
amqcrs6a -m Queue_Man_Name

then call the command file. On AIX, this only applies up to version 3.2.5; for
later versions, use the TPN profile parameters as follows:
Use Command Line Parameters ? yes
Command Line Parameters -m Queue_Man_Name

v On SINIX, create an XTP entry in the SNA configuration file (the TRANSIT
KOGS file), for example:
XTP recvMP01,

UID = abcdefgh,
TYP = USER,
PATH = /home/abcdefgh/recvMP01.sh,
SECURE = NO

Where /home/abcdefgh/recvMP01.sh is a file that contains:
#!/bin/sh
#
script to start the receiving side for the qmgr MP01
#
exec /opt/mqm/bin/amqcrs6a -m <queue manager>

See the MQSeries for SINIX and DC/OSx System Management Guide for more
information about the TRANSIT KOGS file.

v On DC/OSx, add a Transaction Program entry to the SNA configuration file,
including the following information:
TRANSACTION PROGRAM

transaction programname (ebcdic): recvMP04
transaction program execute name:

'home/abcdefgh/recvMP04.sh
tp is enabled
tp supports basic conversations
tp supports mapped conversations
tp supports confirm synchronization
tp supports no synchronization
no verification is required
number of pip fields required: 0
privilege mask (hex): 0

(no privileges)

Defining an LU 6.2 connection

196 MQSeries Intercommunication

Chapter 14. Example configuration - IBM MQSeries for AIX

This chapter gives an example of how to set up communication links from
MQSeries for AIX to MQSeries products on the following platforms:
v OS/2
v Windows NT
v Digital UNIX
v HP-UX
v AT&T GIS UNIX3

v Sun Solaris
v OS/400
v OS/390 or MVS/ESA without CICS
v VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it describes
“Establishing a TCP connection” on page 209 and “Establishing a UDP connection”
on page 209.

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for AIX configuration” on
page 209.

See “Chapter 7. Example configuration chapters in this book” on page 97 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 20 presents a worksheet listing all the parameters needed to set up
communication from AIX to one of the other MQSeries platforms. The worksheet
shows examples of the parameters, which have been tested in a working
environment, and leaves space for you to fill in your own values. An explanation
of the parameter names follows the worksheet. Use the worksheet in this chapter
in conjunction with the worksheet in the chapter for the platform to which you are
connecting.

Configuration worksheet
Use the following worksheet to record the values you will use for this
configuration. Where numbers appear in the Reference column they indicate that
the value must match that in the appropriate worksheet elsewhere in this book.
The examples that follow in this chapter refer back to the values in the ID column
of this table. The entries in the Parameter Name column are explained in
“Explanation of terms” on page 200.

Table 20. Configuration worksheet for Communications Server for AIX

ID Parameter Name Reference Example User Value

Parameters for local node

«1¬ Network name NETID

«2¬ Control Point name AIXPU

«3¬ Node ID 07123456

3. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993, 2000 197

|

|

Table 20. Configuration worksheet for Communications Server for AIX (continued)

ID Parameter Name Reference Example User Value

«4¬ Local LU name AIXLU

«5¬ Local LU alias AIXQMGR

«6¬ TP Name MQSERIES

«7¬ Full path to TP executable usr/lpp/mqm/bin/amqcrs6a

«8¬ Token-ring adapter address 123456789012

«9¬ Mode name #INTER

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 138, as indicated.

«10¬ Network name «2¬ NETID

«11¬ Remote LU name «6¬ OS2LU

«12¬ Remote Transaction Program name «8¬ MQSERIES

«13¬ LU 6.2 CPI-C Side Information profile
name

OS2CPIC

«14¬ Mode name «17¬ #INTER

«15¬ LAN destination address «10¬ 10005AFC5D83

«16¬ Token-Ring Link Station profile name OS2PRO

«17¬ CP name of adjacent node «3¬ OS2PU

«18¬ LU 6.2 partner location profile name OS2LOCPRO

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 170, as indicated.

«10¬ Network name «2¬ NETID

«11¬ Remote LU name «5¬ WINNTLU

«12¬ Remote Transaction Program name «7¬ MQSERIES

«13¬ LU 6.2 CPI-C Side Information profile
name

NTCPIC

«14¬ Mode name «17¬ #INTER

«15¬ LAN destination address «9¬ 08005AA5FAB9

«16¬ Token-Ring Link Station profile name NTPRO

«17¬ CP name of adjacent node «3¬ WINNTCP

«18¬ LU 6.2 partner LU profile name NTLUPRO

Connection to an HP-UX system

The values in this section of the table must match those used in Table 23 on page 219, as indicated.

«10¬ Network name «4¬ NETID

«11¬ Remote LU name «5¬ HPUXLU

«12¬ Remote Transaction Program name «7¬ MQSERIES

«13¬ LU 6.2 CPI-C Side Information profile
name

HPUXCPIC

«14¬ Mode name «6¬ #INTER

«15¬ LAN destination address «8¬ 100090DC2C7C

«16¬ Token-Ring Link Station profile name HPUXPRO

«17¬ CP name of adjacent node «2¬ HPUXPU

«18¬ LU 6.2 partner LU profile name HPUXLUPRO

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in Table 25 on page 243, as indicated.

AIX and LU 6.2

198 MQSeries Intercommunication

Table 20. Configuration worksheet for Communications Server for AIX (continued)

ID Parameter Name Reference Example User Value

«10¬ Network name «2¬ NETID

«11¬ Remote LU name «4¬ GISLU

«12¬ Remote Transaction Program name «5¬ MQSERIES

«13¬ LU 6.2 CPI-C Side Information profile
name

GISCPIC

«14¬ Mode name «7¬ #INTER

«15¬ LAN destination address «8¬ 10007038E86B

«16¬ Token-Ring Link Station profile name GISPRO

«17¬ CP name of adjacent node «3¬ GISPU

«18¬ LU 6.2 partner LU profile name GISLUPRO

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 27 on page 257, as indicated.

«10¬ Network name «2¬ NETID

«11¬ Remote LU name «7¬ SOLARLU

«12¬ Remote Transaction Program name «8¬ MQSERIES

«17¬ LU 6.2 CPI-C Side Information profile
name

SOLCPIC

«14¬ Mode name «17¬ #INTER

«5¬ LAN destination address «5¬ 08002071CC8A

«16¬ Token-Ring Link Station profile name SOLPRO

«17¬ CP name of adjacent node «3¬ SOLARPU

«18¬ LU 6.2 partner LU profile name SOLLUPRO

Connection to an AS/400 system

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

«10¬ Network name «1¬ NETID

«11¬ Remote LU name «3¬ AS400LU

«12¬ Remote Transaction Program name «8¬ MQSERIES

«13¬ LU 6.2 CPI-C Side Information profile
name

AS4CPIC

«14¬ Mode name «17¬ #INTER

«15¬ LAN destination address «4¬ 10005A5962EF

«16¬ Token-Ring Link Station profile name AS4PRO

«17¬ CP name of adjacent node «2¬ AS400PU

«18¬ LU 6.2 partner LU profile name AS4LUPRO

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 36 on page 396, as indicated.

«10¬ Network name «2¬ NETID

«11¬ Remote LU name «3¬ MVSLU

«12¬ Remote Transaction Program name «7¬ MQSERIES

«13¬ LU 6.2 CPI-C Side Information profile
name

MVSCPIC

«14¬ Mode name «10¬ #INTER

«15¬ LAN destination address «8¬ 400074511092

«16¬ Token-Ring Link Station profile name MVSPRO

«17¬ CP name of adjacent node «3¬ MVSPU

AIX and LU 6.2

Chapter 14. Example configuration - IBM MQSeries for AIX 199

Table 20. Configuration worksheet for Communications Server for AIX (continued)

ID Parameter Name Reference Example User Value

«18¬ LU 6.2 partner LU profile name MVSLUPRO

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 44 on page 485, as indicated.

«10¬ Network name «1¬ NETID

«11¬ Remote LU name «3¬ VSELU

«12¬ Remote Transaction Program name «4¬ MQ01

«13¬ LU 6.2 CPI-C Side Information profile
name

VSECPIC

«14¬ Mode name #INTER

«15¬ LAN destination address «5¬ 400074511092

«16¬ Token-Ring Link Station profile name VSEPRO

«17¬ CP name of adjacent node «2¬ VSEPU

«18¬ LU 6.2 partner LU profile name VSELUPRO

Explanation of terms
«1¬Network name

This is the unique ID of the network to which you are connected. Your
network administrator will tell you this value.

«2¬ Control Point name
This is a unique control point name for this workstation. Your network
administrator will assign this to you.

«3¬ XID node ID
This is a unique identifier for this workstation. On other platforms it is
often referred to as the exchange ID (XID). Your network administrator will
assign this to you.

«4¬ Local LU name
A logical unit (LU) manages the exchange of data between systems. The
local LU name is the name of the LU on your system. Your network
administrator will assign this to you.

«5¬ Local LU alias
The local LU alias is the name by which your local LU is known to your
applications. You can choose this name yourself. It need be unique only on
this machine.

«6¬ TP Name
MQSeries applications trying to converse with this workstation will specify
a symbolic name for the program to be run at the receiving end. This will
have been defined on the channel definition at the sender. It is
recommended that when AIX is the receiver a Transaction Program Name
of MQSERIES is used, or in the case of a connection to VSE/ESA, where
the length is limited to 4 bytes, use MQTP.

See Table 19 on page 194 for more information.

«7¬ Full path to TP executable
This is the path and name of a shell script file that invokes the actual
program to be run when a conversation is initiated with this workstation.
You can choose the path and name of the script file. The contents of the
file are illustrated in “MQSeries for AIX TPN setup” on page 213.

AIX and LU 6.2

200 MQSeries Intercommunication

«8¬ Token-ring adapter address
This is the 12-character hex address of the token-ring card. It can be found
by entering the AIX command:
lsfg -v -l tokn

where n is the number assigned to the token-ring adapter you are using.
The Network Address field of the Token-Ring section indicates the
adapter’s address.

«9¬ Mode name
This is the name of a configuration profile used by Communications Server
for AIX. The profile contains the set of parameters that control the APPC
conversation. The mode name specified in the profile will be assigned to
you by your network administrator. You supply the name to be used for
the profile.

«13¬ LU 6.2 CPI-C Side Information profile name
This is a name given to the Side Information profile defining a partner
node. You supply the name. It needs to be unique only on this machine.
You will later use the name in the MQSeries sender channel definition.

«16¬ Token-Ring Link Station profile name
This is the name of a configuration profile used by Communications Server
for AIX. You supply the name to be used for the profile. The link station
profile associates the link station with the SNA DLC profile, which has
been used to define the hardware adapter and link characteristics, and the
node control point.

«17¬ CP name of adjacent node
This is the unique control point name of the partner system which which
you are establishing communication. Your network administrator will
assign this to you.

«18¬ LU 6.2 partner LU profile name
This is the name of a configuration profile used by Communications Server
for AIX. You supply the name to be used for the profile. It needs to be
unique only on this machine. The profile defines parameters for
establishing a session with a specific partner LU. In some scenarios, this
profile may not be required but it is shown here to reduce the likelihood of
error. See the SNA Server for AIX Configuration Reference manual for details.

AIX and LU 6.2

Chapter 14. Example configuration - IBM MQSeries for AIX 201

Establishing a session using Communications Server for AIX V5
Verify the level of Communications Server software you have installed by entering
the AIX command:
lslpp -h sna.rte

The level displayed in the response needs to be at least Version 5.0.

To update the SNA configuration profile, you need root authority. (Without root
authority you can display options and appear to modify them, but cannot actually
make any changes.) You can make configuration changes when SNA is either
active or inactive.

The configuration scenario that follows was accomplished using the graphical
interface.

Note: The setup used is APPN using independent LUs.

If you are an experienced user of AIX, you may choose to circumvent the panels
and use the command-line interface. Refer to the SNA Server for AIX Configuration
Reference manual to see the commands that correspond to the panels illustrated.

Throughout the following example, only the panels for profiles that must be added
or updated are shown.

Configuring your node
This configuration uses a token ring setup. To define the end node to connect to
the network node (assuming that a network node already exists), you need to:
1. Click on Services from the main menu on the main window.
2. Select Configuration node parameters ... from the drop-down list. A windows

entitled Node parameters appears:

3. Click on End node for APPN support.
4. In the SNA addressing box, enter a name and alias for the Control point. The

Control point name consists of a Network name («1¬) and a Control point
name («2¬).

5. Enter the Node ID («3¬) of your local machine.
6. Click on OK.

You have now configured your node to connect to the network node.

Using Communications Server for AIX

202 MQSeries Intercommunication

Configuring connectivity to the network
1. Defining your port:

a. From the main menu of the main window, click on Services, Connectivity,
and New port ... A window entitled Add to machine name screen appears.

b. Select the default card for connecting to the network (Token ring card).
c. Click on OK. A window entitled Token ring SAP appears:

d. Enter a port name in the SNA port name box, for example, MQPORT.
e. Check Initially Active.
f. Click on OK.

Using Communications Server for AIX

Chapter 14. Example configuration - IBM MQSeries for AIX 203

2. Defining your connection to the network node:
a. From the main menu on the main window, click on Services, Connectivity,

and New link station ...

b. Click on OK to link your station to the chosen port (MQPORT). A window
entitled Token ring link station appears:

c. Enter a name for your link station («4¬), for example, NETNODE.
d. Enter the port name to which you want to connect the link station. In this

case, the port name would be MQPORT.
e. Check Any in the LU traffic box.
f. Define where the remote node is by entering the control point on the

network node in the Independent LU traffic box. The control point consists
of a Network name («10¬) and a CP name of adjacent node («17¬).

Note: The network node does not have to be on the remote system that you
are connecting to.

g. Ensure the Remote node type is Network node.
h. In the Contact information, enter the MAC address («15¬) of the token ring

card on the network node.

Note: The network node does not have to be on the remote system that you
are connecting to.

Using Communications Server for AIX

204 MQSeries Intercommunication

i. Click on Advanced A window entitled Token ring parameters appears:

j. Check Remote node is network node server.
k. Click on OK. The Token ring link station window remains on the screen.
l. Click on OK on the Token ring link station window.

Defining a local LU
To define a local LU:
1. From the main menu on the main window, click on Services, APPC, and New

independent local LU A window entitled Local LU appears:

2. Enter an LU name («4¬) and alias («5¬).
3. Click on OK.

You have now set up a basic SNA system.

To define the mode controlling the SNA session limits:
1. From the main menu in the main window, click on Services, APPC, and Modes

.... A Modes window appears.

Figure 33. Local LU window

Using Communications Server for AIX

Chapter 14. Example configuration - IBM MQSeries for AIX 205

2. Select the New ... button. A window entitled Mode appears:

3. Enter a Name («9¬) for your mode.
4. When you are happy with the session limits, click on OK. The Modes window

remains on the screen.
5. Click on Done in the Modes window.

Defining a transaction program
This section describes how to define a transaction program. To do this, use the
command line rather than the graphical interface.
1. Defining a transaction program for the receiver end of the channel:

a. Name your transaction program («6¬):
snaadmin define_tp, tp_name=MQSERIES

where MQSERIES can be any name that matches the name used on the CPI-C
side information at the sender end of the channel.

b. Define the program your transaction program (MQSERIES) relates to, that is,
the receiving MQSeries channel:
snaadmin define_tp_load_info,
tp_name=MQSERIES, userid=mqm, group=mqm,
type=NON-QUEUED, style=COMPATIBLE,
path=/usr/lpp/mqm/bin/amqcrs6a,
arguments=-m AIX -n MQSERIES

where AIX and MQSERIES can be upper or lower case but must be the same
throughout.

Figure 34. Mode window

Using Communications Server for AIX

206 MQSeries Intercommunication

c. View the definition you have just created through the graphical interface:
1) From the main window, click on Services, APPC, and Transaction

programs ... A window entitled TP invocation appears for you to view
your configuration:

2) Verify the Application TP («6¬).
3) Verify the Full path to TP executable («7¬).

Using Communications Server for AIX

Chapter 14. Example configuration - IBM MQSeries for AIX 207

2. Defining the CPI-C side information for the sender channel: You can define the
CPI-C side information for the sender channel using the graphical interface:
a. From the main menu on the main window, click on Services, APPC, and

CPI-C A CPI-C destination names window appears.
b. Click on the New ... button. A window entitled CPI-C destination appears:

This window lets you define the LU that you want to connect to and the
transaction program you want to start:

c. Enter a Name, («13¬). You must specify this name in the CONNAME
parameter of the channel.

d. Check Specify local LU alias and enter the LU alias value («5¬).
e. In the Partner LU and mode box, check Use PLU full name and enter the

name of the remote machine to which you are connecting. This consists of a
Network name («10¬) and a Remote LU name («11¬).

f. Enter the Mode («14¬).

To start the transaction program on the remote machine:
a. Check Application TP in the Partner TP box.
b. Enter the name of the transaction program («12¬).
c. Click on OK.

Using Communications Server for AIX

208 MQSeries Intercommunication

Establishing a TCP connection
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or
root. If you do not have the following line in that file, add it as shown:
MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file,
add it as shown:
MQSeries stream tcp nowait root /usr/mqm/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Enter the command refresh -s inetd.

What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for AIX configuration”.

Establishing a UDP connection
To establish a UDP connection, ensure a listener is started by issuing the following
MQSC command:
runmqlsr -m QMgrName -t UDP -p 1414

Notes:

1. You cannot start a listener channel on AIX using the START LISTENER MQSC
command.

2. Using the runmqlsr command implies that you must not add entries to the
/etc/services and /etc/inetd.conf file for UDP on MQSeries for AIX.

What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for AIX configuration”.

MQSeries for AIX configuration
Notes:

1. Before beginning the installation process ensure that you have first created the
mqm user and group, and set the password.

2. If installation fails as a result of insufficient space in the file system you can
increase the size as follows, using the command smit C sna. (Use df to display
the current status of the file system. This will indicate the logical volume that is
full.)
-- Physical and Logical Storage
-- File Systems
-- Add / Change / Show / Delete File Systems
-- Journaled File Systems
-- Change/Show Characteristics of a Journaled File System

3. Start any channel using the command:
runmqchl -c channel.name

4. Sample programs are installed in /usr/mqm/samp.
5. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.
6. You can start an AIX trace of the MQSeries components using the command:

trace -a -j30D,30E -o trace.file

AIX and TCP

Chapter 14. Example configuration - IBM MQSeries for AIX 209

You can stop AIX trace by entering:
trcstop

Format the trace report using the command:
trcrpt -t /usr/mqm/samp/amqtrc.fmt trace.file > trace.report

7. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

Basic configuration
1. Create the queue manager from the AIX command line using the command:

crtmqm -u dlqname -q aix

where:

aix Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname
Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.
2. Start the queue manager from the AIX command line using the command:

strmqm aix

where aix is the name given to the queue manager when it was created.
3. Start runmqsc from the AIX command line and use it to create the

undeliverable message queue by entering the command:
def ql (dlqname)

where dlqname is the name given to the undeliverable message queue when the
queue manager was created.

Channel configuration
The following section details the configuration to be performed on the AIX queue
manager to implement the channel described in Figure 32 on page 97.

In each case the MQSC command is shown. Either start runmqsc from an AIX
command line and enter each command in turn, or build the commands into a
command file.

Examples are given for connecting MQSeries for AIX and MQSeries for OS/2
Warp. If you wish to connect to another MQSeries product use the appropriate set
of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects
throughout this book. All others are keywords and should be entered as
shown.

AIX configuration

210 MQSeries Intercommunication

Table 21. Configuration worksheet for MQSeries for AIX

ID Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name AIX

«B¬ Local queue name AIX.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 164, as indicated.

«C¬ Remote queue manager name «A¬ OS2

«D¬ Remote queue name OS2.REMOTEQ

«E¬ Queue name at remote system «B¬ OS2.LOCALQ

«F¬ Transmission queue name OS2

«G¬ Sender (SNA) channel name AIX.OS2.SNA

«H¬ Sender (TCP/IP) channel name AIX.OS2.TCP

«I¬ Receiver (SNA) channel name «G¬ OS2.AIX.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ OS2.AIX.TCP

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 185, as indicated.

«C¬ Remote queue manager name «A¬ WINNT

«D¬ Remote queue name WINNT.REMOTEQ

«E¬ Queue name at remote system «B¬ WINNT.LOCALQ

«F¬ Transmission queue name WINNT

«G¬ Sender (SNA) channel name AIX.WINNT.SNA

«H¬ Sender (TCP/IP) channel name AIX.WINNT.TCP

«I¬ Receiver (SNA) channel name «G¬ WINNT.AIX.SNA

«J¬ Receiver (TCP) channel name «H¬ WINNT.AIX.TCP

Connection to MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

The values in this section of the table must match those used in Table 22 on page 216, as indicated.

«C¬ Remote queue manager name «A¬ DECUX

«D¬ Remote queue name DECUX.REMOTEQ

«E¬ Queue name at remote system «B¬ DECUX.LOCALQ

«F¬ Transmission queue name DECUX

«H¬ Sender (TCP) channel name DECUX.AIX.TCP

«J¬ Receiver (TCP) channel name «H¬ AIX.DECUX.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 24 on page 239, as indicated.

«C¬ Remote queue manager name «A¬ HPUX

«D¬ Remote queue name HPUX.REMOTEQ

«E¬ Queue name at remote system «B¬ HPUX.LOCALQ

«F¬ Transmission queue name HPUX

«G¬ Sender (SNA) channel name AIX.HPUX.SNA

«H¬ Sender (TCP) channel name AIX.HPUX.TCP

«I¬ Receiver (SNA) channel name «G¬ HPUX.AIX.SNA

«J¬ Receiver (TCP) channel name «H¬ HPUX.AIX.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 26 on page 253, as indicated.

AIX configuration

Chapter 14. Example configuration - IBM MQSeries for AIX 211

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 21. Configuration worksheet for MQSeries for AIX (continued)

ID Parameter Name Reference Example Used User Value

«C¬ Remote queue manager name «A¬ GIS

«D¬ Remote queue name GIS.REMOTEQ

«E¬ Queue name at remote system «B¬ GIS.LOCALQ

«F¬ Transmission queue name GIS

«G¬ Sender (SNA) channel name AIX.GIS.SNA

«H¬ Sender (TCP) channel name AIX.GIS.TCP

«I¬ Receiver (SNA) channel name «G¬ GIS.AIX.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ GIS.AIX.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

«C¬ Remote queue manager name SOLARIS

«D¬ Remote queue name SOLARIS.REMOTEQ

«E¬ Queue name at remote system «B¬ SOLARIS.LOCALQ

«F¬ Transmission queue name SOLARIS

«G¬ Sender (SNA) channel name AIX.SOLARIS.SNA

«H¬ Sender (TCP/IP) channel name AIX.SOLARIS.TCP

«I¬ Receiver (SNA) channel name «G¬ SOLARIS.AIX.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ SOLARIS.AIX.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 43 on page 472, as indicated.

«C¬ Remote queue manager name AS400

«D¬ Remote queue name AS400.REMOTEQ

«E¬ Queue name at remote system «B¬ AS400.LOCALQ

«F¬ Transmission queue name AS400

«G¬ Sender (SNA) channel name AIX.AS400.SNA

«H¬ Sender (TCP) channel name AIX.AS400.TCP

«I¬ Receiver (SNA) channel name «G¬ AS400.AIX.SNA

«J¬ Receiver (TCP) channel name «H¬ AS400.AIX.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 37 on page 406, as indicated.

«C¬ Remote queue manager name MVS

«D¬ Remote queue name MVS.REMOTEQ

«E¬ Queue name at remote system «B¬ MVS.LOCALQ

«F¬ Transmission queue name MVS

«G¬ Sender (SNA) channel name AIX.MVS.SNA

«H¬ Sender (TCP) channel name AIX.MVS.TCP

«I¬ Receiver (SNA) channel name «G¬ MVS.AIX.SNA

«J¬ Receiver (TCP) channel name «H¬ MVS.AIX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 45 on page 490, as indicated.

«C¬ Remote queue manager name VSE

«D¬ Remote queue name VSE.REMOTEQ

«E¬ Queue name at remote system «B¬ VSE.LOCALQ

«F¬ Transmission queue name VSE

AIX configuration

212 MQSeries Intercommunication

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 21. Configuration worksheet for MQSeries for AIX (continued)

ID Parameter Name Reference Example Used User Value

«G¬ Sender channel name AIX.VSE.SNA

«I¬ Receiver channel name «G¬ VSE.AIX.SNA

MQSeries for AIX sender-channel definitions using SNA
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (AIX.OS2.SNA) chltype(sdr) + «G¬
trptype(lu62) +
conname('OS2CPIC') + «17¬
xmitq(OS2) + «F¬
replace

MQSeries for AIX receiver-channel definitions using SNA
def ql (AIX.LOCALQ) replace «B¬

def chl (OS2.AIX.SNA) chltype(rcvr) + «I¬
trptype(lu62) +
replace

MQSeries for AIX TPN setup
During the AIX Communications Server configuration process, an LU 6.2 TPN
profile was created, which contained the full path to a TP executable. In the
example the file was called u/interops/AIX.crs6a. You can choose a name, but you
are recommended to include the name of your queue manager in it. The contents
of the executable file must be:
#!/bin/sh
/opt/mqm/bin/amqcrs6a -m aix

where aix is the queue manager name («A¬). After creating this file, enable it for
execution by running the command:

chmod 755 /u/interops/AIX.crs6a

As an alternative to creating an executable file, you can specify the path on the
Add LU 6.2 TPN Profile panel, using command line parameters.

Specifying a path in one of these two ways ensures that SNA receiver channels
activate correctly when a sender channel initiates a conversation.

MQSeries for AIX sender-channel definitions using TCP
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

AIX configuration

Chapter 14. Example configuration - IBM MQSeries for AIX 213

def chl (AIX.OS2.TCP) chltype(sdr) + «H¬
trptype(tcp) +
conname(remote_tcpip_hostname) +
xmitq(OS2) + «F¬
replace

MQSeries for AIX receiver-channel definitions using TCP
def ql (AIX.LOCALQ) replace «B¬

def chl (OS2.AIX.TCP) chltype(rcvr) + «J¬
trptype(tcp) +
replace

MQSeries for AIX sender-channel definitions using UDP
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (AIX.OS2.UDP) chltype(sdr) + «H¬
trptype(udp) +
conname(remote_udpip_hostname) +
xmitq(OS2) + «F¬
replace

MQSeries for AIX receiver-channel definitions using UDP
def ql (AIX.LOCALQ) replace «B¬

def chl (OS2.AIX.UDP) chltype(rcvr) + «J¬
trptype(udp) +
replace

AIX configuration

214 MQSeries Intercommunication

Chapter 15. Example configuration - IBM MQSeries for
DIGITAL UNIX (Compaq Tru64 UNIX)

This chapter shows how to set up TCP communication links from MQSeries for
DIGITAL UNIX (Compaq Tru64 UNIX) to MQSeries products on other platforms.

Note: MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX), V2.2.1 supports the
TCP communication protocol only.

Once the connection is established, you need to define some channels to complete
the configuration. This process is described in “MQSeries for DIGITAL UNIX
(Compaq Tru64 UNIX) configuration”.

See “Chapter 7. Example configuration chapters in this book” on page 97 for
background information about this chapter and how to use it.

Establishing a TCP connection
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or
root. If you do not have the following line in that file, add it as shown:
MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file,
add it as shown:
MQSeries stream tcp nowait root /opt/mqm/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:
ps -ef | grep inetd

4. Run the command:
kill -1 inetd processid

What next?
Inetd is now ready to listen for incoming requests and pass them to MQSeries. You
are ready to complete the configuration as described in the next section.

MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX) configuration
Before beginning the installation process ensure that you have first created the
mqm user and group, and set the password.

Start any channel using the command:
runmqchl -c channel.name -m qmname

Notes:

1. Sample programs are installed in /opt/mqm/samp.
2. Error logs are stored in /var/mqm/qmgrs/qmname/errors.

© Copyright IBM Corp. 1993, 2000 215

|
|

|
|

|
|
|

|
|

|

|
|

|

|
|

|
|

|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

3. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q qmname

where:

qmname Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname
Specifies the name of the undeliverable message queue

This command creates a queue manager and sets the DEADQ attribute of the
queue manager, but does not create the undeliverable message queue.

2. Start the queue manager from the UNIX prompt using the command:
strmqm qmname

where qmname is the name given to the queue manager when it was created.

Channel configuration
This section describes the configuration to be performed on the Digital UNIX
queue manager to implement the single channel, and the MQSeries objects
associated with it.

Examples are given at the end of this chapter for connecting MQSeries for
DIGITAL UNIX (Compaq Tru64 UNIX) and MQSeries for OS/2 Warp. If you wish
to connect to another MQSeries product use the appropriate set of values from the
table in place of those for OS/2.

In each example, the MQSC command is shown. Either start runmqsc from a
UNIX prompt and enter each command in turn, or build the commands into a
command file.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. All others are keywords and should
be entered as shown.

Table 22. Configuration worksheet for MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

ID Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name DECUX

«B¬ Local queue name DECUX.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 164.

«C¬ Remote queue manager name «A¬ OS2

«D¬ Remote queue name OS2.REMOTEQ

«E¬ Queue name at remote system «B¬ OS2.LOCALQ

«F¬ Transmission queue name OS2

Digital UNIX configuration

216 MQSeries Intercommunication

|
|
|
|

|

|

|

|

||

||

|
|

|
|

|

|

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

||

|||||

|

|||||

|||||

|

|

|||||

|||||

|||||

|||||

Table 22. Configuration worksheet for MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX) (continued)

ID Parameter Name Reference Example Used User Value

«H¬ Sender (TCP) channel name DECUX.OS2.TCP

«J¬ Receiver (TCP) channel name «H¬ OS2.DECUX.TCP

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 185.

«C¬ Remote queue manager name «A¬ WINNT

«D¬ Remote queue name WINNT.REMOTEQ

«E¬ Queue name at remote system «B¬ WINNT.LOCALQ

«F¬ Transmission queue name WINNT

«H¬ Sender (TCP) channel name DECUX.WINNT.TCP

«J¬ Receiver (TCP) channel name «H¬ WINNT.DECUX.TCP

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 211.

«C¬ Remote queue manager name «A¬ AIX

«D¬ Remote queue name AIX.REMOTEQ

«E¬ Queue name at remote system «B¬ AIX.LOCALQ

«F¬ Transmission queue name AIX

«H¬ Sender (TCP) channel name DECUX.AIX.TCP

«J¬ Receiver (TCP) channel name «H¬ AIX.DECUX.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 26 on page 253.

«C¬ Remote queue manager name «A¬ GIS

«D¬ Remote queue name GIS.REMOTEQ

«E¬ Queue name at remote system «B¬ GIS.LOCALQ

«F¬ Transmission queue name GIS

«H¬ Sender (TCP) channel name DECUX.GIS.TCP

«J¬ Receiver (TCP) channel name «H¬ GIS.DECUX.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 28 on page 272.

«C¬ Remote queue manager name «A¬ SOLARIS

«D¬ Remote queue name SOLARIS.REMOTEQ

«E¬ Queue name at remote system «B¬ SOLARIS.LOCALQ

«F¬ Transmission queue name SOLARIS

«H¬ Sender (TCP) channel name DECUX.SOLARIS.TCP

«J¬ Receiver (TCP) channel name «H¬ SOLARIS.DECUX.TCP

Connection to MQSeries for AS/400.

The values in this section of the table must match those used in Table 43 on page 472.

«C¬ Remote queue manager name «A¬ AS400

«D¬ Remote queue name AS400.REMOTEQ

«E¬ Queue name at remote system «B¬ AS400.LOCALQ

«F¬ Transmission queue name AS400

«H¬ Sender (TCP) channel name DECUX.AS400.TCP

«J¬ Receiver (TCP) channel name «H¬ AS400.DECUX.TCP

Digital UNIX configuration

Chapter 15. Example configuration - IBM MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX) 217

|

|||||

|||||

|||||

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 22. Configuration worksheet for MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX) (continued)

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for OS/390 without CICS

The values in this section of the table must match those used in Table 37 on page 406.

«C¬ Remote queue manager name «A¬ MVS

«D¬ Remote queue name MVS.REMOTEQ

«E¬ Queue name at remote system «B¬ MVS.LOCALQ

«F¬ Transmission queue name MVS

«H¬ Sender (TCP) channel name DECUX.MVS.TCP

«J¬ Receiver (TCP) channel name «H¬ MVS.DECUX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 45 on page 490.

«C¬ Remote queue manager name «A¬ VSE

«D¬ Remote queue name VSE.REMOTEQ

«E¬ Queue name at remote system «B¬ VSE.LOCALQ

«F¬ Transmission queue name VSE

«G¬ Sender (SNA) channel name DECUX.VSE.SNA

«I¬ Receiver (SNA) channel name «G¬ VSE.DECUX.SNA

MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)
sender-channel definitions using TCP/IP
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (DECUX.OS2.TCP) chltype(sdr) + «H¬
trptype(tcp) +
conname(remote_tcpip_hostname) +
xmitq(OS2) + «F¬
replace

MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)
receiver-channel definitions using TCP/IP
def ql (DECUX.LOCALQ) replace «B¬

def chl (OS2.DECUX.TCP) chltype(rcvr) + «J¬
trptype(tcp) +
replace

Digital UNIX configuration

218 MQSeries Intercommunication

|

|||||

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|

|

|||||

|||||

|||||

|||||

|||||

|||||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Chapter 16. Example configuration - IBM MQSeries for HP-UX

This chapter gives an example of how to set up communication links from
MQSeries for HP-UX to MQSeries products on the following platforms:
v OS/2
v Windows NT
v AIX
v Digital UNIX
v AT&T GIS UNIX4

v Sun Solaris
v OS/400
v OS/390 or MVS/ESA without CICS
v VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it describes
“Establishing a session using HP SNAplus2” on page 223 and “Establishing a TCP
connection” on page 237.

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for HP-UX configuration” on
page 238.

See “Chapter 7. Example configuration chapters in this book” on page 97 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 23 presents a worksheet listing all the parameters needed to set up
communication from HP-UX to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

Configuration worksheet
Use this worksheet to record the values you use for your configuration. Where
numbers appear in the Reference column they indicate that the value must match
that in the appropriate worksheet elsewhere in this book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page 222.

Table 23. Configuration worksheet for HP SNAplus2

ID Parameter Name Reference Example User Value

Parameters for local node

«1¬ Configuration file name sna_node.cfg

«2¬ Control point name HPUXPU

«3¬ Node ID to send 05D 54321

«4¬ Network name NETID

4. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993, 2000 219

|

|

|

Table 23. Configuration worksheet for HP SNAplus2 (continued)

ID Parameter Name Reference Example User Value

«5¬ Local APPC LU HPUXLU

«6¬ APPC mode #INTER

«7¬ Invokable TP MQSERIES

«8¬ Token-Ring adapter address 100090DC2C7C

«9¬ Port name MQPORT

«10¬ Full path to executable /opt/mqm/bin/amqcrs6a

«11¬ Local queue manager hpux

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 138, as indicated.

«12¬ Link station name OS2CONN

«13¬ Network name «2¬ NETID

«14¬ CP name «3¬ OS2PU

«15¬ Remote LU «6¬ OS2LU

«16¬ Application TP «8¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C symbolic destination name OS2CPIC

«19¬ Remote network address «10¬ 10005AFC5D83

«20¬ Node ID to receive «4¬ 05D 12345

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 170, as indicated.

«12¬ Link station name NTCONN

«13¬ Network name «2¬ NETID

«14¬ CP name «3¬ WINNTCP

«15¬ Remote LU «5¬ WINNTLU

«16¬ Application TP «7¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C symbolic destination name NTCPIC

«19¬ Remote network address «9¬ 08005AA5FAB9

«20¬ Node ID to receive «4¬ 05D 30F65

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 197, as indicated.

«12¬ Link station name AIXCONN

«13¬ Network name «1¬ NETID

«14¬ CP name «2¬ AIXPU

«15¬ Remote LU «4¬ AIXLU

«16¬ Application TP «6¬ MQSERIES

«17¬ Mode name «14¬ #INTER

«18¬ CPI-C symbolic destination name AIXCPIC

«19¬ Remote network address «8¬ 123456789012

«20¬ Node ID to receive «3¬ 071 23456

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in the table Table 25 on page 243, as indicated.

«12¬ Link station name GISCONN

«13¬ Network name «2¬ NETID

HP-UX and LU 6.2

220 MQSeries Intercommunication

Table 23. Configuration worksheet for HP SNAplus2 (continued)

ID Parameter Name Reference Example User Value

«14¬ CP name «3¬ GISPU

«15¬ Remote LU GISLU

«16¬ Application TP «5¬ MQSERIES

«17¬ Mode name «7¬ #INTER

«18¬ CPI-C symbolic destination name GISCPIC

«19¬ Remote network address «8¬ 10007038E86B

«20¬ Node ID to receive «9¬ 03E 00018

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 27 on page 257, as indicated.

«12¬ Link station name SOLCONN

«13¬ Network name «2¬ NETID

«14¬ CP name «3¬ SOLARPU

«15¬ Remote LU «7¬ SOLARLU

«16¬ Application TP «8¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C symbolic destination name SOLCPIC

«19¬ Remote network address «5¬ 08002071CC8A

«20¬ node ID to receive «6¬ 05D 310D6

Connection to an AS/400 system

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

«12¬ Link station name AS4CONN

«13¬ Network name «1¬ NETID

«14¬ CP name «2¬ AS400PU

«15¬ Remote LU «3¬ AS400LU

«16¬ Application TP «8¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C symbolic destination name AS4CPIC

«19¬ Remote network address «4¬ 10005A5962EF

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 36 on page 396, as indicated.

«12¬ Link station name MVSCONN

«13¬ Network name «2¬ NETID

«14¬ CP name «3¬ MVSPU

«15¬ Remote LU «4¬ MVSLU

«16¬ Application TP «7¬ MQSERIES

«17¬ Mode name «10¬ #INTER

«18¬ CPI-C symbolic destination name MVSCPIC

«19¬ Remote network address «8¬ 400074511092

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 44 on page 485, as indicated.

«12¬ Link station name VSECONN

«13¬ Network name «1¬ NETID

«14¬ CP name «2¬ VSEPU

«15¬ Remote LU «3¬ VSELU

HP-UX and LU 6.2

Chapter 16. Example configuration - IBM MQSeries for HP-UX 221

Table 23. Configuration worksheet for HP SNAplus2 (continued)

ID Parameter Name Reference Example User Value

«16¬ Application TP «4¬ MQ01 MQ01

«17¬ Mode name #INTER

«18¬ CPI-C symbolic destination name VSECPIC

«19¬ Remote network address «5¬ 400074511092

Explanation of terms
«1¬ Configuration file name

This is the unique name of the SNAplus2 configuration file. The default for
this name is sna_node.cfg.

Although it is possible to edit this file it is strongly recommended that
configuration is done using xsnapadmin.

«2¬ Control point name
This is the unique Control point name for this workstation. In the SNA
network, the Control point is an addressable location (PU type 2.1). Your
network administrator will assign this to you.

«3¬ Node ID to send
This is the unique ID of this workstation. On other platforms this is often
referred to as the Exchange ID or XID. Your network administrator will
assign this ID for you.

«4¬ Network name
This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network name
works with the Control point name to uniquely identify a system. Your
network administrator will tell you the value.

«5¬ Local APPC LU
An LU manages the exchange of data between transactions. The local
APPC LU name is the name of the LU on your system. Your network
administrator will assign this to you.

«6¬ APPC mode
This is the name given to the set of parameters that control the APPC
conversation. This name must be defined at each partner system. Your
network administrator will assign this to you.

«7¬ Invokable TP
MQSeries applications trying to converse with this workstation will specify
a symbolic name for the program to be run at the receiving end. This will
have been defined on the channel definition at the sender. For simplicity,
wherever possible use a transaction program name of MQSERIES, or in the
case of a connection to VSE/ESA, where the length is limited to 4 bytes,
use MQTP.

See Table 19 on page 194 for more information.

«8¬ Token-ring adapter address
Use the HP-UX System Administration Manager (SAM) to discover the
adapter address for this workstation. You need root authority to use SAM.
From the initial menu, select Networking and Communications, then
select Network Interface cards followed by LAN 0 (or whichever LAN
you are using). The adapter address is displayed under the heading Station

HP-UX and LU 6.2

222 MQSeries Intercommunication

Address (hex). The card name represents the appropriate card type. If you
do not have root level authority, your HP-UX system administrator can tell
you the value.

«9¬ Port name
This is a meaningful symbolic name that is used to associate the definitions
with a network interface (in this case, a Token-Ring adapter). A separate
Port must be defined for each physical device attached to the workstation.

«10¬ Full path to executable
On HP SNAplus2 Release 5, this is the path and name of a shell script file
that invokes the actual program to be run when a conversation is initiated
with this workstation. You can choose the path and name of the script file.
The contents of the file are illustrated in “MQSeries for HP-UX invokable
TP setup” on page 241. On HP SNAplus2 Release 6, this is the path and
name of the program to be run when a conversation is initiated with this
workstation. You enter the path in the TP invocation screen (see “Adding
a TP definition using HP SNAplus2 Release 6” on page 235).

«11¬ Local queue manager
This is the name of the queue manager on your local system.

«10¬ Link station name
This is a meaningful symbolic name by which the connection to a peer or
host node is known. It defines a logical path to the remote system. Its
name is used only inside SNAplus2 and is specified by you. The
connection must be associated with an existing Link and owned by one
local node. You must define one connection for each partner or host
system.

«18¬ CPI-C symbolic destination name
This is a name given to the definition of a partner node. You choose the
name. It need be unique only on this machine. Later you can use this name
in the MQSeries sender channel definition.

«20¬ Node ID to receive
This is the unique ID of the partner workstation with which you will be
communicating. On other platforms this is often referred to as the Exchange
ID or XID. For a connection to a host system any values except 000 FFFFF
and FFF FFFFF may be specified. Your network administrator will assign
this ID for you.

Establishing a session using HP SNAplus2
The following information guides you through the tasks you must perform to
create the SNA infrastructure that MQSeries requires. This example creates the
definitions for a partner node and LU on OS/2.

Use snap start followed by xsnapadmin to enter the HP SNAplus2 configuration
panels. You need root authority to use xsnapadmin.

SNAplus2 configuration
SNAplus2 configuration involves the following steps:
1. Defining a local node
2. Adding a Token Ring Port
3. Defining a local LU

HP-UX and LU 6.2

Chapter 16. Example configuration - IBM MQSeries for HP-UX 223

The SNAplus2 main menu, from which you will start, is shown below:

Using HP SNAplus2

224 MQSeries Intercommunication

Defining a local node
1. From the SNAplus2 main menu, select the Services pull-down:

2. Select Configure node parameters.... The following panel is displayed:

3. Complete the Control point name with the values Network name («4¬) and
Control point name («2¬).

4. Enter the Control point name («2¬) in the Control point alias field.
5. Enter the Node ID («3¬).
6. Select End node.
7. Press OK.

A default independent local LU is defined.

Adding a Token Ring Port
1. From the main SNAplus2 menu, select the Connectivity and dependent LUs

panel.
2. Press Add. The following panel is displayed:

Using HP SNAplus2

Chapter 16. Example configuration - IBM MQSeries for HP-UX 225

3. Select a Token Ring Card port and press OK. The following panel is displayed:

4. Enter the SNA port name («9¬).
5. Enter a Description and press OK to take the default values.

Defining a local LU
1. From the main SNAplus2 menu, select the Independent local LUs panel.
2. Press Add. The following panel is displayed:

Using HP SNAplus2

226 MQSeries Intercommunication

3. Enter the LU name («5¬) and press OK.

APPC configuration
APPC configuration involves the following steps:
1. Defining a remote node
2. Defining a partner LU
3. Defining a link station
4. Defining a mode
5. Adding CPI-C information
6. Adding a TP definition

Defining a remote node
1. From the main SNAplus2 menu, select the Remote systems panel.
2. Press Add. The following panel is displayed:

3. Select Define remote node and press OK. The following panel is displayed:

Using HP SNAplus2

Chapter 16. Example configuration - IBM MQSeries for HP-UX 227

4. Enter the Node’s SNA network name («13¬) and a Description.
5. Press OK.
6. A default partner LU with the same name is generated and a message is

displayed.
7. Press OK.

Defining a partner LU
1. From the main SNAplus2 menu, select the remote node in the Remote systems

panel.
2. Press Add. The following panel is displayed:

3. Select Define partner LU on node node name.
4. Press OK. The following panel is displayed:

Using HP SNAplus2

228 MQSeries Intercommunication

5. Enter the partner LU name («15¬) and press OK.

Defining a link station
1. From the main SNAplus2 menu, select the Connectivity and dependent LUs

panel.
2. Select the MQPORT port.
3. Press Add. The following panel is displayed:

4. Select Add link station to port MQPORT.
5. Press OK. The following panel is displayed:

Using HP SNAplus2

Chapter 16. Example configuration - IBM MQSeries for HP-UX 229

6. Enter the Name of the link station («12¬).
7. Set the value of Activation to “On demand”.
8. Select Independent only.
9. Press Remote node... and select the value of the remote node («14¬).

10. Press OK.
11. Set the value of Remote node type to “End or LEN node”.
12. Enter the value for MAC address («19¬) and press Advanced.... The following

panel is displayed:

Using HP SNAplus2

230 MQSeries Intercommunication

13. Select Reactivate link station after failure.
14. Press OK to exit the Advanced... panel.
15. Press OK again.

Defining a mode
1. From the SNAplus2 main menu, select the Services pull-down: The following

panel is displayed:

2. Select APPC. The following panel is displayed:

Using HP SNAplus2

Chapter 16. Example configuration - IBM MQSeries for HP-UX 231

3. Select Modes.... The following panel is displayed:

4. Press Add. The following panel is displayed:

Using HP SNAplus2

232 MQSeries Intercommunication

5. Enter the Name to be given to the mode («17¬).
6. Set the values of Initial session limit to 8, Min con. winner sessions to 4, and

Auto-activated sessions to 0.
7. Press OK.
8. Press Done.

Adding CPI-C information
1. From the SNAplus2 main menu, select the Services pull-down:

2. Select APPC. The following panel is displayed:

Using HP SNAplus2

Chapter 16. Example configuration - IBM MQSeries for HP-UX 233

3. Select CPI-C.... The following panel is displayed:

4. Press Add. The following panel is displayed:

Using HP SNAplus2

234 MQSeries Intercommunication

5. Enter the Name («18¬). Select Application TP and enter the value («16¬). Select
Use PLU alias and enter the name («15¬). Enter the Mode name («17¬).

6. Press OK.

Adding a TP definition using HP SNAplus2 Release 5
Invokable TP definitions are kept in the file /etc/opt/sna/sna_tps. This should be
edited to add a TP definition. Add the following lines:

[MQSERIES]
PATH = /users/interops/HPUX.crs6a
TYPE = NON-QUEUED
USERID = mqm
ENV = APPCLLU=HPUXLU
ENV = APPCTPN=MQSERIES

See “MQSeries for HP-UX invokable TP setup” on page 241 for more information
about TP definitions.

Adding a TP definition using HP SNAplus2 Release 6
To add a TP definition:

1. Select Services pulldown and select APPC as for CPI-C information.
2. Select Transaction Programs. The following panel is displayed:

Using HP SNAplus2

Chapter 16. Example configuration - IBM MQSeries for HP-UX 235

3. Select Add. The following panel is displayed:

4. Enter TP name («7¬) in the Application TP field.
5. Mark Incoming Allocates as non-queued.
6. Enter Full path to executable («10¬).
7. Enter -m Local queue manager («11¬) in the Arguments field.
8. Enter mqm in the User ID and Group ID fields.
9. Enter environment variables APPCLLU=local LU («5¬) and

APPCTPN=Invokable TP («7¬) separated by the pipe character in the
Environment field.

10. Press OK to save your definition.

Using HP SNAplus2

236 MQSeries Intercommunication

HP-UX operation
The SNAplus2 control daemon is started with the snap start command. Depending
on the options selected at installation, it may already be running.

The xsnapadmin utility controls SNAplus2 resources.

Logging and tracing are controlled from here. Log and trace files can be found in
the /var/opt/sna directory. The logging files sna.aud and sna.err can be read
using a standard editor such as vi.

In order to read the trace files sna1.trc and sna2.trc they must first be formatted by
running the command snaptrcfmt -f sna1.trc -o sna1 which produces a sna1.dmp
file which can be read using a normal editor.

The configuration file itself is editable but this is not a recommended method of
configuring SNAplus2.

The APPCLU environment variables must be set before starting a sender channel
from the HP-UX system. The command can be either entered interactively or
added to the logon profile. Depending on the level of BOURNE shell or KORN
shell program being used, the command will be:
export APPCLLU=HPUXLU «5¬ newer level

or
APPCLLU=HPUXLU «5¬ older level
export

What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for HP-UX configuration” on page 238.

Establishing a TCP connection
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or
root. If you do not have the following line in that file, add it as shown:
MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file,
add it as shown:
MQSeries stream tcp nowait root /opt/mqm/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:
ps -ef | grep inetd

4. Run the command:
kill -1 inetd processid

What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for HP-UX configuration” on page 238.

Using HP SNAplus2

Chapter 16. Example configuration - IBM MQSeries for HP-UX 237

MQSeries for HP-UX configuration
Before beginning the installation process ensure that you have first created the
mqm user and group, and set the password.

Start any channel using the command:
runmqchl -c channel.name

Notes:

1. Sample programs are installed in /opt/mqm/samp.
2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.
3. When you are using the command interpreter runmqsc to enter administration

commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q hpux

where:

hpux Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname
Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects. It sets the
DEADQ attribute of the queue manager but does not create the undeliverable
message queue.

2. Start the queue manager from the UNIX prompt using the command:
strmqm hpux

where hpux is the name given to the queue manager when it was created.

Channel configuration
The following section details the configuration to be performed on the HP-UX
queue manager to implement the channel described in Figure 32 on page 97.

In each case the MQSC command is shown. Either start runmqsc from a UNIX
prompt and enter each command in turn, or build the commands into a command
file.

Examples are given for connecting MQSeries for HP-UX and MQSeries for OS/2
Warp. If you wish connect to another MQSeries product use the appropriate set of
values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects
throughout this book. All others are keywords and should be entered as
shown.

HP-UX configuration

238 MQSeries Intercommunication

Table 24. Configuration worksheet for MQSeries for HP-UX

ID Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name HPUX

«B¬ Local queue name HPUX.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 164, as indicated.

«C¬ Remote queue manager name «A¬ OS2

«D¬ Remote queue name OS2.REMOTEQ

«E¬ Queue name at remote system «B¬ OS2.LOCALQ

«F¬ Transmission queue name OS2

«G¬ Sender (SNA) channel name HPUX.OS2.SNA

«H¬ Sender (TCP/IP) channel name HPUX.OS2.TCP

«I¬ Receiver (SNA) channel name «G¬ OS2.HPUX.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ OS2.HPUX.TCP

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 185, as indicated.

«C¬ Remote queue manager name «A¬ WINNT

«D¬ Remote queue name WINNT.REMOTEQ

«E¬ Queue name at remote system «B¬ WINNT.LOCALQ

«F¬ Transmission queue name WINNT

«G¬ Sender (SNA) channel name HPUX.WINNT.SNA

«H¬ Sender (TCP/IP) channel name HPUX.WINNT.TCP

«I¬ Receiver (SNA) channel name «G¬ WINNT.HPUX.SNA

«J¬ Receiver (TCP) channel name «H¬ WINNT.HPUX.TCP

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 211, as indicated.

«C¬ Remote queue manager name «A¬ AIX

«D¬ Remote queue name AIX.REMOTEQ

«E¬ Queue name at remote system «B¬ AIX.LOCALQ

«F¬ Transmission queue name AIX

«G¬ Sender (SNA) channel name HPUX.AIX.SNA

«H¬ Sender (TCP) channel name HPUX.AIX.TCP

«I¬ Receiver (SNA) channel name «G¬ AIX.HPUX.SNA

«J¬ Receiver (TCP) channel name «H¬ AIX.HPUX.TCP

Connection to MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

The values in this section of the table must match those used in Table 22 on page 216, as indicated.

«C¬ Remote queue manager name «A¬ DECUX

«D¬ Remote queue name DECUX.REMOTEQ

«E¬ Queue name at remote system «B¬ DECUX.LOCALQ

«F¬ Transmission queue name DECUX

«H¬ Sender (TCP) channel name DECUX.HPUX.TCP

«J¬ Receiver (TCP) channel name «H¬ HPUX.DECUX.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 26 on page 253, as indicated.

HP-UX configuration

Chapter 16. Example configuration - IBM MQSeries for HP-UX 239

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 24. Configuration worksheet for MQSeries for HP-UX (continued)

ID Parameter Name Reference Example Used User Value

«C¬ Remote queue manager name «A¬ GIS

«D¬ Remote queue name GIS.REMOTEQ

«E¬ Queue name at remote system «B¬ GIS.LOCALQ

«F¬ Transmission queue name GIS

«G¬ Sender (SNA) channel name HPUX.GIS.SNA

«H¬ Sender (TCP) channel name HPUX.GIS.TCP

«I¬ Receiver (SNA) channel name «G¬ GIS.HPUX.SNA

«J¬ Receiver (TCP) channel name «H¬ GIS.HPUX.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

«C¬ Remote queue manager name SOLARIS

«D¬ Remote queue name SOLARIS.REMOTEQ

«E¬ Queue name at remote system «B¬ SOLARIS.LOCALQ

«F¬ Transmission queue name SOLARIS

«G¬ Sender (SNA) channel name HPUX.SOLARIS.SNA

«H¬ Sender (TCP/IP) channel name HPUX.SOLARIS.TCP

«I¬ Receiver (SNA) channel name «G¬ SOLARIS.HPUX.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ SOLARIS.HPUX.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 43 on page 472, as indicated.

«C¬ Remote queue manager name AS400

«D¬ Remote queue name AS400.REMOTEQ

«E¬ Queue name at remote system «B¬ AS400.LOCALQ

«F¬ Transmission queue name AS400

«G¬ Sender (SNA) channel name HPUX.AS400.SNA

«H¬ Sender (TCP/IP) channel name HPUX.AS400.TCP

«I¬ Receiver (SNA) channel name «G¬ AS400.HPUX.SNA

«J¬ Receiver (TCP) channel name «H¬ AS400.HPUX.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 37 on page 406, as indicated.

«C¬ Remote queue manager name MVS

«D¬ Remote queue name MVS.REMOTEQ

«E¬ Queue name at remote system «B¬ MVS.LOCALQ

«F¬ Transmission queue name MVS

«G¬ Sender (SNA) channel name HPUX.MVS.SNA

«H¬ Sender (TCP) channel name HPUX.MVS.TCP

«I¬ Receiver (SNA) channel name «G¬ MVS.HPUX.SNA

«J¬ Receiver (TCP) channel name «H¬ MVS.HPUX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 45 on page 490, as indicated.

«C¬ Remote queue manager name VSE

«D¬ Remote queue name VSE.REMOTEQ

«E¬ Queue name at remote system «B¬ VSE.LOCALQ

«F¬ Transmission queue name VSE

HP-UX configuration

240 MQSeries Intercommunication

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 24. Configuration worksheet for MQSeries for HP-UX (continued)

ID Parameter Name Reference Example Used User Value

«G¬ Sender channel name HPUX.VSE.SNA

«I¬ Receiver channel name «G¬ VSE.HPUX.SNA

MQSeries for HP-UX sender-channel definitions using SNA
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (HPUX.OS2.SNA) chltype(sdr) + «G¬
trptype(lu62) +
conname('OS2CPIC') + «16¬
xmitq(OS2) + «F¬
replace

MQSeries for HP-UX receiver-channel definitions using SNA
def ql (HPUX.LOCALQ) replace «B¬

def chl (OS2.HPUX.SNA) chltype(rcvr) + «I¬
trptype(lu62) +
replace

MQSeries for HP-UX invokable TP setup
This is not required for HP SNAplus2 Release 6.

During the HP SNAplus2 configuration process, you created an invokable TP
definition, which points to an executable file. In the example, the file was called
/users/interops/HPUX.crs6a. You can choose what you call this file, but you are
recommended to include the name of your queue manager in the name. The
contents of the executable file must be:
#!/bin/sh
/opt/mqm/bin/amqcrs6a -m hpux

where hpux is the name of your queue manager «A¬.

This ensures that SNA receiver channels activate correctly when a sender channel
initiates a conversation.

MQSeries for HP-UX sender-channel definitions using TCP
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (HPUX.OS2.TCP) chltype(sdr) + «H¬

HP-UX configuration

Chapter 16. Example configuration - IBM MQSeries for HP-UX 241

|

trptype(tcp) +
conname(remote_tcpip_hostname) +
xmitq(OS2) + «F¬
replace

MQSeries for HP-UX receiver-channel definitions using TCP/IP
def ql (HPUX.LOCALQ) replace «B¬

def chl (OS2.HPUX.TCP) chltype(rcvr) + «J¬
trptype(tcp) +
replace

HP-UX configuration

242 MQSeries Intercommunication

Chapter 17. Example configuration - IBM MQSeries for AT&T
GIS UNIX Version 2.2

This chapter gives an example of how to set up communication links from
MQSeries for AT&T GIS UNIX to MQSeries products on the following platforms:
v OS/2
v Windows NT
v AIX
v Digital UNIX
v HP-UX
v Sun Solaris
v OS/400
v OS/390 or MVS/ESA without CICS
v VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it describes
“Establishing a connection using AT&T GIS SNA Server” on page 246 and
“Establishing a TCP connection” on page 251.

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “Channel configuration” on page 252.

See “Chapter 7. Example configuration chapters in this book” on page 97 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 25 presents a worksheet listing all the parameters needed to set up
communication from AT&T GIS UNIX5 to one of the other MQSeries platforms.
The worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

Configuration worksheet
Use the following worksheet to record the values you will use for this
configuration. Where numbers appear in the Reference column they indicate that
the value must match that in the appropriate worksheet elsewhere in this book.
The examples that follow in this chapter refer back to the values in the ID column
of this table. The entries in the Parameter Name column are explained in
“Explanation of terms” on page 246.

Table 25. Configuration worksheet for AT&T GIS SNA Services

ID Parameter Name Reference Example User Value

Parameters for local node

«1¬ Configuration 010

«2¬ Network name NETID

5. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993, 2000 243

|

|

Table 25. Configuration worksheet for AT&T GIS SNA Services (continued)

ID Parameter Name Reference Example User Value

«3¬ Control Point name GISPU

«4¬ Local LU name GISLU

«5¬ LU 6.2 Transaction Program name MQSERIES

«6¬ Local PU name GISPU

«7¬ Mode name #INTER

«8¬ Token-Ring adapter address 10007038E86B

«9¬ Local XID 03E 00018

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 138, as indicated.

«10¬ Remote Node name «3¬ OS2PU

«11¬ Network name «2¬ NETID

«12¬ Remote LU name «6¬ OS2LU

«13¬ Remote Transaction Program name «8¬ MQSERIES

«14¬ LU 6.2 CPI-C side information symbolic
destination

OS2CPIC

«15¬ Mode name «17¬ #INTER

«16¬ LAN destination address «10¬ 10005AFC5D83

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 170, as indicated.

«10¬ Remote Node name «3¬ WINNTCP

«11¬ Network name «2¬ NETID

«12¬ Remote LU name «5¬ WINNTLU

«13¬ Remote Transaction Program name «7¬ MQSERIES

«14¬ LU 6.2 CPI-C side information symbolic
destination

NTCPIC

«15¬ Mode name «17¬ #INTER

«16¬ LAN destination address «9¬ 08005AA5FAB9

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 197, as indicated.

«10¬ Remote Node name «2¬ AIXPU

«11¬ Network name «1¬ NETID

«12¬ Remote LU name «4¬ AIXLU

«13¬ Remote Transaction Program name «6¬ MQSERIES

«14¬ LU 6.2 CPI-C side information symbolic
destination

AIXCPIC

«15¬ Mode name «14¬ #INTER

«16¬ LAN destination address «8¬ 123456789012

Connection to an HP-UX system

The values in this section of the table must match those used in Table 23 on page 219, as indicated.

«10¬ Remote Node name «2¬ HPUXPU

«11¬ Network name «4¬ NETID

«12¬ Remote LU name «5¬ HPUXLU

«13¬ Remote Transaction Program name «7¬ MQSERIES

«14¬ LU 6.2 CPI-C side information symbolic
destination

HPUXCPIC

AT&T GIS UNIX and LU 6.2

244 MQSeries Intercommunication

Table 25. Configuration worksheet for AT&T GIS SNA Services (continued)

ID Parameter Name Reference Example User Value

«15¬ Mode name «6¬ #INTER

«16¬ LAN destination address «8¬ 100090DC2C7C

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 27 on page 257, as indicated.

«10¬ Remote Node name «3¬ SOLARPU

«11¬ Network name «2¬ NETID

«12¬ Remote LU name «7¬ SOLARLU

«13¬ Remote Transaction Program name «8¬ MQSERIES

«14¬ LU 6.2 CPI-C side information symbolic
destination

SOLCPIC

«15¬ Mode name «17¬ #INTER

«16¬ LAN destination address «5¬ 08002071CC8A

Connection to an AS/400 system

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

«10¬ Remote Node name «2¬ AS400PU

«11¬ Network name «1¬ NETID

«12¬ Remote LU name «3¬ AS400LU

«13¬ Remote Transaction Program name «8¬ MQSERIES

«14¬ LU 6.2 CPI-C side information symbolic
destination

AS4CPIC

«15¬ Mode name «17¬ #INTER

«16¬ LAN destination address «4¬ 10005A5962EF

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 36 on page 396, as indicated.

«10¬ Remote Node name «3¬ MVSPU

«11¬ Network name «2¬ NETID

«12¬ Remote LU name «4¬ MVSLU

«13¬ Remote Transaction Program name «7¬ MQSERIES

«14¬ LU 6.2 CPI-C side information symbolic
destination

MVSCPIC

«15¬ Mode name «10¬ #INTER

«16¬ LAN destination address «8¬ 400074511092

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 44 on page 485, as indicated.

«10¬ Remote Node name «2¬ VSEPU

«11¬ Network name «1¬ NETID

«12¬ Remote LU name «3¬ VSELU

«13¬ Remote Transaction Program name «4¬ MQ01

«14¬ LU 6.2 CPI-C side information symbolic
destination

VSECPIC

«15¬ Mode name #INTER

«16¬ LAN destination address «5¬ 400074511092

AT&T GIS UNIX and LU 6.2

Chapter 17. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 245

Explanation of terms
«1¬ Configuration

This is the unique ID of the SNA Server configuration you are creating or
modifying. Valid values are between 0 and 255.

«2¬ Network name
This is the unique ID of the network to which you are connected. Your
network administrator will tell you this value.

«3¬ Control Point name
This is a unique Control Point name for this workstation. Your network
administrator will assign this to you.

«4¬ Local LU name
A logical unit (LU) manages the exchange of data between systems. The
local LU name is the name of the LU on your system. Your network
administrator will assign this to you.

«5¬ LU 6.2 Transaction Program name
MQSeries applications trying to converse with this workstation will specify
a symbolic name for the program to be run at the receiving end. This will
have been defined on the channel definition at the sender. Wherever
possible we use a transaction program name of MQSERIES, or in the case
of a connection to VSE/ESA, where the length is limited to 4 bytes, use
MQTP.

See Table 19 on page 194 for more information.

«6¬ Local PU name
This is a unique PU name for this workstation. Your network administrator
will assign this to you.

«7¬ Mode name
This is the name given to the set of parameters that control the APPC
conversation. This name must be defined at each partner system. Your
network administrator will assign this to you.

«8¬ Token-ring adapter address
The is the 12-character hex address of the token-ring card.

«10¬ Remote Node name
This is a meaningful symbolic name by which the connection to a partner
node is known. It is used only inside SNA Server setup and is specified by
you.

«14¬ LU 6.2 CPI-C Side Information Symbolic Destination
This is a name given to the definition of a partner node. You supply the
name. It need be unique only on this machine. You will later use the name
in the MQSeries sender channel definition.

Establishing a connection using AT&T GIS SNA Server
The following information guides you through the tasks you must perform to
create the SNA infrastructure that MQSeries requires. This example creates the
definitions for a new partner node and LU on OS/2.

Use snamgr to enter the AT&T GIS SNA Server configuration panels. You need
root authority to use snamgr.

AT&T GIS UNIX and LU 6.2

246 MQSeries Intercommunication

Throughout the following example, only the panels containing information that
must be added or updated are shown. Preceding each panel is a list of the
sequence of panels that you must invoke to proceed from the initial menu to the
relevant customization panel.

Note: SNA Server works better in an Xterm session than it does in an ASCII
session such as TELNET.

Defining local node characteristics
Setting up the local node involves the following steps:
1. Configuring the SNA subsystem
2. Defining a mode
3. Defining a local Transaction Program

Configuring the SNA subsystem
Proceed through these panels:
1 SNA Manager
2 Configuration
3 SNA Subsystem Configuration
4 SNA Subsystem Configuration Creation

Enter the configuration identifier («1¬).

Enter Y.

Enter the values for Node ID of Local Node, PU Resource Name («6¬), Network
Identifier («2¬), CP Name («3¬), LU 6.2 Logical Unit Name («4¬), and Max
Number of LU 6.2 Sessions.

5 Create a Configuration

Enter a unique configuration identifier (0-255) 010

6 Parameter File Configuration
Will LU 6.2 be used? Y

1 SNA Configuration of the Local Node

Node Parameters:

Node ID of Local Node 00

PU Resource Name (optional) GISPU

Network Identifier (optional) NETID

Control Point (CP) Name (optional) GISPU

Local LU 6.2 Parameters:

LU 6.2 Logical Unit Name GISLU

Max Number of LU 6.2 Sessions 0100

Using AT&T GIS SNA Server

Chapter 17. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 247

Defining a mode
Proceed through these panels:
2 Local Configuration

Select Define a mode.

Enter the values for Mode Name («7¬), Maximum Number of Sessions, and
Number of Locally Controlled Sessions.

Defining a local Transaction Program
2 Local Configuration

Select Define a RECEIVE_ALLOCATE local TP.

Enter the values for TP name («5¬), and set the TP start type to A.

Note: Before this will work you need to associate the TP name with an executable
program. You do this outside snamgr by creating a symbolic link entry in
the directory /usr/lbin either before or after you configure SNA Server.
Enter the following commands:
cd /usr/lbin
ln -s /opt/mqm/bin/amqcrs6a MQSeries «5¬

3 Conversation Mode Definition

Mode Name #INTER

Maximum Number of Sessions 008

Number of Locally Controlled Sessions 004

Honor Pending Conversation Requests Before
an Existing Session is Terminated? N

Number of Automatically Established Sessions 004

Code Set to be Used During Transmission of TP Data E

4 Conversation Mode Definition for Max RU

Send Max RU Size Upper Bound 03840

Send Max RU Size Lower Bound 00128

Receive Max RU Size Upper Bound 03840

Receive Max RU Size Lower Bound 00128

3 Receive_Allocate Transaction Program Definition

TP name MQSERIES_______________________

TP start type A (M = Manual, A = Automatic)

receive_allocate timer (seconds) -1__ (0 - 9999, -1)

Incoming allocate timer (seconds) -1__ (0 - 9999, -1)

Max number of auto-started TP instances 1_ (1 - 99)

Using AT&T GIS SNA Server

248 MQSeries Intercommunication

Connecting to a partner node
To connect to a partner node you need to:
1. Configure a remote node
2. Define a partner LU
3. Add a CPI-C Side Entry

Configuring a remote node
Proceed through these panels:
2 Local Configuration

Select End Local Configuration.
1 Remote Node Definition

Select Peer Node Definition.

Enter the values for Remote Node Name («10¬), Type of Link Connection, and
SNA Logical Connection ID.

Enter the values for Token Ring Adapter ID, Local XID («9¬), and Remote MAC
address («16¬).

2 Remote Node Configuration

Remote Node Name OS2PU

Type of Link Connection TR

SNA Logical Connection ID 00

Link to Backup (Optional) ____

3 SNA/TR Configuration for Connection 01

Token Ring Adapter ID 01

Maximum Send BTU Length 1033

Local XID 03E00018

Data link role of local system NEG_

Remote DLSAP 04

Remote MAC Address 10005AFC5D83

Route Discovery Command T

Broadcast Timer 1_

4 Configuration of TR Adapter 01 for Connection 01

Local DLSAP 04

Adapter Type ild_

Using AT&T GIS SNA Server

Chapter 17. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 249

Defining a partner LU
Proceed through these panels:

Enter the values for Locally Known Name («12¬), Network Identifier («11¬),
Network Name (LUNAME) («12¬), and Uninterpreted Name («12¬),

Adding a CPI-C Side Entry
Proceed through these panels:
1 SNA MANAGER
2 Configuration
3 CPI-C Side Information

Enter the name of the CPI-C Side Information File («14¬).

1 LU 6.2 Logical Unit Definition

To complete the definition of Remote
Peer Node, OS2, you need to
define at least one Remote LU 6.2

Logical Unit.

Press CONT to Continue.

2 Partner LU 6.2 Definition

Locally Known Name OS2LU

Network Identifier NETID

Network Name (LUNAME) OS2LU

Uninterpreted Name OS2LU

Session Capability P

3 Automatic Activation

Auto Activate at Start of Day? N

4 LU 6.2 Partner Definition

Do you want to define another
remote LU 6.2 Logical Unit in
the remote node, OS2? N

4 Add a CPI-C Side Information File

Enter the CPI-C Side Information File Name OS2CPIC

(This name is the Symbolic Destination Name used by
the CPI-C program to reference side information.)

Using AT&T GIS SNA Server

250 MQSeries Intercommunication

Enter the values for Partner LU name («12¬), Mode name («15¬), and TP name
(«13¬).

What next?
The LU 6.2 connection is now established. You are ready to complete the
configuration. Go to “MQSeries for AT&T GIS UNIX configuration”.

Establishing a TCP connection
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or
root. If you do not have the following line in that file, add it as shown:
MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /usr/etc/inetd.conf. If you do not have the following line in that
file, add it as shown:
MQSeries stream tcp nowait root /opt/mqm/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:
ps -ef | grep inetd

4. Run the command:
kill -1 inetd processid

The command kill -1 can be unreliable. If it doesn’t work, use the command
kill -9 and then restart /usr/etc/inetd manually.

What next?
The LU 6.2 connection is now established. You are ready to complete the
configuration. Go to “MQSeries for AT&T GIS UNIX configuration”.

MQSeries for AT&T GIS UNIX configuration
Before beginning the installation process ensure that you have first created the
mqm user and group, and set the password.

Start any channel using the command:
runmqchl -c channel.name

5 Add CPI-C Side Information

Symbolic destination name: OS2CPIC

Partner LU name OS2LU

Mode name #INTER

TP name MQSERIES

Conversation security type NONE___

Security user ID __________

Security password __________

Using AT&T GIS SNA Server

Chapter 17. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 251

Notes:

1. Sample programs are installed in /opt/mqm/samp.
2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.
3. When you are using the command interpreter runmqsc to enter administration

commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q gis

where:
gis Is the name of the queue manager
-q Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the undeliverable message queue
2. Start the queue manager from the UNIX prompt using the command:

strmqm gis

where gis is the name given to the queue manager when it was created.
3. Before creating your own objects you must first create the system default

objects. These are a number of definitions for required objects and templates on
which user definitions will be modelled.
Create the default objects from the UNIX prompt using the command:
runmqsc gis < /opt/mqm/samp/amqscoma.tst > defobj.out

where gis is the name of the queue manager. Display the file defobj.out and
ensure that all objects were created successfully. There is a report at the end of
the file.

Channel configuration
The following section details the configuration to be performed on the AT&T GIS
UNIX queue manager to implement the channel described in Figure 32 on page 97.

In each case the MQSC command is shown. Either start runmqsc from a UNIX
prompt and enter each command in turn, or build a command file of the same
format as amqscoma.tst and use it as before to create the objects.

Examples are given for connecting MQSeries for AT&T GIS UNIX and MQSeries
for OS/2 Warp. If you wish to connect to another MQSeries product use the
appropriate set of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects
throughout this book. All others are keywords and should be entered as
shown.

AT&T GIS UNIX configuration

252 MQSeries Intercommunication

Table 26. Configuration worksheet for MQSeries for AT&T GIS UNIX

ID Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name GIS

«B¬ Local queue name GIS.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 164, as indicated.

«C¬ Remote queue manager name «A¬ OS2

«D¬ Remote queue name OS2.REMOTEQ

«E¬ Queue name at remote system «B¬ OS2.LOCALQ

«F¬ Transmission queue name OS2

«G¬ Sender (SNA) channel name GIS.OS2.SNA

«H¬ Sender (TCP/IP) channel name GIS.OS2.TCP

«I¬ Receiver (SNA) channel name «G¬ OS2.GIS.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ OS2.GIS.TCP

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 185, as indicated.

«C¬ Remote queue manager name «A¬ WINNT

«D¬ Remote queue name WINNT.REMOTEQ

«E¬ Queue name at remote system «B¬ WINNT.LOCALQ

«F¬ Transmission queue name WINNT

«G¬ Sender (SNA) channel name GIS.WINNT.SNA

«H¬ Sender (TCP/IP) channel name GIS.WINNT.TCP

«I¬ Receiver (SNA) channel name «G¬ WINNT.GIS.SNA

«J¬ Receiver (TCP) channel name «H¬ WINNT.GIS.TCP

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 211, as indicated.

«C¬ Remote queue manager name «A¬ AIX

«D¬ Remote queue name AIX.REMOTEQ

«E¬ Queue name at remote system «B¬ AIX.LOCALQ

«F¬ Transmission queue name AIX

«G¬ Sender (SNA) channel name GIS.AIX.SNA

«H¬ Sender (TCP) channel name GIS.AIX.TCP

«I¬ Receiver (SNA) channel name «G¬ AIX.GIS.SNA

«J¬ Receiver (TCP) channel name «H¬ AIX.GIS.TCP

Connection to MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

The values in this section of the table must match those used in Table 22 on page 216, as indicated.

«C¬ Remote queue manager name «A¬ DECUX

«D¬ Remote queue name DECUX.REMOTEQ

«E¬ Queue name at remote system «B¬ DECUX.LOCALQ

«F¬ Transmission queue name DECUX

«H¬ Sender (TCP) channel name DECUX.GIS.TCP

«J¬ Receiver (TCP) channel name «H¬ GIS.DECUX.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 24 on page 239, as indicated.

AT&T GIS UNIX configuration

Chapter 17. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 253

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 26. Configuration worksheet for MQSeries for AT&T GIS UNIX (continued)

ID Parameter Name Reference Example Used User Value

«C¬ Remote queue manager name «A¬ HPUX

«D¬ Remote queue name HPUX.REMOTEQ

«E¬ Queue name at remote system «B¬ HPUX.LOCALQ

«F¬ Transmission queue name HPUX

«G¬ Sender (SNA) channel name GIS.HPUX.SNA

«H¬ Sender (TCP) channel name GIS.HPUX.TCP

«I¬ Receiver (SNA) channel name «G¬ HPUX.GIS.SNA

«J¬ Receiver (TCP) channel name «H¬ HPUX.GIS.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

«C¬ Remote queue manager name SOLARIS

«D¬ Remote queue name SOLARIS.REMOTEQ

«E¬ Queue name at remote system «B¬ SOLARIS.LOCALQ

«F¬ Transmission queue name SOLARIS

«G¬ Sender (SNA) channel name GIS.SOLARIS.SNA

«H¬ Sender (TCP/IP) channel name GIS.SOLARIS.TCP

«I¬ Receiver (SNA) channel name «G¬ SOLARIS.GIS.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ SOLARIS.GIS.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 43 on page 472, as indicated.

«C¬ Remote queue manager name AS400

«D¬ Remote queue name AS400.REMOTEQ

«E¬ Queue name at remote system «B¬ AS400.LOCALQ

«F¬ Transmission queue name AS400

«G¬ Sender (SNA) channel name GIS.AS400.SNA

«H¬ Sender (TCP/IP) channel name GIS.AS400.TCP

«I¬ Receiver (SNA) channel name «G¬ AS400.GIS.SNA

«J¬ Receiver (TCP) channel name «H¬ AS400.GIS.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 37 on page 406, as indicated.

«C¬ Remote queue manager name MVS

«D¬ Remote queue name MVS.REMOTEQ

«E¬ Queue name at remote system «B¬ MVS.LOCALQ

«F¬ Transmission queue name MVS

«G¬ Sender (SNA) channel name GIS.MVS.SNA

«H¬ Sender (TCP) channel name GIS.MVS.TCP

«I¬ Receiver (SNA) channel name «G¬ MVS.GIS.SNA

«J¬ Receiver (TCP) channel name «H¬ MVS.GIS.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 45 on page 490, as indicated.

«C¬ Remote queue manager name VSE

«D¬ Remote queue name VSE.REMOTEQ

«E¬ Queue name at remote system «B¬ VSE.LOCALQ

«F¬ Transmission queue name VSE

AT&T GIS UNIX configuration

254 MQSeries Intercommunication

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 26. Configuration worksheet for MQSeries for AT&T GIS UNIX (continued)

ID Parameter Name Reference Example Used User Value

«G¬ Sender channel name GIS.VSE.SNA

«I¬ Receiver channel name «G¬ VSE.GIS.SNA

MQSeries for AT&T GIS UNIX sender-channel definitions using
SNA
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (GIS.OS2.SNA) chltype(sdr) + «G¬
trptype(lu62) +
conname('OS2CPIC') + «14¬
xmitq(OS2) + «F¬
replace

MQSeries for AT&T GIS UNIX receiver-channel definitions using
SNA
def ql (GIS.LOCALQ) replace «B¬

def chl (OS2.GIS.SNA) chltype(rcvr) + «I¬
trptype(lu62) +
replace

MQSeries for AT&T GIS UNIX sender-channel definitions using
TCP
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (GIS.OS2.TCP) chltype(sdr) + «H¬
trptype(tcp) +
conname(remote_tcpip_hostname) +
xmitq(OS2) + «F¬
replace

MQSeries for AT&T GIS UNIX receiver-channel definitions using
TCP/IP
def ql (GIS.LOCALQ) replace «B¬

def chl (OS2.GIS.TCP) chltype(rcvr) + «J¬
trptype(tcp) +
replace

AT&T GIS UNIX configuration

Chapter 17. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 255

AT&T GIS UNIX configuration

256 MQSeries Intercommunication

Chapter 18. Example configuration - IBM MQSeries for Sun
Solaris

This chapter gives an example of how to set up communication links from
MQSeries for Sun Solaris to MQSeries products on the following platforms:
v OS/2
v Windows NT
v AIX
v Digital UNIX
v HP-UX
v AT&T GIS UNIX6

v OS/400
v OS/390 or MVS/ESA without CICS
v VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it describes
“Establishing a connection using SunLink Version 9.1” on page 261 and
“Establishing a TCP connection” on page 271.

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for Sun Solaris configuration” on
page 271.

See “Chapter 7. Example configuration chapters in this book” on page 97 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 27 presents a worksheet listing all the parameters needed to set up
communication from Sun Solaris to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

Configuration worksheet
Use this worksheet to record the values you use for your configuration. Where
numbers appear in the Reference column they indicate that the value must match
that in the appropriate worksheet elsewhere in this book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page 260.

Table 27. Configuration worksheet for SunLink Version 9.1

ID Parameter Name Reference Example User Value

Parameters for local node

«1¬ PU 2.1 server name SOLSERV

«2¬ Network name NETID

6. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993, 2000 257

|

|

Table 27. Configuration worksheet for SunLink Version 9.1 (continued)

ID Parameter Name Reference Example User Value

«3¬ CP name SOLARPU

«4¬ Line name MQLINE

«5¬ Local MAC address 08002071CC8A

«6¬ Local terminal ID 05D 310D6

«7¬ Local LU name SOLARLU

«8¬ TP name MQSERIES

«9¬ Command Path home/interops/crs6a

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 138, as indicated.

«10¬ Unique session name OS2SESS

«11¬ Network name «2¬ NETID

«12¬ DLC name OS2QMGR

«13¬ Remote CP name OS2PU

«14¬ Local LSAP x‘04’, x‘08’, x‘0C’, ...

«15¬ Partner LU «6¬ OS2LU

«16¬ TP name «8¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C file name /home/mqstart/OS2CPIC

«19¬ Remote MAC address «10¬ 10005AFC5D83

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 170, as indicated.

«10¬ Unique session name WINNTSESS

«11¬ Network name «2¬ NETID

«12¬ DLC name NTQMGR

«13¬ Remote CP name WINNTPU

«14¬ Local LSAP x‘04’, x‘08’, x‘0C’, ...

«15¬ Partner LU «6¬ WINNTLU

«16¬ TP name «8¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C file name /home/mqstart/NTCPIC

«19¬ Remote MAC address «10¬ 10005AFC5D83

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 197, as indicated.

«10¬ Unique session name AIXSESS

«11¬ Network name «1¬ NETID

«12¬ DLC name AIXQMGR

«13¬ Remote CP name «2¬ AIXPU

«14¬ Local LSAP x‘04’, x‘08’, x‘0C’, ...

«15¬ Partner LU «4¬ AIXLU

«16¬ TP name «6¬ MQSERIES

«17¬ Mode name «14¬ #INTER

«18¬ CPI-C file name /home/mqstart/AIXCPIC

«19¬ Remote MAC address «15¬ 10005AFC5D83

Sun Solaris and LU 6.2

258 MQSeries Intercommunication

Table 27. Configuration worksheet for SunLink Version 9.1 (continued)

ID Parameter Name Reference Example User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 23 on page 219, as indicated.

«10¬ Unique session name HPUXSESS

«11¬ Network name «4¬ NETID

«12¬ DLC name HPUXQMGR

«13¬ Remote CP name HPUXPU

«14¬ Local LSAP x‘04’, x‘08’, x‘0C’, ...

«15¬ Partner LU «5¬ HPUXLU

«16¬ TP name «7¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C file name /home/mqstart/HPCPIC

«19¬ Remote MAC address «19¬ 10005AFC5D83

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in the Table 25 on page 243, as indicated.

«10¬ Unique session name GISSESS

«11¬ Network name «2¬ NETID

«12¬ DLC name GISQMGR

«13¬ Remote CP name GISPU

«14¬ Local LSAP x‘04’, x‘08’, x‘0C’, ...

«15¬ Partner LU «6¬ GISLU

«16¬ TP name «8¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C file name /home/mqstart/ATTCPIC

«19¬ Remote MAC address «10¬ 10005AFC5D83

Connection to an AS/400 system

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

«10¬ Unique session name AS400SESS

«11¬ Network name «2¬ NETID

«12¬ DLC name ASQMGR

«13¬ Remote CP name AS400PU

«14¬ Local LSAP x‘04’, x‘08’, x‘0C’, ...

«15¬ Partner LU «6¬ AS400LU

«16¬ TP name «8¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C file name /home/mqstart/400CPIC

«19¬ Remote MAC address «10¬ 10005AFC5D83

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 36 on page 396, as indicated.

«10¬ Unique session name MVSSESS

«11¬ Network name «2¬ NETID

«12¬ DLC name MVSQMGR

«13¬ Remote CP name MVSPU

«14¬ Local LSAP x‘04’, x‘08’, x‘0C’, ...

«15¬ Partner LU «6¬ MVSLU

Sun Solaris and LU 6.2

Chapter 18. Example configuration - IBM MQSeries for Sun Solaris 259

Table 27. Configuration worksheet for SunLink Version 9.1 (continued)

ID Parameter Name Reference Example User Value

«16¬ TP name «8¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C file name /home/mqstart/MVSCPIC

«19¬ Remote MAC address «10¬ 10005AFC5D83

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 44 on page 485, as indicated.

«10¬ Unique session name VSESESS

«11¬ Network name «2¬ NETID

«12¬ DLC name VSEQMGR

«13¬ Remote CP name VSEPU

«14¬ Local LSAP x‘04’, x‘08’, x‘0C’, ...

«15¬ Partner LU «6¬ VSELU

«16¬ TP name «8¬ MQSERIES

«17¬ Mode name «17¬ #INTER

«18¬ CPI-C file name /home/mqstart/VSECPIC

«19¬ Remote MAC address «10¬ 10005AFC5D83

Explanation of terms
«1¬ PU2.1 server name

This is the name of the PU2.1 server for the local control point.

«2¬ Network name
This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network name
works with the Control Point name to uniquely identify a system. Your
network administrator will tell you the value.

«3¬ CP name
This is the unique Control Point name for this workstation. Your network
administrator will assign this to you.

«4¬ Line name
This is the name that identifies the connection to the LAN.

«5¬ Local MAC address
This is the network address of the token-ring card. The address to be
specified is found in the ether value displayed in response to the
ifconfig tr0 command issued at a root level of authority. (Tr0 is the name
of the machine’s token-ring interface.) If you do not have the necessary
level of authority, your Sun Solaris system administrator can tell you the
value.

«6¬ Local terminal ID
This is the unique ID of this workstation. On other platforms this is often
referred to as the Exchange ID or XID. Your network administrator will
assign this ID for you.

«7¬ Local LU name
An LU manages the exchange of data between transactions. The local LU
name is the name of the LU on your system. Your network administrator
will assign this to you.

Sun Solaris and LU 6.2

260 MQSeries Intercommunication

«8¬ TP name
MQSeries applications trying to converse with this workstation will specify
a symbolic name for the program to be run at the receiving end. This will
have been defined on the channel definition at the sender. For simplicity,
wherever possible use a transaction program name of MQSERIES, or in the
case of a connection to VSE/ESA, where the length is limited to 4 bytes,
use MQ01.

See Table 19 on page 194 for more information.

«9¬ TP path
This is the path and name of the script file that invokes the MQSeries
program to run.

«10¬ Unique session name
This is the unique name of the Partner LU/Mode definition.

«12¬ DLC name
This is the name of the link to the remote system.

«13¬ Remote CP name
This is the name of the control point on the remote system.

«18¬ CPI-C file name
This is the full path and name of the file which holds CPI-C side
information for a partner system. There must be a separate CPI-C file for
each partner. For increased flexibility, include the full path and file name in
the MQSeries sender channel definition.

Establishing a connection using SunLink Version 9.1
This section describes how to establish a connection using SunLink Version 9.1 The
topics discussed are:
v SunLink 9.0 base configuration
v Invokable TPs
v CPI-C side information

SunLink 9.1 base configuration
To start the SunLink 9.1 graphical interface:
1. Enter sungmi at the command line.

It is assumed that the domain, manager systems, and default system were
defined during installation.

2. On the main screen, highlight Config1 in the resource tree and select File and
Open. A window entitled Connect to domain appears:

Sun Solaris and LU 6.2

Chapter 18. Example configuration - IBM MQSeries for Sun Solaris 261

3. Enter required details to connect to the required domain.

Configuring a PU 2.1 server
1. Double click on Systems in the resource tree to display a list of systems.
2. Double click on System name in the resource tree to open its subordinate

entries.
3. Using the right mouse button, highlight PU2.1 Servers in the resource tree and

select New and PU2.1 Server from the pop-up menu. A window entitled Create
PU2.1 Server appears:

4. Enter the PU2.1 Name («1¬).
5. Enter the CP Name. This consists of the Network Name («2¬)and the CP Name

(«3¬).
6. Click on Advanced >>. The advanced window appears:

Using SunLink

262 MQSeries Intercommunication

7. Enter the SunOp Service and LU6.2 Service

8. Click on OK when you are happy with the settings.

Adding a LAN connection
1. Double click on PU2.1 Servers in the resource tree to display the name of the

PU2.1 server.
2. Using the right mouse button, highlight the server name in the resource tree

and select New and LAN Connection from the pop-up menu. A window
entitled Create LAN Connection appears:

3. Enter a Line Name («4¬) and Local MAC Address («5¬).
4. Click on Advanced>> The advanced window appears:

Using SunLink

Chapter 18. Example configuration - IBM MQSeries for Sun Solaris 263

5. Check the LAN Speed is correct.
6. Click on OK when you are happy with the settings.

Configuring a connection to a remote PU
1. Double click the PU2.1 server name in the resource tree to open its

suborditnate entries.
2. Double click on LAN Connections.
3. Using the right mouse button, highlight the LAN connection name in the

resource tree and select New and DLC from the pop-up menu. A window
entitled Create DLC appears:

Using SunLink

264 MQSeries Intercommunication

4. Enter the DLC Name («12¬) and Remote MAC Address («19¬).
5. Click on Advanced>>. A window entitled Create DLC (advanced) appears:

6. Enter the Local LSAP for this DLC («14¬), Local Terminal ID («6¬), and
Remote CP Name («13¬).

7. When you are happy with the settings, click on OK.

Configuring an independent LU
1. Double click on Systems in the resource tree to display a list of systems.
2. Double click on the system name to open its subordinate entries.
3. Double click on PU2.1 Servers to display a list of servers.
4. Double click on the PU2.1 server name to open its subordinate entries.

Using SunLink

Chapter 18. Example configuration - IBM MQSeries for Sun Solaris 265

5. From the main window, select Edit, New, and Independent LU to display the
Create Independent LU window:

6. Enter the Local LU Name («7¬).
7. Click on Advanced>>. An advanced Create Independent LU window appears:

Using SunLink

266 MQSeries Intercommunication

8. Enter the Network Qual Name. This consists of the Network Name («2¬) and
the Local LU («7¬).

9. Click on OK

Configuring a partner LU
1. Double click on the PU2.1 server name in the resource tree to open its

subordinate entries.
2. From the main window, select Edit, New, and Partner LU to display the Create

Partner LU window:

Using SunLink

Chapter 18. Example configuration - IBM MQSeries for Sun Solaris 267

3. Enter the Partner LU («15¬) and the Local LU Name («7¬).
4. Click on Advanced>>. The advanced Create Partner LU window appears:

5. Choose a Local LU from the drop-down list.
6. Click on OK.

Configuring the session mode
1. Double click on the PU2.1 server name to open its subordinate entries.
2. Double click on Partner LU in the resource tree to display a list of partner LUs.
3. Click on the partner LU to select it.
4. From the main window, select Edit, New, and Mode to display the Create

Mode window:

Using SunLink

268 MQSeries Intercommunication

5. Enter the Mode Name («17¬) and DLC Name («12¬).
6. Click on Advanced>>. The advanced Create Mode window appears:

7. Enter the Unique Session Name («10¬).
8. When you are happy with the settings, click on OK.

Configuring a transaction program
1. Double click on the PU2.1 server name to open its subordinate entries.
2. Click on Transaction Programs in the resource tree to select it.
3. From the main window, select Edit, New, and Transaction Program to display

the Create Transaction Program window:

Using SunLink

Chapter 18. Example configuration - IBM MQSeries for Sun Solaris 269

4. Enter the TP Name («8¬) and Local LU («7¬).
5. Enter a path to the invokable TP in the Command Path («9¬) field:
6. Click on Advanced>>. The advanced Create Transaction Program window

appears:

7. When you are happy with the settings, click on OK.

Invokable TP path
In order to set required environment variables a script file should be defined for
each invokable TP containing the following:
#!/bin/ksh
export APPC_GATEWAY=zinfandel
export APPC_LOCAL_LU=SOLARLU
/opt/mqm/bin/amqcrs6a -m SOLARIS -n MQSERIES

CPI-C side information
In common with most other platforms, MQSeries for Sun Solaris Version 5.1 uses
CPI-C side information files («18¬) to hold information about its partner systems.
In SunLink 9.1, these are ASCII files (one per partner).

Using SunLink

270 MQSeries Intercommunication

The location of the file must be specified either explicitly in the conname
parameter of the sender channel definition or in the search path. It is better to
specify it fully in the conname parameter because the value of the PATH
environment variable can vary from user to user.

What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for Sun Solaris configuration”.

Establishing a TCP connection
To establish a TCP connection, follow these steps.
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or
root. If you do not have the following line in that file, add it as shown:
MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file,
add it as shown:
MQSeries stream tcp nowait mqm /opt/mqm/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:
ps -ef | grep inetd

4. Run the command:
kill -1 inetd processid

What next?
The TCP/IP connection is now established. You are ready to complete the
configuration. Go to “MQSeries for Sun Solaris configuration”.

MQSeries for Sun Solaris configuration
Before beginning the installation process ensure that you have first created the
mqm user and group, and set the password.

Start any channel using the command:
runmqchl -c channel.name

Notes:

1. Sample programs are installed in /opt/mqm/samp.
2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.
3. When you are using the command interpreter runmqsc to enter administration

commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

PTNR_LU_NAME = OS2LU «15¬
MODE_NAME = #INTER «17¬
TP_NAME = MQSERIES «16¬
SECURITY = NONE

Figure 35. CPI-C side information file for SunLink Version 9.0

Using SunLink

Chapter 18. Example configuration - IBM MQSeries for Sun Solaris 271

4. For an SNA or LU6.2 channel, if you experience an error when you try to load
the communications library, probably file liblu62.so cannot be found. A likely
solution to this problem is to add its location, which is probably
/opt/SUNWlu62, to LD_LIBRARY_PATH.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q solaris

where:
solaris

Is the name of the queue manager
-q Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.
2. Start the queue manager from the UNIX prompt using the command:

strmqm solaris

where solaris is the name given to the queue manager when it was created.

Channel configuration
The following section details the configuration to be performed on the Sun Solaris
queue manager to implement the channel described in Figure 32 on page 97.

The MQSC command to create each object is shown. Either start runmqsc from a
UNIX prompt and enter each command in turn, or build the commands into a
command file.

Examples are given for connecting MQSeries for Sun Solaris and MQSeries for
OS/2 Warp. If you wish to connect to another MQSeries product use the
appropriate set of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects
throughout this book. All others are keywords and should be entered as
shown.

Table 28. Configuration worksheet for MQSeries for Sun Solaris

ID Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name SOLARIS

«B¬ Local queue name SOLARIS.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 164, as indicated.

«C¬ Remote queue manager name «A¬ OS2

«D¬ Remote queue name OS2.REMOTEQ

«E¬ Queue name at remote system «B¬ OS2.LOCALQ

«F¬ Transmission queue name OS2

«G¬ Sender (SNA) channel name SOLARIS.OS2.SNA

Sun Solaris configuration

272 MQSeries Intercommunication

|
|
|
|

Table 28. Configuration worksheet for MQSeries for Sun Solaris (continued)

ID Parameter Name Reference Example Used User Value

«H¬ Sender (TCP/IP) channel name SOLARIS.OS2.TCP

«I¬ Receiver (SNA) channel name «G¬ OS2.SOLARIS.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ OS2.SOLARIS.TCP

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 185, as indicated.

«C¬ Remote queue manager name «A¬ WINNT

«D¬ Remote queue name WINNT.REMOTEQ

«E¬ Queue name at remote system «B¬ WINNT.LOCALQ

«F¬ Transmission queue name WINNT

«G¬ Sender (SNA) channel name SOLARIS.WINNT.SNA

«H¬ Sender (TCP/IP) channel name SOLARIS.WINNT.TCP

«I¬ Receiver (SNA) channel name «G¬ WINNT.SOLARIS.SNA

«J¬ Receiver (TCP) channel name «H¬ WINNT.SOLARIS.TCP

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 211, as indicated.

«C¬ Remote queue manager name «A¬ AIX

«D¬ Remote queue name AIX.REMOTEQ

«E¬ Queue name at remote system «B¬ AIX.LOCALQ

«F¬ Transmission queue name AIX

«G¬ Sender (SNA) channel name SOLARIS.AIX.SNA

«H¬ Sender (TCP) channel name SOLARIS.AIX.TCP

«I¬ Receiver (SNA) channel name «G¬ AIX.SOLARIS.SNA

«J¬ Receiver (TCP) channel name «H¬ AIX.SOLARIS.TCP

Connection to MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

The values in this section of the table must match those used in Table 22 on page 216, as indicated.

«C¬ Remote queue manager name «A¬ DECUX

«D¬ Remote queue name DECUX.REMOTEQ

«E¬ Queue name at remote system «B¬ DECUX.LOCALQ

«F¬ Transmission queue name DECUX

«H¬ Sender (TCP) channel name DECUX.SOLARIS.TCP

«J¬ Receiver (TCP) channel name «H¬ SOLARIS.DECUX.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 24 on page 239, as indicated.

«C¬ Remote queue manager name «A¬ HPUX

«D¬ Remote queue name HPUX.REMOTEQ

«E¬ Queue name at remote system «B¬ HPUX.LOCALQ

«F¬ Transmission queue name HPUX

«G¬ Sender (SNA) channel name SOLARIS.HPUX.SNA

«H¬ Sender (TCP) channel name SOLARIS.HPUX.TCP

«I¬ Receiver (SNA) channel name «G¬ HPUX.SOLARIS.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ HPUX.SOLARIS.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 26 on page 253, as indicated.

Sun Solaris configuration

Chapter 18. Example configuration - IBM MQSeries for Sun Solaris 273

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 28. Configuration worksheet for MQSeries for Sun Solaris (continued)

ID Parameter Name Reference Example Used User Value

«C¬ Remote queue manager name «A¬ GIS

«D¬ Remote queue name GIS.REMOTEQ

«E¬ Queue name at remote system «B¬ GIS.LOCALQ

«F¬ Transmission queue name GIS

«G¬ Sender (SNA) channel name SOLARIS.GIS.SNA

«H¬ Sender (TCP/IP) channel name SOLARIS.GIS.TCP

«I¬ Receiver (SNA) channel name «G¬ GIS.SOLARIS.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ GIS.SOLARIS.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 43 on page 472, as indicated.

«C¬ Remote queue manager name AS400

«D¬ Remote queue name AS400.REMOTEQ

«E¬ Queue name at remote system «B¬ AS400.LOCALQ

«F¬ Transmission queue name AS400

«G¬ Sender (SNA) channel name SOLARIS.AS400.SNA

«H¬ Sender (TCP) channel name SOLARIS.AS400.TCP

«I¬ Receiver (SNA) channel name «G¬ AS400.SOLARIS.SNA

«J¬ Receiver (TCP) channel name «H¬ AS400.SOLARIS.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 37 on page 406, as indicated.

«C¬ Remote queue manager name MVS

«D¬ Remote queue name MVS.REMOTEQ

«E¬ Queue name at remote system «B¬ MVS.LOCALQ

«F¬ Transmission queue name MVS

«G¬ Sender (SNA) channel name SOLARIS.MVS.SNA

«H¬ Sender (TCP) channel name SOLARIS.MVS.TCP

«I¬ Receiver (SNA) channel name «G¬ MVS.SOLARIS.SNA

«J¬ Receiver (TCP) channel name «H¬ MVS.SOLARIS.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 45 on page 490, as indicated.

«C¬ Remote queue manager name VSE

«D¬ Remote queue name VSE.REMOTEQ

«E¬ Queue name at remote system «B¬ VSE.LOCALQ

«F¬ Transmission queue name VSE

«G¬ Sender channel name SOLARIS.VSE.SNA

«I¬ Receiver channel name «G¬ VSE.SOLARIS.SNA

Sun Solaris configuration

274 MQSeries Intercommunication

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

MQSeries for Sun Solaris sender-channel definitions using SNA
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (SOLARIS.OS2.SNA) chltype(sdr) + «G¬
trptype(lu62) +
conname('/home/mqstart/OS2CPIC') + «14¬
xmitq(OS2) + «F¬
replace

MQSeries for Sun Solaris receiver-channel definitions using SNA
def ql (SOLARIS.LOCALQ) replace «B¬

def chl (OS2.SOLARIS.SNA) chltype(rcvr) + «I¬
trptype(lu62) +
replace

MQSeries for Sun Solaris sender-channel definitions using TCP
def ql (OS2) + «F¬

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + «D¬
rname(OS2.LOCALQ) + «E¬
rqmname(OS2) + «C¬
xmitq(OS2) + «F¬
replace

def chl (SOLARIS.OS2.TCP) chltype(sdr) + «H¬
trptype(tcp) +
conname(remote_tcpip_hostname) +
xmitq(OS2) + «F¬
replace

MQSeries for Sun Solaris receiver-channel definitions using
TCP/IP
def ql (SOLARIS.LOCALQ) replace «B¬

def chl (OS2.SOLARIS.TCP) chltype(rcvr) + «J¬
trptype(tcp) +
replace

Sun Solaris configuration

Chapter 18. Example configuration - IBM MQSeries for Sun Solaris 275

Sun Solaris configuration

276 MQSeries Intercommunication

Chapter 19. Setting up communication in Digital OpenVMS
systems

Distributed queue management (DQM) is a remote queuing facility for MQSeries.
It provides channel control programs for the queue manager that form the interface
to communication links, controllable by the system operator. The channel
definitions held by distributed-queuing management use these connections.

When a distributed-queuing management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this.

For OS/2 and Windows NT, see “Chapter 10. Setting up communication for OS/2
and Windows NT” on page 123. For UNIX systems, see “Chapter 13. Setting up
communication in UNIX systems” on page 191. For Tandem NSK, see “Chapter 20.
Setting up communication in Tandem NSK” on page 289.

Deciding on a connection
There are four forms of communication for MQSeries on Digital OpenVMS
systems:
v TCP
v LU 6.2
v DECnet Phase IV
v DECnet Phase V

Each channel definition must specify one only as the transmission protocol
(Transport Type) attribute. One or more protocols may be used by a queue
manager.

For MQSeries clients, it may be useful to have alternative channels using different
transmission protocols. See the MQSeries Clients book.

© Copyright IBM Corp. 1993, 2000 277

Defining a TCP connection
The channel definition at the sending end specifies the address of the target. The
TCP service is configured for the connection at the receiving end.

Sending end
Specify the host name, or the TCP address of the target machine, in the Connection
Name field of the channel definition. Port number 1414 is assigned by the Internet
Assigned Numbers Authority to MQSeries.

To use a port number other than the default, change the connection name field
thus:
Connection Name REMHOST(1822)

where REMHOST is the hostname of the remote machine and 1822 is the port number
required. (This must be the port that the listener at the receiving end is listening
on.)

Alternatively you can change the default sending port number by specifying it in
the queue manager configuration file (qm.ini):
TCP:
Port=1822

For more information about the values you set using qm.ini, see “Appendix D.
Configuration file stanzas for distributed queuing” on page 637.

Receiving channels using Compaq (DIGITAL) TCP/IP services
(UCX) for OpenVMS

To use Compaq (DIGITAL) TCP/IP Services (UCX) for OpenVMS, you must
configure a UCX service as follows:
1. Create a file consisting of one line and containing the DCL command to start

the TCP/IP receiver program, amqcrsta.exe:
$ mcr amqcrsta [-m Queue_Man_Name]

Place this file in the SYS$MANAGER directory. In this example the name of the
file is MQRECV.COM.

Notes:

a. If you have multiple queue managers you must make a new file and UCX
service for each queue manager.

b. Ensure that the protection on the file and its parent directory allow it to be
executable, that is, the protection is /PROT=W:RE.

2. Create a UCX service to start the receiving channel program automatically:
$ UCX
UCX> set service <p1>/port=<p2>/protocol=TCP/user_name=MQM -
UCX> /process=<p3>/file=<p4>/limit=<p5>

where:

p1 Is the service name, for example MQSERIES01. A unique name is
required for each queue manager defined.

p2 Is the TCP/IP port number in the range 1 to 65 535. The default value
for MQSeries is 1414.

Defining a TCP connection

278 MQSeries Intercommunication

|

|
|
|

|

||
|

||
|

p3 Is the process name. This consists of a string up to 15 characters long.

p4 Is the name of the startup command file, for example,
SYS$MANAGER:MQRECV.COM.

p5 Is the process limit. This is the maximum number of connections
allowed using the port number. If this limit is reached, subsequent
requests are rejected.

Note: Each channel represents a single connection to the queue
manager.

If a receiving channel does not start when the sending end starts, it is probably
due to the permissions on the file being incorrect.

3. To enable the service upon every system IPL (reboot), issue the command

$ UCX SET CONFIGURATION ENABLE SERVICE MQSERIES

Using the TCP/IP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page 66) you must the add the
following entry to your queue manager configuration file (qm.ini) or the Windows
NT registry:
TCP:

KeepAlive=yes

Receiving channels using Cisco MultiNet for OpenVMS
To use Cisco MultiNet for OpenVMS, you must configure a MultiNet service as
follows:
1. Create a file consisting of one line and containing the DCL command to start

the TCP receiver program, amqcrsta.exe:
$ mcr amqcrsta.exe [-m Queue_Man_Name]

Place this file in the SYS$MANAGER directory.

Notes:

a. If you have multiple queue managers you must make a new file and
MultiNet service for each queue manager.

b. Ensure that the protection on the file and its parent directory allow it to be
executable, that is, the protection is /PROT=W:RE.

2. Create a MultiNet service to start the receiving channel program automatically:
$ multinet configure/server
MultiNet Server Configuration Utility 3.5 (101)
[Reading in configuration from MULTINET:SERVICES.MASTER_SERVER]
SERVER-CONFIG> add MQSeries
[Adding new configuration entry for service “MQSERIES”]
Protocol: [TCP]
TCP Port number: 1414
Program to run: sys$manager:mqrecv.com
[Added service MQSERIES to configuration]
[Selected service is now MQSERIES]
SERVER-CONFIG> set flags UCX_SERVER
MQSERIES flags set to <UCX_SERVER>]

SERVER-CONFIG> set username MQM
[Username for service MQSERIES set to MQM]
SERVER-CONFIG> exit
[Writing configuration to MULTINET_COMMON_ROOT:SERVICES.MASTER_SERVER]
$

Defining a TCP connection

Chapter 19. Setting up communication in Digital OpenVMS systems 279

||

||
|

||
|
|

|
|

|
|

The service is enabled automatically after the next system IPL (reboot). To enable
the service immediately, issue the command:

'MULTINET
CONFIGURE /SERVER RESTART'.

Receiving channels using Attachmate PathWay for OpenVMS
To use Attachmate PathWay for OpenVMS to start channels, you must configure a
PathWay service as follows:
1. Create a file consisting of one line and containing the DCL command to start

the TCP/IP receiver program, amqcrsta.exe:
$ mcr amqcrsta [-m Queue_Manager_Name]

Place this file in the SYS$MANAGER directory. In this example the name
mqrecv.com is used.

2. Create an Attachmate service to start the receiving channel program
automatically.
You do this by adding the following lines to the file
TWG$COMMON:[NETDIST.ETC]SERVERS.DAT.

MQSeries
service-name MQSeries
program SYS$MANAGER:MQRECV.COM
socket-type SOCK_STREAM
socket-options SO_ACCEPTCONN | SO_KEEPALIVE
socket-address AF_INET , 1414
working-set 512
priority 4
INIT TCP_Init
LISTEN TCP_Listen
CONNECTED TCP_Connected
SERVICE Run_Program
username MQM
device-type UCX

Receiving channels using Process Software Corporation
TCPware

To use Process Software Corporation TCPware, you must configure a TCPware
service as follows:
1. Create a file consisting of one line and containing the DCL command to start

the TCP receiver program amqcrsta.exe:
$ mcr amqcrsta (-m Queue_Manager_Name)

Place this file in the SYS$MANAGER directory. In this example the name of the
file is MQRECV.COM.

Notes:

a. If you have multiple queue managers you must make a new file and
TCPware service for each queue manager.

b. Ensure that the protection on the file and its parent directory allow it to be
executable, that is, the protection is /PROT=W:RE.

2. Create a TCPware service to start the receiving channel program automatically:
a. Edit the TCPWARE:SERVICES. file and add an entry for the service you

want to use:
MQSeries 1414/tcp # MQSeries port

Defining a TCP connection

280 MQSeries Intercommunication

b. Edit the TCPWARE:SERVERS.COM file and add an entry for the service
defined in the previous step:

$! SERVERS.COM
$!
$ RUN TCPWARE:NETCU
ADD SERVICE MQSeries BG_TCP -

/INPUT=SYS$MANAGER:MQRECV.COM -
/LIMIT=6 -
/OPTION=KEEPALIVE -
/USERNAME=MQM

EXIT

3. The service is enabled automatically after the next system IPL. To enable the
service immediately issue the command:

@TCPWARE:SERVERS.COM

Defining an LU 6.2 connection
MQSeries for Digital OpenVMS uses the DECnet SNA APPC/LU 6.2 Programming
Interface. This interface requires access through DECnet to a suitably configured
SNA Gateway, for example, the SNA Gateway-ST, or SNA Gateway-CT.

SNA configuration
To enable MQSeries to work with DECnet APPC/LU 6.2 you must complete your
Gateway SNA configuration first. The Digital SNA configuration must be in
agreement with the Host SNA configuration.

Notes:

1. When configuring your host system, be aware that the DECnet SNA Gateway
supports PU 2.0 and not node type 2.1. This means that the LUs on the Digital
SNA node must be dependent LUs. They reside on the Digital SNA node and
so must be defined and configured there. However, because they are dependent
LUs, they have to be activated by VTAM, by means of an ACTLU command,
and so they also need to be defined to VTAM as dependent LUs.

2. Ensure that the SNA libraries are installed as shared images upon each system
IPL by running the command @SYS$STARTUP:SNALU62$STARTUP.COM in the system
startup procedure.

To configure your SNA Gateway, set up the SNAGATEWAY_<node>_SNA.COM file,

where <node> is replaced with the node name of your DECnet SNA gateway.

Do this by responding to the configuration prompts in the Gateway installation
procedure, or by directly editing the file.

The SNA Gateway installation procedure creates the file in the directory
SYS$COMMON:[SNA$CSV].

The configuration information in this file is downloaded to the Gateway when you
run the NCP LOAD NODE command.

Notes:

1. Online changes to the current Gateway configuration can be made using the
utility SNANCP.

2. SNA resources can be monitored using the SNAP utility.

Defining a TCP connection

Chapter 19. Setting up communication in Digital OpenVMS systems 281

A sample SNA Gateway Configuration file follows:
$!+-+
$! Start of file: SYS$COMMON:[SNA$CSV]SNAGATEWAY_SNAGWY_SNA.COM
$! DECnet SNA Gateway-ST SNA configuration file
$! Created: 23-FEB-1996 19:10:43.68 by SNACST$CONFIGURE V1.2
$! Host node: CREAMP User$ CHO
$!+-+
$ v = f$verify(1)
$ RUN SYS$SYSTEM:SNANCP
SET LINE SYN-0 - // Line definition

DUPLEX FULL -
PROTOCOL SDLC POINT -
SIGNALLING NORMAL -
CLOCK EXTERNAL -
MODEM TYPE NORMAL -
RECEIVE BUFFERS 34 -
LOGGING INFORMATIONAL -
BUFFER SIZE 265

SET CIRCUIT SDLC-0 - // Circuit definition
LINE SYN-0 -
DUPLEX FULL -
RESPONSE MODE NORMAL -
STATION ADDRESS C1 -
LOGGING INFORMATIONAL -
STATION ID 0714002A // XID

SET PU SNA-0 CIRCUIT SDLC-0 -
LU LIST 1-32 -
SEGMENT SIZE 265 - // must equal MAXDATA on Host PU definition
LOGGING WARNING

SET CIRCUIT SDLC-0 STATE ON
SET LINE SYN-0 STATE ON
SET SERVER SNA-ACCESS -

LOGGING WARNING -
NOTE “Gateway Access Server” -
STATE ON

SET ACCESS NAME VTAMSDR PU SNA-0 LU 2 APPL MVSLU LOGON LU62SS
SET ACCESS NAME VTAMRCVR PU SNA-0 LU 3 APPL MVSLU LOGON LU62SS
$ EXIT $STATUS + (0 * 'f$verify(v)')
$!+-+
$! End of file: SYS$COMMON:[SNA$CSV]SNAGATEWAY_SNAGWY_SNA.COM
$!+-+

Defining access names
You should set up a separate Access name for each MQSeries channel. This ensures
that the VMS system and the remote system agree on the LU used for the channel.

Note: If you use a single access name, with a range of LUs specified, the Gateway
selects the LUs in a circular order. Therefore the LU selected by the Gateway
may not correspond with the LU used by the Host channel, because the
Host associates a specific LU with a channel.

The access name is used only to communicate between the DECnet SNA APPC
program and the Gateway. It has no network meaning.

Notes:

1. The LUs are single session. You must define a separate LU for each channel if
they are to run simultaneously.

2. You are advised to use names that associate the access name to the
corresponding channel, but you can choose any name.

3. The APPL in the ACCESS name definition must match the remote (in this case
MVSLU) APPL in VTAM.

4. The LU number must correspond to the LOCADDR in the LU definition
statement in VTAM. Here is an example VTAM line and LU definitions:
IYA8L007 LINE ADDRESS=(007,FULL),

ISTATUS=ACTIVE
IYA8P307 PU ADDR=C2,

ISTATUS=ACTIVE,
IRETRY=NO,

Defining an LU 6.2 connection

282 MQSeries Intercommunication

MAXDATA=521,
MAXOUT=7,
PASSLIM=7,
PUTYPE=2

IYA83071 LU LOCADDR=2,PACING=1,DLOGMOD=LU62CP1
IYA83072 LU LOCADDR=3

5. The LOGON must specify the logmode entry on the VTAM host that specifies
parameters acceptable to the SNA Gateway. Here is an example of a single
session logmode entry:
LU62SS MODEENT LOGMODE=LU62SS,

TYPE=0, ONLY TYPE RECOGNIZED
FMPROF=X’13’, SNA
TSPROF=X’07’, SNA
PRIPROT=X’B0’, PRIMARY PROTOCOL
SECPROT=X’B0’, SECONDARY PROTOCOL
COMPROT=X’50B1’, COMMON PROTOCOL
SSNDPAC=X’00’,
SRCVPAC=X’00’,
RUSIZES=X’8989’, RUSIZES IN-4096 OUT-4096
PSNDPAC=X’00’,
PSERVIC=X’060200000000000000002C00’,

The DECnet SNA Gateway Guide to IBM Parameters details the parameters
expected by the Gateway.

Specifying SNA configuration parameters to MQSeries
MQSeries obtains knowledge of the SNA resources by passing the Gateway Node
name and the Access name to the channel program.

Passing parameters to sender and requester channel pairs
For sender and requester channel pairs specify the Gateway Node and Access
Name in the CONNAME string in the channel definition.

The CONNAME also includes the TPNAME that is used by the SNA Allocate verb
to invoke the remote program.

The format of the CONNAME is: CONNAME('GatewayNode.AccessName(TpName)').

For example: CONNAME('SNAGWY.VTAMSDR(MQSERIES)'), where SNAGWY is the Gateway
node, VTAMSDR is the access name, and MQSeries is the TPNAME.

Note: Do not use the TPNAME field in the channel definition.

Running senders and requesters
Senders, requesters, and fully qualified servers can be explicitly run by performing
a START CHANNEL command in runmqsc.

Senders and requesters on Digital OpenVMS initiate a session by issuing an
INIT-SELF to request a BIND from the host. In issuing the Allocate verb, the
MQSeries channel program takes the LU name and the Mode Name from the
Access Name.

MQSeries then allocates a conversation using the specified TPNAME.

Passing parameters to servers and receivers
For servers and receivers, specify the Gateway Node, Access Name, and TPNAME
as command line parameters to the runmqlsr command.

Defining an LU 6.2 connection

Chapter 19. Setting up communication in Digital OpenVMS systems 283

Running servers and receivers
Servers and receivers are started by running the runmqlsr command.
$ RUNMQLSR -m QMname -n TPname -g GatewayNode(AccessName)

Note: Each server and receiver channel requires its own listener process.

You can include these commands in the MQSeries startup file,
SYS$STARTUP:MQS_STARTUP.

Receivers and servers issue the ACTIVATE_SESSION request to the Gateway in
passive mode. In passive mode the channel program waits for a BIND from the
remote system, which puts the LU into the active-listening state, waiting for a bind
from the host.

You can check the LU status using SNANCP to make sure that you are in
active-listening state on the correct LU. If a BIND from the host arrives specifying
the LU that is in active-listening state, the session will be established. After
establishing the session, the host attempts to allocate a conversation.

The TPNAME used by the host sender/requester channel must be the same name
as that specified on the command line in order to establish the conversation.

Note: RUNMQLSR recycles when a remote channel disconnects. There is a finite
period of time before the listener is ready to accept further binds from the
host.

Ending the SNA Listener process
To find the batch job number for the SNA listener process, type:
$ show queue / all

To end the SNA Listener process type:
$ delete /entry=<jobnumber>

where <jobnumber> is the job number of the listener batch job.

Sample MQSeries configuration
*
* channel configuration for saturn.queue.manager for LU6.2
*
def ql('HOST_SENDER_TQ') usage(xmitq)

def chl('HOST.TO.VMS') chltype(rcvr) trptype(lu62) +
seqwrap(999999999)

def chl('VMS.TO.HOST') chltype(sdr) trptype(lu62) +
conname('SNAGWY.VTAMSDR(MQSERIES)') +
xmitq('HOST_SENDER_TQ') seqwrap(999999999)

In this example two channels, a sender and a receiver, have been set up.

On the remote system you need to configure the corresponding channels. Channels
that talk to each other must have the same name.
v The OpenVMS sender, VMS.TO.HOST, talks to a receiver called VMS.TO.HOST

on the host system.
v The OpenVMS receiver, HOST.TO.VMS talks to a sender HOST.TO.VMS on the

host system.

Defining an LU 6.2 connection

284 MQSeries Intercommunication

The commands to start each channel are:
// Start sender channel to host system
$ runmqchl -m “saturn.queue.manager” -c “VMS.TO.HOST”
// Set up listener to lesten for incoming SNA requests.
$ runmqlsr -m “saturn.queue.manager” -n “TPNAME” -g SNAGWY(VTAMRCVR)

Note: The TPNAME must match the outbound TPNAME on the MVS sender channel
side. This is specified in the MVS side information, for example:
SIDELETE
DESTNAME(ID1)

SIADD
DESTNAME(ID1)
MODENAME(LU62SS)
TPNAME(MQSERIES)
PARTNER_LU(IYA83072)

Problem solving
Error PUNOTAVA - PU has not been activated

This error indicates a lack of connectivity between the two machines. Make sure
your line and circuit are set to state ON. Use SNATRACE at the circuit level to
verify that the Digital OpenVMS machine is polling. If no response is received for
the poll, check that the PU on the host is enabled. If the line will not go to the ON
STATE check your physical line. If the trace shows the host responding to the poll,
but the PU still does not become active, check your setting of the STATION ID.

Failure to allocate conversation

This error is returned by a sender or requester to indicate that allocate failed. Run
trace to verify that the session can be established. Verify that the Digital OpenVMS
machine sends the INIT-SELF (010681). If there is no response to the INIT-SELF
make sure that the host MQSeries channel is started. If the BIND from the host is
rejected by the Digital OpenVMS machine analyze the Digital bind response. Use
the DECnet SNA Gateway Guide to IBM Parameters to see what is set incorrectly in
the mode. If a session is established and the conversation allocate request is
rejected verify that the TPNAMEs are configured the same on both systems.

For receivers and servers verify that a BIND is sent by the host. If not, enable the
Host MQSeries channel. If the BIND is rejected check the reason for rejection.
Make sure that the Digital OpenVMS listener LU is the LU with which the host is
trying to establish a session.

MQSeries connection failure

After establishing a conversation the two MQSeries channels engage in a protocol
to establish an MQSeries channel connection. If this fails, the reason for failure
should be indicated in the error logs on the two systems. Check both logs and
correct the indicated problem. For example the connection fails if one system has a
SEQWRAP value of 999999999 and the other 999999. In the SNATRACE you will
see that the allocate succeeded and that MQ™ is trying to establish a channel
connection. At this point the MQSeries logs are the best aid in resolving problems.

Defining a DECnet Phase IV connection
The channel definition at the sending end specifies the address of the target. The
DECnet network object is configured for the connection at the receiving end.

Defining an LU 6.2 connection

Chapter 19. Setting up communication in Digital OpenVMS systems 285

Sending end
Specify the DECnet node name and the DECNET object name in the Connection
Name field of the channel definition. You need a different DECnet object for each
separate queue manager that is defined. For example, to specify DECnet object
MQSERIES on node FOONT enter the following when defining the channel:
CONNAME('FOONT(MQSERIES)')

Receiving on DECnet Phase IV
To use DECnet Phase IV to start channels, you must configure a DECnet object as
follows:
1. Create a file consisting of one line and containing the DCL command to start

the DECnet receiver program, amqcrsta.exe:
$ mcr amqcrsta [-m Queue_Man_Name] -t DECnet

Place this file in the SYS$MANAGER directory. In this example the file is
named MQRECVDECNET.COM.

Notes:

a. If you have multiple queue managers you must make a new file and
DECnet object for each queue manager.

b. If a receiving channel does not start when the sending end starts, it is
probably due to the permissions on this file being incorrect.

2. Create a DECnet object to start the receiving channel program automatically.
You must supply the correct password for MQSeries.
$ MCR NCP
NCP> define object MQSERIES
Object number (0-255): 0
File name (filename):sys$manager:mqrecvdecnet.com
Privileges (List of VMS privileges):
Outgoing connect privileges (List of VMS privileges):
User ID (1-39 characters): mqm
Password (1-39 characters): mqseries
Account (1-39 characters):
Proxy access (INCOMING, OUTGOING, BOTH, NONE, REQUIRED):
NCP> set known objects all
NCP> exit

Note: You could use proxy user identifiers rather than actual user identifiers.
This will prevent any unauthorized access to the database. Information
on how to set up proxy identifiers is given in the Digital DECnet for
OpenVMS Networking Manual.

3. Ensure that all known objects are set when DECnet is started.

Defining a DECnet Phase V connection
Set up the MQSeries configuration for channel objects:
1. Start the NCL configuration interface by issuing the following command:

$ MC NCL
NCL>

2. Create a session control application entity by issuing the following commands:
NCL> create session control application MQSERIES
NCL> set sess con app MQSERIES address {name=MQSERIES}
NCL> set sess con app MQSERIES image name -
_ SYS$MANAGER:MQRECVDECNET.COM
NCL> set sess con app MQSERIES user name “MQM”
NCL> set sess con app MQSERIES node synonym true
NCL> show sess con app MQSERIES all [characteristics]

DECnet Phase IV connections

286 MQSeries Intercommunication

Note: User-defined values are in uppercase.
3. Create the command file as for DECnet PhaseIV.
4. The log file for the object is net$server.log in the sys$login directory for the

application-specified user name.
5. To enable the session control application upon every system IPL (reboot), add

the preceding NCL commands to the file
SYS$MANAGER:NET$APPLICATION_LOCAL.NCL.

DECnet Phase V connections

Chapter 19. Setting up communication in Digital OpenVMS systems 287

DECnet Phase V connections

288 MQSeries Intercommunication

Chapter 20. Setting up communication in Tandem NSK

Distributed queue management (DQM) is a remote queuing facility for MQSeries.
It provides channel control programs for the queue manager that form the interface
to communication links, controllable by the system operator. The channel
definitions held by distributed-queuing management use these connections.

When a distributed-queuing management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this.

For OS/2 and Windows NT, see “Chapter 10. Setting up communication for OS/2
and Windows NT” on page 123. For UNIX systems, see “Chapter 13. Setting up
communication in UNIX systems” on page 191. For Digital OpenVMS, see
“Chapter 19. Setting up communication in Digital OpenVMS systems” on page 277.

Deciding on a connection
There are two forms of communication for MQSeries for Tandem NonStop Kernel:
v TCP
v LU 6.2

Each channel definition must specify one only as the transmission protocol
(Transport Type) attribute. One or more protocols may be used by a queue
manager.

When connecting to MQSeries clients, it may be useful to have alternative channels
using different transmission protocols. See the MQSeries Clients book for more
information. (There is no MQSeries for Tandem NonStop Kernel client.)

SNA channels
The following channel attributes are necessary for SNA channels in MQSeries for
Tandem NonStop Kernel:

CONNAME
The value of CONNAME depends on whether SNAX or ICE is used as the
communications protocol:

If SNAX is used:

CONNAME(’$PPPP.LOCALLU.REMOTELU’)
Applies to sender, requester, and fully-qualified server channels,
where:
$PPPP Is the process name of the SNAX/APC process.
LOCALLU

Is the name of the Local LU.
REMOTELU

Is the name of the partner LU on the remote machine.

For example:
CONNAME('$BP01.IYAHT080.IYCNVM03')

© Copyright IBM Corp. 1993, 2000 289

CONNAME(’$PPPP.LOCALLU’)
Applies to receiver and non fully-qualified server channels, where:
$PPPP Is the process name of the SNAX/APC process.
LOCALLU

Is the name of the Local LU. This value can be an asterisk
(*), indicating any name.

For example:
CONNAME('$BP01.IYAHT080')

If ICE is used:

CONNAME(’$PPPP.#OPEN.LOCALLU.REMOTELU’)
Applies to sender, requester, and fully-qualified server channels,
where:
$PPPP Is the process name of the ICE process.
#OPEN

Is the ICE open name.
LOCALLU

Is the name of the Local LU.
REMOTELU

Is the name of the partner LU on the remote machine.

For example:
CONNAME('$ICE.#IYAHT0C.IYAHT0C0.IYCNVM03')

CONNAME(’$PPPP.#OPEN.LOCALLU’)
Applies to receiver and non fully-qualified server channels, where:
$PPPP Is the process name of the SNAX/APC process.
#OPEN

Is the ICE open name.
LOCALLU

Is the name of the Local LU. This value can be an asterisk
(*), indicating any name.

For example:
CONNAME('$ICE.#IYAHT0C.IYAHT0C0')

MODENAME
Is the SNA mode name. For example, MODENAME(LU62PS).

TPNAME(’LOCALTP[.REMOTETP]’)
Is the Transaction Process (TP) name.
LOCALTP

Is the local name of the TP.
REMOTETP

Is the name of the TP on the remote machine. This value is
optional. If it is not specified, and the channel is one that initiates a
conversation (that is, a sender, requester, or fully-qualified server
channel) the LOCALTP name is used.

Both the LOCALTP and REMOTETP values can be up to 16 characters in
length.

Notes:

1. If SNAX is being used to facilitate SNA communications, the values in
the LOCALTP field in the TPNAME must match TPs defined to SNAX.
You are recommended to use uppercase when defining an LU name.

SNA channels

290 MQSeries Intercommunication

2. If ICE is being used, TPNAMEs do not need to be defined to ICE; they
need only be present in the MQSeries channel definitions.

LU 6.2 responder processes
There is no SNA listener process in MQSeries for Tandem NonStop Kernel. Each
channel initiated from a remote system (receiver, server, or requester that has a
fully-qualified server on the remote system or a requester that has a sender on the
remote system) must have its own, unique TP name on which it can listen. This TP
name is specified as the LOCALTP value.

Such channels must be defined to MQSC with the attribute
AUTOSTART(ENABLED) to ensure that there is an LU 6.2 responder process
listening on this TP name whenever the queue manager is started. This LU 6.2
responder process (MQLU6RES) services incoming SNA requests for its particular
TP. If the channel is newly defined, or has been recently altered, an LU 6.2
responder process can be started for that channel by issuing either the MQSC
command START CHANNEL (using runmqsc) or the runmqchl control command
from the TACL prompt.

SNA channels defined AUTOSTART(DISABLED) do not listen for incoming SNA
requests. LU 6.2 responder processes are not started for such channels. A message
is logged to MQERRLG1 whenever an LU 6.2 responder process is started.

TCP channels
For information about using a nondefault TCP process for communications via
TCP, and information about the TCP ports a queue manager listens on, see the
MQSeries for Tandem NonStop Kernel System Management Guide.

SNA channels

Chapter 20. Setting up communication in Tandem NSK 291

Communications examples
This section provides communications setup examples for SNA (SNAX and ICE)
and TCP.

SNAX communications example
This section provides:
v An example SCF configuration file for the SNA line
v Some example SYSGEN parameters to support the line
v An example SCF configuration file for the SNA process definition
v Some example MQSC channel definitions

SCF SNA line configuration file
Here is an example SCF configuration file:

==
== SCF configuration file for defining SNA LINE, PUs, and LUs to VTAM
== Line is called $SNA02 and SYSGEN'd into the Tandem system
==

ALLOW ALL
ASSUME LINE $SNA02

ABORT, SUB LU
ABORT, SUB PU
ABORT

DELETE, SUB LU
DELETE, SUB PU
DELETE

Communications examples

292 MQSeries Intercommunication

==
== ADD $SNA02 LINE DEFINITION
==

ADD LINE $SNA02, STATION SECONDARY, MAXPUS 5, MAXLUS 1024, RECSIZE 2048, &
CHARACTERSET ASCII, MAXLOCALLUS 256, &
PUIDBLK %H05D, PUIDNUM %H312FB

==
== ADD REMOTE PU OBJECT, LOCAL IS IMPLICITLY DEFINED AS #ZNT21
==

ADD PU #PU2, ADDRESS 1, MAXLUS 16, RECSIZE 2046, TYPE (13,21), &
TRRMTADDR 04400045121088, DYNAMIC ON, &
ASSOCIATESUBDEV $CHAMB.#p2, &
TRSSAP %H04, &
CPNAME IYAQCDRM, SNANETID GBIBMIYA

==
== ADD LOCAL LU OBJECT
==

ADD LU #ZNTLU1, TYPE (14,21), RECSIZE 1024, &
CHARACTERSET ASCII, PUNAME #ZNT21, SNANAME IYAHT080

==
== ADD PARTNER LU OBJECTS
==

== spinach (HP)

ADD LU #PU2LU1, TYPE(14,21), PUNAME #PU2, SNANAME IYABT0F0

== stingray (AIX)

ADD LU #PU2LU2, TYPE(14,21), PUNAME #PU2, SNANAME IYA3T995

== coop007 (OS/2)

ADD LU #PU2LU3, TYPE(14,21), PUNAME #PU2, SNANAME IYAFT170

== MVS CICS

ADD LU #PU2LU4, TYPE(14,21), PUNAME #PU2, SNANAME IYCMVM03

== MVS Non-CICS

ADD LU #PU2LU5, TYPE(14,21), PUNAME #PU2, SNANAME IYCNVM03

== finnr100 (NT)

ADD LU #PU2LU6, TYPE(14,21), PUNAME #PU2, SNANAME IYAFT080

== winas18 (AS400)

Communications examples

Chapter 20. Setting up communication in Tandem NSK 293

SYSGEN parameters
The following are CONFTEXT file entries for a SYSGEN to support the SNA and
token ring lines:

ADD LU #PU2LU7, TYPE(14,21), PUNAME #PU2, SNANAME IYAFT110

== MQ-Portuguese (OS/2)

ADD LU #PU2LU8, TYPE(14,21), PUNAME #PU2, SNANAME IYAHT090

== VSE

ADD LU #PU2LU10, TYPE(14,21), PUNAME #PU2, SNANAME IYZMZSI2

== START UP TOKEN RING ASSOCIATE SUB DEVICE $CHAMB.#P2
== then start the line, pu's, and lu's

START LINE $CHAMB, SUB ALL

START
START, SUB PU

STATUS
STATUS, SUB PU
STATUS, SUB LU

!**
! LAN MACRO
!**
! This macro is used for all 361x LAN controllers
! REQUIRES T9375 SOFTWARE PACKAGE

C3613|MLAM = MLAM
TYPE 56, SUBTYPE 0,
PROGRAM C9376P00,
INTERRUPT IOP|INTERRUPT|HANDLER,
MAXREQUESTSIZE 32000,
RSIZE 32000,
BURSTSIZE 16,
LINEBUFFERSIZE 32,
STARTDOWN #;

!**
! SNAX macro for Token ring lines
!**
TOKEN|RING|SNAX|MACRO = SNATS

TYPE 58,
SUBTYPE 4,
RSIZE 1024,
SUBTYPE 4,
FRAMESIZE 1036 # ;

Communications examples

294 MQSeries Intercommunication

SNAX/APC process configuration
The following definitions configure the example APC process (process name
$BP01) via SCF for the SNA line.

Note: The pathway process $BP01 is created using the Tandem utility APCRUN.

!**
! SNAX MANAGER
!**
SSCP|MACRO = SNASVM

TYPE 13, SUBTYPE 5,
RSIZE 256 #;

!**
! LAN CONTROLLER
!**
LAN1 3616 0,1 %130 ;

!*********** Service manager
SNAX 6999 0,1 %370 ;

!*********** SNAX/Token Ring Pseudocontroller
RING 6997 0,1 %360 ;

!*********** Token Ring Line
$CHAMB LAN1.0, LAN1.1 C3613|MLAM, NAME #LAN1;

!*********** Configure the SSCP
$SSCP SNAX.0, SNAX.1 SSCP|MACRO;

!*********** Sna lines for Dummy Controller over Token Ring
$SNA01 RING.0, RING.1 TOKEN|RING|SNAX|MACRO;
$SNA02 RING.2, RING.3 TOKEN|RING|SNAX|MACRO;

==
== SCF Configuration file for SNAX/APC Lus
==

ALLOW ERRORS

ASSUME PROCESS $BP01

ABORT SESSION *
ABORT TPN *
ABORT PTNR-MODE *
ABORT PTNR-LU *
ABORT LU *

DELETE TPN *
DELETE PTNR-MODE *
DELETE PTNR-LU *
DELETE LU *

==
== ADD LOCAL LU
==
ADD LU IYAHT080, SNANAME GBIBMIYA.IYAHT080, SNAXFILENAME $SNA02.#ZNTLU1, &

MAXSESSION 256, AUTOSTART YES

Communications examples

Chapter 20. Setting up communication in Tandem NSK 295

== TPnames for MQSeries

ADD TPN IYAHT080.INTCRS6A
ADD TPN IYAHT080.DUMMY, GENERALTPREADY yes, SESSIONCONTROL yes, &

REMOTEATTACHTIMER -1, REMOTEATTACH queue

=== Spinach (HP) Partner LU

ADD PTNR-LU IYAHT080.IYABT0F0, SNANAME GBIBMIYA.IYABT0F0, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYABT0F0.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHT080.MH01SDRCSDR
ADD TPN IYAHT080.MH01RQSDSDR
ADD TPN IYAHT080.MH01RQSVSVR
ADD TPN IYAHT080.MH01SDRCRCVR
ADD TPN IYAHT080.MH01RQSVRQSTR
ADD TPN IYAHT080.MH01RQSDRQSTR

==
== Winas18 (AS400) Partner LU
==

ADD PTNR-LU IYAHT080.IYAFT110, SNANAME GBIBMIYA.IYAFT110, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYAFT110.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHT080.M401SDRCSDR
ADD TPN IYAHT080.M401RQSDSDR
ADD TPN IYAHT080.M401RQSVSVR
ADD TPN IYAHT080.M401SDRCRCVR
ADD TPN IYAHT080.M401RQSVRQSTR
ADD TPN IYAHT080.M401RQSDRQSTR

Communications examples

296 MQSeries Intercommunication

==
== Stingray (AIX) Partner LU
==

ADD PTNR-LU IYAHT080.IYA3T995, SNANAME GBIBMIYA.IYA3T995, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYA3T995.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHT080.MA02SDRCSDR
ADD TPN IYAHT080.MA02RQSDSDR
ADD TPN IYAHT080.MA02RQSVSVR
ADD TPN IYAHT080.MA02SDRCRCVR
ADD TPN IYAHT080.MA02RQSVRQSTR
ADD TPN IYAHT080.MA02RQSDRQSTR

==
== coop007 (OS/2) Partner LU
==

ADD PTNR-LU IYAHT080.IYAFT170, SNANAME GBIBMIYA.IYAFT170, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYAFT170.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHT080.MO02SDRCSDR
ADD TPN IYAHT080.MO02RQSDSDR
ADD TPN IYAHT080.MO02RQSVSVR
ADD TPN IYAHT080.MO02SDRCRCVR
ADD TPN IYAHT080.MO02RQSVRQSTR
ADD TPN IYAHT080.MO02RQSDRQSTR

==
== MQ-Portuguese (OS/2) Partner LU
==

ADD PTNR-LU IYAHT080.IYAHT090, SNANAME GBIBMIYA.IYAHT090, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYAHT090.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

Communications examples

Chapter 20. Setting up communication in Tandem NSK 297

==
== finnr100 (NT) Partner LU
==

ADD PTNR-LU IYAHT080.IYAFT080, SNANAME GBIBMIYA.IYAFT080, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYAFT080.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHT080.MW01SDRCSDR
ADD TPN IYAHT080.MW01RQSDSDR
ADD TPN IYAHT080.MW01RQSVSVR
ADD TPN IYAHT080.MW01SDRCRCVR
ADD TPN IYAHT080.MW01RQSVRQSTR
ADD TPN IYAHT080.MW01RQSDRQSTR

==
== MVS CICS Partner LU
==

ADD PTNR-LU IYAHT080.IYCMVM03, SNANAME GBIBMIYA.IYCMVM03, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYCMVM03.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHT080.VM03SDRCSDR
ADD TPN IYAHT080.VM03RQSDSDR
ADD TPN IYAHT080.VM03RQSVSVR
ADD TPN IYAHT080.VM03SDRCRCVR
ADD TPN IYAHT080.VM03RQSVRQSTR
ADD TPN IYAHT080.VM03RQSDRQSTR

==
== MVS Non CICS Partner LU
==

ADD PTNR-LU IYAHT080.IYCNVM03, SNANAME GBIBMIYA.IYCNVM03, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYCNVM03.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHT080.VM03NCMSDRCSDR
ADD TPN IYAHT080.VM03NCMRQSDSDR
ADD TPN IYAHT080.VM03NCMRQSVSVR
ADD TPN IYAHT080.VM03NCMSDRCRCVR
ADD TPN IYAHT080.VM03NCMRQSVRQSTR
ADD TPN IYAHT080.VM03NCMRQSDRQSTR

Communications examples

298 MQSeries Intercommunication

Channel definitions
Here are some example MQSeries channel definitions that support the SNAX
configuration:
v A sender channel to MQSeries on OS/390 (not using CICS):

DEFINE CHANNEL(MT01.VM03.SDRC.0002) CHLTYPE(SDR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL(2048) +
XMITQ('VM03NCM.TQ.SDRC.0001') +
CONNAME('$BP01.IYAHT080.IYCNVM03') +
MODENAME('LU62PS') TPNAME(DUMMY)

v A receiver channel from MQSeries on OS/390:
DEFINE CHANNEL(VM03.MT01.SDRC.0002) CHLTYPE(RCVR) +

TRPTYPE(LU62) REPLACE DESCR('Receiver channel from VM03NCM') +
SEQWRAP(9999999) +
MAXMSGL(2048) AUTOSTART(ENABLED) +
CONNAME('$BP01.IYAHT080') TPNAME(VM03NCMSDRCRCVR)

v A server channel to MQSeries on OS/390 which is capable of initiating a
conversation, or being initiated by a remote requester channel:
DEFINE CHANNEL(MT01.VM03.RQSV.0002) CHLTYPE(SVR) +

TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL(2048) +
XMITQ('VM03NCM.TQ.RQSV.0001') +
CONNAME('$BP01.IYAHT080.IYCNVM03') +
MODENAME('LU62PS') TPNAME(VM03NCMRQSVSVR.DUMMY) +
AUTOSTART(ENABLED)

where DUMMY is the TPNAME the MVS queue manager is listening on.

ICE communications example
There are two stages in configuring ICE for MQSeries:
1. The ICE process itself must be configured.
2. Line ($ICE01, in the following example) and SNA information must be input to

the ICE process.

Configuring the ICE process
Here is an example ICE process configuration. This configuration is located by
default in a file called GOICE:

==
== VSE Partner LU
==

ADD PTNR-LU IYAHT080.IYZMZSI2, SNANAME GBIBMIYA.IYZMZSI2, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYZMZSI2.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

==
== Start the LUs
==

START LU IYAHT080, SUB ALL
START TPN *

Communications examples

Chapter 20. Setting up communication in Tandem NSK 299

Note: The password param has been replaced by xxxxxxxxxxxxxxxxxxxx.

Defining the line and APC information
Once the ICE process has been started with this configuration, the following
information is input to the ICE process using the Node Operator Facility (NOF**).
This example defines a line called $ICE01 running on the token ring port
$CHAMB.#ICE:

?tacl macro
clear all
param backupcpu 1
param cinittimer 120
param collector $0
param config icectl
param idblk 05d
param idnum 312FF
param cpname IYAHR00C
param datapages 64
param dynamicrlu yes
param genesis $gen
param maxrcv 4096
param loglevel info
param netname GBIBMIYA
param password xxxxxxxxxxxxxxxxxxxx
param retrys1 5
param secuserid super.super
param startup %1%
param timer1 20
param timer2 300
param usstable default
run $system.ice.ice/name $ICE,nowait,cpu 0,pri 180,highpin off/

==
== ICE definitions for PU IYAHR00C.
== Local LU for this PU is IYAHT0C0.
==

ALLOW ERRORS

OPEN $ICE

ABORT LINE $ICE01, SUB ALL

DELETE LINE $ICE01, SUB ALL

==
== ADD TOKEN RING LINE
==

ADD LINE $ICE01, TNDM $CHAMB.#ICE, &
IDBLK %H05D, &
PROTOCOL TOKENRING, WRITEBUFFERSIZE 8192

Communications examples

300 MQSeries Intercommunication

==
== ADD PU OBJECT
==

ADD PU IYAHR00C, LINE $ICE01, MULTIROUTE YES, &
DMAC 400045121088, DSAP %H04, &
NETNAME GBIBMIYA, IDNUM %H312FF, IDBLK %H05D, &
RCPNAME GBIBMIYA.IYAQCDRM, SSAP %H08

==
== Add Local APPL Object
==

DELETE APPL IYAHT0C0
ADD APPL IYAHT0C0, ALIAS IYAHT0C0, LLU IYAHT0C0, PROTOCOL CPIC, &

OPENNAME #IYAHT0C

==
== Add Mode LU62PS
==

DELETE MODE LU62PS
ADD MODE LU62PS, MAXSESS 8, MINCONWIN 4, MINCONLOS 3

==
== Add Partner LU Objects
==

== spinach (HP)

ABORT RLU IYABT0F0
DELETE RLU IYABT0F0
ADD RLU IYABT0F0, MODE LU62PS, PARSESS YES

== stingray (AIX)

ABORT RLU IYA3T995
DELETE RLU IYA3T995
ADD RLU IYA3T995, MODE LU62PS, PARSESS YES

== coop007 (OS/2)

ABORT RLU IYAFT170
DELETE RLU IYAFT170
ADD RLU IYAFT170, MODE LU62PS, PARSESS YES

Communications examples

Chapter 20. Setting up communication in Tandem NSK 301

Note: In order for this configuration to work, the port #ICE must have been
defined to the token ring line. For example, these commands could be
entered into SCF:

add port $chamb.#ice, type tr8025, address %H08
start port $chamb.#ice

where $chamb is a token-ring controller, and the SAP of the port is %08.

== MVS CICS

ABORT RLU IYCMVM03
DELETE RLU IYCMVM03
ADD RLU IYCMVM03, MODE LU62PS, PARSESS YES

== MVS Non-CICS

ABORT RLU IYCNVM03
DELETE RLU IYCNVM03
ADD RLU IYCNVM03, MODE LU62PS, PARSESS YES

== finnr100 (NT)

ABORT RLU IYAFT080
DELETE RLU IYAFT080
ADD RLU IYAFT080, MODE LU62PS, PARSESS YES

== winas18 (AS400)

ABORT RLU IYAFT110
DELETE RLU IYAFT110
ADD RLU IYAFT110, MODE LU62PS, PARSESS YES

ABORT RLU IYAHT080
DELETE RLU IYAHT080
ADD RLU IYAHT080, MODE LU62PS, PARSESS YES

==
== START UP ICE LINE $ICE01 AND SUB DEVICE
==

START LINE $ICE01, SUB ALL

Communications examples

302 MQSeries Intercommunication

Channel definitions for ICE
Here are some MQSeries channel definitions that would support this ICE
configuration:
v A sender channel to MQSeries on OS/390 (not using CICS):

DEFINE CHANNEL(MT01.VM03.SDRC.ICE) CHLTYPE(SDR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL(2048) +
XMITQ('VM03NCM.TQ.SDRC.ICE') +
CONNAME('$ICE.#IYAHT0C.IYAHT0C0.IYCNVM03') +
MODENAME('LU62PS') TPNAME(DUMMY)

v A receiver channel from MQSeries on OS/390:
DEFINE CHANNEL(VM03.MT01.SDRC.ICE) CHLTYPE(RCVR) +

TRPTYPE(LU62) REPLACE DESCR('Receiver channel from VM03NCM') +
SEQWRAP(9999999) +
MAXMSGL(2048) AUTOSTART(ENABLED) +
CONNAME('$ICE.#IYAHT0C.IYAHT0C0') TPNAME(VM03NCMSDRCRCVR)

v A server channel to MQSeries on OS/390 that is capable of initiating a
conversation, or being initiated by a remote requester channel:
DEFINE CHANNEL(MT01.VM03.RQSV.ICE) CHLTYPE(SVR) +

TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL(2048) +
XMITQ('VM03NCM.TQ.RQSV.ICE') +
CONNAME('$ICE.#IYAHT0C.IYAHT0C0.IYCNVM03') +
MODENAME('LU62PS') TPNAME(VM03NCMRQSVSVR.DUMMY) +
AUTOSTART(ENABLED)

where DUMMY is the TPNAME the MVS queue manager is listening on.

TCP/IP communications example
This example shows how to establish communications with a remote MQSeries
system over TCP/IP.

TCPConfig stanza in QMINI
The QMINI file must contain an appropriate TCPConfig stanza. For example:
TCPConfig:

TCPPort=1414
TCPNumListenerPorts=1
TCPListenerPort=1996
TCPKeepAlive=1

The TCPPort value is the default outbound port for channels without a port value
in the CONNAME field. TCPListenerPort identifies the port on which the TCP
listener will listen.

A queue manager can have multiple TCP/IP listeners. If this is the case, the
QMINI file must have a TCPListenerPort entry for each listener, and
TCPNumListenerPort must be updated to match. For example, the TCPConfig stanza
above would be changed as follows:
TCPConfig:

TCPPort=1414
TCPNumListenerPorts=2
TCPListenerPort=1997
TCPKeepAlive=1

Defining a TCP sender channel
A TCP sender channel must be defined. In this example, the queue manager is
MH01 on a host called SPINACH:

Communications examples

Chapter 20. Setting up communication in Tandem NSK 303

|
|
|
|

|
|
|
|
|

|

DEFINE CHANNEL(MT01_MH01_SDRC_0001) CHLTYPE(SDR) +
TRPTYPE(TCP) +
SEQWRAP(9999999) MAXMSGL(4194304) +
XMITQ('MH01_TQ_SDRC_0001') +
CONNAME('SPINACH.HURSLEY.IBM.COM(2000)')

This channel would try to attach to a TCP/IP port number 2000 on the host
SPINACH.

The following example shows a TCP/IP sender channel definition for a queue
manager MH01 on the host SPINACH using the default outbound TCP/IP port:

DEFINE CHANNEL(MT01_MH01_SDRC_0001) CHLTYPE(SDR) +
TRPTYPE(TCP) +
SEQWRAP(9999999) MAXMSGL(4194304) +
XMITQ('MH01_TQ_SDRC_0001') +
CONNAME('SPINACH.HURSLEY.IBM.COM')

No port number is specified in the CONNAME. Therefore, the value specified on
the TCPPort entry in the QMINI file (1414) is used.

Defining a TCP receiver channel
An example TCP receiver channel:

DEFINE CHANNEL(MH01_MT01_SDRC_0001) CHLTYPE(RCVR) +
TRPTYPE(TCP)

A TCP receiver channel requires no CONNAME value, but a TCP listener must be
running. There are two ways of starting a TCP listener. Either:
1. Go into the queue manager’s pathway using pathcom, and enter:

start server mqs-tcplis00

or
2. From the TACL prompt, enter

runmqlsr -m QMgrName

Note: If problems are encountered with the TACL from which the runmqlsr is
running, the listener will be unable to access its home terminal and out file.
runmqlsr is useful for testing, but you are recommended to use the listener
from within the queue manager’s pathway as shown in step 1.

A TCP/IP listener, which will listen on the port defined in the QMINI file (in this
example, 1996), is started.

Note: This port number can be overridden by the -p Port flag on runmqlsr.

Defining a TCP/IP sender channel on the remote system
The sender channel definition on the remote system to connect to this receiver
channel could look like:
DEFINE CHANNEL(MH01_MT01_SDRC_0001) CHLTYPE(SDR) +

TRPTYPE(TCP) +
XMITQ('MT01_TQ_SDRC_0001') +
CONNAME('TANDEM.ISC.UK.IBM.COM(1996)')

Communications examples

304 MQSeries Intercommunication

Chapter 21. Message channel planning example for
distributed platforms

This chapter provides a detailed example of how to connect two queue managers
together so that messages can be sent between them. The example illustrates the
preparations needed to allow an application using queue manager QM1 to put
messages on a queue at queue manager QM2. An application running on QM2 can
retrieve these messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that
channels are to be triggered to start when the first message arrives on the
transmission queue they are servicing. You must start the channel initiator in order
for triggering to work.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue
is already defined by MQSeries. You can use a different initiation queue, but you
will have to define it yourself and specify the name of the queue when you start
the channel initiator.

What the example shows
The example shows the MQSeries commands (MQSC) that you can use.

In all the examples, the MQSC commands are shown as they would appear in a
file of commands, and as they would be typed at the command line. The two
methods look identical, but, to issue a command at the command line, you must
first type runmqsc, for the default queue manager, or runmqsc qmname where qmname
is the name of the required queue manager. Then type any number of commands,
as shown in the examples.

An alternative method is to create a file containing these commands. Any errors in
the commands are then easy to correct. If you called your file mqsc.in then to run
it on queue manager QMNAME use:
runmqsc QMNAME < mqsc.in > mqsc.out

You could verify the commands in your file before running it using:
runmqsc -v QMNAME < mqsc.in > mqsc.out

For portability, you should restrict the line length of your commands to 72
characters. Use a concatenation character to continue over more than one line. On
Tandem NSK use Ctrl-y to end the input at the command line, or enter the exit or
quit command. On OS/2, Windows NT, or Digital OpenVMS use Ctrl-z. On UNIX
systems use Ctrl-d. Alternatively, on V5.1 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, use the end command.

Figure 36 on page 306 shows the example scenario.

© Copyright IBM Corp. 1993, 2000 305

The example involves a payroll query application connected to queue manager
QM1 that sends payroll query messages to a payroll processing application
running on queue manager QM2. The payroll query application needs the replies
to its queries sent back to QM1. The payroll query messages are sent from QM1 to
QM2 on a sender-receiver channel called QM1.TO.QM2, and the reply messages
are sent back from QM2 to QM1 on another sender-receiver channel called
QM2.TO.QM1. Both of these channels are triggered to start as soon as they have a
message to send to the other queue manager.

The payroll query application puts a query message to the remote queue
“PAYROLL.QUERY” defined on QM1. This remote queue definition resolves to the
local queue “PAYROLL” on QM2. In addition, the payroll query application
specifies that the reply to the query is sent to the local queue “PAYROLL.REPLY”
on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this
case, local queue “PAYROLL.REPLY” on QM1.

In the example definitions for TCP/IP, QM1 has a host address of 9.20.9.31 and is
listening on port 1411, and QM2 has a host address of 9.20.9.32 and is listening on
port 1412. The example assumes that these are already defined on your system and
available for use.

The object definitions that need to be created on QM1 are:
v Remote queue definition, PAYROLL.QUERY
v Transmission queue definition, QM2 (default=remote queue manager name)
v Process definition, QM1.TO.QM2.PROCESS (not needed for V5.1 of MQSeries for

AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT)
v Sender channel definition, QM1.TO.QM2
v Receiver channel definition, QM2.TO.QM1
v Reply-to queue definition, PAYROLL.REPLY

Queue transmission 'QM2'

'SYSTEM.CHANNEL.INITQ'

'SYSTEM.CHANNEL.INITQ'

Queue transmission 'QM1'

Application Application

message

message

message

Query

Queue manager 'QM1' Queue manager 'QM2'

Channel

Payroll

processing

Payroll

query

Query

Reply

message

Reply

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue local 'PAYROLL'QM1.TO.QM2

QM2.TO.QM1

Figure 36. The message channel example for OS/2, Windows NT, and UNIX systems

Planning example for distributed platforms

306 MQSeries Intercommunication

The object definitions that need to be created on QM2 are:
v Local queue definition, PAYROLL
v Transmission queue definition, QM1 (default=remote queue manager name)
v Process definition, QM2.TO.QM1.PROCESS (not needed for V5.1 of MQSeries for

AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT)
v Sender channel definition, QM2.TO.QM1
v Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender
channel definitions.

You can see a diagram of the arrangement in Figure 36 on page 306.

Queue manager QM1 example
The following object definitions allow applications connected to queue manager
QM1 to send request messages to a queue called PAYROLL on QM2, and to receive
replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE
attributes. The other attributes supplied are the minimum required to make the
example work. The attributes that are not supplied take the default values for
queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition
DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of
directing messages to the transmission queue, QM2, so that they can
be sent to queue manager QM2.

Transmission queue definition
DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM1.TO.QM2.PROCESS)

When the first message is put on this transmission queue, a trigger
message is sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The
channel initiator gets the message from the initiation queue and starts the
channel identified in the named process.

Process definition
DEFINE PROCESS(QM1.TO.QM2.PROCESS) DESCR('Process for starting channel') +
REPLACE APPLTYPE(OS2) USERDATA(QM1.TO.QM2)

The channel initiator uses this process information to start channel
QM1.TO.QM2. (This sample definition uses OS2 as the application type).

Note: For V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT the need for a process definition can be eliminated by
specifying the channel name in the TRIGGERDATA attribute of the
transmission queue.

Planning example for distributed platforms

Chapter 21. Message channel planning example for distributed platforms 307

Sender channel definition
DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('9.20.9.32(1412)')

Receiver channel definition
DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition
DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED). This ensures that reply
messages can be put to the queue. If the replies cannot be put to the
reply-to queue, they are sent to the dead-letter queue on QM1 or, if this
queue is not available, remain on transmission queue QM1 on queue
manager QM2. The queue has been defined as GET(ENABLED) to allow
the reply messages to be retrieved.

Queue manager QM2 example
The following object definitions allow applications connected to queue manager
QM2 to retrieve request messages from a local queue called PAYROLL, and to put
replies to these request messages to a queue called PAYROLL.REPLY on queue
manager QM1.

You do not need to provide a remote queue definition to enable the replies to be
returned to QM1. The message descriptor of the message retrieved from local
queue PAYROLL contains both the reply-to queue and the reply-to queue manager
names. Therefore, as long as QM2 can resolve the reply-to queue manager name to
that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue
manager QM2 simply requires a transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE
attributes and are the minimum required to make the example work. The attributes
that are not supplied take the default values for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition
DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the
same reason as the reply-to queue definition on queue manager QM1.

Transmission queue definition
DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM2.TO.QM1.PROCESS)

When the first message is put on this transmission queue, a trigger
message is sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The
channel initiator gets the message from the initiation queue and starts the
channel identified in the named process.

Planning example for distributed platforms

308 MQSeries Intercommunication

Process definition
DEFINE PROCESS(QM2.TO.QM1.PROCESS) DESCR('Process for starting channel') +
REPLACE APPLTYPE(OS2) USERDATA(QM2.TO.QM1)

The channel initiator uses this process information to start channel
QM2.TO.QM1. (This sample definition uses OS2 as the application type.)

Note: For V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT the need for a process definition can be eliminated by
specifying the channel name in the TRIGGERDATA attribute of the
transmission queue.

Sender channel definition
DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('9.20.9.31(1411)')

Receiver channel definition
DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

Running the example
Once these definitions have been created, you need to:
v Start the channel initiator on each queue manager.
v Start the INETD daemon for each queue manager. On OS/2, Windows NT, and

Tandem NSK, you can use the MQSeries listener in place of INETD.

For information about starting the channel initiator and listener, see “Chapter 10.
Setting up communication for OS/2 and Windows NT” on page 123 and
“Chapter 13. Setting up communication in UNIX systems” on page 191.

Note: On OS/2 and Windows NT, you can also run the channel as a thread; see
the MQSeries Command Reference book for information about how to define a
channel as a threaded channel.

Expanding this example
This simple example could be expanded with:
v The use of LU 6.2 communications for interconnection with CICS systems, and

transaction processing.
v Adding more queue, process, and channel definitions to allow other applications

to send messages between the two queue managers.
v Adding user-exit programs on the channels to allow for link encryption, security

checking, or additional message processing.
v Using queue-manager aliases and reply-to queue aliases to understand more

about how these can be used in the organization of your queue manager
network.

Planning example for distributed platforms

Chapter 21. Message channel planning example for distributed platforms 309

Planning example for distributed platforms

310 MQSeries Intercommunication

Chapter 22. Example SINIX and DC/OSx configuration files

This chapter contains working examples of SNA LU 6.2 configuration files for
SINIX and DC/OSx.

Notes:

1. The TCP/IP names for the SINIX machines involved are forties, which is an
RM400, and bight, which is an RM200.

2. The name of the queue manager on forties is MP01, and the name of the
queue manager on bight is MP02.

3. Both machines are running the SINIX-N operating system.
4. The LU names have a resemblance to the TCP/IP names.
5. The XIDs have been arbitrarily chosen to reflect the RM model numbers.
6. The machine rameses is a DC/OSx MIS-2ES/2 machine using the DC/OSx

operating system. The configuration for rameses is different because the
operating system SNA software on DC/OSx is different.

7. The name of the queue manager on rameses is MP04.

The preceding information can be summarized as follows:

Machine name Machine model Operating system Queue manager

forties RM400 SINIX-N MP01

bight RM200 SINIX-N MP02

rameses MIS-2ES/2 DC/OSx MP04

You should use these examples as a basis for your system. You need to generate
configuration files that are appropriate to your SNA network.

For a further description on the contents of KOGS files and Transit (SINIX LU6.2)
setup, see the Transit SINIX Version 3.2 Administration of Transit manual.

The KOGS files can be found in the directory /opt/lib/transit/KOGS.

“Working configuration files for Pyramid DC/OSx” on page 313 shows example
working configuration files from the DC/OSx machine rameses. The file is
/etc/opt/lu62/cpic_cfg. For further information on the format of this file see the
Pyramid Technology publications OpenNet LU 6.2, System Administrator’s Guide,
and OpenNet SNA Engine, System Administrator’s Guide.

“Output of dbd command” on page 314 is the output of the dbd command on
cfg.ncpram, which is a binary configuration file created by the cm command.

© Copyright IBM Corp. 1993, 2000 311

Configuration file on bight

* Transit config file for bight (RM200).
* Versionen und Korrekturstaende
* TRANSIT-SERVER V 3.3 confnuc.h K1
* SNA_Kgen K1

XLINK lforties,
ACT = AUTO,
TYP = LAN,
XID = 00000400,
CPNAME = CP.FORTIES,
CONFSTR = /opt/lib/llc2/conf.str,
DEVICE = tr0,
SSAP = 04

XPU pbight,
TYP = PEER,
CONNECT = AUTO,

* DISCNT = AUTO,
LINK = lforties,
NVSCONNECT = PARTNER,
MAXDATA = 1033,
XID = 00000200,
CPNAME = CP.BIGHT,
ROLE = NEG,
PAUSE = 3,
RETRIES = 10,
DMAC = 000F01626436,
DSAP = 04,
RWINDOW = 7

XLU forties,
TYP = 6,
PUCONNECT = APHSTART,
CTYP = PUBLIC,
SESS-LMT = 130,
SESS-CTR = IND,
NETNAME = SNI.FORTIES,
PAIR = bight MODE1

XRLU bight,
NETNAME = SNI.BIGHT,
PU = pbight

XMODE MODE1,
SESS-MAX = 13,
SESS-LOS = 6,
SESS-WIN = 7,
SESS-AUTO = 7,
SRU-MAX = 87,
RRU-MAX = 87,
PAC-SEND = 0,
PAC-RCV = 0

XSYMDEST sendMP02,
RLU = bight,
MODE = MODE1,
TP = recvMP02,
TP-TYP = USER,
SEC-TYP = NONE

XTP recvMP01,
UID = guenther,
TYP = USER,
PATH = /home/guenther/recvMP01.sh,
SECURE = NO

XEND

SINIX and DC/OSx configuration

312 MQSeries Intercommunication

Configuration file on forties
* Transit config file for forties (RM 400).
* Versionen und Korrekturstaende
* TRANSIT-SERVER V 3.3 confnuc.h K1
* SNA_Kgen K1

XLINK lbight,
ACT = AUTO,
TYP = LAN,
XID = 00000200,
CPNAME = CP.BIGHT,
CONFSTR = /opt/lib/llc2/conf.str,
DEVICE = tr0,
SSAP = 04

XPU pforties,
TYP = PEER,
CONNECT = AUTO,
DISCNT = AUTO,
LINK = lbight,
NVSCONNECT = PARTNER,
MAXDATA = 1033,
XID = 00000400,
CPNAME = CP.FORTIES,
ROLE = NEG,
PAUSE = 3,
RETRIES = 10,
DMAC = 00006f106935,
DSAP = 04,
RWINDOW = 7

XLU bight,
TYP = 6,
PUCONNECT = APHSTART,
CTYP = PUBLIC,
SESS-LMT = 15,
SESS-CTR = IND,
NETNAME = SNI.BIGHT,
PAIR = forties MODE1

XRLU forties,
NETNAME = SNI.FORTIES,
PU = pforties

XMODE MODE1,
SESS-MAX = 13,
SESS-LOS = 7,
SESS-WIN = 6,
SESS-AUTO = 6,
SRU-MAX = 87,
RRU-MAX = 87,
PAC-SEND = 0,
PAC-RCV = 0

XSYMDEST sendMP01,
RLU = forties,
MODE = MODE1,
TP = recvMP01,
TP-TYP = USER,
SEC-TYP = NONE

XTP recvMP02,
UID = guenther,
TYP = USER,
PATH = /home/guenther/recvMP02.sh,
SECURE = NO

XEND

Working configuration files for Pyramid DC/OSx
#
This is the side information file for CPI-C.
#
The default file name is /etc/opt/lu62/cpic_cfg, use set environmental
variable CPIC_CFG to change the default.
#
#
The lines starting with # are for comments; no blank lines are allowed.
The format of each line is "1 2 3 4 5 6 7 8 9" all in one line.

SINIX and DC/OSx configuration

Chapter 22. Example SINIX and DC/OSx configuration files 313

1 - symbolic destination name
2 - local LU name (locally known name)
3 - remote LU name (locally known name)
4 - mode name
5 - remote TP name
6 - trace flag (1 if you want the trace on, 0 otherwise)
7 - security type (0 for none, 2 for program)
8 - user id (omit if security type is 0)
9 - password (omit if security type is 0)
#
The following are some examples:
#
#sendMP02 LRAMESES BIGHT MODE1 recvMP02 1 0
sendMP02 IYAFT1F0 IYAFT000 LU62PS recvMP02 1 0
sendMP03 IYAFT1F0 IYAFT010 LU62PS recvMP03 1 0
sendMP01 IYAFT1F0 IYAET120 LU62PS recvMP01 1 0
sdEH01rc IYAFT1F0 IYABT0F0 LU62PS MP04RCV 1 0
sdEH01sv IYAFT1F0 IYABT0F0 LU62PS MP04SVR 1 0
sendM401 IYAFT1F0 IYAFT110 LU62PS INTCRS6A 1 0
sendvm02 IYAFT1F0 IYCNVM02 LU62PS DUMMY 1 0
sndvm2rc IYAFT1F0 IYCMVM02 LU62PS CKRC 1 0
sndvm2sd IYAFT1F0 IYCMVM02 LU62PS CKSD 1 0
sndvm2sv IYAFT1F0 IYCMVM02 LU62PS CKSV 1 0

Output of dbd command
**** COMMUNICATIONS MANAGER DATABASE ****

Database version number 80

SNA CONTROLLER
controller name: SNA
controller execute name:

'startsna62 -c 24'

62 MANAGER
62 manager name: LU62MGR
62 manager execute name:

'lu62mgr'

LOCAL PU
local pu name: IYAFT1F0
controller name: SNA
non-specific type pu
unsolicited recfms is NOT supported
xid format (0/3): 3

LOCAL LU
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
locally known local lu name: IYAFT1F0
local pu name: IYAFT1F0
lu number at the pu: 1
lu6.2 type lu
62 manager name: LU62MGR
lu session limit: 100
share limit: 2
send window size: 7
LU configuration options:

is NOT the default lu
will NOT terminate on disconnect
printer can NOT be used in system mode
independent LU on BF connections

REMOTE PU
remote pu name: CPPG

REMOTE LU
fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f0 f0 f0
fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFT000
locally known remote lu name: IYAFT000
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
uniterpreted remote lu name (hex): c9 e8 c1 c6 e3 f0 f0 f0
uniterpreted remote lu name (ebcdic): IYAFT000
remote pu name: CPPG
session initiation requests are initiate or queue
parallel sessions supported

SINIX and DC/OSx configuration

314 MQSeries Intercommunication

no security information accepted
lu-lu verification NOT required
lu-lu password not displayed for security reasons

REMOTE LU
fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f0 f1 f0
fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFT010
locally known remote lu name: IYAFT010
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
uniterpreted remote lu name (hex): c9 e8 c1 c6 e3 f0 f1 f0
uniterpreted remote lu name (ebcdic): IYAFT010
remote pu name: CPPG
session initiation requests are initiate or queue
parallel sessions supported
no security information accepted
lu-lu verification NOT required
lu-lu password not displayed for security reasons

REMOTE LU
fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c5 e3 f1 f2 f0
fully qualified remote lu name (ebcdic): GBIBMIYA.IYAET120
locally known remote lu name: IYAET120
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
uniterpreted remote lu name (hex): c9 e8 c1 c5 e3 f1 f2 f0
uniterpreted remote lu name (ebcdic): IYAET120
remote pu name: CPPG
session initiation requests are initiate or queue
parallel sessions supported
no security information accepted
lu-lu verification NOT required
lu-lu password not displayed for security reasons

MODE
mode name (hex): e2 d5 c1 e2 e5 c3 d4 c7
mode name (ebcdic): SNASVCMG
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f0 f0 f0
fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFT000
line class name: leased
send pacing window: 7
receive pacing window: 7
lower bound max RU size, send: 128
upper bound max RU size, send: 896
lower bound max RU size, receive: 128
upper bound max RU size, receive: 896
synchronization level of none or confirm
either lu may attempt to reinitiate the session
cryptography not supported
contention-winner automatic initiation limit: 1

MODE
mode name (hex): d3 e4 f6 f2 d7 e2
mode name (ebcdic): LU62PS
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f0 f0 f0
fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFT000
line class name: leased
send pacing window: 7
receive pacing window: 7
lower bound max RU size, send: 128
upper bound max RU size, send: 896
lower bound max RU size, receive: 128
upper bound max RU size, receive: 896
synchronization level of none or confirm
either lu may attempt to reinitiate the session
cryptography not supported
contention-winner automatic initiation limit: 5

MODE
mode name (hex): e2 d5 c1 e2 e5 c3 d4 c7
mode name (ebcdic): SNASVCMG
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f0 f1 f0
fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFT010
line class name: leased

SINIX and DC/OSx configuration

Chapter 22. Example SINIX and DC/OSx configuration files 315

send pacing window: 7
receive pacing window: 7
lower bound max RU size, send: 128
upper bound max RU size, send: 896
lower bound max RU size, receive: 128
upper bound max RU size, receive: 896
synchronization level of none or confirm
either lu may attempt to reinitiate the session
cryptography not supported
contention-winner automatic initiation limit: 1

MODE
mode name (hex): d3 e4 f6 f2 d7 e2
mode name (ebcdic): LU62PS
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f0 f1 f0
fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFT010
line class name: leased
send pacing window: 7
receive pacing window: 7
lower bound max RU size, send: 128
upper bound max RU size, send: 896
lower bound max RU size, receive: 128
upper bound max RU size, receive: 896
synchronization level of none or confirm
either lu may attempt to reinitiate the session
cryptography not supported
contention-winner automatic initiation limit: 5

MODE
mode name (hex): e2 d5 c1 e2 e5 c3 d4 c7
mode name (ebcdic): SNASVCMG
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c5 e3 f1 f2 f0
fully qualified remote lu name (ebcdic): GBIBMIYA.IYAET120
line class name: leased
send pacing window: 7
receive pacing window: 7
lower bound max RU size, send: 128
upper bound max RU size, send: 896
lower bound max RU size, receive: 128
upper bound max RU size, receive: 896
synchronization level of none or confirm
either lu may attempt to reinitiate the session
cryptography not supported
contention-winner automatic initiation limit: 1

MODE
mode name (hex): d3 e4 f6 f2 d7 e2
mode name (ebcdic): LU62PS
fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 f0
fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1F0
fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c5 e3 f1 f2 f0
fully qualified remote lu name (ebcdic): GBIBMIYA.IYAET120
line class name: leased
send pacing window: 7
receive pacing window: 7
lower bound max RU size, send: 128
upper bound max RU size, send: 896
lower bound max RU size, receive: 128
upper bound max RU size, receive: 896
synchronization level of none or confirm
either lu may attempt to reinitiate the session
cryptography not supported
contention-winner automatic initiation limit: 5

TRANSACTION PROGRAM
transaction program name (hex): 99 85 83 a5 d4 d7 f0 f4
transaction program name (ebcdic): recvMP04
transaction program execute name:

'/home/guenther/recvMP04.sh'
tp is enabled
tp supports basic conversations
tp supports mapped conversations
tp supports confirm synchronization
tp supports no synchronization
no verification is required
number of pip fields required: 0

SINIX and DC/OSx configuration

316 MQSeries Intercommunication

privilege mask (hex): 0
(no privileges)

TRANSACTION PROGRAM
transaction program name (hex): 06 f1
transaction program name (ebcdic): ?1
transaction program execute name:

'06f1'
tp is enabled
tp supports basic conversations
tp supports confirm synchronization
tp supports no synchronization
no verification is required
number of pip fields required: 0
privilege mask (hex): 82
(cnos - allocate_service_tp privileges)

TOKEN RING COMMUNICATIONS MEDIA
line name: LINE0
line number: 0
controller name: SNA
line class: leased

LOCAL LINK STATION
link station name: LYAFT1F0
pu name: IYAFT1F0
line name: LINE0
secondary station
LSAP address (in hex): 04
i-field size: 1033
Acknowledgement delay window size : 7
Acknowledgement delay timeout in tenth of seconds : 3
Retry count : 20
Retry timeout in seconds : 3
send xid block number: 0 5d
send xid id number: 3 0f 5c
send xid control vector:

REMOTE LINK STATION
link station name: LCPPG
pu name: CPPG
line name: LINE0
primary station
MAC address: 40 00 45 12 10 88
LSAP address (in hex): 04
i-field size: 1033
Remote station type : BF
send xid block number:
send xid id number:
send xid control vector:

SINIX and DC/OSx configuration

Chapter 22. Example SINIX and DC/OSx configuration files 317

SINIX and DC/OSx configuration

318 MQSeries Intercommunication

Part 4. DQM in MQSeries for OS/390

Chapter 23. Monitoring and controlling
channels on OS/390 321
The DQM channel control function 321
Using the panels and the commands 322

Using the initial panel 322
Managing your channels 324

Defining a channel 324
Altering a channel definition 325
Displaying a channel definition 325
Displaying information about DQM 326
Deleting a channel definition 326
Starting a channel initiator 327
Stopping a channel initiator 328
Starting a channel listener 329
Stopping a channel listener 329
Starting a channel 330
Testing a channel 331
Resetting message sequence numbers for a
channel 332
Resolving in-doubt messages on a channel . . 333
Stopping a channel 334
Displaying channel status 335
Displaying cluster channels. 337

Chapter 24. Preparing MQSeries for OS/390 . . 339
Setting up communication 339

TCP setup 339
Connecting to TCP 340
Receiving on TCP 340
Using the TCP listener backlog option . . . 340

APPC/MVS setup 341
Connecting to APPC/MVS (LU 6.2) 342
Receiving on LU 6.2 342

Defining DQM requirements to MQSeries 342
Defining MQSeries objects 342

Synchronization queue 343
Channel command queues 343

Channel operation considerations 344
OS/390 Automatic Restart Management (ARM) 344

Chapter 25. Message channel planning example
for OS/390 345
What the example shows 345

Queue manager QM1 example 346
Remote queue definition 346
Transmission queue definition 347
Process definition 347
Sender channel definition 347
Receiver channel definition 347
Reply-to queue definition 347

Queue manager QM2 example 347
Local queue definition 348
Transmission queue definition 348
Process definition 348
Sender channel definition 348
Receiver channel definition 348

Running the example. 349
Expanding this example 349

Chapter 26. Monitoring and controlling
channels in OS/390 with CICS 351
The DQM channel control function 351

CICS regions 352
Starting DQM panels 352

The Message Channel List panel 353
Keyboard functions 353

Function keys 353
Enter key. 354
Clear key 354
Unassigned keys and unavailable choices . . 354

Selecting a channel 354
Working with channels 354
Creating a channel 356
Altering a channel. 356
Browsing a channel 356
Renaming a channel 357
Selected menu-bar choice 357

Start 357
Stop 359
Resync 361
Reset 362
Resolve 363
Display status 364
Display settings 365
Ping 366
Exit. 366

Edit menu-bar choice 367
Copy 367
Create 368
Alter 370
Delete 370
Find 370

View menu-bar choice 371
Help menu-bar choice 372

The channel definition panels 372
Channel menu-bar choice 373

Saving changes 373
Exit from the panel 373

Help menu-bar choice 373
Channel settings panel fields 374

Details of sender channel settings panel . . . 376
Details of receiver channel settings panel . . . 377
Details of server channel settings panel. . . . 378
Details of requester channel settings panel. . . 379

Chapter 27. Preparing MQSeries for OS/390
when using CICS 381
Setting up CICS communication for MQSeries for
OS/390 381

Connecting CICS systems 381
Communication between queue managers 381
Intersystem communication 382

© Copyright IBM Corp. 1993, 2000 319

Defining an LU 6.2 connection 382
Installing the connection. 383
Communications between CICS systems
attached to one queue manager 383

Connection names for function shipping . . 383
Defining DQM requirements to MQSeries 384
Defining MQSeries objects 384

Multiple message channels per transmission
queue 384

Channel operation considerations 385

Chapter 28. Message channel planning example
for OS/390 using CICS 387

Chapter 29. Example configuration - IBM
MQSeries for OS/390 395
Configuration parameters for an LU 6.2 connection 395

Configuration worksheet 396
Explanation of terms 398

Establishing an LU 6.2 connection 400
Defining yourself to the network 400
Defining a connection to a partner 402
What next? 402

Establishing an LU 6.2 connection using CICS . . 402
Defining a connection 402
Defining the sessions 403

Installing the new group definition 404
What next? 404

Establishing a TCP connection. 404
What next? 405

MQSeries for OS/390 configuration 405
Channel configuration 405

MQSeries for OS/390 sender-channel
definitions using non-CICS LU 6.2 408
MQSeries for OS/390 receiver-channel
definitions using non-CICS LU 6.2 408
MQSeries for OS/390 sender-channel
definitions using TCP 409
MQSeries for OS/390 receiver-channel
definitions using TCP 409
MQSeries for OS/390 sender-channel
definitions using CICS 409
MQSeries for OS/390 receiver-channel
definitions using CICS 409

Defining a local queue 409
Defining a remote queue 412
Defining a sender channel when not using CICS 413
Defining a receiver channel when not using
CICS 415
Defining a sender channel using CICS 417
Defining a receiver channel using CICS . . . 418

This part of the book describes the MQSeries distributed queue management
function for MQSeries for OS/390 using native OS/390 communication protocols
(SNA LU 6.2 and TCP/IP). You can also use CICS ISC for distributed queuing.

Note: You can use distributed queuing both with CICS and without CICS
simultaneously on the same MQSeries instance, but they will have no
knowledge of each other, or of each other’s channels. It is up to you to
ensure that they have distinct sets of channel names. Most of the
information here applies equally to MQSeries for MVS/ESA.

DQM in MQSeries for OS/390

320 MQSeries Intercommunication

Chapter 23. Monitoring and controlling channels on OS/390

Use the DQM commands and panels to create, monitor, and control the channels to
remote queue managers. Each OS/390 queue manager has a DQM program (the
channel initiator) for controlling interconnections to compatible remote queue
managers using native OS/390 facilities.

The implementation of these panels and commands on OS/390 is integrated into
the operations and control panels and the MQSC commands. No differentiation is
made in the organization of these two sets of panels and commands.

If you are using CICS for DQM, see “Chapter 26. Monitoring and controlling
channels in OS/390 with CICS” on page 351. Most of the information here applies
equally to MQSeries for MVS/ESA.

The DQM channel control function
The channel control function provides the administration and control of message
channels between MQSeries for OS/390 and compatible systems. See Figure 28 on
page 58 for a conceptual picture.

The channel control function consists of panels, commands and programs, a
synchronization queue, channel command queues, and the channel definitions. The
following is a brief description of the components of the channel control function.
v The channel definitions are held as objects in page set zero, like other MQSeries

objects in OS/390.
v You use the operations and control panels or MQSC commands to:

– Create, copy, display, alter, and delete channel definitions
– Start and stop channel initiators and listeners
– Start, stop, and ping channels, reset channel sequence numbers, and resolve

in-doubt messages when links cannot be re-established
– Display status information about channels
– Display information about DQM

In particular, you can use the CSQINPX initialization input data set to issue your
MQSC commands. This can be processed every time you start the channel
initiator. See the MQSeries for OS/390 System Management Guide for information
about this.

v There is a queue (SYSTEM.CHANNEL.SYNCQ) used for channel
re-synchronization purposes. You should define this with INDXTYPE(MSGID)
for performance reasons.

v Channel command queues (SYSTEM.CHANNEL.INITQ and
SYSTEM.CHANNEL.REPLY.INFO) are used to hold commands for channel
initiators, channels, and listeners, and replies from them.

v The channel control function program runs in its own address space, separate
from the queue manager, and comprises the channel initiator, listeners, MCAs,
trigger monitor, and command handler.

© Copyright IBM Corp. 1993, 2000 321

Using the panels and the commands
You can use either the MQSC commands or the operations and control panels to
manage DQM. For information about the syntax of the MQSC commands, see the
MQSeries Command Reference book.

Using the initial panel
For an introduction to invoking the operations and control panels, using the
function keys, and getting help, see the MQSeries for OS/390 System Management
Guide.

Note: To use the operations and control panels, you must have the correct security
authorization; see the MQSeries for OS/390 System Management Guide for
information. Figure 37 shows the panel that is displayed when you start a
panel session.

From this panel you can:
v Select the action you want to perform by typing in the appropriate number in

the Action field.
v Specify the object type that you want to work with. Press F4 for a list of object

types if you are not sure what they are.
v Display a list of objects of the type specified. Type in an asterisk (*) in the Name

field and press Enter to display a list of objects (of the type specified) that have
already been defined on this subsystem. You can then select one or more objects
to work with in sequence. Figure 38 on page 323 shows a list of channels
produced in this way.

v Define an object with the same attributes as an existing object. See “Defining a
channel” on page 324.

v Choose the local queue manager you want, and whether you want the
commands issued on that queue manager or on some remote queue manager.

v Choose the wait time for responses to be received.

IBM MQSeries for OS/390 - Main Menu

Complete fields. Then press Enter.

Action 1 1. Display 5. Perform
2. Define 6. Start
3. Alter 7. Stop
4. Delete

Object type CHANNEL +
Name *
Like __

Connect to queue
manager : MQ25
Target queue manager : MQ25
Response wait time . : 10 seconds

(C) Copyright IBM Corporation 1993,1999. All rights reserved.

Command ===> __
F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap
F10=Messages F12=Cancel

Figure 37. The operations and controls initial panel

Using panels and commands

322 MQSeries Intercommunication

List Channels Row 1 of 8

Type action codes. Then press Enter.
1=Display 2=Define like 3=Alter 4=Delete 5=Perform
6=Start 7=Stop

Name Type Status
_ SYSTEM.DEF.CLNTCONN CHLCLNTCONN
_ SYSTEM.DEF.CLUSRCVR CHLCLUSRCVR
_ SYSTEM.DEF.CLUSSDR CHLCLUSSDR
_ SYSTEM.DEF.RECEIVER CHLRECEIVER
_ SYSTEM.DEF.REQUESTER CHLREQUESTER
_ SYSTEM.DEF.SENDER CHLSENDER
_ SYSTEM.DEF.SERVER CHLSERVER
_ SYSTEM.DEF.SVRCONN CHLSVRCONN

******** End of list ********

Command ===> __
F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd
F9=Swap F10=Messages F11=Status F12=Cancel

Figure 38. Listing channels

Using panels and commands

Chapter 23. Monitoring and controlling channels on OS/390 323

Managing your channels
Table 29 lists the tasks that you can perform to manage your channels, channel
initiators, and listeners. It also gives the name of the relevant MQSC command,
and points to the page where each task is discussed.

Table 29. Channel tasks

Task to be performed MQSC command See page

Define a channel DEFINE CHANNEL 324

Alter a channel definition ALTER CHANNEL 325

Display a channel definition DISPLAY CHANNEL 325

Delete a channel definition DELETE CHANNEL 326

Start a channel initiator START CHINIT 327

Stop a channel initiator STOP CHINIT 328

Display channel initiator information DISPLAY DQM 326

Start a channel listener START LISTENER 329

Stop a channel listener STOP LISTENER 329

Start a channel START CHANNEL 330

Test a channel PING CHANNEL 331

Reset message sequence numbers for a
channel

RESET CHANNEL 332

Resolve in-doubt messages on a channel RESOLVE CHANNEL 333

Stop a channel STOP CHANNEL 334

Display channel status DISPLAY CHSTATUS 335

Display cluster channels DISPLAY CLUSQMGR 337

Defining a channel
To define a channel using the MQSC commands, use DEFINE CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 2 (Define)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.DEFINE

You are presented with some panels to complete with information about the
attributes you want for the channel you are defining. These panels are shown on
page 415.

Note: If you entered CHANNEL in the object type field, you are presented with
the Select a Valid Channel Type panel first.

If you want to define a channel with the same attributes as an existing channel,
put the name of the channel you want to copy in the Like field on the initial
panel. The subsequent panels will already contain these attribute values, but you
can change any that you want to before pressing Enter.

Managing channels

324 MQSeries Intercommunication

If you have not used the Like field, the panels will contain the system default
attribute values. Change any that you want to, and then press Enter to create the
channel definition.

For information about the channel attributes, see “Chapter 6. Channel attributes”
on page 77.

Notes:

1. If you are using distributed queuing with CICS as well, don’t use any of the
same channel names.

2. You are strongly recommended to name all the channels in your network
uniquely. As shown in Table 1 on page 30, including the source and target
queue manager names in the channel name is a good way to do this.

Altering a channel definition
To alter a channel definition using the MQSC commands, use ALTER CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 3 (Alter)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.ALTER

You are presented with some panels containing information about the current
attributes of the channel. Change any of the unprotected fields that you want by
overtyping the new value, and then press Enter to change the channel definition.

For information about the channel attributes, see “Chapter 6. Channel attributes”
on page 77.

Displaying a channel definition
To display a channel definition using the MQSC commands, use DISPLAY
CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 1 (Display)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.DISPLAY

You are presented with some panels displaying information about the current
attributes of the channel.

For information about the channel attributes, see “Chapter 6. Channel attributes”
on page 77. For information about channel status, press F11 (Connects). See

“Displaying channel status” on page 335 for information about this.

Defining a channel

Chapter 23. Monitoring and controlling channels on OS/390 325

Displaying information about DQM
To display information about the channel initiator using the MQSC commands, use
DISPLAY DQM.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 1 (Display)
Object type SYSTEM
Name Blank

You are presented with another panel. Select control type 1 on this panel.

Notes:

1. Displaying distributed queuing information may take some time if you have
lots of channels.

2. Channel status is not available for client-connection channels.

Deleting a channel definition
To delete a channel definition using the MQSC commands, use DELETE
CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 4 (Delete)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.DELETE

You are presented with some panels containing information about the current
attributes of the channel. If required, you can scroll through these panels to verify
that you are deleting the correct channel definition. Press Enter to delete the
channel definition; you will be asked to confirm that you want to delete the
channel definition by pressing Enter again.

Note: The channel initiator has to be running before a channel definition can be
deleted (except for client-connection channels).

For information about the channel attributes, see “Chapter 6. Channel attributes”
on page 77.

Displaying information about DQM

326 MQSeries Intercommunication

Starting a channel initiator
To start a channel initiator using the MQSC commands, use START CHINIT.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 6 (Start)
Object type SYSTEM
Name Blank

The Start a System Function panel is displayed:

Select function type 1 (channel initiator), and press Enter. The channel initiator
parameter module name defaults to CSQXPARM. If you want to use a different
parameter module, enter the name on the panel.

Note: If you are using Interlink TCP, this must be started before you start the
channel initiator. If you are using IBM TCP, you can start the channel
initiator first but, unless you are using OE sockets, you will need to restart
the channel initiator after you have started TCP, in order to establish
communication. If you are using LU 6.2, this can be started before or after
the channel initiator.

Start a System Function

Select function type, complete fields, then press Enter to start system
function.

Function type _ 1. Channel initiator
2. Channel listener for LU 6.2
3. Channel listener for TCP

Channel initiator
Parameter module name . . ________
JCL substitution __

__

Listener for LU6.2
LU name _________________

Listener for TCP
Port number 1414

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 39. Starting a system function

Starting a channel initiator

Chapter 23. Monitoring and controlling channels on OS/390 327

Stopping a channel initiator
To stop a channel initiator using the MQSC commands, use STOP CHINIT.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 7 (Stop)
Object type SYSTEM
Name Blank

The Stop a System Function panel is displayed:

Select function type 1 (channel initiator) and press Enter.

The channel initiator will wait for all running channels to stop in quiesce mode
before it stops.

Note: If some of the channels are receiver or requester channels that are running
but not active, a stop request issued to either the receiver’s or sender’s
channel initiator will cause it to stop immediately.

However, if messages are flowing, the channel initiator waits for the current batch
of messages to complete before it stops.

Stop a System Function

Select function type, then press Enter to stop system function.

Function type _ 1. Channel initiator
2. Channel listener for LU 6.2
3. Channel listener for TCP

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 40. Stopping a function control

Stopping a channel initiator

328 MQSeries Intercommunication

Starting a channel listener
To start a channel listener using the MQSC commands, use START LISTENER.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 6 (Start)
Object type SYSTEM
Name Blank

The Start a System Function panel is displayed (see Figure 39 on page 327).

Select function type 2 or 3 (channel listener for LU 6.2 or TCP respectively),
complete any other fields required (LU name or port number respectively), and
press Enter.

Stopping a channel listener
To stop a channel listener using the MQSC commands, use STOP LISTENER.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 7 (Stop)
Object type SYSTEM
Name Blank

The Stop a System Function panel is displayed (see Figure 40 on page 328).

Select control type 2 or 3 (channel listener for LU 6.2 or TCP respectively) and
press Enter.

Starting a channel listener

Chapter 23. Monitoring and controlling channels on OS/390 329

Starting a channel
To start a channel using the MQSC commands, use START CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 6 (Start)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.USE

The Start a Channel panel is displayed:

Press Enter to start the channel.

Start a Channel

Press Enter to confirm that the channel is to be started.

Channel name : CHANNEL.TO.USE
Channel type : CHLSENDER
Description : Description of CHANNEL.TO.USE

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 41. Starting a channel

Starting a channel

330 MQSeries Intercommunication

Testing a channel
To test a channel using the MQSC commands, use PING CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 5 (Perform)
Object type CHLSENDER, CHLSERVER, or CHANNEL
Name CHANNEL.TO.USE

The Perform a Channel Function panel is displayed:

The data length is initially set to 16. Change this if you want, select function type 2
(ping), and press Enter.

Perform a Channel Function

Select function type, complete fields, then press Enter.

Function type _ 1. Reset sequence number
2. Ping
3. Resolve with commit
4. Resolve with backout

Channel name : CHANNEL.TO.USE
Channel type : CHLSENDER
Description : Description of CHANNEL.TO.USE

Reset
Sequence number 1 1 - 999999999

Ping
Data length 16 16 - 32768

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 42. Testing a channel

Testing a channel

Chapter 23. Monitoring and controlling channels on OS/390 331

Resetting message sequence numbers for a channel
To reset channel sequence numbers using the MQSC commands, use RESET
CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 5 (Perform)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.USE

The Perform a Channel Function panel is displayed:

The sequence number field is initially set to one. Change this if you want, select
Function type 1 (reset), and press Enter.

Perform a Channel Function

Select function type, complete fields, then press Enter.

Function type _ 1. Reset sequence number
2. Ping
3. Resolve with commit
4. Resolve with backout

Channel name : CHANNEL.TO.USE
Channel type : CHLSENDER
Description : Description of CHANNEL.TO.USE

Reset
Sequence number 1 1 - 999999999

Ping
Data length 16 16 - 32768

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 43. Resetting channel sequence numbers

Resetting message sequence numbers

332 MQSeries Intercommunication

Resolving in-doubt messages on a channel
To resolve in-doubt messages on a channel using the MQSC commands, use
RESOLVE CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 9 (Perform)
Object type CHLSENDER, CHLSERVER, or CHANNEL
Name CHANNEL.TO.USE

The Perform a Channel Function panel is displayed:

Select Function type 3 or 4 (resolve with commit or backout), and press Enter. (See
“In-doubt channels” on page 69 for more information.)

Perform a Channel Function

Select function type, complete fields, then press Enter.

Function type _ 1. Reset sequence number
2. Ping
3. Resolve with commit
4. Resolve with backout

Channel name : CHANNEL.TO.USE
Channel type : CHLSENDER
Description : Description of CHANNEL.TO.USE

Reset
Sequence number 1 1 - 999999999

Ping
Data length 16 16 - 32768

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 44. Resolving in-doubt messages

Resolving in-doubt messages

Chapter 23. Monitoring and controlling channels on OS/390 333

Stopping a channel
To stop a channel using the MQSC commands, use STOP CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Field Value
Action 7 (Stop)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.USE

The Stop a Channel panel is displayed:

Choose the stop mode that you require:

Quiesce
The channel will stop when the current message is completed and the
batch will then be ended, even if the batch size value has not been reached
and there are messages already waiting on the transmission queue. No
new batches will be started. This is the default.

Force The channel will stop immediately. If a batch of messages is in progress, an
‘in-doubt’ situation may result.

Press Enter to stop the channel.

See “Stopping and quiescing channels (not MQSeries for Windows)” on page 67 for
more information. For information about restarting stopped channels, see
“Restarting stopped channels” on page 69.

Stop a Channel

Select stop mode, then press Enter to stop channel.

Channel name : CHANNEL.TO.USE
Channel type : CHLSENDER
Description : Description of CHANNEL.TO.USE

Stop mode 1 1. Quiesce
2. Force

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 45. Stopping a channel

Stopping a channel

334 MQSeries Intercommunication

Displaying channel status
To display the status of a channel or a set of channels using the MQSC commands,
use DISPLAY CHSTATUS.

Note: Displaying channel status information may take some time if you have lots
of channels.

Using the operations and control panels on the List Channel panel (see Figure 38
on page 323), a summary of the channel status is shown for each channel as

follows:

INACTIVE No connections are active
status One connection is active
nnn status More than one connection is current and all current connections have

the same status
nnn CURRENT More than one connection is current and the current connections do not

all have the same status
Blank MQSeries is unable to determine how many connections are active (for

example, because the channel initiator is not running)

where nnn is the number of active connections, and status is one of the following:

INIT INITIALIZING
BIND BINDING
START STARTING
RUN RUNNING
STOP STOPPING or STOPPED
RETRY RETRYING
REQST REQUESTING

To display more information about the channel status, press the Status key (F11) on
the List Channel or the Display, Alter, or Delete channel panels to display the List
Channels - Current Status panel (see Figure 46 on page 336).

Displaying channel status

Chapter 23. Monitoring and controlling channels on OS/390 335

The values for status are as follows:

INIT INITIALIZING
BIND BINDING
START STARTING
RUN RUNNING
STOP STOPPING or STOPPED
RETRY RETRYING
REQST REQUESTING
DOUBT STOPPED and INDOUBT(YES)

See “Channel states” on page 62 for more information about these.

You can press F11 to see a similar list of channel connections with saved status;
press F11 to get back to the current list.

Use a slash (/) to select a connection and press Enter. Note that the saved status
does not apply until at least one batch of messages has been transmitted on the
channel. The Display Channel Connection Current Status panels are displayed:

List Channels - Current Status Row 1 of 16

Use '/' to select one or more connections, then press Enter to display current
connection status.

Channel name Connection name State
Type Messages Last message time Start time Retry/Stop

_ RMA0.CIRCUIT.ACL.F RMA1 STOP
_ CHLSENDER 557735 1997-03-24 09.51.11 1997-03-21 10.22.36
_ RMA0.CIRCUIT.ACL.N RMA1
_ CHLSENDER 378675 1997-03-24 09.51.10 1997-03-21 10.23.09
_ RMA0.CIRCUIT.CL.F RMA2
_ CHLSENDER 45544 1997-03-24 09.51.08 1997-03-24 01.12.51
_ RMA0.CIRCUIT.CL.N RMA2
_ CHLSENDER 45560 1997-03-24 09.51.11 1997-03-24 01.13.55
_ RMA1.CIRCUIT.CL.F RMA1
_ CHLRECEIVER 360757 1997-03-24 09.51.11 1997-03-21 10.24.12
_ RMA1.CIRCUIT.CL.N RMA1
_ CHLRECEIVER 302870 1997-03-24 09.51.09 1997-03-21 10.23.40

******** End of list ********

Command ===>
F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd
F9=Swap F10=Messages F11=Saved F12=Cancel

Figure 46. Listing channel connections

Displaying channel status

336 MQSeries Intercommunication

Displaying cluster channels
To display all the cluster channels that have been defined (explicitly or using
auto-definition), use the MQSC command, DISPLAY CLUSQMGR.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

Display Channel Connection Current Status

More: +

Channel name : CSQ1.TO.CSQ2
Channel type : CHLSENDER

Connection name : CSQ2
Transmission queue : CSQ1.TO.CSQ2.XMITQ

Status : RUN
Last sequence number . . . : 6
Last LUW ID : F2F6F1F2F2F6F2F8
Indoubt : NO
Current messages : 0
Current sequence number . : 6
Current LUW ID : F2F6F1F3F3F9F0F1

Command ===> ___
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Figure 47. Displaying channel connections - first panel

Display Channel Connection Current Status

Press F7 to see previous fields.

More: -
Channel start time : 1998-08-10 14.33.26
Last message/call time . . :
Batches completed : 0
Messages/calls : 0
Bytes sent : 0
Bytes received : 0
Transmissions sent : 0
Transmissions received . . : 0
Short retry attempts left . : 10
Long retry attempts left . : 999999999
Stop request outstanding . : N Y=Yes,N=No
Maximum message length . . : 4194304
Batch size : 50
Heartbeat interval : 300 seconds
Nonpersistent messages . . : F F=Fast,N=Normal

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Figure 48. Displaying channel connections - second panel

Displaying channel status

Chapter 23. Monitoring and controlling channels on OS/390 337

Field Value
Action 1 (Display)
Object type CLUSCHL
Name *

You are presented with a panel like figure 49, in which the information for each
cluster channel occupies three lines, and includes its channel, cluster, and queue
manager names. For cluster-sender channels, the overall state is shown.

To display full information about one or more channels, type Action code 1 against
their names and press Enter. Use Action codes 5, 6, or 7 to perform functions (such
as ping, resolve, and reset), and start or stop a cluster channel.

To display more information about the channel status, press the Status key (F11).

List Cluster-queue-manager Channels Row 1 of 9

Type action codes. Then press Enter.
1=Display 5=Perform 6=Start 7=Stop

Channel name Connection name State
Type Cluster name Suspended
Queue manager name

_ TO.MQ90.T HURSLEY.MACH90.COM(1590)
_ CHLCLUSRCVR VJH01T N
_ MQ90
_ TO.MQ95.T HURSLEY.MACH95.COM(1595) RUN
_ CHLCLUSSDRA VJH01T N
_ MQ95
_ TO.MQ96.T HURSLEY.MACH96.COM(1596) RUN
_ CHLCLUSSDRB VJH01T N
_ MQ96

******** End of list ********

Command ===> __
F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd
F9=Swap F10=Messages F11=Status F12=Cancel

Figure 49. Listing cluster channels

Displaying cluster channels

338 MQSeries Intercommunication

Chapter 24. Preparing MQSeries for OS/390

This chapter describes the MQSeries for OS/390 preparations you need to make
before you can start to use distributed queuing. (If you want to use CICS ISC for
distributed queuing, see “Chapter 27. Preparing MQSeries for OS/390 when using
CICS” on page 381.) Most of the information here applies equally to MQSeries for
MVS/ESA.

To enable distributed queuing, you must perform the following three tasks:
v Customize the distributed queuing facility and define the MQSeries objects

required; this is described in the MQSeries for OS/390 System Management Guide.
v Define access security; this is described in the MQSeries for OS/390 System

Management Guide.
v Set up your communications; this is described in this chapter.

Setting up communication
When a distributed-queuing management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This section explains how to do
this.

There are two forms of communication protocol that can be used:
v TCP
v LU 6.2 through APPC/MVS

TCP setup
The TCP address space name must be specified in the TCP system parameters data
set, tcpip.TCPIP.DATA. In the data set, a “TCPIPJOBNAME TCPIP_proc” statement
must be included.

The channel initiator address space must have authority to read the data set. The
following techniques can be used to access your TCPIP.DATA data set, depending
on which TCP/IP product and interface you are using:
v Environment variable, RESOLVER_CONFIG
v HFS file, /etc/resolv.conf
v //SYSTCPD DD statement
v //SYSTCPDD DD statement
v jobname/userid.TCPIP.DATA
v SYS1.TCPPARMS(TCPDATA)
v zapname.TCPIP.DATA

You must also be careful to specify the high-level qualifier for TCP/IP correctly.

For more information, see the following:
v TCP/IP OpenEdition: Planning and Release Guide, SC31-8303
v OS/390 OpenEdition Planning, SC28-1890
v Your TCPaccess documentation

© Copyright IBM Corp. 1993, 2000 339

Each TCP channel when started will use TCP resources; you may need to adjust
the following parameters in your PROFILE.TCPIP configuration data set:

ACBPOOLSIZE
Add one per started TCP channel, plus one

CCBPOOLSIZE
Add one per started TCP channel, plus one per DQM dispatcher, plus one

DATABUFFERPOOLSIZE
Add two per started TCP channel, plus one

MAXFILEPROC
Controls how many channels each dispatcher in the channel initiator can
handle.

This parameter is specified in the BPXPRMxx member of SYSI.PARMLIB. If
you are using OpenEdition sockets, ensure that you specify a value large
enough for your needs.

Connecting to TCP
The connection name (CONNAME) field in the channel definition should be set to
either the TCP network address of the target, in dotted decimal form (for example
9.20.9.30) or the host name (for example MVSHUR1). If the connection name is a
host name, a TCP name server is required to convert the host name into a TCP
host address. (This is a function of TCP, not MQSeries.)

On the initiating end of a connection (sender, requester, and server channel types)
it is possible to provide an optional port number for the connection, for example:
Connection name

9.20.9.30(1555)

In this case the initiating end will attempt to connect to a receiving program
listening on port 1555.

Receiving on TCP
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect incoming
network requests and start the associated channel. You start this listener program
with the START LISTENER command, or using the operations and control panels.

By default, the TCP Listener program uses port 1414.

Using the TCP listener backlog option
When receiving on TCP/IP, a maximum number of outstanding connection
requests is set. This can be considered a backlog of requests waiting on the TCP/IP
port for the listener to accept the request.

The default listener backlog value on OS/390 is 255. If the backlog reaches this
values, the TCP/IP connection is rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state and
retrying the connection at a later time.

For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
reason code from MQCONN and should retry the connection at a later time.

However, to avoid this error, you can add an entry in the qm.ini file:

Setting up communication

340 MQSeries Intercommunication

TCP:
ListenerBacklog = n

This overrides the default maximum number of outstanding requests (255) for the
TCP/IP listener.

Note: Some operating systems support a larger value than the default. If necessary,
this can be used to avoid reaching the connection limit.

To run the listener with the backlog option switched on, use the RUNMQLSR -B
command. For information about the RUNMQLSR command, see the MQSeries System
Administration book.

APPC/MVS setup
Each instance of the channel initiator must have the name of the LU that it is to
use defined to APPC/MVS, in the APPCPMxx member of SYS1.PARMLIB, as in
the following example:
LUADD ACBNAME(luname) NOSCHED TPDATA(CSQ.APPCTP)

luname is the name of the logical unit to be used. NOSCHED is required; TPDATA is not
used. No additions are necessary to the ASCHPMxx member, or to the APPC/MVS
TP profile data set.

The side information data set must be extended to define the connections used by
DQM. See the supplied sample CSQ4SIDE for details of how to do this using the
APPC utility program ATBSDFMU. For details of the TPNAME values to use, see
the Multiplatform APPC Configuration Guide (“Red Book”) and the following table
for information:

Table 30. Settings on the local OS/390 system for a remote queue manager platform

Remote platform TPNAME

OS/390 or
MVS/ESA

The same as TPNAME in the corresponding side information on the
remote queue manager.

OS/390 or
MVS/ESA using
CICS

CKRC (sender) CKSV (requester) CKRC (server)

OS/400 The same as the compare value in the routing entry on the OS/400
system.

OS/2 As specified in the OS/2 Run Listener command, or defaulted from the
OS/2 queue manager configuration file.

Digital OVMS As specified in the Digital OVMS Run Listener command.

Tandem NSK The same as the TPNAME specified in the receiver-channel definition.

Other UNIX
systems

The same as TPNAME in the corresponding side information on the
remote queue manager.

Windows NT As specified in the Windows NT Run Listener command, or the
invokable Transaction Program that was defined using TpSetup on
Windows NT.

If you have more than one queue manager on the same machine, ensure that the
TPnames in the channel definitions are unique.

See the Multiplatform APPC Configuration Guide also for information about the
VTAM definitions that may be required.

Setting up communication

Chapter 24. Preparing MQSeries for OS/390 341

In an environment where the queue manager is communicating via APPC with a
queue manager on the same or another OS/390 system, ensure that either the
VTAM definition for the communicating LU specifies SECACPT(ALREADYV), or
that there is a RACF® APPCLU profile for the connection between LUs, which
specifies CONVSEC(ALREADYV).

The OS/390 command VARY ACTIVE must be issued against both base and
listener LUs before attempting to start either inbound or outbound
communications.

Connecting to APPC/MVS (LU 6.2)
The connection name (CONNAME) field in the channel definition should be set to
the symbolic destination name, as specified in the side information data set for
APPC/MVS.

The LU name to use (defined to APPC/MVS as described above) must also be
specified in the channel initiator parameters. It must be set to the same LU that
will be used for receiving by the listener.

The channel initiator uses the “SECURITY(SAME)” APPC/MVS option, so it is the
user ID of the channel initiator address space that is used for outbound
transmissions, and will be presented to the receiver.

Receiving on LU 6.2
Receiving MCAs are started in response to a startup request from the sending
channel. To do this, a listener program has to be started to detect incoming
network requests and start the associated channel. The listener program is an
APPC/MVS server. You start it with the START LISTENER command, or using the
operations and control panels. You must specify the LU name to use by means of a
symbolic destination name defined in the side information data set. The local LU
so identified must be the same as that used for outbound transmissions, as set in
the channel initiator parameters.

Defining DQM requirements to MQSeries
In order to define your distributed-queuing requirements, you have to:
v Define the channel initiator procedures and data sets
v Define the channel definitions
v Define the queues and other objects
v Define access security

See the MQSeries for OS/390 System Management Guide for information about these
tasks.

Defining MQSeries objects
Use one of the MQSeries command input methods to define MQSeries objects.
Refer to “Chapter 23. Monitoring and controlling channels on OS/390” on page 321
for information about defining objects.

Setting up communication

342 MQSeries Intercommunication

You define:
v A local queue with the usage of XMITQ for each sending message channel.
v Remote queue definitions.

A remote queue object has three distinct uses, depending upon the way the
name and content are specified:
– Remote queue definition
– Queue manager alias definition
– Reply-to queue alias definition

This is shown in Table 2 on page 37.
v A process specifying the trigger data for a channel that is triggered by messages

appearing on the transmission queue. The transmission queue must name
SYSTEM.CHANNEL.INITQ as the initiation queue.
– The process definition parameter, USERDATA, must contain the name of the

channel to be started by this process
– The application identifier (APPLICID) must be CSQX START
– The application type (APPLTYPE) must be set to MVS

For example:
DEFINE QLOCAL(MYXMITQ) USAGE(XMITQ) TRIGGER(YES) +

INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(MYPROCESS)
DEFINE PROCESS(MYPROCESS) APPLTYPE(MVS) APPLICID('CSQX START') +

USERDATA(MYCHANNEL)
DEFINE CHL(MYCHANNEL) CHLTYPE(SDR) TRTYPE(TCP) +

XMITQ(MYXMITQ) CONNAME('9.20.9.30(1555)')

Note: The trigger monitor program is actually the channel initiator itself; no
separate program needs to be started.

The supplied sample CSQ4INYD gives additional examples of the necessary
definitions.

Synchronization queue
DQM requires a queue for use with sequence numbers and logical units of work
identifiers (LUWID). You must ensure that a queue is available with the name
SYSTEM.CHANNEL.SYNCQ (see the MQSeries for OS/390 System Management
Guide).

Make sure that you define this queue using INDXTYPE(MSGID). This will improve
the speed at which it can be accessed.

Channel command queues
You need to ensure that channel command queues exist for your system with the
names SYSTEM.CHANNEL.INITQ and SYSTEM.CHANNEL.REPLY.INFO.

If the channel initiator detects a problem with the SYSTEM.CHANNEL.INITQ, it
will be unable to continue normally until the problem is corrected. The problem
could be one of the following:
v The queue is full
v The queue is not enabled for put
v The page set that the queue is on is full
v The channel initiator does not have the correct security authorization to the

queue

Defining MQSeries objects

Chapter 24. Preparing MQSeries for OS/390 343

If the definition of the queue is changed to GET(DISABLED) while the channel
initiator is running, it will not be able to get messages from the queue, and will
terminate.

Channel operation considerations
1. Because the channel initiator uses a number of asynchronously operating

dispatchers, the order in which operator messages appear on the log may be
out of chronological sequence.

2. MCAs for receiver channels may keep the destination queues open even when
messages are not being transmitted; this results in the queues appearing to be
‘in use’.

3. If you change security access for a user ID, the change may not take effect
immediately. See the MQSeries for OS/390 System Management Guide for more
information.

4. If TCP is stopped for some reason and then restarted, the MQSeries for OS/390
TCP listener waiting on a TCP port is stopped.
If you are using the OpenEdition sockets interface, (for example, if you are
using the IUCV interface or the Interlink SNSTCPAccess interface,) the channel
initiator must be stopped and manually restarted when TCP returns. Then, the
listener must also be manually restarted to resume communications.
If you are using the OpenEdition sockets interface, automatic channel reconnect
allows the channel initiator to detect that TCP/IP is not available and to
automatically restart the TCP/IP listener when TCP/IP returns. This alleviates
the need for operations staff to notice the problem with TCP/IP and manually
restart the listener. While the listener is out of action, the channel initiator can
also be used to retry the listener at the interval specified by LSTRTMR in the
channel initiator parameter module. These attempts can continue until TCP/IP
returns and the listener successfully restarts automatically. For information
about LSTRTMR, see the MQSeries for OS/390 System Management Guide.

5. If APPC is stopped, the listener is also stopped. Again, in this case, the listener
automatically retries at the LSTRTMR interval so that, if APPC restarts, the
listener can restart too.

OS/390 Automatic Restart Management (ARM)
Automatic restart management (ARM) is an OS/390 recovery function that can
improve the availability of specific batch jobs or started tasks (for example,
subsystems), and therefore result in a faster resumption of productive work.

To use ARM, you must set up your queue managers and channel initiators in a
particular way to make them restart automatically. For information about this, see
the MQSeries for OS/390 System Management Guide.

Defining MQSeries objects

344 MQSeries Intercommunication

Chapter 25. Message channel planning example for OS/390

This chapter provides a detailed example of how to connect two OS/390 or
MVS/ESA queue managers together so that messages can be sent between them.
The example illustrates the preparations needed to allow an application using
queue manager QM1 to put messages on a queue at queue manager QM2. An
application running on QM2 can retrieve these messages, and send responses to a
reply queue on QM1.

The example illustrates the use of both TCP/IP and LU 6.2 connections. The
example assumes that channels are to be triggered to start when the first message
arrives on the transmission queue they are servicing.

What the example shows
The example shows the MQSeries commands (MQSC) that you can use in
MQSeries for OS/390 for DQM.

It involves a payroll query application connected to queue manager QM1 that
sends payroll query messages to a payroll processing application running on queue
manager QM2. The payroll query application needs the replies to its queries sent
back to QM1. The payroll query messages are sent from QM1 to QM2 on a
sender-receiver channel called QM1.TO.QM2, and the reply messages are sent back
from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1. Both
of these channels are triggered to start as soon as they have a message to send to
the other queue manager.

The payroll query application puts a query message to the remote queue
“PAYROLL.QUERY” defined on QM1. This remote queue definition resolves to the
local queue “PAYROLL” on QM2. In addition, the payroll query application
specifies that the reply to the query is sent to the local queue “PAYROLL.REPLY”
on QM1. The payroll processing application gets messages from the local queue

Queue transmission 'QM2'

'SYSTEM.CHANNEL.INITQ'

'SYSTEM.CHANNEL.INITQ'

Queue transmission 'QM1'

Application Application

message

message

message

Query

Queue manager 'QM1' Queue manager 'QM2'

Channel

Payroll
processing

Payroll
query

Query

Reply

message

Reply

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue local 'PAYROLL'QM1.TO.QM2

QM2.TO.QM1

Figure 50. The message channel example for MQSeries for OS/390

© Copyright IBM Corp. 1993, 2000 345

“PAYROLL” on QM2, and sends the replies to wherever they are required; in this
case, local queue “PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on OS/390. In the example
definitions for TCP/IP, QM1 has a host address of 9.20.9.31 and is listening on port
1411, and QM2 has a host address of 9.20.9.32 and is listening on port 1412. In the
definitions for LU 6.2, QM1 is listening on a symbolic luname called LUNAME1
and QM2 is listening on a symbolic luname called LUNAME2. The example
assumes that these are already defined on your OS/390 system and available for
use.

The object definitions that need to be created on QM1 are:
v Remote queue definition, PAYROLL.QUERY
v Transmission queue definition, QM2 (default=remote queue manager name)
v Process definition, QM1.TO.QM2.PROCESS
v Sender channel definition, QM1.TO.QM2
v Receiver channel definition, QM2.TO.QM1
v Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:
v Local queue definition, PAYROLL
v Transmission queue definition, QM1 (default=remote queue manager name)
v Process definition, QM2.TO.QM1.PROCESS
v Sender channel definition, QM2.TO.QM1
v Receiver channel definition, QM1.TO.QM2

The example assumes that all the SYSTEM.COMMAND.* and
SYSTEM.CHANNEL.* queues required to run DQM have been defined as shown
in the supplied sample definitions, CSQ4INSG and CSQ4INSX.

The connection details are supplied in the CONNAME attribute of the sender
channel definitions.

You can see a diagram of the arrangement in Figure 50 on page 345.

Queue manager QM1 example
The following object definitions allow applications connected to queue manager
QM1 to send request messages to a queue called PAYROLL on QM2, and to receive
replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE
attributes. The other attributes supplied are the minimum required to make the
example work. The attributes that are not supplied take the default values for
queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition
DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of
directing messages to the transmission queue, QM2, so that they can be sent
to queue manager QM2.

Planning example for OS/390

346 MQSeries Intercommunication

Transmission queue definition
DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM1.TO.QM2.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent
to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the
message from the initiation queue and starts the channel identified in the named
process. The channel initiator can only get trigger messages from the
SYSTEM.CHANNEL.INITQ queue, so you should not use any other queue as the
initiation queue.

Process definition
DEFINE PROCESS(QM1.TO.QM2.PROCESS) DESCR('Process for starting channel') +
REPLACE APPLTYPE(MVS) APPLICID('CSQX START') USERDATA(QM1.TO.QM2)

The channel initiator uses this process information to start channel QM1.TO.QM2.

Sender channel definition
For a TCP/IP connection:
DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('9.20.9.32(1412)')

For an LU 6.2 connection:
DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('LUNAME2')

Receiver channel definition
For a TCP/IP connection:
DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

For an LU 6.2 connection:
DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition
DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED). This ensures that reply
messages can be put to the queue. If the replies cannot be put to the reply-to
queue, they are sent to the dead-letter queue on QM1 or, if this queue is not
available, remain on transmission queue QM1 on queue manager QM2. The queue
has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

Queue manager QM2 example
The following object definitions allow applications connected to queue manager
QM2 to retrieve request messages from a local queue called PAYROLL, and to put
replies to these request messages to a queue called PAYROLL.REPLY on queue
manager QM1.

You do not need to provide a remote queue definition to enable the replies to be
returned to QM1. The message descriptor of the message retrieved from local
queue PAYROLL contains both the reply-to queue and the reply-to queue manager

Planning example for OS/390

Chapter 25. Message channel planning example for OS/390 347

names. Therefore, as long as QM2 can resolve the reply-to queue manager name to
that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue
manager QM2 simply requires a transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE
attributes and are the minimum required to make the example work. The attributes
that are not supplied take the default values for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition
DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same
reason as the reply-to queue definition on queue manager QM1.

Transmission queue definition
DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM2.TO.QM1.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent
to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the
message from the initiation queue and starts the channel identified in the named
process. The channel initiator can only get trigger messages from
SYSTEM.CHANNEL.INITQ so you should not use any other queue as the
initiation queue.

Process definition
DEFINE PROCESS(QM2.TO.QM1.PROCESS) DESCR('Process for starting channel') +
REPLACE APPLTYPE(MVS) APPLICID('CSQX START') USERDATA(QM2.TO.QM1)

The channel initiator uses this process information to start channel QM2.TO.QM1.

Sender channel definition
For a TCP/IP connection:
DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('9.20.9.31(1411)')

For an LU 6.2 connection:
DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('LUNAME1')

Receiver channel definition
For a TCP/IP connection:
DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

For an LU 6.2 connection:
DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM1')

Planning example for OS/390

348 MQSeries Intercommunication

Running the example
When you have created the required objects, you must:
v Start the channel initiator for both queue managers
v Start the listener for both queue managers

The applications can then send messages to each other. Because the channels are
triggered to start by the arrival of the first message on each transmission queue,
you do not need to issue the START CHANNEL MQSC command.

For details about starting a channel initiator see “Starting a channel initiator” on
page 327, and for details about starting a listener see “Starting a channel listener”
on page 329.

Expanding this example
This example can be expanded by:
v Adding more queue, process, and channel definitions to allow other applications

to send messages between the two queue managers.
v Adding user exit programs on the channels to allow for link encryption, security

checking, or additional message processing.
v Using queue manager aliases and reply-to queue aliases to understand more

about how these can be used in the organization of your queue manager
network.

Planning example for OS/390

Chapter 25. Message channel planning example for OS/390 349

Planning example for OS/390

350 MQSeries Intercommunication

Chapter 26. Monitoring and controlling channels in OS/390
with CICS

You monitor and control the channels to remote queue managers from the
distributed queue management (DQM) panels. Each OS/390 queue manager has a
set of DQM CICS transactions for controlling interconnections to compatible
remote queue managers using CICS intersystem communication (ISC) facilities.

The DQM channel control function
The channel control function provides the administration and control of message
channels using CICS between MQSeries for OS/390 and compatible systems. See
Figure 28 on page 58 for a conceptual picture.

The channel control function consists of CICS panels and programs, a sequence
number queue, a channel command queue, and a VSAM file for the channel
definitions. The following is a brief description of the components of the channel
control function.
v The channel definition file (CDF):

– Is a VSAM file
– Is indexed on channel name
– Holds channel definitions
– Must be available to the CICS regions in which the channel control program

runs, and where the message channel agent (MCA) programs run
v You use channel definition panels to:

– Create, copy, display, alter, find, and delete channel definitions
– Start channels, reset channel sequence numbers, stop channels, ping channels,

resync channels, and resolve in-doubt messages when links cannot be
re-established

– Display status information about channels

The panels are CICS basic-mapping support maps.
v Sequence numbers and logical unit of work IDs (LUWIDs) are stored in the

sequence number queue, SYSTEM.CHANNEL.SEQNO, and are used for channel
re-synchronization purposes.

v A channel command queue, SYSTEM.CHANNEL.COMMAND, is used to hold
certain commands for channels.

v The programs are a series of CICS transactions, which include transactions for
the MCAs. There are different MCAs available for each type of channel. The
names are contained in the following table. Other transactions provide channel
control, command handling, and trigger monitoring.

Table 31. Program and transaction names

Program name Channel type CICS transaction ID

CSQKMSGS Sender CKSG

CSQKMSGR Receiver CKRC

CSQKMSGQ Requester CKRQ

CSQKMSGV Server CKSV

© Copyright IBM Corp. 1993, 2000 351

v A transient data queue CKMQ for error messages.

CICS regions
Figure 51 shows a configuration of two CICS regions, connected to a single queue
manager. The regions have multiregion operation (MRO) links to one another, for
function shipping of EXEC CICS START commands from the channel control
program.

Starting DQM panels
You invoke DQM panels with the CKMC CICS transaction. On invocation, DQM
presents you with the main Message Channel List panel. All activity with the other
panels follows from selections made on this panel.

Rem ote
system
queue
m anager

transm iss ionQueue

CICS-B

CICS/MRO
Connection

CICS-C

Channel
contro l
p rogram

Channel
defin it ion
f i le

M essage
channel
agent
program

C om m unication
link. LU 6.2

Figure 51. Sample configuration of channel control and MCA. MRO is used for an EXEC
CICS START of the MCA, and for an EXEC CICS READ of the channel definition file by the
MCA. Communication with the remote queue manager is through CICS ISC, not MRO.

Channel control function

352 MQSeries Intercommunication

The Message Channel List panel
The main panel is called the Message Channel List panel; for an example of it, see
Figure 52. It has a menu bar with choices you can pull down to reveal the various
options you can select for these choices. The work area of the panel is used to
present a selection column, and three other columns showing the:
v Full name of each channel
v Type of channel
v CICS system identifier

Keyboard functions
The following sections describe the function, Enter, and Clear keys, as well as what
happens if you press any unassigned keys associated with this panel.

Function keys
The function keys control the use of the panel. They are listed below, together with
their purpose.

F1 Call help panels
F3 Exit from the panel and the program
F5 Refresh the screen fields with current data
F6 Find a particular channel name
F7 Scroll the panel backward to display more channels
F8 Scroll the panel forward to display more channels
F10 Move the cursor to the menu bar
F12 Cancel pull-down menus or secondary windows, if any, otherwise as F3

Note: Function keys 13 to 24 have the same functions as functions keys 1 to 12,
respectively.

Selected Edit View Help
--
MCSELB IBM MQSeries for OS/390 - Message Channel List VICY14

Select a channel name. Then select an action.
More: +

Channel name Type Sysid
VC13.TO.VC14.REQSER REQUESTER VR14
VC13.2.VC14.JAC3 RECEIVER VR14
VC13.2.VC14.MROSER REQUESTER VR14
VC13.2.VC14.REQSEND REQUESTER VR14
VC13.2.VC14.SENDER SENDER VR14
VICY13.TO.VICY14 RECEIVER VR14
VICY13.TO.VICY14.CB REQUESTER VR14
VICY13.TO.VICY14.NS RECEIVER VR14
VICY13.TO.VICY14.NSR RECEIVER VR14
VICY13.TO.VICY14.NS2 RECEIVER VR14
VICY13.TO.VICY14.SER REQUESTER VR14
VICY13.TO.VICY14.SVR REQUESTER VR14

(C) Copyright IBM Corporation 1993, 1999. All rights reserved.

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 52. The Message Channel List panel

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 353

Enter key
Pressing the Enter key while the cursor is on a menu-bar choice results in the
pull-down menu for that choice appearing.

Pressing the Enter key while the cursor is not on a menu-bar choice and a channel
selection has been made selects the default option, Display Settings.

Pressing the Enter key while the cursor is not on a menu-bar choice and no
channel selection has been made results in the panel being redisplayed.

Clear key
If you find while typing that what you have typed is not correct, press the Clear
key on your terminal to revert all the input fields to their previous state.

For individual fields, use the ‘Erase EOF’, or ‘Ctrl Delete’, depending upon the
type of terminal you are using.

Unassigned keys and unavailable choices
If you press a function key, or an attention key that has not been assigned an
action, a warning message is displayed that states that the key is invalid.

Selecting a channel
To select a channel, begin at the Message Channel List panel:
1. Move the cursor to the left of the required channel name.
2. Type a slash (/) character.
3. Press F10 to move the cursor to the menu bar, or press the Enter key to browse

the channel settings.

If you try to select more than one channel, only the first one you select is valid.

Working with channels
When a channel has been selected, function key F10 moves the cursor to the menu
bar (see Table 32). The menu-bar choices are:

Table 32. Message Channel List menu-bar choices

Selected Edit View Help

Selecting each of these choices causes its pull-down menu to be displayed (see
Figure 53 on page 355).

When you select an option that requires further information, such as a channel
name, an action window appears with an entry field for the data.

In general, any incorrect input from the keyboard results in a warning message
being issued.

Message Channel List panel

354 MQSeries Intercommunication

Selected Edit View Help
+--------------------------+--
| 1. Start |r OS/390 - Message Channel List VICY14
| 2. Stop... |
| 3. Resync |select an action.
| 4. Reset... | More: - +
| 5. Resolve... |e Sysid
| 6. Display Status |UESTER VR14
| 7. Display Settings |EIVER VR14
| 8. Ping... |UESTER VR14
| 9. Exit F3 |UESTER VR14
+--------------------------+DER VR14

Selected Edit View Help
------------------ +--------------------------+-------------------------------
MCSELB IBM M | 1. Copy... | Channel List VICY14

| 2. Create... |
Select a channel n | 3. Alter |

| 4. Delete... | More: - +
Channel name | 5. Find... F6 |
VC13.TO.VC14.SEQ +--------------------------+
VC13.2.VC14.JAC3 RECEIVER VR14
VC13.2.VC14.MROSER REQUESTER VR14
VC13.2.VC14.REQSEND REQUESTER VR14
VC13.2.VC14.SENDER SENDER VR14

Selected Edit View Help
--------------------------------- +------------------------+------------------
MCSELB IBM MQSeries for MVS | 1. Include all | VICY14

| 2. Include... |
Select a channel name. Then selec | 3. Refresh now F5 |

+------------------------+ More: - +
Channel name Type Sysid
VC13.TO.VC14.SEQSER REQUESTER VR14
VC13.2.VC14.JAC3 RECEIVER VR14
VC13.2.VC14.MROSER REQUESTER VR14
VC13.2.VC14.REQSEND REQUESTER VR14
VC13.2.VC14.SENDER SENDER VR14

Selected Edit View Help
--- +---------------------------+-
MCSELB IBM MQSeries for OS/390 - Message | 1. Using help |

| 2. General help |
Select a channel name. Then select an action. | 3. Keys help |

| 4. Tutorial |
Channel name Type Sysid | 5. Product Info |
VC13.TO.VC14.SEQSER REQUESTER VR14 +---------------------------+
VC13.2.VC14.JAC3 RECEIVER VR14
VC13.2.VC14.MROSER REQUESTER VR14
VC13.2.VC14.REQSEND REQUESTER VR14
VC13.2.VC14.SENDER SENDER VR14

Figure 53. The Message Channel List panel pull-down menus

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 355

Creating a channel
To create a new channel, begin at the Message Channel List panel:
1. Press function key F10 and move the cursor to the Edit choice on the menu bar.
2. Press the Enter key to display the Edit pull-down menu, and select the Create

option.
3. Press the Enter key to display the Create action window.
4. Type the name of the channel in the field provided.
5. Select the channel type for this end of the link.
6. Press the Enter key.

Notes:

1. If you are using distributed queuing without CICS as well, don’t use any of the
same channel names.

2. You are recommended to name all the channels in your network uniquely. As
shown in Table 1 on page 30, including the source and target queue manager
names in the channel name is a good way to do this.

You are presented with the appropriate Settings panel for the type of channel you
have chosen. Fill in the fields with the information you have gathered previously,
and select the Save option from the Channel pull-down menu.

You are provided with help in deciding on the content of the various fields in the
descriptions of the channel definition panels in the following sections of this
chapter.

Altering a channel
To alter an existing channel, begin at the Message Channel List panel:
1. Select a channel.
2. Press function key F10 and move the cursor to the Edit choice on the menu bar.
3. Press the Enter key to display the Edit pull-down menu, and select the Alter

option.

You are presented with the appropriate Settings panel for the channel you have
chosen. Alter the fields with the information you have gathered previously, and
select the Save option from the Channel pull-down menu.

You are provided with help in deciding on the content of the various fields in the
descriptions of the channel definition panels in the following sections of this
chapter, and in the contextual help panels.

Browsing a channel
To browse the settings of a channel, begin at the Message Channel List panel:
1. Select a channel.
2. Press the Enter key.

If you try to select more than one channel, only the first one you select is valid.

This results in the respective Settings panel being displayed with details of the
current settings for the channel, but with the fields protected against user input.

Message Channel List panel

356 MQSeries Intercommunication

If the Channel pull-down menu is selected from the menu bar, the Save option is
unavailable and this is indicated by an asterisk (*) in place of the first letter, as
shown in Figure 54.

Renaming a channel
To rename a message channel, begin at the Message Channel List panel:
1. Ensure that the channel is inactive.
2. Select the channel.
3. Use Copy to create a duplicate with the new name.
4. Use Delete to delete the original channel.

If you decide to rename a message channel, ensure that both ends of the channel
are renamed at the same time.

Selected menu-bar choice
The options available in the Selected pull-down menu are:

Menu option Description

Start Starts the selected channel.

Stop Requests the channel to close down, immediately, or controlled.

Resync Requests the channel to re-synchronize with the remote end, and
then close. No messages are sent.

Reset Requests the channel to reset the sequence numbers on this end of
the link. The numbers must be equal at both ends for the channel to
start.

Resolve Requests the channel to resolve in doubt messages without
establishing connection to the other end.

Display Status Displays the current status of the channel.

Display Settings Displays the current settings for the channel.

Ping Exchanges a data message with the remote end.

Exit Exits from the program.

Start
The Start option is available for sender and requester channels, and moreover
should not be necessary where a sender channel has been set up with queue
manager triggering. For the method of setting up triggering, see “How to trigger
channels” on page 358.

Channel Help
+------------------+--
| 1. *ave |13.2.VC14.SENDER - Settings VICY14
| 2. Exit F3 |
+------------------+

More: +
Channel type : SENDER

Target system id :
Transmission queue name . : JACK
Batch size : 0001
Sequence number wrap . . : 0999999

Figure 54. The Channel pull-down menu

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 357

When a server channel has been fully defined as a sender, then the same applies as
for sender channels.

When you choose the Start option, an EXEC CICS START call is issued to the
MCA, which reads the channel definition file and opens the transmission queue. A
channel startup sequence is executed which remotely starts the corresponding
MCA of the receiver or server channel. When they are running, the sender and
server processes await messages arriving on the transmission queue and transmit
them as they arrive.

Using the Start option always causes re-synchronization where necessary.

For the start to succeed:
v Channel definitions, local and remote must exist.
v The associated transmission queue must exist and it must be enabled for GETs.

If sequential numbering is required, then no other process can have the
transmission queue open for input.

v CICS transactions, local (and remote if it is OS/390 using CICS) must exist.
v CICS communication must be running.
v The queue managers must be running, local and remote.
v Channel must be inactive.
v Sequence number queue must exist on the receiving system (if it is OS/390

using CICS).

It is not necessary that:
v Messages be available
v Remote queue definitions be used
v Remote destination queues be available

A message is returned to the panel confirming that the request to start a channel
has been accepted. For confirmation that the start command has succeeded, check
the system console for the CICS system hosting the MCA, or the transient data
queue.

The sender, server, and requester channel transactions can be started automatically
by CICS, if necessary. This is achieved by arranging for the MCA CICS transaction
to be started by the CICS system in the required way. This is similar to the
triggering startup in that the MCA is passed the required information in a trigger
message. For example, it can be customized to start at a certain time every day, or
at regular intervals. When started, it retrieves its channel definition and responds
accordingly.

How to trigger channels: If triggering is to be used to start a channel when
messages arrive on the associated transmission queue, use MQSeries for OS/390
operations and control panels or MQSC commands to set it up in accordance with
the details on triggering in the MQSeries Application Programming Guide, after
having collected all the planning data.

Trigger control is exercised by means of the trigger control parameter in the
transmission queue definition. You need to set up the transmission queue for the
channel, specifying TRIGGER, define an initiation queue, and define a process. For
example:

Message Channel List panel

358 MQSeries Intercommunication

DEFINE QLOCAL(MYXMITQ) USAGE(XMITQ) TRIGGER INITQ(MYINITQ) +
TRIGTYPE(FIRST) PROCESS(MYPROCESS)

DEFINE QLOCAL(MYINITQ)

DEFINE PROCESS(MYPROCESS) APPLTYPE(CICS) APPLICID(CKSG) +
USERDATA(MYCHANNEL)

On the process definition:

APPLICID
Names the application that is to be triggered. If you have a fully defined
server channel (see “Message channels” on page 7), this ID should be
CKSG rather than CKSV. CKSV should be used only for requester-server
channels that are to be initiated only by the requester.

APPLTYPE
Specifies that this is a CICS application.

USERDATA
Specifies the name of the sender channel to be started.

Following the definitions, the long-running trigger process, CKTI, must be started
to monitor the initiation queue:

CKQC STARTCKTI MYINITQ

CKTI waits for trigger messages from the initiation queue, and starts an instance of
CKSG for the sender channel in response to the trigger messages. If the channel
experiences problems, the trigger control parameter on the transmission queue
definition is set to NOTRIGGER by the MCA, and the transmission queue is set to
GET(DISABLED). After diagnosis and correction and before you can restart
triggering, you must reset the TRIGGER parameter, for example with the MQSeries
for OS/390 operations and control panels, and must reset the transmission queue
to GET(ENABLED).

Stop
Use the Stop option to request the channel to stop activity.

The Stop option presents an action window to allow you to confirm your intention
to stop the channel, for all four types of channel. For sender and server channels
only, you can select the type of stop you require: IMMEDIATE, or QUIESCE. See
Figure 55 on page 360 and Figure 56 on page 361.

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 359

Stop immediate: This choice forces the channel to close down immediately, if
necessary, without completing the current batch of messages, but an attempt is
made to syncpoint with the other end of the channel.

Stop immediate is implemented by setting the channel’s transmission queue to
GET DISABLED. This means that if multiple channels are active against a
transmission queue, issuing a stop immediate against one of the channels causes
all channels to be stopped. You need to reset this queue to GET ENABLED using
the MQSeries for OS/390 operations and control panels or MQSC commands
before you attempt to restart the channels.

For more information, see the “Stopping and quiescing channels (not MQSeries for
Windows)” on page 67.

Selected Edit View Help
+--------------------------+--
| 2 1. Start |r OS/390 - Message Channel List VICY03
| 2. Stop... |
| 3. Resy +--+
| 4. Rese | VC13.2.VC14 - Stop | More:
5. Reso	
6. Disp	Select one. Then press Enter.
7. Disp	
8. Ping	Channel type . . . : SENDER
9. Exit	
+---------- | _ 1. Stop (quiesce) |
BREN.VR04 | 2. Stop (immediate) |
CRIS.VR01 | |
CRIS.VR01 | F1=Help F12=Cancel |
CRIS.VR03 +--+
CRIS.VR03.TO.VR04 SENDER
TEST.REQUESTER REQUESTER
TEST.SERVER SERVER

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 55. Sender/server Stop action window

Message Channel List panel

360 MQSeries Intercommunication

Stop quiesce: This choice requests the channel to close down in an orderly way;
the current batch of messages is completed, and the syncpoint procedure is carried
out with the other end of the channel.

For more information, see “Stopping and quiescing channels (not MQSeries for
Windows)” on page 67. For information about restarting stopped channels, see
“Restarting stopped channels” on page 69.

Resync
A message channel is synchronized when there are no in-doubt messages. That is,
the sending channel and the receiving channel are agreed on the current unit of
work number. The Resync option is valid for sender and server channels, but
server channels must be fully defined. The option allows the operator to request
the channel to re-synchronize with the remote end by resolving any in-doubt
messages.

There is no panel associated with this option.

It is to be used only where the channel is currently inactive and in-doubt messages
exist. The channel starts up, resolves the in-doubt messages, and then terminates. It
is not intended that the channel should send messages after the resolution has
been completed.

If the re-synchronization of a channel is not successful, you may need to examine
the content of the system sequence number queue, using the Display Status option
from the Selected pull-down menu on the Message Channel List panel. Compare
the sequence numbers, or LUWIDs, at the sending and receiving ends of the
channel in order to ascertain what needs to be done to restore synchronization.

It may be necessary to reset sequence numbers, or resolve in-doubt message status,
if a channel remains out of synchronization.

Selected Edit View Help
+--------------------------+--
| 2 1. Start |r OS/390 - Message Channel List VICY03
| 2. Stop... |
| 3. Resy +--+
| 4. Rese | VC13.2.VC14 - Stop | More:
5. Reso	
6. Disp	Select one. Then press Enter.
7. Disp	
8. Ping	Channel type . . . : RECEIVER
9. Exit	
+---------- | _ 1. Stop (quiesce) |
BREN.VR04 | 2. *top (immediate) |
CRIS.VR01 | |
CRIS.VR01 | F1=Help F12=Cancel |
CRIS.VR03 +--+
CRIS.VR03.TO.VR04 SENDER
TEST.REQUESTER REQUESTER
TEST.SERVER SERVER

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 56. Requester/receiver Stop action window

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 361

If a channel terminates abnormally, the sender may be left in doubt as to whether
the receiver has received and committed one message, or a batch of messages.
When the channel is restarted, the channel program automatically re-synchronizes
before sending any new messages.

However, there are times when you may want to re-synchronize the in-doubt
messages, but not send any new ones. For example:
v You may want to reset sequence numbers before sending the next batch of

messages.
v You may want to close out a batch, but hold the remaining messages for later

transmission.

The channel program started by this option establishes a session with a partner. It
then exchanges the re-synchronization flows. Then, instead of starting new
message traffic, it sends a disconnect flow. The result is that the channel terminates
normally, without any in-doubt messages. It is ready to be restarted or reset, as
required.

For the re-synchronization to succeed:
v Channel definitions, local and remote must exist
v Transmission queue is available and usable
v CICS transactions, local (and remote if using OS/390 with CICS) must exist
v CICS communication must be running
v Queue managers must be running, local and remote
v Sequence number queue must exist on the receiving system (if using OS/390

with CICS)
v The channel must be inactive

A message is returned to the panel indicating whether the request to
re-synchronize a channel has succeeded. If the Resync process was not successful,
check the system console, or transient data queue (TDQ), for the CICS system
hosting the MCA for error messages.

Reset
Use the Reset option to request the channel to reset the sequence number. For a
view of the Reset Channel Sequence Number action window, see Figure 57 on
page 363. The change must be made separately on each end of the link, with care,
and can be done only on inactive channels that have no in-doubt units of work
outstanding.

The current sequence number is retrieved and changed to the value requested by
the user.

For the reset to succeed:
v The channel sequence number record must exist
v The channel must be inactive
v The channel must not be in doubt
v The channel definition, local, must exist
v CICS transactions, local, must exist
v The CICS system hosting the MCA must be connected to the queue manager

Notes:

1. To be effective, the sequence number must be reset in both the sender and the
receiver channel definitions. The starting sequence number is not negotiated
when a channel starts up, nor is there a default provided. Both ends of a
channel definition must have the same sequence number value.

Message Channel List panel

362 MQSeries Intercommunication

2. In MQSeries for OS/390 using CICS, DQM saves the last sequence number
sent, which means that to start the next message with sequence number 100, for
example, you need to reset the sequence number to 99.

3. If you delete the channel definition at the partner end of the channel (by
deleting and recreating the partner queue manager), you must reset the channel
sequence number to 0 at the OS/390 end and to 1 at the partner end.

Resolve
Use the Resolve option to request a channel to commit or back out in-doubt
messages. This may be used when the other end of the link has terminated, and
there is no prospect of it returning. Any outstanding units of work need to be
resolved with either backout or commit. Backout restores messages to the
transmission queue, while Commit discards them.

The Resolve option is needed when the Resync option is not available, or not
effective, and messages are held in doubt by a sender or server. The option accepts
one of two parameters: Backout or Commit. See Figure 58 on page 364.

The channel program does not try to establish a session with a partner. Instead, it
determines the logical unit of work identifier (LUWID) which represents the
in-doubt messages. It then issues, as requested, either:
v Backout to restore the messages to the transmission queue; or
v Commit to delete the messages from the transmission queue

For the resolution to succeed:
v The channel must be inactive
v The channel must be in doubt
v The channel type must be sender or server
v The channel definition, local, must exist
v CICS transactions, local, must exist
v Queue manager must be running, local
v The CICS system hosting the MCA must be connected to the queue manager

See “In-doubt channels” on page 69 for more information.

Selected Edit View Help
+--------------------------+--
| 4 1. Start |r OS/390 - Message Channel List VICY14
| 2. Stop... |
| 3. Resy +--+
| 4. Rese | Reset Channel Sequence Number |More: +
5. Reso	
6. Disp	Type new sequence number. Then press Enter.
7. Disp	
8. Ping	Channel name . . . : VC13.2.VC14.SENDER
9. Exit	Channel type . . . : SENDER
+---------- | |
VC13.2.VC | Sequence number . . . _______ |
VC13.2.VC | |
VC13.2.VC | F1=Help F12=Cancel |

/ VC13.2.VC +--+
VC14.2.VC13 SENDER VR14

Figure 57. The Reset Channel Sequence Number action window

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 363

Display status
Use the Display Status option to display the current status of the channel. The
following information is displayed:
v Whether the channel is active or inactive
v The in-doubt status of sender and server channels
v The sequence number last sent, if sequence numbering is in effect
v The last LUWID number, if available. Available means:

– Always available for receiver and requester channels
– Available for sender and server channels when:

- Sequence numbering is in effect
- No sequence numbering in effect, but the channel is in doubt

That is, the LUWID number is not available for sender and server channels
when sequence numbering is not in effect and the channel is not in doubt

For an example of sender and server status panels, see Figure 59 on page 365, and
for an example of receiver and requester status panels, see Figure 60 on page 365.

‘Not available’ status is acceptable when:
v Shown for a sequence number, if the channel is active
v Shown for an LUWID when the channel is not in doubt

Otherwise, if a ‘Not available’ status is shown in any of the fields, this indicates
that an error has occurred, and you should refer to the console log to find the error
messages associated with this problem.

Selected Edit View Help
+--------------------------+--
| 5 1. Start |r OS/390 - Message Channel List VICY14
| 2. Stop... |
| 3. Resy +--+
| 4. Rese | Resolve Channel |More: - +
5. Reso	
6. Disp	Select one. Then press Enter.
7. Disp	
8. Ping	Channel name . . . : VC14.2.VC13
9. Exit	Channel type . . . : SENDER
+---------- | |
/ VC14.2.VC | _ 1. Backout (Restore messages to queue) |

VICY13.TO | 2. Commit (Delete messages from queue) |
VICY13.TO | |
VICY13.TO | F1=Help F12=Cancel |
VICY13.TO +--+
VICY13.TO.VICY14.NS2 RECEIVER VR14

Figure 58. The Resolve Channel action window

Message Channel List panel

364 MQSeries Intercommunication

Display settings
Use the Display Settings option to display the current definitions for the channel.
This choice displays the appropriate panel for the type of channel with the fields
displaying the current values of the parameters, and protected against user input:
v Sender: see Figure 71 on page 376
v Receiver: see Figure 73 on page 377

Selected Edit View Help
+--------------------------+--
| 6 1. Start |r OS/390 - Message Channel List VICY13
| 2. Stop... |
| 3. Resy +--+
| 4. Rese | Display Channel Status | More: - +
5. Reso	
6. Disp	Channel name . . . : VICY13.TO.VICY14
7. Disp	Channel type . . . : SENDER
8. Ping	
9. Exit	Status : Inactive
+---------- | Indoubt status . . : Not in-doubt |
VICY13.TO | Sequence Number |
VICY13.TO | Last sent : 0001046 |
VICY13.TO | Last LUWID : A81D750042ECAD05 |
VICY13.TO | |
VICY13.TO | F1=Help F12=Cancel |
VICY13.TO.+--+
VICY13.TO.VICY15 SERVER VR13

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 59. An example of a sender channel Display Channel Status window. The server
channel Display Channel Status panel looks the same, except that the Channel type field is
changed to SERVER.

Selected Edit View Help
+--------------------------+--
| 6 1. Start |r OS/390 - Message Channel List VICY13
| 2. Stop... |
| 3. Resy +--+
| 4. Rese | Display Channel Status | More: - +
5. Reso	
6. Disp	Channel name . . . : VC14.2.VC13
7. Disp	Channel type . . . : RECEIVER
8. Ping	
9. Exit	Status : Inactive
+---------- | Sequence Number |
VICY13.TO | Last sent : Not in effect |
VICY13.TO | Last LUWID : A81D750042ECAD05 |
VICY13.TO | |
VICY13.TO | F1=Help F12=Cancel |
VICY13.TO +--+
VICY13.TO.VICY14 REQUESTER VR13
VICY13.TO.VICY15 SERVER VR13

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 60. An example of a receiver channel Display Channel Status window. The requester
channel Display Channel Status window looks the same, except that the Channel type field
is changed to REQUESTER.

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 365

v Server: see Figure 75 on page 378
v Requester: see Figure 77 on page 379

Protected input is shown with colon characters (:) at the end of field descriptions,
and the Save option is not available on the Channel pull-down menu.

You can select this choice from the Message Channel List panel by choosing a
channel and pressing Enter, without using the menu bar, ensuring that the cursor
is not on the menu bar.

Ping
Use the Ping option to exchange a data message with the remote end. This gives
you some confidence that the link is available and functioning. It can be issued
from sender and server channels only, but server channels must be fully defined.

Ping does not involve the use of transmission queues and target queues. It uses
channel definitions, the related CICS communication link, the network setup, and
the queue managers at both ends.

The corresponding channel is started at the far side of the link, and performs the
startup parameter negotiation.

If an error occurs, an error message is displayed on the panel, and additional
messages may be written to the console, or the CICS transient data queue.

The Ping panel offers you the opportunity to enter a message of up to 20
characters to be exchanged across the link. If you do not make use of this, a
default message is used.

The result of the message exchange is presented in the Ping panel for you, and this
is the returned message text, together with the time the message was sent, and the
time the reply was received.

Installations may supply their own applications to exchange particular information,
such as system identifiers. Figure 61 shows a view of the Ping action window.

Exit
Use the Exit option to exit the current function: channel settings, help, or message
channel list.

Selected Edit View Help
+--------------------------+--
| 1. Start |r OS/390 - Message Channel List VICY14
| 2. Stop... |
| 3. Resy +--+
| 4. Rese | VC14.2.VC13 - Ping | More: - +
5. Reso	
6. Disp	Type ping data. Then press Enter.
7. Disp	
8. Ping	Ping data TESTING PING
9. Exit	
+---------- | Time sent : 11:29:37 |
/ VC14.2.VC | Time received . . . : 11:29:37 |
VICY13.TO | |
VICY13.TO | F1=Help F12=Cancel |
VICY13.TO +--+
VICY13.TO.VICY14.NSR RECEIVER VR14

Figure 61. The Ping action window

Message Channel List panel

366 MQSeries Intercommunication

A secondary window appears when you try to exit a channel settings panel
without first saving any changed definitions. This is a safe exit to prevent
inadvertent loss of data. The secondary window is shown in Figure 62.

Edit menu-bar choice
The options available in the Edit pull-down menu are:
v Copy
v Create
v Alter
v Delete
v Find

In any of the action windows and settings panels associated with Edit, you can
type the channel name in uppercase or lowercase, but it may be converted to
uppercase when you press the Enter key, depending upon your Typeterm
definition.

Copy
Use the Copy option to copy an existing channel. The Copy action window (see
Figure 63 on page 368) enables you to define the new channel name. You can use
the characters shown in “Create” on page 368 in the name.

Press the Enter key on the Copy action window to display the channel settings
panel with details of current system values. You can change any of the new
channel settings. You save the new channel definition by selecting Channel from
the menu bar, and selecting the Save option from the pull-down menu.

Channel Help
+------------------+--
| 1. Save |13.2.VC14.SENDER - Settings VICY14
| 2. Exit F3 |
+---------- +--+

| VC13.2.VC14.SENDER - Exit | More: +
Channel typ | |

| Channel type . . . : SENDER |
Target syst | |
Transmissio | The updated channel definition has |
Batch size | not been saved. |
Sequence nu | |
Max message | 2 1. Save and exit. |
Max transmi | 2. Exit without saving. |
Disconnect | |
Transaction | F1=Help F12=Cancel |
Connection +--+
CICS profile name

Figure 62. The Exit confirmation secondary window

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 367

Create
Use the Create option to create a new channel definition from a screen of fields
filled with default values supplied by MQSeries for OS/390. Figure 64 on page 369
shows you where to type the name of the channel, and how to select the type of
channel you are creating.

When you press the Enter key, the appropriate channel settings panel is displayed.
Type information in all the necessary fields in this panel and then save the
definition by selecting Channel from the menu bar, and selecting the Save option
from the pull-down menu.

The channel name must be the same at both ends of the channel, and unique
within the network. You can use the following characters in the name:

Uppercase A-Z
Lowercase a-z
Numerics 0-9
Period ’.’
Forward slash ’/’
Underscore ’_’
Percentage sign ’%’

Selected Edit View Help
------------------ +--------------------------+-------------------------------
MCSELB IBM M | 1 1. Copy... | Channel List VICY14

| 2. Create... |
Select a ch +--+

| VC13.2.VC14.SENDER - Copy |More: - +
Channel n | |
VC13.TO.V | Type name of new channel. Then press Enter. |
VC13.2.VC | |
VC13.2.VC | Channel type . . . : SENDER |
VC13.2.VC | |

/ VC13.2.VC | Channel name ____________________ |
VC14.2.VC | |
VICY13.TO | F1=Help F12=Cancel |
VICY13.TO +--+
VICY13.TO.VICY14.NS RECEIVER VR14

Figure 63. The Copy action window

Message Channel List panel

368 MQSeries Intercommunication

All panels have default values supplied for some fields. You can change the values
when you are creating or copying channels. For examples of the channel definition
panels showing the default values, see Figure 65.

Press the Enter key on the Create action window to display the channel settings
panel with details of default values.

You can create your own set of channel default values by setting up dummy
channels with the required defaults for each channel type, and copying them each
time you want to create new channel definitions.

Selected Edit View Help
------------------ +--------------------------+-------------------------------
MCSELB IBM M | 2 1. Copy... | Channel List VICY14

| 2. Create... |
Select a ch +--+

| Create |More: - +
Channel n | |
VC13.TO.V | Type name of channel. Select channel type. |
VC13.2.VC | Then press Enter. |
VC13.2.VC | |
VC13.2.VC | Channel name ____________________ |

/ VC13.2.VC | |
VC14.2.VC | Channel type _ 1. Sender |
VICY13.TO | 2. Server |
VICY13.TO | 3. Receiver |
VICY13.TO | 4. Requester |
VICY13.TO | |
VICY13.TO | F1=Help F12=Cancel |
VICY13.TO +--+

Figure 64. The Create action window

Channel Help
--
MCATTB1 TEST.CHANNEL - Settings VICY13

More: +
Channel type SENDER

Target system id ____
Transmission queue name . . ___
Batch size 0001
Sequence number wrap . . . 0999999
Max message size 0032000
Max transmission 32000
Disconnect interval 0001
Transaction id CKSG
Connection name ____
CICS profile name ________
LU 6.2 TP name ________________________________

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 65. Example of default values during Create for a channel. The values supplied
cannot be customized.

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 369

Alter
Use the Alter option to change an existing channel definition, except for the
channel name. Simply type over the fields to be changed in the channel definition
panel, and then save the updated definition by selecting Channel from the menu
bar, and selecting the Save option from the pull-down menu.

Delete
Use the Delete option to delete the selected channel. For the secondary window
requesting confirmation of your intention, see Figure 66.

Find
Use the Find option to locate a particular channel name from the list of available
channels. If the name of the channel you want is found, it is placed at the top of
the list on the Message Channel List panel. The Find a Channel action window is
shown in Figure 67.

You can partially define the channel name using a terminating asterisk, for
example, channel.lon*. This results in the first channel name to be found with these
initial letters being placed at the top of the list.

Selected Edit View Help
------------------ +--------------------------+-------------------------------
MCSELB IBM M | 4 1. Copy... | Channel List VICY14

| 2. Create... |
Select a ch +--+

| VC13.2.VC14.SENDER - Delete |More: - +
Channel n | |
VC13.TO.V | The channel definition will be deleted. |
VC13.2.VC | |
VC13.2.VC | Channel type . . . : SENDER |
VC13.2.VC | |

/ VC13.2.VC | _ 1. Keep channel |
VC14.2.VC | 2. Delete channel |
VICY13.TO | |
VICY13.TO | F1=Help F12=Cancel |
VICY13.TO +--+
VICY13.TO.VICY14.NSR RECEIVER VR14

Figure 66. The Delete action window

Selected Edit View Help
------------------ +--------------------------+-------------------------------
MCSELB IBM M | 5 1. Copy... | Channel List VICY14

| 2. Create... |
Select a ch +--+

| Find a Channel | More: - +
Channel n | |
VC13.TO.V | Type name of channel. Then press Enter. |
VC13.2.VC | |
VC13.2.VC | Channel name . . . ____________________ |
VC13.2.VC | |

/ VC13.2.VC | |
VC14.2.VC | F1=Help F12=Cancel |
VICY13.TO +--+
VICY13.TO.VICY14.CB REQUESTER VR14

Figure 67. The Find a Channel action window

Message Channel List panel

370 MQSeries Intercommunication

View menu-bar choice
The options available in the View pull-down menu change the current view of the
list shown on the Message Channel List panel; see Figure 68.

Menu option
Description

Include all
All channels are included in the list.

Include...
Select the channels to be included in the list, by means of an action
window.

You can partially define the channel name using a terminating asterisk, for
example, channel.lon*. This results in channel names found with these
initial letters being included in the list.

Also in the action window is a field to allow you to specify a channel type,
or all types of channel.

Refresh now F5
Updates the panel with fresh data from the system.

Selected Edit View Help
--------------------------------- +------------------------+------------------
MCSELB IBM MQSeries for MVS | 2 1. Include all | VICY13

| 2. Include... |
Select a ch +--+

| Include search criteria |More: +
Channel n | |
TEST.CHAN | Type name of channel (use * for generic.) |
VC13.TO.V | Select channel type. Then press Enter |
VC13.2.VC | |
VC13.2.VC | Channel name vi* |
VC13.2.VC | |
VC13.2.VC | Channel type 5 1. Sender |
VC13.2.VC | 2. Server |
VC13.2.VC | 3. Receiver |
VICY13.TO | 4. Requester |
VICY13.TO | 5. All channel types |
VICY13.TO | |
VICY13.TO | F1=Help F12=Cancel |

+--+

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 68. The Include search criteria action window

Message Channel List panel

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 371

Help menu-bar choice
The Help pull-down menu is shown in Figure 69.

The channel definition panels
The four channel Settings panels for defining channels (one for each of sender,
receiver, server, and requester) have a menu bar with choices you can pull down to
reveal various options you can select for these choices. See Table 33.

The menu-bar choices are:

Table 33. Menu-bar choices on channel panels

Channel Help

The work area of the panels is used to present the fields of attributes or settings
for the channel.

The function keys control the use of the panels to:
v Call help panels
v Move the cursor to the menu bar
v Refresh the panel
v Cancel a pull-down menu or a secondary window
v Exit from the panel
v Scroll forward and backward through settings

The method of using the panels is:
v For new channels, fill in the data fields, then select Channel from the menu bar,

and select the Save option from the pull-down menu.

Note: Default values supplied by MQSeries for OS/390 are presented in some
fields. The defaults cannot be changed, but the values presented can be
changed.

v For existing channels, type over the data presented in the fields with new data.
Then select Channel from the menu bar, and select the Save option from the
pull-down menu.

Selected Edit View Help
--- +---------------------------+-
MCSELB IBM MQSeries for OS/390 - Message | _ 1. Using help |

| 2. General help |
Select a channel name. Then select an action. | 3. Keys help |

| 4. Tutorial |
Channel name Type Sysid | 5. Product Info |
VC13.TO.VC14.SEQSER REQUESTER VR14 +---------------------------+
VC13.2.VC14.JAC3 RECEIVER VR14

Figure 69. The Help pull-down menu

Message Channel List panel

372 MQSeries Intercommunication

Channel menu-bar choice
The Channel menu-bar choice enables you to save any changes you have made to
channel definitions, and to return to the Message Channel List panel.

Saving changes
If there are no errors, selecting the Save option from the Channel pull-down menu
saves any changes you have made to channel definitions. You are returned to the
Message Channel List panel.

If there are errors, you are returned to the Settings panel with an error message,
and all fields containing errors are highlighted. The cursor is positioned on the first
field in error. The changes are not saved.

Exit from the panel
Selecting the Save option from the Channel pull-down menu saves the changes
you have made and returns you to the Message Channel List panel.

Selecting the Exit option from the Channel pull-down menu, or pressing F3 or F12,
returns you to the Message Channel List panel.

However, if you have not saved the changes you made, a secondary window
requesting confirmation of your intention to exit without saving the data is
presented; see Figure 62 on page 367. If you want to save the changes you have
made, select Save and exit. If you have had second thoughts about the changes
you have made, select Exit without saving.

Help menu-bar choice
The Help pull-down menu is shown in Figure 70.

Channel Help
--------------+---------------------+-----------------------------------
MCATTB1 | _ 1. Using help | - Settings CICS01

| 2. General help |
| 3. Keys help |
| 4. Tutorial |

Channel type | 5. Product Info |
Transmission q| |___________________________________
Batch size . +---------------------+

Figure 70. The Help choice pull-down menu

Channel definition panels

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 373

Channel settings panel fields
The fields in these panels define the attributes of the channels. The channel settings
panel fields that you can change are shown in Table 34. You can find details for
each field in “Chapter 6. Channel attributes” on page 77.

A “U” signifies that the field is available for use with the indicated type of
channel, while an “O” means that these fields are only needed for server channels
when they are to be used as sender channels.

Table 34. Channel attribute fields per channel type

Attribute field Sender Server Receiver Requester

Batch size U U U U

CICS profile name U O U

Connection name U O U

Disconnect interval U U

LU62 TP name (see Note) U O U

Maximum message size U U U U

Maximum transmission size U U U U

Message exit U U U U

PUT authority U U

Retry count U O U

Retry fast interval U O U

Retry slow interval U O U

Receive exit U U U U

Sequence number wrap U U U U

Sequential delivery U U U U

Security exit U U U U

Send exit U U U U

Target system identifier U U U U

Transmission queue name U U

Transaction identifier U O U

Note: See also the Multiplatform APPC Configuration Guide (“Red Book”) and Table 35 for
information.

Table 35. Settings for LU 6.2 TP name on the local OS/390 system for a remote queue
manager platform

Remote platform Sender/server Requester

OS/390 using
CICS

CKRC CKSV1

OS/390 without
CICS and UNIX
systems

As specified in the side
information on remote queue
manager system

As specified in the side
information on remote queue
manager system

OS/2 As specified in the OS/2 Run
Listener command, or defaulted
from the OS/2 queue manager
configuration file

As specified in the OS/2 Run
Listener command, or defaulted
from the OS/2 queue manager
configuration file

Channel settings panel fields

374 MQSeries Intercommunication

Table 35. Settings for LU 6.2 TP name on the local OS/390 system for a remote queue
manager platform (continued)

Remote platform Sender/server Requester

OS/400 The same as the compare value in
the routing entry on the OS/400
system

The same as the compare value in
the routing entry on the OS/400
system

Digital OVMS As specified in the Digital OVMS
Run Listener command

As specified in the Digital OVMS
Run Listener command

Tandem NSK The same as the TPNAME
specified in the receiver-channel
definition

The same as the TPNAME
specified in the receiver-channel
definition

Windows NT As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup on
Windows NT

As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup on
Windows NT

Note: 1 If you have a fully defined server channel, (see “Message channels” on page 7), its
definition should specify a transaction ID of CKSG.

If you have more than one queue manager on the same machine, ensure that the
TPnames in the channel definitions are unique. To modify a TPname, use
CSQ4SIDE or CKMC.

Channel settings panel fields

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 375

Details of sender channel settings panel
This section provides details of the sender channel settings panel, as shown in
Figures 71 and 72.

Channel Help
--
MCATTB1 HURSLEY.TO.SYDNEY - Settings VICY14

More: +
Channel type : SENDER

Target system id :
Transmission queue name . : TX1
Batch size : 0001
Sequence number wrap . . : 0999999
Max message size : 0032000
Max transmission : 32000
Disconnect interval . . . : 0001
Transaction id : CKSG
Connection name : HtoH
CICS profile name :
LU 6.2 TP name : CKRC

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 71. The sender channel settings panel

Channel Help
--
MCATTC1 HURSLEY.TO.SYDNEY - Settings VICY14

More: -
Channel type : SENDER

Sequential delivery . . . : 0 (0=No or 1=Yes)

Retry
Count : 005
Fast interval : 005
Slow interval : 030

Exit routines
Security :
Message :
Send :
Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 72. The sender channel settings panel - screen 2

Channel settings panel fields

376 MQSeries Intercommunication

Details of receiver channel settings panel
This section provides details of the receiver channel settings panels, as shown in
Figures 73 and 74.

Channel Help
--
MCATTB3 VICY13.TO.VICY14 - Settings VICY14

More: +
Channel type : RECEIVER

Target system id :

Batch size : 0100
Sequence number wrap . . : 0099920
Max message size : 0032000
Max transmission : 32000

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 73. The receiver channel settings panel

Channel Help
--
MCATTC3 VICY13.TO.VICY14 - Settings VICY14

Type information. Then select an action.
More: -

Channel type : RECEIVER

Sequential delivery . . . : 1 (0=No or 1=Yes)
Put authority : 1 (1=Process or 2=Context)

Exit routines
Security :
Message :
Send :
Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 74. The receiver channel settings panel - screen 2

Channel settings panel fields

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 377

Details of server channel settings panel
This section provides details of the server channel settings panels, as shown in
Figures 75 and 76.

Channel Help
--
MCATTB1 HURSLEY.TO.SYDNEY - Settings VICY14

More: +
Channel type : SERVER

Target system id :
Transmission queue name . : TX1
Batch size : 0001
Sequence number wrap . . : 0999999
Max message size : 0032000
Max transmission : 32000
Disconnect interval . . . : 0001
Transaction id :
Connection name :
CICS profile name :
LU 6.2 TP name :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 75. The server channel settings panel

Channel Help
--
MCATTC1 HURSLEY.TO.SYDNEY - Settings VICY14

More: -
Channel type : SERVER

Sequential delivery . . . : 0 (0=No or 1=Yes)

Retry
Count : 005
Fast interval : 005
Slow interval : 030

Exit routines
Security :
Message :
Send :
Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 76. The server channel settings panel - screen 2

Channel settings panel fields

378 MQSeries Intercommunication

Details of requester channel settings panel
This section provides details of each field in the requester channel settings panels,
as shown in Figures 77 and 78.

Channel Help
--
MCATTB4 VICY13.TO.VICY14.CB - Settings VICY14

More: +
Channel type : REQUESTER

Target system id :

Batch size : 0001
Sequence number wrap . . : 0999999
Max message size : 0032000
Max transmission : 32000

Transaction id : CKRQ
Connection name : VC13
CICS profile name : LU6PROF
LU 6.2 TP name : CKSV

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 77. The requester channel settings panel

Channel Help
--
MCATTC4 VICY13.TO.VICY14.CB - Settings VICY14

More: -
Channel type : REQUESTER

Sequential delivery . . . : 0 (0=No or 1=Yes)
Put authority : 1 (1=Process or 2=Context)

Retry
Count : 005
Fast interval : 005
Slow interval : 030

Exit routines
Security :
Message :
Send :
Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 78. The requester channel settings panel - screen 2

Channel settings panel fields

Chapter 26. Monitoring and controlling channels in OS/390 with CICS 379

Channel settings panel fields

380 MQSeries Intercommunication

Chapter 27. Preparing MQSeries for OS/390 when using CICS

This chapter describes the MQSeries for OS/390 and CICS preparations you need
to make before you can start to use CICS for distributed queuing.

To enable distributed queuing, you must perform the following three tasks:
v Customize the distributed queuing facility and define the MQSeries objects

required; this is described in the MQSeries for OS/390 System Management Guide.
v Define access security; this is described in the MQSeries for OS/390 System

Management Guide.
v Set up your communications; this is described in this chapter.

Setting up CICS communication for MQSeries for OS/390
Distributed queue management (DQM) provides channel control programs which
form the interface to CICS communication links, controllable by the system
operator. The channel definitions held by DQM use these CICS connections.

When a channel is started, it tries to use the CICS connection specified in the
channel definition. For this to succeed, it is necessary for the CICS connection to be
defined and available. This section explains how to do this.

If more than one CICS system is associated with any one MQSeries for OS/390,
and each CICS system is running some DQM functions, you need to define
connections between the CICS systems. This chapter also explains how to do this.

Connecting CICS systems
Part of the installation of DQM requires the definition and installation of CICS
logical unit type 6.2 (LU 6.2) connections that provide the physical link between
the CICS systems serving the local queue manager, and the systems serving the
remote queue managers. To set up these connections, use the CICS
Intercommunication Guide.

One OS/390 system can be host to a number of CICS systems at the same time,
and each CICS system is able to connect to one queue manager at any one time.

You provide communication links so that queue managers may use these links,
through CICS intersystem communication (ISC) to reach other queue managers on
OS/390 systems (using CICS or not), and on other non-OS/390 systems, provided
they are using the standard queue manager intercommunication protocol,
MQSeries Message Channel Protocol.

Communication between queue managers
There are two forms of communication between CICS systems:
v Intersystem communication (ISC): communication between a CICS system and

other systems in a data communication network that support the logical unit
type 6.1 or logical unit type 6.2 protocols of IBM Systems Network Architecture
(SNA).

v Multiregion operation (MRO): communication between CICS systems running in
different address spaces of the same OS/390 system.

© Copyright IBM Corp. 1993, 2000 381

Only ISC LU 6.2 protocols are used for connecting two queue managers over a
DQM channel, even where they both reside in the same OS/390 system.

Note: CICS for MVS/ESA Version 4 Release 1.0 or higher is required for MQSeries
distributed queue management.

Intersystem communication
The connection type must be ISC LU 6.2, but can be defined as one of the
following:
v LU 6.2 single-session terminal
v LU 6.2 single-session connection
v LU 6.2 parallel-session connection

Before deciding the type of connection to be defined, you should consider the
following points:
v The number of channels to be defined between the two systems
v The maximum number of channels that are to be active at any one time
v How often the connection is used
v The number of channels per transmission queue
v The number of channels that can be active per connection

Note: Multiple channels can be active on the same connection.

To define an LU 6.2 link between the two CICS systems, you should refer to the
following books:
v CICS Intercommunication Guide, SC33-1695.
v CICS Resource Definition Guide, SC33-1684.

paying particular attention to the sections discussing communication resources.

Defining an LU 6.2 connection
When you decide which type of LU 6.2 connection is to be established between the
local and remote CICS systems, the process of definition can take place.

Only one ISC connection can be active between any two CICS systems at the same
time. However, a single CICS system can have connections to multiple remote
CICS systems at the same time.

The sender and requester channel definitions require the provision of the LU 6.2
connection name and, optionally, the CICS profile name to be used.

CICS communication

382 MQSeries Intercommunication

The relationship between CICS profiles and connections is shown in Figure 79 .
The uppercase fields are the names of the CEDA transaction entry, and the
lowercase values are fields within those definitions that are relevant to the
example.

If a sender channel is defined with the following characteristics, it causes a session
to be allocated using a SES1 session on connection CON1:
v CHANNEL=MY.CHANNEL
v CONNECTION NAME=CON1
v CICS PROFILE NAME=MYPROF

If no CICS profile name is specified in the channel definition, DQM does not
specify a profile when allocating a session.

Installing the connection
When you have defined the connection definitions on your CICS system
definitions (CSDs), these can be installed using the CICS CEDA INSTALL
command.

If you want to install these connections as part of the CICS initialization process,
you can add the group that contains the connection definitions to the CICS startup
list that is specified in the GRPLIST= parameter. You then need to cold start your
CICS system for the entries to become effective.

Communications between CICS systems attached to one
queue manager

DQM functions may be shared between more than one CICS system. When these
CICS systems are connected to, or associated with, the same queue manager, then
these CICS systems need to be set up correctly so that function shipping of EXEC
CICS commands and program invocation occur correctly.

Connection names for function shipping
Although CICS does not require that a connection name is the same as the DFHSIT
SYSIDNT name of the target CICS system, DQM requires that they are the same.

The type of connection can be either MRO or ISC.

PROFILE=MYPROF
modename=CICSISC0

CONNECTION=CON1
netname=luname

SESSION=SES1
connection=CON1
modename=CICSISC0

Figure 79. CICS LU 6.2 connection definition

CICS communication

Chapter 27. Preparing MQSeries for OS/390 when using CICS 383

Defining DQM requirements to MQSeries
In order to define your distributed-queuing requirements, you need to:
v Define MQSeries programs and data sets as CICS resources
v Define the channel definitions
v Define the CKMQ transient data queue
v Define MQSeries queues triggers and processes
v Define CICS resources used by distributed queuing
v Define access security

See the MQSeries for OS/390 System Management Guide for information about these
tasks.

Defining MQSeries objects
Use the MQSeries for OS/390 operations and control panels, or one of the other
MQSeries for OS/390 command input methods, to define MQSeries for OS/390
objects. Refer to the MQSeries Command Reference book for details of defining
objects.

You define:
v A local queue with the usage of (XMITQ) for each sending message channel.
v Remote queue definitions.

A remote queue object has three distinct uses, depending upon the way the
name and content are specified:
– Remote queue definition
– Queue manager alias definition
– Reply-to queue alias definition

This is shown in Table 2 on page 37.
v A process naming the MCA sender transaction, CKSG, as the application to be

triggered by messages appearing on the transmission queue. The process
definition parameter, USERDATA, must contain the name of the channel to be
started by this process. See “How to trigger channels” on page 358.

The supplied sample CSQ4DISQ gives examples of the necessary definitions.

Multiple message channels per transmission queue
It is possible to define more than one channel per transmission queue, but only
one of these channels needs to be active at any one time. The provision of multiple
channels is recommended to provide alternative routes between queue managers
for traffic balancing and link failure recovery.

You may start more than one channel to serve a transmission queue to increase
message throughput, but when doing so, ensure that the queue has a SHARE
attribute, and that there is not a need for sequential delivery of messages.

Defining DQM requirements

384 MQSeries Intercommunication

Channel operation considerations
Channels are designed to be active only when there is work for them to process.
This mechanism allows for conservation of limited system resources such as active
transactions and LU 6.2 sessions while at the same time delivering messages in a
timely fashion determined by the application. The mechanisms which are used to
determine when a channel is started and stopped are triggering and the disconnect
interval respectively.

This mechanism works well unless the operator wishes to terminate a channel
before the disconnect time interval expires. This can occur in the following
situations:
v System quiesce
v Resource conservation
v Unilateral action at one end of a channel

In these cases it is necessary to stop the channel using the STOP option from the
Message Channel List panel of the CKMC transaction. For information about what
happens when a channel is stopped in this way, and how to restart the channel,
see “Stopping and quiescing channels (not MQSeries for Windows)” on page 67.

Channel operation considerations

Chapter 27. Preparing MQSeries for OS/390 when using CICS 385

DQM in MQSeries for OS/390

386 MQSeries Intercommunication

Chapter 28. Message channel planning example for OS/390
using CICS

This chapter provides a detailed example of how to connect queue managers
together to send messages from one to the other. The example gives you a
step-by-step implementation of a unidirectional interconnection of two queue
managers.

Figure 80 illustrates the interaction between all the system components used for
transferring messages between queue managers.

In the following list, the numbered items refer to the boxed index numbers in the
figure.

1. The “Payroll reporter” application connects to queue manager “QM1”, opens
a queue called “Payrollr”, and places messages on the queue.

2. The attributes of Payrollr in queue manager QM1 are:

QUEUE Payrollr
TYPE QREMOTE
DESCR PAYROLL QUEUE ON QM2 QUEUE MANAGER
PUT ENABLED
DEFPRTY 0
DEFPSIST YES
RNAME QM1_payroll
RQMNAME QM2

From this information, the local queue manager QM1 determines that
messages for this queue have to be transmitted to a remote queue manager
QM2.

Queue manager 'QM1' Queue manager 'QM2'

Queue transmission 'QM2'

Queue local 'Init_queue'

Queue local 'QM1_payroll'

Payroll
process

Payroll
reporter

Application Application

CKTI

Trigger
monitor

Queue remote 'Payrollr'

QM1.2.QM2.CHANNEL

Figure 80. Connecting two queue managers in MQSeries for OS/390 using CICS

© Copyright IBM Corp. 1993, 2000 387

For QM1, QM2 is just a transmission queue on which messages have to be
placed. A transmission queue is a local queue with its usage parameter set to
XMITQ.

3. The attributes of the transmission queue, QM2, in queue manager QM1 are:

QUEUE QM2
TYPE LOCAL
DESCR QUEUE MANAGER QM2 TRANSMISSION QUEUE
PUT ENABLED
DEFPRTY 0
DEFPSIST YES
OPPROCS 0
IPPROCS 0
CURDEPTH 0
MAXDEPTH 100000
PROCESS QM2.PROCESS
TRIGGER
MAXMSGL 4194304
BOTHRESH 0
BOQNAME
STGCLASS DEFAULT
INITQ Init_queue
USAGE XMITQ
SHARE
DEFSOPT EXCL
MSGDLVSQ FIFO
RETINTVL 0
TRIGTYPE FIRST
TRIGDPTH 1
TRIGMPRI 0
TRIGGERDATA 0
DEFTYPE PREDEFINED
NOHARDENBO
GET ENABLED

Messages that the application puts to Payrollr are actually placed on the
transmission queue QM2.

4. In this example, assume that the payroll message is the first message to be
placed on the empty transmission queue, and because of the triggering
attributes of the transmission queue, the queue manager determines that a
trigger message is to be issued.
The transmission queue definition refers to an initiation queue called
Init_queue, and the queue manager places a trigger message on this queue.
The transmission queue definition also refers to the trigger process definition,
and information from this definition is included in the trigger message.

Planning example for OS/390 using CICS

388 MQSeries Intercommunication

The definition of the process in queue manager QM1 is:

PROCESS QM2.PROCESS
DESCR PROCESS DEFINITION - TO TRIGGER CHANNEL

QM1.2.QM2.CHANNEL
APPLTYPE CICS
APPLICID CKSG
USERDATA QM1.2.QM2.CHANNEL
ENVRDATA environment information

The result of this trigger processing is that a trigger message is placed on the
initiation queue, Init_queue.

5. If you experience trigger messages failing to appear when expected, refer to
the MQSeries Application Programming Guide.

6. The CKTI transaction is a long-running task that monitors the initiation queue,
Init_queue. CKTI processes the trigger message, an MQTM structure, to find
that it must start CKSG. CKSG is the CICS name of the sender channel MCA
transaction.

7. CKTI starts CKSG, passing the MQTM structure. The CKSG transaction starts
processing, receives the MQTM structure, and extracts the name of the
channel.

8. The channel name is used by CKSG to get the channel definition from the
channel definition file on QM1. The DQM display settings panel of the
channel in QM1.2.QM2.CHANNEL, is:

Channel Help
--
MCATTB1 QM1.2.QM2.CHANNEL - Settings CICSTQM2

More: +
Channel type : SENDER

Target system id :
Transmission queue name . : QM2
Batch size : 0100
Sequence number wrap . . : 9999999
Max message size : 0031000
Max transmission : 32000
Disconnect interval . . . : 0015
Transaction id : CKSG
Connection name : QM2C
CICS profile name :
LU 6.2 TP name : CKRC

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 81. Sender settings (1)

Planning example for OS/390 using CICS

Chapter 28. Message channel planning example for OS/390 using CICS 389

The channel definition shows that CKSG must allocate a session on the CICS
QM2C connection and invoke the CKRC transaction at the destination CICS
system.

9. The QM2C connection definition provides a communications link to the CICS
system at the remote installation. The definition is as follows:

Channel Help
--
MCATTC1 QM1.2.QM2.CHANNEL - Settings CICSTQM2

More: -
Channel type : SENDER

Sequential delivery . . . : 0 (0=No or 1=Yes)

Retry
Count : 005
Fast interval : 005
Slow interval : 030

Exit routines
Security :
Message :
Send :
Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 82. Sender settings (2)

OBJECT CHARACTERISTICS
CEDA View
Connection : QM2C
Group : QM2CCONN
DEscription : LU 6.2 PARALLEL CONNECTION TO CICSTQM1
CONNECTION IDENTIFIERS
Netname : CICSTQM1
INDsys :
REMOTE ATTRIBUTES
REMOTESystem :
REMOTEName :
CONNECTION PROPERTIES
ACcessmethod : Vtam Vtam | IRc | INdirect | Xm
Protocol : Appc Appc | Lu61
SInglesess : No No | Yes
DAtastream : User User | 3270 | SCs | STrfield | Lms
RECordformat : U U | Vb
OPERATIONAL PROPERTIES

+ AUtoconnect : Yes No | Yes | All

APPLID=CICSTQM2

PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 83. Connection definition (1)

Planning example for OS/390 using CICS

390 MQSeries Intercommunication

10. The connection definition on the remote installation CICS system is called
QM1C, and is defined as follows:

OBJECT CHARACTERISTICS
CEDA VIew

+ INService : Yes Yes | No
SECURITY
SEcurityname :
ATtachsec : Local Local | Identify | Verify | Persistent

| Mixidpe
BINDPassword : PASSWORD NOT SPECIFIED
BINDSecurity : No No | Yes

APPLID=CICSTQM2

PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 84. Connection definition (2)

OBJECT CHARACTERISTICS
CEDA View
Connection : QM1C
Group : QM1CCONN
DEscription : LU 6.2 PARALLEL CONNECTION TO CICSTQM2
CONNECTION IDENTIFIERS
Netname : CICSTQM2
INDsys :
REMOTE ATTRIBUTES
REMOTESystem :
REMOTEName :
CONNECTION PROPERTIES
ACcessmethod : Vtam Vtam | IRc | INdirect | Xm
Protocol : Appc Appc | Lu61
SInglesess : No No | Yes
DAtastream : User User | 3270 | SCs | STrfield | Lms
RECordformat : U U | Vb
OPERATIONAL PROPERTIES

+ AUtoconnect : Yes No | Yes | All

APPLID=CICSTQM1

PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 85. Connection definition (1)

Planning example for OS/390 using CICS

Chapter 28. Message channel planning example for OS/390 using CICS 391

11. CKRC is started by CICS on the remote system, and is passed the channel
name during the initial data flows.

12. The transaction CKRC reads the definition for the receiver channel
QM1.2.QM2.CHANNEL from the channel definition file, which contains:

OBJECT CHARACTERISTICS
CEDA VIew

+ INService : Yes Yes | No
SECURITY
SEcurityname :
ATtachsec : Local Local | Identify | Verify | Persistent

| Mixidpe
BINDPassword : PASSWORD NOT SPECIFIED
BINDSecurity : No No | Yes

APPLID=CICSTQM1

PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 86. Connection definition (2)

Channel Help
--
MCATTB3 QM1.2.QM2.CHANNEL - Settings CICSTQM1

More: +
Channel type : RECEIVER

Target system id :

Batch size : 0100
Sequence number wrap . . : 9999999
Max message size : 0031000
Max transmission : 32000

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 87. Receiver channel settings (1)

Planning example for OS/390 using CICS

392 MQSeries Intercommunication

13. Once the message channel has completed the startup negotiation, the sender
channel passes messages to the receiver channel. The receiver channel takes
the name of the queue manager, queue name and message descriptor from the
transmission header, and issues an MQPUT1 call to put the message on the
local queue, QM1_payroll.
When the batch limit of 100 is reached, or when the transmission queue is
empty, the sender and receiver channels issue a syncpoint to commit the
changes through the queue managers.

14. The commit action by the QM2 queue manager makes the messages available
to the “Payroll process” application.

Channel Help
--
MCATTC3 QM1.2.QM2.CHANNEL- Settings CICSTQM1

More: -
Channel type : RECEIVER

Sequential delivery . . . : 0 (0=No or 1=Yes)
Put authority : 1 (1=Process or 2=Context)

Exit routines
Security :
Message :
Send :
Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Figure 88. Receiver channel settings (2)

Planning example for OS/390 using CICS

Chapter 28. Message channel planning example for OS/390 using CICS 393

Planning example for OS/390 using CICS

394 MQSeries Intercommunication

Chapter 29. Example configuration - IBM MQSeries for OS/390

This chapter gives an example of how to set up communication links from
MQSeries for OS/390 or MVS/ESA to MQSeries products on the following
platforms:
v OS/2
v Windows NT
v AIX
v Digital UNIX
v HP-UX
v AT&T GIS UNIX7

v Sun Solaris
v OS/400
v VSE/ESA

(You can also connect any of the following:
OS/390 to OS/390
OS/390 to MVS/ESA
MVS/ESA to MVS/ESA

with or without CICS.)

First it describes the parameters needed for an LU 6.2 connection; then it describes:
v “Establishing an LU 6.2 connection” on page 400
v “Establishing an LU 6.2 connection using CICS” on page 402
v “Establishing a TCP connection” on page 404

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for OS/390 configuration” on
page 405.

See “Chapter 7. Example configuration chapters in this book” on page 97 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 36 on page 396 presents a worksheet listing all the parameters needed to set
up communication from OS/390 to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

7. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993, 2000 395

|

|

The steps required to set up an LU 6.2 connection are described in “Establishing an
LU 6.2 connection” on page 400 and “Establishing an LU 6.2 connection using
CICS” on page 402, with numbered cross references to the parameters on the
worksheet.

Configuration worksheet
Use this worksheet to record the values you use for your configuration. Where
numbers appear in the Reference column they indicate that the value must match
that in the appropriate worksheet elsewhere in this book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page 398.

Table 36. Configuration worksheet for OS/390 using LU 6.2

ID Parameter Name Reference Example Used User Value

Definition for local node

«1¬ Command prefix +cpf

«2¬ Network ID NETID

«3¬ Node name MVSPU

«4¬ Local LU name MVSLU

«5¬ Symbolic destination M1

«6¬ Modename #INTER

«7¬ Local Transaction Program name MQSERIES

«8¬ LAN destination address 400074511092

Connection to an OS/2 system without using CICS

The values in this section of the table must match those used in Table 14 on page 138, as indicated.

«9¬ Symbolic destination M2

«10¬ Modename «17¬ #INTER

«11¬ Remote Transaction Program name «8¬ MQSERIES

«12¬ Partner LU name «6¬ OS2LU

Connection to an OS/2 system using CICS

The values in this section of the table must match those used in Table 14 on page 138, as indicated.

«13¬ Connection name OS2

«14¬ Group name EXAMPLE

«15¬ Session name OS2SESS

«16¬ Netname «6¬ OS2LU

Connection to a Windows NT system without using CICS

The values in this section of the table must match those used in Table 16 on page 170, as indicated.

«9¬ Symbolic destination M3

«10¬ Modename «17¬ #INTER

«11¬ Remote Transaction Program name «7¬ MQSERIES

«12¬ Partner LU name «5¬ WINNTLU

«17¬ Remote node ID «4¬ 05D 30F65

Connection to a Windows NT system using CICS

The values in this section of the table must match those used in Table 16 on page 170, as indicated.

«13¬ Connection name WNT

«14¬ Group name EXAMPLE

«15¬ Session name WNTSESS

OS/390 and LU 6.2

396 MQSeries Intercommunication

Table 36. Configuration worksheet for OS/390 using LU 6.2 (continued)

ID Parameter Name Reference Example Used User Value

«16¬ Netname «6¬ WINNTLU

Connection to an AIX system without using CICS

The values in this section of the table must match those used in Table 20 on page 197, as indicated.

«9¬ Symbolic Destination M4

«10¬ Modename «14¬ #INTER

«11¬ Remote Transaction Program name «6¬ MQSERIES

«12¬ Partner LU name «4¬ AIXLU

Connection to an AIX system using CICS

The values in this section of the table must match those used in Table 20 on page 197, as indicated.

«13¬ Connection name AIX

«14¬ Group name EXAMPLE

«15¬ Session name AIXSESS

«16¬ Netname «4¬ AIXLU

Connection to an HP-UX system without using CICS

The values in this section of the table must match those used in Table 23 on page 219, as indicated.

«9¬ Symbolic Destination M5

«10¬ Modename «6¬ #INTER

«11¬ Remote Transaction Program name «7¬ MQSERIES

«12¬ Partner LU name «5¬ HPUXLU

Connection to an HP-UX system using CICS

The values in this section of the table must match those used in Table 23 on page 219, as indicated.

«13¬ Connection name HPUX

«14¬ Group name EXAMPLE

«15¬ Session name HPUXSESS

«16¬ Netname «5¬ HPUXLU

Connection to an AT&T GIS UNIX system without using CICS

The values in this section of the table must match those used in Table 25 on page 243, as indicated.

«9¬ Symbolic Destination M6

«10¬ Modename «15¬ #INTER

«11¬ Remote Transaction Program name «5¬ MQSERIES

«12¬ Partner LU name «4¬ GISLU

Connection to an AT&T GIS UNIX system using CICS

The values in this section of the table must match those used in Table 25 on page 243, as indicated.

«13¬ Connection name GIS

«14¬ Group name EXAMPLE

«15¬ Session name GISSESS

«16¬ Netname «4¬ GISLU

Connection to a Sun Solaris system without using CICS

The values in this section of the table must match those used in Table 27 on page 257, as indicated.

«9¬ Symbolic destination M7

«10¬ Modename «17¬ #INTER

«11¬ Remote Transaction Program name «8¬ MQSERIES

«12¬ Partner LU name «7¬ SOLARLU

OS/390 and LU 6.2

Chapter 29. Example configuration - IBM MQSeries for OS/390 397

Table 36. Configuration worksheet for OS/390 using LU 6.2 (continued)

ID Parameter Name Reference Example Used User Value

Connection to a Sun Solaris system using CICS

The values in this section of the table must match those used in Table 27 on page 257, as indicated.

«13¬ Connection name SOL

«14¬ Group name EXAMPLE

«15¬ Session name SOLSESS

«16¬ Netname «7¬ SOLARLU

Connection to an AS/400 system without using CICS

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

«9¬ Symbolic Destination M8

«10¬ Modename «17¬ #INTER

«11¬ Remote Transaction Program name «8¬ MQSERIES

«12¬ Partner LU name «3¬ AS400LU

Connection to an AS/400 system using CICS

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

«13¬ Connection name AS4

«14¬ Group name EXAMPLE

«15¬ Session name AS4SESS

«16¬ Netname «3¬ AS400LU

Connection to a VSE/ESA system without using CICS

The values in this section of the table must match those used in Table 44 on page 485, as indicated.

«9¬ Symbolic destination M9

«10¬ Modename #INTER

«11¬ Remote Transaction Program name «4¬ MQ01

«12¬ Partner LU name «3¬ VSELU

Connection to a VSE/ESA system using CICS

The values in this section of the table must match those used in Table 44 on page 485, as indicated.

«13¬ Connection name VSE

«14¬ Group name EXAMPLE

«15¬ Session name VSESESS

«16¬ Netname «3¬ VSELU

Explanation of terms
«1¬ Command prefix

This is the unique command prefix of your MQSeries for OS/390
queue-manager subsystem. The OS/390 systems programmer defines this
at installation time, in SYS1.PARMLIB(IEFSSNss), and will be able to tell
you the value.

«2¬ Network ID
The VTAM startup procedure in your installation is partly customized by
the ATCSTRxx member of the data set referenced by the DDNAME
VTAMLST. The Network ID is the value specified for the NETID parameter
in this member. For Network ID you must specify the name of the NETID

OS/390 and LU 6.2

398 MQSeries Intercommunication

that owns the MQSeries communications subsystem (MQSeries channel
initiator or CICS for OS/390 as the case may be). Your network
administrator will tell you the value.

«3¬ Node name
VTAM, being a low-entry network node, does not have a Control Point
name for Advanced Peer-to-Peer Networking (APPN) use. It does however
have a system services control point name (SSCPNAME). For node name,
you must specify the name of the SSCP that owns the MQSeries
communications subsystem (MQSeries channel initiator or CICS for
OS/390 as the case may be). This is defined in the same ATCSTRxx
member as the Network ID. Your network administrator will tell you the
value.

«4¬ Local LU name
A logical unit (LU) is software that serves as an interface or translator
between a transaction program and the network. It manages the exchange
of data between transaction programs. The local LU name is the unique
VTAM APPLID of this MQSeries subsystem. Your network administrator
will tell you this value.

«5¬ «9¬ Symbolic destination
This is the name you give to the CPI-C side information profile. You need
a side information entry for each LU 6.2 listener.

«6¬ «10¬ Modename
This is the name given to the set of parameters that control the LU 6.2
conversation. An entry with this name and similar attributes must be
defined at each end of the session. In VTAM, this corresponds to a mode
table entry. You network administrator will assign this to you.

«7¬ «11¬ Transaction Program name
MQSeries applications trying to converse with this queue manager will
specify a symbolic name for the program to be run at the receiving end.
This will have been specified in the TPNAME attribute on the channel
definition at the sender. For simplicity, wherever possible use a transaction
program name of MQSERIES, or in the case of a connection to VSE/ESA,
where the length is limited to 4 bytes, use MQTP.

See Table 30 on page 341 for more information. If the receiving end is
OS/390 using CICS, special values are required.

«8¬ LAN destination address
This is the LAN destination address that your partner nodes will use to
communicate with this host. When you are using a 3745 network
controller, it will be the value specified in the LOCADD parameter for the
line definition to which your partner is physically connected. If your
partner nodes use other devices such as 317X or 6611 devices, the address
will have been set during the customization of those devices. Your network
administrator will tell you this value.

«12¬ Partner LU name
This is the LU name of the MQSeries queue manager on the system with
which you are setting up communication. This value is specified in the
side information entry for the remote partner.

«13¬ Connection name
(CICS only) This is a 4-character name by which each connection will be
individually known in CICS RDO.

OS/390 and LU 6.2

Chapter 29. Example configuration - IBM MQSeries for OS/390 399

«14¬ Group name
(CICS only) You choose your own 8-character name for this value. Your
system may already have a group defined for connections to partner
nodes. Your CICS administrator will give you a value to use.

«15¬ Session name
(CICS only) This is an 8-character name by which each group of sessions
will be individually known. For clarity we use the connection name,
concatenated with ‘SESS’.

«16¬ Netname
(CICS only) This is the LU name of the MQSeries queue manager on the
system with which you are setting up communication.

«17¬ Remote node ID
For a connection to Windows NT, this is the ID of the local node on the
Windows NT system with which you are setting up communication.

Establishing an LU 6.2 connection
To establish an LU 6.2 connection, there are two steps:
1. Define yourself to the network.
2. Define a connection to the partner.

Defining yourself to the network
1. SYS1.PARMLIB(APPCPMxx) contains the startup parameters for APPC. You

must add a line to this file to define the local LU name you intend to use for
the MQSeries LU 6.2 listener. The line you add should take the form

LUADD ACBNAME(mvslu)
NOSCHED
TPDATA(csq.appctp)

Specify values for ACBNAME(«4¬) and TPDATA.

The NOSCHED parameter tells APPC that our new LU will not be using the
LU 6.2 scheduler (ASCH), but has one of its own. TPDATA refers to the
Transaction Program data set in which LU 6.2 stores information about
transaction programs. Again, MQSeries will not use this, but it is required by
the syntax of the LUADD command.

2. Start the APPC subsystem with the command:
START APPC,SUB=MSTR,APPC=xx

where xx is the suffix of the PARMLIB member in which you added the LU in
step 1.

Note: If APPC is already running, it can be refreshed with the command:
SET APPC=xx

The effect of this is cumulative, that is, APPC will not lose its knowledge
of objects already defined to it in this or another PARMLIB member.

3. Add the new LU to a suitable VTAM major node definition. These are typically
in SYS1.VTAMLST. The APPL definition will look similar to the sample shown
in Figure 89 on page 401.

OS/390 and LU 6.2

400 MQSeries Intercommunication

4. Activate the major node. This can be done with the command:
V,NET,ACT,majornode

5. Add an entry defining your LU to the CPI-C side information data set. Use the
APPC utility program ATBSDFMU to do this. Sample JCL is in
thlqual.SCSQPROC(CSQ4SIDE) (where thlqual is the target library high-level
qualifier for MQSeries data sets in your installation.)
The entry you add will look like this:

SIADD
DESTNAME(M1) «5¬
MODENAME(#INTER) «6¬
TPNAME(MQSERIES) «7¬
PARTNER_LU(MVSLU) «4¬

6. Create the channel-initiator parameter module for your queue manager. Sample
JCL to do this is in thlqual.SCSQPROC(CSQ4XPRM). You must specify the
local LU («4¬) assigned to your queue manager in the LUNAME= parameter of
the CSQ6CHIP macro.

7. Modify the job to assemble and link-edit the tailored version of the initiator
macro to produce a new load module.

8. Submit the job and verify that it completes successfully.

MVSLU APPL ACBNAME=MVSLU, «4¬
APPC=YES,
AUTOSES=0,
DDRAINL=NALLOW,
DLOGMOD=#INTER, «6¬
DMINWNL=10,
DMINWNR=10,
DRESPL=NALLOW,
DSESLIM=60,
LMDENT=19,
MODETAB=MTCICS,
PARSESS=YES,
VERIFY=NONE,
SECACPT=ALREADYV,
SRBEXIT=YES

Figure 89. Channel Initiator APPL definition

//SYSIN DD *
CSQ6CHIP ADAPS=8, X

ACTCHL=200, X
CURRCHL=200, X
DISPS=5, X
LUNAME=MVSLU, X
LU62CHL=200, X
TCPCHL=200, X
TCPKEEP=NO, X
TCPNAME=TCPIP, X
TCPTYPE=OESOCKET, X
TRAXSTR=YES, X
TRAXTBL=2

END
/*

Figure 90. Channel Initiator initialization parameters

LU 6.2 without CICS

Chapter 29. Example configuration - IBM MQSeries for OS/390 401

9. Put the new initialization-parameters module in an APF-authorized user library.
Include this library in the STEPLIB concatenation for the channel initiator’s
started-task procedure, ensuring that it precedes the library
thlqual.SCSQAUTH.

Defining a connection to a partner

Note: This example is for a connection to an OS/2 system but the task is the same
for other platforms.

Add an entry to the CPI-C side information data set to define the connection.
Sample JCL to do this is in thlqual.SCSQPROC(CSQ4SIDE).

The entry you add will look like this:
SIADD

DESTNAME(M2) «9¬
MODENAME(#INTER) «10¬
TPNAME(MQSERIES) «11¬
PARTNER_LU(OS2LU) «12¬

What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for OS/390 configuration” on page 405.

Establishing an LU 6.2 connection using CICS

Note: This example is for a connection to an OS/2 system. The steps are the same
whatever platform you are using; change the values as appropriate.

Defining a connection
1. At a CICS command line type:

CEDA DEF CONN(connection name) «13¬
GROUP(group name) «14¬

For example:
CEDA DEF CONN(OS2) GROUP(EXAMPLE)

2. Press Enter to define the connection to CICS.
A panel is displayed, as shown below.

LU 6.2 without CICS

402 MQSeries Intercommunication

3. On this panel, change the Netname field in the CONNECTION IDENTIFIERS
section to be the LU name («16¬) of the target system. In the CONNECTION
PROPERTIES section set the ACcessmethod field to Vtam and the Protocol to
Appc.

4. Press Enter to make the change.

Defining the sessions
1. At a CICS command line type:

CEDA DEF SESS(session name) «15¬
GROUP(group name) «14¬

For example:
CEDA DEF SESS(OS2SESS) GROUP(EXAMPLE)

2. Press Enter to define the group of sessions for the connection.
A panel is displayed, as shown below.

DEF CONN(OS2) GROUP(EXAMPLE)
OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA DEFine
Connection : OS2
Group : EXAMPLE
DEscription ==>
CONNECTION IDENTIFIERS
Netname ==> OS2LU
INDsys ==>
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
CONNECTION PROPERTIES
ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm
Protocol ==> Appc Appc | Lu61
SInglesess ==> No No | Yes
DAtastream ==> User User | 3270 | SCs | STrfield | Lms
RECordformat ==> U U | Vb
OPERATIONAL PROPERTIES

+ AUtoconnect ==> No No | Yes | All
I New group EXAMPLE created.

APPLID=MVSLU

DEFINE SUCCESSFUL TIME: 16.49.30 DATE: 95.065
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

LU 6.2 with CICS

Chapter 29. Example configuration - IBM MQSeries for OS/390 403

3. On this panel, in the SESSION IDENTIFIERS section, specify the Connection
name («13¬) in the Connection field and set the MOdename to #INTER. In the
SESSION PROPERTIES section set the Protocol to Appc and the MAximum
field to 008 , 004.

4. Press Enter to make the change.

Installing the new group definition
To install the new group definition, type:
CEDA INS GROUP(group name) «14¬

at a CICS command line, and press Enter.

Note: If this connection group is already in use, severe errors will be reported. If
this occurs you must take the existing connections out of service, retry the
group installation, and then set the connections in service again using the
following commands:
1. CEMT I CONN
2. CEMT S CONN(*) OUTS
3. CEDA INS GROUP(Group name)
4. CEMT S CONN(*) INS

What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for OS/390 configuration” on page 405.

Establishing a TCP connection
Edit the channel initiator initialization parameters. Sample JCL to do this is in
thlqual.SCSQPROC(CSQ4XPRM). You must add the name of the TCP address
space to the TCPNAME= parameter.

DEF SESS(OS2SESS) GROUP(EXAMPLE)
OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA DEFine
Sessions ==> OS2SESS
Group ==> EXAMPLE
DEscription ==>
SESSION IDENTIFIERS
Connection ==> OS2
SESSName ==>
NETnameq ==>
MOdename ==> #INTER
SESSION PROPERTIES
Protocol ==> Appc Appc | Lu61
MAximum ==> 008 , 004 0-999
RECEIVEPfx ==>
RECEIVECount ==> 1-999
SENDPfx ==>
SENDCount ==> 1-999
SENDSize ==> 04096 1-30720

+ RECEIVESize ==> 04096 1-30720
S CONNECTION MUST BE SPECIFIED.

APPLID=MVSLU

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

LU 6.2 with CICS

404 MQSeries Intercommunication

What next?
The TCP connection is now established. You are ready to complete the
configuration. Go to “MQSeries for OS/390 configuration”.

MQSeries for OS/390 configuration
If you are not using CICS:
1. Start the channel initiator using the command:

+cpf START CHINIT PARM(xparms) «1¬

where xparms is the name of the channel-initiator parameter module that you
created.

2. Start an LU 6.2 listener using the command:
+cpf START LSTR LUNAME(M1) TRPTYPE(LU62)

The LUNAME of M1 refers to the symbolic name you gave your LU («5¬). You
must specify TRPTYPE(LU62), otherwise the listener will assume you want
TCP.

3. Start a TCP listener using the command:
+cpf START LSTR

If you wish to use a port other than 1414 (the default MQSeries port), use the
command:
+cpf START LSTR PORT(1555)

MQSeries channels will not initialize successfully if the channel negotiation detects
that the message sequence number is different at each end. You may need to reset
this manually.

Note that the OS/390 product with CICS uses the message sequence number of the
message it last sent, while all other platforms use the sequence number of the next
message to be sent. This means you must reset the message sequence number to 0
at the OS/390 (with CICS) end of a channel and to 1 everywhere else.

Channel configuration
The following sections detail the configuration to be performed on the OS/390
queue manager to implement the channel described in Figure 32 on page 97.

//SYSIN DD *
CSQ6CHIP ADAPS=8, X

ACTCHL=200, X
CURRCHL=200, X
DISPS=5, X
LUNAME=MVSLU, X
LU62CHL=200, X
TCPCHL=200, X
TCPKEEP=NO, X
TCPNAME=TCPIP, X
TCPTYPE=OESOCKET, X
TRAXSTR=YES, X
TRAXTBL=2

END
/*

Figure 91. Channel Initiator initialization parameters

OS/390 and TCP

Chapter 29. Example configuration - IBM MQSeries for OS/390 405

Examples are given for connecting MQSeries for OS/390 and MQSeries for OS/2
Warp. If you wish to connect to another MQSeries product use the appropriate set
of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects
throughout this book. All others are keywords and should be entered as
shown.

Table 37. Configuration worksheet for MQSeries for OS/390

ID Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name MVS

«B¬ Local queue name MVS.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 164, as indicated.

«C¬ Remote queue manager name «A¬ OS2

«D¬ Remote queue name OS2.REMOTEQ

«E¬ Queue name at remote system «B¬ OS2.LOCALQ

«F¬ Transmission queue name OS2

«G¬ Sender (LU 6.2) channel name MVS.OS2.SNA

«H¬ Sender (TCP) channel name MVS.OS2.TCP

«I¬ Receiver (LU 6.2) channel name «G¬ OS2.MVS.SNA

«J¬ Receiver (TCP) channel name «H¬ OS2.MVS.TCP

«K¬ Sender (LU 6.2 using CICS) channel name MVS.OS2.CICS

«L¬ Receiver (LU 6.2 using CICS) channel name OS2.MVS.CICS

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 185, as indicated.

«C¬ Remote queue manager name «A¬ WINNT

«D¬ Remote queue name WINNT.REMOTEQ

«E¬ Queue name at remote system «B¬ WINNT.LOCALQ

«F¬ Transmission queue name WINNT

«G¬ Sender (LU 6.2) channel name MVS.WINNT.SNA

«H¬ Sender (TCP) channel name MVS.WINNT.TCP

«I¬ Receiver (LU 6.2) channel name «G¬ WINNT.MVS.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ WINNT.MVS.TCP

«K¬ Sender (LU 6.2 using CICS) channel name MVS.WINNT.CICS

«L¬ Receiver (LU 6.2 using CICS) channel name WINNT.MVS.CICS

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 211, as indicated.

«C¬ Remote queue manager name AIX

«D¬ Remote queue name AIX.REMOTEQ

«E¬ Queue name at remote system «B¬ AIX.LOCALQ

«F¬ Transmission queue name AIX

«G¬ Sender (LU 6.2) channel name MVS.AIX.SNA

«H¬ Sender (TCP/IP) channel name MVS.AIX.TCP

«I¬ Receiver (LU 6.2) channel name «G¬ AIX.MVS.SNA

OS/390 configuration

406 MQSeries Intercommunication

Table 37. Configuration worksheet for MQSeries for OS/390 (continued)

ID Parameter Name Reference Example Used User Value

«J¬ Receiver (TCP/IP) channel name «H¬ AIX.MVS.TCP

«K¬ Sender (LU 6.2 using CICS) channel name MVS.AIX.CICS

«L¬ Receiver (LU 6.2 using CICS) channel name AIX.MVS.CICS

Connection to MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

The values in this section of the table must match those used in Table 22 on page 216, as indicated.

«C¬ Remote queue manager name DECUX

«D¬ Remote queue name DECUX.REMOTEQ

«E¬ Queue name at remote system «B¬ DECUX.LOCALQ

«F¬ Transmission queue name DECUX

«H¬ Sender (TCP) channel name DECUX.MVS.TCP

«J¬ Receiver (TCP) channel name «H¬ MVS.DECUX.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 24 on page 239, as indicated.

«C¬ Remote queue manager name HPUX

«D¬ Remote queue name HPUX.REMOTEQ

«E¬ Queue name at remote system «B¬ HPUX.LOCALQ

«F¬ Transmission queue name HPUX

«G¬ Sender (LU 6.2) channel name MVS.HPUX.SNA

«H¬ Sender (TCP) channel name MVS.HPUX.TCP

«I¬ Receiver (LU 6.2) channel name «G¬ HPUX.MVS.SNA

«J¬ Receiver (TCP) channel name «H¬ HPUX.MVS.TCP

«K¬ Sender (LU 6.2 using CICS) channel name MVS.HPUX.CICS

«L¬ Receiver (LU 6.2 using CICS) channel name HPUX.MVS.CICS

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 26 on page 253, as indicated.

«C¬ Remote queue manager name GIS

«D¬ Remote queue name GIS.REMOTEQ

«E¬ Queue name at remote system «B¬ GIS.LOCALQ

«F¬ Transmission queue name GIS

«G¬ Sender (LU 6.2) channel name MVS.GIS.SNA

«H¬ Sender (TCP) channel name MVS.GIS.TCP

«I¬ Receiver (LU 6.2) channel name «G¬ GIS.MVS.SNA

«J¬ Receiver (TCP) channel name «H¬ GIS.MVS.TCP

«K¬ Sender (LU 6.2 using CICS) channel name MVS.GIS.CICS

«L¬ Receiver (LU 6.2 using CICS) channel name GIS.MVS.CICS

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

«C¬ Remote queue manager name SOLARIS

«D¬ Remote queue name SOLARIS.REMOTEQ

«E¬ Queue name at remote system «B¬ SOLARIS.LOCALQ

«F¬ Transmission queue name SOLARIS

«G¬ Sender (LU 6.2) channel name MVS.SOLARIS.SNA

«H¬ Sender (TCP) channel name MVS.SOLARIS.TCP

«I¬ Receiver (LU 6.2) channel name «G¬ SOLARIS.MVS.SNA

OS/390 configuration

Chapter 29. Example configuration - IBM MQSeries for OS/390 407

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 37. Configuration worksheet for MQSeries for OS/390 (continued)

ID Parameter Name Reference Example Used User Value

«J¬ Receiver (TCP/IP) channel name «H¬ SOLARIS.MVS.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 43 on page 472, as indicated.

«C¬ Remote queue manager name AS400

«D¬ Remote queue name AS400.REMOTEQ

«E¬ Queue name at remote system «B¬ AS400.LOCALQ

«F¬ Transmission queue name AS400

«G¬ Sender (LU 6.2) channel name MVS.AS400.SNA

«H¬ Sender (TCP/IP) channel name MVS.AS400.TCP

«I¬ Receiver (LU 6.2) channel name «G¬ AS400.MVS.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ AS400.MVS.TCP

«K¬ Sender (LU 6.2 using CICS) channel name MVS.AS400.CICS

«L¬ Receiver (LU 6.2 using CICS) channel name AS400.MVS.CICS

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 45 on page 490, as indicated.

«C¬ Remote queue manager name VSE

«D¬ Remote queue name VSE.REMOTEQ

«E¬ Queue name at remote system «B¬ VSE.LOCALQ

«F¬ Transmission queue name VSE

«G¬ Sender channel name MVS.VSE.SNA

«I¬ Receiver channel name «G¬ VSE.MVS.SNA

MQSeries for OS/390 sender-channel definitions using non-CICS
LU 6.2

Local Queue
Object type : QLOCAL

Name : OS2 «F¬
Usage : X (XmitQ)

Remote Queue
Object type : QREMOTE

Name : OS2.REMOTEQ «D¬
Name on remote system : OS2.LOCALQ «E¬

Remote system name : OS2 «C¬
Transmission queue : OS2 «F¬

Sender Channel
Channel name : MVS.OS2.SNA «G¬

Transport type : L (LU6.2)
Transmission queue name : OS2 «F¬

Connection name : M2 «9¬

MQSeries for OS/390 receiver-channel definitions using
non-CICS LU 6.2

Local Queue
Object type : QLOCAL

Name : MVS.LOCALQ «B¬
Usage : N (Normal)

Receiver Channel
Channel name : OS2.MVS.SNA «I¬

OS/390 configuration

408 MQSeries Intercommunication

|

|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

MQSeries for OS/390 sender-channel definitions using TCP
Local Queue

Object type : QLOCAL
Name : OS2 «F¬
Usage : X (XmitQ)

Remote Queue
Object type : QREMOTE

Name : OS2.REMOTEQ «D¬
Name on remote system : OS2.LOCALQ «E¬

Remote system name : OS2 «C¬
Transmission queue : OS2 «F¬

Sender Channel
Channel name : MVS.OS2.TCP «H¬

Transport type : T (TCP)
Transmission queue name : OS2 «F¬

Connection name : os2.tcpip.hostname

MQSeries for OS/390 receiver-channel definitions using TCP
Local Queue

Object type : QLOCAL
Name : MVS.LOCALQ «B¬

Usage : N (Normal)

Receiver Channel
Channel name : OS2.MVS.TCP «J¬

MQSeries for OS/390 sender-channel definitions using CICS
Local Queue

Object type : QLOCAL
Name : OS2 «F¬
Usage : X (XmitQ)

Remote Queue
Object type : QREMOTE

Name : OS2.REMOTEQ «D¬
Name on remote system : OS2.LOCALQ «E¬

Remote system name : OS2 «C¬
Transmission queue : OS2 «F¬

Sender Channel
Channel name : MVS.OS2.CICS «K¬
Channel type : 1 (Sender)

Target system id : <blank>
Transmission queue name : OS2 «F¬

Transaction id : CKSG
Connection name : OS2 «13¬

LU62 TP name : MQSERIES

MQSeries for OS/390 receiver-channel definitions using CICS
Local Queue

Object type : QLOCAL
Name : MVS.LOCALQ «B¬

Usage : N (Normal)
Receiver Channel

Channel name : OS2.MVS.CICS «L¬
Channel type : 3 (Receiver)

Target system id : <blank>

Defining a local queue
1. From ISPF, access the MQSeries main menu.

OS/390 configuration

Chapter 29. Example configuration - IBM MQSeries for OS/390 409

2. Specify an Action of 2, enter an Object type of QLOCAL, and specify a Name for
the queue.

3. Press Enter.
The first Define a Local Queue panel is displayed. There are several panels in
all.

4. Use F7 and F8 to move backwards and forwards through the panels of
attributes and set each attribute as required.
Specifically, you should check the values for Usage and Trigger type.

IBM MQSeries for OS/390 - Main Menu

Complete fields. Then press Enter.

Action 1 1. Display 5. Perform
2. Define 6. Start
3. Alter 7. Stop
4. Delete

Object type QLOCAL +
Name MVS.LOCALQ
Like __

Connect to queue
manager : MQ25
Target queue manager : MQ25
Response wait time . : 10 seconds

(C) Copyright IBM Corporation 1993,1999. All rights reserved.

Command ===> __
F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap
F10=Messages F12=Cancel

Define a Local Queue

Complete fields, then press F8 for further fields, or Enter to define queue.

More: +

Queue name MVS.LOCALQ
Description ________________________________

Put enabled Y Y=Yes,N=No
Get enabled Y Y=Yes,N=No
Usage N N=Normal,X=XmitQ
Storage class DEFAULT

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

OS/390 configuration

410 MQSeries Intercommunication

Define a Local Queue

Press F7 or F8 to see other fields, or Enter to define queue.

More: - +

Default persistence N Y=Yes,N=No
Default priority 0 0 - 9
Message delivery sequence . . P P=Priority,F=FIFO
Permit shared access N Y=Yes,N=No
Default share option E E=Exclusive,S=Shared
Index type N N=None,M=MsgId,C=CorrelId,T=MsgToken
Maximum queue depth 999999999 0 - 999999999
Maximum message length . . . 4194304 0 - 4194304
Retention interval 999999999 0 - 999999999 hours

Cluster name __
Cluster namelist name __
Default bind O O=Open,N=Notfixed

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Define a Local Queue

Press F7 or F8 to see other fields, or Enter to define queue.

More: - +

Trigger Definition

Trigger type F F=First,E=Every,D=Depth,N=None

Trigger set N Y=Yes,N=No
Trigger message priority . 0 0 - 9
Trigger depth 1 1 - 999999999
Trigger data ________________________________

Process name __
Initiation queue __

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

OS/390 configuration

Chapter 29. Example configuration - IBM MQSeries for OS/390 411

Defining a remote queue
1. From ISPF, access the MQSeries main menu.
2. Specify an Action of 2, enter an Object type of QREMOTE, and specify a Name

for the queue.
3. Press Enter. The Define a Remote Queue panels are displayed.

Define a Local Queue

Press F7 or F8 to see other fields, or Enter to define queue.

More: - +

Event Control

Queue full E E=Enabled,D=Disabled

Upper queue depth D E=Enabled,D=Disabled
Threshold 80 0 - 100 %

Lower queue depth D E=Enabled,D=Disabled
Threshold 40 0 - 100 %

Service interval N H=High,O=OK,N=None
Interval 999999999 0 - 999999999 milliseconds

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Define a Local Queue

Press F7 to see previous fields, or Enter to define queue.

More: -

Backout Reporting

Backout threshold 0 0=No backout reporting

Harden backout counter . . N Y=Yes,N=No
Backout requeue name . . . __

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

OS/390 configuration

412 MQSeries Intercommunication

4. Set each parameter as required. Specifically, you should set the values for
Remote name, Remote queue manager, and Transmission queue.

Defining a sender channel when not using CICS
1. From ISPF, access the MQSeries main menu.
2. Specify an Action of 2, enter an Object type of CHLSENDER, and specify a Name

for the channel.
3. Press Enter.

The first Define a Sender Channel panel is displayed. There are three panels in
all.

4. Complete the parameter fields as indicated. In particular, specify the fields
Transport type, Connection name(«9¬), and Transmission queue name.

Define a Remote Queue

Complete fields, then press F8 for further fields, or Enter to define queue.

More: +

Queue name OS2.REMOTEQ
Description ________________________________

Put enabled Y Y=Yes,N=No
Default persistence N Y=Yes,N=No
Default priority 0 0 - 9
Remote name __
Remote queue manager __
Transmission queue __

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Define a Remote Queue

Press F7 to see previous fields, or Enter to define queue.

More: -

Cluster name __
Cluster namelist name __
Default bind O O=Open,N=Notfixed

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

OS/390 configuration

Chapter 29. Example configuration - IBM MQSeries for OS/390 413

Define a Sender Channel

Complete fields, then press F8 for further fields, or Enter to define channel.

More: +

Channel name MVS.OS2.SNA
Description ________________________________

Transport type L L=LU6.2,T=TCP
Connection name __
Transmission queue __
LU6.2 mode name __
LU6.2 TP name __

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Define a Sender Channel

Press F7 or F8 to see other fields, or Enter to define channel.

More: - +

MCA user ID ____________

Nonpersistent messages . . . F F=Fast,N=Normal
Maximum message length . . . 4194304 0 - 4194304
Batch size 50 1 - 9999
Sequence number wrap 999999999 100 - 999999999
Heartbeat interval 300 0 - 999999 seconds

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

OS/390 configuration

414 MQSeries Intercommunication

Defining a receiver channel when not using CICS
1. From ISPF, access the MQSeries main menu.
2. Specify an Action of 2, an Object type of CHLRECEIVER, and specify a Name for

the channel.
3. Press Enter.

The first Define a Receiver Channel panel is displayed. There are two panels in
all. Set the parameter values as indicated.

Define a Sender Channel

Press F7 or F8 to see other fields, or Enter to define channel.

More: - +

Disconnect interval 6000 0 - 999999 seconds
Batch interval 0 0 - 999999999 milliseconds
Short retry interval 60 0 - 999999999 seconds
Short retry count 10 0 - 999999999
Long retry interval 1200 0 - 999999999 seconds
Long retry count 999999999 0 - 999999999

Conversion by sender N Y=Yes,N=No

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Define a Sender Channel

Press F7 to see previous fields, or Enter to define channel.

More: -

Security exit name ________
User data ________________________________

Send exit name ________
User data ________________________________

Receive exit name ________
User data ________________________________

Message exit name ________
User data ________________________________

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

OS/390 configuration

Chapter 29. Example configuration - IBM MQSeries for OS/390 415

Define a Receiver Channel

Complete fields, then press F8 for further fields, or Enter to define channel.

More: +

Channel name OS2.MVS.SNA
Description ________________________________

Put authority D D=Default,C=Context,M=MCAuser

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Define a Receiver Channel

Press F7 or F8 to see other fields, or Enter to define channel.

More: - +

MCA user ID ____________

Nonpersistent messages . . . F F=Fast,N=Normal
Maximum message length . . . 4194304 0 - 4194304
Batch size 50 1 - 9999
Sequence number wrap 999999999 100 - 999999999
Heartbeat interval 300 0 - 999999 seconds

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

OS/390 configuration

416 MQSeries Intercommunication

Defining a sender channel using CICS
1. Run the CICS transaction CKMC. Select Edit and then Create. A pop-up

window appears.
2. Specify a Channel name and a Channel type.
3. Press Enter.

The Settings panel, which spans two screens, is displayed.
4. Complete the parameter fields as indicated. In particular, specify the

Transmission queue name, Connection name, and LU62 TP name. Allow the
other fields to default.

Define a Receiver Channel

Press F7 to see previous fields, or Enter to define channel.

More: -

Security exit name ________
User data ________________________________

Send exit name ________
User data ________________________________

Receive exit name ________
User data ________________________________

Message exit name ________
User data ________________________________

Command ===> __
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Channel Help
--
MCATTB1 MVS.OS2.CICS - Settings MVSLU

More: +
Channel type : SENDER

Target system id :
Transmission queue name . : OS2
Batch size : 0001
Sequence number wrap . . : 0999999999
Max message size : 0032000
Max transmission : 32000
Disconnect interval . . . : 0001
Transaction id : CKSG
Connection name : <CICS connection to target, defined in CEDA>
CICS profile name :
LU62 TP name : MQSERIES

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

OS/390 configuration

Chapter 29. Example configuration - IBM MQSeries for OS/390 417

Defining a receiver channel using CICS
1. Run the CICS transaction CKMC. Select Edit and then Create. A pop-up

window appears.

2. Specify a Channel name and a Channel type.
3. Press Enter.

The Settings panel, which spans two screens, is displayed.
4. Set the parameter values as indicated. In particular, if translation is required,

set the Message field of the Exit routines section.

Channel Help
--
MCATTC1 MVS.OS2.CICS - Settings MVSLU

More: -
Channel type : SENDER

Sequential delivery . . . : 0 (0=No or 1=Yes)

Retry
Count : 005
Fast interval : 005
Slow interval : 030

Exit routines
Security :
Message :
Send :
Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Selected Edit View Help
--
MCSELB IBM MQSeries for OS/390 Message Channel List MVSLU

Select a channel name. Then select an action.
More:

Channel name Type Sysid
MVS.OS2.CICS SENDER HUR1

(C) Copyright IBM Corporation 1993, 1999. All rights reserved.

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

OS/390 configuration

418 MQSeries Intercommunication

Channel Help
--
MCATTB3 OS2.MVS.CICS - Settings MVSLU

More:
Channel type : RECEIVER

Target system id :

Batch size : 0001
Sequence number wrap . . : 0999999999
Max message size : 0032000
Max transmission : 32000

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

Channel Help
--
MCATTC3 OS2.MVS.CICS - Settings MVSLU

More: -
Channel type : RECEIVER

Sequential delivery . . . : 0 (0=No or 1=Yes)
Put authority : 1 (1=Process or 2=Context)

Exit routines
Security :
Message :
Send :
Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F10=Menu Bar
F12=Cancel

OS/390 configuration

Chapter 29. Example configuration - IBM MQSeries for OS/390 419

DQM in MQSeries for OS/390

420 MQSeries Intercommunication

Part 5. DQM in MQSeries for AS/400

Chapter 30. Monitoring and controlling
channels in MQSeries for AS/400 423
The DQM channel control function 423
Operator commands 424
Getting started 426
Creating objects 426
Creating a channel 426
Starting a channel 429
Selecting a channel 430
Browsing a channel 430
Renaming a channel 432
Work with channel status 432
Work-with-channel choices 434
Panel choices 435

F6=Create 435
2=Change 436
3=Copy 436
4=Delete 437
5=Display 437
8=Work with Status 437
13=Ping 437

Ping with LU 6.2 437
14=Start 437
15=End 438

Stop immediate. 439
Stop controlled 439

16=Reset 439
17=Resolve 439

Chapter 31. Preparing MQSeries for AS/400 . . 441
Creating a transmission queue. 441
Triggering channels 443
Channel programs. 445
Channel states on OS/400 446
Other things to consider 447

Undelivered-message queue 447
Queues in use 447
Maximum number of channels 447
Multiple message channels per transmission
queue 447
Security of MQSeries for AS/400 objects . . . 447
System extensions and user-exit programs. . . 448

Chapter 32. Setting up communication for
MQSeries for AS/400 449
Deciding on a connection 449
Defining a TCP connection 449

Receiving on TCP 450
Using the TCP SO_KEEPALIVE option . . . 450
Using the TCP listener backlog option . . . 450

Defining an LU 6.2 connection 451
Initiating end (Sending) 452
Initiated end (Receiver) 455

Note on Work Management 457

Chapter 33. Example configuration - IBM
MQSeries for AS/400 459
Configuration parameters for an LU 6.2 connection 459

Configuration worksheet 459
Explanation of terms 462

How to find network attributes 463
How to find the value of Resource name . . 463

Establishing an LU 6.2 connection 464
Local node configuration 464

Creating a line description 464
Adding a routing entry 465

Connection to partner node 465
Creating a controller description 465
Creating a device description 466
Creating CPI-C side information 467
Adding a communications entry for APPC 468
Adding a configuration list entry 468

What next? 469
Establishing a TCP connection. 469

Adding a TCP/IP interface 469
Adding a TCP/IP loopback interface 469
Adding a default route 470
What next? 470

MQSeries for AS/400 configuration 471
Basic configuration 471
Channel configuration 471

MQSeries for AS/400 sender-channel
definitions using SNA 474
MQSeries for AS/400 receiver-channel
definitions using SNA 474
MQSeries for AS/400 sender-channel
definitions using TCP 475
MQSeries for AS/400 receiver-channel
definitions using TCP 475

Defining a queue 475
Defining a channel 476

Chapter 34. Message channel planning example
for OS/400 477
What the example shows 477

Queue manager QM1 example 478
Queue manager QM2 example 480

Running the example. 482
Expanding this example 482

This part of the book describes the MQSeries distributed queue management
function for MQSeries for AS/400.

© Copyright IBM Corp. 1993, 2000 421

||

||

DQM in MQSeries for AS/400

422 MQSeries Intercommunication

Chapter 30. Monitoring and controlling channels in MQSeries
for AS/400

Use the DQM commands and panels to create, monitor, and control the channels to
remote queue managers. Each queue manager has a DQM program for controlling
interconnections to compatible remote queue managers. See “Operator commands”
on page 424 for a list of the commands you need when setting up and controlling

message channels.

The DQM channel control function
The channel control function provides the interface and function for administration
and control of message channels between MQSeries for AS/400 and compatible
systems. See Figure 28 on page 58 for a conceptual picture.

The channel control function consists of MQSeries for AS/400 panels, commands,
programs, a sequence number file, and a file for the channel definitions. The
following is a brief description of the components of the channel control function:
v The channel definition file (CDF):

– Is indexed on channel name
– Holds channel definitions

v The channel commands are a subset of the MQSeries for AS/400 set of
commands.
Use the command GO CMDMQM to display the full set of MQSeries for AS/400
commands.

v You use channel definition panels, or commands to:
– Create, copy, display, change, and delete channel definitions
– Start and stop channels, ping, reset channel sequence numbers, and resolve

in-doubt messages when links cannot be re-established
– Display status information about channels

v Sequence numbers and logical unit of work (LUW) identifiers are stored in the
synchronization file, and are used for channel synchronization purposes.

© Copyright IBM Corp. 1993, 2000 423

|
|
|
|
|

Operator commands
The following table shows the full list of MQSeries for AS/400 commands that you
may need when setting up and controlling channels. In general, issuing a
command results in the appropriate panel being displayed.

The commands can be grouped as follows:
v Channel commands

CHGMQMCHL, Change MQM Channel
CPYMQMCHL, Copy MQM Channel
CRTMQMCHL, Create MQM Channel
DLTMQMCHL, Delete MQM Channel
DSPMQMCHL, Display MQM Channel
ENDMQMCHL, End MQM Channel
ENDMQMLSR, End MQM Listener
PNGMQMCHL, Ping MQM Channel
RSTMQMCHL, Reset MQM Channel
RSVMQMCHL, Resolve MQM Channel
STRMQMCHL, Start MQM Channel
STRMQMCHLI, Start MQM Channel Initiator
STRMQMLSR, Start MQM Listener
WRKMQMCHL, Work with MQM Channel
WRKMQMCHST, Work with MQM Channel Status

v Cluster commands
RFRMQMCL, Refresh Cluster
RSMMQMCLQM, Resume Cluster Queue Manager
RSTMQMCL, Reset Cluster
SPDMQMCLQM, Suspend Cluster Queue Manager
WRKMQMCL, Work with Clusters

v Command Server commands
DSPMQMCSVR, Display MQM Command Server
ENDMQMCSVR, End MQM Command Server
STRMQMCSVR, Start MQM Command Server

v Data Type Conversion Command
CVTMQMDTA, Convert MQM Data Type Command

v Dead-Letter Queue Handler Command
STRMQMDLQ, Start MQSeries Dead-Letter Queue Handler

v Media Recovery Commands
RCDMQMIMG, Record MQM Object Image
RCRMQMOBJ, Recreate MQM Object

v MQSeries command
STRMQMMQSC, Start MQSC Commands

v Name command
DSPMQMOBJN, Display MQM Object Names

v Namelist commands
CHGMQMNL, Change MQM Namelist
CPYMQMNL, Copy MQM Namelist
CRTMQMNL, Create MQM Namelist
DLTMQMNL, Delete MQM Namelist
DSPMQMNL, Display MQM Namelist
WRKMQMNL, Work with MQM Namelists

v Process commands
CHGMQMPRC, Change MQM Process

Operator commands

424 MQSeries Intercommunication

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

CPYMQMPRC, Copy MQM Process
CRTMQMPRC, Create MQM Process
DLTMQMPRC, Delete MQM Process
DSPMQMPRC, Display MQM Process
WRKMQMPRC, Work with MQM Processes

v Queue commands
CHGMQMQ, Change MQM Queue
CLRMQMQ, Clear MQM Queue
CPYMQMQ, Copy MQM Queue
CRTMQMQ, Create MQM Queue
DLTMQMQ, Delete MQM Queue
DSPMQMQ, Display MQM Queue
WRKMQMMSG, Work with MQM Messages
WRKMQMQ, Work with MQM Queues

v Queue Manager commands
CCTMQM, Connect Message Queue Manager
CHGMQM, Change Message Queue Manager
CRTMQM, Create Message Queue Manager
DLTMQM, Delete Message Queue Manager
DSCMQM, Disconnect Message Queue Manager
DSPMQM, Display Message Queue Manager
ENDMQM, End Message Queue Manager
STRMQM, Start Message Queue Manager
WRKMQM, Work with Message Queue managers

v Security commands
DSPMQMAUT, Display MQM Object Authority
GRTMQMAUT, Grant MQM Object Authority
RVKMQMAUT, Revoke MQM Object Authority

v Trace commands
TRCMQM, Trace MQM Job

v Transaction commands
RSVMQMTRN, Resolve MQSeries Transaction
WRKMQMTRN, Display MQSeries Transaction

v Trigger Monitor commands
STRMQMTRM, Start Trigger Monitor

Operator commands

Chapter 30. Monitoring and controlling channels in MQSeries for AS/400 425

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|

Getting started
Use these commands and panels to:
1. Define message channels and associated objects
2. Monitor and control message channels

By using the F4=Prompt key, you can specify the relevant queue manager. If you
do not use the prompt, the default queue manager is assumed. With F4=Prompt,
an additional panel is displayed where you may enter the relevant queue manager
name and sometimes other data.

The objects you need to define with the panels are:
v Transmission queues
v Remote queue definitions
v Queue manager alias definitions
v Reply-to queue alias definitions
v Reply-to local queues
v Processes for triggering (MCAs)
v Message channel definitions

See “Chapter 2. Making your applications communicate” on page 17 for more
discussion on the concepts involved in the use of these objects.

Channels must be completely defined, and their associated objects must exist and
be available for use, before a channel can be started. This chapter shows you how
to do this.

In addition, the particular communication link for each channel must be defined
and available before a channel can be run. For a description of how LU 6.2 and
TCP/IP links are defined, see the particular communication guide for your
installation as listed in “Related publications” on page 662.

Creating objects
Use the CRTMQMQ command to create the queue and alias objects, such as:
transmission queues, remote queue definitions, queue manager alias definitions,
reply-to queue alias definitions, and reply-to local queues.

For a list of default objects, see the MQSeries for AS/400 V5.1 System Administration
book.

Creating a channel
To create a new channel:
1. Use F6 from the Work with MQM Channels panel (the second panel that

displays channel details).
Alternatively, use the CRTMQMCHL command from the command line.
Either way, this displays the Create Channel panel. Type:
v The name of the channel in the field provided
v The channel type for this end of the link

2. Press Enter.

Note: You are strongly recommended to name all the channels in your network
uniquely. As shown in Table 1 on page 30, including the source and target
queue manager names in the channel name is a good way to do this.

Getting started

426 MQSeries Intercommunication

|
|
|
|

|
|

Your entries are validated and errors are reported immediately. Correct any errors
and continue.

You are presented with the appropriate channel settings panel for the type of
channel you have chosen. Fill in the fields with the information you have gathered
previously. See “Appendix A. Channel planning form” on page 623 for an example
of how you might want to gather information. Press Enter to create the channel.

You are provided with help in deciding on the content of the various fields in the
descriptions of the channel definition panels in the help panels, and in “Chapter 6.
Channel attributes” on page 77.

Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Channel name > CHANNAME________________
Channel type > *SDR__ *RCVR, *SDR, *SVR, *RQSTR...
Message Queue Manager name *DFT__________________________________

Replace *NO_ *NO, *YES
Transport type *TCP____ *LU62, *TCP, *SYSDFTCHL
Text 'description' > 'Example Channel Definition'_______________

Connection name *SYSDFTCHL_________________________________
__
__
__
__
__
__

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 92. Create channel (1)

Creating a channel

Chapter 30. Monitoring and controlling channels in MQSeries for AS/400 427

Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Transmission queue 'TRANSMISSION_QUEUE_NAME'__________________

Message channel agent *NONE______ Name, *SYSDFTCHL, *NONE
Library __________ Name

Message channel agent user ID . *SYSDFTCHL__ Character value...
Coded Character Set Identifier *SYSDFTCHL__ 0-9999, *SYSDFTCHL
Batch size 50_________ 1-9999, *SYSDFTCHL
Disconnect interval 6000_______ 1-999999, *SYSDFTCHL
Short retry interval 60_________ 0-999999999, *SYSDFTCHL
Short retry count 10_________ 0-999999999, *SYSDFTCHL
Long retry interval 1200_______ 0-999999999, *SYSDFTCHL
Long retry count 999999999__ 0-999999999, *SYSDFTCHL
Security exit *NONE_____ Name, *SYSDFTCHL, *NONE
Library __________ Name

Security exit user data *SYSDFTCHL______________________

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 93. Create channel (2)

Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Send exit *NONE______ Name, *SYSDFTCHL, *NONE
Library ___________ Name

+ for more values __________
Send exit user data ________________________________

+ for more values ________________________________
Receive exit *NONE_____ Name, *SYSDFTCHL, *NONE
Library __________ Name

+ for more values __________

Receive exit user data ________________________________
+ for more values ________________________________

Message exit *NONE_____ Name, *SYSDFTCHL, *NONE
Library __________ Name

+ for more values __________

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 94. Create channel (3)

Creating a channel

428 MQSeries Intercommunication

Starting a channel
Listeners are valid for TCP only. For SNA listeners, you must configure your
communications subsystem.

For applications to be able to exchange messages you must start a listener program
for inbound connections using the STRMQMLSR command.

For outbound connections you must start the channel in one of the following ways:
1. Use the CL command STRMQMCHL, specifying the channel name, to start the

channel as a process or a thread, depending on the MCATYPE parameter. (If
channels are started as threads, they are threads of a channel initiator.)
STRMQMCHL CHLNAME(QM1.TO.QM2) MQNAME(MYQMGR)

2. Use a channel initiator to trigger the channel. One channel initiator is started
automatically when the queue manager is started. This can be eliminated by
changing the chinit stanza in the qm.ini file for that queue manager.

3. Use the WRKMQMCHL command to begin the Work with Channels panel and
choose option 14 to start a channel.

Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Message exit user data ________________________________
+ for more values _____________________________

Convert message *SYSDFTCHL_ *YES, *NO, *SYSDFTCHL
Sequence number wrap 999999999__ 100-999999999, *SYSDFTCHL
Maximum message length 4194304____ 0-4194304, *SYSDFTCHL
Heartbeat interval 300________ 0-999999999, *SYSDFTCHL
Non Persistent Message Speed . . *FAST_____ *FAST, *NORMAL, *SYSDFTCHL
Password *SYSDFTCHL_ Character value, *BLANK...
Task User Profile *SYSDFTCHL_ Character value, *BLANK...
Transaction Program Name *SYSDFTCHL

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 95. Create channel (4)

Creating a channel

Chapter 30. Monitoring and controlling channels in MQSeries for AS/400 429

|
|

|
|

|
|

|

|
|
|

|

|
|
|

|
|

|

Selecting a channel
To select a channel, use the WRKMQMCHL command to begin at the Work with
Channels panel:
1. Move the cursor to the option field at the left of the required channel name.
2. Type an option number.
3. Press Enter to activate your choice.

If you select more than one channel, the options are activated in sequence.

Browsing a channel
To browse the settings of a channel, use the WRKMQMCHL command to begin at
the Display Channel panel:
1. Move the cursor to the left of the required channel name.
2. Type option 5 (Display).
3. Press Enter to activate your choice.

If you select more than one channel, they are presented in sequence.

Alternatively, you can use the DSPMQMCHL command from the command line.

This results in the respective Display Channel panel being displayed with details
of the current settings for the channel. The fields are described in “Chapter 6.
Channel attributes” on page 77.

Work with MQM Channels

Queue Manager Name . . : CNX

Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 8=Work with Status 13=Ping
14=Start 15=End 16=Reset 17=Resolve

Opt Name Type Transport Status
CHLNIC *RCVR *TCP INACTIVE
CORSAIR.TO.MUSTANG *SDR *LU62 INACTIVE
FV.CHANNEL.MC.DJE1 *RCVR *TCP INACTIVE
FV.CHANNEL.MC.DJE2 *SDR *TCP INACTIVE
FV.CHANNEL.MC.DJE3 *RQSTR *TCP INACTIVE
FV.CHANNEL.MC.DJE4 *SVR *TCP INACTIVE
FV.CHANNEL.PETER *RCVR *TCP INACTIVE
FV.CHANNEL.PETER.LU *RCVR *LU62 INACTIVE
FV.CHANNEL.PETER.LU1 *RCVR *LU62 INACTIVE

More...
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel
F21=Print

Figure 96. Work with channels

Selecting a channel

430 MQSeries Intercommunication

Display MQM Channel

Channel name : ST.JST.2TO1
Queue Manager Name : QMREL
Channel type : *SDR
Transport type : *TCP
Text 'description' : John's sender to WINSDOA1

Connection name : MUSTANG

Transmission queue : WINSDOA1

Message channel agent :
Library :

Message channel agent user ID : *NONE
Batch interval : 0
Batch size : 50
Disconnect interval : 6000

F3=Exit F12=Cancel F21=Print

Figure 97. Display a TCP/IP channel (1)

Display MQM Channel

Short retry interval : 60
Short retry count : 10
Long retry interval : 6000
Long retry count : 10
Security exit :
Library :

Security exit user data . . . :
Send exit :

Library :
Send exit user data :
Receive exit :
Library :

Receive exit user data :
Message exit :
Library :

Message exit user data :
More...

F3=Exit F12=Cancel F21=Print

Figure 98. Display a TCP/IP channel (2)

Browsing a channel

Chapter 30. Monitoring and controlling channels in MQSeries for AS/400 431

Renaming a channel
To rename a message channel, begin at the Work with Channels panel:
1. End the channel.
2. Use option 3 (Copy) to create a duplicate with the new name.
3. Use option 5 (Display) to check that it has been created correctly.
4. Use option 4 (Delete) to delete the original channel.

If you decide to rename a message channel, ensure that both channel ends are
renamed at the same time.

Work with channel status
Use the WRKMQMCHST command to bring up the first of three screens showing
the status of your channels. You can view the three status screens in sequence
when you select Change-view (F11).

Alternatively, selecting option 8 (Work with Status) from the Work with MQM
Channels panel also brings up the first status panel.

Work with channel status applies to all message channels. It does not apply to
MQI channels other than server-connection channels on MQSeries for AS/400 V5.1.

Note: The Work with Channel Status screens only show channels that are active
after messages have been sent through the channel and the sequence
number has been incremented.

Display MQM Channel

Sequence number wrap : 999999999
Maximum message length : 10000
Convert message : *NO
Heartbeat interval 300
Nonpersistent message speed . . *FAST

Bottom

F3=Exit F12=Cancel F21=Print

Figure 99. Display a TCP/IP channel (3)

Renaming a channel

432 MQSeries Intercommunication

|
|

Change the view with F11.

MQSeries Work with Channel Status

Type options, press Enter.
5=Display 13=Ping 14=Start 15=End 16=Reset 17=Resolve

Opt Name Connection Indoubt Last Seq
CARTS_CORSAIR_CHAN GBIBMIYA.WINSDOA1 NO 1
CHLNIC 9.20.2.213 NO 3
FV.CHANNEL.PETER2 9.20.2.213 NO 6225
JST.1.2 9.20.2.201 NO 28
MP_MUST_TO_CORS 9.20.2.213 NO 100
MUSTANG.TO.CORSAIR GBIBMIYA.WINSDOA1 NO 10
MP_CORS_TO_MUST 9.20.2.213 NO 101
JST.2.3 9.5.7.126 NO 32
PF_WINSDOA1_LU62 GBIBMIYA.IYA80020 NO 54
PF_WINSDOA1_LU62 GBIBMIYA.WINSDOA1 NO 500
ST.JCW.EXIT.2TO1.CHL 9.20.2.213 NO 216

Bottom
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change view
F12=Cancel F21=Print

Figure 100. Channel status (1)

MQSeries Work with Channel Status

Type options, press Enter.
5=Display 13=Ping 14=Start 15=End 16=Reset 17=Resolve

Opt Transmission Queue LUWID
7516E58A40C000EC
7515A36C0D800157
7515E790AC8001CA
7516FF2284800009
75147C6629C0009D
7516DDE5778000A8

FV_MKP_TRANS_QUEUE 75147B61A44000FA
JST.3 75170185D0000133
PF.WINSDOA1 7516DA3955C00097
PF.WINSDOA1 7516DE2396C000BC
ST.JCW.EXIT.2TO1.XMIT.QUEUE 7516C51291400016

Bottom
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change view
F12=Cancel F21=Print

Figure 101. Channel status (2)

Work with channel status

Chapter 30. Monitoring and controlling channels in MQSeries for AS/400 433

The options available in the Work with Channel Status panel are:

Menu option Description
5=Display Displays the channel settings.
13=Ping Initiates a Ping action, where appropriate.
14=Start Starts the channel.
15=End Stops the channel.
16=Reset Resets the channel sequence number.
17=Resolve Resolves an in-doubt channel situation, manually.
F11=Change view Cycles around the three status panels.

Work-with-channel choices
The Work with Channels panel is reached with the command WRKMQMCHL, and
it allows you to monitor the status of all channels listed, and to issue commands
against selected channels.

MQSeries Work with Channel Status

Type options, press Enter.
5=Display 13=Ping 14=Start 15=End 16=Reset 17=Resolve

Indoubt Indoubt Indoubt
Opt Msgs Seq LUWID

0 0 0000000000000000
0 0 0000000000000000
0 0 0000000000000000
0 0 0000000000000000
0 0 0000000000000000
0 0 0000000000000000
0 101 75147B61A44000FA
0 32 75170185D0000133
0 54 7516DA3955C00097
0 500 7516DE2396C000BC
0 216 7516C51291400016

Bottom
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change view
F12=Cancel F21=Print

Figure 102. Channel status (3)

Work with channel status

434 MQSeries Intercommunication

The options available in the Work with Channel panel are:

Menu option Description
F6=Create Creates a channel.
2=Change Changes the attributes of a channel.
3=Copy Copies the attributes of a channel to a new channel.
4=Delete Deletes a channel.
5=Display Displays the current settings for the channel.
8=Work with status Displays the channel status panels.
13=Ping Runs the Ping facility to test the connection to the adjacent system

by exchanging a fixed data message with the remote end.
14=Start Starts the selected channel, or resets a disabled receiver channel.
15=End Requests the channel to close down.
16=Reset Requests the channel to reset the sequence numbers on this end of

the link. The numbers must be equal at both ends for the channel to
start.

17=Resolve Requests the channel to resolve in-doubt messages without
establishing connection to the other end.

Panel choices
The following choices are provided in the Work with MQM channels panel and the
Work with Channel Status panel.

F6=Create
Use the Create option, or enter the CRTMQMCHL command from the command
line, to obtain the Create Channel panel. There are examples of Create Channel
panels, starting at Figure 92 on page 427.

With this panel, you create a new channel definition from a screen of fields filled
with default values supplied by MQSeries for AS/400. Type the name of the
channel, select the type of channel you are creating, and the communication
method to be used.

When you press Enter, the panel is displayed. Type information in all the required
fields in this panel, and the three pages making up the complete panel, and then
save the definition by pressing Enter.

The channel name must be the same at both ends of the channel, and unique
within the network. However, you should restrict the characters used to those that
are valid for MQSeries for AS/400 object names; see “Chapter 6. Channel
attributes” on page 77.

All panels have default values supplied by MQSeries for AS/400 for some fields.
You can customize these values, or you can change them when you are creating or
copying channels. To customize the values, see the MQSeries for AS/400 System
Administration.

You can create your own set of channel default values by setting up dummy
channels with the required defaults for each channel type, and copying them each
time you want to create new channel definitions.

Table 38 on page 436 shows the channel attributes for each type of channel. See
“Chapter 6. Channel attributes” on page 77 for details about the fields.

Work-with-channel choices

Chapter 30. Monitoring and controlling channels in MQSeries for AS/400 435

|
|
|

Table 38. Channel attribute fields per message channel type

Attribute field Sender Server Receiver Requester

Batch size U U U U

Channel name U U U U

Channel type U U U U

Connection name U U U

Context U U

Disconnect interval U U

Heartbeat interval U U U U

Long retry wait interval U U

Long retry count U U

Maximum message length U U U U

Message channel agent name U

Message exit user data U U U U

Message retry exit count U U

Message retry exit data U U

Message retry exit interval U U

Message retry exit name U U

Nonpersistent message speed U U U U

Receive exit U U U U

Receive exit user data U U U U

Security exit U U U U

Security exit user data U U U U

Send exit U U U U

Send exit user data U U U U

Sequence number wrap U U U U

Short retry wait interval U U

Short retry count U U

Transport type U U U U

Transmission queue U U

Message exit U U U U

2=Change
Use the Change option, or the CHGMQMCHL command, to change an existing
channel definition, except for the channel name. Simply type over the fields to be
changed in the channel definition panel, and then save the updated definition by
pressing Enter.

3=Copy
Use the Copy option, or the CPYMQMCHL command, to copy an existing channel.
The Copy panel enables you to define the new channel name. However, you
should restrict the characters used to those that are valid for MQSeries for AS/400
object names; see the MQSeries for AS/400 System Administration.

Press Enter on the Copy panel to display the details of current settings. You can
change any of the new channel settings. Save the new channel definition by
pressing Enter.

Panel choices

436 MQSeries Intercommunication

4=Delete
Use the Delete option to delete the selected channel. A panel is displayed to
confirm or cancel your request.

5=Display
Use the Display option to display the current definitions for the channel. This
choice displays the panel with the fields showing the current values of the
parameters, and protected against user input.

8=Work with Status
The status column tells you whether the channel is active or inactive, and is
displayed continuously in the Work with MQM Channels panel. Use option 8
(Work with Status) to see more status information displayed. Alternatively, this can
be displayed from the command line with the WRKMQMCHST command. See
“Work with channel status” on page 432.
v Channel name
v Communication connection name
v In-doubt status of channel (where appropriate)
v Last sequence number
v Transmission queue name (where appropriate)
v The in-doubt identifier (where appropriate)
v The last committed sequence number
v Logical unit of work identifier

13=Ping
Use the Ping option to exchange a fixed data message with the remote end. This
gives some confidence to the system supervisor that the link is available and
functioning.

Ping does not involve the use of transmission queues and target queues. It uses
channel definitions, the related communication link, and the network setup.

It is available from sender and server channels, only. The corresponding channel is
started at the far side of the link, and performs the start up parameter negotiation.
Errors are notified normally.

The result of the message exchange is presented in the Ping panel for you, and is
the returned message text, together with the time the message was sent, and the
time the reply was received.

Ping with LU 6.2
When Ping is invoked in MQSeries for AS/400, it is run with the USERID of the
user requesting the function, whereas the normal way that a channel program is
run is for the QMQM USERID to be taken for channel programs. The USERID
flows to the receiving side and it must be valid on the receiving end for the LU 6.2
conversation to be allocated.

14=Start
The Start option is available for sender, server, and requester channels. It should
not be necessary where a channel has been set up with queue manager triggering.

The Start option is also used for receiver channels that have a DISABLED or
STOPPED status. Starting a receiver channel that is in DISABLED or STOPPED
state resets the channel and allows it to be started from the remote channel.

Panel choices

Chapter 30. Monitoring and controlling channels in MQSeries for AS/400 437

|
|
|

When started, the sending MCA reads the channel definition file and opens the
transmission queue. A channel start-up sequence is executed, which remotely starts
the corresponding MCA of the receiver or server channel. When they have been
started, the sender and server processes await messages arriving on the
transmission queue and transmit them as they arrive.

When you use triggering, you will need to start the continuously running trigger
process to monitor the initiation queue. The STRMQMCHLI command can be used
for this.

At the far end of a channel, the receiving process may be started in response to a
channel startup from the sending end. The method of doing this is different for LU
6.2 and TCP/IP connected channels:
v LU 6.2 connected channels do not require any explicit action at the receiving end

of a channel.
v TCP connected channels require a listener process to be running continuously.

This process awaits channel startup requests from the remote end of the link and
starts the process defined in the channel definitions for that connection.
When the remote machine is an AS/400, you can use the STRMQMLSR
command for this.

Use of the Start option always causes the channel to re-synchronize, where
necessary.

For the start to succeed:
v Channel definitions, local and remote must exist. If there is no appropriate

channel definition for a receiver or server-connection channel, a default one is
created automatically if the channel is auto-defined. See “Channel
auto-definition exit program” on page 516.

v The transmission queue must exist, be enabled for GETs, and have no other
channels using it.

v MCAs, local and remote, must exist.
v The communication link must be available.
v The queue managers must be running, local and remote.
v The message channel must be inactive.

To transfer messages, remote queues and remote queue definitions must exist.

A message is returned to the panel confirming that the request to start a channel
has been accepted. For confirmation that the Start process has succeeded, check the
system log, or press F5 (refresh the screen).

15=End
Use the End option to request the channel to stop activity. The channel will not
send any more messages until the operator starts the channel again. (For
information about restarting stopped channels, see “Restarting stopped channels”
on page 69.)

You can select the type of stop you require if you press F4 before Enter. You can
choose IMMEDIATE, or CONTROLLED.

Panel choices

438 MQSeries Intercommunication

Stop immediate
Normally, this option should not be used. It terminates the channel process. The
channel does not complete processing the current batch of messages, and cannot,
therefore, leave the channel in doubt. In general, it is recommended that the
operators use the controlled stop option.

Stop controlled
This choice requests the channel to close down in an orderly way; the current
batch of messages is completed, and the syncpoint procedure is carried out with
the other end of the channel.

16=Reset
The Reset option changes the message sequence number. Use it with care, and only
after you have used the Resolve option to resolve any in-doubt situations. This
option is available only at the sender or server channel. The first message starts the
new sequence the next time the channel is started.

17=Resolve
Use the Resolve option when messages are held in-doubt by a sender or server, for
example because one end of the link has terminated, and there is no prospect of it
recovering. The Resolve option accepts one of two parameters: BACKOUT or
COMMIT. Backout restores messages to the transmission queue, while Commit
discards them.

The channel program does not try to establish a session with a partner. Instead, it
determines the logical unit of work identifier (LUWID) which represents the
in-doubt messages. It then issues, as requested, either:
v BACKOUT to restore the messages to the transmission queue; or
v COMMIT to delete the messages from the transmission queue.

For the resolution to succeed:
v The channel must be inactive
v The channel must be in doubt
v The channel type must be sender or server
v The channel definition, local, must exist
v The queue manager must be running, local

Panel choices

Chapter 30. Monitoring and controlling channels in MQSeries for AS/400 439

Panel choices

440 MQSeries Intercommunication

Chapter 31. Preparing MQSeries for AS/400

This chapter describes the MQSeries for AS/400 preparations required before DQM
can be used. Communication preparations are described in “Chapter 32. Setting up
communication for MQSeries for AS/400” on page 449.

Before a channel can be started, the transmission queue must be defined as
described in this chapter, and must be included in the message channel definition.

In addition, where needed, the triggering arrangement must be prepared with the
definition of the necessary processes and queues.

Creating a transmission queue
You define a local queue with the Usage field attribute set to *TMQ, for each
sending message channel.

If you want to make use of remote queue definitions, use the same command to
create a queue of type *RMT, and Usage of *NORMAL.

To create a transmission queue, use the CRTMQMQ command from the command
line to present you with the first queue creation panel; see Figure 103.

Type the name of the queue and specify the type of queue that you wish to create:
Local, Remote, or Alias. For a transmission queue, specify Local (*LCL) on this
panel and press Enter.

Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Queue name

Queue type ____ *ALS, *LCL, *MDL, *RMT

Message Queue Manager name . . . *DFT________________________________

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

+

Figure 103. Create a queue (1)

© Copyright IBM Corp. 1993, 2000 441

You are presented with the second page of the Create MQM Queue panel; see
Figure 104.

Change any of the default values shown. Press page down to scroll to the next
screen; see Figure 105.

Type *TMQ, for transmission queue, in the Usage field of this panel, and change any
of the default values shown in the other fields.

Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Queue name > HURS.2.HURS.PRIORIT

Queue type > *LCL *ALS, *LCL, *MDL, *RMT
Message Queue Manager name . . . *DFT
Replace *NO *NO, *YES
Text 'description' ' '
Put enabled *YES *SYSDFTQ, *NO, *YES
Default message priority 0 0-9, *SYSDFTQ
Default message persistence . . *NO *SYSDFTQ, *NO, *YES
Process name ' '
Triggering enabled *NO *SYSDFTQ, *NO, *YES
Get enabled *YES *SYSDFTQ, *NO, *YES
Sharing enabled *YES *SYSDFTQ, *NO, *YES

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 104. Create a queue (2)

Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Default share option *YES *SYSDFTQ, *NO, *YES
Message delivery sequence . . . *PTY *SYSDFTQ, *PTY, *FIFO
Harden backout count *NO *SYSDFTQ, *NO, *YES
Trigger type *FIRST *SYSDFTQ, *FIRST, *ALL...
Trigger depth 1 1-999999999, *SYSDFTQ
Trigger message priority 0 0-9, *SYSDFTQ
Trigger data ' '
Retention interval 999999999 0-999999999, *SYSDFTQ
Maximum queue depth 5000 1-24000, *SYSDFTQ
Maximum message length 4194304 0-4194304, *SYSDFTQ
Backout threshold 0 0-999999999, *SYSDFTQ
Backout requeue queue ' '
Initiation queue ' '

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 105. Create a queue (3)

Creating a transmission queue

442 MQSeries Intercommunication

When you are satisfied that the fields contain the correct data, press Enter to create
the queue.

Triggering channels
An overview of triggering is given in “Triggering channels” on page 20, while it is
described in depth in the MQSeries Application Programming Guide. This section
provides you with information specific to MQSeries for AS/400.

Triggering in MQSeries for AS/400 is implemented with the channel initiator
process, which is started with the STRMQMCHLI command that specifies the
name of the initiation queue. For example:
STRMQMCHLI QNAME(MYINITQ)

You need to set up the transmission queue for the channel specifying TRIGGER
and specifying the channel name in the TRIGDATA field: For example:
CRTMQMQ QNAME(MYXMITQ) QTYPE(*LCL) MQMNAME(MYQMGR) +

PRCNAME(MYPROCESS) TRGENBL(*YES) INITQNAME(MYINITQ) +
USAGE(*TMQ)

Then define an initiation queue.
CRTMQMQ QNAME(MYINITQ) MQMNAME(MYQMGR)

Next you define a process in MQSeries for AS/400 naming the MCA sender
program, as the program to be triggered when messages arrive on the transmission
queue. Type CRTMQMPRC on the command line to display the Create Process
panel. Alternatively, select F6 (Create) from the Work with MQM Process panel.
See Figure 107 on page 444 for the first page of the Create Process panel. The
MQSeries for AS/400 System Administration book contains details of defining
processes to be triggered.

Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Usage *TMQ *SYSDFTQ, *NORMAL, *TMQ
Queue depth high threshold . . . 80 0-100, *SYSDFTQ
Queue depth low threshold . . . 20 0-100, *SYSDFTQ
Queue full events enabled . . . *YES *SYSDFTQ, *NO, *YES
Queue high events enabled . . . *YES *SYSDFTQ, *NO, *YES
Queue low events enabled *YES *SYSDFTQ, *NO, *YES
Service interval 999999999 0-999999999, *SYSDFTQ
Service interval events *NONE *SYSDFTQ, *HIGH, *OK, *NONE
Distribution list support . . . *NO *SYSDFTQ, *NO, *YES
Cluster Name *SYSDFTQ
Cluster Name List *SYSDFTQ
Default Binding *SYSDFTQ *SYSDFTQ, *OPEN, *NOTFIXED

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 106. Create a queue (4)

Creating a transmission queue

Chapter 31. Preparing MQSeries for AS/400 443

|
|
|

|

1. Type the name of the process definition in the field provided.
2. Enter a description in the Text ’description’ field.
3. Set Application type to *OS400.
4. Set Application identifier to AMQRMCLA.
5. Set User data to the channel name so as to associate this definition with the

transmission queue belonging to the channel.
6. Page down to show the second page (see Figure 108 on page 445) and insert

any environment data.

Create MQM Process (CRTMQMPRC)

Type choices, press Enter.

Process Name _______________________________________

Message Queue Manager name . . . *DFT___________________________________

Replace *NO *NO, *YES
Text 'description' > 'Triggers hursley.to.hursley.normal '
Application type *OS400
Application identifier > 'AMQRMCLA

User data > *SYSDFTPRC

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 107. Create process (1)

Triggering channels

444 MQSeries Intercommunication

Channel programs
There are different types of channel programs (MCAs) available for use at the
channels. The names are contained in the following table.

Table 39. Program and transaction names

Program name Direction of connection Communication

AMQCRSTA Inbound TCP

AMQCRS6A Inbound LU 6.2

AMQRMCLA Outbound Any

Create MQM Process (CRTMQMPRC)

Type choices, press Enter.

Environment data *SYSDFTPRC___________________________
__

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 108. Create process (2)

Channel programs

Chapter 31. Preparing MQSeries for AS/400 445

|||

Channel states on OS/400
Channel states are displayed on the Work with Channels panel (described in
Figure 96 on page 430). There are some differences between the names of channel
states on different versions of MQSeries for AS/400. In the following table, the
state names shown for V4R2 correspond to the channel states described in
Figure 30 on page 63. As shown in the table, some of these states have different
names, or do not exist for earlier versions.

Table 40. Channel states on OS/400

State name
(V3R6)

State name
(V3R2, V3R7,
V4R2, V5R1)

Meaning

- STARTING Channel is ready to begin negotiation with target
MCA

BINDING BINDING Establishing a session and initial data exchange

REQUESTING REQUESTING Requester channel initiating a connection

READY RUNNING Transferring or ready to transfer

PAUSED PAUSED Waiting for message-retry interval

CLOSING STOPPING Establishing whether to retry or stop

RETRYING RETRYING Waiting until next retry attempt

DISABLED STOPPED Channel stopped because of an error or because an
end-channel command is issued

STOPPED INACTIVE Channel ended processing normally or channel never
started

- *None No state (for server-connection channels only)

Note: The state *None applies only to V3R2 and V3R7.

Channel programs

446 MQSeries Intercommunication

|

||

|
|
|
|
|

|

|||
|

|||

|||

|||

|||

|||

|||

|||
|

|||
|

|||

|
|
|

Other things to consider
Here are some other topics that you should consider when preparing MQSeries for
distributed queue management.

Undelivered-message queue
It is advisable that you have an application available to process the messages
arriving on the undelivered-message queue (also known as the dead-letter queue
or DLQ). The program could be triggered, or run at regular intervals. For more
details, see the MQSeries for AS/400 System Administration and the MQSeries
Application Programming Guide.

Queues in use
MCAs for receiver channels may keep the destination queues open even when
messages are not being transmitted; this results in the queues appearing to be “in
use”.

Maximum number of channels
You can specify the maximum number of channels allowed in your system and the
maximum number that can be active at one time. You do this in the qm.ini file in
directory QIBM/UserData/mqm/qmgrs/queue manager name. See “Appendix D.
Configuration file stanzas for distributed queuing” on page 637.

Multiple message channels per transmission queue
It is possible to define more than one channel per transmission queue, but only
one of these channels can be active at any one time. This is recommended for the
provision of alternative routes between queue managers for traffic balancing and
link failure corrective action.

Security of MQSeries for AS/400 objects
This section deals with remote messaging aspects of security.

You need to provide users with authority to make use of the MQSeries for AS/400
facilities, and this is organized according to actions to be taken with respect to
objects and definitions. For example:
v Queue managers can be started and stopped by authorized users
v Applications need to connect to the queue manager, and have authority to make

use of queues
v Message channels need to be created and controlled by authorized users

Other things to consider

Chapter 31. Preparing MQSeries for AS/400 447

|
|
|
|

The message channel agent at a remote site needs to check that the message being
delivered has derived from a user with authority to do so at this remote site. In
addition, as MCAs can be started remotely, it may be necessary to verify that the
remote processes trying to start your MCAs are authorized to do so. There are
three possible ways for you to deal with this:
1. Decree in the channel definition that messages must contain acceptable context

authority, otherwise they will be discarded.
2. Implement user exit security checking to ensure that the corresponding message

channel is authorized. The security of the installation hosting the corresponding
channel ensures that all users are properly authorized, so that you do not need
to check individual messages.

3. Implement user exit message processing to ensure that individual messages are
vetted for authorization.

Here are some facts about the way MQSeries for AS/400 operates security:
v Users are identified and authenticated by OS/400
v Queue manager services invoked by applications are run with the authority of

the queue manager user profile, but in the user’s process
v Queue manager services invoked by user commands are run with the authority

of the queue manager user profile

System extensions and user-exit programs
A facility is provided in the channel definition to allow extra programs to be run at
defined times during the processing of messages. These programs are not supplied
with MQSeries for AS/400, but may be provided by each installation according to
local requirements.

In order to run, such programs must have predefined names and be available on
call to the channel programs. The names of the exit programs are included in the
message channel definitions.

There is a defined control block interface for handing over control to these
programs, and for handling the return of control from these programs.

The precise places where these programs are called, and details of control blocks
and names, are to be found in “Part 7. Further intercommunication considerations”
on page 503.

Other things to consider

448 MQSeries Intercommunication

Chapter 32. Setting up communication for MQSeries for
AS/400

DQM is a remote queuing facility for MQSeries for AS/400. It provides channel
control programs for the MQSeries for AS/400 queue manager which form the
interface to communication links, controllable by the system operator. The channel
definitions held by distributed-queuing management use these communication
links.

When a distributed-queuing management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this.

Deciding on a connection
There are two forms of communication between MQSeries for AS/400 systems:
v AS/400 TCP

For TCP, a host address may be used, and these connections are set up as
described in the OS/400 Communication Configuration Reference.
In the TCP environment, each distributed service is allocated a unique TCP
address which may be used by remote machines to access the service. The TCP
address consists of a host name/number and a port number. All queue
managers will use such a number to communicate with each other via TCP.

v AS/400 SNA (LU 6.2)
This form of communication requires the definition of an AS/400 SNA logical
unit type 6.2 (LU 6.2) that provides the physical link between the AS/400
serving the local queue manager and the system serving the remote queue
manager. Refer to the OS/400 Communication Configuration Reference for details on
configuring communications in OS/400.

Defining a TCP connection
The channel definition contains a field, CONNECTION NAME, that contains either
the TCP network address of the target, in dotted decimal form (for example
9.20.9.30) or the host name (for example AS4HUR1). If the CONNECTION NAME
is a host name, a name server or the AS/400 host table is used to convert the host
name into a TCP host address.

A port number is required for a complete TCP address; if this is not supplied, the
default port number 1414 is used. On the initiating end of a connection (sender,
requester, and server channel types) it is possible to provide an optional port
number for the connection, for example:
Connection name 9.20.9.30 (1555)

In this case the initiating end will attempt to connect to a receiving program at
port 1555.

© Copyright IBM Corp. 1993, 2000 449

|
|
|
|

|
|
|
|

Receiving on TCP
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect incoming
network requests and start the associated channel. You start this listener program
with the STRMQMLSR command.

You can start more than one listener for each queue manager. By default, the
STRMQMLSR command uses port 1414 but you can override this. To override the
default setting, add the following statements to the qm.ini file of the selected
queue manager (in this example, the listener is required to use port 2500):

TCP:
Port=2500

The qm.ini file is located in this IFS directory:
/QIBM/UserData/mqm/qmgrs/queue manager name.

This new value is read only when the TCP listener is started. If you have a listener
already running, this change is not be seen by that program. To use the new value,
stop the listener and issue the STRMQMLSR command again. Now, whenever you
use the STRMQMLSR command, the listener defaults to the new port.

Alternatively, you can specify a different port number on the STRMQMLSR
command. For example:
STRMQMLSR MQMNAME(queue manager name) PORT(2500)

This change makes the listener default to the new port for the duration of the
listener job.

Using the TCP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page 66) you must add the following
entry to your queue manager configuration file (qm.ini in the IFS directory,
/QIBM/UserData/mqm/qmgrs/queue manager name):
TCP:

KeepAlive=yes

You must then issue the following command:
CFGTCP

Select option 3 (Change TCP Attributes). You can now specify a time interval in
minutes. You can specify a value in the range 1 through 40320 minutes; the default
is 120.

Using the TCP listener backlog option
When receiving on TCP, a maximum number of outstanding connection requests is
set. This can be considered a backlog of requests waiting on the TCP port for the
listener to accept the request.

The default listener backlog value on AS/400 is 255. If the backlog reaches this
value, the TCP connection is rejected and the channel will not be TCP: able to start.

For MCA channels, this results in the channel going into a RETRY state and
retrying the connection at a later time.

For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
reason code from MQCONN and should retry the connection at a later time.

Defining a TCP connection

450 MQSeries Intercommunication

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|

|
|

|
|
|
|

|
|

|

However, to avoid this error, you can add an entry in the qm.ini file:
ListenerBacklog = n

This overrides the default maximum number of outstanding requests (255) for the
TCP listener.

Note: Some operating systems support a larger value than the default. If necessary,
this can be used to avoid reaching the connection limit.

Defining an LU 6.2 connection
In MQSeries for AS/400 V5.1, a mode name, TP name, and connection name of a
fully-qualified LU 6.2 connection can be used.

For other versions of MQSeries for AS/400, a communications side information
(CSI) object is required to define the LU 6.2 communications details for the sending
end of a message channel. It is referred to in the CONNECTION NAME field of
the Sender or Server channel definition for LU 6.2 connections. Further information
on the communications side object is available in the AS/400 APPC Communications
Programmer’s Guide.

The initiated end of the link must have a routing entry definition to complement
this CSI object. Further information on managing work requests from remote
LU 6.2 systems is available in the AS/400 Programming: Work Management Guide.

See the Multiplatform APPC Configuration Guide and the following table for
information.

Table 41. Settings on the local OS/400 system for a remote queue manager platform

Remote platform TPNAME

OS/390 without CICS The same as in the corresponding side information on the
remote queue manager.

OS/390 using CICS CKRC relates to a sender channel on the OS/400 system.
CKSV relates to a requester channel on the OS/400 system.
CKRC relates to a server channel on the OS/400 system.

OS/400 The same as the compare value in the routing entry on the
OS/400 system.

OS/2 As specified in the OS/2 Run Listener command, or
defaulted from the OS/2 queue manager configuration file.

Digital OVMS As specified in the Digital OVMS Run Listener command.

Tandem NSK The same as the TPNAME specified in the receiver-channel
definition.

Other UNIX systems The invokable Transaction Program defined in the remote
LU 6.2 configuration.

Windows NT As specified in the Windows NT Run Listener command, or
the invokable Transaction Program that was defined using
TpSetup on Windows NT.

If you have more than one queue manager on the same machine, ensure that the
TPnames in the channel definitions are unique.

Defining a TCP connection

Chapter 32. Setting up communication for MQSeries for AS/400 451

|
|

||
|

Initiating end (Sending)
Use the CRTMQMCHL command to define a channel of transport type *LU62. For
versions previous to MQSeries for AS/400 V5.1, define the name of the CSI object
that this channel will use in the CONNECTION NAME field. (See “Creating a
channel” on page 426 for details of how to do this.) Use of the CSI object is
optional in MQSeries for AS/400 V5.1.

The initiating end panel is shown in Figure Figure 109. You press F10 from the first
panel displayed to obtain the complete panel as shown.

Complete the initiating end fields as follows:

Side information
Give this definition a name that will be used to store the side information
object to be created, for example, WINSDOA1.

Note: For LU 6.2, the link between the message channel definition and the
communication connection is the Connection name field of the
message channel definition at the sending end. This field contains
the name of the CSI object.

Library
The name of the library where this definition will be stored.

The CSI object must be available in a library accessible to the program
serving the message channel, for example, QSYS, QMQM, and QGPL.

If the name is incorrect, missing, or cannot be found then an error will
occur on channel start up.

Remote location
Specifies the remote location name with which your program
communicates.

Create Comm Side Information (CRTCSI)

Type choices, press Enter.

Side information > WINSDOA1 Name
Library > QSYS Name, *CURLIB

Remote location > WINSDOA1 Name
Transaction program > MQSERIES

Text 'description' *BLANK

Additional Parameters

Device *LOC Name, *LOC
Local location *LOC Name, *LOC, *NETATR
Mode JSTMOD92 Name, *NETATR
Remote network identifier . . . *LOC Name, *LOC, *NETATR, *NONE
Authority *LIBCRTAUT Name, *LIBCRTAUT, *CHANGE...

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 109. LU 6.2 communication setup panel - initiating end

Defining an LU 6.2 connection

452 MQSeries Intercommunication

|
|
|
|
|

In short, this required parameter contains the logical unit name of the
partner at the remote system, as defined in the device description that is
used for the communication link between the two systems.

The Remote location name can be found by issuing the command
DSPNETA on the remote system and seeing the default local location
name.

Transaction program
Specifies the name (up to 64 characters) of the transaction program on the
remote system to be started. It may be a transaction process name, a
program name, the channel name, or a character string that matches the
Compare value in the routing entry.

This is a required parameter.

Note: To specify SNA service transaction program names, enter the
hexadecimal representation of the service transaction program name.
For example, to specify a service transaction program name whose
hexadecimal representation is 21F0F0F1, you would enter
X'21F0F0F1'.

More information on SNA service transaction program names is in the
SNA Transaction Programmer’s Reference manual for LU Type 6.2.

If the receiving end is another OS/400 system, the Transaction program
name is used to match the CSI object at the sending end with the routing
entry at the receiving end. This should be unique for each queue manager
on the target OS/400 system. (See the Program to call parameter under
“Initiated end (Receiver)” on page 455.) See also the Comparison data:
compare value parameter in the Add Routing Entry panel.

Text description
A description (up to 50 characters) to remind you of the intended use of
this connection.

Device
Specifies the name of the device description used for the remote system.
The possible values are:

*LOC The device is determined by the system.

Device-name
Specify the name of the device that is associated with the remote
location.

Local location
Specifies the local location name. The possible values are:

*LOC The local location name is determined by the system.

*NETATR
The LCLLOCNAME value specified in the system network
attributes is used.

Local-location-name
Specify the name of your location. Specify the local location if you
want to indicate a specific location name for the remote location.
The location name can be found by using the DSPNETA command.

Defining an LU 6.2 connection

Chapter 32. Setting up communication for MQSeries for AS/400 453

|
|
|
|
|
|

Mode Specifies the mode used to control the session. This name is the same as
the Common Programming Interface (CPI)- Communications Mode_Name.
The possible values are:

*NETATR
The mode in the network attributes is used.

BLANK
Eight blank characters are used.

Mode-name
Specify a mode name for the remote location.

Note: Because the mode determines the transmission priority of the
communications session, it may be useful to define different modes
depending on the priority of the messages being sent; for example
MQMODE_HI, MQMODE_MED, and MQMODE_LOW. (You can
have more than one CSI pointing to the same location.)

Remote network identifier
Specifies the remote network identifier used with the remote location. The
possible values are:

*LOC The remote network ID for the remote location is used.

*NETATR
The remote network identifier specified in the network attributes is
used.

*NONE
The remote network has no name.

Remote-network-id
Specify a remote network ID. Use the DSPNETA command at the
remote location to find the name of this network ID. It is the ‘local
network ID’ at the remote location.

Authority
Specifies the authority you are giving to users who do not have specific
authority to the object, who are not on an authorization list, and whose
group profile has no specific authority to the object. The possible values
are:

*LIBCRTAUT
Public authority for the object is taken from the CRTAUT
parameter of the specified library. This value is determined at
create time. If the CRTAUT value for the library changes after the
object is created, the new value does not affect existing objects.

*CHANGE
Change authority allows the user to perform basic functions on the
object, however, the user cannot change the object. Change
authority provides object operational authority and all data
authority.

*ALL The user can perform all operations except those limited to the
owner or controlled by authorization list management authority.
The user can control the object’s existence and specify the security
for the object, change the object, and perform basic functions on
the object. The user can change ownership of the object.

Defining an LU 6.2 connection

454 MQSeries Intercommunication

*USE Use authority provides object operational authority and read
authority.

*EXCLUDE
Exclude authority prevents the user from accessing the object.

Authorization-list
Specify the name of the authorization list whose authority is used
for the side information.

Initiated end (Receiver)
Use the CRTMQMCHL command to define the receiving end of the message
channel link with transport type *LU62. Leave the CONNECTION NAME field
blank and ensure that the corresponding details match the sending end of the
channel. (See “Creating a channel” on page 426 for details of how to do this.)

To enable the initiating end to start the receiving channel, add a routing entry to a
subsystem at the initiated end. The subsystem must be the one that allocates the
APPC device used in the LU 6.2 sessions and, therefore, it must have a valid
communications entry for that device. The routing entry calls the program that
starts the receiving end of the message channel.

Use the OS/400 commands (for example, ADDRTGE) to define the end of the link
that is initiated by a communication session.

The initiated end panel is shown in Figure Figure 110.

Subsystem description
The name of your subsystem where this definition resides. Use the OS/400
WRKSBSD command to view and update the appropriate subsystem
description for the routing entry.

Add Routing Entry (ADDRTGE)

Type choices, press Enter.

Subsystem description QCMN Name
Library *LIBL Name, *LIBL, *CURLIB

Routing entry sequence number . 1 1-9999
Comparison data:
Compare value MQSERIES

Starting position 37 1-80
Program to call AMQCRC6A Name, *RTGDTA
Library QMQMBW Name, *LIBL, *CURLIB

Class *SBSD Name, *SBSD
Library *LIBL Name, *LIBL, *CURLIB

Maximum active routing steps . . *NOMAX 0-1000, *NOMAX
Storage pool identifier 1 1-10

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 110. LU 6.2 communication setup panel - initiated end

Defining an LU 6.2 connection

Chapter 32. Setting up communication for MQSeries for AS/400 455

Routing entry sequence number
A unique number in your subsystem to identify this communication
definition. You can use values in the range 1 to 9999.

Comparison data: Compare value
A text string to compare with that received when the session is started by
a Transaction program parameter, as shown in Figure 109 on page 452. The
character string is derived from the Transaction program field of the sender
CSI.

Comparison data: Starting position
The character position in the string where the comparison is to start.

Note: The starting position field is the character position in the string for
comparison, and this is always 37.

Program to call
The name of the program that runs the inbound message program to be
called to start the session.

The program, AMQCRC6A, is called for the default queue manager. This is
a program supplied with MQSeries for AS/400 that sets up the
environment and then calls AMQCRS6A.

For additional queue managers:
v Each queue manager has a specific LU 6.2 invokable program located in

its library. This program is called AMQCRC6B and is automatically
generated when the queue manager is created.

v Each queue manager requires a specific routing entry with unique
routing data to be added. This routing data should match the
Transaction program name supplied by the requesting system (see
“Initiating end (Sending)” on page 452).

An example of this is shown in Figure111:

Display Routing Entries
System: MY400

Subsystem description: QCMN Status: ACTIVE

Type options, press Enter.
5=Display details

Start
Opt Seq Nbr Program Library Compare Value Pos

10 *RTGDTA 'QZSCSRVR' 37
20 *RTGDTA 'QZRCSRVR' 37
30 *RTGDTA 'QZHQTRG' 37
50 *RTGDTA 'QVPPRINT' 37
60 *RTGDTA 'QNPSERVR' 37
70 *RTGDTA 'QNMAPINGD' 37
80 QNMAREXECD QSYS 'AREXECD' 37
90 AMQCRC6A QMQMBW 'MQSERIES' 37
100 *RTGDTA 'QTFDWNLD' 37
150 *RTGDTA 'QMFRCVR' 37

F3=Exit F9=Display all detailed descriptions F12=Cancel

Figure 111. LU 6.2 communication setup panel - initiated end

Defining an LU 6.2 connection

456 MQSeries Intercommunication

|
|

|
|
|

|

|
|
|

|
|
|
|

|

In Figure 111 sequence number 90 represents the default queue manager
and provides compatibility with configurations from previous releases (that
is, V3R2, V3R6, V3R7, and V4R2) of MQSeries for AS/400. These releases
allow one queue manager only. Sequence numbers 92 and 94 represent two
additional queue managers called ALPHA and BETA that are created with
libraries QMALPHA and QMBETA.

Note: You can have more than one routing entry for each queue manager
by using different routing data. This gives the option of different job
priorities depending on the classes used.

Class The name and library of the class used for the steps started through this
routing entry. The class defines the attributes of the routing step’s running
environment and specifies the job priority. An appropriate class entry must
be specified. Use, for example, the WRKCLS command to display existing
classes or to create a new class. Further information on managing work
requests from remote LU 6.2 systems is available in the AS/400
Programming: Work Management Guide.

Note on Work Management
The AMQCRS6A job will not be able to take advantage of the normal AS/400 work
management features that are documented in the MQSeries for AS/400 V5.1 System
Administration book because it is not started in the same way as other MQSeries
jobs. To change the run-time properties of the LU62 receiver jobs, you can do one
of the following:
v Alter the class description that is specified on the routing entry for the

AMQCRS6A job
v Change the job description on the communications entry

See the AS/400 Programming: Work Management Guide for more information about
configuring Communication Jobs.

Defining an LU 6.2 connection

Chapter 32. Setting up communication for MQSeries for AS/400 457

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

DQM in MQSeries for AS/400

458 MQSeries Intercommunication

Chapter 33. Example configuration - IBM MQSeries for AS/400

This chapter gives an example of how to set up communication links from
MQSeries for AS/400 to MQSeries products on the following platforms:
v OS/2
v Windows NT
v AIX
v Digital UNIX
v HP-UX
v AT&T GIS UNIX8

v Sun Solaris
v OS/390 or MVS/ESA without CICS
v VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it describes
“Establishing an LU 6.2 connection” on page 464 and “Establishing a TCP
connection” on page 469.

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for AS/400 configuration” on
page 471.

See “Chapter 7. Example configuration chapters in this book” on page 97 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 42 on page 460 presents a worksheet listing all the parameters needed to set
up communication from OS/400 to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

Configuration worksheet
Use the following worksheet to record the values you will use for this
configuration. Where numbers appear in the Reference column they indicate that
the value must match that in the appropriate worksheet elsewhere in this book.
The examples that follow in this chapter refer back to the values in the ID column
of this table. The entries in the Parameter Name column are explained in
“Explanation of terms” on page 462.

8. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993, 2000 459

|

Table 42. Configuration worksheet for SNA on an AS/400 system

ID Parameter Name Reference Example Used User Value

Definition for local node

«1¬ Local network ID NETID

«2¬ Local control point name AS400PU

«3¬ LU name AS400LU

«4¬ LAN destination address 10005A5962EF

«5¬ Subsystem description QCMN

«6¬ Line description TOKENRINGL

«7¬ Resource name LIN041

«8¬ Local Transaction Program name MQSERIES

Connection to an OS/2 system

The values in this section must match those used in Table 14 on page 138, as indicated.

«9¬ Network ID «2¬ NETID

«10¬ Control point name «3¬ OS2PU

«11¬ LU name «6¬ OS2LU

«12¬ Controller description OS2PU

«13¬ Device OS2LU

«14¬ Side information OS2CPIC

«15¬ Transaction Program «8¬ MQSERIES

«16¬ LAN adapter address «10¬ 10005AFC5D83

«17¬ Mode «17¬ #INTER

Connection to a Windows NT system

The values in this section must match those used in Table 16 on page 170, as indicated.

«9¬ Network ID «2¬ NETID

«10¬ Control point name «3¬ WINNTCP

«11¬ LU name «5¬ WINNTLU

«12¬ Controller description WINNTCP

«13¬ Device WINNTLU

«14¬ Side information NTCPIC

«15¬ Transaction Program «7¬ MQSERIES

«16¬ LAN adapter address «9¬ 08005AA5FAB9

«17¬ Mode «17¬ #INTER

Connection to an AIX system

The values in this section must match those used in Table 20 on page 197, as indicated.

«9¬ Network ID «1¬ NETID

«10¬ Control point name «2¬ AIXPU

«11¬ LU name «4¬ AIXLU

«12¬ Controller description AIXPU

«13¬ Device AIXLU

«14¬ Side information AIXCPIC

«15¬ Transaction Program «6¬ MQSERIES

«16¬ LAN adapter address «8¬ 123456789012

«17¬ Mode «14¬ #INTER

Connection to an HP-UX system

The values in this section must match those used in Table 23 on page 219, as indicated.

OS/400 and LU 6.2

460 MQSeries Intercommunication

Table 42. Configuration worksheet for SNA on an AS/400 system (continued)

ID Parameter Name Reference Example Used User Value

«9¬ Network ID «4¬ NETID

«10¬ Control point name «2¬ HPUXPU

«11¬ LU name «5¬ HPUXLU

«12¬ Controller description HPUXPU

«13¬ Device HPUXLU

«14¬ Side information HPUXCPIC

«15¬ Transaction Program «7¬ MQSERIES

«16¬ LAN adapter address «8¬ 100090DC2C7C

«17¬ Mode «17¬ #INTER

Connection to an AT&T GIS UNIX system

The values in this section must match those used in Table 25 on page 243, as indicated.

«9¬ Network ID «2¬ NETID

«10¬ Control point name «3¬ GISPU

«11¬ LU name «4¬ GISLU

«12¬ Controller description GISPU

«13¬ Device GISLU

«14¬ Side information GISCPIC

«15¬ Transaction Program «5¬ MQSERIES

«16¬ LAN adapter address «8¬ 10007038E86B

«17¬ Mode «15¬ #INTER

Connection to a Sun Solaris system

The values in this section must match those used in Table 27 on page 257, as indicated.

«9¬ Network ID «2¬ NETID

«10¬ Control point name «3¬ SOLARPU

«11¬ LU name «7¬ SOLARLU

«12¬ Controller description SOLARPU

«13¬ Device SOLARLU

«14¬ Side information SOLCPIC

«15¬ Transaction Program «8¬ MQSERIES

«16¬ LAN adapter address «5¬ 08002071CC8A

«17¬ Mode «17¬ #INTER

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section must match those used in Table 36 on page 396, as indicated.

«9¬ Network ID «2¬ NETID

«10¬ Control point name «3¬ MVSPU

«11¬ LU name «4¬ MVSLU

«12¬ Controller description MVSPU

«13¬ Device MVSLU

«14¬ Side information MVSCPIC

«15¬ Transaction Program «7¬ MQSERIES

«16¬ LAN adapter address «8¬ 400074511092

«17¬ Mode «6¬ #INTER

Connection to a VSE/ESA system

The values in this section must match those used in Table 44 on page 485, as indicated.

OS/400 and LU 6.2

Chapter 33. Example configuration - IBM MQSeries for AS/400 461

Table 42. Configuration worksheet for SNA on an AS/400 system (continued)

ID Parameter Name Reference Example Used User Value

«9¬ Network ID «1¬ NETID

«10¬ Control point name «2¬ VSEPU

«11¬ LU name «3¬ VSELU

«12¬ Controller description VSEPU

«13¬ Device VSELU

«14¬ Side information VSECPIC

«15¬ Transaction Program «4¬ MQ01 MQ01

«16¬ LAN adapter address «5¬ 400074511092

«17¬ Mode #INTER

Explanation of terms
«1¬ «2¬ «3¬

See “How to find network attributes” on page 463 for the details of how to
find the configured values.

«4¬ LAN destination address
The hardware address of the AS/400 system token-ring adapter. You can
find the value using the command DSPLIND Line description («6¬).

«5¬ Subsystem description
This is the name of any OS/400 subsystem that will be active while using
the queue manager. The name QCMN has been used because this is the
OS/400 communications subsystem.

«6¬ Line description
If this has been specified it is indicated in the Description field of the
resource Resource name. See “How to find the value of Resource name” on
page 463 for details. If the value is not specified you will need to create a
line description.

«7¬ Resource name
See “How to find the value of Resource name” on page 463 for details of
how to find the configured value.

«8¬ Local Transaction Program name
MQSeries applications trying to converse with this workstation will specify
a symbolic name for the program to be run at the receiving end. This will
have been defined on the channel definition at the sender. For simplicity,
wherever possible use a transaction program name of MQSERIES, or in the
case of a connection to VSE/ESA, where the length is limited to 4 bytes,
use MQTP.

See Table 41 on page 451 for more information.

«12¬ Controller description
This is an alias for the Control Point name (or Node name) of the partner
system. For convenience we have used the actual name of the partner in
this example.

«13¬ Device
This is an alias for the LU of the partner system. For convenience we have
used the LU name of the partner in this example.

OS/400 and LU 6.2

462 MQSeries Intercommunication

«14¬ Side information
This is the name given to the CPI-C side information profile. You specify
your own 8-character name for this.

How to find network attributes
The local node has been partially configured as part of the OS/400 installation. To
display the current network attributes enter the command DSPNETA.

If you need to change these values use the command CHGNETA. An IPL may be
required to apply your changes.

Check that the values for Local network ID («1¬), Local control point name («2¬),
and Default local location («3¬), correspond to the values on your worksheet.

How to find the value of Resource name
Type WRKHDWRSC TYPE(*CMN) and press Enter. The Work with Communication
Resources panel is displayed. The value for Resource name is found as the
Token-Ring Port. It is LIN041 in this example.

Display Network Attributes
System: AS400PU

Current system name : AS400PU
Pending system name :

Local network ID : NETID
Local control point name : AS400PU
Default local location : AS400LU
Default mode : BLANK
APPN node type : *ENDNODE
Data compression : *NONE
Intermediate data compression : *NONE
Maximum number of intermediate sessions : 200
Route addition resistance : 128
Server network ID/control point name : NETID NETCP

More...
Press Enter to continue.

F3=Exit F12=Cancel

OS/400 and LU 6.2

Chapter 33. Example configuration - IBM MQSeries for AS/400 463

Establishing an LU 6.2 connection
This section describes how to establish an LU 6.2 connection.

Local node configuration
To configure the local node, you need to:
1. Create a line description
2. Add a routing entry

Creating a line description
1. If the line description has not already been created use the command

CRTLINTRN.
2. Specify values for Line description («6¬) and Resource name («7¬).

Work with Communication Resources
System: AS400PU

Type options, press Enter.
2=Edit 4=Remove 5=Work with configuration description
7=Add configuration description ...

Configuration
Opt Resource Description Type Description

CC02 2636 Comm Processor
LIN04 2636 LAN Adapter
LIN041 TOKENRINGL 2636 Token-Ring Port

Bottom
F3=Exit F5=Refresh F6=Print F11=Display resource addresses/statuses
F12=Cancel F23=More options

Create Line Desc (Token-Ring) (CRTLINTRN)

Type choices, press Enter.

Line description TOKENRINGL Name
Resource name LIN041 Name, *NWID
NWI type *FR *FR, *ATM
Online at IPL *YES *YES, *NO
Vary on wait *NOWAIT *NOWAIT, 15-180 (1 second)
Maximum controllers 40 1-256
Attached NWI *NONE Name, *NONE

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter LIND required. +

OS/400 and LU 6.2

464 MQSeries Intercommunication

Adding a routing entry
1. Type the command ADDRTGE and press Enter.

2. Specify your value for Subsystem description («5¬), and the values shown here
for Routing entry sequence number, Compare value («8¬), Starting position,
Program to call, and the Library containing the program to call.

3. Type the command STRSBS subsystem description («5¬) and press Enter.

Connection to partner node
This example is for a connection to an OS/2 system, but the steps are the same for
other nodes. The steps are:
1. Create a controller description.
2. Create a device description.
3. Create CPI-C side information.
4. Add a communications entry for APPC.
5. Add a configuration list entry.

Creating a controller description
1. At a command line type CRTCTLAPPC and press Enter.

Add Routing Entry (ADDRTGE)

Type choices, press Enter.

Subsystem description QCMN Name
Library *LIBL Name, *LIBL, *CURLIB

Routing entry sequence number . 1 1-9999
Comparison data:
Compare value 'MQSERIES'

Starting position 37 1-80
Program to call AMQCRC6A Name, *RTGDTA
Library QMQMBW Name, *LIBL, *CURLIB

Class *SBSD Name, *SBSD
Library *LIBL Name, *LIBL, *CURLIB

Maximum active routing steps . . *NOMAX 0-1000, *NOMAX
Storage pool identifier 1 1-10

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required. +

OS/400 and LU 6.2

Chapter 33. Example configuration - IBM MQSeries for AS/400 465

2. Specify a value for Controller description («12¬), set Link type to *LAN, and set
Online at IPL to *NO.

3. Press Enter twice, followed by F10.

4. Specify values for Switched line list («6¬), Remote network identifier («9¬),
Remote control point («10¬), and LAN remote adapter address («16¬).

5. Press Enter.

Creating a device description
1. Type the command CRTDEVAPPC and press Enter.

Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Controller description OS2PU Name
Link type *LAN *FAX, *FR, *IDLC,
*LAN...
Online at IPL *NO *YES, *NO

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter CTLD required. +

Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Controller description > OS2PU Name
Link type > *LAN *FAX, *FR, *IDLC, *LAN...
Online at IPL > *NO *YES, *NO
APPN-capable *YES *YES, *NO
Switched line list TOKENRINGL Name

+ for more values
Maximum frame size *LINKTYPE 265-16393, 256, 265, 512...
Remote network identifier . . . NETID Name, *NETATR, *NONE, *ANY
Remote control point OS2PU Name, *ANY
Exchange identifier 00000000-FFFFFFFF
Initial connection *DIAL *DIAL, *ANS
Dial initiation *LINKTYPE *LINKTYPE, *IMMED, *DELAY
LAN remote adapter address . . . 10005AFC5D83 000000000001-FFFFFFFFFFFF
APPN CP session support *YES *YES, *NO
APPN node type *ENDNODE *ENDNODE, *LENNODE...
APPN transmission group number 1 1-20, *CALC

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

OS/400 and LU 6.2

466 MQSeries Intercommunication

2. Specify values for Device description («13¬), Remote location («11¬), Local
location («3¬), Remote network identifier («9¬), and Attached controller
(«12¬).

Note: You can avoid having to create controller and device descriptions manually
by taking advantage of OS/400’s auto-configuration service. Consult the
OS/400 documentation for details.

Creating CPI-C side information
1. Type CRTCSI and press F10.

2. Specify values for Side information («14¬), Remote location («11¬), Transaction
program («15¬), Local location («3¬), Mode, and Remote network identifier
(«9¬).

3. Press Enter.

Create Device Desc (APPC) (CRTDEVAPPC)

Type choices, press Enter.

Device description OS2LU Name
Remote location OS2LU Name
Online at IPL *YES *YES, *NO
Local location AS400LU Name, *NETATR
Remote network identifier . . . NETID Name, *NETATR, *NONE
Attached controller OS2PU Name
Mode *NETATR Name, *NETATR

+ for more values
Message queue QSYSOPR Name, QSYSOPR

Library *LIBL Name, *LIBL, *CURLIB
APPN-capable *YES *YES, *NO
Single session:
Single session capable *NO *NO, *YES
Number of conversations . . . 1-512

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter DEVD required. +

Create Comm Side Information (CRTCSI)

Type choices, press Enter.

Side information OS2CPIC Name
Library *CURLIB Name, *CURLIB

Remote location OS2LU Name
Transaction program MQSERIES

Text 'description' *BLANK

Additional Parameters

Device *LOC Name, *LOC
Local location AS400LU Name, *LOC, *NETATR
Mode #INTER Name, *NETATR
Remote network identifier . . . NETID Name, *LOC, *NETATR, *NONE
Authority *LIBCRTAUT Name, *LIBCRTAUT, *CHANGE...

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter CSI required.

OS/400 and LU 6.2

Chapter 33. Example configuration - IBM MQSeries for AS/400 467

Adding a communications entry for APPC
1. At a command line type ADDCMNE and press Enter.

2. Specify values for Subsystem description («5¬) and Device («13¬), and press
Enter.

Adding a configuration list entry
1. Type ADDCFGLE *APPNRMT and press F4.

2. Specify values for Remote location name («11¬), Remote network identifier
(«9¬), Local location name («3¬), Remote control point («10¬), and Control
point net ID («9¬).

3. Press Enter.

Add Communications Entry (ADDCMNE)

Type choices, press Enter.

Subsystem description QCMN Name
Library *LIBL Name, *LIBL, *CURLIB

Device OS2LU Name, generic*, *ALL...
Remote location Name
Job description *USRPRF Name, *USRPRF, *SBSD

Library Name, *LIBL, *CURLIB
Default user profile *NONE Name, *NONE, *SYS
Mode *ANY Name, *ANY
Maximum active jobs *NOMAX 0-1000, *NOMAX

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required.

Add Configuration List Entries (ADDCFGLE)

Type choices, press Enter.

Configuration list type > *APPNRMT *APPNLCL, *APPNRMT...
APPN remote location entry:
Remote location name OS2LU Name, generic*, *ANY
Remote network identifier . . NETID Name, *NETATR, *NONE
Local location name AS400LU Name, *NETATR
Remote control point OS2PU Name, *NONE
Control point net ID NETID Name, *NETATR, *NONE
Location password *NONE
Secure location *NO *YES, *NO
Single session *NO *YES, *NO
Locally controlled session . . *NO *YES, *NO
Pre-established session . . . *NO *YES, *NO
Entry 'description' *BLANK
Number of conversations . . . 10 1-512

+ for more values

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

OS/400 and LU 6.2

468 MQSeries Intercommunication

What next?
The LU 6.2 connection is now established. You are ready to complete the
configuration. Go to “MQSeries for AS/400 configuration” on page 471.

Establishing a TCP connection
If TCP is already configured there are no extra configuration tasks. The following
panels guide you through the steps that may be required if TCP/IP is not
configured.

Adding a TCP/IP interface
1. At a command line type ADDTCPIFC and press Enter.

2. Specify this machine’s Internet address and Line description, and a Subnet
mask.

3. Press Enter.

Adding a TCP/IP loopback interface
1. At a command line type ADDTCPIFC and press Enter.

Add TCP/IP Interface (ADDTCPIFC)

Type choices, press Enter.

Internet address 19.22.11.55
Line description TOKENRINGL Name, *LOOPBACK
Subnet mask 255.255.0.0
Type of service *NORMAL *MINDELAY, *MAXTHRPUT..
Maximum transmission unit . . . *LIND 576-16388, *LIND
Autostart *YES *YES, *NO
PVC logical channel identifier 001-FFF

+ for more values
X.25 idle circuit timeout . . . 60 1-600
X.25 maximum virtual circuits . 64 0-64
X.25 DDN interface *NO *YES, *NO
TRLAN bit sequencing *MSB *MSB, *LSB

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

OS/400 and LU 6.2

Chapter 33. Example configuration - IBM MQSeries for AS/400 469

2. Specify the values for Internet address, Line description, and Subnet mask.

Adding a default route
1. At a command line type ADDTCPRTE and press Enter.

2. Fill in with values appropriate to your network and press Enter to create a
default route entry.

What next?
The TCP connection is now established. You are ready to complete the
configuration. Go to “MQSeries for AS/400 configuration” on page 471.

Add TCP Interface (ADDTCPIFC)

Type choices, press Enter.

Internet address 127.0.0.1
Line description *LOOPBACK Name, *LOOPBACK
Subnet mask 255.0.0.0
Type of service *NORMAL *MINDELAY, *MAXTHRPUT..
Maximum transmission unit . . . *LIND 576-16388, *LIND
Autostart *YES *YES, *NO
PVC logical channel identifier 001-FFF

+ for more values
X.25 idle circuit timeout . . . 60 1-600
X.25 maximum virtual circuits . 64 0-64
X.25 DDN interface *NO *YES, *NO
TRLAN bit sequencing *MSB *MSB, *LSB

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Add TCP Route (ADDTCPRTE)

Type choices, press Enter.

Route destination *DFTROUTE
Subnet mask *NONE
Type of service *NORMAL *MINDELAY, *MAXTHRPUT.
Next hop 19.2.3.4
Maximum transmission unit . . . 576 576-16388, *IFC

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Command prompting ended when user pressed F12.

OS/400 and TCP

470 MQSeries Intercommunication

MQSeries for AS/400 configuration
Start the TCP channel listener using the command STRMQMLSR.

Start any sender channel using the command STRMQMCHL
CHLNAME(channel_name).

Use the WRKMQMQ command to display the MQSeries configuration menu.

Note: AMQ* errors are placed in the log relating to the job that found the error.
Use the WRKACTJOB command to display the list of jobs. Under the
subsystem name QSYSWRK, locate the job and enter 5 against it to work
with that job. MQSeries logs are prefixed ‘AMQ’.

Basic configuration
1. First you need to create a queue manager. To do this, type CRTMQM and press

Enter.

2. In the Message Queue Manager name field, type AS400. In the Undelivered
message queue field, type DEAD.LETTER.QUEUE.

3. Press Enter.
4. Now start the queue manager by entering STRMQM MQMNAME(AS400).
5. Create the undelivered message queue using the following parameters. (For

details and an example refer to “Defining a queue” on page 475.)
Local Queue

Queue name : DEAD.LETTER.QUEUE
Queue type : *LCL

Channel configuration
This section details the configuration to be performed on the OS/400 queue
manager to implement the channel described in Figure 32 on page 97.

Create Message Queue Manager (CRTMQM)

Type choices, press Enter.

Message Queue Manager name . . .

Text 'description' *BLANK

Trigger interval 999999999 0-999999999
Undelivered message queue . . . *NONE

Default transmission queue . . . *NONE

Maximum handle limit 256 1-999999999
Maximum uncommitted messages . . 1000 1-10000
Default Queue manager *NO *YES, *NO

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

OS/400 configuration

Chapter 33. Example configuration - IBM MQSeries for AS/400 471

Examples are given for connecting MQSeries for AS/400 and MQSeries for OS/2
Warp. If you wish connect to another MQSeries product, use the appropriate
values from the table in place of those for OS/2.

Notes:

1. The words in bold are user-specified and reflect the names of MQSeries objects
used throughout these examples. If you change the names used here, ensure
that you also change the other references made to these objects throughout this
book. All others are keywords and should be entered as shown.

2. The MQSeries channel ping command (PNGMQMCHL) runs interactively,
whereas starting a channel causes a batch job to be submitted. If a channel ping
completes successfully but the channel will not start, this indicates that the
network and MQSeries definitions are probably correct, but that the OS/400
environment for the batch job is not. For example, make sure that QSYS2 is
included in the system portion of the library list and not just your personal
library list.

For details and examples of how to create the objects listed refer to “Defining a
queue” on page 475 and “Defining a channel” on page 476.

Table 43. Configuration worksheet for MQSeries for AS/400

ID Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name AS400

«B¬ Local queue name AS400.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 164, as indicated.

«C¬ Remote queue manager name «A¬ OS2

«D¬ Remote queue name OS2.REMOTEQ

«E¬ Queue name at remote system «B¬ OS2.LOCALQ

«F¬ Transmission queue name OS2

«G¬ Sender (SNA) channel name AS400.OS2.SNA

«H¬ Sender (TCP) channel name AS400.OS2.TCP

«I¬ Receiver (SNA) channel name «G¬ OS2.AS400.SNA

«J¬ Receiver (TCP) channel name «H¬ OS2.AS400.TCP

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 185, as indicated.

«C¬ Remote queue manager name «A¬ WINNT

«D¬ Remote queue name WINNT.REMOTEQ

«E¬ Queue name at remote system «B¬ WINNT.LOCALQ

«F¬ Transmission queue name WINNT

«G¬ Sender (SNA) channel name AS400.WINNT.SNA

«H¬ Sender (TCP/IP) channel name AS400.WINNT.TCP

«I¬ Receiver (SNA) channel name «G¬ WINNT.AS400.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ WINNT.AS400.TCP

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 211, as indicated.

«C¬ Remote queue manager name AIX

«D¬ Remote queue name AIX.REMOTEQ

OS/400 configuration

472 MQSeries Intercommunication

Table 43. Configuration worksheet for MQSeries for AS/400 (continued)

ID Parameter Name Reference Example Used User Value

«E¬ Queue name at remote system «B¬ AIX.LOCALQ

«F¬ Transmission queue name AIX

«G¬ Sender (SNA) channel name AS400.AIX.SNA

«H¬ Sender (TCP/IP) channel name AS400.AIX.TCP

«I¬ Receiver (SNA) channel name «G¬ AIX.AS400.SNA

«J¬ Receiver (TCP) channel name «H¬ AIX.AS400.TCP

Connection to MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

The values in this section of the table must match those used in Table 22 on page 216, as indicated.

«C¬ Remote queue manager name DECUX

«D¬ Remote queue name DECUX.REMOTEQ

«E¬ Queue name at remote system «B¬ DECUX.LOCALQ

«F¬ Transmission queue name DECUX

«H¬ Sender (TCP) channel name DECUX.AS400.TCP

«J¬ Receiver (TCP) channel name «H¬ AS400.DECUX.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 24 on page 239, as indicated.

«C¬ Remote queue manager name HPUX

«D¬ Remote queue name HPUX.REMOTEQ

«E¬ Queue name at remote system «B¬ HPUX.LOCALQ

«F¬ Transmission queue name HPUX

«G¬ Sender (SNA) channel name AS400.HPUX.SNA

«H¬ Sender (TCP) channel name AS400.HPUX.TCP

«I¬ Receiver (SNA) channel name «G¬ HPUX.AS400.SNA

«J¬ Receiver (TCP) channel name «H¬ HPUX.AS400.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 26 on page 253, as indicated.

«C¬ Remote queue manager name GIS

«D¬ Remote queue name GIS.REMOTEQ

«E¬ Queue name at remote system «B¬ GIS.LOCALQ

«F¬ Transmission queue name GIS

«G¬ Sender (SNA) channel name AS400.GIS.SNA

«H¬ Sender (TCP) channel name AS400.GIS.TCP

«I¬ Receiver (SNA) channel name «G¬ GIS.AS400.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ GIS.AS400.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

«C¬ Remote queue manager name SOLARIS

«D¬ Remote queue name SOLARIS.REMOTEQ

«E¬ Queue name at remote system «B¬ SOLARIS.LOCALQ

«F¬ Transmission queue name SOLARIS

«G¬ Sender (SNA) channel name AS400.SOLARIS.SNA

«H¬ Sender (TCP/IP) channel name AS400.SOLARIS.TCP

«I¬ Receiver (SNA) channel name «G¬ SOLARIS.AS400.SNA

«J¬ Receiver (TCP/IP) channel name «H¬ SOLARIS.AS400.TCP

OS/400 configuration

Chapter 33. Example configuration - IBM MQSeries for AS/400 473

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 43. Configuration worksheet for MQSeries for AS/400 (continued)

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for OS/390 without CICS

The values in this section of the table must match those used in Table 37 on page 406, as indicated.

«C¬ Remote queue manager name MVS

«D¬ Remote queue name MVS.REMOTEQ

«E¬ Queue name at remote system «B¬ MVS.LOCALQ

«F¬ Transmission queue name MVS

«G¬ Sender (SNA) channel name AS400.MVS.SNA

«H¬ Sender (TCP) channel name AS400.MVS.TCP

«I¬ Receiver (SNA) channel name «G¬ MVS.AS400.SNA

«J¬ Receiver (TCP) channel name «H¬ MVS.AS400.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 45 on page 490, as indicated.

«C¬ Remote queue manager name VSE

«D¬ Remote queue name VSE.REMOTEQ

«E¬ Queue name at remote system «B¬ VSE.LOCALQ

«F¬ Transmission queue name VSE

«G¬ Sender channel name AS400.VSE.SNA

«I¬ Receiver channel name «G¬ VSE.AS400.SNA

MQSeries for AS/400 sender-channel definitions using SNA
Local Queue

Queue name : OS2 «F¬
Queue type : *LCL

Usage : *TMQ

Remote Queue
Queue name : OS2.REMOTEQ «D¬
Queue type : *RMT

Remote queue : OS2.LOCALQ «E¬
Remote Queue Manager : OS2 «C¬

Transmission queue : OS2 «F¬

Sender Channel
Channel Name : AS400.OS2.SNA «G¬
Channel Type : *SDR

Transport type : *LU62
Connection name : OS2CPIC «14¬

Transmission queue : OS2 «F¬

MQSeries for AS/400 receiver-channel definitions using SNA
Local Queue

Queue name : AS400.LOCALQ «B¬
Queue type : *LCL

Receiver Channel
Channel Name : OS2.AS400.SNA «I¬
Channel Type : *RCVR

Transport type : *LU62

OS/400 configuration

474 MQSeries Intercommunication

MQSeries for AS/400 sender-channel definitions using TCP
Local Queue

Queue name : OS2 «F¬
Queue type : *LCL

Usage : *TMQ

Remote Queue
Queue name : OS2.REMOTEQ «D¬
Queue type : *RMT

Remote queue : OS2.LOCALQ «E¬
Remote Queue Manager : OS2 «C¬

Transmission queue : OS2 «F¬

Sender Channel
Channel Name : AS400.OS2.TCP «H¬
Channel Type : *SDR

Transport type : *TCP
Connection name : os2.tcpip.hostname

Transmission queue : OS2 «F¬

MQSeries for AS/400 receiver-channel definitions using TCP
Local Queue

Queue name : AS400.LOCALQ «B¬
Queue type : *LCL

Receiver Channel
Channel Name : OS2.AS400.TCP «J¬
Channel Type : *RCVR

Transport type : *TCP

Defining a queue
Type CRTMQMQ on the command line.

Fill in the two fields of this panel and press Enter. This causes another panel to
appear, with entry fields for the other parameters you have. Defaults can be taken
for all other queue attributes.

Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Queue name

Queue type *ALS, *LCL, *RMT

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter QNAME required.

OS/400 configuration

Chapter 33. Example configuration - IBM MQSeries for AS/400 475

Defining a channel
Type CRTMQMCHL on the command line.

Fill in the two fields of this panel and press Enter. Another panel is displayed on
which you can specify the values for the other parameters given earlier. Defaults
can be taken for all other channel attributes.

Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Channel name
Channel type *RCVR, *SDR, *SVR, *RQSTR

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter CHLNAME required.

OS/400 configuration

476 MQSeries Intercommunication

Chapter 34. Message channel planning example for OS/400

This chapter provides a detailed example of how to connect two OS/400 queue
managers together so that messages can be sent between them. The example
illustrates the preparations needed to allow an application using queue manager
QM1 to put messages on a queue at queue manager QM2. An application running
on QM2 can retrieve these messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that
channels are to be triggered to start when the first message arrives on the
transmission queue they are servicing. You must start the channel initiator in order
for triggering to work. To do this, use the STRMQMCHLI command.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue
is already defined by MQSeries. You can use a different initiation queue, but you
will have to define it yourself and specify the name of the queue when you start
the channel initiator.

What the example shows
The example uses the MQSeries for AS/400 command language.

It involves a payroll query application connected to queue manager QM1 that
sends payroll query messages to a payroll processing application running on queue
manager QM2. The payroll query application needs the replies to its queries sent
back to QM1. The payroll query messages are sent from QM1 to QM2 on a
sender-receiver channel called QM1.TO.QM2, and the reply messages are sent back
from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1. Both
of these channels are triggered to start as soon as they have a message to send to
the other queue manager.

The payroll query application puts a query message to the remote queue
“PAYROLL.QUERY” defined on QM1. This remote queue definition resolves to the

Queue transmission 'QM2'

'SYSTEM.CHANNEL.INITQ'

'SYSTEM.CHANNEL.INITQ'

Queue transmission 'QM1'

Application Application

message

message

message

Query

Queue manager 'QM1' Queue manager 'QM2'

Channel

Payroll
processing

Payroll
query

Query

Reply

message

Reply

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue local 'PAYROLL'QM1.TO.QM2

QM2.TO.QM1

Figure 112. The message channel example for MQSeries for AS/400

© Copyright IBM Corp. 1993, 2000 477

local queue “PAYROLL” on QM2. In addition, the payroll query application
specifies that the reply to the query is sent to the local queue “PAYROLL.REPLY”
on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this
case, local queue “PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on OS/400. In the example
definitions, QM1 has a host address of 9.20.9.31 and is listening on port 1411, and
QM2 has a host address of 9.20.9.32 and is listening on port 1412. The example
assumes that these are already defined on your OS/400 system, and are available
for use.

The object definitions that need to be created on QM1 are:
v Remote queue definition, PAYROLL.QUERY
v Transmission queue definition, QM2 (default=remote queue manager name)
v Process definition, QM1.TO.QM2.PROCESS (not needed for MQSeries for

AS/400 V5.1)
v Sender channel definition, QM1.TO.QM2
v Receiver channel definition, QM2.TO.QM1
v Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:
v Local queue definition, PAYROLL
v Transmission queue definition, QM1 (default=remote queue manager name)
v Process definition, QM2.TO.QM1.PROCESS (not needed for MQSeries for

AS/400 V5.1)
v Sender channel definition, QM2.TO.QM1
v Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender
channel definitions.

You can see a diagram of the arrangement in Figure 112 on page 477.

Queue manager QM1 example
The following object definitions allow applications connected to queue manager
QM1 to send request messages to a queue called PAYROLL on QM2, and to receive
replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the TEXT attributes. The other
attributes supplied are the minimum required to make the example work. The
attributes that are not supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1:

Remote queue definition
The CRTMQMQ command with the following attributes:

QNAME ‘PAYROLL.QUERY’
QTYPE *RMT
TEXT ‘Remote queue for QM2’
PUTENBL *YES
TMQNAME ‘QM2’ (default = remote queue manager name)
RMTQNAME ‘PAYROLL’
RMTMQMNAME ‘QM2’

Planning example for OS/400

478 MQSeries Intercommunication

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Note: The remote queue definition is not a physical queue, but a means of
directing messages to the transmission queue, QM2, so that they can
be sent to queue manager QM2.

Transmission queue definition
The CRTMQMQ command with the following attributes:

QNAME QM2
QTYPE *LCL
TEXT ‘Transmission queue to QM2’
USAGE *TMQ
PUTENBL *YES
GETENBL *YES
TRGENBL *YES
TRGTYPE *FIRST
INITQNAME SYSTEM.CHANNEL.INITQ
PRCNAME QM1.TO.QM2.PROCESS

When the first message is put on this transmission queue, a trigger
message is sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The
channel initiator gets the message from the initiation queue and starts the
channel identified in the named process.

Process definition
The CRTMQMPRC command with the following attributes:

PRCNAME QM1.TO.QM2.PROCESS
TEXT ‘Process for starting channel’
APPTYPE *OS400
APPID ‘AMQRMCLA’
USRDATA QM1.TO.QM2

The channel initiator uses this process information to start channel
QM1.TO.QM2.

Note: From MQSeries for AS/400 V5.1 onwards, the need for a process
definition can be eliminated by specifying the channel name in the
TRIGDATA attribute of the transmission queue.

Sender channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM1.TO.QM2
CHLTYPE *SDR
TRPTYPE *TCP
TEXT ‘Sender channel to QM2’
TMQNAME QM2
CONNAME ‘9.20.9.32(1412)’

Planning example for OS/400

Chapter 34. Message channel planning example for OS/400 479

|

|
|
|

|

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM2.TO.QM1
CHLTYPE *RCVR
TRPTYPE *TCP
TEXT ‘Receiver channel from QM2’

Reply-to queue definition
The CRTMQMQ command with the following attributes:

QNAME PAYROLL.REPLY
QTYPE *LCL
TEXT ‘Reply queue for replies to query messages sent to QM2’
PUTENBL *YES
GETENBL *YES

The reply-to queue is defined as PUT(ENABLED). This ensures that reply
messages can be put to the queue. If the replies cannot be put to the
reply-to queue, they are sent to the dead-letter queue on QM1 or, if this
queue is not available, remain on transmission queue QM1 on queue
manager QM2. The queue has been defined as GET(ENABLED) to allow
the reply messages to be retrieved.

Queue manager QM2 example
The following object definitions allow applications connected to queue manager
QM2 to retrieve request messages from a local queue called PAYROLL, and to put
replies to these request messages to a queue called PAYROLL.REPLY on queue
manager QM1.

You do not need to provide a remote queue definition to enable the replies to be
returned to QM1. The message descriptor of the message retrieved from local
queue PAYROLL contains both the reply-to queue and the reply-to queue manager
names. Therefore, as long as QM2 can resolve the reply-to queue manager name to
that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue
manager QM2 simply requires a transmission queue of the same name.

All the object definitions have been provided with the TEXT attribute and are the
minimum required to make the example work. The attributes that are not supplied
take the default values for queue manager QM2.

Run the following commands on queue manager QM2:

Local queue definition
The CRTMQMQ command with the following attributes:

QNAME PAYROLL
QTYPE *LCL
TEXT ‘Local queue for QM1 payroll details’
PUTENBL *YES
GETENBL *YES

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the
same reason as the reply-to queue definition on queue manager QM1.

Planning example for OS/400

480 MQSeries Intercommunication

Transmission queue definition
The CRTMQMQ command with the following attributes:

QNAME QM1
QTYPE *LCL
TEXT ‘Transmission queue to QM1’
USAGE *TMQ
PUTENBL *YES
GETENBL *YES
TRGENBL *YES
TRGTYPE *FIRST
INITQNAME SYSTEM.CHANNEL.INITQ
PRCNAME QM2.TO.QM1.PROCESS

When the first message is put on this transmission queue, a trigger
message is sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The
channel initiator gets the message from the initiation queue and starts the
channel identified in the named process.

Process definition
The CRTMQMPRC command with the following attributes:

PRCNAME QM2.TO.QM1.PROCESS
TEXT ‘Process for starting channel’
APPTYPE *OS400
APPID ‘AMQRMCLA’
USRDATA QM2.TO.QM1

The channel initiator uses this process information to start channel
QM2.TO.QM1.

Note: For MQSeries for AS/400 V5.1, the need for a process definition can
be eliminated by specifying the channel name in the TRIGDATA
attribute of the transmission queue.

Sender channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM2.TO.QM1
CHLTYPE *SDR
TRPTYPE *TCP
TEXT ‘Sender channel to QM1’
TMQNAME QM1
CONNAME ‘9.20.9.31(1411)’

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM1.TO.QM2
CHLTYPE *RCVR
TRPTYPE *TCP
TEXT ‘Receiver channel from QM1’

Planning example for OS/400

Chapter 34. Message channel planning example for OS/400 481

|

|
|
|

|

Running the example
When you have created the required objects, you must:
v Start the channel initiator for both queue managers
v Start the listener for both queue managers

The applications can then send messages to each other. The channels are triggered
to start by the first message arriving on each transmission queue, so you do not
need to issue the STRMQMCHL command.

For details about starting a channel initiator and a listener see “Chapter 30.
Monitoring and controlling channels in MQSeries for AS/400” on page 423.

Expanding this example
This example can be expanded by:
v Adding more queue, process, and channel definitions to allow other applications

to send messages between the two queue managers.
v Adding user exit programs on the channels to allow for link encryption, security

checking, or additional message processing.
v Using queue manager aliases and reply-to queue aliases to understand more

about how these can be used in the organization of your queue manager
network.

For a version of this example that uses MQSC commands, see “Chapter 25.
Message channel planning example for OS/390” on page 345.

Planning example for OS/400

482 MQSeries Intercommunication

Part 6. DQM in MQSeries for VSE/ESA

Chapter 35. Example configuration - MQSeries
for VSE/ESA 485
Configuration parameters for an LU 6.2 connection 485

Configuration worksheet 485
Explanation of terms 487

Establishing an LU 6.2 connection 488
Defining a connection 488
Defining a session 488
Installing the new group definition 489
What next? 489

Establishing a TCP connection. 490
MQSeries for VSE/ESA configuration 490

Configuring channels. 490
MQSeries for VSE/ESA sender-channel
definitions 492
MQSeries for VSE/ESA receiver-channel
definitions 493

Defining a local queue 493
Defining a remote queue 495
Defining a SNA LU 6.2 sender channel 497
Defining a SNA LU6.2 receiver channel. . . . 498
Defining a TCP/IP sender channel 500
Defining a TCP receiver channel 501

This part of the book describes an example configuration for MQSeries for
VSE/ESA.

© Copyright IBM Corp. 1993, 2000 483

DQM in MQSeries for VSE/ESA

484 MQSeries Intercommunication

Chapter 35. Example configuration - MQSeries for VSE/ESA

This chapter gives an example of how to set up communication links from
MQSeries for VSE/ESA to MQSeries products on the following platforms:
v OS/2
v Windows NT
v AIX
v Digital UNIX
v HP-UX
v AT&T GIS UNIX9

v Sun Solaris
v OS/400
v OS/390 or MVS/ESA without CICS

It describes the parameters needed for an LU 6.2 and TCP connection. Once the
connection is established, you need to define some channels to complete the
configuration. This is described in “MQSeries for VSE/ESA configuration” on
page 490.

Configuration parameters for an LU 6.2 connection
Table 44 presents a worksheet listing all the parameters needed to set up
communication from VSE/ESA to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

Configuration worksheet
Use the following worksheet to record the values you will use for this
configuration. Where numbers appear in the Reference column they indicate that
the value must match that in the appropriate worksheet elsewhere in this book.
The examples that follow in this chapter refer back to the values in the ID column
of this table. The entries in the Parameter Name column are explained in
“Explanation of terms” on page 487.

Table 44. Configuration worksheet for VSE/ESA using APPC

ID Parameter Name Reference Example Used User Value

Definition for local node

«1¬ Network ID NETID

«2¬ Node name VSEPU

«3¬ Local LU name VSELU

«4¬ Local Transaction Program name MQ01 MQ01

«5¬ LAN destination address 400074511092

Connection to an OS/2 system

The values in this section of the table must match those used in the table for OS/2, as indicated.

9. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993, 2000 485

|

Table 44. Configuration worksheet for VSE/ESA using APPC (continued)

ID Parameter Name Reference Example Used User Value

«6¬ Connection name OS2

«7¬ Group name EXAMPLE

«8¬ Session name OS2SESS

«9¬ Netname «6¬ OS2LU

Connection to a Windows NT system

The values in this section of the table must match those used in the table for Windows NT, as indicated.

«6¬ Connection name WNT

«7¬ Group name EXAMPLE

«8¬ Session name WNTSESS

«9¬ Netname «5¬ WINNTLU

Connection to an AIX system

The values in this section of the table must match those used in the table for AIX, as indicated.

«6¬ Connection name AIX

«7¬ Group name EXAMPLE

«8¬ Session name AIXSESS

«9¬ Netname «4¬ AIXLU

Connection to an HP-UX system

The values in this section of the table must match those used in the table for HP-UX, as indicated.

«6¬ Connection name HPUX

«7¬ Group name EXAMPLE

«8¬ Session name HPUXSESS

«9¬ Netname «5¬ HPUXLU

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in the table for GIS UNIX, as indicated.

«6¬ Connection name GIS

«7¬ Group name EXAMPLE

«8¬ Session name GISSESS

«9¬ Netname «4¬ GISLU

Connection to a Sun Solaris system

The values in this section of the table must match those used in the table for Sun Solaris, as indicated.

«6¬ Connection name SOL

«7¬ Group name EXAMPLE

«8¬ Session name SOLSESS

«9¬ Netname «7¬ SOLARLU

Connection to an AS/400 system

The values in this section of the table must match those used in the table for AS/400, as indicated.

«6¬ Connection name AS4

«7¬ Group name EXAMPLE

«8¬ Session name AS4SESS

«9¬ Netname «3¬ AS400LU

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in the table for OS/390, as indicated.

«6¬ Connection name MVS

VSE/ESA and LU 6.2

486 MQSeries Intercommunication

Table 44. Configuration worksheet for VSE/ESA using APPC (continued)

ID Parameter Name Reference Example Used User Value

«7¬ Group name EXAMPLE

«8¬ Session name MVSSESS

«9¬ Netname «4¬ MVSLU

Explanation of terms
«1¬ Network ID

This is the unique ID of the network to which you are connected. Your
system administrator will tell you this value.

«2¬ Node name
This is the name of the SSCP which owns the CICS/VSE region.

«3¬ Local LU name
This is the unique VTAM APPLID of this CICS/VSE region.

«4¬ Transaction Program name
MQSeries applications trying to converse with this queue manager will
specify a transaction name for the program to be run at the receiving end.
This will have been defined on the channel definition at the sender.
MQSeries for VSE/ESA uses a name of MQ01.

«5¬ LAN destination address
This is the LAN destination address that your partner nodes will use to
communicate with this host. It is usually the address of the 3745 on the
same LAN as the partner node.

«6¬ Connection name
This is a 4-character name by which each connection will be individually
known in CICS RDO.

«7¬ Group name
You choose your own 8-character name for this value. Your system may
already have a group defined for connections to partner nodes. Your
system administrator will give you a value to use.

«8¬ Session name
This is an 8-character name by which each session will be individually
known. For clarity we use the connection name, concatenated with ’SESS’.

«9¬ Netname
This is the LU name of the MQSeries queue manager on the system with
which you are setting up communication.

VSE/ESA and LU 6.2

Chapter 35. Example configuration - MQSeries for VSE/ESA 487

Establishing an LU 6.2 connection
This example is for a connection to an OS/2 system. The steps are the same
whatever platform you are using; change the values as appropriate.

Defining a connection
1. At a CICS command line type CEDA DEF CONN(connection name)

GROUP(group name) (where connection name is «6¬ and group name is «7¬). For
example:
CEDA DEF CONN(OS2) GROUP(EXAMPLE)

2. Press Enter to define a connection to CICS.

3. On the panel change the Netname field in the CONNECTION IDENTIFIERS
section to be the LU name («9¬) of the target system.

4. In the CONNECTION PROPERTIES section set the ACcessmethod field to Vtam
and the Protocol to Appc.

5. Press Enter to make the change.

Defining a session
1. At a CICS command line type CEDA DEF SESS(session name)

GROUP(group name) (where session name is «8¬ and group name is «7¬). For
example:
CEDA DEF SESS(OS2SESS) GROUP(EXAMPLE)

2. Press Enter to define a session for the connection.

DEF CONN(OS2) GROUP(EXAMPLE)
OVERTYPE TO MODIFY
CEDA DEFine
Connection : OS2
Group : EXAMPLE
DEscription ==>
CONNECTION IDENTIFIERS
Netname ==> OS2LU
INDsys ==>
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
CONNECTION PROPERTIES
ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm
Protocol ==> Appc Appc | Lu61
SInglesess ==> No No | Yes
DAtastream ==> User User | 3270 | SCs | STrfield | Lms
RECordformat ==> U U | Vb
OPERATIONAL PROPERTIES

+ AUtoconnect ==> Yes No | Yes | All
I New group EXAMPLE created.

DEFINE SUCCESSFUL TIME: 16.49.30 DATE: 96.054
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Establishing a connection

488 MQSeries Intercommunication

3. In the SESSION IDENTIFIERS section of the panel specify the Connection name
(«6¬) in the Connection field and set the MOdename to #INTER.

4. In the SESSION PROPERTIES section set the Protocol to Appc and the
MAximum field to 008 , 004.

Installing the new group definition
1. At a CICS command line type CEDA INS GROUP(group name) «7¬.
2. Press Enter to install the new group definition.

Note: If this connection group is already in use you may get severe errors
reported. If this happens, take the existing connections out of service,
retry the above group installation, and then set the connections in service
using the following commands:
a. CEMT I CONN
b. CEMT S CONN(*) OUTS
c. CEDA INS GROUP(group name)
d. CEMT S CONN(*) INS

What next?
The LU 6.2 connection is now established. You are ready to complete the
configuration. Go to “MQSeries for VSE/ESA configuration” on page 490.

DEF SESS(OS2SESS) GROUP(EXAMPLE)
OVERTYPE TO MODIFY
CEDA DEFine
Sessions ==> OS2SESS
Group ==> EXAMPLE
DEscription ==>
SESSION IDENTIFIERS
Connection ==> OS2
SESSName ==>
NETnameq ==>
MOdename ==> #INTER
SESSION PROPERTIES
Protocol ==> Appc Appc | Lu61
MAximum ==> 008 , 004 0-999
RECEIVEPfx ==>
RECEIVECount ==> 1-999
SENDPfx ==>
SENDCount ==> 1-999
SENDSize ==> 04096 1-30720

+ RECEIVESize ==> 04096 1-30720
S CONNECTION MUST BE SPECIFIED.

TIME: 14.23.19 DATE: 96.054
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Establishing a connection

Chapter 35. Example configuration - MQSeries for VSE/ESA 489

Establishing a TCP connection
TCP connections do not require the configuration of additional profiles as does the
LU 6.2 protocol. Instead, MQSeries for VSE/ESA processes the MQSeries listener
program during MQSeries startup.

The MQSeries listener program waits for remote TCP connection requests. As these
are received, the listener starts the receiver MCA to process the remote connection.
When the remote connection is received from a client program, the receiver MCA
starts the MQSeries server program.

Note: There is one MQSeries server process for each client connection.

Provided that the MQSeries listener is active and TCP is active in a VSE partition,
TCP connections can be established.

MQSeries for VSE/ESA configuration
Configuring MQSeries for VSE/ESA involves the following tasks:
v Configuring channels
v Defining a local queue
v Defining a remote queue
v Defining a sender channel
v Defining a receiver channel

Configuring channels
Examples are given for connecting MQSeries for VSE/ESA and MQSeries for OS/2
Warp. If you wish connect to another MQSeries platform use the appropriate set of
values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects
throughout this book. All others are keywords and should be entered as
shown.

Refer to the sections “Defining a local queue” on page 493 and “Defining a remote
queue” on page 495 for details of how to create queue definitions, and “Defining a
SNA LU 6.2 sender channel” on page 497 and “Defining a SNA LU6.2 receiver
channel” on page 498 for details of how to create channels.

Table 45. Configuration worksheet for MQSeries for VSE/ESA

ID Parameter Name Reference Example Used User Value

Definition for local node

«A¬ Queue Manager Name VSE

«B¬ Local queue name VSE.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in the worksheet table for OS/2, as indicated.

«C¬ Remote queue manager name «A¬ OS2

«D¬ Remote queue name OS2.REMOTEQ

«E¬ Queue name at remote system «B¬ OS2.LOCALQ

«F¬ Transmission queue name OS2

«G¬ Sender channel name VSE.OS2.SNA

TCP connection

490 MQSeries Intercommunication

Table 45. Configuration worksheet for MQSeries for VSE/ESA (continued)

ID Parameter Name Reference Example Used User Value

«I¬ Receiver channel name «G¬ OS2.VSE.SNA

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in the worksheet table for Windows NT, as indicated.

«C¬ Remote queue manager name «A¬ WINNT

«D¬ Remote queue name WINNT.REMOTEQ

«E¬ Queue name at remote system «B¬ WINNT.LOCALQ

«F¬ Transmission queue name WINNT

«G¬ Sender channel name VSE.WINNT.SNA

«I¬ Receiver channel name «G¬ WINNT.VSE.SNA

Connection to MQSeries for AIX

The values in this section of the table must match those used in the worksheet table for AIX, as indicated.

«C¬ Remote queue manager name AIX

«D¬ Remote queue name AIX.REMOTEQ

«E¬ Queue name at remote system «B¬ AIX.LOCALQ

«F¬ Transmission queue name AIX

«G¬ Sender channel name VSE.AIX.SNA

«I¬ Receiver channel name «G¬ AIX.VSE.SNA

Connection to MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

The values in this section of the table must match those used in the worksheet table for Digital UNIX, as indicated.

«C¬ Remote queue manager name DECUX

«D¬ Remote queue name DECUX.REMOTEQ

«E¬ Queue name at remote system «B¬ DECUX.LOCALQ

«F¬ Transmission queue name DECUX

«H¬ Sender (TCP) channel name DECUX.VSE.TCP

«I¬ Receiver channel name «J¬ VSE.DECUX.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in the worksheet table for HP-UX, as indicated.

«C¬ Remote queue manager name HPUX

«D¬ Remote queue name HPUX.REMOTEQ

«E¬ Queue name at remote system «B¬ HPUX.LOCALQ

«F¬ Transmission queue name HPUX

«G¬ Sender channel name VSE.HPUX.SNA

«I¬ Receiver channel name «G¬ HPUX.VSE.SNA

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in the worksheet table for GIS UNIX, as indicated.

«C¬ Remote queue manager name GIS

«D¬ Remote queue name GIS.REMOTEQ

«E¬ Queue name at remote system «B¬ GIS.LOCALQ

«F¬ Transmission queue name GIS

«G¬ Sender channel name VSE.GIS.SNA

«I¬ Receiver channel name «G¬ GIS.VSE.SNA

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in the worksheet table for Sun Solaris, as indicated.

VSE/ESA configuration

Chapter 35. Example configuration - MQSeries for VSE/ESA 491

|

|

|||||

|||||

|||||

|||||

|||||

|||||

Table 45. Configuration worksheet for MQSeries for VSE/ESA (continued)

ID Parameter Name Reference Example Used User Value

«C¬ Remote queue manager name SOLARIS

«D¬ Remote queue name SOLARIS.REMOTEQ

«E¬ Queue name at remote system «B¬ SOLARIS.LOCALQ

«F¬ Transmission queue name SOLARIS

«G¬ Sender channel name VSE.SOLARIS.SNA

«I¬ Receiver channel name «G¬ SOLARIS.VSE.SNA

Connection to MQSeries for AS/400

The values in this section of the table must match those used in the worksheet table for AS/400, as indicated.

«C¬ Remote queue manager name AS400

«D¬ Remote queue name AS400.REMOTEQ

«E¬ Queue name at remote system «B¬ AS400.LOCALQ

«F¬ Transmission queue name AS400

«G¬ Sender channel name VSE.AS400.SNA

«I¬ Receiver channel name «G¬ AS400.VSE.SNA

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in the worksheet table for OS/390, as indicated.

«C¬ Remote queue manager name MVS

«D¬ Remote queue name MVS.REMOTEQ

«E¬ Queue name at remote system «B¬ MVS.LOCALQ

«F¬ Transmission queue name MVS

«G¬ Sender channel name VSE.MVS.SNA

«I¬ Receiver channel name «G¬ MVS.VSE.SNA

For TCP, the sender channel name «G¬ and the receiver channel name «I¬, in the
preceding table, can be VSE.sys.tcp and sys.VSE.TCP respectively.

In both cases sys represents the remote system name, for example, OS2. Therefore,
in this case, «G¬ becomes VSE.OS2.TCP and «I¬ becomes OS2.VSE.TCP.

MQSeries for VSE/ESA sender-channel definitions
Local Queue

Object Type : L
Object Name : OS2 «F¬

Usage Mode: T (Transmission)

Remote Queue
Object Type : R
Object Name : OS2.REMOTEQ «D¬

Remote QUEUE Name : OS2.LOCALQ «E¬
Remote QM Name : OS2 «C¬
Transmission Name : OS2 «F¬

Sender Channel
Channel name : VSE.OS2.SNA «G¬
Channel type : S (Sender)

Transmission queue name : OS2 «F¬
Remote Task ID : MQTP

Connection name : OS2 «6¬

VSE/ESA configuration

492 MQSeries Intercommunication

MQSeries for VSE/ESA receiver-channel definitions
Local Queue

Object type : QLOCAL
Object Name : VSE.LOCALQ «B¬
Usage Mode : N (Normal)

Receiver Channel
Channel name : OS2.VSE.SNA «I¬
Channel type : R (Receiver)

Defining a local queue
1. Run the MQSeries master terminal transaction MQMT.

2. Select option 1 to configure.

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:50:25 *** Master Terminal Main Menu *** VSE1
MQMMTP A004

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option:

Function completed - please enter a new request.
5686-A06 (C) Copyright IBM Corp. 1999 All Rights Reserved.
CLEAR/PF3 = Exit ENTER=Select

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:52:21 *** Configuration Main Menu *** VSE1
MQMMCFG A004

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions

Display Options :
4. Global System Definition
5. Queue Definitions
6. Channel Definitions

Option:

Please enter one of the options listed.
5686-A06 (C) Copyright IBM Corp. 1999 All Rights Reserved.

ENTER = Process PF2 = Main Menu PF3 = Quit

VSE/ESA configuration

Chapter 35. Example configuration - MQSeries for VSE/ESA 493

3. Select option 2 to work with queue definitions.

4. Select an Object type of L and specify the name of the queue.
5. Press PF5.

6. Press PF5 again.

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:55:12 Queue Main Options VSE1
MQMMQUE A004

SYSTEM IS ACTIVE

Default Q Manager : VSEP

Object Type: L L=Local Q, R=Remote Q, AQ=Alias Queue,
AM=Alias Manager,
AR=Alias Reply Q

Object Name: VSE.LOCALQ

ENTER NEEDED INFORMATION.

PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update
PF9 = List PF11= Reorg. PF12= Delete

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:56:10 Queue Definition Record VSE1
MQMMQUE QM - VSEP A004

LOCAL QUEUE DEFINITION

Object Name. : VSE.LOCALQ
Description line 1 :
Description line 2 :

Put Enabled : Y Y=Yes, N=No
Get Enabled : Y Y=Yes, N=No

Default Inbound status . . : A Outbound .. : A A=Active,I=Inactive

Dual Update Queue:

Automatic Reorganize (Y/N) : N

Record being added - Press ADD key again.

PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update
PF9 = List PF10= Queue PF11= Reorg. PF12= Delete

VSE/ESA configuration

494 MQSeries Intercommunication

7. Specify the name of a CICS file to store messages for this queue.
8. If you are creating a transmission queue, specify a Usage Mode of T, a Program

ID of MQPSEND, and a Channel Name<«G¬>.
For a normal queue specify a Usage Mode of N.

9. Press PF5 again.

Defining a remote queue
1. Run the MQSeries master terminal transaction MQMT.

2. Select option 1 to configure.

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:57:26 Queue Extended Definition VSE1
MQMMQUE QM - VSEP A004
Object Name. : VSE.LOCALQ

Physical Queue Information
Usage Mode : N N=Normal, T=Transmission
Share Mode : Y Y=Yes, N=No
Physical File Name : ** FILE NOT DEFINED

Maximum Values
Maximum Q Depth. : 01000000 Global Lock Entries . : 00001000
Maximum Message Length . . : 01000000 Local Lock Entries. . : 00001000
Maximum Concurrent Accesses: 00000100 Checkpoint Threshold : 1000

Trigger Information
Trigger Enable : N Y=yes, N=No
Trigger Type : F=First, E=Every
Maximum Trigger Starts . . : 0001
Allow Restart of Trigger : N Y=Yes, N=No
Trans ID : Term ID:
Program ID : Channel Name:

***** File not found *****
PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update

PF9 = List PF10= Queue PF11= Reorg. PF12= Delete

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:50:25 *** Master Terminal Main Menu *** VSE1
MQMMTP A004

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option:

Function completed - please enter a new request.
5686-A06 (C) Copyright IBM Corp. 1999 All Rights Reserved.
CLEAR/PF3 = Exit ENTER=Select

VSE/ESA configuration

Chapter 35. Example configuration - MQSeries for VSE/ESA 495

3. Select option 2 to work with queue definitions.

4. Select an Object type of R and specify the name of the queue.
5. Press PF5.

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:52:21 *** Configuration Main Menu *** VSE1
MQMMCFG A004

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions

Display Options :
4. Global System Definition
5. Queue Definitions
6. Channel Definitions

Option:

Please enter one of the options listed.
5686-A06 (C) Copyright IBM Corp. 1999 All Rights Reserved.

ENTER = Process PF2 = Main Menu PF3 = Quit

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:59:30 Queue Main Options VSE1
MQMMQUE A004

SYSTEM IS ACTIVE

Default Q Manager : VSEP

Object Type: R L=Local Q, R=Remote Q, AQ=Alias Queue,
AM=Alias Manager,
AR=Alias Reply Q

Object Name: OS2.REMOTEQ

ENTER NEEDED INFORMATION.

PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update
PF9 = List PF11= Reorg. PF12= Delete

VSE/ESA configuration

496 MQSeries Intercommunication

6. Specify a remote queue name, remote queue manager name, and transmission
queue name.

7. Press PF5.

Defining a SNA LU 6.2 sender channel
1. Run the MQSeries master terminal transaction MQMT.

2. Select option 1 to configure.

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
20:00:25 Queue Definition Record VSE1
MQMMQUE QM - VSEP A004

REMOTE QUEUE DEFINITION

Object Name. : OS2.REMOTEQ
Description line 1 :
Description line 2 :

Put Enabled : Y Y=Yes, N=No
Get Enabled : Y Y=Yes, N=No

Remote Queue Name: OS2.LOCALQ
Remote QM Name.: OS2
Transmission Q Name: OS2

Record being added - Press ADD key again.

PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update
PF9 = List PF10= Queue PF11= Reorg. PF12= Delete

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:50:25 *** Master Terminal Main Menu *** VSE1
MQMMTP A004

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option:

Function completed - please enter a new request.
5686-A06 (C) Copyright IBM Corp. 1999 All Rights Reserved.
CLEAR/PF3 = Exit ENTER=Select

VSE/ESA configuration

Chapter 35. Example configuration - MQSeries for VSE/ESA 497

3. Select option 3 to work with channel definitions.

4. Complete the parameter fields as indicated, specifically the fields Name<«G¬>,
Type, Partner, Transmission Queue Name<«F¬>, and TP Name.
All other parameters can be entered as shown.
Note that the default value for sequence number wrap is 999999, whereas for
Version 2 MQSeries products, this value defaults to 999999999.

5. Press PF5.

Defining a SNA LU6.2 receiver channel
1. Run the MQSeries master terminal transaction MQMT.

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:52:21 *** Configuration Main Menu *** VSE1
MQMMCFG A004

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions

Display Options :
4. Global System Definition
5. Queue Definitions
6. Channel Definitions

Option:

Please enter one of the options listed.
5686-A06 (C) Copyright IBM Corp. 1999 All Rights Reserved.

ENTER = Process PF2 = Main Menu PF3 = Quit

10/08/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZR02
14:05:20 Channel Record DISPLAY SYSA
MQMMCHN Last Check Point Last Update 19981006 SFCA
MSN 00000000 Time 11:28:28 Interv 000000 Create Date 19980616
Name : RB01.DC01.SDRC.5006
Protocol : L (L/T) Port : 0000 Type : R (S/R/C)
Partner : MA02

Allocation Retries Get Retries
Number of Retries: 00000000 Number of Retries : 00000000
Delay Time - fast: 00000000 Delay Time : 00000005
Delay Time - slow: 00000000

Max Messages per Batch : 000001 Max Transmission Size : 03200
Message Sequence Wrap : 999999 Max Message Size : 0010240

Mess Seq Req(Y/N): Y Convers Cap (Y/N): Y Split Msg(Y/N): N

Transmission Queue Name :
TP Name:
Checkpoint Values: Frequency: 0000 Time Span: 0000
Enable(Y/N) Y Dead Letter Store(Y/N) Y
Channel record displayed.
PF2 =Menu PF3 =Quit PF4 =Read PF5 =Add PF6=Update PF9 =List PF12 =Delete

VSE/ESA configuration

498 MQSeries Intercommunication

2. Select option 1 to configure.

3. Select option 3 to work with channel definitions.

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:50:25 *** Master Terminal Main Menu *** VSE1
MQMMTP A004

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option:

Function completed - please enter a new request.
5686-A06 (C) Copyright IBM Corp. 1999 All Rights Reserved.
CLEAR/PF3 = Exit ENTER=Select

08/18/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
19:52:21 *** Configuration Main Menu *** VSE1
MQMMCFG A004

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions

Display Options :
4. Global System Definition
5. Queue Definitions
6. Channel Definitions

Option:

Please enter one of the options listed.
5686-A06 (C) Copyright IBM Corp. 1999 All Rights Reserved.

ENTER = Process PF2 = Main Menu PF3 = Quit

VSE/ESA configuration

Chapter 35. Example configuration - MQSeries for VSE/ESA 499

4. Complete the parameter fields as indicated, specifically the field Channel
name<«L¬>.
All other parameters can be entered as shown.

5. Press PF5.

Defining a TCP/IP sender channel
To define a TCP/IP sender channel, carry out the following procedure:
1. Run the MQSeries master terminal transaction MQMT.
2. Select option 1 to configure.
3. Select option 3 to work with channel definitions. The screen shown in

Figure 113 on page 501 is displayed:

08/19/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
07:29:03 Channel Record DISPLAY MCHN
MQMMCHN Last Check Point Last Update 19980805 A004
MSN 00000149 Time 17:52:32 Interv 000000 Create Date 19980528
Name : OS2.VSE.SNA
Protocol : L (L/T) Port : 0000 Type : R (S/R/C)
Partner :

Allocation Retries Get Retries
Number of Retries: 00000000 Number of Retries : 00000000
Delay Time - fast: 00000000 Delay Time : 00000000
Delay Time - slow: 00000000

Max Messages per Batch : 000001 Max Transmission Size : 032000
Message Sequence Wrap : 999999 Max Message Size : 008192

Mess Seq Req(Y/N): Y Convers Cap (Y/N): Y Split Msg(Y/N): N

Transmission Queue Name :
TP Name:
Checkpoint Values: Frequency: 0000 Time Span: 0000
Enable(Y/N) Y Dead Letter Store(Y/N) Y
Channel record displayed.
PF2 =Menu PF3 =Quit PF4 =Read PF5 =Add PF6=Update PF9 =List PF12 =Delete

VSE/ESA configuration

500 MQSeries Intercommunication

4. Complete the parameter fields as follows:
v Channel name – «G¬ on the configuration worksheet.
v Partner – should contain the IP address of the remote host, for example,

1.20.33.444.
v Port – the port number must match the port number configured for the

remote host. This is configured in the global system definition of the remote
host. The default port number for MQSeries for VSE/ESA is 1414.

v Transmission queue name – «F¬ on the configuration worksheet.
v Protocol – enter T for TCP.
v Channel type – enter S for sender.

Notes:

a. The TP Name is not used by TCP channels.
b. Ensure that the parameter field values match the values of the receiver

channel definition of the same name on the remote host.
5. Press PF5 (Add) to add the new channel definition.

Defining a TCP receiver channel
To define a TCP receiver channel, carry out the following procedure:
1. Run the MQSeries master terminal transaction MQMT.
2. Select option 1 to configure.
3. Select option 3 to work with channel definitions. The screen shown in

Figure 113 is displayed.
4. Complete the parameter fields as follows:
v Channel name – «G¬ on the configuration worksheet.
v Protocol – enter T for TCP.
v Channel type – enter R for receiver.

07/16/1998 IBM MQSeries for VSE/ESA Version 2.1.0 IYBPZS01
08:03:53 Channel Record DISPLAY MCHN
MQMMCHN Last Check Point Last Update 00000000 A005
MSN 00000002 Time 07:10:22 Interv 000000 Create Date 19980528
Name : SD01_TCP_VSEP
Protocol : T (L/T) Port : 1414 Type : S (S/R/C)
Partner :

Allocation Retries Get Retries
Number of Retries: 00000000 Number of Retries : 00000000
Delay Time - fast: 00000000 Delay Time : 00000000
Delay Time - slow: 00000000

Max Messages per Batch : 000001 Max Transmission Size : 032000
Message Sequence Wrap : 999999 Max Message Size : 008192

Mess Seq Req(Y/N): Y Convers Cap (Y/N): Y Split Mssg(Y/N): N

Transmission Queue Name :
TP Name:
Checkpoint Values: Frequency: 0000 Time Span: 0000
Enable(Y/N) Y Dead Letter Store(Y/N) N
Channel record displayed.
PF2 =Menu PF3 =Quit PF4 =Read PF5 =Add PF6=Update PF9 =List PF12 =Delete

Figure 113. Channel configuration panel

VSE/ESA configuration

Chapter 35. Example configuration - MQSeries for VSE/ESA 501

Notes:

a. The Partner and Port are not required for a TCP receiver channel.
b. The TP Name is not used by TCP channels.
c. Ensure that the parameter field values match the values of the sender

channel definition of the same name on the remote host.
5. Press PF5 (Add) to add the new channel definition.

VSE/ESA configuration

502 MQSeries Intercommunication

Part 7. Further intercommunication considerations

Chapter 36. Channel-exit programs 505
What are channel-exit programs? 505

Processing overview 506
Channel security exit programs 507
Channel send and receive exit programs . . . 512
Channel message exit programs 514
Channel message retry exit program. 516
Channel auto-definition exit program 516
Transport-retry exit program 517

Writing and compiling channel-exit programs . . 518
MQSeries for OS/390 without CICS 520
MQSeries for OS/390 using CICS. 521
MQSeries for AS/400 521
MQSeries for OS/2 Warp 522
Windows 3.1 client 524
MQSeries for Windows NT server, MQSeries
client for Windows NT, and MQSeries client for
Windows 95 and Windows 98 524
MQSeries for Windows 526
MQSeries for AIX 526
MQSeries for Compaq (DIGITAL) OpenVMS 528
MQSeries for DIGITAL UNIX (Compaq Tru64
UNIX) 529
MQSeries for HP-UX 530
MQSeries for AT&T GIS UNIX 531
MQSeries for Sun Solaris 532
MQSeries for SINIX and DC/OSx 532
MQSeries for Tandem NonStop Kernel 533

Building and using channel exit functions 534
Supplied channel-exit programs using DCE
security services 537

What do the DCE channel-exit programs do? 537
How do the DCE channel-exit programs work? 538
How to use the DCE channel-exit programs . . 540

Setup for DCE 540
The supplied exit code 541
Using DCE channel exits with the runmqlsr
listener program 542

Chapter 37. Channel-exit calls and data
structures 543
Data definition files 544
MQ_CHANNEL_EXIT - Channel exit 546

Syntax. 546
Parameters 546
Usage notes 548
C invocation. 549
COBOL invocation 549
PL/I invocation 549
RPG invocation (ILE) 549
RPG invocation (OPM) 550
System/390® assembler invocation 550

MQ_CHANNEL_AUTO_DEF_EXIT - Channel
auto-definition exit 551

Syntax. 551
Parameters 551

Usage notes 551
C invocation. 552
COBOL invocation 552
RPG invocation (ILE) 552
RPG invocation (OPM) 552
System/390 assembler invocation. 552

MQXWAIT - Wait 553
Syntax. 553
Parameters 553
C invocation. 554
System/390 assembler invocation. 554

MQ_TRANSPORT_EXIT - Transport retry exit . . 555
Syntax. 555
Parameters 555
Usage notes 555
C invocation. 555

MQCD - Channel data structure 556
Fields 558
C declaration 580
COBOL declaration 582
PL/I declaration 584
ILE RPG declaration 585
OPM RPG declaration 587
System/390 assembler declaration 589

MQCXP - Channel exit parameter structure . . . 591
Fields 591
C declaration 601
COBOL declaration 601
PL/I declaration 602
ILE RPG declaration 602
OPM RPG declaration 603
System/390 assembler declaration 604

MQTXP - Transport-exit data structure 605
Fields 605
C declaration 608

MQXWD - Exit wait descriptor structure 609
Fields 609
C declaration 610
System/390 assembler declaration 610

Chapter 38. Problem determination in DQM . . 611
Error message from channel control 611
Ping 611
Dead-letter queue considerations 612
Validation checks 612
In-doubt relationship 613
Channel startup negotiation errors 613
When a channel refuses to run 613

Triggered channels 614
Conversion failure. 615
Network problems 615
Dial-up problems 615

Retrying the link 615
Retry considerations 615

Data structures 616
User exit problems 616

© Copyright IBM Corp. 1993, 2000 503

|
||

||

Disaster recovery 616
Channel switching. 617
Connection switching. 617
Client problems 617

Terminating clients 617
Error logs 618

Error logs for OS/2 and Windows NT 618

Error logs on UNIX systems 618
Error logs on DOS, Windows 3.1, and Windows
95 and Windows 98 clients 618
Error logs on OS/390. 619
Error logs on MQSeries for Windows 619
Error logs on MQSeries for VSE/ESA 619
Error logs on MQSeries for Tandem NSK . . . 619

This part of the book is about creating installation-specific user-exit programs, and
solving problems with your MQSeries system. The description is not
platform-specific. Where some details apply only to certain platforms, this is made
clear. Most of the OS/390 information here applies equally to MVS/ESA.

Further intercommunication considerations

504 MQSeries Intercommunication

||

Chapter 36. Channel-exit programs

This chapter discusses MQSeries channel-exit programs. This is product-sensitive
programming interface information. The following topics are covered:
v “What are channel-exit programs?”
v “Writing and compiling channel-exit programs” on page 518
v “Supplied channel-exit programs using DCE security services” on page 537

Message channel agents (MCAs) can also call data-conversion exits; these are
discussed in the MQSeries Application Programming Guide.

Note: Channel exit programs are not supported on DOS or VSE/ESA.

What are channel-exit programs?
Channel-exit programs are called at defined places in the processing carried out by
MCA programs.

Some of these user-exit programs work in complementary pairs. For example, if a
user-exit program is called by the sending MCA to encrypt the messages for
transmission, the complementary process must be functioning at the receiving end
to reverse the process.

The different types of channel-exit program are described below. Table 46 shows
the types of channel exit that are available for each channel type.

Table 46. Channel exits available for each channel type

Channel Type Message exit Message-
retry exit

Receive exit Security exit Send exit Auto-
definition exit

Transport-
retry exit

Sender
channel

U U U U U

Server channel U U U U U

Cluster-
sender channel

U U U U U

Receiver
channel

U U U U U U U

Requester
channel

U U U U U U

Cluster-
receiver
channel

U U U U U U

Client-
connection
channel

U U U

Server-
connection
channel

U U U U

Notes:

1. The message-retry exit does not apply to MQSeries for OS/390 or MQSeries for Windows.

2. The auto-definition exit applies to V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT and
MQSeries for OS/390 (cluster-sender channels only).

3. The transport-retry exit applies to MQSeries for AIX V5.1 and MQSeries for Windows V2.0 only.

© Copyright IBM Corp. 1993, 2000 505

If you are going to run channel exits on a client, you cannot use the MQSERVER
environment variable. Instead, create and reference a client channel definition table
as described in the MQSeries Clients book.

Processing overview
On startup, the MCAs exchange a startup dialog to synchronize processing. Then
they switch to a data exchange that includes the security exits; these must end
successfully for the startup phase to complete and to allow messages to be
transferred.

The security check phase is a loop, as shown in Figure 114.

During the message transfer phase, the sending MCA gets messages from a
transmission queue, calls the message exit, calls the send exit, and then sends the
message to the receiving MCA, as shown in Figure 115.

Sender-
S erver

C om m s
link

R ece iver-
Requester

SecuritySecurity

Exit ExitM C A M C A

Local system Adjacent system

Figure 114. Security exit loop

App lica tion

M C A

C om m s
link

Exit

Exit

Queue transm iss ion

Send

M essage
(get)

Figure 115. Example of a send exit at the sender end of message channel

Channel-exit programs

506 MQSeries Intercommunication

The receiving MCA receives a message from the communications link, calls the
receive exit, calls the message exit, and then puts the message on the local queue,
as shown in Figure 116. (The receive exit can be called more than once before the
message exit is called.)

Channel security exit programs
You can use security exit programs to verify that the partner at the other end of a
channel is genuine.

Channel security exit programs are called at the following places in an MCA’s
processing cycle:
v At MCA initiation and termination.
v Immediately after the initial data negotiation is finished on channel startup. The

receiver or server end of the channel may initiate a security message exchange
with the remote end by providing a message to be delivered to the security exit
at the remote end. It may also decline to do so. The exit program is re-invoked
to process any security message received from the remote end.

v Immediately after the initial data negotiation is finished on channel startup. The
sender or requester end of the channel processes a security message received
from the remote end, or initiates a security exchange when the remote end
cannot. The exit program is re-invoked to process all subsequent security
messages that may be received.

A requester channel never gets called with MQXCC_INIT_SEC. The channel
notifies the server that it has a security exit program, and the server then has the
opportunity to initiate a security exit. If it does not have one, it sends a null
security flow to allow the requester to call its exit program.

Note: You are recommended to avoid sending zero-length security messages.

Application

MCA

Comms

link

Exit

Receive

Exit

Message

(put)

Queue Local

Figure 116. Example of a receive exit at the receiver end of message channel

Channel-exit programs

Chapter 36. Channel-exit programs 507

V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT and
the MQSeries client for Windows 95 and Windows 98 supply a security exit
program that uses the DCE security services. See “Supplied channel-exit programs
using DCE security services” on page 537.

Examples of the data exchanged by security-exit programs are illustrated in figures
117 through 120. These examples show the sequence of events that occur involving
the receiver’s security exit (left-hand column) and the sender’s security exit
(right-hand column). Successive rows in the figures represent the passage of time.
In some cases, the events at the receiver and sender are not correlated, and
therefore can occur at the same time or at different times. In other cases, an event
at one exit program results in a complementary event occurring later at the other
exit program. For example, in Figure 117 on page 509:
1. The receiver and sender are each invoked with MQXR_INIT, but these

invocations are not correlated and can therefore occur at the same time or at
different times.

2. The receiver is next invoked with MQXR_INIT_SEC, but returns MQXCC_OK
which requires no complementary event at the sender exit.

3. The sender is next invoked with MQXR_INIT_SEC. This is not correlated with
the invocation of the receiver with MQXR_INIT_SEC. The sender returns
MQXCC_SEND_SEC_MSG, which causes a complementary event at the
receiver exit.

4. The receiver is subsequently invoked with MQXR_SEC_MSG, and returns
MQXCC_SEND_SEC_MSG, which causes a complementary event at the sender
exit.

5. The sender is subsequently invoked with MQXR_SEC_MSG, and returns
MQXCC_OK which requires no complementary event at the receiver exit.

Channel-exit programs

508 MQSeries Intercommunication

|
|
|
|

Sender exitReceiver exit

Invoked with MQXR INIT

Responds with MQXCC OK

Invoked with MQXR INIT SEC

Responds with MQXCC OK

Invoked with MQXR SEC MSG

Responds with MQXCC SEND SEC MSG

Invoked with MQXR INIT

Responds with MQXCC OK

Invoked with MQXR INIT SEC

Responds with MQXCC SEND SEC MSG

Invoked with MQXR SEC MSG

Responds with MQXCC OK

Message transfer begins

Figure 117. Sender-initiated exchange with agreement

Channel-exit programs

Chapter 36. Channel-exit programs 509

Invoked with M QXR INIT

Responds with M QXCC OK

Invoked with MQXR INIT SEC

Responds with M QXCC OK

Invoked with MQXR SEC M SG

Responds with M QXCC OK

Invoked with M Q XR TERM

Responds with M QXCC OK

Invoked with M QXR INIT

Responds with M QXCC OK

Invoked with MQXR INIT SEC

Responds with MQXCC SEND SEC MSG

Invoked with MQXR SEC M SG

Responds with MQXCC SUPPRESS FUNCTION

Invoked with M Q XR TERM

Responds with M QXCC OK

Sender exitReceiver exit

Channel closes

Figure 118. Sender-initiated exchange with no agreement

Channel-exit programs

510 MQSeries Intercommunication

Sender exitReceiver exit

Invoked with MQXR INIT

Responds with MQXCC OK

Invoked with MQXR INIT SEC

Responds with MQXCC SEND SEC MSG

Invoked with MQXR SEC MSG

Responds with MQXCC OK

Invoked with MQXR TERM

Responds with MQXCC OK

Invoked with MQXR INIT

Responds with MQXCC OK

Invoked with MQXR SEC MSG

Responds with MQXCC SEND SEC MSG

Invoked with MQXR TERM

Responds with MQXCC OK

Message transfer begins

Figure 119. Receiver-initiated exchange with agreement

Receiver exit

Invokedwith MQXR_INIT

Responds with MQXCC_OK

Invokedwith MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG

Invokedwith MQXR_SEC_MSG

Responds with MQXCC_SUPRESS_FUNCTION

Sender exit

Invokedwith MQXR_INIT

Responds with MQXCC_OK

Invokedwith MQXR_SEC_MSG

Responds with MQXCC_OK

Channel closes

Figure 120. Receiver-initiated exchange with no agreement

Channel-exit programs

Chapter 36. Channel-exit programs 511

The channel security exit program is passed an agent buffer containing the security
data, excluding any transmission headers, generated by the security exit. This may
be any suitable data so that either end of the channel is able to perform security
validation.

The security exit program at both the sending and receiving end of the message
channel may return one of four response codes to any call:
v Security exchange ended with no errors
v Suppress the channel and close down
v Send a security message to the corresponding security exit at the remote end
v Send a security message and demand a reply (this does not apply on OS/390

when using CICS)

Notes:

1. The channel security exits usually work in pairs. When you define the
appropriate channels, make sure that compatible exit programs are named for
both ends of the channel.

2. In OS/400, security exit programs that have been compiled with “Use adopted
authority” (USEADPAUT=*YES) have the ability to adopt QMQM or
QMQMADM authority. Take care that the exit does not exploit this feature to
pose a security risk to your system.

Channel send and receive exit programs
You can use the send and receive exits to perform tasks such as data compression
and decompression. In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT, and with MQSeries clients, you can specify a list of
send and receive exit programs to be run in succession.

Channel send and receive exit programs are called at the following places in an
MCA’s processing cycle:
v The send and receive exit programs are called for initialization at MCA initiation

and for termination at MCA termination.
v The send exit program is invoked at either end of the channel, immediately

before a transmission is sent over the link.
v The receive exit program is invoked at either end of the channel, immediately

after a transmission has been taken from the link.

Note: For MQSeries for OS/390 using CICS, only the security exit is called at
MCA initiation; other exits are called with the ExitReason parameter set to
MQXR-INIT when the first message is sent across the channel.

There may be many transmissions for one message transfer, and there could be
many iterations of the send and receive exit programs before a message reaches the
message exit at the receiving end.

The channel send and receive exit programs are passed an agent buffer containing
the transmission data as sent or received from the communications link. For send
exit programs, the first eight bytes of the buffer are reserved for use by the MCA,
and must not be changed. If the program returns a different buffer, then these first
eight bytes must exist in the new buffer. The format of data presented to the exit
programs is not defined.

A good response code must be returned by send and receive exit programs. Any
other response will cause an MCA abnormal end (abend).

Channel-exit programs

512 MQSeries Intercommunication

|
|
|
|

|
|
|
|

Note: Do not issue an MQGET, MQPUT, or MQPUT1 call within syncpoint from a
send or receive exit.

V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT and
the MQSeries client for Windows 95 and Windows 98 supply send and receive exit
programs that use the DCE encryption security services. See “Supplied channel-exit
programs using DCE security services” on page 537.

Notes:

1. Send and receive exits usually work in pairs. For example a send exit may
compress the data and a receive exit decompress it, or a send exit may encrypt
the data and a receive exit decrypt it. When you define the appropriate
channels, make sure that compatible exit programs are named for both ends of
the channel.

2. Channel send and receive exits may be called for message segments other than
for application data, for example, status messages. They are not called during
the startup dialog, nor the security check phase.

3. Although message channels send messages in one direction only,
channel-control data flows in both directions, and these exits are available in
both directions, also. However, some of the initial channel startup data flows
are exempt from processing by any of the exits.

4. There are circumstances in which send and receive exits could be invoked out
of sequence; for example, if you are running a series of exit programs or if you
are also running security exits. Then, when the receive exit is first called upon
to process data, it may receive data that has not passed through the
corresponding send exit. If the receive exit were just to perform the operation,
for example decompression, without first checking that it was really required,
the results would be unexpected.
You should code your send and receive exits in such a way that the receive exit
can check that the data it is receiving has been processed by the corresponding
send exit. The recommended way to do this is to code your exit programs so
that:
v The send exit sets the value of the ninth byte of data to 0 and shifts all the

data along one byte, before performing the operation. (The first eight bytes
are reserved for use by the MCA.)

v If the receive exit receives data that has a 0 in byte 9, it knows that the data
has come from the send exit. It removes the 0, performs the complementary
operation, and shifts the resulting data back by one byte.

v If the receive exit receives data that has something other than 0 in byte 9, it
assumes that the send exit has not run, and sends the data back to the caller
unchanged.

When using security exits, if the channel is ended by the security exit it is
possible that a send exit may be called without the corresponding receive exit.
One way to prevent this from being a problem is to code the security exit to set
a flag, in MQCD.SecurityUserData or MQCD.SendUserData, for example, when
the exit decides to end the channel. Then the send exit should check this field,
and process the data only if the flag is not set. This prevents the send exit from
unnecessarily altering the data, and thus prevents any conversion errors that
could occur if the security exit received altered data.

5. In the case of MQI channels for clients, byte 10 of message data identifies the
API call in use when the send or receive exit is called. This is useful for
identifying which channel flows include user data and may require processing
such as encryption or digital signing.

Channel-exit programs

Chapter 36. Channel-exit programs 513

|
|
|
|
|
|
|
|

Table 47 shows the data that appears in byte 10 of the channel flow when an
API call is being processed.

Note: These are not the only values of this byte. There are other reserved
values.

Table 47. Identifying API calls

API call Value of byte 10

MQCONN request (5a, 5b) X’81’

MQCONN reply (5a, 5b) X’91’

MQDISC request (5a) X’82’

MQDISC reply (5a) X’92’

MQOPEN request (5c) X’83’

MQOPEN reply (5c) X’93’

MQCLOSE request X’84’

MQCLOSE reply X’94’

MQGET request (5d) X’85’

MQGET reply (5d) X’95’

MQPUT request (5d) X’86’

MQPUT reply (5d) X’96’

MQPUT1 request (5d) X’87’

MQPUT1 reply (5d) X’97’

MQSET request X’88’

MQSET reply X’98’

MQINQ request X’89’

MQINQ reply X’99’

MQCMIT request X’8A’

MQCMIT reply X’9A’

MQBACK request X’8B’

MQBACK reply X’9B’

Notes:

a. The connection between the client and server is initiated by the client application using
MQCONN. Therefore, for this command in particular, there will be several other
network flows. This also applies to MQDISC that terminates the network connection.

b. MQCONNX is treated in the same way as MQCONN for the purposes of the
client-server connection.

c. If a large distribution list is opened, there may be more than one network flow per
MQOPEN call in order to pass all of the required data to the SVRCONN MCA.

d. If the message data exceeds the transmission segment size, there may be a large
number of network flows per single API call.

Channel message exit programs
You can use the channel message exit for the following:
v Encryption on the link
v Validation of incoming user IDs
v Substitution of user IDs according to local policy
v Message data conversion

Channel-exit programs

514 MQSeries Intercommunication

v Journaling
v Reference message handling

In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, you can specify a list of message exit programs to be run in
succession.

Channel message exit programs are called at the following places in an MCA’s
processing cycle:
v At MCA initiation and termination
v Immediately after a sending MCA has issued an MQGET call
v Before a receiving MCA issues an MQPUT call

The message exit is passed an agent buffer containing the transmission queue
header, MQXQH, and the application message text as retrieved from the queue.
(The format of MQXQH is given in the MQSeries Application Programming Reference
book.) If you use reference messages, that is messages that contain only a header
which points to some other object that is to be sent, the message exit recognizes
the header, MQRMH. It identifies the object, retrieves it in whatever way is
appropriate appends it to the header, and passes it to the MCA for transmission to
the receiving MCA. At the receiving MCA, another message exit recognizes that
this is a reference message, extracts the object, and passes the header on to the
destination queue. See the MQSeries Application Programming Guide for more
information about reference messages and some sample message exits that handle
them.

Message exits can return the following responses:
v Send the message (GET exit). The message may have been changed by the exit.

(This returns MQXCC_OK.)
v Put the message on the queue (PUT exit). The message may have been changed

by the exit. (This returns MQXCC_OK.)
v Do not process the message. The message is placed on the dead-letter queue

(undelivered message queue) by the MCA.
v Close the channel.
v Bad return code, which causes the MCA to abend.

Notes:

1. Message exits are called just once for every complete message transferred, even
when the message is split into parts.

2. In UNIX systems, if you provide a message exit for any reason the automatic
conversion of user IDs to lowercase characters does not operate. See “User IDs
on UNIX systems, Digital OpenVMS” on page 120.

3. An exit runs in the same thread as the MCA itself. It also runs inside the same
unit of work (UOW) as the MCA because it uses the same connection handle.
Therefore, any calls made under syncpoint are committed or backed out by the
channel at the end of the batch. For example, one channel message exit
program can send notification messages to another and these messages will
only be committed to the queue when the batch containing the original
message is committed.
Therefore, it is possible to issue syncpoint MQI calls from a channel message
exit program.

Channel-exit programs

Chapter 36. Channel-exit programs 515

|
|
|

V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
supplies a message exit program that uses the DCE security services. See
“Supplied channel-exit programs using DCE security services” on page 537.

Channel message retry exit program
The channel message-retry exit is called when an attempt to open the target queue
is unsuccessful. You can use the exit to determine under which circumstances to
retry, how many times to retry, and how frequently. (This exit is not available on
MQSeries for OS/390 or MQSeries for Windows.)

This exit is also called at the receiving end of the channel at MCA initiation and
termination.

The channel message-retry exit is passed an agent buffer containing the
transmission queue header, MQXQH, and the application message text as retrieved
from the queue. The format of MQXQH is given in the MQSeries Application
Programming Reference book.

The exit is invoked for all reason codes; the exit determines for which reason codes
it wants the MCA to retry, for how many times, and at what intervals. (The value
of the message-retry count set when the channel was defined is passed to the exit
in the MQCD, but the exit can ignore this.)

The MsgRetryCount field in MQCXP is incremented by the MCA each time the exit
is invoked, and the exit returns either MQXCC_OK with the wait time contained in
the MsgRetryInterval field of MQCXP, or MQXCC_SUPPRESS_FUNCTION. Retries
continue indefinitely until the exit returns MQXCC_SUPPRESS_FUNCTION in the
ExitResponse field of MQCXP. See “MQCXP - Channel exit parameter structure” on
page 591 for information about the action taken by the MCA for these completion
codes.

If all the retries are unsuccessful, the message is written to the dead-letter queue. If
there is no dead-letter queue available, the channel stops.

If you do not define a message-retry exit for a channel and a failure occurs that is
likely to be temporary, for example MQRC_Q_FULL, the MCA uses the
message-retry count and message-retry intervals set when the channel was defined.
If the failure is of a more permanent nature and you have not defined an exit
program to handle it, the message is written to the dead-letter queue.

Channel auto-definition exit program
The channel auto-definition exit can be called when a request is received to start a
receiver or server-connection channel but no channel definition exists. The exit
applies to V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT. You can use it to modify the supplied default definition for an
automatically defined receiver or server-connection channel,
SYSTEM.AUTO.RECEIVER or SYSTEM.AUTO.SVRCON. See “Auto-definition of
channels” on page 60 for a description of how channel definitions can be created
automatically.

The channel auto-definition exit can also be called when a request is received to
start a cluster-sender channel. It can be called for cluster-sender and
cluster-receiver channels to allow definition modification for this instance of the
channel. In this case, the exit applies to MQSeries for OS/390 as well as V5.1 of

Channel-exit programs

516 MQSeries Intercommunication

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT. For
more information about this, see the MQSeries Administration Interface Programming
Guide and Reference book.

As with other channel exits, the parameter list is:
MQ_CHANNEL_AUTO_DEF_EXIT (ChannelExitParms, ChannelDefinition)

ChannelExitParms are described in “MQCXP - Channel exit parameter structure” on
page 591. ChannelDefinition is described in “MQCD - Channel data structure” on
page 556.

MQCD contains the values that are used in the default channel definition if they
are not altered by the exit. The exit may modify only a subset of the fields; see
“MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit” on page 551.
However, attempting to change other fields does not cause an error.

The channel auto-definition exit returns a response of either MQXCC_OK or
MQXCC-SUPPRESS_FUNCTION. If neither of these is returned, the MCA
continues processing as though MQXCC-SUPPRESS_FUNCTION were returned.
That is, the auto-definition is abandoned, no new channel definition is created and
the channel cannot start.

Transport-retry exit program
The transport-retry exit applies to MQSeries for AIX, V5.1 and MQSeries for
Windows V2.0 and is supported on UDP only. It allows you to write a C-language
retry exit. The exit allows your application to suspend data being sent on a channel
when communication is not possible (for example, when a mobile user is traveling
through a tunnel or is temporarily out of range of a transmitter).

The transport-retry exit can be associated with a monitor program that can assess
whether the IP connection is available for sending data. The exit has to be built
into a library that is included in the path in which you are operating.

The exit is normally called before a datagram is about to be sent but is also called
to provide other useful signals.

The retry exit is called under five different conditions:
v When the MQSeries channel is first initialized; the ExitReason variable is set to a

value of MQXR_INIT.
v When the MQSeries channel is shut down; the ExitReason variable is set to a

value of MQXR_TERM.
v Before each datagram is sent; the ExitReason variable is set to a value of

MQXR_RETRY.
v When the end of a batch of messages occurs; the ExitReason variable is set to a

value of MQXR_END_BATCH.
v When an information datagram is received from the remote end of the link; the

ExitReason variable is set to a value of MQXR_ACK_RECEIVED.

If you want to postpone sending a datagram in response to an ExitReason of
MQXR_RETRY, you need to block returning from the exit until it is safe to send
the datagram. In all other cases, the return from the exit should be immediate.

There are three possible return codes that can be set when returning from the exit:
v MQXCC_OK — this is the normal response.

Channel-exit programs

Chapter 36. Channel-exit programs 517

|
|
|

|
|
|
|
|

v MQXCC_CLOSE_CHANNEL — in response to an ExitReason of MQXR_RETRY,
this will cause the channel to be closed.

v MQXCC_REQUEST_ACK — in response to an ExitReason of MQXR_RETRY,
this will cause the datagram about to be sent to be modified so that it requests
the remote end of the link to send an information datagram back to indicate that
the node can be reached. If this datagram arrives the exit will be invoked again
with an ExitReason of MQXR_ACK_RECEIVED. You can set this return code on
or off by using the PSEUDO_ACK parameter in the qm.ini file.

Note: If the datagram fails to arrive at the remote node, for any reason, you
must repeat the request on the next datagram that is sent.

The transport-retry exit name can be defined by the user, who can also change the
name of the library that contains the exit. You configure the retry exit by editing
the qm.ini file. A qm.ini file exists on both MQSeries for AIX V5.1 and MQSeries
for Windows V2.0. For more information about editing these files, see the MQSeries
System Administration book.

Writing and compiling channel-exit programs
Channel exits must be named in the channel definition. You can do this when you
first define the channels, or you can add the information later using, for example,
the MQSC command ALTER CHANNEL. You can also give the channel exit names
in the MQCD channel data structure. The format of the exit name depends on your
MQSeries platform; see “MQCD - Channel data structure” on page 556 or the
MQSeries Command Reference book for information.

If the channel definition does not contain a user-exit program name, the user exit is
not called.

The channel auto-definition exit is the property of the queue manager, not the
individual channel. In order for this exit to be called, it must be named in the
queue manager definition. To alter a queue manager definition, use the MQSC
command ALTER QMGR.

User exits and channel-exit programs are able to make use of all MQI calls, except
as noted in the sections that follow. To get the connection handle, an MQCONN
must be issued, even though a warning, MQRC_ALREADY_CONNECTED, is
returned because the channel itself is connected to the queue manager.

For exits on client-connection channels, the queue manager to which the exit tries
to connect, depends on how the exit was linked. If the exit was linked with
MQM.LIB (or QMQM/LIBMQM on OS/400) and you do not specify a queue
manager name on the MQCONN call, the exit will try to connect to the default
queue manager on your system. If the exit was linked with MQM.LIB (or
QMQM/LIBMQM on OS/400) and you specify the name of the queue manager
that was passed to the exit through the QMgrName field of MQCD, the exit tries
to connect to that queue manager. If the exit was linked with MQIC.LIB or any
other library, the MQCONN call will fail whether you specify a queue manager
name or not.

Note: You are recommended to avoid issuing the following MQI calls in
channel-exit programs:
v MQCMIT
v MQBACK
v MQBEGIN

Channel-exit programs

518 MQSeries Intercommunication

|
|
|
|
|
|
|
|
|
|

An exit runs in the same thread as the MCA itself and uses the same connection
handle. So, it runs inside the same UOW as the MCA and any calls made under
syncpoint are committed or backed out by the channel at the end of the batch.

Therefore, a channel message exit could send notification messages that will only
be committed to that queue when the batch containing the original message is
committed. So, it is possible to issue syncpoint MQI calls from a channel message
exit.

Channel-exit programs should not modify the Channel data structure (MQCD).
They can actually change the BatchSize parameter and a security exit can set the
MCAUserIdentifier parameter, but ChannelType and ChannelName must not be
changed.

Also, for programs written in C, non-reentrant C library function should not be
used in a channel-exit program.

All exits are called with a channel exit parameter structure (MQCXP), a channel
definition structure (MQCD), a prepared data buffer, data length parameter, and
buffer length parameter. The buffer length must not be exceeded:
v For message exits, you should allow for the largest message required to be sent

across the channel, plus the length of the MQXQH structure.
v For send and receive exits, the largest buffer you should allow for is as follows:

LU 6.2:
OS/2 64 KB
Others 32 KB

TCP:
AS/400 16 KB
Others 32 KB

UDP:
32 KB

NetBIOS:
DOS 4 KB
Others 64 KB

SPX:
64 KB

Note: Receive exits on sender channels and sender exits on receiver channels
use 2 KB buffers for TCP.

v For security exits, the distributed queuing facility allocates a buffer of 4000
bytes.

v On OS/390 using CICS, all exits use the maximum transmission length for the
channel, defined in the channel definition.

It is permissible for the exit to return an alternate buffer, together with the relevant
parameters. See “MQ_CHANNEL_EXIT - Channel exit” on page 546 for call details.

Note: Before using a channel-exit program for the first time on V5.1 of MQSeries
for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, you
should relink it with threaded libraries to make it thread-safe.

Channel-exit programs

Chapter 36. Channel-exit programs 519

|

|
|
|

MQSeries for OS/390 without CICS
The exits are invoked as if by an OS/390 LINK, in:
v Non-authorized problem program state
v Primary address space control mode
v Non-cross-memory mode
v Non-access register mode
v 31-bit addressing mode

The link-edited modules must be placed in the data set specified by the CSQXLIB
DD statement of the channel initiator address space procedure; the names of the
load modules are specified as the exit names in the channel definition.

When writing channel exits for OS/390 without CICS, the following rules apply:
v Exits must be written in assembler or C; if C is used, it must conform to the C

systems programming environment for system exits, described in the OS/390
C/C++ Programming Guide.

v Exits are loaded from the non-authorized libraries defined by a CSQXLIB DD
statement. Providing CSQXLIB has DISP=SHR, exits can be updated while the
channel initiator is running, with the new version used when the channel is
restarted.

v Exits must be reentrant, and capable of running anywhere in virtual storage.
v Exits must reset the environment, on return, to that at entry.
v Exits must free any storage obtained, or ensure that it will be freed by a

subsequent exit invocation.
For storage that is to persist between invocations, use the OS/390 STORAGE
service; there is no suitable service in C.

v All MQI calls except MQCMIT/CSQBCMT and MQBACK/CSQBBAK are
allowed. They must be contained between MQCONN (with a blank queue
manager name) and MQDISC, although not necessarily in the same exit
invocation. If these calls are used, the exit must be link-edited with the stub
CSQXSTUB.
The exception to this rule is that security channel exits may issue commit and
backout MQI calls. To do this, code the verbs CSQXCMT and CSQXBAK in
place of MQCMIT/CSQBCMT and MQBACK/CSQBBAK.

v Exits should not use any system services that could cause a wait, because this
would severely impact the handling of some or all of the other channels. Many
channels are run under a single TCB typically, if you do something in an exit
that causes a wait and you do not use MQXWAIT, it will cause all these
channels to wait. This will not give any functional problems, but might have an
adverse effect on performance. Most SVCs involve waits, so you should avoid
them, except for the following:
– GETMAIN/FREEMAIN/STORAGE
– LOAD/DELETE

In general, therefore, SVCs, PCs, and I/O should be avoided. Instead, the
MQXWAIT call should be used.

v Exits should not issue ESTAEs or SPIEs, apart from in any subtasks they attach.
This is because their error handling might interfere with the error handling
performed by MQSeries. This means that MQSeries might not be able to recover
from an error, or that your exit program might not receive all the error
information.

Channel-exit programs

520 MQSeries Intercommunication

|

v The MQXWAIT call (see “MQXWAIT - Wait” on page 553) provides a wait
service that allows waiting for I/O and other events; if this service is used, exits
must not use the linkage stack.
For I/O and other facilities that do not provide non-blocking facilities or an ECB
to wait on, a separate subtask should be ATTACHed, and its completion waited
for by MQXWAIT; because of the overhead that this technique incurs, it is
recommended that this be used only by the security exit.

v The MQDISC MQI call will not cause an implicit commit to occur within the exit
program. A commit of the channel process is performed only when the channel
protocol dictates.

The following exit samples are provided with MQSeries for OS/390:

CSQ4BAX0
This sample is written in assembler, and illustrates the use of MQXWAIT.

CSQ4BCX1 and CSQ4BCX2
These samples are written in C and illustrate how to access the parameters.

MQSeries for OS/390 using CICS
In MQSeries for OS/390 using CICS, an exit program must be written in
Assembler, C, COBOL, or PL/I. In CICS, the exits are invoked with EXEC CICS
LINK with the parameters passed by pointers (addresses) in the CICS
communication area (COMMAREA). The exit programs, named in the channel
definitions, reside in a library in the DFHRPL concatenation. They must be defined
in the CICS system definition file CSD, and must be enabled.

User-exit programs can also make use of CICS API calls, but you should not issue
syncpoints because the results could influence units of work declared by the MCA.

Do not update any resources controlled by a resource manager other than
MQSeries for OS/390, including those controlled by CICS Transaction Server for
OS/390.

Any non-MQSeries for OS/390 resources updated by an exit are committed, or
backed out, at the next syncpoint issued by the channel program. If a sender is
unable to synchronize with its partner, these CICS Transaction Server for OS/390
resources are backed out even though MQSeries for OS/390 resources are held
in-doubt until the next opportunity to re-synchronize.

MQSeries for AS/400
The exit is a program object written in the C/400®, ILE COBOL/400® or ILE
RPG/400® language. The exit program names and their libraries are named in the
channel definition.

Observe the following conditions when creating and compiling an exit program:
v The program must be made thread safe and created with the C/400, ILE

RPG/400, or ILE COBOL/400 compiler. For ILE RPG you must specify the
THREAD(*SERIALIZE) control specification, and for ILE COBOL you must
specify SERIALIZE for the THREAD option of the PROCESS statement. The
programs must also be bound to the threaded MQSeries libraries:
QMQM/LIBMQM_R in the case of C/400 and ILE RPG/400, and AMQ0STUB_R
in the case of ILE COBOL/400. For additional information about making RPG or
COBOL applications thread safe, refer to the appropriate Programmer’s Guide
for the language.

Channel-exit programs

Chapter 36. Channel-exit programs 521

|
|
|

|

|
|
|
|
|
|
|
|
|

v MQSeries for AS/400 requires that the exit programs are enabled for teraspace
support. (Teraspace is a form of shared memory introduced in OS/400 V4R4.) In
the case of the ILE RPG and COBOL compilers, any programs compiled on
OS/400 V4R4 or later are so enabled. In the case of C, the programs must be
compiled with the TERASPACE(*YES *TSIFC) options specified on CRTCMOD
or CRTBNDC commands.

v An exit returning a pointer to its own buffer space must ensure that the object
pointed to exists beyond the timespan of the channel-exit program. In other
words, the pointer cannot be the address of a variable on the program stack, nor
of a variable in the program heap. Instead, the pointer must be obtained from
the system. An example of this is a user space created in the user exit. To ensure
that any data area allocated by the channel-exit program is still available for the
MCA when the program ends, the channel exit must run in the caller’s
activation group or a named activation group. Do this by setting the ACTGRP
parameter on CRTPGM to a user-defined value or *CALLER. If the program is
created in this way, the channel-exit program can allocate dynamic memory and
pass a pointer to this memory back to the MCA.

MQSeries for OS/2 Warp
The exit is a DLL that must be written in C. To ensure that it can be loaded when
required, specify the full path name in the DEFINE CHANNEL command, or if
you are using Version 5.1, enter the path name in the ExitPath stanza of the
QM.INI file. The value in the ExitPath stanza of the QM.INI file defaults to
c:\mqm\exits. You can change this value in QM.INI or you can override it by
specifying a full path name on the DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry
point in the shared library. Figure 121 shows how to set up entry to your program:

Figure 122 on page 523 shows a sample definition file that gives the entry point to
the exit program.

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point - for consistency only */
void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 121. Sample source code for a channel exit on OS/2

Channel-exit programs

522 MQSeries Intercommunication

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

Use a make file like the one shown in Figure 123 to compile and link your
program to create the DLL.

LIBRARY csqos2it INITINSTANCE TERMINSTANCE

PROTMODE

DESCRIPTION 'channel exit '

CODE SHARED LOADONCALL
DATA NONSHARED MULTIPLE

HEAPSIZE 4096
STACKSIZE 8192

EXPORTS
csqos2it;

Figure 122. Sample DEF file for a channel exit on OS/2

MAKE FILE TO CREATE AN MQSERIES EXIT

Make File Creation run in directory:
D:\EXIT;

.SUFFIXES:

.SUFFIXES: .c .cpp .cxx

CSQOS2IT.DLL: \
csqos2it.OBJ \
MAKEOS2
ICC.EXE @<<

/Fe"CSQOS2IT.DLL" mqm.lib csqos2it.def
csqos2it.OBJ
<<
IMPLIB CSQOS2IT.LIB CSQOS2IT.DLL

{.}.c.obj:
ICC.EXE /Ge- /G5 /C .\$*.c

{.}.cpp.obj:
ICC.EXE /Ge- /G5 /C .\$*.cpp

{.}.cxx.obj:
ICC.EXE /Ge- /G5 /C .\$*.cxx

!include MAKEOS2.DEP

Figure 123. Sample make file for a channel exit on OS/2

Channel-exit programs

Chapter 36. Channel-exit programs 523

Windows 3.1 client
The exit is a DLL that must be written in C. It must be placed in a directory
pointed to by LIBPATH to ensure it can be loaded when required. Define a dummy
MQStart() routine in the exit and specify MQStart as the entry point in the shared
library. Figure 124 shows how to set up an entry to your program:

MQSeries for Windows NT server, MQSeries client for
Windows NT, and MQSeries client for Windows 95 and
Windows 98

The exit is a DLL that must be written in C.
v On MQSeries for Windows NT server, use the Control Service Manager User

Interface snap-in within the Microsoft Management Console (MMC) in order to
ensure that the DLL can be loaded when required. Specify the full path name on
the DEFINE CHANNEL command or enter the path name in the ExitPath of the
registry entry.
If the exit is on a Windows NT client, specify the path name in the
ClientExitPath stanza of the registry file.
The default exit path is c:\WINNT\Profiles\All Users\Application
Data\MQSeries\EXITS. You can change this value or you can override it by
specifying a full path name on the DEFINE CHANNEL command.

v On MQSeries client for Windows 95 and Windows 98, specify the path name in
the ExitPath stanza of the MQS.INI file You can change this value or you can
override it by specifying a full path name on the DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry
point in the library. Figure 125 on page 525 shows how to set up an entry to your
program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point - for consistency only */
void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 124. Sample source code for a channel exit on Windows 3.1

Channel-exit programs

524 MQSeries Intercommunication

|
|
|
|

|

In order to access the fields pointed to by pChannelExitParms and
pChannelDefinition you need to insert the following lines in your exit program:
...

/* Variable definitions */...

PMQCXP pParms;
PMQCD pChDef;...

/* Code */...

pParms = (PMQCXP)pChannelExitParms;
pChDef = (PMQCD)pChannelDefinition;

The pointers pParms and pChDef can then be dereferenced to access individual
fields.

When writing channel exits for these products using Visual C++, you should do
the following:
v Add MQMVX.LIB to project as a source file10.
v Change the box labelled “Use Run-Time Library” from “Multithreaded” to

“Multithreaded using DLL” in the project settings under C/C++ code
generation.

v Do not change the box labelled “Entry-Point Symbol”. This box can be found in
the project settings, under the Link tab, when you select Category and then
Output.

v Write your own .DEF file; an example of this is shown in Figure 126 on page 526.

10. MQMVX.LIB is used for data conversion and is not available on client products.

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point - for consistency only */
void MQENTRY ChannelExit (PMQCXP pChannelExitParms,

PMQCD pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 125. Sample source code for a channel exit on Windows NT, Windows 95, or
Windows 98

Channel-exit programs

Chapter 36. Channel-exit programs 525

MQSeries for Windows
The exit is a DLL that must be written in C. To ensure that it can be loaded when
required, specify the full path name on the DEFINE CHANNEL command.
Figure 127 shows how to set up an entry to your program:

When writing channel exits for MQSeries for Windows using Visual C++, you
should do the following:
v Change the box labelled “Use Run-Time Library” from “Multithreaded” to

“Multithreaded using DLL” in the project settings under C/C++ code
generation.

v Do not change the box labelled “Entry-Point Symbol”. This box can be found in
the project settings, under the Link tab, when you select Category and then
Output.

v Write your own .DEF file; an example of this is shown in Figure 126.

MQSeries for AIX

Note: Before you use an existing user exit for the first time on MQSeries for AIX,
V5.1, you must recompile it to enable it to take advantage of thread-safe
system calls. If your user exits use thread-unsafe system calls, you will need
to modify them before using them on this platform.

The exit is a dynamically loaded object that must be written in C. To ensure that it
can be loaded when required, specify the full path name in the DEFINE
CHANNEL command or enter the path name in the ExitPath stanza of the QM.INI
file. If the exit is on an AIX client, specify the path name in the ClientExitPath

LIBRARY exit

PROTMODE

DESCRIPTION 'Provides Retry and Channel exits'

CODE SHARED LOADONCALL
DATA NONSHARED MULTIPLE

HEAPSIZE 4096
STACKSIZE 8192

EXPORTS Retry

Figure 126. Sample DEF file for Windows NT, Windows 95, Windows 98, or Windows

#include <cmqc.h>
#include <cmqxc.h>

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,
PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 127. Sample source code for a channel exit on Windows

Channel-exit programs

526 MQSeries Intercommunication

|
|
|
|

stanza of the MQS.INI file. The value in the ExitPath stanza of the QM.INI file or
the ClientExitPath stanza of the MQS.INI file defaults to /var/mqm/exits. You can
change this value or you can override it by specifying a full path name on the
DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry
point in the module. Figure 128 shows how to set up an entry to your program:

Figure 129 shows the compiler and loader commands for channel-exit programs on
AIX.

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point - for consistency only */
void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 128. Sample source code for a channel exit on AIX

$ cc -c exit.c
$ ld -o exit exit.o -bE:exit.exp -H512 -T512 -e MQStart -bM:SRE
$ cp exit /usr/xmp/lib # (or wherever you require)

Figure 129. Sample compiler and loader commands for channel exits on AIX

Channel-exit programs

Chapter 36. Channel-exit programs 527

|
|
|
|

Figure 131 shows a sample make file that can be used to build an MQSeries exit
program, and Figure 130 shows a sample export file for this make file.

MQSeries for Compaq (DIGITAL) OpenVMS
The user exit is a dynamically loaded image that can be shared, with its name
taken from the format of the message. It must be written in C. The object’s name
must be in uppercase, for example MYFORMAT. The shareable image must be placed
in sys$share or a location defined by a logical name at executive level for it to be
loaded.

User exits must be installed as known images. Figure 132 shows how to set up an
entry to your program:

#!
csqaixit
MQStart

Figure 130. Sample export file for AIX

MAKE FILE TO BUILD AN MQSERIES EXIT ON AIX

MQIDIR = /usr/mqm
MQILIBDIR = $(MQIDIR)/lib
MQIINCDIR = $(MQIDIR)/inc

LIBEXIT = -lmqm

CFLAGS = -g -bloadmap:muck

ALL : CSQAIXIT

csqaixit: csqaixit.o
xlc -L $(MQILIBDIR) $(LIBEXIT) csqaixit.o -o csqaixit \

-bE:csqaixit.exp -H512 -T512 -e MQStart -bM:SRE

csqaixit.o : csqaixit.c
xlc -c csqaixit.c \
-I $(MQIINCDIR)

Figure 131. Sample make file for AIX

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point */
void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 132. Sample source code for a channel exit on Digital OVMS

Channel-exit programs

528 MQSeries Intercommunication

|
|
|
|
|

In the example, MQSTART is the initialization routine entry point for the
MYFORMAT shareable image. The names of the routines that are called by the exit
must be made universal.

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE exitname.C
$ LINK /SHARE=SYS$SHARE:[SYSLIB]MYFORMAT exitname.OBJ,MYFORMAT/OPTIONS

The contents of MYFORMAT.OPT vary depending on what platform you are
working on:

On AXP:
SYS$SHARE:MQM/SHAREABLE
SYMBOL_VECTOR=(MQSTART=PROCEDURE)

On VAX:
SYS$SHARE:MQM/SHAREABLE
UNIVERSAL=MQSTART

If you are using threaded applications linked with the pthread library, you must
also build a second copy of the exit with the thread options and libraries:

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE exitname.C
$ LINK /SHARE=SYS$SHARE:MYFORMAT exitname.OBJ,MYFORMAT/OPTIONS

Again, the contents of MYFORMAT.OPT vary depending on what platform you are
working on:

On AXP:
SYS$SHARE:MQM_R/SHAREABLE
SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE
SYMBOL_VECTOR’-(MQSTART=PROCEDURE)

On VAX:
SYS$SHARE:MQM_R/SHAREABLE
SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE
UNIVERSAL=MQSTART

MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)
The exit is a dynamically loaded object that must be written in C. To ensure that it
can be loaded when required, link and copy the exit to the /usr/lib directory.
Define a dummy MQStart() routine in the exit and specify MQStart as the entry
point in the module. Figure 133 on page 530 shows how to set up an entry to your
program:

Channel-exit programs

Chapter 36. Channel-exit programs 529

|

|
|
|
|
|
|

Figure 134 shows the compiler and loader commands for channel-exit programs on
DIGITAL UNIX.

MQSeries for HP-UX

Note: Before you use an existing user exit for the first time on MQSeries for
HP-UX, V5.1, you must recompile it to enable it to take advantage of
thread-safe system calls. If your user exits use thread-unsafe system calls,
you will need to modify them before using them on this platform.

The exit is a dynamically loaded object that must be written in C. To ensure that it
can be loaded when required, specify the full path name in the DEFINE
CHANNEL command or enter the path name in the ExitPath stanza of the QM.INI
file. If the exit is on an HP-UX client, specify the path name in the ClientExitPath
stanza of the MQS.INI file. The value in the ExitPath stanza of the QM.INI file or
the ClientExitPath stanza of the MQS.INI file defaults to /var/mqm/exits. You can
change this value or you can override it by specifying a full path name on the
DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry
point in the module. Figure 135 on page 531 shows how to set up an entry to your
program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point - for consistency only */
void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 133. Sample source code for a channel exit on DIGITAL UNIX

$ cc -stdl -c -I/opt/mqm/inc exit.c
$ ld -o exit exit.o -shared -L/opt/mqm/lib -lmqm -e MQStart -lc
$ cp exit /usr/lib

Figure 134. Sample compiler and loader commands for channel exits on DIGITAL UNIX

Channel-exit programs

530 MQSeries Intercommunication

|
|
|

|

|
|
|
|
|
|
|
|

Figure 136 shows the compiler and loader commands for channel-exit programs on
HP-UX.

MQSeries for AT&T GIS UNIX
The exit is a dynamically loaded object that must be written in C. Specify the full
path name in the DEFINE CHANNEL command. Define a dummy MQStart()
routine in the exit and specifyMQStart as the entry point in the module.
Figure 137shows how to set up an entry to your program:

Figure 138 on page 532 shows the compiler and loader commands for channel-exit
programs on AT&T GIS UNIX11.

11. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point - for consistency only */
void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 135. Sample source code for a channel exit on HP-UX

$ cc -c +z exit.c
$ ld -o exit exit.o +b : -c exit.exp +I MQStart -b
$ cp exit /usr/xmp/lib # (or wherever you require)

Figure 136. Sample compiler and loader commands for channel exits on HP-UX

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point */
void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 137. Sample source code for a channel exit on AT&T GIS UNIX

Channel-exit programs

Chapter 36. Channel-exit programs 531

|
|
|
|

MQSeries for Sun Solaris

Note: Before you use an existing user exit for the first time on MQSeries for Sun
Solaris, V5.1, you must recompile it to enable it to take advantage of
thread-safe system calls. If your user exits use thread-unsafe system calls,
you will need to modify them before using them on this platform. If you
have DCE installed, your channel exits must be threaded with DCE
threading. If you do not have DCE installed, your channel exits must be
threaded with Posix V10 threading.

The exit is a dynamically loaded object that must be written in C. To ensure that it
can be loaded when required, specify the full path name in the DEFINE
CHANNEL command or enter the path name in the ExitPath stanza of the QM.INI
file. If the exit is on a Sun Solaris client, specify the path name in the
ClientExitPath stanza of the MQS.INI file. The value in the ExitPath stanza of the
QM.INI file or the ClientExitPath stanza of the MQS.INI file defaults to
/var/mqm/exits. You can change this value or you can override it by specifying a
full path name on the DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry
point in the module. Figure 139 shows how to set up an entry to your program:

Figure 140 shows the compiler and loader commands for channel-exit programs on
Sun Solaris.

MQSeries for SINIX and DC/OSx
The exit is a dynamically loaded object that must be written in C. Specify the full
path name in the DEFINE CHANNEL command. Define a dummy MQStart()

$ cc -c PIC exit.c
$ ld -o exit -G exit.o
$ cp exit /usr/xmp/lib # (or wherever you require)

Figure 138. Sample compiler and loader commands for channel exits on AT&T GIS UNIX

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point */
void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 139. Sample source code for a channel exit on Sun Solaris

$ cc -c -KPIC exit.c
$ ld -G exit.o -o exit
$ cp exit /usr/xmp/lib # (or wherever you require)

Figure 140. Sample compiler and loader commands for channel exits on Sun Solaris

Channel-exit programs

532 MQSeries Intercommunication

|
|
|
|
|
|
|
|

|
|

routine in the exit and specify MQStart as the entry point in the module. Figure 141
shows how to set up an entry to your program:

Figure 142 shows the compiler and loader commands for channel-exit programs on
SINIX and DC/OSx.

For DC/OSx, version cd087 and later, append the following to the cc line:
-liconv -lresolv

For earlier versions of DC/OSx, append the following to the cc line:
-liconv

MQSeries for Tandem NonStop Kernel
MQSeries for Tandem NonStop Kernel supports a single, statically bound
channel-exit program, whose entry point is MQ_CHANNEL_EXIT(). The exit must
be written in C. MQSeries for Tandem NonStop Kernel provides a stub function for
this exit that acts as a placeholder for user-supplied exit code. In the supplied stub
function, the ExitResponse field in MQCXP (channel exit parameter structure) is set
to MQXCC_CLOSE_CHANNEL, which causes the MCA to close the channel. No
other fields in MQCXP are modified.

You replace the supplied stub function in the MCA executable images with your
own user exit code using the Tandem BIND utility BEXITE. Only the Tandem
Common Runtime Environment (CRE) interface for the WIDE memory model is
supported.

In MQSeries for Tandem NonStop Kernel, there is a single entry point for all
channel exits. In other MQSeries Version 2 products, there are entry points specific
to each channel type and function. It is possible to use channel-exit programs
written for other MQSeries Version 2 products by calling those programs from
MQ_CHANNEL_EXIT(). To determine the type of exit being called, examine the
ExitId field of MQCXP, then extract the associated exit-program name from the
MsgExit, MsgRetryExit, ReceiveExit, SendExit, or SecurityExit field of MQCD.

The channel attributes that define the names of user exits are:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /* dummy entry point */
void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 141. Sample source code for a channel exit on SINIX and DC/OSx

$ cc -Kpic exit.c -G -o exit -lmqm -lmqmcs
$ cp exit /opt/mqm/lib # (or wherever you require)

Figure 142. Sample compiler and loader commands for channel exits on SINIX and DC/OSx

Channel-exit programs

Chapter 36. Channel-exit programs 533

|
|

|
|
|
|
|
|
|

v Security exit name (SCYEXIT)
v Message-retry exit name (MREXIT)
v Message exit name (MSGEXIT)
v Send exit name (SENDEXIT)
v Receive exit name (RCVEXIT)

If these channel attributes are left blank, the channel user exit is not invoked. If
any of the channel attributes is nonblank, the MQ_CHANNEL_EXIT() user exit
program is invoked for the corresponding function. Note that the text-string value
of the channel attribute is not used to determine the name of the user exit
program, since only a single entry point, MQ_CHANNEL_EXIT(), is supported in
MQSeries for Tandem NonStop Kernel. However, the values of these channel
attributes are passed to MQ_CHANNEL_EXIT() in the MQCD (channel data)
structure. The function of the channel exit (that is, whether the exit corresponds to
a Message, Message-retry, Receive, Security or Send Exit) is passed to
MQ_CHANNEL_EXIT() in the ExitId field of the MQCXP (Channel Exit
Parameters) structure.

MQSeries for Tandem NonStop Kernel does not support the following channel
attributes:
v CICS Profile Name
v Sequential delivery
v Target system identifier
v Transaction identifier
v Maximum transmission size

Building and using channel exit functions
Dynamically bound libraries are not supported by MQSeries for Tandem NSK.
Channel exits (and data-conversion exits) are implemented by including statically
bound stub functions in the MQSeries libraries and executables which can be
replaced using the REPLACE bind option.

A channel exit function must be written in C, must be called CHANNELEXIT (see
sample MQSVCHX), and can be bound into the chosen executable (or library)
using the TACL macro BEXITE.

Note: This procedure modifies the target executable. Therefore, you are
recommended to make a backup copy of the target executable or library
before using the macro.

The function CHANNELEXIT must handle each of the possible exit calls (security,
message-retry, message, send, and receive). You may write your own functions to
do this.

Use the TACL macro BCHXALL to bind the data conversion exit into all required
MQSeries processes. For example:
BCHXALL source-exit-file-or-library

Sample channel exit:
/**/
/* */
/* Program name: MQSVCHXE */
/* */
/* Description: Sample C skeleton of a Channel Exit controlling */
/* function */
/* */
/* Statement: Licensed Materials - Property of IBM */

Channel-exit programs

534 MQSeries Intercommunication

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|
|

/* */
/* 33H2205, 5622-908 */
/* 33H2267, 5765-623 */
/* 29H0990, 5697-176 */
/* (C) Copyright IBM Corp. 1994, 1995 */
/* */
/**/
/* */
/* Function: */
/* */
/* MQSVCHXE is a sample C skeleton of a Channel Exit controlling */
/* function */
/* */
/* The function controls the calls to user-defined channel exits */
/* */
/* */
/* Once complete the code should be compiled into a loadable */
/* object, the name of the object should be the name of the */
/* format to be converted. Instructions on how to do this are */
/* contained in the README file in the current directory. */
/* */
/**/
/* */
/* MQSVFCXE takes the parameters defined for a Data Conversion */
/* exit routine in the CMQXC.H header file. */
/* */
/**/
#include <cmqc.h> /* For MQI datatypes */
#include <cmqxc.h> /* For MQI exit-related definitions */
#include <amqsvmht.h> /* For sample macro definitions */

/**/
/* Insert the function prototypes for the functions produced by */
/* the data conversion utility program. */
/**/

MQDATACONVEXIT CHANNELEXIT;

/**/
/* On some Unix systems, the name of this function is not important */
/* as it is not actually used to call the conversion exit but it */
/* must be an exported symbol or the entry point to the module. On */
/* the TANDEM NSK this function MUST be called CHANNELEXIT */
/**/

void
MQENTRY CHANNELEXIT(

PMQVOID pChannelExitParms, /* Channel exit parameter block */
PMQVOID pChannelDefinition, /* Channel definition */
PMQLONG pDataLength, /* Length of data */
PMQLONG pAgentBufferLength, /* Length of agent buffer */
PMQVOID pAgentBuffer, /* Agent buffer */
PMQLONG pExitBufferLength, /* Length of exit buffer */
PMQPTR pExitBufferAddr) /* Address of exit buffer */

{
PMQCXP pCEP = pChannelExitParms;
PMQCD pCD = pChannelDefinition;
MQLONG ExitId = pCEP->ExitId;
MQLONG ExitReason = pCEP->ExitReason;

pCEP->ExitResponse = MQXCC_OK ;

/* Call the handling function according to the ExitId */
/* By default, there are no exits. If there are, then */
/* this function will have been replaced by a bind */

switch (ExitId)
{

Channel-exit programs

Chapter 36. Channel-exit programs 535

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

case MQXT_CHANNEL_SEC_EXIT:
if (strlen(pCD->SecurityExit) == 0)
{
pCEP->ExitResponse = MQXCC_SUPPRESS_FUNCTION ;

}
else
{
/* Call the security exit function here */

}
break;

case MQXT_CHANNEL_MSG_EXIT:
/* Call the channel message exit function here */
if (strlen(pCD->MsgExit) == 0)
{
pCEP->ExitResponse = MQXCC_SUPPRESS_FUNCTION ;

}
else
{
/* Call the message exit function here */

}
break;

case MQXT_CHANNEL_SEND_EXIT:
/* Call the channel send exit function here */
if (strlen(pCD->SendExit) == 0)
{
pCEP->ExitResponse = MQXCC_SUPPRESS_FUNCTION ;

}
else
{
/* Call the send exit function here */

}
break;

case MQXT_CHANNEL_RCV_EXIT:
/* Call the channel receive exit function here */
if (strlen(pCD->ReceiveExit) == 0)
{
pCEP->ExitResponse = MQXCC_SUPPRESS_FUNCTION ;

}
else
{
/* Call the receive exit function here */

}
break;

case MQXT_CHANNEL_MSG_RETRY_EXIT:
/* Call the channel retry exit function here */
if (strlen(pCD->MsgRetryExit) == 0)
{
pCEP->ExitResponse = MQXCC_SUPPRESS_FUNCTION ;

}
else
{
/* Call the message retry exit function here */

}
break;

default:
/* if the exit isn't recognized, stop it from being called again */
pCEP->ExitResponse = MQXCC_SUPPRESS_EXIT ;
break;

}
return;

}
/**/
/* */
/* END OF MQSVCHXE */
/* */
/**/

Channel-exit programs

536 MQSeries Intercommunication

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Supplied channel-exit programs using DCE security services
V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
supply channel-exit programs for the security exit, the message exit, and the send
and receive exits. The MQSeries client for Windows 95 and Windows 98 supplies
channel-exit programs for the security exit and the send and receive exits. These
programs take advantage of the Distributed Computing Environment (DCE)
security services and encryption facilities. Before using the supplied exit programs
from an MQSeries client for Windows 95 and Windows 98, see the note under
“How to use the DCE channel-exit programs” on page 540.

The programs are supplied in source and object format. You can use the objects as
they stand, or can use the source as the basis for creating your own user-exit
programs. You should bear in mind that whereas the objects are supplied as
working programs, the source code does not include any provision for tracing or
error handling. If you chose to modify and use the source code, you should add
your own tracing and error-handling routines.

The object has two entry points:
DCE_SEC_SCY_CHANNELEXIT

For the security exit, which can be used to access authentication services.
DCE_SEC_SRM_CHANNELEXIT

For the send, receive, and message exits, which can be used to access data
encryption services.

What do the DCE channel-exit programs do?
The supplied channel-exit programs address the Distributed Computing
Environment (DCE) considerations for security in the areas of data encryption, and
of authentication of a partner system when establishing a session. For a particular
channel, each exit program has an associated DCE principal (similar to a user ID). A
connection between two exit programs is an association between the two
principals.

A secure connection between two security exit programs, one for the sending MCA
and one for the receiving MCA, is established after the underlying session has
been established. The sequence of operations is as follows:
1. Each program is associated with a particular principal, for example due to an

explicit DCE Login.
2. The program that initiates the secure connection, that is the first program to get

control after the MCA session has been established, is known as the Context
Initiator. The context initiator requests a secure connection with the named
partner from the DCE security server and receives a token. The token (called
token1 in Figure 143 on page 538) is sent, using the already established
underlying session, to the partner program.

3. The partner program (known as the Context Acceptor) passes token1 to the DCE
security server, which verifies that the Context Initiator is authentic. For mutual
authentication, as implemented by the supplied security exit, the DCE security
server also generates a second token (called token2 in Figure 143 on page 538),
which the Context Acceptor returns to the Context Initiator using the
underlying session.

4. The Context Initiator uses token2 to verify that the Context Acceptor is
authentic.
At this stage, if both applications are satisfied with the authenticity of the
partner’s token, then the secure (authenticated) connection is established.

Channel-exit programs

Chapter 36. Channel-exit programs 537

|

5. The token exchange described above establishes a Security Context for each
security exit program. This context enables the subsequent send, receive, and
message exits to encrypt and decrypt data passed on the connection.
DCE Security provides an API to ‘seal’ and ‘unseal’ data and hence to
selectively protect specified elements of a datastream. The supplied message,
send, and receive exits encrypt and decrypt messages using these DCE Security
API calls.

Clearly the encryption algorithm used by the send exit must match the decryption
algorithm used by the receive exit. The supplied send, receive, and message exits
use the gss_seal() and gss_unseal() calls to encrypt and decrypt data. The qop_req
parameter on the gss_seal() call is set to GSS_C_QOP_DEFAULT. The encryption
provided by DCE depends on the DCE product installed. The supplied encrypting
exits work correctly only when used with US-domestic DCE products supporting
DES encryption. See the MQSeries Planning Guide for information about which DCE
products are supported.

The send, receive, and message exits are all used for encryption. The difference is
that the message exit encrypts only the content of the message, whereas the send
and receive exits also encrypt the message headers. Therefore, the message exit
offers slightly better performance but at the expense of unencrypted header data.

How do the DCE channel-exit programs work?
The supplied code implements a security exit and message, send, and receive exits.
Note that the message exit does not encrypt the MQSeries header. The security exit
provides mutual (two-way) authentication. The message, send, and receive exits
provide encryption facilities based on a key managed by the security context set
up by the security exit. Therefore, the message, send, and receive exits will not
work unless the security exit has been called previously.

The code interfaces to DCE through the DCE GSS API provided as part of OSF
DCE 1.1. This API provides a superset of the standard GSS API calls as specified in
Internet RFCs 1508 and 1509. Some DCE-specific GSS calls have been added to the
API by OSF.

The principal of an MQSeries system that has a queue manager is the queue
manager name.

NODE name1 Flow NODE name2

gss_acquire_cred(name1)
gss_init_sec_context

(name2) ->token1
INIT_SEC(token1)

ACC_SEC(token2)

gss_init_sec_context
(name2)

Above two flows can be repeated, if required by GSS.
When satisfied, proceed to other data transfer.

gss_accept_sec_context
(token1) ->token2

Figure 143. Security exit flows

Channel-exit programs

538 MQSeries Intercommunication

An MQSeries client does not have a queue manager. The principal used for a client
is as follows:
v On Sun Solaris, AIX, HP-UX, Windows NT, Windows 95, and Windows 98

clients:
– If the login user ID of the user who started the MQSeries client application

can be obtained and is defined as a principal to DCE, this user ID is used.
– If the login user ID of the user who started the MQSeries client application

cannot be obtained or is not defined to DCE, and a DCE default login context
exists, the DCE default credential is used.

Note: When a principal logs in to DCE, a default login context is established.
In this case the principal used in association with the DCE default
credential is that of the principal logged in to DCE.

– If the login user ID of the user who started the MQSeries client application
cannot be obtained or is not defined to DCE, and no DCE default login
context exists, there is no principal name available and the security exit rejects
the attempt to start the channel.

v On OS/2 clients, user IDs cannot be used as principals.
– If a principal has logged in to DCE, the name of this logged in principal is

used.
– If a principal has not logged in to DCE, and a DCE default login context

exists, the DCE default credential is used.
– If a principal has not logged in to DCE, and no DCE default login context

exists, there is no principal name available and the security exit rejects the
attempt to start the channel.

It is important that queue manager names or user IDs that are to be used as DCE
principals are syntactically acceptable to DCE; see your DCE documentation for
information about valid DCE principal names. If the name is to be used only
within the local cell directory, the only mismatch between the allowable characters
in a queue manager name and the allowable characters in a principal name is that
a principal name cannot contain a ‘/’. If there is any likelihood that the name will
also need to be reflected in a global directory, you are recommended to restrict
principal names to alphanumeric characters. As with any DCE principal, when you
create it you must define it to the DCE security server and must also put an entry
for it in the relevant keytable file. Therefore, when you delete a queue manager
that is also a DCE principal you must remember to delete both its entries.

Remote queue manager names are transferred across a channel at channel
initialization. When the security exit is called, if the remote MQSeries system is not
a client, the remote queue manager name (which is also the remote principal) is
passed to the security exit in the MQSeries MQCXP parameter list. The initiator
exit uses the name provided. If the channel is being established between an
MQSeries client and an MQSeries server, the client always initiates the first
security flow. In all cases, the initiator exit’s remote principal name is a queue
manager name.

The flows shown in Figure 143 on page 538 occur to establish the security context.
As a part of these flows the initiator’s principal is transferred to the acceptor.

It is possible to establish multiple security contexts between the same pair of
principals, and hence to allow parallel channels to use the security exit.

Channel-exit programs

Chapter 36. Channel-exit programs 539

You can set up restricted channels. The system administrator supplies a value in the
Channel Security Exit User Data when defining this end of the channel. The
presence of this value causes the security exit to check the remote principal name.
If this check shows a mismatch the channel is not established. Note that the remote
principals (queue manager names and default DCE principals) may be longer than
the 32 characters allowed in the Channel Security Exit User Data. Only the first 32
characters of the remote principal are considered significant.

If the MCA forms part of an MQSeries server system connected to a client, the
security exchange will have caused the client principal to flow to the server. If the
value is valid with regard to the optional restricted-channel check and the
MCAUserIdentifier variable is not already defined, the client principal is copied
into the server’s MCAUserIdentifier variable. Note that client principals may be
longer than the 12-character MCAUserIdentifier. Only the first 12 characters of
such a remote principal are copied.

Thus the first 12 characters of the MQSeries client’s DCE principal name can
become the user identifier to be used by the server’s MCA for authorization for
that client to access MQSeries resources. The server system must be set up
appropriately to allow this to work.

How to use the DCE channel-exit programs
Do not run the supplied DCE message exit in combination with the supplied DCE
send and receive exits on the same channel.

To use the supplied channel-exit programs you need to install DCE and define
some channels. For installation information, see the Quick Beginnings book for your
platform:
v The MQSeries for AIX, V5.1 Quick Beginnings book.
v The MQSeries for HP-UX, V5.1 Quick Beginnings book.
v The MQSeries for Sun Solaris, V5.1 Quick Beginnings book.
v The MQSeries for OS/2 Warp, V5.1 Quick Beginnings book.
v The MQSeries for Windows NT, V5.1 Quick Beginnings book.

Note: Using IBM DCE for Windows 95 V1, you cannot use the supplied DCE
security exit from a Windows 95 client connected to an MQSeries for HP-UX
server or an MQSeries for Sun Solaris server. Nor can you use the supplied
send and receive exits from a Windows 95 client when using IBM DCE for
Windows 95 V1.

Setup for DCE
The supplied channel-exit programs are intended for use between systems
operating within a single DCE cell. The setup of a DCE cell is described in the
documentation provided with the DCE packages for the platforms incorporated in
the cell. The exit programs operate the same way whether they are running on a
system with a DCE security client installed or with a DCE security server installed.

Once the DCE cell has been configured, it is necessary to define the principals that
the exit is going to use to DCE. DCE setup samples are provided on all the
supported platforms. The samples are primarily intended for setting up DCE for
the DCE Names installable component. They also contain comments indicating
how they can be modified to set up the DCE security principals instead of, or as
well as, the Names principal.

Channel-exit programs

540 MQSeries Intercommunication

Each DCE security principal has its own keytable. On UNIX systems that support
DCE security, the keytable is a file within the directory /var/mqm/dce/keytabs.
On OS/2, Windows NT, Windows 95, and Windows 98 it is a file within the
directory \MQM\DCE\KEYTABS, where MQM is the name of your work path.

When the supplied channel-exit programs are called for a particular principal, they
look in a keytable file that has the same name as the principal itself. Therefore, the
keytable file for a particular principal must have the same name as that principal.

The use of separate keytables for each principal is recommended in the OSF DCE
literature. On systems that support file access controls (UNIX systems and
Windows NT) keytable access should be limited to:
v Superuser/administrator: no restriction
v Other user IDs:

– read only access, given only to the user IDs under which the processes that
call the security exits run, and only to the relevant keytables.

In the case of queue manager MQSeries systems, the processes that interface to the
security exits at the sending end of the channel are runmqchl (and runmqchi on
OS/2 and Windows NT). amqcrsta, amqcrs6a or runmqlsr interface to the security
exits at the receiving end of the channel. On most systems these all run under the
mqm user ID; in this case, non-supervisor/administrator access to the keytables
relating to queue manager principals should be restricted to read access for the
mqm user ID.

On client systems the user ID under which the security exit is called is the user ID
under which the client application runs (often the login user ID of the user of the
client system). Again, non-supervisor/administrator access to the relevant keytable
should be restricted to read access by that user ID only.

The supplied exit code
The supplied exit code is in two formats: object and source.

Object: The object is called amqrdsc0 on UNIX systems and amqrdsc0.DLL on
OS/2, Windows NT, Windows 95, and Windows 98. It is installed as a standard
part of the MQSeries product for your platform and is loaded as a standard user
exit. If you wish to run the supplied security channel exit to make use of
authentication services then in your definition of the channel, specify:
SCYEXIT('<path>amqrdsc0(DCE_SEC_SCY_CHANNELEXIT)')

If you also wish to use the message exit to support data encryption, then in your
definition of the channel, specify:
MSGEXIT('<path>amqrdsc0(DCE_SEC_SRM_CHANNELEXIT)')

Or you can use the send and receive exits to support data encryption by specifying
the following in your definition of the channel:
SENDEXIT('<path>amqrdsc0(DCE_SEC_SRM_CHANNELEXIT)')
RCVEXIT('<path>amqrdsc0(DCE_SEC_SRM_CHANNELEXIT)')

<path> is the path to the directory containing the exit.

See page 520 through page 533 for information about how to call user exits on the
platform you are using.

Channel-exit programs

Chapter 36. Channel-exit programs 541

Source: The exit source file is called amqsdsc0.c. It can be found in
<mqmtop>/samp on UNIX systems and in <bootdrive>:\mqm\tools\c\samples on
OS/2, Windows NT, Windows 95, and Windows 98. If you choose to modify the
source versions, rather than running the objects as they stand, you will need to
recompile the modified source. It is compiled and linked in the same way as any
other channel exit for the platform concerned, except that DCE headers need to be
accessed at compile time, and the DCE libraries, together with any recommended
associated libraries, need to be accessed at link time. Refer to the documentation
for the DCE product for the platform you are using, to find out about the DCE and
associated libraries.

OS/2
icc /DIBMOS2 /DINTEL80x86 /Fe amqsdsc0.dll /I \

c:\mqclient\tools\c\include /I \
c:\ibmcppw\include /I c:\opt\dcelocal\include\dce \
/W3 /Sa /Ge- /Gm+ amqsdsc0.c amqsdsc0.def dceos2.lib

Using the following definition file:
LIBRARY AMQSDSC0
PROTMODE
DESCRIPTION 'DCE Security Exit'
CODE SHARED LOADONCALL
DATA NONSHARED MULTIPLE
HEAPSIZE 4096
STACKSIZE 8192
EXPORTS

DCE_SEC_SCY_CHANNELEXIT
DCE_SEC_SRM_CHANNELEXIT

Sun Solaris
cc -I/opt/dce/share/include/dce \

-I/opt/mqm/inc -KPIC -c amqsdsc0.c

followed by:
ld -G -L/opt/dce/share/usr/lib -ldce amqsdsc0.o -o srm

HP-UX
cc -D_HPUX_SOURCE -Dhpux -DICOL -D_REENTRANT \
-Dsigaction=cma_sigaction +ESlit +DA1.0 -c +z \
amqsdsc0.c -I /opt/mqm/include -I /opt/dce/include/dce \
-Aa && ld -o amqsdsc0 amqsdsc0.o -z +b : -b +I MQStart \
-ldce -lmqm_r -lndbm -lM -lc_r

Windows 95, Windows 98, and Windows NT
c:\msdevstd\bin\cl /DAMQ_PC /VERBOSE /LD /MT \
/Ic:\msdevstd\include /ID:\MQCLIENT\TOOLS\C\INCLUDE \
/IC:\OPT\DIGITAL\DCE\INCLUDE\DCE amqsdsc0.c \
-link /DLL /EXPORT:DCE_SEC_SCY_CHANNELEXIT \
/EXPORT:DCE_SEC_SRM_CHANNELEXIT /STACK:8192 libdce.lib \
advapi32.lib libcmt.lib

AIX
xlC_r -c /usr/mqm/samp/amqsdsc0.c -I/usr/include/dce

ld -e MQStart -bnoquiet -o amqsdsc0 amqsdsc0.o \
-L/usr/lib/dce -T512 -H512 -ldce -bE:amqsdsc0.exp \
-lpthreads -lc_r -liconv -ls

Using DCE channel exits with the runmqlsr listener program
On MQSeries for Windows NT, the exit dll name must be amqrdsc0.dll or
amqsdsc0.dll.

Channel-exit programs

542 MQSeries Intercommunication

Chapter 37. Channel-exit calls and data structures

This chapter provides reference information about the special MQSeries calls and
data structures used when writing channel exit programs. This is product-sensitive
programming interface information. You can write MQSeries user exits in the
following programming languages:

Platform Programming languages

MQSeries for OS/390
without CICS

Assembler and C (which must conform to the C system
programming environment for system exits, described in the
OS/390 C/C++ Programming Guide.)

MQSeries for OS/390
using CICS

Assembler, C, COBOL, and PL/I

MQSeries for AS/400 C, COBOL, and RPG II

All other MQSeries
platforms

C

You cannot write MQSeries user exits in TAL.

In a number of cases, parameters are arrays or character strings whose size is not
fixed. For these, a lowercase “n” is used to represent a numeric constant. When the
declaration for that parameter is coded, the “n” must be replaced by the numeric
value required. For further information about the conventions used in these
descriptions, see the MQSeries Application Programming Reference book.

The calls are:
v “MQ_CHANNEL_EXIT - Channel exit” on page 546
v “MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit” on page 551
v “MQXWAIT - Wait” on page 553
v “MQ_TRANSPORT_EXIT - Transport retry exit” on page 555

The data structures are:
v “MQCD - Channel data structure” on page 556
v “MQCXP - Channel exit parameter structure” on page 591
v “MQTXP - Transport-exit data structure” on page 605
v “MQXWD - Exit wait descriptor structure” on page 609

Note: Channel exit programs are not supported on DOS or VSE/ESA.

© Copyright IBM Corp. 1993, 2000 543

|
|
|
|
|

Data definition files
The data definition files supplied with the products for each programming
language are:
Main API definition

C CMQC
COBOL CMQV
PL/I CMQP
RPG CMQR
ASM370 CMQA

System extensions (MQX)

C CMQXC
COBOL CMQXV
PL/I CMQXP
RPG CMQXR
ASM370 CMQXA

Channel data (MQCD)

COBOL CMQCDL, CMQCDV
RPG CMQCDR
ASM370 CMQCDA

Channel exit (MQCXP)

COBOL CMQCXPL, CMQCXPV
RPG CMQCXPR
ASM370 CMQCXPA

Dead-letter header (MQDLH)

COBOL CMQDLHL, CMQDLHV
RPG CMQDLHR
ASM370 CMQDLHA

Exit parameter (MQXP)

COBOL CMQXPL, CMQXPV
RPG CMQXPR
ASM370 CMQXPA

Transmission header (MQXQH)

COBOL CMQXQHL, CMQXQHV
RPG CMQXQHR
ASM370 CMQXQHA

Where the file for the C or PL/I language is not included in the above, it has been
included in separate common files containing all C or PL/I data. For message
queuing applications the file names for C and PL/I are:

C CMQC
PL/I CMQP

Calls and structures

544 MQSeries Intercommunication

For systems programs the file names for C and PL/I are:

C CMQXC
PL/I CMQXP

For a list of the complete set of header files for the product, see the MQSeries
Application Programming Guide, or, for MQSeries for Windows, see the MQSeries for
Windows User’s Guide.

Calls and structures

Chapter 37. Channel-exit calls and data structures 545

MQ_CHANNEL_EXIT - Channel exit
This call definition is provided solely to describe the parameters that are passed to
each of the channel exits called by the Message Channel Agent. No entry point
called MQ_CHANNEL_EXIT is actually provided by the queue manager; the name
MQ_CHANNEL_EXIT is of no special significance since the names of the channel
exits are provided in the channel definition MQCD.

This definition is part of the MQSeries Security Enabling Interface (SEI), which is
one of the MQSeries framework interfaces.

There are five types of channel exit:
v Channel security exit
v Channel message exit
v Channel send exit
v Channel receive exit
v Channel message-retry exit

The parameters are similar for each type of exit, and the description given here
applies to all of them, except where specifically noted.

Syntax

Parameters
ChannelExitParms (MQCXP) – input/output

Channel exit parameter block.

This structure contains additional information relating to the invocation of the
exit. The exit sets information in this structure to indicate how the MCA
should proceed.

ChannelDefinition (MQCD) – input/output
Channel definition.

This structure contains parameters set by the administrator to control the
behavior of the channel.

DataLength (MQLONG) – input/output
Length of data.

When the exit is invoked, this contains the length of data in the AgentBuffer
parameter. The exit must set this to the length of the data in either the
AgentBuffer or the ExitBufferAddr (as determined by the ExitResponse2 field
in the ChannelExitParms parameter) that is to proceed.

The data depends on the type of exit:
v For a channel security exit, when the exit is invoked this contains the length

of any security message in the AgentBuffer field, if ExitReason is
MQXR_SEC_MSG. It is zero if there is no message. The exit must set this
field to the length of any security message to be sent to its partner if it sets
ExitResponse to MQXCC_SEND_SEC_MSG or
MQXCC_SEND_AND_REQUEST_SEC_MSG. The message data is in either
AgentBuffer or ExitBufferAddr.

MQ_CHANNEL_EXIT (ChannelExitParms, ChannelDefinition, DataLength,
AgentBufferLength, AgentBuffer, ExitBufferLength, ExitBufferAddr)

MQ_CHANNEL_EXIT - Channel exit

546 MQSeries Intercommunication

The content of security messages is the sole responsibility of the security
exits.

v For a channel message exit, when the exit is invoked this contains the length
of the message (including the transmission queue header). The exit must set
this field to the length of the message in either AgentBuffer or
ExitBufferAddr that is to proceed.

v For a channel send or channel receive exit, when the exit is invoked this
contains the length of the transmission. The exit must set this field to the
length of the transmission in either AgentBuffer or ExitBufferAddr that is to
proceed.

If a security exit sends a message, and there is no security exit at the other end
of the channel, or the other end sets an ExitResponse of MQXCC_OK, the
initiating exit is re-invoked with MQXR_SEC_MSG and a null response
(DataLength=0).

AgentBufferLength (MQLONG) – input
Length of agent buffer.

This can be greater than DataLength on invocation.

For channel message, send, and receive exits, any unused space on invocation
can be used by the exit to expand the data in place. If this is done, the
DataLength parameter must be set appropriately by the exit.

In the C programming language, this parameter is passed by address.

AgentBuffer (MQBYTE×AgentBufferLength) – input/output
Agent buffer.

The contents of this depend upon the exit type:
v For a channel security exit, on invocation of the exit it contains a security

message if ExitReason is MQXR_SEC_MSG. If the exit wishes to send a
security message back, it can either use this buffer or its own buffer
(ExitBufferAddr).

v For a channel message exit, on invocation of the exit this contains:
– The transmission queue header (MQXQH), which includes the message

descriptor (which itself contains the context information for the message),
immediately followed by

– The message data

If the message is to proceed, the exit can do one of the following:
– Leave the contents of the buffer untouched
– Modify the contents in place (returning the new length of the data in

DataLength; this must not be greater then AgentBufferLength)
– Copy the contents to the ExitBufferAddr, making any required changes

Any changes that the exit makes to the transmission queue header are not
checked; however, erroneous modifications may mean that the message
cannot be put at the destination.

v For a channel send or receive exit, on invocation of the exit this contains the
transmission data. The exit can do one of the following:
– Leave the contents of the buffer untouched
– Modify the contents in place (returning the new length of the data in

DataLength; this must not be greater then AgentBufferLength)
– Copy the contents to the ExitBufferAddr, making any required changes

MQ_CHANNEL_EXIT - Channel exit

Chapter 37. Channel-exit calls and data structures 547

Note that the first 8 bytes of the data must not be changed by the exit.

ExitBufferLength (MQLONG) – input/output
Length of exit buffer.

On the first invocation of the exit, this is set to zero. Thereafter whatever value
is passed back by the exit, on each invocation, is presented to the exit next
time it is invoked. The value is not used by the MCA (except in MQSeries for
OS/390 using CICS for distributed queue management, where a check is made
that DataLength does not exceed ExitBufferLength, if the exit is returning data
in ExitBufferAddr).

Note: This parameter should not be used by exits written in programming
languages which do not support the pointer data type.

ExitBufferAddr (MQPTR) – input/output
Address of exit buffer.

This is a pointer to the address of a buffer of storage managed by the exit,
where it can choose to return message or transmission data (depending upon
the type of exit) to the agent if the agent’s buffer is or may not be large
enough, or if it is more convenient for the exit to do so.

On the first invocation of the exit, the address passed to the exit is null.
Thereafter whatever address is passed back by the exit, on each invocation, is
presented to the exit the next time it is invoked.

Note: This parameter should not be used by exits written in programming
languages that do not support the pointer data type.

Usage notes
1. The function performed by the channel exit is defined by the provider of the

exit. The exit, however, must conform to the rules defined here and in the
associated control block, the MQCXP.

2. The ChannelDefinition parameter passed to the channel exit may be one of
several versions. See the Version field in the MQCD structure for more
information.

3. If the channel exit receives an MQCD structure with the Version field set to a
value greater than MQCD_VERSION_1, the exit should use the ConnectionName
field in MQCD, in preference to the ShortConnectionName field.

4. In general, channel exits are allowed to change the length of message data. This
may arise as a result of the exit adding data to the message, or removing data
from the message, or compressing or encrypting the message. However, special
restrictions apply if the message is a segment that contains only part of a
logical message. In particular, there must be no net change in the length of the
message as a result of the actions of complementary sending and receiving
exits.
For example, it is permissible for a sending exit to shorten the message by
compressing it, but the complementary receiving exit must restore the original
length of the message by decompressing it, so that there is no net change in the
length of the message.
This restriction arises because changing the length of a segment would cause
the offsets of later segments in the message to be incorrect, and this would
inhibit the queue manager’s ability to recognize that the segments formed a
complete logical message.

MQ_CHANNEL_EXIT - Channel exit

548 MQSeries Intercommunication

C invocation
exitname (&ChannelExitParms, &ChannelDefinition,

&DataLength, &AgentBufferLength, AgentBuffer,
&ExitBufferLength, &ExitBufferAddr);

Declare the parameters as follows:
MQCXP ChannelExitParms; /* Channel exit parameter block */
MQCD ChannelDefinition; /* Channel definition */
MQLONG DataLength; /* Length of data */
MQLONG AgentBufferLength; /* Length of agent buffer */
MQBYTE AgentBuffer[n]; /* Agent buffer */
MQLONG ExitBufferLength; /* Length of exit buffer */
MQPTR ExitBufferAddr; /* Address of exit buffer */

COBOL invocation
CALL 'exitname' USING CHANNELEXITPARMS, CHANNELDEFINITION,

DATALENGTH, AGENTBUFFERLENGTH, AGENTBUFFER,
EXITBUFFERLENGTH, EXITBUFFERADDR.

Declare the parameters as follows:
** Channel exit parameter block
01 CHANNELEXITPARMS.

COPY CMQCXPV.
** Channel definition
01 CHANNELDEFINITION.

COPY CMQCDV.
** Length of data
01 DATALENGTH PIC S9(9) BINARY.

** Length of agent buffer
01 AGENTBUFFERLENGTH PIC S9(9) BINARY.

** Agent buffer
01 AGENTBUFFER PIC X(n).

** Length of exit buffer
01 EXITBUFFERLENGTH PIC S9(9) BINARY.

** Address of exit buffer
01 EXITBUFFERADDR POINTER.

PL/I invocation
call exitname (ChannelExitParms, ChannelDefinition, DataLength,

AgentBufferLength, AgentBuffer, ExitBufferLength,
ExitBufferAddr);

Declare the parameters as follows:
dcl ChannelExitParms like MQCXP; /* Channel exit parameter

block */
dcl ChannelDefinition like MQCD; /* Channel definition */
dcl DataLength fixed bin(31); /* Length of data */
dcl AgentBufferLength fixed bin(31); /* Length of agent buffer */
dcl AgentBuffer char(n); /* Agent buffer */
dcl ExitBufferLength fixed bin(31); /* Length of exit buffer */
dcl ExitBufferAddr pointer; /* Address of exit buffer */

RPG invocation (ILE)
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP exitname(MQCXP : MQCD : DATLEN :
C ABUFL : ABUF : EBUFL :
C EBUF)

The prototype definition for the call is:

MQ_CHANNEL_EXIT - Channel exit

Chapter 37. Channel-exit calls and data structures 549

D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
Dexitname PR EXTPROC('exitname')
D* Channel exit parameter block
D MQCXP 156A
D* Channel definition
D MQCD 1216A
D* Length of data
D DATLEN 10I 0
D* Length of agent buffer
D ABUFL 10I 0
D* Agent buffer
D ABUF * VALUE
D* Length of exit buffer
D EBUFL 10I 0
D* Address of exit buffer
D EBUF *

RPG invocation (OPM)
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALL 'exitname'
C* Channel exit parameter block
C PARM MQCXP
C* Channel definition
C PARM MQCD
C* Length of data
C PARM DATLEN 90
C* Length of agent buffer
C PARM ABUFL 90
C* Agent buffer
C PARM ABUF n
C* Length of exit buffer
C PARM EBUFL 90
C* Address of exit buffer
C PARM EBUF 16

Declare the structure parameters as follows:
I*..1....:....2....:....3....:....4....:....5....:....6....:....7..
I* Channel exit parameter block
IMQCXP DS
I/COPY CMQCXPR
I* Channel definition
IMQCD DS
I/COPY CMQCDR

System/390 ® assembler invocation
CALL EXITNAME,(CHANNELEXITPARMS,CHANNELDEFINITION,DATALENGTH, X

AGENTBUFFERLENGTH,AGENTBUFFER,EXITBUFFERLENGTH, X
EXITBUFFERADDR)

Declare the parameters as follows:
CHANNELEXITPARMS CMQCXPA Channel exit parameter block
CHANNELDEFINITION CMQCDA Channel definition
DATALENGTH DS F Length of data
AGENTBUFFERLENGTH DS F Length of agent buffer
AGENTBUFFER DS CL(n) Agent buffer
EXITBUFFERLENGTH DS F Length of exit buffer
EXITBUFFERADDR DS F Address of exit buffer

MQ_CHANNEL_EXIT - Channel exit

550 MQSeries Intercommunication

MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit
This call definition is provided solely to describe the parameters that are passed to
the channel auto-definition exit called by the Message Channel Agent. No entry
point called MQ_CHANNEL_AUTO_DEF_EXIT is actually provided by the queue
manager; the name MQ_CHANNEL_AUTO_DEF_EXIT is of no special significance
because the names of the auto-definition exits are provided in the queue manager.

The MQ_CHANNEL_AUTO_DEF_EXIT call definition is part of the MQSeries
Security Enabling Interface (SEI), which is one of the MQSeries framework
interfaces.

This exit is supported in the following environments: AIX, HP-UX, OS/390, OS/2,
OS/400, Sun Solaris, Windows NT.

Syntax

Parameters
ChannelExitParms (MQCXP) – input/output

Channel exit parameter block.

This structure contains additional information relating to the invocation of the
exit. The exit sets information in this structure to indicate how the MCA
should proceed.

ChannelDefinition (MQCD) – input/output
Channel definition.

This structure contains parameters set by the administrator to control the
behavior of channels which are created automatically. The exit sets information
in this structure to modify the default behavior set by the administrator.

The MQCD fields listed below must not be altered by the exit:
ChannelName
ChannelType
StrucLength
Version

If other fields are changed, the value set by the exit must be valid. If the value
is not valid, an error message is written to the error log file or displayed on
the console (as appropriate to the environment).

Usage notes
1. The function performed by the channel exit is defined by the provider of the

exit. The exit, however, must conform to the rules defined here and in the
associated control block, the MQCXP.

2. The ChannelExitParms parameter passed to the channel auto-definition exit is
an MQCXP structure. The version of MQCXP passed depends on the
environment in which the exit is running; see the description of the Version
field in “MQCXP - Channel exit parameter structure” on page 591 for details.

3. The ChannelDefinition parameter passed to the channel auto-definition exit is
an MQCD structure. The version of MQCD passed depends on the

MQ_CHANNEL_AUTO_DEF_EXIT (ChannelExitParms, ChannelDefinition)

MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit

Chapter 37. Channel-exit calls and data structures 551

environment in which the exit is running; see the description of the Version
field in “MQCD - Channel data structure” on page 556 for details.

C invocation
exitname (&ChannelExitParms, &ChannelDefinition);

Declare the parameters as follows:
MQCXP ChannelExitParms; /* Channel exit parameter block */
MQCD ChannelDefinition; /* Channel definition */

COBOL invocation
CALL 'exitname' USING CHANNELEXITPARMS, CHANNELDEFINITION.

Declare the parameters as follows:
** Channel exit parameter block
01 CHANNELEXITPARMS.

COPY CMQCXPV.
** Channel definition
01 CHANNELDEFINITION.

COPY CMQCDV.

RPG invocation (ILE)
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP exitname(MQCXP : MQCD)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
Dexitname PR EXTPROC('exitname')
D* Channel exit parameter block
D MQCXP 156A
D* Channel definition
D MQCD 1216A

RPG invocation (OPM)
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALL 'exitname'
C* Channel exit parameter block
C PARM MQCXP
C* Channel definition
C PARM MQCD

Declare the structure parameters as follows:
I*..1....:....2....:....3....:....4....:....5....:....6....:....7..
I* Channel exit parameter block
IMQCXP DS
I/COPY CMQCXPR
I* Channel definition
IMQCD DS
I/COPY CMQCDR

System/390 assembler invocation
CALL EXITNAME,(CHANNELEXITPARMS,CHANNELDEFINITION)

Declare the parameters as follows:
CHANNELEXITPARMS CMQCXPA Channel exit parameter block
CHANNELDEFINITION CMQCDA Channel definition

MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit

552 MQSeries Intercommunication

MQXWAIT - Wait
The MQXWAIT call waits for an event to occur. It can be used only from a channel
exit on OS/390 when not using CICS.

Syntax

Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call issued in the same or earlier
invocation of the exit.

WaitDesc (MQXWD) – input/output
Wait descriptor.

This describes the event to wait for. See “MQXWD - Exit wait descriptor
structure” on page 609 for details of the fields in this structure.

CompCode (MQLONG) – output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.
MQRC_XWAIT_CANCELED

(2107, X'83B') MQXWAIT call canceled.
MQRC_XWAIT_ERROR

(2108, X'83C') Invocation of MQXWAIT call not valid.

For more information on these reason codes, see the Application Programming
Reference Manual for your platform.

MQXWAIT (Hconn, WaitDesc, CompCode, Reason)

MQXWAIT - Wait

Chapter 37. Channel-exit calls and data structures 553

C invocation
MQXWAIT (Hconn, &WaitDesc, &CompCode, &Reason);

Declare the parameters as follows:
MQHCONN Hconn; /* Connection handle */
MQXWD WaitDesc; /* Wait descriptor */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

System/390 assembler invocation
CALL MQXWAIT,(HCONN,WAITDESC,COMPCODE,REASON)

Declare the parameters as follows:
HCONN DS F Connection handle
WAITDESC CMQXWDA Wait descriptor
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

MQXWAIT - Wait

554 MQSeries Intercommunication

MQ_TRANSPORT_EXIT - Transport retry exit
This call definition is provided solely to describe the parameters that are passed to
the transport retry exit called by the message channel agent (MCA). No entry point
called MQ_TRANSPORT_EXIT is actually provided by the MCA; the name
MQ_TRANSPORT_EXIT is of no special significance because the name of the
transport retry exit is provided by the queue-manager’s configuration file.

This exit is supported in the following environments: AIX and 16-bit Windows.

Syntax

Parameters
ExitParms (MQTXP) – input/output

Exit parameter block.

This structure contains information relating to the invocation of the exit. The
exit sets information in this structure to indicate how processing should
continue.

DestAddressLength (MQLONG) – input
Length in bytes of destination IP address.

This is the length of the destination IP address DestAddress. The value is
always greater than zero.

DestAddress (MQCHAR×DestAddressLength) – input
Destination IP address.

This is the IP address of the destination. Its length is given by the
DestAddressLength parameter.

Usage notes
1. The function performed by the exit is defined by the provider of the exit. The

exit, however, must conform to the rules defined in the associated control block
MQTXP.

2. The transport retry exit allows a channel to be paused based on criteria that are
external to MQSeries.
If configured, the exit is called before each attempt to resend a failing data
packet. When called, the exit can wait based on some external criterion, and not
return control to the MCA until the exit decides that the resend of the data
packet is likely to succeed. If the exit decides that transmission should be
discontinued, the exit can instruct the MCA to close the channel.

C invocation
exitname (&ExitParms, DestAddressLength, DestAddress);

Declare the parameters as follows:
MQTXP ExitParms; /* Exit parameter block */
MQLONG DestAddressLength; /* Length in bytes of destination IP

address */
MQCHAR DestAddress[n]; /* Destination IP address */

MQ_TRANSPORT_EXIT (ExitParms, DestAddressLength, DestAddress)

MQ_TRANSPORT_EXIT - Transport retry exit

Chapter 37. Channel-exit calls and data structures 555

MQCD - Channel data structure
The following table summarizes the fields in the structure.

Table 48. Fields in MQCD

Field Description Page

ChannelName Channel definition name 558

Version Structure version number 558

ChannelType Channel type 559

TransportType Transport type 560

Desc Channel description 560

QMgrName Queue manager name 561

XmitQName Transmission queue name 561

ShortConnectionName First 20 bytes of connection name 561

MCAName Reserved 561

ModeName LU 6.2 mode name 561

TpName LU 6.2 transaction program name 562

BatchSize Batch size 562

DiscInterval Disconnect interval 562

ShortRetryCount Short retry count 562

ShortRetryInterval Short retry wait interval 562

LongRetryCount Long retry count 563

LongRetryInterval Long retry wait interval 563

SecurityExit Channel security exit name 563

MsgExit Channel message exit name 563

SendExit Channel send exit name 564

ReceiveExit Channel receive exit name 564

SeqNumberWrap Highest allowable message sequence number 564

MaxMsgLength Maximum message length 565

PutAuthority Put authority 565

DataConversion Data conversion 565

SecurityUserData Channel security exit user data 565

MsgUserData Channel message exit user data 566

SendUserData Channel send exit user data 566

ReceiveUserData Channel receive exit user data 566

UserIdentifier User identifier 566

Password Password 567

MCAUserIdentifier First 12 bytes of MCA user identifier 567

MCAType Message channel agent type 568

ConnectionName Connection name 568

RemoteUserIdentifier First 12 bytes of user identifier from partner 569

RemotePassword Password from partner 569

MsgRetryExit Channel message retry exit name 570

MQCD

556 MQSeries Intercommunication

Table 48. Fields in MQCD (continued)

Field Description Page

MsgRetryUserData Channel message retry exit user data 570

MsgRetryCount Number of times MCA will try to put the message
after the first attempt has failed

571

MsgRetryInterval Minimum interval in milliseconds after which the
open or put operation will be retried

571

HeartbeatInterval Time in seconds between heartbeat flows 572

BatchInterval Batch duration 573

NonPersistentMsgSpeed Speed at which nonpersistent messages are sent 573

StrucLength Length of MQCD structure 574

ExitNameLength Length of exit name 574

ExitDataLength Length of exit user data 574

MsgExitsDefined Number of message exits defined 574

SendExitsDefined Number of send exits defined 574

ReceiveExitsDefined Number of receive exits defined 575

MsgExitPtr Address of first MsgExit field 575

MsgUserDataPtr Address of first MsgUserData field 575

SendExitPtr Address of first SendExit field 576

SendUserDataPtr Address of first SendUserData field 576

ReceiveExitPtr Address of first ReceiveExit field 576

ReceiveUserDataPtr Address of first ReceiveUserData field 577

ClusterPtr Address of first cluster record 577

ClustersDefined Number of cluster records 578

NetworkPriority Network priority 578

LongMCAUserIdLength Length of long MCA user identifier 578

LongRemoteUserIdLength Length of long remote user identifier 578

LongMCAUserIdPtr Address of long MCA user identifier 578

LongRemoteUserIdPtr Address of long remote user identifier 579

MCASecurityId MCA security identifier 579

RemoteSecurityId Remote security identifier 579

The MQCD structure contains the parameters which control execution of a channel.
It is passed to each channel exit that is called from a Message Channel Agent
(MCA). See MQ_CHANNEL_EXIT.

The meaning of the name in the SecurityExit, MsgExit, SendExit, ReceiveExit,
and MsgRetryExit fields depends on the environment in which the MCA is
running. Except where noted below, the name is left-justified within the field, with
no embedded blanks; the name is padded with blanks to the length of the field. In
the descriptions that follow, square brackets ([]) denote optional information:

Environment
Format of exit name

UNIX systems
The name of a dynamically-loadable module or library, suffixed with the

MQCD

Chapter 37. Channel-exit calls and data structures 557

name of a function residing in that library. The function name must be
enclosed in parentheses. The library name can optionally be prefixed with
a directory path:
[path]library(function)

The name is limited to a maximum of 128 characters.

OS/390 not using CICS for distributed queuing
The name of a load module that is valid for specification on the EP
parameter of the LINK or LOAD macro. The name is limited to a
maximum of 8 characters.

OS/390 using CICS for distributed queuing
A 4-character transaction identifier.

OS/2, Windows 3.1, Windows NT, and DOS, and MQSeries for Windows
The name of a dynamic-link library, suffixed with the name of a function
residing in that library. The function name must be enclosed in
parentheses. The library name can optionally be prefixed with a directory
path and drive:
[d:][path]library(function)

The name is limited to a maximum of 128 characters.

OS/400
A 10-byte program name followed by a 10-byte library name. If the names
are less than 10 bytes long, each name is padded with blanks to make it 10
bytes. The library name can be *LIBL except when calling a channel
auto-definition exit, in which case a fully qualified name is required.

Fields
ChannelName (MQCHAR20)

Channel definition name.

There must be a channel definition of the same name at the remote machine to
be able to communicate.

The name must use only the characters:
v Uppercase A–Z
v Lowercase a–z
v Numerics 0–9
v Period (.)
v Forward slash (/)
v Underscore (_)
v Percent sign (%)

and be padded to the right with blanks. Leading or embedded blanks are not
allowed.

The length of this field is given by MQ_CHANNEL_NAME_LENGTH.

Version (MQLONG)
Structure version number.

The value depends on the environment:

MQCD_VERSION_1
Version-1 channel definition structure.

MQCD

558 MQSeries Intercommunication

The field has this value on OS/390 using CICS for distributed queuing.
Note, however, that the MQCD passed to the exit is in fact a version-2
structure.

MQCD_VERSION_2
Version-2 channel definition structure.

This value is not used by any current MQSeries product.

MQCD_VERSION_3
Version-3 channel definition structure.

The field has this value in the following environments: Compaq
(DIGITAL) OpenVMS, Tandem NonStop Kernel, UNIX systems not
listed elsewhere, 16-bit Windows, 32-bit Windows.

MQCD_VERSION_4
Version-4 channel definition structure.

This value is not used by any current MQSeries product.

MQCD_VERSION_5
Version-5 channel definition structure.

The field has this value on OS/390 not using CICS for distributed
queuing.

MQCD_VERSION_6
Version-6 channel definition structure.

The field has this value in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

Fields that exist only in the earlier versions of the structure are identified as
such in the field descriptions that follow. The following constant specifies the
version number of the current version:

MQCD_CURRENT_VERSION
Current version of channel definition structure.

The value of this constant depends on the environment (see above).

Note: When a new version of the MQCD structure is introduced, the layout of
the existing part is not changed. The exit should therefore check that the
version number is equal to or greater than the lowest version which
contains the fields that the exit needs to use.

ChannelType (MQLONG)
Channel type.

It is one of the following:
MQCHT_SENDER

Sender.
MQCHT_SERVER

Server.
MQCHT_RECEIVER

Receiver.
MQCHT_REQUESTER

Requester.
MQCHT_CLNTCONN

Client connection.

MQCD

Chapter 37. Channel-exit calls and data structures 559

|

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLUSSDR
Cluster sender.

MQCHT_CLUSRCVR
Cluster receiver.

TransportType (MQLONG)
Transport type.

Transmission protocol to be used.

Note that the value will not have been checked if the channel was initiated
from the other end.

The value is one of the following:

MQXPT_LU62
LU 6.2 transport protocol.

This value is not supported on 32-bit Windows.

MQXPT_TCP
TCP/IP transport protocol.

This is the only value supported on 32-bit Windows.

MQXPT_NETBIOS
NetBIOS transport protocol.

This value is supported in the following environments: OS/2, 32-bit
Windows, Windows NT.

MQXPT_SPX
SPX transport protocol.

This value is supported in the following environments: OS/2,
Windows NT, Windows client, DOS client.

MQXPT_DECNET
DECnet transport protocol.

This value is supported in the following environment: Compaq
(DIGITAL) OpenVMS.

MQXPT_UDP
UDP transport protocol.

This value is supported in the following environments: AIX and 16-bit
Windows.

Desc (MQCHAR64)
Channel description.

This is a field that may be used for descriptive commentary. The content of the
field is of no significance to Message Channel Agents. However, it should
contain only characters that can be displayed. It cannot contain any null
characters; if necessary, it is padded to the right with blanks. In a DBCS
installation, the field can contain DBCS characters (subject to a maximum field
length of 64 bytes).

MQCD

560 MQSeries Intercommunication

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field is
sent to another queue manager.

The length of this field is given by MQ_CHANNEL_DESC_LENGTH.

QMgrName (MQCHAR48)
Queue-manager name.

For channels with a ChannelType other than MQCHT_CLNTCONN, this is the
name of the queue manager that an exit can connect to, which on OS/2, UNIX
systems, and Windows NT, is always nonblank.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCHAR48)
Transmission queue name.

The name of the transmission queue from which messages are retrieved.

This field is relevant only for channels with a ChannelType of
MQCHT_SENDER or MQCHT_SERVER.

The length of this field is given by MQ_Q_NAME_LENGTH.

ShortConnectionName (MQCHAR20)
First 20 bytes of connection name.

If the Version field is MQCD_VERSION_1, ShortConnectionName contains the
full connection name.

If the Version field is MQCD_VERSION_2 or greater, ShortConnectionName
contains the first 20 characters of the connection name. The full connection
name is given by the ConnectionName field; ShortConnectionName and the first
20 characters of ConnectionName are identical.

See ConnectionName for details of the contents of this field.

Note: The name of this field was changed for MQCD_VERSION_2 and
subsequent versions of MQCD; the field was previously called
ConnectionName.

The length of this field is given by MQ_SHORT_CONN_NAME_LENGTH.

MCAName (MQCHAR20)
Reserved.

This is a reserved field; its value is blank.

The length of this field is given by MQ_MCA_NAME_LENGTH.

ModeName (MQCHAR8)
LU 6.2 Mode name.

This field is relevant only if the transmission protocol (TransportType) is
MQXPT_LU62, and the ChannelType is not MQCHT_SVRCONN or
MQCHT_RECEIVER.

MQCD

Chapter 37. Channel-exit calls and data structures 561

On OS/400, OS/390 without CICS, UNIX systems, and MQSeries for Windows,
this field is always blank. The information is contained in the communications
Side Object instead.

The length of this field is given by MQ_MODE_NAME_LENGTH.

TpName (MQCHAR64)
LU 6.2 transaction program name.

This field is relevant only if the transmission protocol (TransportType) is
MQXPT_LU62, and the ChannelType is not MQCHT_SVRCONN or
MQCHT_RECEIVER.

On OS/400, OS/390 without CICS, UNIX systems, and MQSeries for Windows,
this field is always blank. The information is contained in the communications
Side Object instead.

The length of this field is given by MQ_TP_NAME_LENGTH.

BatchSize (MQLONG)
Batch size.

The maximum number of messages that can be sent through a channel before
synchronizing the channel.

This field is not relevant for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

DiscInterval (MQLONG)
Disconnect interval.

The maximum time in seconds for which the channel waits for a message to
arrive on the transmission queue, before terminating the channel. A value of
zero causes the MCA to wait indefinitely.

This field is relevant only for channels with a ChannelType of
MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR.

ShortRetryCount (MQLONG)
Short retry count.

This is the maximum number of attempts that are made to connect to the
remote machine, at intervals specified by ShortRetryInterval, before the
(normally longer) LongRetryCount and LongRetryInterval are used.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER (only for MQSeries for OS/390 using CICS distributed
queuing), MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR.

ShortRetryInterval (MQLONG)
Short retry wait interval.

This is the maximum number of seconds to wait before reattempting
connection to the remote machine. Note that the interval between retries may
be extended if the channel has to wait to become active.

MQCD

562 MQSeries Intercommunication

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER (only for MQSeries for OS/390 using CICS distributed
queuing), MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR.

LongRetryCount (MQLONG)
Long retry count.

This count is used after the count specified by ShortRetryCount has been
exhausted. It specifies the maximum number of further attempts that are made
to connect to the remote machine, at intervals specified by LongRetryInterval,
before logging an error to the operator.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER (only for MQSeries for OS/390 using CICS distributed
queuing), MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR.

LongRetryInterval (MQLONG)
Long retry wait interval.

This is the maximum number of seconds to wait before reattempting
connection to the remote machine. Note that the interval between retries may
be extended if the channel has to wait to become active.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER (only for MQSeries for OS/390 using CICS distributed
queuing), MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR.

SecurityExit (MQCHARn)
Channel security exit name.

If this name is nonblank, the exit is called at the following times:
v Immediately after establishing a channel.

Before any messages are transferred, the exit is given the opportunity to
instigate security flows to validate connection authorization.

v Upon receipt of a response to a security message flow.
Any security message flows received from the remote processor on the
remote machine are given to the exit.

v At initialization and termination of the channel.

See above in the introduction to MQCD for a description of the content of this
field in various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

MsgExit (MQCHARn)
Channel message exit name.

If this name is nonblank, the exit is called at the following times:
v Immediately after a message has been retrieved from the transmission queue

(sender or server), or immediately before a message is put to a destination
queue (receiver or requester).

MQCD

Chapter 37. Channel-exit calls and data structures 563

The exit is given the entire application message and transmission queue
header for modification.

v At initialization and termination of the channel.

This field is not relevant for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN; a message exit is never
invoked for such channels.

See above in the introduction to MQCD for a description of the content of this
field in various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

SendExit (MQCHARn)
Channel send exit name.

If this name is nonblank, the exit is called at the following times:
v Immediately before data is sent out on the network.

The exit is given the complete transmission buffer before it is transmitted.
The contents of the buffer can be modified as required.

v At initialization and termination of the channel.

See above in the introduction to MQCD for a description of the content of this
field in various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

ReceiveExit (MQCHARn)
Channel receive exit name.

If this name is nonblank, the exit is called at the following times:
v Immediately before the received network data is processed.

The exit is given the complete transmission buffer as received. The contents
of the buffer can be modified as required.

v At initialization and termination of the channel.

See above in the introduction to MQCD for a description of the content of this
field in various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

SeqNumberWrap (MQLONG)
Highest allowable message sequence number.

When this value is reached, sequence numbers wrap to start again at 1.

This value is non-negotiable and must match in both the local and remote
channel definitions.

MQCD

564 MQSeries Intercommunication

This field is not relevant for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

MaxMsgLength (MQLONG)
Maximum message length.

Specifies the maximum message length that can be transmitted on the channel.
This is compared with the value for the remote channel and the actual
maximum is the lower of the two values.

PutAuthority (MQLONG)
Put authority.

Specifies whether the user identifier in the context information associated with
a message should be used to establish authority to put the message to the
destination queue.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR. and is
not supported on MQSeries for Windows. It is one of the following:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

DataConversion (MQLONG)
Data conversion.

This specifies whether the sending message channel agent should attempt
conversion of the application message data if the receiving message channel
agent is unable to perform this conversion. This applies only to messages that
are not segments of logical messages; the MCA never attempts to convert
messages which are segments.

DataConversion is not supported on MQSeries for Windows.

This field is relevant only for channels with a ChannelType of
MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR. It is one of the following:

MQCDC_SENDER_CONVERSION
Conversion by sender.

This value is not supported on 32-bit Windows.

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

SecurityUserData (MQCHAR32)
Channel security exit user data.

This is passed to the channel security exit in the ExitData field of the
ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to the
contents of this field by an exit of any type are preserved by the MCA, and
made visible to subsequent invocations of exits (regardless of type) for this

MQCD

Chapter 37. Channel-exit calls and data structures 565

MCA instance. Such changes have no effect on the channel definition used by
other MCA instances. Any characters (including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

MsgUserData (MQCHAR32)
Channel message exit user data.

This is passed to the channel message exit in the ExitData field of the
ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to the
contents of this field by an exit of any type are preserved by the MCA, and
made visible to subsequent invocations of exits (regardless of type) for this
MCA instance. Such changes have no effect on the channel definition used by
other MCA instances. Any characters (including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

SendUserData (MQCHAR32)
Channel send exit user data.

This is passed to the channel send exit in the ExitData field of the
ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to the
contents of this field by an exit of any type are preserved by the MCA, and
made visible to subsequent invocations of exits (regardless of type) for this
MCA instance. Such changes have no effect on the channel definition used by
other MCA instances. Any characters (including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

ReceiveUserData (MQCHAR32)
Channel receive exit user data.

This is passed to the channel receive exit in the ExitData field of the
ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to the
contents of this field by an exit of any type are preserved by the MCA, and
made visible to subsequent invocations of exits (regardless of type) for this
MCA instance. Such changes have no effect on the channel definition used by
other MCA instances. Any characters (including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

The following fields in this structure are not present if Version is less than
MQCD_VERSION_2.

UserIdentifier (MQCHAR12)
User identifier.

This is used by the message channel agent when attempting to initiate a secure
SNA session with a remote message channel agent.

MQCD

566 MQSeries Intercommunication

This field can be nonblank only on OS/2, UNIX systems, and Windows NT,
and is relevant only for channels with a ChannelType of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN. On
OS/390 this field is not relevant.

The length of this field is given by MQ_USER_ID_LENGTH, however only the
first 10 characters are used.

This field is not present in MQSeries for Windows or when Version is less than
MQCD_VERSION_2.

Password (MQCHAR12)
Password.

This is used by the message channel agent when attempting to initiate a secure
SNA session with a remote message channel agent.

This field can be nonblank only on OS/2, UNIX systems, and Windows NT,
and is relevant only for channels with a ChannelType of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN. On
OS/390 this field is not relevant.

The length of this field is given by MQ_PASSWORD_LENGTH, however only
the first 10 characters are used.

This field is not present if Version is less than MQCD_VERSION_2.

MCAUserIdentifier (MQCHAR12)
First 12 bytes of MCA user identifier.

There are two fields that contain the MCA user identifier:
v MCAUserIdentifier contains the first 12 bytes of the MCA user identifier, and

is padded with blanks if the identifier is shorter than 12 bytes.
MCAUserIdentifier can be completely blank.

v LongMCAUserIdPtr points to the full MCA user identifier, which can be longer
than 12 bytes. Its length is given by LongMCAUserIdLength. The full identifier
contains no trailing blanks, and is not null-terminated. If the identifier is
completely blank, LongMCAUserIdLength is zero, and the value of
LongMCAUserIdPtr is undefined.

Note: LongMCAUserIdPtr is not present if Version is less than
MQCD_VERSION_6.

If the MCA user identifier is nonblank, it specifies the user identifier to be used
by the message channel agent for authorization to access MQSeries resources,
including (if PutAuthority is MQPA_DEFAULT) authorization to put the
message to the destination queue for receiver or requester channels.

If the MCA user identifier is blank, the message channel agent uses its default
user identifier.

The MCA user identifier can be set by a security exit to indicate the user
identifier that the message channel agent should use. The exit can change
either MCAUserIdentifier, or the string pointed at by LongMCAUserIdPtr. If both
are changed but differ from each other, the MCA uses LongMCAUserIdPtr in
preference to MCAUserIdentifier. If the exit changes the length of the string

MQCD

Chapter 37. Channel-exit calls and data structures 567

addressed by LongMCAUserIdPtr, LongMCAUserIdLength must be set
correspondingly. If the exit wishes to increase the length of the identifier, the
exit must allocate storage of the required length, set that storage to the
required identifier, and place the address of that storage in LongMCAUserIdPtr.
The exit is responsible for freeing that storage when the exit is later invoked
with the MQXR_TERM reason.

For channels with a ChannelType of MQCHT_SVRCONN, if MCAUserIdentifier
in the channel definition is blank, any user identifier transferred from the client
is copied into it. This user identifier (after any modification by the security exit
at the server) is the one which the client application is assumed to be running
under.

The MCA user identifier is not relevant for channels with a ChannelType of
MQCHT_CLNTCONN.

This is an input/output field to the exit. The length of this field is given by
MQ_USER_ID_LENGTH. This field is not present on MQSeries for Windows
or when Version is less than MQCD_VERSION_2.

MCAType (MQLONG)
Message channel agent type.

This is the type of the message channel agent program.

This field is relevant only for channels with a ChannelType of
MQCHT_SENDER, MQCHT_SERVER, MQCHT_REQUESTER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

The value is one of the following:

MQMCAT_PROCESS
Process.

The message channel agent runs as a separate process.

MQMCAT_THREAD
Thread (OS/2 and Windows NT only).

The message channel agent runs as a separate thread.

This value is supported in the following environments: OS/2,
Windows NT.

This field is not present on MQSeries for Windows or when Version is less
than MQCD_VERSION_2.

ConnectionName (MQCHAR264)
Connection name.

This is the full connection name of the partner. The type of name depends on
the transmission protocol (TransportType) to be used:
v For MQXPT_LU62, it is the fully-qualified name of the partner Logical Unit.
v For MQXPT_NETBIOS, it is the NetBIOS name defined on the remote

machine.
v For MQXPT_TCP, it is either the host name, or the network address of the

remote machine.
v For MQXPT_SPX, it is an SPX-style address comprising a 4-byte network

address, a 6-byte node address, and a 2-byte socket number.

MQCD

568 MQSeries Intercommunication

|

When defining a channel, this field is not relevant for channels with a
ChannelType of MQCHT_SVRCONN or MQCHT_RECEIVER. However, when
the channel definition is passed to an exit, this field contains the address of the
partner, whatever the channel type.

The length of this field is given by MQ_CONN_NAME_LENGTH. This field is
not present if Version is less than MQCD_VERSION_2.

RemoteUserIdentifier (MQCHAR12)
First 12 bytes of user identifier from partner.

There are two fields that contain the remote user identifier:
v RemoteUserIdentifier contains the first 12 bytes of the remote user

identifier, and is padded with blanks if the identifier is shorter than 12 bytes.
RemoteUserIdentifier can be completely blank.

v LongRemoteUserIdPtr points to the full remote user identifier, which can be
longer than 12 bytes. Its length is given by LongRemoteUserIdLength. The full
identifier contains no trailing blanks, and is not null-terminated. If the
identifier is completely blank, LongRemoteUserIdLength is zero, and the value
of LongRemoteUserIdPtr is undefined.
LongRemoteUserIdPtr is not present if Version is less than
MQCD_VERSION_6.

The remote user identifier is relevant only for channels with a ChannelType of
MQCHT_CLNTCONN or MQCHT_SVRCONN.
v For a security exit on an MQCHT_CLNTCONN channel, this is a user

identifier which has been obtained from the environment (from an
environment variable on OS/2, Windows 3.1 and Windows NT, or from the
system on UNIX platforms.) The exit can choose to send it to the security
exit at the server.

v For a security exit on an MQCHT_SVRCONN channel, this field may
contain a user identifier which has been obtained from the environment at
the client, if there is no client security exit. The exit may validate this user
ID (possibly in conjunction with the password in RemotePassword) and
update the value in MCAUserIdentifier.
If there is a security exit at the client, then this information can be obtained
in a security flow from the client.

The length of this field is given by MQ_USER_ID_LENGTH. This field is not
present if Version is less than MQCD_VERSION_2.

RemotePassword (MQCHAR12)
Password from partner.

This field contains valid information only if ChannelType is
MQCHT_CLNTCONN or MQCHT_SVRCONN.
v For a security exit at an MQCHT_CLNTCONN channel, this is a password

which has been obtained from the environment from an environment
variable on OS/2 and Windows. The exit can choose to send it to the
security exit at the server.

v For a security exit at an MQCHT_SVRCONN channel, this field may contain
a password which has been obtained from the environment at the client, if
there is no client security exit. The exit may use this to validate the user
identifier in RemoteUserIdentifier.

MQCD

Chapter 37. Channel-exit calls and data structures 569

|
|
|
|

If there is a security exit at the client, then this information can be obtained
in a security flow from the client.

The length of this field is given by MQ_PASSWORD_LENGTH. This field is
not present if Version is less than MQCD_VERSION_2.

The following fields in this structure are not present if Version is less than
MQCD_VERSION_3.

MsgRetryExit (MQCHARn)
Channel message retry exit name.

The message retry exit is an exit that is invoked by the MCA when the MCA
receives a completion code of MQCC_FAILED from an MQOPEN or MQPUT
call. The purpose of the exit is to specify a time interval for which the MCA
should wait before retrying the MQOPEN or MQPUT operation. Alternatively,
the exit can decide that the operation should not be retried.

The exit is invoked for all reason codes that have a completion code of
MQCC_FAILED — it is up to the exit to decide which reason codes it wants
the MCA to retry, for how many attempts, and at what time intervals.

When the exit decides that the operation should not be retried any more, the
MCA performs its normal failure processing; this includes generating an
exception report message (if specified by the sender), and either placing the
original message on the dead-letter queue or discarding the message
(according to whether the sender specified MQRO_DEAD_LETTER_Q or
MQRO_DISCARD_MSG, respectively). Note that failures involving the
dead-letter queue (for example, dead-letter queue full) do not cause the
message-retry exit to be invoked.

If the exit name is nonblank, the exit is called at the following times:
v Immediately before performing the wait prior to retrying a message
v At initialization and termination of the channel.

See above in the introduction to MQCD for a description of the content of this
field in various environments.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Notes:

1. The value of this constant is environment specific.
2. On OS/390 this field is not relevant.

This field is not present on MQSeries for Windows or when Version is less
than MQCD_VERSION_3.

MsgRetryUserData (MQCHAR32)
Channel message retry exit user data.

This is passed to the channel message-retry exit in the ExitData field of the
ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

MQCD

570 MQSeries Intercommunication

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to the
contents of this field by an exit of any type are preserved by the MCA, and
made visible to subsequent invocations of exits (regardless of type) for this
MCA instance. Such changes have no effect on the channel definition used by
other MCA instances. Any characters (including binary data) can be used.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This field is
not present on MQSeries for Windows or when Version is less than
MQCD_VERSION_3.

On OS/390 this field is always blank.

MsgRetryCount (MQLONG)
Number of times MCA will try to put the message, after the first attempt has
failed.

This indicates the number of times that the MCA will retry the open or put
operation, if the first MQOPEN or MQPUT fails with completion code
MQCC_FAILED. The effect of this attribute depends on whether MsgRetryExit
is blank or nonblank:
v If MsgRetryExit is blank, the MsgRetryCount attribute controls whether the

MCA attempts retries. If the attribute value is zero, no retries are attempted.
If the attribute value is greater than zero, the retries are attempted at
intervals given by the MsgRetryInterval attribute.
Retries are attempted only for the following reason codes:

MQRC_PAGESET_FULL
MQRC_PUT_INHIBITED
MQRC_Q_FULL

For other reason codes, the MCA proceeds immediately to its normal failure
processing, without retrying the failing message.

v If MsgRetryExit is nonblank, the MsgRetryCount attribute has no effect on the
MCA; instead it is the message-retry exit which determines how many times
the retry is attempted, and at what intervals; the exit is invoked even if the
MsgRetryCount attribute is zero.
The MsgRetryCount attribute is made available to the exit in the MQCD
structure, but the exit it not required to honor it — retries continue
indefinitely until the exit returns MQXCC_SUPPRESS_FUNCTION in the
ExitResponse field of MQCXP.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

This field is not present on MQSeries for Windows or when Version is less
than MQCD_VERSION_3.

On OS/390 this field is always zero.

MsgRetryInterval (MQLONG)
Minimum interval in milliseconds after which the open or put operation will
be retried.

MQCD

Chapter 37. Channel-exit calls and data structures 571

The effect of this attribute depends on whether MsgRetryExit is blank or
nonblank:
v If MsgRetryExit is blank, the MsgRetryInterval attribute specifies the

minimum period of time that the MCA will wait before retrying a message,
if the first MQOPEN or MQPUT fails with completion code MQCC_FAILED.
A value of zero means that the retry will be performed as soon as possible
after the previous attempt. Retries are performed only if MsgRetryCount is
greater than zero.
This attribute is also used as the wait time if the message-retry exit returns
an invalid value in the MsgRetryInterval field in MQCXP.

v If MsgRetryExit is not blank, the MsgRetryInterval attribute has no effect on
the MCA; instead it is the message-retry exit which determines how long the
MCA should wait. The MsgRetryInterval attribute is made available to the
exit in the MQCD structure, but the exit it not required to honor it.

The value is in the range 0 through 999 999 999.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

This field is not present on MQSeries for Windows or when Version is less
than MQCD_VERSION_3.

On OS/390 this field is always zero.

The following fields in this structure are not present if Version is less than
MQCD_VERSION_4.

HeartbeatInterval (MQLONG)
Time in seconds between heartbeat flows.

The interpretation of this field depends on the channel type, as follows:
v For a channel type of MQCHT_SENDER, MQCHT_SERVER,

MQCHT_RECEIVER MQCHT_REQUESTER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR, this is the time in seconds between heartbeat flows
passed from the sending MCA when there are no messages on the
transmission queue. This gives the receiving MCA the opportunity to
quiesce the channel. To be useful, HeartbeatInterval should be significantly
less than DiscInterval.
This type of heartbeat is supported in the following environments: AIX,
HP-UX, OS/390, OS/2, OS/400, Sun Solaris, Windows NT.

v For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN, this is
the time in seconds between heartbeat flows passed from the server MCA
when that MCA has issued an MQGET call with the MQGMO_WAIT option
on behalf of a client application. This allows the server MCA to handle
situations where the client connection fails during an MQGET with
MQGMO_WAIT.
This type of heartbeat is supported in the following environments: AIX,
HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

The value is in the range 0 through 999 999. A value of 0 means that no
heartbeat exchange occurs. The value that is actually used is the larger of the
values specified at the sending side and receiving side.

MQCD

572 MQSeries Intercommunication

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

BatchInterval (MQLONG)
Batch duration.

This is the approximate time in milliseconds that a channel will keep a batch
open, if fewer than BatchSize messages have been transmitted in the current
batch.

If BatchInterval is greater than zero, the batch is terminated by whichever of
the following occurs first:
v BatchSize messages have been sent, or
v BatchInterval milliseconds have elapsed since the start of the batch.

If BatchInterval is zero, the batch is terminated by whichever of the following
occurs first:
v BatchSize messages have been sent, or
v the transmission queue becomes empty.

BatchInterval must be in the range zero through 999 999 999.

This field is relevant only for channels with a ChannelType of
MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present when Version is less
than MQCD_VERSION_4.

NonPersistentMsgSpeed (MQLONG)
Speed at which nonpersistent messages are sent.

This specifies the speed at which nonpersistent messages travel through the
channel.

This field is relevant only for channels with a ChannelType of
MQCHT_SENDER, MQCHT_SERVER, MQCHT_RECEIVER,
MQCHT_REQUESTER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

The value is one of the following:

MQNPMS_NORMAL
Normal speed.

If a channel is defined to be MQNPMS_NORMAL, nonpersistent
messages travel through the channel at normal speed. This has the
advantage that these messages will not be lost if there is a channel
failure. Also, persistent and nonpersistent messages on the same
transmission queue maintain their order relative to each other.

MQNPMS_FAST
Fast speed.

If a channel is defined to be MQNPMS_FAST, nonpersistent messages
travel through the channel at fast speed. This improves the throughput
of the channel, but means that nonpersistent messages will be lost if
there is a channel failure. Also, it is possible for nonpersistent messages
to jump ahead of persistent messages waiting on the same
transmission queue, that is, the order of nonpersistent messages is not

MQCD

Chapter 37. Channel-exit calls and data structures 573

maintained relative to persistent messages. However the order of
nonpersistent messages relative to each other is maintained. Similarly,
the order of persistent messages relative to each other is maintained.

StrucLength (MQLONG)
Length of MQCD structure.

This is the length in bytes of the MQCD structure. The length does not include
any of the strings addressed by pointer fields contained within the structure.
The value is one of the following:

MQCD_LENGTH_4
Length of version-4 channel definition structure.

MQCD_LENGTH_5
Length of version-5 channel definition structure.

MQCD_LENGTH_6
Length of version-6 channel definition structure.

The following constant specifies the length of the current version:

MQCD_CURRENT_LENGTH
Length of current version of channel definition structure.

Note: These constants have values that are environment specific.
The field is not present if Version is less than MQCD_VERSION_4.

ExitNameLength (MQLONG)
Length of exit name.

This is the length in bytes of each of the names in the lists of exit names
addressed by the MsgExitPtr, SendExitPtr, and ReceiveExitPtr fields. This
length is not necessarily the same as MQ_EXIT_NAME_LENGTH.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

ExitDataLength (MQLONG)
Length of exit user data.

This is the length in bytes of each of the user data items in the lists of exit user
data items addressed by the MsgUserDataPtr, SendUserDataPtr, and
ReceiveUserDataPtr fields. This length is not necessarily the same as
MQ_EXIT_DATA_LENGTH.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

MsgExitsDefined (MQLONG)
Number of message exits defined.

This is the number of channel message exits in the chain. On OS/390 it is
always zero. On other platforms it is greater than or equal to zero.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

SendExitsDefined (MQLONG)
Number of send exits defined.

MQCD

574 MQSeries Intercommunication

This is the number of channel send exits in the chain. On OS/390 it is always
zero. On other platforms it is greater than or equal to zero.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

ReceiveExitsDefined (MQLONG)
Number of receive exits defined.

This is the number of channel receive exits in the chain. On OS/390 it is
always zero. On other platforms it is greater than or equal to zero.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

MsgExitPtr (MQPTR)
Address of first MsgExit field.

If MsgExitsDefined is greater than zero, this is the address of the list of names
of each channel message exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with
blanks. There are MsgExitsDefined fields adjoining one another – one for each
exit.

Any changes made to these names by an exit are preserved, although the
message channel exit takes no explicit action – it does not change which exits
are invoked.

If MsgExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer
data type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

MsgUserDataPtr (MQPTR)
Address of first MsgUserData field.

If MsgExitsDefined is greater than zero, this is the address of the list of user
data items for each channel message exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the right
with blanks. There are MsgExitsDefined fields adjoining one another – one for
each exit. If the number of user data items defined is less than the number of
exit names, undefined user data items are set to blanks. Conversely, if the
number of user data items defined is greater than the number of exit names,
the excess user data items are ignored and not presented to the exit.

Any changes made to these names by an exit are preserved. This allows one
exit to pass information to another exit. No validation is carried out on any
changes so, for example, binary data can be written to these fields if required.

If MsgExitsDefined is zero, this field is the null pointer.

MQCD

Chapter 37. Channel-exit calls and data structures 575

On platforms where the programming language does not support the pointer
data type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

SendExitPtr (MQPTR)
Address of first SendExit field.

If SendExitsDefined is greater than zero, this is the address of the list of names
of each channel send exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with
blanks. There are SendExitsDefined fields adjoining one another – one for each
exit.

Any changes made to these names by an exit are preserved, although the
message send exit takes no explicit action – it does not change which exits are
invoked.

If SendExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer
data type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

SendUserDataPtr (MQPTR)
Address of first SendUserData field.

If SendExitsDefined is greater than zero, this is the address of the list of user
data items for each channel message exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the right
with blanks. There are MsgExitsDefined fields adjoining one another – one for
each exit. If the number of user data items defined is less than the number of
exit names, undefined user data items are set to blanks. Conversely, if the
number of user data items defined is greater than the number of exit names,
the excess user data items are ignored and not presented to the exit.

Any changes made to these names by an exit are preserved. This allows one
exit to pass information to another exit. No validation is carried out on any
changes so, for example, binary data can be written to these fields if required.

If SendExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer
data type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

ReceiveExitPtr (MQPTR)
Address of first ReceiveExit field.

MQCD

576 MQSeries Intercommunication

If ReceiveExitsDefined is greater than zero, this is the address of the list of
names of each channel receive exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with
blanks. There are ReceiveExitsDefined fields adjoining one another – one for
each exit.

Any changes made to these names by an exit are preserved, although the
message channel exit takes no explicit action – it does not change which exits
are invoked.

If ReceiveExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer
data type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

ReceiveUserDataPtr (MQPTR)
Address of first ReceiveUserData field.

If ReceiveExitsDefined is greater than zero, this is the address of the list of
user data item for each channel receive exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the right
with blanks. There are ReceiveExitsDefined fields adjoining one another – one
for each exit. If the number of user data items defined is less than the number
of exit names, undefined user data items are set to blanks. Conversely, if the
number of user data items defined is greater than the number of exit names,
the excess user data items are ignored and not presented to the exit.″

Any changes made to these names by an exit are preserved. This allows one
exit to pass information to another exit. No validation is carried out on any
changes so, for example, binary data can be written to these fields if required.

If ReceiveExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer
data type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_4.

The following fields in this structure are not present if Version is less than
MQCD_VERSION_5.

ClusterPtr (MQPTR)
Address of first cluster record.

If ClustersDefined is greater than zero, this is the address of the first cluster
record (MQWCR structure) in a chain of cluster records. Each cluster record
identifies a cluster to which the channel belongs.

This field is relevant only for channels with a ChannelType of
MQCHT_CLUSSDR or MQCHT_CLUSRCVR.

MQCD

Chapter 37. Channel-exit calls and data structures 577

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_5.

ClustersDefined (MQLONG)
Number of cluster records.

This is the number of cluster records (MQWCR structures) pointed to by
ClusterPtr. It is zero or greater.

This field is relevant only for channels with a ChannelType of
MQCHT_CLUSSDR or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_5.

NetworkPriority (MQLONG)
Network priority.

This is the priority of the network connection for this channel. When multiple
paths to a particular destination are available, the path with the highest
priority is chosen. The value is in the range 0 through 9; 0 is the lowest
priority.

This field is relevant only for channels with a ChannelType of
MQCHT_CLUSSDR or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_5.

The following fields in this structure are not present if Version is less than
MQCD_VERSION_6.

LongMCAUserIdLength (MQLONG)
Length of long MCA user identifier.

This is the length in bytes of the full MCA user identifier pointed to by
LongMCAUserIdPtr.

This field is not relevant for channels with a ChannelType of
MQCHT_CLNTCONN.

This is an input/output field to the exit. The field is not present if Version is
less than MQCD_VERSION_6.

LongRemoteUserIdLength (MQLONG)
Length of long remote user identifier.

This is the length in bytes of the full remote user identifier pointed to by
LongRemoteUserIdPtr.

This field is relevant only for channels with a ChannelType of
MQCHT_CLNTCONN or MQCHT_SVRCONN.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_6.

LongMCAUserIdPtr (MQPTR)
Address of long MCA user identifier.

MQCD

578 MQSeries Intercommunication

If LongMCAUserIdLength is greater than zero, this is the address of the full MCA
user identifier. The length of the full identifier is given by
LongMCAUserIdLength. The first 12 bytes of the MCA user identifier are also
contained in the field MCAUserIdentifier.

See the description of the MCAUserIdentifier field for details of the MCA user
identifier.

This field is not relevant for channels with a ChannelType of
MQCHT_CLNTCONN.

This is an input/output field to the exit. The field is not present if Version is
less than MQCD_VERSION_6.

LongRemoteUserIdPtr (MQPTR)
Address of long remote user identifier.

If LongRemoteUserIdLength is greater than zero, this is the address of the full
remote user identifier. The length of the full identifier is given by
LongRemoteUserIdLength. The first 12 bytes of the remote user identifier are
also contained in the field RemoteUserIdentifier.

See the description of the RemoteUserIdentifier field for details of the remote
user identifier.

This field is relevant only for channels with a ChannelType of
MQCHT_CLNTCONN or MQCHT_SVRCONN.

This is an input field to the exit. The field is not present if Version is less than
MQCD_VERSION_6.

MCASecurityId (MQBYTE40)
MCA security identifier.

This is the security identifier for the MCA.

This field is not relevant for channels with a ChannelType of
MQCHT_CLNTCONN.

The following special value indicates that there is no security identifier:

MQSID_NONE
No security identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQSID_NONE_ARRAY
is also defined; this has the same value as MQSID_NONE, but is an
array of characters instead of a string.

This is an input/output field to the exit. The length of this field is given by
MQ_SECURITY_ID_LENGTH. This field is not present if Version is less than
MQCD_VERSION_6.

RemoteSecurityId (MQBYTE40)
Remote security identifier.

This is the security identifier for the remote user.

MQCD

Chapter 37. Channel-exit calls and data structures 579

This field is relevant only for channels with a ChannelType of
MQCHT_CLNTCONN or MQCHT_SVRCONN.

The following special value indicates that there is no security identifier:

MQSID_NONE
No security identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQSID_NONE_ARRAY
is also defined; this has the same value as MQSID_NONE, but is an
array of characters instead of a string.

This is an input field to the exit. The length of this field is given by
MQ_SECURITY_ID_LENGTH. This field is not present if Version is less than
MQCD_VERSION_6.

C declaration
typedef struct tagMQCD {
MQCHAR ChannelName[20]; /* Channel definition

name */
MQLONG Version; /* Structure version number */
MQLONG ChannelType; /* Channel type */
MQLONG TransportType; /* Transport type */
MQCHAR Desc[64]; /* Channel

description */
MQCHAR QMgrName[48]; /* Queue-manager

name */
MQCHAR XmitQName[48]; /* Transmission queue

name */
MQCHAR ShortConnectionName[20]; /* First 20 bytes of

connection name */
MQCHAR MCAName[20]; /* Reserved */
MQCHAR ModeName[8]; /* LU 6.2 Mode name */
MQCHAR TpName[64]; /* LU 6.2 transaction

program name */
MQLONG BatchSize; /* Batch size */
MQLONG DiscInterval; /* Disconnect interval */
MQLONG ShortRetryCount; /* Short retry count */
MQLONG ShortRetryInterval; /* Short retry wait interval */
MQLONG LongRetryCount; /* Long retry count */
MQLONG LongRetryInterval; /* Long retry wait interval */
MQCHAR SecurityExit[n]; /* Channel security

exit name */
MQCHAR MsgExit[n]; /* Channel message exit

name */
MQCHAR SendExit[n]; /* Channel send exit

name */
MQCHAR ReceiveExit[n]; /* Channel receive exit

name */
MQLONG SeqNumberWrap; /* Highest allowable message

sequence number */
MQLONG MaxMsgLength; /* Maximum message length */
MQLONG PutAuthority; /* Put authority */
MQLONG DataConversion; /* Data conversion */
MQCHAR SecurityUserData[32]; /* Channel security

exit user data */
MQCHAR MsgUserData[32]; /* Channel message exit

user data */
MQCHAR SendUserData[32]; /* Channel send exit

user data */
MQCHAR ReceiveUserData[32]; /* Channel receive exit

user data */

MQCD

580 MQSeries Intercommunication

MQCHAR UserIdentifier[12]; /* User identifier */
MQCHAR Password[12]; /* Password */
MQCHAR MCAUserIdentifier[12]; /* First 12 bytes of

MCA user identifier */
MQLONG MCAType; /* Message channel agent type */
MQCHAR ConnectionName[264]; /* Connection name */
MQCHAR RemoteUserIdentifier[12]; /* First 12 bytes of

user identifier from
partner */

MQCHAR RemotePassword[12]; /* Password from
partner */

MQCHAR MsgRetryExit[n]; /* Channel message
retry exit name */

MQCHAR MsgRetryUserData[32]; /* Channel message
retry exit user data */

MQLONG MsgRetryCount; /* Number of times MCA will try
to put the message, after the
first attempt has failed */

MQLONG MsgRetryInterval; /* Minimum interval in millisec-
onds after which the open or
put operation will be
retried */

MQLONG HeartbeatInterval; /* Time in seconds between
heartbeat flows */

MQLONG BatchInterval; /* Batch duration */
MQLONG NonPersistentMsgSpeed; /* Speed at which nonpersistent

messages are sent */
MQLONG StrucLength; /* Length of MQCD structure */
MQLONG ExitNameLength; /* Length of exit name */
MQLONG ExitDataLength; /* Length of exit user data */
MQLONG MsgExitsDefined; /* Number of message exits

defined */
MQLONG SendExitsDefined; /* Number of send exits

defined */
MQLONG ReceiveExitsDefined; /* Number of receive exits

defined */
MQPTR MsgExitPtr; /* Address of first MsgExit

field */
MQPTR MsgUserDataPtr; /* Address of first MsgUserData

field */
MQPTR SendExitPtr; /* Address of first SendExit

field */
MQPTR SendUserDataPtr; /* Address of first SendUserData

field */
MQPTR ReceiveExitPtr; /* Address of first ReceiveExit

field */
MQPTR ReceiveUserDataPtr; /* Address of first

ReceiveUserData field */
MQPTR ClusterPtr; /* Address of first cluster

record */
MQLONG ClustersDefined; /* Number of cluster records */
MQLONG NetworkPriority; /* Network priority */
MQLONG LongMCAUserIdLength; /* Length of long MCA user iden-

tifier */
MQLONG LongRemoteUserIdLength; /* Length of long remote user

identifier */
MQPTR LongMCAUserIdPtr; /* Address of long MCA user iden-

tifier */
MQPTR LongRemoteUserIdPtr; /* Address of long remote user

identifier */
MQBYTE40 MCASecurityId; /* MCA security identifier */
MQBYTE40 RemoteSecurityId; /* Remote security identifier */

} MQCD;

MQCD

Chapter 37. Channel-exit calls and data structures 581

COBOL declaration
** MQCD structure
10 MQCD.

** Channel definition name
15 MQCD-CHANNELNAME PIC X(20).

** Structure version number
15 MQCD-VERSION PIC S9(9) BINARY.

** Channel type
15 MQCD-CHANNELTYPE PIC S9(9) BINARY.

** Transport type
15 MQCD-TRANSPORTTYPE PIC S9(9) BINARY.

** Channel description
15 MQCD-DESC PIC X(64).

** Queue-manager name
15 MQCD-QMGRNAME PIC X(48).

** Transmission queue name
15 MQCD-XMITQNAME PIC X(48).

** First 20 bytes of connection name
15 MQCD-SHORTCONNECTIONNAME PIC X(20).

** Reserved
15 MQCD-MCANAME PIC X(20).

** LU 6.2 Mode name
15 MQCD-MODENAME PIC X(8).

** LU 6.2 transaction program name
15 MQCD-TPNAME PIC X(64).

** Batch size
15 MQCD-BATCHSIZE PIC S9(9) BINARY.

** Disconnect interval
15 MQCD-DISCINTERVAL PIC S9(9) BINARY.

** Short retry count
15 MQCD-SHORTRETRYCOUNT PIC S9(9) BINARY.

** Short retry wait interval
15 MQCD-SHORTRETRYINTERVAL PIC S9(9) BINARY.

** Long retry count
15 MQCD-LONGRETRYCOUNT PIC S9(9) BINARY.

** Long retry wait interval
15 MQCD-LONGRETRYINTERVAL PIC S9(9) BINARY.

** Channel security exit name
15 MQCD-SECURITYEXIT PIC X(n).

** Channel message exit name
15 MQCD-MSGEXIT PIC X(n).

** Channel send exit name
15 MQCD-SENDEXIT PIC X(n).

** Channel receive exit name
15 MQCD-RECEIVEEXIT PIC X(n).

** Highest allowable message sequence number
15 MQCD-SEQNUMBERWRAP PIC S9(9) BINARY.

** Maximum message length
15 MQCD-MAXMSGLENGTH PIC S9(9) BINARY.

** Put authority
15 MQCD-PUTAUTHORITY PIC S9(9) BINARY.

** Data conversion
15 MQCD-DATACONVERSION PIC S9(9) BINARY.

** Channel security exit user data
15 MQCD-SECURITYUSERDATA PIC X(32).

** Channel message exit user data
15 MQCD-MSGUSERDATA PIC X(32).

** Channel send exit user data
15 MQCD-SENDUSERDATA PIC X(32).

** Channel receive exit user data
15 MQCD-RECEIVEUSERDATA PIC X(32).

** User identifier
15 MQCD-USERIDENTIFIER PIC X(12).

** Password
15 MQCD-PASSWORD PIC X(12).

** First 12 bytes of MCA user identifier

MQCD

582 MQSeries Intercommunication

15 MQCD-MCAUSERIDENTIFIER PIC X(12).
** Message channel agent type

15 MQCD-MCATYPE PIC S9(9) BINARY.
** Connection name

15 MQCD-CONNECTIONNAME PIC X(264).
** First 12 bytes of user identifier from partner

15 MQCD-REMOTEUSERIDENTIFIER PIC X(12).
** Password from partner

15 MQCD-REMOTEPASSWORD PIC X(12).
** Channel message retry exit name

15 MQCD-MSGRETRYEXIT PIC X(n).
** Channel message retry exit user data

15 MQCD-MSGRETRYUSERDATA PIC X(32).
** Number of times MCA will try to put the message, after the
** first attempt has failed

15 MQCD-MSGRETRYCOUNT PIC S9(9) BINARY.
** Minimum interval in milliseconds after which the open or put
** operation will be retried

15 MQCD-MSGRETRYINTERVAL PIC S9(9) BINARY.
** Time in seconds between heartbeat flows

15 MQCD-HEARTBEATINTERVAL PIC S9(9) BINARY.
** Batch duration

15 MQCD-BATCHINTERVAL PIC S9(9) BINARY.
** Speed at which nonpersistent messages are sent

15 MQCD-NONPERSISTENTMSGSPEED PIC S9(9) BINARY.
** Length of MQCD structure

15 MQCD-STRUCLENGTH PIC S9(9) BINARY.
** Length of exit name

15 MQCD-EXITNAMELENGTH PIC S9(9) BINARY.
** Length of exit user data

15 MQCD-EXITDATALENGTH PIC S9(9) BINARY.
** Number of message exits defined

15 MQCD-MSGEXITSDEFINED PIC S9(9) BINARY.
** Number of send exits defined

15 MQCD-SENDEXITSDEFINED PIC S9(9) BINARY.
** Number of receive exits defined

15 MQCD-RECEIVEEXITSDEFINED PIC S9(9) BINARY.
** Address of first MsgExit field

15 MQCD-MSGEXITPTR POINTER.
** Address of first MsgUserData field

15 MQCD-MSGUSERDATAPTR POINTER.
** Address of first SendExit field

15 MQCD-SENDEXITPTR POINTER.
** Address of first SendUserData field

15 MQCD-SENDUSERDATAPTR POINTER.
** Address of first ReceiveExit field

15 MQCD-RECEIVEEXITPTR POINTER.
** Address of first ReceiveUserData field

15 MQCD-RECEIVEUSERDATAPTR POINTER.
** Address of first cluster record

15 MQCD-CLUSTERPTR POINTER.
** Number of cluster records

15 MQCD-CLUSTERSDEFINED PIC S9(9) BINARY.
** Network priority

15 MQCD-NETWORKPRIORITY PIC S9(9) BINARY.
** Length of long MCA user identifier

15 MQCD-LONGMCAUSERIDLENGTH PIC S9(9) BINARY.
** Length of long remote user identifier

15 MQCD-LONGREMOTEUSERIDLENGTH PIC S9(9) BINARY.
** Address of long MCA user identifier

15 MQCD-LONGMCAUSERIDPTR POINTER.
** Address of long remote user identifier

15 MQCD-LONGREMOTEUSERIDPTR POINTER.
** MCA security identifier

15 MQCD-MCASECURITYID PIC X(40).
** Remote security identifier

15 MQCD-REMOTESECURITYID PIC X(40).

MQCD

Chapter 37. Channel-exit calls and data structures 583

PL/I declaration
dcl
1 MQCD based,
3 ChannelName char(20), /* Channel definition name */
3 Version fixed bin(31), /* Structure version number */
3 ChannelType fixed bin(31), /* Channel type */
3 TransportType fixed bin(31), /* Transport type */
3 Desc char(64), /* Channel description */
3 QMgrName char(48), /* Queue-manager name */
3 XmitQName char(48), /* Transmission queue name */
3 ShortConnectionName char(20), /* First 20 bytes of connection

name */
3 MCAName char(20), /* Reserved */
3 ModeName char(8), /* LU 6.2 Mode name */
3 TpName char(64), /* LU 6.2 transaction program

name */
3 BatchSize fixed bin(31), /* Batch size */
3 DiscInterval fixed bin(31), /* Disconnect interval */
3 ShortRetryCount fixed bin(31), /* Short retry count */
3 ShortRetryInterval fixed bin(31), /* Short retry wait interval */
3 LongRetryCount fixed bin(31), /* Long retry count */
3 LongRetryInterval fixed bin(31), /* Long retry wait interval */
3 SecurityExit char(n), /* Channel security exit

name */
3 MsgExit char(n), /* Channel message exit name */
3 SendExit char(n), /* Channel send exit name */
3 ReceiveExit char(n), /* Channel receive exit name */
3 SeqNumberWrap fixed bin(31), /* Highest allowable message

sequence number */
3 MaxMsgLength fixed bin(31), /* Maximum message length */
3 PutAuthority fixed bin(31), /* Put authority */
3 DataConversion fixed bin(31), /* Data conversion */
3 SecurityUserData char(32), /* Channel security exit user

data */
3 MsgUserData char(32), /* Channel message exit user

data */
3 SendUserData char(32), /* Channel send exit user

data */
3 ReceiveUserData char(32), /* Channel receive exit user

data */
3 UserIdentifier char(12), /* User identifier */
3 Password char(12), /* Password */
3 MCAUserIdentifier char(12), /* First 12 bytes of MCA user

identifier */
3 MCAType fixed bin(31), /* Message channel agent

type */
3 ConnectionName char(264), /* Connection name */
3 RemoteUserIdentifier char(12), /* First 12 bytes of user iden-

tifier from partner */
3 RemotePassword char(12), /* Password from partner */
3 MsgRetryExit char(n), /* Channel message retry exit

name */
3 MsgRetryUserData char(32), /* Channel message retry exit

user data */
3 MsgRetryCount fixed bin(31), /* Number of times MCA will try

to put the message, after
the first attempt has
failed */

3 MsgRetryInterval fixed bin(31), /* Minimum interval in milli-
seconds after which the open
or put operation will be
retried */

3 HeartbeatInterval fixed bin(31), /* Time in seconds between
heartbeat flows */

3 BatchInterval fixed bin(31), /* Batch duration */
3 NonPersistentMsgSpeed fixed bin(31), /* Speed at which nonpersistent

MQCD

584 MQSeries Intercommunication

messages are sent */
3 StrucLength fixed bin(31), /* Length of MQCD structure */
3 ExitNameLength fixed bin(31), /* Length of exit name */
3 ExitDataLength fixed bin(31), /* Length of exit user data */
3 MsgExitsDefined fixed bin(31), /* Number of message exits

defined */
3 SendExitsDefined fixed bin(31), /* Number of send exits

defined */
3 ReceiveExitsDefined fixed bin(31), /* Number of receive exits

defined */
3 MsgExitPtr pointer, /* Address of first MsgExit

field */
3 MsgUserDataPtr pointer, /* Address of first MsgUserData

field */
3 SendExitPtr pointer, /* Address of first SendExit

field */
3 SendUserDataPtr pointer, /* Address of first

SendUserData field */
3 ReceiveExitPtr pointer, /* Address of first ReceiveExit

field */
3 ReceiveUserDataPtr pointer, /* Address of first

ReceiveUserData field */
3 ClusterPtr pointer, /* Address of first cluster

record */
3 ClustersDefined fixed bin(31), /* Number of cluster records */
3 NetworkPriority fixed bin(31); /* Network priority */

ILE RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCD Structure
D*
D* Channel definition name
D CDCHN 1 20
D* Structure version number
D CDVER 21 24I 0
D* Channel type
D CDCHT 25 28I 0
D* Transport type
D CDTRT 29 32I 0
D* Channel description
D CDDES 33 96
D* Queue-manager name
D CDQM 97 144
D* Transmission queue name
D CDXQ 145 192
D* First 20 bytes of connection name
D CDSCN 193 212
D* Reserved
D CDMCA 213 232
D* LU 6.2 Mode name
D CDMOD 233 240
D* LU 6.2 transaction program name
D CDTP 241 304
D* Batch size
D CDBS 305 308I 0
D* Disconnect interval
D CDDI 309 312I 0
D* Short retry count
D CDSRC 313 316I 0
D* Short retry wait interval
D CDSRI 317 320I 0
D* Long retry count
D CDLRC 321 324I 0
D* Long retry wait interval
D CDLRI 325 328I 0
D* Channel security exit name

MQCD

Chapter 37. Channel-exit calls and data structures 585

D CDSCX 329 348
D* Channel message exit name
D CDMSX 349 368
D* Channel send exit name
D CDSNX 369 388
D* Channel receive exit name
D CDRCX 389 408
D* Highest allowable message sequence number
D CDSNW 409 412I 0
D* Maximum message length
D CDMML 413 416I 0
D* Put authority
D CDPA 417 420I 0
D* Data conversion
D CDDC 421 424I 0
D* Channel security exit user data
D CDSCD 425 456
D* Channel message exit user data
D CDMSD 457 488
D* Channel send exit user data
D CDSND 489 520
D* Channel receive exit user data
D CDRCD 521 552
D* User identifier
D CDUID 553 564
D* Password
D CDPW 565 576
D* First 12 bytes of MCA user identifier
D CDAUI 577 588
D* Message channel agent type
D CDCAT 589 592I 0
D* Connection name (characters 1 through 256)
D CDCON 593 848
D* Connection name (characters 257 through 264)
D CDCN2 849 856
D* First 12 bytes of user identifier from partner
D CDRUI 857 868
D* Password from partner
D CDRPW 869 880
D* Channel message retry exit name
D CDMRX 881 900
D* Channel message retry exit user data
D CDMRD 901 932
D* Number of times MCA will try to put the message, after the first
D* attempt has failed
D CDMRC 933 936I 0
D* Minimum interval in milliseconds after which the open or put
D* operation will be retried
D CDMRI 937 940I 0
D* Time in seconds between heartbeat flows
D CDHBI 941 944I 0
D* Batch duration
D CDBI 945 948I 0
D* Speed at which nonpersistent messages are sent
D CDNPM 949 952I 0
D* Length of MQCD structure
D CDLEN 953 956I 0
D* Length of exit name
D CDXNL 957 960I 0
D* Length of exit user data
D CDXDL 961 964I 0
D* Number of message exits defined
D CDMXD 965 968I 0
D* Number of send exits defined
D CDSXD 969 972I 0
D* Number of receive exits defined
D CDRXD 973 976I 0

MQCD

586 MQSeries Intercommunication

D* Address of first MsgExit field
D CDMXP 977 992*
D* Address of first MsgUserData field
D CDMUP 993 1008*
D* Address of first SendExit field
D CDSXP 1009 1024*
D* Address of first SendUserData field
D CDSUP 1025 1040*
D* Address of first ReceiveExit field
D CDRXP 1041 1056*
D* Address of first ReceiveUserData field
D CDRUP 1057 1072*
D* Address of first cluster record
D CDCLP 1073 1088*
D* Number of cluster records
D CDCLD 1089 1092I 0
D* Network priority
D CDNP 1093 1096I 0
D* Length of long MCA user identifier
D CDLML 1097 1100I 0
D* Length of long remote user identifier
D CDLRL 1101 1104I 0
D* Address of long MCA user identifier
D CDLMP 1105 1120*
D* Address of long remote user identifier
D CDLRP 1121 1136*
D* MCA security identifier
D CDMSI 1137 1176
D* Remote security identifier
D CDRSI 1177 1216

OPM RPG declaration
I*..1....:....2....:....3....:....4....:....5....:....6....:....7..
I* MQCD Structure
I*
I* Channel definition name
I 1 20 CDCHN
I* Structure version number
I B 21 240CDVER
I* Channel type
I B 25 280CDCHT
I* Transport type
I B 29 320CDTRT
I* Channel description
I 33 96 CDDES
I* Queue-manager name
I 97 144 CDQM
I* Transmission queue name
I 145 192 CDXQ
I* First 20 bytes of connection name
I 193 212 CDSCN
I* Reserved
I 213 232 CDMCA
I* LU 6.2 Mode name
I 233 240 CDMOD
I* LU 6.2 transaction program name
I 241 304 CDTP
I* Batch size
I B 305 3080CDBS
I* Disconnect interval
I B 309 3120CDDI
I* Short retry count
I B 313 3160CDSRC
I* Short retry wait interval
I B 317 3200CDSRI
I* Long retry count

MQCD

Chapter 37. Channel-exit calls and data structures 587

I B 321 3240CDLRC
I* Long retry wait interval
I B 325 3280CDLRI
I* Channel security exit name
I 329 348 CDSCX
I* Channel message exit name
I 349 368 CDMSX
I* Channel send exit name
I 369 388 CDSNX
I* Channel receive exit name
I 389 408 CDRCX
I* Highest allowable message sequence number
I B 409 4120CDSNW
I* Maximum message length
I B 413 4160CDMML
I* Put authority
I B 417 4200CDPA
I* Data conversion
I B 421 4240CDDC
I* Channel security exit user data
I 425 456 CDSCD
I* Channel message exit user data
I 457 488 CDMSD
I* Channel send exit user data
I 489 520 CDSND
I* Channel receive exit user data
I 521 552 CDRCD
I* User identifier
I 553 564 CDUID
I* Password
I 565 576 CDPW
I* First 12 bytes of MCA user identifier
I 577 588 CDAUI
I* Message channel agent type
I B 589 5920CDCAT
I* Connection name (characters 1 through 256)
I 593 848 CDCON
I* Connection name (characters 257 through 264)
I 849 856 CDCN2
I* First 12 bytes of user identifier from partner
I 857 868 CDRUI
I* Password from partner
I 869 880 CDRPW
I* Channel message retry exit name
I 881 900 CDMRX
I* Channel message retry exit user data
I 901 932 CDMRD
I* Number of times MCA will try to put the message, after the first
I* attempt has failed
I B 933 9360CDMRC
I* Minimum interval in milliseconds after which the open or put
I* operation will be retried
I B 937 9400CDMRI
I* Time in seconds between heartbeat flows
I B 941 9440CDHBI
I* Batch duration
I B 945 9480CDBI
I* Speed at which nonpersistent messages are sent
I B 949 9520CDNPM
I* Length of MQCD structure
I B 953 9560CDLEN
I* Length of exit name
I B 957 9600CDXNL
I* Length of exit user data
I B 961 9640CDXDL
I* Number of message exits defined
I B 965 9680CDMXD

MQCD

588 MQSeries Intercommunication

I* Number of send exits defined
I B 969 9720CDSXD
I* Number of receive exits defined
I B 973 9760CDRXD
I* Address of first MsgExit field
I 977 992 CDMXP
I* Address of first MsgUserData field
I 9931008 CDMUP
I* Address of first SendExit field
I 10091024 CDSXP
I* Address of first SendUserData field
I 10251040 CDSUP
I* Address of first ReceiveExit field
I 10411056 CDRXP
I* Address of first ReceiveUserData field
I 10571072 CDRUP
I* Address of first cluster record
I 10731088 CDCLP
I* Number of cluster records
I B108910920CDCLD
I* Network priority
I B109310960CDNP
I* Length of long MCA user identifier
I B109711000CDLML
I* Length of long remote user identifier
I B110111040CDLRL
I* Address of long MCA user identifier
I 11051120 CDLMP
I* Address of long remote user identifier
I 11211136 CDLRP
I* MCA security identifier
I 11371176 CDMSI
I* Remote security identifier
I 11771216 CDRSI

System/390 assembler declaration
MQCD DSECT
MQCD_CHANNELNAME DS CL20 Channel definition name
MQCD_VERSION DS F Structure version number
MQCD_CHANNELTYPE DS F Channel type
MQCD_TRANSPORTTYPE DS F Transport type
MQCD_DESC DS CL64 Channel description
MQCD_QMGRNAME DS CL48 Queue-manager name
MQCD_XMITQNAME DS CL48 Transmission queue name
MQCD_SHORTCONNECTIONNAME DS CL20 First 20 bytes of connection
* name
MQCD_MCANAME DS CL20 Reserved
MQCD_MODENAME DS CL8 LU 6.2 Mode name
MQCD_TPNAME DS CL64 LU 6.2 transaction program
* name
MQCD_BATCHSIZE DS F Batch size
MQCD_DISCINTERVAL DS F Disconnect interval
MQCD_SHORTRETRYCOUNT DS F Short retry count
MQCD_SHORTRETRYINTERVAL DS F Short retry wait interval
MQCD_LONGRETRYCOUNT DS F Long retry count
MQCD_LONGRETRYINTERVAL DS F Long retry wait interval
MQCD_SECURITYEXIT DS CLn Channel security exit name
MQCD_MSGEXIT DS CLn Channel message exit name
MQCD_SENDEXIT DS CLn Channel send exit name
MQCD_RECEIVEEXIT DS CLn Channel receive exit name
MQCD_SEQNUMBERWRAP DS F Highest allowable message
* sequence number
MQCD_MAXMSGLENGTH DS F Maximum message length
MQCD_PUTAUTHORITY DS F Put authority
MQCD_DATACONVERSION DS F Data conversion
MQCD_SECURITYUSERDATA DS CL32 Channel security exit user

MQCD

Chapter 37. Channel-exit calls and data structures 589

* data
MQCD_MSGUSERDATA DS CL32 Channel message exit user
* data
MQCD_SENDUSERDATA DS CL32 Channel send exit user data
MQCD_RECEIVEUSERDATA DS CL32 Channel receive exit user
* data
MQCD_USERIDENTIFIER DS CL12 User identifier
MQCD_PASSWORD DS CL12 Password
MQCD_MCAUSERIDENTIFIER DS CL12 First 12 bytes of MCA user
* identifier
MQCD_MCATYPE DS F Message channel agent type
MQCD_CONNECTIONNAME DS CL264 Connection name
MQCD_REMOTEUSERIDENTIFIER DS CL12 First 12 bytes of user
* identifier from partner
MQCD_REMOTEPASSWORD DS CL12 Password from partner
MQCD_MSGRETRYEXIT DS CLn Channel message retry exit
* name
MQCD_MSGRETRYUSERDATA DS CL32 Channel message retry exit
* user data
MQCD_MSGRETRYCOUNT DS F Number of times MCA will try
* to put the message, after
* the first attempt has failed
MQCD_MSGRETRYINTERVAL DS F Minimum interval in
* milliseconds after which the
* open or put operation will
* be retried
MQCD_HEARTBEATINTERVAL DS F Time in seconds between
* heartbeat flows
MQCD_BATCHINTERVAL DS F Batch duration
MQCD_NONPERSISTENTMSGSPEED DS F Speed at which nonpersistent
* messages are sent
MQCD_STRUCLENGTH DS F Length of MQCD structure
MQCD_EXITNAMELENGTH DS F Length of exit name
MQCD_EXITDATALENGTH DS F Length of exit user data
MQCD_MSGEXITSDEFINED DS F Number of message exits
* defined
MQCD_SENDEXITSDEFINED DS F Number of send exits defined
MQCD_RECEIVEEXITSDEFINED DS F Number of receive exits
* defined
MQCD_MSGEXITPTR DS F Address of first MsgExit
* field
MQCD_MSGUSERDATAPTR DS F Address of first MsgUserData
* field
MQCD_SENDEXITPTR DS F Address of first SendExit
* field
MQCD_SENDUSERDATAPTR DS F Address of first
* SendUserData field
MQCD_RECEIVEEXITPTR DS F Address of first ReceiveExit
* field
MQCD_RECEIVEUSERDATAPTR DS F Address of first
* ReceiveUserData field
MQCD_CLUSTERPTR DS F Address of first cluster
* record
MQCD_CLUSTERSDEFINED DS F Number of cluster records
MQCD_NETWORKPRIORITY DS F Network priority
MQCD_LENGTH EQU *-MQCD Length of structure

ORG MQCD
MQCD_AREA DS CL(MQCD_LENGTH)

MQCD

590 MQSeries Intercommunication

MQCXP - Channel exit parameter structure
The following table summarizes the fields in the structure.

Table 49. Fields in MQCXP

Field Description Page

StrucId Structure identifier 591

Version Structure version number 592

ExitId Type of exit 592

ExitReason Reason for invoking exit 593

ExitResponse Response from exit 595

ExitResponse2 Secondary response from exit 596

Feedback Feedback code 598

MaxSegmentLength Maximum segment length 598

ExitUserArea Exit user area 598

ExitData Exit data 599

MsgRetryCount Number of times the message has been retried 599

MsgRetryInterval Minimum interval in milliseconds after which the
put operation should be retried

599

MsgRetryReason Reason code from previous attempt to put the
message

600

HeaderLength Length of header 600

PartnerName Partner name 600

FAPLevel Negotiated Formats and Protocols level 600

CapabilityFlags Capability flags 601

ExitNumber Exit number 601

The MQCXP structure is passed to each type of exit called by a Message Channel
Agent (MCA). See MQ_CHANNEL_EXIT.

The fields described as “input to the exit” in the descriptions that follow are
ignored by the MCA when the exit returns control to the MCA. The exit should
not expect that any input fields that it changes in the channel exit parameter block
will be preserved for its next invocation. Changes made to input/output fields (for
example, the ExitUserArea field), are preserved for invocations of that instance of
the exit only. Such changes cannot be used to pass data between different exits
defined on the same channel, or between the same exit defined on different
channels.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQCXP_STRUC_ID
Identifier for channel exit parameter structure.

MQCXP

Chapter 37. Channel-exit calls and data structures 591

For the C programming language, the constant
MQCXP_STRUC_ID_ARRAY is also defined; this has the same value as
MQCXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value depends on the environment:

MQCXP_VERSION_1
Version-1 channel exit parameter structure.

The field has this value on OS/390 using CICS for distributed queuing.

MQCXP_VERSION_2
Version-2 channel exit parameter structure.

The field has this value in the following environments: Compaq
(DIGITAL) OpenVMS, Tandem NonStop Kernel, 16-bit Windows.

MQCXP_VERSION_3
Version-3 channel exit parameter structure.

The field has this value in the following environments: UNIX systems
not listed elsewhere, 32-bit Windows.

MQCXP_VERSION_4
Version-4 channel exit parameter structure.

The field has this value in the following environments: AIX, HP-UX,
OS/390 not using CICS for distributed queuing, OS/2, OS/400, Sun
Solaris, Windows NT.

Fields that exist only in the earlier versions of the structure are identified as
such in the field descriptions that follow. The following constant specifies the
version number of the current version:

MQCXP_CURRENT_VERSION
Current version of channel exit parameter structure.

The value of this constant depends on the environment (see above).

Note: When a new version of the MQCXP structure is introduced, the layout
of the existing part is not changed. The exit should therefore check that
the version number is equal to or greater than the lowest version which
contains the fields that the exit needs to use.

This is an input field to the exit.

ExitId (MQLONG)
Type of exit.

This indicates the type of exit being called, and is set on entry to the exit
routine. Possible values are:

MQXT_CHANNEL_SEC_EXIT
Channel security exit.

MQXT_CHANNEL_MSG_EXIT
Channel message exit.

MQCXP

592 MQSeries Intercommunication

|

MQXT_CHANNEL_SEND_EXIT
Channel send exit.

MQXT_CHANNEL_RCV_EXIT
Channel receive exit.

MQXT_CHANNEL_MSG_RETRY_EXIT
Channel message-retry exit.

This type of exit is not supported on OS/390, 16-bit Windows, and
32-bit Windows.

MQXT_CHANNEL_AUTO_DEF_EXIT
Channel auto-definition exit.

On OS/390, this type of exit is supported only for channels of type
MQCHT_CLUSSDR and MQCHT_CLUSRCVR.

On 16-bit Windows and 32-bit Windows, this type of exit is not
supported.

This is an input field to the exit.

ExitReason (MQLONG)
Reason for invoking exit.

This indicates the reason why the exit is being called, and is set on entry to the
exit routine. It is not used by the auto-definition exit. Possible values are:

MQXR_INIT
Exit initialization.

This indicates that the exit is being invoked for the first time. It allows
the exit to acquire and initialize any resources that it may need (for
example: main storage).

MQXR_TERM
Exit termination.

This indicates that the exit is about to be terminated. The exit should
free any resources that it may have acquired since it was initialized (for
example: main storage).

MQXR_MSG
Process a message.

This indicates that the exit is being invoked to process a message. This
occurs for channel message exits only.

MQXR_XMIT
Process a transmission.

This occurs for channel send and receive exits only.

MQXR_SEC_MSG
Security message received.

This occurs for channel security exits only.

MQXR_INIT_SEC
Initiate security exchange.

This occurs for channel security exits only.

The receiver’s security exit is always invoked with this reason
immediately after being invoked with MQXR_INIT, to give it the

MQCXP

Chapter 37. Channel-exit calls and data structures 593

opportunity to initiate a security exchange. If it declines the
opportunity (by returning MQXCC_OK instead of
MQXCC_SEND_SEC_MSG or
MQXCC_SEND_AND_REQUEST_SEC_MSG), the sender’s security exit
is invoked with MQXR_INIT_SEC.

If the receiver’s security exit does initiate a security exchange (by
returning MQXCC_SEND_SEC_MSG or
MQXCC_SEND_AND_REQUEST_SEC_MSG), the sender’s security exit
is never invoked with MQXR_INIT_SEC; instead it is invoked with
MQXR_SEC_MSG to process the receiver’s message. (In either case it is
first invoked with MQXR_INIT.)

Unless one of the security exits requests termination of the channel (by
setting ExitResponse to MQXCC_SUPPRESS_FUNCTION or
MQXCC_CLOSE_CHANNEL), the security exchange must complete at
the side that initiated the exchange. Therefore, if a security exit is
invoked with MQXR_INIT_SEC and it does initiate an exchange, the
next time the exit is invoked it will be with MQXR_SEC_MSG. This
happens whether or not there is a security message for the exit to
process. There will be a security message if the partner returns
MQXCC_SEND_SEC_MSG or
MQXCC_SEND_AND_REQUEST_SEC_MSG, but not if the partner
returns MQXCC_OK or there is no security exit at the partner. If there
is no security message to process, the security exit at the initiating end
is re-invoked with a DataLength of zero.

MQXR_RETRY
Retry a message.

This occurs for message-retry exits only.

On OS/390, this is not supported.

MQXR_AUTO_CLUSSDR
Automatic definition of a cluster-sender channel.

This occurs for channel auto-definition exits only.

MQXR_AUTO_RECEIVER
Automatic definition of a receiver channel.

This occurs for channel auto-definition exits only.

MQXR_AUTO_SVRCONN
Automatic definition of a server-connection channel.

This occurs for channel auto-definition exits only.

MQXR_AUTO_CLUSRCVR
Automatic definition of a cluster-receiver channel.

This occurs for channel auto-definition exits only.

Notes:

1. If you have more than one exit defined for a channel, they will each be
invoked with MQXR_INIT when the MCA is initialized, and will each be
invoked with MQXR_TERM when the MCA is terminated.

2. For the channel auto-definition exit, ExitReason is not set if Version is less
than MQCXP_VERSION_4. The value MQXR_AUTO_SVRCONN is implied
in this case.

MQCXP

594 MQSeries Intercommunication

|
|
|

|
|
|

|
|
|
|
|
|

This is an input field to the exit.

ExitResponse (MQLONG)
Response from exit.

This is set by the exit to communicate with the MCA. It must be one of the
following:

MQXCC_OK
Continue normally.
v For the channel security exit, this indicates that message transfer

should now proceed normally.
v For the channel message retry exit, this indicates that the MCA

should wait for the time interval returned by the exit in the
MsgRetryInterval field in MQCXP, and then retry the message.

The ExitResponse2 field may contain additional information.

MQXCC_SUPPRESS_FUNCTION
Suppress function.
v For the channel security exit, this indicates that the channel should

be terminated.
v For the channel message exit, this indicates that the message is not

to proceed any further towards its destination. Instead the MCA
generates an exception report message (if one was requested by the
sender of the original message), and places the original message on
the dead-letter queue (if the sender specified
MQRO_DEAD_LETTER_Q), or discards it (if the sender specified
MQRO_DISCARD_MSG).
If the sender specified MQRO_DEAD_LETTER_Q, but the put to the
dead-letter queue fails, or there is no dead-letter queue, the original
message is left on the transmission queue and the report message is
not generated. The original message is also left on the transmission
queue if the report message cannot be generated successfully.
The Feedback field in the MQDLH structure at the start of the
message on the dead-letter queue indicates why the message was
put on the dead-letter queue; this feedback code is also used in the
message descriptor of the exception report message (if one was
requested by the sender).

v For the channel message retry exit, this indicates that the MCA
should not wait and retry the message; instead, the MCA continues
immediately with its normal failure processing (the message is
placed on the dead-letter queue or discarded, as specified by the
sender of the message).

v For the channel auto-definition exit, either MQXCC_OK or
MQXCC_SUPPRESS_FUNCTION must be specified. If neither of
these is specified, MQXCC_SUPPRESS_FUNCTION is assumed by
default and the auto-definition is abandoned.

This response is not supported for the channel send and receive exits.

MQXCC_SEND_SEC_MSG
Send security message.

This value can be set only by a channel security exit. It indicates that
the exit has provided a security message which should be transmitted
to the partner.

MQCXP

Chapter 37. Channel-exit calls and data structures 595

MQXCC_SEND_AND_REQUEST_SEC_MSG
Send security message that requires a reply.

This value can be set only by a channel security exit. It indicates
v that the exit has provided a security message which should be

transmitted to the partner, and
v that the exit requires a response from the partner. If no response is

received, the channel must be terminated, because the exit has not
yet decided whether communications can proceed.

This is not valid on OS/390 if you are using CICS for distributed
queuing.

MQXCC_SUPPRESS_EXIT
Suppress exit.
v This value can be set by all types of channel exit other than a

security exit or an auto-definition exit. It suppresses any further
invocation of that exit (as if its name had been blank in the channel
definition), until termination of the MCA, when the exit is again
invoked with an ExitReason of MQXR_TERM.

v If a message retry exit returns this value, message retries for
subsequent messages are controlled by the MsgRetryCount and
MsgRetryInterval channel attributes as normal. For the current
message, the MCA performs the number of outstanding retries, at
intervals given by the MsgRetryInterval channel attribute, but only
if the reason code is one that the MCA would normally retry (see the
MsgRetryCount field described in “MQCD - Channel data structure”
on page 556). The number of outstanding retries is the value of the
MsgRetryCount attribute, less the number of times the exit returned
MQXCC_OK for the current message; if this number is negative, no
further retries are performed by the MCA for the current message.

This is not valid on OS/390 if you are using CICS for distributed
queuing.

MQXCC_CLOSE_CHANNEL
Close channel.

This value can be set by any type of channel exit except an
auto-definition exit. It causes the message channel agent (MCA) to
close the channel.

This is not valid on OS/390 if you are using CICS for distributed
queuing.

This is an input/output field from the exit.

ExitResponse2 (MQLONG)
Secondary response from exit.

This is set to zero on entry to the exit routine. It can be set by the exit to
provide further information to the MCA. It is not used by the auto-definition
exit.

The exit can set one or more of the following. If more than one is required, the
values are added together. Combinations that are not valid are noted; other
combinations are allowed.

MQCXP

596 MQSeries Intercommunication

MQXR2_PUT_WITH_DEF_ACTION
Put with default action.

This is set by the receiver’s channel message exit. It indicates that the
message is to be put with the MCA’s default action, that is either the
MCA’s default user ID, or the context UserIdentifier in the MQMD
(message descriptor) of the message.

The value of this constant is zero, which corresponds to the initial
value set when the exit is invoked. The constant is provided for
documentation purposes.

MQXR2_PUT_WITH_DEF_USERID
Put with default user identifier.

This can only be set by the receiver’s channel message exit. It indicates
that the message is to be put with the MCA’s default user identifier.

MQXR2_PUT_WITH_MSG_USERID
Put with message’s user identifier.

This can only be set by the receiver’s channel message exit. It indicates
that the message is to be put with the context UserIdentifier in the
MQMD (message descriptor) of the message (this may have been
modified by the exit).

Only one of MQXR2_PUT_WITH_DEF_ACTION,
MQXR2_PUT_WITH_DEF_USERID, and MQXR2_PUT_WITH_MSG_USERID
should be set.

MQXR2_USE_AGENT_BUFFER
Use agent buffer.

This indicates that any data to be passed on is in AgentBuffer, not
ExitBufferAddr.

The value of this constant is zero, which corresponds to the initial
value set when the exit is invoked. The constant is provided for
documentation purposes.

MQXR2_USE_EXIT_BUFFER
Use exit buffer.

This indicates that any data to be passed on is in ExitBufferAddr, not
AgentBuffer.

Only one of MQXR2_USE_AGENT_BUFFER and MQXR2_USE_EXIT_BUFFER
should be set.

MQXR2_DEFAULT_CONTINUATION
Exit continuation criteria.

Continuation with the next exit in the chain depends on the response
from the last exit invoked:
v If MQXCC_SUPPRESS_FUNCTION or MQXCC_CLOSE_CHANNEL

are returned, no further exits in the chain are called.
v Otherwise, the next exit in the chain is invoked.

On OS/390, this is not supported.

MQXR2_CONTINUE_CHAIN
Continue with the next exit.

MQCXP

Chapter 37. Channel-exit calls and data structures 597

On OS/390, this is not supported.

MQXR2_SUPPRESS_CHAIN
No further exits are invoked.

On OS/390, this is not supported.

This is an input/output field from the exit.

Feedback (MQLONG)
Feedback code.

This is set to zero on entry to the exit routine.

If a channel message exit sets the ExitResponse field to
MQXCC_SUPPRESS_FUNCTION, the Feedback field specifies the feedback
code that identifies why the message was put on the dead-letter
(undelivered-message) queue, and is also used to send an exception report if
one has been requested. If the Feedback field is zero in this case, the following
feedback code is used:

MQFB_STOPPED_BY_MSG_EXIT
Message stopped by channel message exit.

The value returned in this field by channel security, send, receive, and
message-retry exits is not used by the MCA.

The value returned in this field by auto-definition exits is not used if
ExitResponse is MQXCC_OK, but otherwise is used for the AuxErrorDataInt1
parameter in the event message.

This is an input/output field from the exit.

MaxSegmentLength (MQLONG)
Maximum segment length.

This is the maximum length in bytes that can be sent in a single transmission.
It is not used by the auto-definition exit. It is of interest to a channel send exit,
because this exit must ensure that it does not increase the size of a
transmission segment to a value greater than MaxSegmentLength. The length
includes the initial 8 bytes that the exit must not change. The value is
negotiated between the message channel agents when the channel is initiated.
See “Writing and compiling channel-exit programs” on page 518 for more
information about segment lengths.

The value in this field is not meaningful if ExitReason is MQXR_INIT.

This is an input field to the exit.

ExitUserArea (MQBYTE16)
Exit user area.

This is a field that is available for the exit to use. (It is not used by the
auto-definition exit.) It is initialized to binary zero before the first invocation of
the exit (which has an ExitReason set to MQXR_INIT), and thereafter any
changes made to this field by the exit are preserved across invocations of the
exit.

The following value is defined:

MQCXP

598 MQSeries Intercommunication

MQXUA_NONE
No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQXUA_NONE_ARRAY is also defined; this has the same value as
MQXUA_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is
an input/output field to the exit.

ExitData (MQCHAR32)
Exit data.

This is set on entry to the exit routine to information that the MCA took from
the channel definition. If no such information is available, this field is all
blanks.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This is an input field to the exit.

The following fields in this structure are not present if Version is less than
MQCXP_VERSION_2.

MsgRetryCount (MQLONG)
Number of times the message has been retried.

The first time the exit is invoked for a particular message, this field has the
value zero (no retries yet attempted). On each subsequent invocation of the exit
for that message, the value is incremented by one by the MCA. On OS/390,
the value is always zero.

This is an input field to the exit. The value in this field is not meaningful if
ExitReason is MQXR_INIT. The field is not present if Version is less than
MQCXP_VERSION_2.

MsgRetryInterval (MQLONG)
Minimum interval in milliseconds after which the put operation should be
retried.

The first time the exit is invoked for a particular message, this field contains
the value of the MsgRetryInterval channel attribute. The exit can leave the
value unchanged, or modify it to specify a different time interval in
milliseconds. If the exit returns MQXCC_OK in ExitResponse, the MCA will
wait for at least this time interval before retrying the MQOPEN or MQPUT
operation. The time interval specified must be zero or greater.

The second and subsequent times the exit is invoked for that message, this
field contains the value returned by the previous invocation of the exit.

If the value returned in the MsgRetryInterval field is less than zero or greater
than 999 999 999, and ExitResponse is MQXCC_OK, the MCA ignores the
MsgRetryInterval field in MQCXP and waits instead for the interval specified
by the MsgRetryInterval channel attribute. On OS/390, the value of this field
is always zero.

MQCXP

Chapter 37. Channel-exit calls and data structures 599

|
|

This is an input/output field to the exit. The value in this field is not
meaningful if ExitReason is MQXR_INIT. The field is not present if Version is
less than MQCXP_VERSION_2.

MsgRetryReason (MQLONG)
Reason code from previous attempt to put the message.

This is the reason code from the previous attempt to put the message; it is one
of the MQRC_* values. On OS/390 the value of this field is always zero.

This is an input field to the exit. The value in this field is not meaningful if
ExitReason is MQXR_INIT. The field is not present if Version is less than
MQCXP_VERSION_2.

The following fields in this structure are not present if Version is less than
MQCXP_VERSION_3.

HeaderLength (MQLONG)
Length of header information.

This field is relevant only for a message exit. The value is the length of the
routing header structures at the start of the message data; these are the
MQXQH structure, and (for a distribution-list message) the MQDH structure
and arrays of MQOR and MQPMR records that follow the MQXQH structure.

The message exit can examine this header information, and modify it if
necessary, but the data that the exit returns must still be in the correct format.
The exit must not, for example, encrypt or compress the header data at the
sending end, even if the message exit at the receiving end makes compensating
changes.

If the message exit modifies the header information in such a way as to change
its length (for example, by adding another destination to a distribution-list
message), it must change the value of HeaderLength correspondingly before
returning.

This is an input/output field to the exit. The value in this field is not
meaningful if ExitReason is MQXR_INIT. The field is not present if Version is
less than MQCXP_VERSION_3.

PartnerName (MQCHAR48)
Partner Name.

The name of the partner, as follows:
v For SVRCONN channels, it is the logged-on user ID at the client.
v For all other types of channel, it is the queue-manager name of the partner.

When the exit is initialized this field is blank because the queue manager does
not know the name of the partner until after initial negotiation has taken place.

This is an input field to the exit. The field is not present if Version is less than
MQCXP_VERSION_3.

FAPLevel (MQLONG)
Negotiated Formats and Protocols level.

MQCXP

600 MQSeries Intercommunication

|
|

This is an input field to the exit. The field is not present if Version is less than
MQCXP_VERSION_3.

CapabilityFlags (MQLONG)
Capability flags.

The following are defined:

MQCF_NONE
No flags.

MQCF_DIST_LISTS
Distribution lists supported.

This is an input field to the exit. The field is not present if Version is less than
MQCXP_VERSION_3.

ExitNumber (MQLONG)
Exit number.

The ordinal number of the exit, within the type defined in ExitId. For
example, if the exit being invoked is the third message exit defined, this field
contains the value 3. If the exit type is one for which a list of exits cannot be
defined (for example, a security exit), this field has the value 1.

This is an input field to the exit. The field is not present if Version is less than
MQCXP_VERSION_3.

C declaration
typedef struct tagMQCXP {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ExitId; /* Type of exit */
MQLONG ExitReason; /* Reason for invoking exit */
MQLONG ExitResponse; /* Response from exit */
MQLONG ExitResponse2; /* Secondary response from exit */
MQLONG Feedback; /* Feedback code */
MQLONG MaxSegmentLength; /* Maximum segment length */
MQBYTE16 ExitUserArea; /* Exit user area */
MQCHAR32 ExitData; /* Exit data */
MQLONG MsgRetryCount; /* Number of times the message has been

retried */
MQLONG MsgRetryInterval; /* Minimum interval in milliseconds after

which the put operation should be
retried */

MQLONG MsgRetryReason; /* Reason code from previous attempt to
put the message */

MQLONG HeaderLength; /* Length of header information */
MQCHAR48 PartnerName; /* Partner Name */
MQLONG FAPLevel; /* Negotiated Formats and Protocols

level */
MQLONG CapabilityFlags; /* Capability flags */
MQLONG ExitNumber; /* Exit number */

} MQCXP;

COBOL declaration
** MQCXP structure
10 MQCXP.

** Structure identifier
15 MQCXP-STRUCID PIC X(4).

** Structure version number
15 MQCXP-VERSION PIC S9(9) BINARY.

MQCXP

Chapter 37. Channel-exit calls and data structures 601

** Type of exit
15 MQCXP-EXITID PIC S9(9) BINARY.

** Reason for invoking exit
15 MQCXP-EXITREASON PIC S9(9) BINARY.

** Response from exit
15 MQCXP-EXITRESPONSE PIC S9(9) BINARY.

** Secondary response from exit
15 MQCXP-EXITRESPONSE2 PIC S9(9) BINARY.

** Feedback code
15 MQCXP-FEEDBACK PIC S9(9) BINARY.

** Maximum segment length
15 MQCXP-MAXSEGMENTLENGTH PIC S9(9) BINARY.

** Exit user area
15 MQCXP-EXITUSERAREA PIC X(16).

** Exit data
15 MQCXP-EXITDATA PIC X(32).

** Number of times the message has been retried
15 MQCXP-MSGRETRYCOUNT PIC S9(9) BINARY.

** Minimum interval in milliseconds after which the put
** operation should be retried

15 MQCXP-MSGRETRYINTERVAL PIC S9(9) BINARY.
** Reason code from previous attempt to put the message

15 MQCXP-MSGRETRYREASON PIC S9(9) BINARY.
** Length of header information

15 MQCXP-HEADERLENGTH PIC S9(9) BINARY.
** Partner Name

15 MQCXP-PARTNERNAME PIC X(48).
** Negotiated Formats and Protocols level

15 MQCXP-FAPLEVEL PIC S9(9) BINARY.
** Capability flags

15 MQCXP-CAPABILITYFLAGS PIC S9(9) BINARY.
** Exit number

15 MQCXP-EXITNUMBER PIC S9(9) BINARY.

PL/I declaration
dcl
1 MQCXP based,
3 StrucId char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number */
3 ExitId fixed bin(31), /* Type of exit */
3 ExitReason fixed bin(31), /* Reason for invoking exit */
3 ExitResponse fixed bin(31), /* Response from exit */
3 ExitResponse2 fixed bin(31), /* Secondary response from exit */
3 Feedback fixed bin(31), /* Feedback code */
3 MaxSegmentLength fixed bin(31), /* Maximum segment length */
3 ExitUserArea char(16), /* Exit user area */
3 ExitData char(32), /* Exit data */
3 MsgRetryCount fixed bin(31), /* Number of times the message has

been retried */
3 MsgRetryInterval fixed bin(31), /* Minimum interval in milliseconds

after which the put operation
should be retried */

3 MsgRetryReason fixed bin(31), /* Reason code from previous attempt
to put the message */

3 HeaderLength fixed bin(31), /* Length of header information */
3 PartnerName char(48), /* Partner Name */
3 FAPLevel fixed bin(31), /* Negotiated Formats and Protocols

level */
3 CapabilityFlags fixed bin(31), /* Capability flags */
3 ExitNumber fixed bin(31); /* Exit number */

ILE RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCXP Structure
D*

MQCXP

602 MQSeries Intercommunication

D* Structure identifier
D CXSID 1 4
D* Structure version number
D CXVER 5 8I 0
D* Type of exit
D CXXID 9 12I 0
D* Reason for invoking exit
D CXREA 13 16I 0
D* Response from exit
D CXRES 17 20I 0
D* Secondary response from exit
D CXRE2 21 24I 0
D* Feedback code
D CXFB 25 28I 0
D* Maximum segment length
D CXMSL 29 32I 0
D* Exit user area
D CXUA 33 48
D* Exit data
D CXDAT 49 80
D* Number of times the message has been retried
D CXMRC 81 84I 0
D* Minimum interval in milliseconds after which the put operation
D* should be retried
D CXMRI 85 88I 0
D* Reason code from previous attempt to put the message
D CXMRR 89 92I 0
D* Length of header information
D CXHDL 93 96I 0
D* Partner Name
D CXPNM 97 144
D* Negotiated Formats and Protocols level
D CXFAP 145 148I 0
D* Capability flags
D CXCAP 149 152I 0
D* Exit number
D CXEXN 153 156I 0

OPM RPG declaration
I*..1....:....2....:....3....:....4....:....5....:....6....:....7..
I* MQCXP Structure
I*
I* Structure identifier
I 1 4 CXSID
I* Structure version number
I B 5 80CXVER
I* Type of exit
I B 9 120CXXID
I* Reason for invoking exit
I B 13 160CXREA
I* Response from exit
I B 17 200CXRES
I* Secondary response from exit
I B 21 240CXRE2
I* Feedback code
I B 25 280CXFB
I* Maximum segment length
I B 29 320CXMSL
I* Exit user area
I 33 48 CXUA
I* Exit data
I 49 80 CXDAT
I* Number of times the message has been retried
I B 81 840CXMRC
I* Minimum interval in milliseconds after which the put operation
I* should be retried

MQCXP

Chapter 37. Channel-exit calls and data structures 603

I B 85 880CXMRI
I* Reason code from previous attempt to put the message
I B 89 920CXMRR
I* Length of header information
I B 93 960CXHDL
I* Partner Name
I 97 144 CXPNM
I* Negotiated Formats and Protocols level
I B 145 1480CXFAP
I* Capability flags
I B 149 1520CXCAP
I* Exit number
I B 153 1560CXEXN

System/390 assembler declaration
MQCXP DSECT
MQCXP_STRUCID DS CL4 Structure identifier
MQCXP_VERSION DS F Structure version number
MQCXP_EXITID DS F Type of exit
MQCXP_EXITREASON DS F Reason for invoking exit
MQCXP_EXITRESPONSE DS F Response from exit
MQCXP_EXITRESPONSE2 DS F Secondary response from exit
MQCXP_FEEDBACK DS F Feedback code
MQCXP_MAXSEGMENTLENGTH DS F Maximum segment length
MQCXP_EXITUSERAREA DS XL16 Exit user area
MQCXP_EXITDATA DS CL32 Exit data
MQCXP_MSGRETRYCOUNT DS F Number of times the message
* has been retried
MQCXP_MSGRETRYINTERVAL DS F Minimum interval in
* milliseconds after which the
* put operation should be
* retried
MQCXP_MSGRETRYREASON DS F Reason code from previous
* attempt to put the message
MQCXP_HEADERLENGTH DS F Length of header information
MQCXP_PARTNERNAME DS CL48 Partner Name
MQCXP_FAPLEVEL DS F Negotiated Formats and
* Protocols level
MQCXP_CAPABILITYFLAGS DS F Capability flags
MQCXP_EXITNUMBER DS F Exit number
MQCXP_LENGTH EQU *-MQCXP Length of structure

ORG MQCXP
MQCXP_AREA DS CL(MQCXP_LENGTH)

MQCXP

604 MQSeries Intercommunication

MQTXP - Transport-exit data structure
The following table summarizes the fields in the structure.

Table 50. Fields in MQTXP

Field Description Page

StrucId Structure identifier 605

Version Structure version number 605

ExitReason Reason for invoking exit 606

ExitUserArea Exit user area 606

TransportType Transport type 606

RetryCount Number of times data has been retried 607

DataLength Length of data to be sent 607

SessionId Session identifier 607

GroupId Group identifier 607

DataId Data identifier 607

ExitResponse Response from exit 607

The MQTXP structure describes the information that is passed to the transport
retry exit.

This structure is supported in the following environments: AIX and 16-bit
Windows.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:

MQTXP_STRUC_ID
Identifier for transport retry exit parameter structure.

For the C programming language, the constant
MQTXP_STRUC_ID_ARRAY is also defined; this has the same value as
MQTXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value is:

MQTXP_VERSION_1
Version-1 transport retry exit parameter structure.

The following constant specifies the version number of the current version:

MQTXP_CURRENT_VERSION
Current version of transport retry exit parameter structure.

This is an input field to the exit.

MQTXP

Chapter 37. Channel-exit calls and data structures 605

Reserved (MQLONG)
Reserved.

This is a reserved field. The value is zero.

ExitReason (MQLONG)
Reason for invoking exit.

This indicates the reason why the exit is being called. Possible values are:

MQXR_INIT
Exit initialization.

This indicates that the exit is being invoked for the first time. It allows
the exit to acquire and initialize any resources that it may need (for
example: main storage).

MQXR_TERM
Exit termination.

This indicates that the exit is about to be terminated. The exit should
free any resources that it may have acquired since it was initialized (for
example: main storage).

MQXR_RETRY
Retry a message.

MQXR_END_BATCH
Called from MCA when batch completed.

MQXR_ACK_RECEIVED
Called from MCA when an acknowledgement has been received.

This is an input field to the exit.

ExitUserArea (MQBYTE16)
Exit user area.

This is a field that is available for the exit to use. It is initialized to
MQXUA_NONE (binary zero) before the first invocation of the exit, and
thereafter any changes made to this field by the exit are preserved across
invocations of the exit. The first invocation of the exit has ExitReason set to
MQXR_INIT.

The following value is defined:

MQXUA_NONE
No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQXUA_NONE_ARRAY is also defined; this has the same value as
MQXUA_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is
an input/output field to the exit.

TransportType (MQLONG)
Transport type.

This is the type of transport being used. The value is:

MQTXP

606 MQSeries Intercommunication

MQXPT_UDP
UDP transport protocol.

This is an input field to the exit.

RetryCount (MQLONG)
Number of times data has been retried.

This is the number of previous attempts that have been made to send the
current data. It is zero on first invocation of the exit for the current data.

This is an input field to the exit.

DataLength (MQLONG)
Length of data to be sent.

This is always greater than zero. For MQXPT_UDP, it is one complete encoded
datagram.

This is an input field to the exit.

SessionId (MQLONG)
Session identifier.

This is the identifier of the session of channel. For MQXPT_UDP, it is the
UdpHandle.

This is an input field to the exit.

GroupId (MQLONG)
Group identifier.

This is the identifier of the group, bunch, or message to which the data
belongs. For MQXPT_UDP, it identifies the bunch.

This is an input field to the exit.

DataId (MQLONG)
Data identifier.

For MQXPT_UDP, this is the datagram identifier.

This is an input field to the exit.

ExitResponse (MQLONG)
Response from exit.

This is set by the exit to indicate how processing should continue. It must be
one of the following:

MQXCC_OK
Continue normally.

This indicates that processing should continue normally.

MQXCC_REQUEST_ACK
Request acknowledgement.

This indicates that processing should continue normally, but that the
datagram about to be sent should request that an acknowledgement be
returned by the receiver of the datagram.

MQTXP

Chapter 37. Channel-exit calls and data structures 607

MQXCC_CLOSE_CHANNEL
Close channel.

This indicates that processing should be discontinued and the channel
closed.

If any other value is returned by the exit, processing continues as if
MQXCC_CLOSE_CHANNEL had been specified.

This is an output field from the exit.

Feedback (MQLONG)
Reserved.

This is a reserved field. The value is zero.

C declaration
typedef struct tagMQTXP {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Reserved; /* Reserved */
MQLONG ExitReason; /* Reason for invoking exit */
MQBYTE16 ExitUserArea; /* Exit user area */
MQLONG TransportType; /* Transport type */
MQLONG RetryCount; /* Number of times data has been retried */
MQLONG DataLength; /* Length of data to be sent */
MQLONG SessionId; /* Session identifier */
MQLONG GroupId; /* Group identifier */
MQLONG DataId; /* Data identifier */
MQLONG ExitResponse; /* Response from exit */
MQLONG Feedback; /* Reserved */

} MQTXP;

MQTXP

608 MQSeries Intercommunication

MQXWD - Exit wait descriptor structure
The following table summarizes the fields in the structure.

Table 51. Fields in MQXWD

Field Description Page

StrucId Structure identifier 609

Version Structure version number 609

ECB Event control block to wait on 610

The MQXWD structure is an input/output parameter on the MQXWAIT call.

This structure is supported only on OS/390.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQXWD_STRUC_ID
Identifier for exit wait descriptor structure.

For the C programming language, the constant
MQXWD_STRUC_ID_ARRAY is also defined; this has the same value
as MQXWD_STRUC_ID, but is an array of characters instead of a
string.

The initial value of this field is MQXWD_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQXWD_VERSION_1
Version number for exit wait descriptor structure.

The initial value of this field is MQXWD_VERSION_1.

Reserved1 (MQLONG)
Reserved.

This is a reserved field; its value must be zero.

This is an input field.

Reserved2 (MQLONG)
Reserved.

This is a reserved field; its value must be zero.

This is an input field.

Reserved3 (MQLONG)
Reserved.

MQXWD

Chapter 37. Channel-exit calls and data structures 609

|

This is a reserved field; its value must be zero.

This is an input field.

ECB (MQLONG)
Event control block to wait on.

This is the event control block (ECB) to wait on. It should be set to zero before
the MQXWAIT call is issued; on successful completion it will contain the post
code.

This is an input/output field.

C declaration
typedef struct tagMQXWD {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Reserved1; /* Reserved */
MQLONG Reserved2; /* Reserved */
MQLONG Reserved3; /* Reserved */
MQLONG ECB; /* Event control block to wait on */

} MQXWD;

System/390 assembler declaration
MQXWD DSECT
MQXWD_STRUCID DS CL4 Structure identifier
MQXWD_VERSION DS F Structure version number
MQXWD_RESERVED1 DS F Reserved
MQXWD_RESERVED2 DS F Reserved
MQXWD_RESERVED3 DS F Reserved
MQXWD_ECB DS F Event control block to wait
* on
MQXWD_LENGTH EQU *-MQXWD Length of structure

ORG MQXWD
MQXWD_AREA DS CL(MQXWD_LENGTH)

MQXWD

610 MQSeries Intercommunication

Chapter 38. Problem determination in DQM

This chapter explains the various aspects of problem determination and suggests
methods of resolving problems. Some of the problems mentioned in this chapter
are platform and installation specific. Where this is the case, it is made clear in the
text.

Problem determination for the following scenarios is discussed:
v “Error message from channel control”
v “Ping”
v “Dead-letter queue considerations” on page 612
v “Validation checks” on page 612
v “In-doubt relationship” on page 613
v “Channel startup negotiation errors” on page 613
v “When a channel refuses to run” on page 613
v “Retrying the link” on page 615
v “Data structures” on page 616
v “User exit problems” on page 616
v “Disaster recovery” on page 616
v “Channel switching” on page 617
v “Connection switching” on page 617
v “Client problems” on page 617
v “Error logs” on page 618

Error message from channel control
Problems found during normal operation of the channels are reported to the
system console and to the system log. In MQSeries for OS/390 using CICS, they
are reported to the CICS Transient Data Queue CKMQ, if that is defined and
available. In MQSeries for Windows they are reported to the channel log. Problem
diagnosis starts with the collection of all relevant information from the log, and
analysis of this information to identify the problem.

However, this could be difficult in a network where the problem may arise at an
intermediate system that is staging some of your messages. An error situation,
such as transmission queue full, followed by the dead-letter queue filling up,
would result in your channel to that site closing down.

In this example, the error message you receive in your error log will indicate a
problem originating from the remote site, but may not be able to tell you any
details about the error at that site.

You need to contact your counterpart at the remote site to obtain details of the
problem, and to receive notification of that channel becoming available again.

Ping
Ping, which is not supported on MQSeries for Windows, is useful in determining
whether the communication link and the two message channel agents that make
up a message channel are functioning across all interfaces.

Ping makes no use of transmission queues, but it does invoke some user exit
programs. If any error conditions are encountered, error messages are issued.

© Copyright IBM Corp. 1993, 2000 611

To use ping, you can issue the MQSC command PING CHANNEL (you cannot do
this if you are using CICS for distributed queuing on OS/390). On OS/390 and
OS/400, you can also use the panel interface to select this option.

On UNIX platforms, OS/2, Windows NT, and OS/400, you can also use the MQSC
command PING QMGR to test whether the queue manager is responsive to
commands. See the MQSeries Command Reference book for more information about
this.

Dead-letter queue considerations
In some MQSeries products the dead-letter queue is referred to as an
undelivered-message queue. There are no dead-letter queues in MQSeries for
Windows.

If a channel ceases to run for any reason, applications will probably continue to
place messages on transmission queues, creating a potential overflow situation.
Applications can monitor transmission queues to find the number of messages
waiting to be sent, but this would not be a normal function for them to carry out.

When this occurs in a message-originating node, and the local transmission queue
is full, the application’s PUT fails.

When this occurs in a staging or destination node, there are three ways that the
MCA copes with the situation:
1. By calling the message-retry exit, if one is defined.
2. By directing all overflow messages to a dead-letter queue (DLQ), returning an

exception report to applications that requested these reports.

Note: In distributed-queuing management, if the message is too big for the
DLQ, the DLQ is full, or the DLQ is not available, the channel stops and
the message remains on the transmission queue. Ensure your DLQ is
defined, available, and sized for the largest messages you handle.

3. By closing down the channel, if neither of the previous options succeeded.
4. By returning the undelivered messages back to the sending end and returning a

full report to the reply-to queue (MQRC_EXCEPTION_WITH_FULL_DATA and
MQRO_DISCARD_MSG).

If an MCA is unable to put a message on the DLQ:
v The channel stops
v Appropriate error messages are issued at the system consoles at both ends of the

message channel
v The unit of work is backed out, and the messages reappear on the transmission

queue at the sending channel end of the channel
v Triggering is disabled for the transmission queue

Validation checks
A number of validation checks are made when creating, altering, and deleting
channels, and where appropriate, an error message returned.

Errors may occur when:
v A duplicate channel name is chosen when creating a channel
v Unacceptable data is entered in the channel parameter fields

Ping

612 MQSeries Intercommunication

v The channel to be altered is in doubt, or does not exist

In-doubt relationship
If a channel is in doubt, it is usually resolved automatically on restart, so the
system operator does not need to resolve a channel manually in normal
circumstances. See “In-doubt channels” on page 69 for information about this.

Channel startup negotiation errors
During channel startup, the starting end has to state its position and agree channel
running parameters with the corresponding channel. It may happen that the two
ends cannot agree on the parameters, in which case the channel closes down with
error messages being issued to the appropriate error logs.

When a channel refuses to run
If a channel refuses to run:
v Check that DQM and the channels have been set up correctly. This is a likely

problem source if the channel has never run. Reasons could be:
– A mismatch of names between sending and receiving channels (remember

that uppercase and lowercase letters are significant)
– Incorrect channel types specified
– The sequence number queue (if applicable) is not available, or is damaged
– The dead-letter queue is not available
– The sequence number wrap value is different on the two channel definitions
– A queue manager, CICS system, or communication link is not available
– Following a restart, the wrong queue manager may have been attached to

CICS
– A receiver channel might be in STOPPED state
– The connection might not be defined correctly
– There might be a problem with the communications software (for example, is

TCP running?)
– In OS/390 using CICS, check that the DFHSIT SYSIDNT name of the target

CICS system matches the connection name that you have specified for that
system

v It is possible that an in-doubt situation exists, if the automatic synchronization
on startup has failed for some reason. This is indicated by messages on the
system console, and the status panel may be used to show channels that are in
doubt.
The possible responses to this situation are:
– Issue a Resolve channel request with Backout or Commit.

You need to check with your remote link supervisor to establish the number
of the last message or unit of work committed. Check this against the last
number at your end of the link. If the remote end has committed a number,
and that number is not yet committed at your end of the link, then issue a
RESOLVE COMMIT command.
In all other cases, issue a RESOLVE BACKOUT command.
The effect of these commands is that backed out messages reappear on the
transmission queue and are sent again, while committed messages are
discarded.

Validation checks

Chapter 38. Problem determination in DQM 613

If in doubt yourself, perhaps backing out with the probability of duplicating a
sent message would be the safer decision.

– Issue a RESET command.
This command is for use when sequential numbering is in effect, and should
be used with care. Its purpose is to reset the sequence number of messages
and you should use it only after using the RESOLVE command to resolve any
in-doubt situations.

v On MQSeries for AS/400, OS/2, Windows NT, UNIX systems, and OS/390
without CICS, there is no need for the administrator to choose a particular
sequence number to ensure that the sequence numbers are put back in step.
When a sender channel starts up after being reset, it informs the receiver that it
has been reset and supplies the new sequence number that is to be used by both
the sender and receiver.

Note: If the sender is MQSeries for OS/390 using CICS, the sequence number
should be reset to the same number as any receiving queue managers.

v If the status of a receiver end of the channel is STOPPED, it can be reset by
starting the receiver end.

Note: This does not start the channel, it merely resets the status. The channel
must still be started from the sender end.

Triggered channels
If a triggered channel refuses to run, the possibility of in-doubt messages should be
investigated as described above.

Another possibility is that the trigger control parameter on the transmission queue
has been set to NOTRIGGER by the channel. This happens when:
v There is a channel error
v The channel was stopped because of a request from the receiver
v The channel was stopped because of a problem on the sender that requires

manual intervention

After diagnosing and fixing the problem, you must reset the trigger control
parameter to TRIGGER.

An example of a situation where a triggered channel fails to start is as follows:
1. A transmission queue is defined with a trigger type of FIRST.
2. A message arrives on the transmission queue, and a trigger message is

produced.
3. The channel is started, but stops immediately because the communications to

the remote system are not available.
4. The remote system is made available.
5. Another message arrives on the transmission queue.
6. The second message does not increase the queue depth from zero to one, so no

trigger message is produced (unless the channel is in RETRY state). If this
happens, the channel must be started manually.
On MQSeries for OS/390, if the queue manager is stopped using
MODE(FORCE) during channel initiator shutdown, it may be necessary to
manually restart some channels after channel initiator restart.

Channel refuses to run

614 MQSeries Intercommunication

|
|
|

|
|
|

Because the second message does not cause the queue depth to go from zero to
one, no trigger message is produced (unless the channel is in RETRY state). If this
happens, the channel must be started manually.

Conversion failure
Another reason for the channel refusing to run could be that neither end is able to
carry out necessary conversion of message descriptor data between ASCII and
EBCDIC, and integer formats. In this instance, communication is not possible.

Network problems
When using LU 6.2, make sure that your definitions are consistent throughout the
network. For example, if you have increased the RU sizes in your CICS Transaction
Server for OS/390 or Communications Manager definitions, but you have a
controller with a small MAXDATA value in its definition, the session may fail if
you attempt to send large messages across the network. A symptom of this may be
that channel negotiation takes place successfully, but the link fails when message
transfer occurs.

When using TCP, if your channels are unreliable and your connections breaking,
use the SO_KEEPALIVE option, as discussed in “Checking that the other end of
the channel is still available” on page 66.

Dial-up problems
MQSeries supports connection over dial-up lines but you should be aware that
with TCP, some protocol providers assign a new IP address each time you dial in.
This can cause channel synchronization problems because the channel cannot
recognize the new IP addresses and so cannot ensure the authenticity of the
partner. If you encounter this problem, you need to use a security exit program to
override the connection name for the session.

This problem does not occur when a V5.1 of MQSeries for AIX, AS/400, HP-UX,
OS/2 Warp, Sun Solaris, and Windows NT product is communicating with another
product at the same level, because the queue manager name is used for
synchronization instead of the IP address.

Retrying the link
An error scenario may occur that is difficult to recognize. For example, the link
and channel may be functioning perfectly, but some occurrence at the receiving
end causes the receiver to stop. Another unforeseen situation could be that the
receiver system has run out of storage and is unable to complete a transaction.

You need to be aware that such situations can arise, often characterized by a
system that appears to be busy but is not actually moving messages. You need to
work with your counterpart at the far end of the link to help detect the problem
and correct it.

Retry considerations
If a link failure occurs during normal operation, a sender or server channel
program will itself start another instance, provided that:
1. Initial data negotiation and security exchanges are complete
2. The retry count in the channel definition is greater than zero

Channel refuses to run

Chapter 38. Problem determination in DQM 615

|
|
|
|

Note: For OS/2, OS/400, UNIX systems, and Windows NT, to attempt a retry a
channel initiator must be running. In platforms other than V5.1 of MQSeries
for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, this
channel initiator must be monitoring the initiation queue specified in the
transmission queue that the channel in using. There is no channel initiator in
MQSeries for Windows.

Data structures
Data structures are needed for reference when checking logs and trace entries
during problem diagnosis. Details can be found in “Chapter 37. Channel-exit calls
and data structures” on page 543 and in the MQSeries Application Programming
Reference book.

User exit problems
The interaction between the channel programs and the user-exit programs has
some error-checking routines, but this facility can only work successfully when the
user exits obey the rules described in “Part 7. Further intercommunication
considerations” on page 503. When errors occur, the most likely outcome will be
that the channel stops and the channel program issues an error message, together
with any return codes from the user exit. Any errors detected on the user exit side
of the interface can be determined by scanning the messages created by the user
exit itself.

You might need to use a trace facility of your host system to identify the problem.

Disaster recovery
Disaster recovery planning is the responsibility of individual installations, and the
functions performed may include the provision of regular system ‘snapshot’
dumps that are stored safely off-site. These dumps would be available for
regenerating the system, should some disaster overtake it. If this occurs, you need
to know what to expect of the messages, and the following description is intended
to start you thinking about it.

First a recap on system restart. If a system fails for any reason, it may have a
system log that allows the applications running at the time of failure to be
regenerated by replaying the system software from a syncpoint forward to the
instant of failure. If this occurs without error, the worst that can happen is that
message channel syncpoints to the adjacent system may fail on startup, and that
the last batches of messages for the various channels will be sent again. Persistent
messages will be recovered and sent again, nonpersistent messages may be lost.

If the system has no system log for recovery, or if the system recovery fails, or
where the disaster recovery procedure is invoked, the channels and transmission
queues may be recovered to an earlier state, and the messages held on local queues
at the sending and receiving end of channels may be inconsistent.

Messages may have been lost that were put on local queues. The consequence of
this happening depends on the particular MQSeries implementation, and the
channel attributes. For example, where strict message sequencing is in force, the
receiving channel detects a sequence number gap, and the channel closes down for
manual intervention. Recovery then depends upon application design, as in the
worst case the sending application may need to restart from an earlier message
sequence number.

Retrying the link

616 MQSeries Intercommunication

|
|
|
|
|
|

|

Channel switching
A possible solution to the problem of a channel ceasing to run would be to have
two message channels defined for the same transmission queue, but with different
communication links. One message channel would be preferred, the other would
be a replacement for use when the preferred channel is unavailable.

If triggering is required for these message channels, the associated process
definitions must exist for each sender channel end.

To switch message channels:
v If the channel is triggered, set the transmission queue attribute NOTRIGGER.
v Ensure the current channel is inactive.
v Resolve any in-doubt messages on the current channel.
v If the channel is triggered, change the process attribute in the transmission

queue to name the process associated with the replacement channel.
In this context, some implementations allow a channel to have a blank process
object definition, in which case you may omit this step as the queue manager
will find and start the appropriate process object.

v Restart the channel, or if the channel was triggered, set the transmission queue
attribute TRIGGER.

Connection switching
Another solution would be to switch communication connections from the
transmission queues.

To do this:
v If the sender channel is triggered, set the transmission queue attribute

NOTRIGGER.
v Ensure the channel is inactive.
v Resolve any in-doubt messages on the channel.
v Change the connection and profile fields to connect to the replacement

communication link.
v Ensure that the corresponding channel at the remote end has been defined.
v Restart the channel, or if the sender channel was triggered, set the transmission

queue attribute TRIGGER.

Client problems
A client application may receive an unexpected error return code, for example:
v Queue manager not available
v Queue manager name error
v Connection broken

Look in the client error log for a message explaining the cause of the failure. There
may also be errors logged at the server, depending on the nature of the failure.

Terminating clients
Even though a client has terminated, it is still possible for its surrogate process to
be holding its queues open. Normally this will only be for a short time until the
communications layer notifies that the partner has gone.

Channel switching

Chapter 38. Problem determination in DQM 617

Error logs
MQSeries error messages are placed in different error logs depending on the
platform. There are error logs for:
v OS/2 and Windows NT
v UNIX systems
v VSE/ESA
v DOS, Windows 3.1, Windows 95, and Windows 98 clients
v OS/390
v MQSeries for Windows
v MQSeries for Tandem NSK

Error logs for OS/2 and Windows NT
MQSeries for OS/2 Warp and Windows NT use a number of error logs to capture
messages concerning the operation of MQSeries itself, any queue managers that
you start, and error data coming from the channels that are in use.

The location the error logs are stored in depends on whether the queue manager
name is known and whether the error is associated with a client.
v If the queue manager name is known and the queue manager is available:

C:\MQM\QMGRS\QMgrName\ERRORS\AMQERR01.LOG

v If the queue manager is not available:
C:\MQM\QMGRS\@SYSTEM\ERRORS\AMQERR01.LOG

v If an error has occurred with a client application:
C:\MQM\ERRORS\AMQERR01.LOG

Note: The above examples assume that you have installed MQSeries on the C:
drive and in the MQM directory. On Windows NT, the default data path is
C:\WINNT\Profiles\All Users\Application Data\MQSeries\.

On Windows NT, you should also examine the Windows NT application event log
for relevant messages.

Error logs on UNIX systems
MQSeries on UNIX systems uses a number of error logs to capture messages
concerning the operation of MQSeries itself, any queue managers that you start,
and error data coming from the channels that are in use. The location the error
logs are stored in depends on whether the queue manager name is known and
whether the error is associated with a client.
v If the queue manager name is known and the queue manager is available:

/var/mqm/qmgrs/QMgrName/errors/AMQERR01.LOG

v If the queue manager is not available:
/var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

v If an error has occurred with a client application:
/var/mqm/errors/AMQERR01.LOG

Error logs on DOS, Windows 3.1, and Windows 95 and
Windows 98 clients

MQSeries clients use two error logs, stored in a location set by the environment
variable MQDATA (the default is the root drive of the client).
v Error messages:

Error logs

618 MQSeries Intercommunication

|

AMQERR01.LOG

v FFDC messages:
AMQERR01.FDC

These files are not readable. See the MQSeries Clients book for information about
formatting the information.

Error logs on OS/390
If you are not using CICS, error messages are written to:
v The OS/390 system console
v The channel-initiator job log

If you are using the OS/390 message processing facility to suppress messages, the
console messages may be suppressed. See the MQSeries for OS/390 System
Management Guide for more information.

If you are using CICS, error messages are written to the OS/390 system console or
the CKMQ extrapartition transient data queue. See the MQSeries for OS/390 System
Management Guide for more information.

Error logs on MQSeries for Windows
Error logs are written to a file called channel.log in the directory of the running
queue manager. You can view the log using the Channel Logs sub-tab of the
Services tab of the MQSeries for Windows properties dialog.

Error logs on MQSeries for VSE/ESA
All MQSeries-generated error messages are written to SYSTEM.LOG.

Error logs on MQSeries for Tandem NSK
For information about this, see “Queue manager configuration file” on page 74.

Error logs

Chapter 38. Problem determination in DQM 619

|

|

|

Further intercommunication considerations

620 MQSeries Intercommunication

Part 8. Appendixes

© Copyright IBM Corp. 1993, 2000 621

622 MQSeries Intercommunication

Appendix A. Channel planning form

The form shown in Table 52 on page 625 is supplied for you to create and maintain
a list of all message channels for each queue manager in your system. Do not fill
in the form in this book. Instead, photocopy it as many times as required to hold
the definitions of all the channels in your system. The filled-in form, see Table 53
on page 626, is included to illustrate how the two examples in “Chapter 28.

Message channel planning example for OS/390 using CICS” on page 387 and
“Chapter 34. Message channel planning example for OS/400” on page 477 could be
shown.

How to use the form
The channel planning form allows you to keep an overview of the channels and
associated objects in your system. It will help to prevent you from making errors
when changing your channel configuration.

One of the more obvious errors is to allocate items more than once:

Communications connections identifiers
Allocate only once. It may be possible to share connections between
channels when using LU 6.2.

Channel names
Allocate only once.

Transmission queues
Allocate to only one channel. It is possible to allocate to more than one
channel for standby purposes, but ensure that only one is active, unless the
host environment is MQSeries for OS/390, and there is no sequential
delivery of messages selected.

Remote queue definition
The name must be unique.

Queue manager alias name
The name must be unique.

Reply-to queue name
The name must be unique.

Reply-to queue alias name
The name must be unique.

Adjacent channel system name
The name must be unique.

© Copyright IBM Corp. 1993, 2000 623

One method of completing the form would be to allocate, systematically, in this
order:
v Channels to adjacent systems
v Transmission queues to channels
v Remote queue definitions to queue names and queue manager names, and to

transmission queues
v Reply-to queue aliases to reply-to queue names and route names
v Queue manager aliases to remote queue managers and transmission queues

Proceed as follows:
1. Start with one adjacent system, define the first outward channel to that

system, and give it a name.
2. Fill in the channel name on the form with the channel type, transmission

queue name, adjacent system name, and remote queue manager name.
3. For each class-of-service, logically-named connection, fill in the logical queue

manager name to list the queue manager name resolutions using this channel.
4. Allocate a communication connection and fill in the name and profile, where

applicable.
5. Record the names of all the queues that your applications are going to use on

this channel, using the columns provided on the form. This is necessary where
remote queue definitions are used, so that the name resolutions are listed.

6. Do not forget to include the reply-to alias queue names in this list.
7. Move to the next channel and continue until all outward channels have been

completed for this adjacent system.
8. When this has been completed, repeat from the beginning for incoming

channels from this adjacent system.
9. Move on to the next adjacent system, and repeat.

10. Check the complete list for unwanted multiple assignments of names, objects
and connections.

When the list is complete and checked out, use it as an aid in creating the objects,
and defining the channels listed.

Channel planning form

624 MQSeries Intercommunication

Table 52. Channel planning form. System name: Queue manager name: Page no:
Channel name Channel

type
CICS system
ID (where
needed)

Transmission
queue name

Connection
name

Profile,
or mode,
name

Adjacent system
name

Logical queue
manager name

Logical queue
name

Physical queue
manager name

Physical queue
name

C
hannelplanning

form

A
ppend

ix
A

.C
hannel

planning
form

625

Table 53. Channel planning form. System name: QM2 Queue manager name: QM2 Page no: 1
Channel name Channel type CICS system

ID (where
needed)

Transmission
queue name

Connection name Profile,
or mode,
name

Adjacent
system name

Logical queue
manager name

Logical queue
name

Physical queue
manager name

Physical queue
name

QM1.T.QM2.
CHANNEL

SENDER (default) QM2 QM2C (none) QM2 QM2 Payrollr QM2 Payroll

QM1.to.QM2 SENDER (none) QM2 QM2D (none) QM2 QM2 Payroll QM2 Payroll

QM2.to.QM1 RECEIVER (none) (none) (none) (none) QM2 (none) (none) (none) (none)

C
hannelplanning

form

626
M

Q
Series

Intercom
m

unication

Appendix B. Constants for channels and exits

This appendix specifies the values of the named constants that apply to channels
and exits in the Message Queue Interface.

The constants are grouped according to the parameter or field to which they relate.
All of the names of the constants in a group begin with a common prefix of the
form “MQxxxx_”, where xxxx represents a string of 0 through 4 characters that
indicates the parameter or field to which the values relate. The constants are
ordered alphabetically by this prefix.

Notes:

1. For constants with numeric values, the values are shown in both decimal and
hexadecimal forms.

2. Hexadecimal values are represented using the notation X'hhhh', where each “h”
denotes a single hexadecimal digit.

3. Character values are shown delimited by single quotation marks; the quotation
marks are not part of the value.

4. Blanks in character values are represented by one or more occurrences of the
symbol “b”.

5. If the value is shown as “(variable)”, it indicates that the value of the constant
depends on the environment in which the application is running.

List of constants
The following sections list all of the named constants mentioned in this book, and
show their values.

MQ_* (Lengths of character string and byte fields)

MQ_CHANNEL_DESC_LENGTH 64 X'00000040'
MQ_CHANNEL_NAME_LENGTH 20 X'00000014'
MQ_CONN_NAME_LENGTH 264 X'00000108'
MQ_EXIT_DATA_LENGTH 32 X'00000020'
MQ_EXIT_NAME_LENGTH (variable)
MQ_EXIT_USER_AREA_LENGTH 16 X'00000010'
MQ_MAX_EXIT_NAME_LENGTH 128 X'00000080'
MQ_MAX_MCA_USER_ID_LENGTH 64 X'00000040'
MQ_MCA_NAME_LENGTH 20 X'00000014'
MQ_MCA_USER_ID_LENGTH (variable)
MQ_MODE_NAME_LENGTH 8 X'00000008'
MQ_PASSWORD_LENGTH 12 X'0000000C'
MQ_Q_MGR_NAME_LENGTH 48 X'00000030'
MQ_Q_NAME_LENGTH 48 X'00000030'
MQ_SHORT_CONN_NAME_LENGTH 20 X'00000014'
MQ_TOTAL_EXIT_DATA_LENGTH 999 X'000003E7'
MQ_TOTAL_EXIT_NAME_LENGTH 999 X'000003E7'
MQ_TP_NAME_LENGTH 64 X'00000040'
MQ_USER_ID_LENGTH 12 X'0000000C'

© Copyright IBM Corp. 1993, 2000 627

MQCD_* (Channel definition structure length)
See the StrucLength field described in “MQCD - Channel data structure” on
page 556.

MQCD_LENGTH_4 (variable)
MQCD_LENGTH_5 (variable)
MQCD_LENGTH_6 (variable)
MQCD_CURRENT_LENGTH (variable)

MQCD_* (Channel definition structure version)
See the Version field described in “MQCD - Channel data structure” on page 556.

MQCD_VERSION_1 1 X'00000001'
MQCD_VERSION_2 2 X'00000002'
MQCD_VERSION_3 3 X'00000003'
MQCD_VERSION_4 4 X'00000004'
MQCD_VERSION_5 5 X'00000005'
MQCD_VERSION_6 6 X'00000006'
MQCD_CURRENT_VERSION (variable)

MQCDC_* (Channel data conversion)
See the DataConversion field described in “MQCD - Channel data structure” on
page 556.

MQCDC_NO_SENDER_CONVERSION 0 X'00000000'
MQCDC_SENDER_CONVERSION 1 X'00000001'

MQCF_* (Channel capability flags)
See the CapabilityFlags field described in “MQCXP - Channel exit parameter
structure” on page 591.

MQCF_NONE 0 X'00000000'
MQCF_DIST_LISTS 1 X'00000001'

MQCHT_* (Channel type)
See the ChannelType field described in “MQCD - Channel data structure” on
page 556.

MQCHT_SENDER 1 X'00000001'
MQCHT_SERVER 2 X'00000002'
MQCHT_RECEIVER 3 X'00000003'
MQCHT_REQUESTER 4 X'00000004'
MQCHT_CLNTCONN 6 X'00000006'
MQCHT_SVRCONN 7 X'00000007'
MQCHT_CLUSRCVR 8 X'00000008'
MQCHT_CLUSSDR 9 X'00000009'

MQCXP_* (Channel-exit parameter structure identifier)
See the StrucId field described in “MQCXP - Channel exit parameter structure” on
page 591.

Constants

628 MQSeries Intercommunication

MQCXP_STRUC_ID 'CXPb'

For the C programming language, the following array version is also defined:

MQCXP_STRUC_ID_ARRAY 'C','X','P','b'

MQCXP_* (Channel-exit parameter structure version)
See the Version field described in “MQCXP - Channel exit parameter structure” on
page 591.

MQCXP_VERSION_1 1 X'00000001'
MQCXP_VERSION_2 2 X'00000002'
MQCXP_VERSION_3 3 X'00000003'
MQCXP_VERSION_4 4 X'00000004'
MQCXP_CURRENT_VERSION (variable)

MQMCAT_* (MCA type)
See the MCAType field described in “MQCD - Channel data structure” on page 556.

MQMCAT_PROCESS 1 X'00000001'
MQMCAT_THREAD 2 X'00000002'

MQNPMS_* (Nonpersistent message speed)
See the NonPersistentMsgSpeed field described in “MQCD - Channel data
structure” on page 556.

MQNPMS_NORMAL 1 X'00000001'
MQNPMS_FAST 2 X'00000002'

MQPA_* (Put authority)
See the PutAuthority field described in “MQCD - Channel data structure” on
page 556.

MQPA_DEFAULT 1 X'00000001'
MQPA_CONTEXT 2 X'00000002'

MQSID_* (Security identifier)
See the MCASecurityId and RemoteSecurityId fields described in “MQCD - Channel
data structure” on page 556.

MQSID_NONE X'00...00' (40 nulls)

For the C programming language, the following array version is also defined:

MQSID_NONE_ARRAY '\0','\0',...'\0','\0'

Constants

Appendix B. Constants for channels and exits 629

MQSIDT_* (Security identifier type)
See the MCASecurityId and RemoteSecurityId fields described in “MQCD - Channel
data structure” on page 556.

MQSIDT_NONE X'00'
MQSIDT_NT_SECURITY_ID X'01'

MQTXP_* (Transport retry exit structure identifier)
See the StrucId field described in “MQTXP - Transport-exit data structure” on
page 605.

MQTXP_STRUC_ID 'TXPb'

For the C programming language, the following array version is also defined:

MQTXP_STRUC_ID_ARRAY 'T','X','P','b'

MQTXP_* (Transport retry exit version)
See the Version field described in “MQTXP - Transport-exit data structure” on
page 605.

MQTXP_VERSION_1 1 X'00000001'
MQTXP_CURRENT_VERSION 1 X'00000001'

MQXCC_* (Exit response)
See the ExitResponse field described in “MQCXP - Channel exit parameter
structure” on page 591.

MQXPT_* (Transmission protocol type)
See the TransportType field described in “MQCD - Channel data structure” on
page 556.

MQXR_* (Exit reason)
See the ExitReason field described in “MQCXP - Channel exit parameter structure”
on page 591.

MQXR2_* (Secondary exit response)
See the ExitResponse2 field described in “MQCXP - Channel exit parameter
structure” on page 591.

MQXR2_PUT_WITH_DEF_ACTION 0 X'00000000'
MQXR2_USE_AGENT_BUFFER 0 X'00000000'
MQXR2_DEFAULT_CONTINUATION 0 X'00000000'
MQXR2_PUT_WITH_DEF_USERID 1 X'00000001'
MQXR2_PUT_WITH_MSG_USERID 2 X'00000002'
MQXR2_USE_EXIT_BUFFER 4 X'00000004'
MQXR2_CONTINUE_CHAIN 8 X'00000008'
MQXR2_SUPPRESS_CHAIN 16 X'00000010'

Constants

630 MQSeries Intercommunication

MQXT_* (Exit identifier)
See the ExitId field described in “MQCXP - Channel exit parameter structure” on
page 591.

MQXUA_* (Exit user area)
See the ExitUserArea field described in “MQCXP - Channel exit parameter
structure” on page 591.

MQXUA_NONE X'00...00' (16 nulls)

For the C programming language, the following array version is also defined:

MQXUA_NONE_ARRAY '\0','\0',...'\0','\0'

MQXWD_* (Exit wait descriptor structure identifier)
See the StrucId field described in “MQXWD - Exit wait descriptor structure” on
page 609.

MQXWD_STRUC_ID 'XWDb'

For the C programming language, the following array version is also defined:

MQXWD_STRUC_ID_ARRAY 'X','W','D','b'

MQXWD_* (Exit wait descriptor version)
See the Version field described in “MQXWD - Exit wait descriptor structure” on
page 609.

MQXWD_VERSION_1 1 X'00000001'

Constants

Appendix B. Constants for channels and exits 631

|

|
|

|||
|

|

|||
|

|

|
|

||||
|

Constants

632 MQSeries Intercommunication

Appendix C. Queue name resolution

This appendix describes queue name resolution as performed by queue managers
at both sending and receiving ends of a channel.

In larger networks, the use of queue managers has a number of advantages over
other forms of communication. These advantages derive from the name resolution
function in DQM and the main benefits are:
v Applications do not need to make routing decisions
v Applications do not need to know the network structure
v Network links are created by systems administrators
v Network structure is controlled by network planners
v Multiple channels can be used between nodes to partition traffic

Referring to Figure 144, the basic mechanism for putting messages on a remote
queue, as far as the application is concerned, is the same as for putting messages
on a local queue:
v The application putting the message issues MQOPEN and MQPUT calls to put

messages on the target queue.
v The application getting the messages issues MQOPEN and MQGET calls to get

the messages from the target queue.

File Channel definition Channel definitionFile

Network ReceivingSending

MCA MCA

Queue transmission Queue 'Target '

Channel

Queue Manager Queue Manager

ApplicationApplication

Putting
application

Getting
application

Queue name
resolution

process

Queue name
resolution

process

Machine A Machine B

MQPUT call MQGET call

MQPUT
call

MQGET
call

Figure 144. Name resolution

© Copyright IBM Corp. 1993, 2000 633

|

If both applications are connected to the same queue manager then no inter-queue
manager communication is required, and the target queue is described as local to
both applications.

However, if the applications are connected to different queue managers, two MCAs
and their associated network connection are involved in the transfer, as shown in
the figure. In this case, the target queue is considered to be a remote queue to the
putting application.

The sequence of events is as follows:
1. The putting application issues MQOPEN and MQPUT calls to put messages to

the target queue.
2. During the MQOPEN call, the name resolution function detects that the target

queue is not local, and decides which transmission queue is appropriate.
Thereafter, on the MQPUT calls associated with the MQOPEN call, all messages
are placed on this transmission queue.

3. The sending MCA gets the messages from the transmission queue and passes
them to the receiving MCA at the remote computer.

4. The receiving MCA puts the messages on the target queue, or queues.
5. The getting application issues MQOPEN and MQGET calls to get the messages

from the target queue.

Note: Only step 1 and step 5 involve application code; steps 2 through 4 are
performed by the local queue managers and the MCA programs. The
putting application is unaware of the location of the target queue, which
could be in the same processor, or in another processor on another
continent.

The combination of sending MCA, the network connection, and the receiving
MCA, is called a message channel, and is inherently a unidirectional device.
Normally, it is necessary to move messages in both directions, and two channels
are set up for this, one in each direction.

Queue name resolution

634 MQSeries Intercommunication

What is queue name resolution?
Queue name resolution is vital to DQM. It removes the need for applications to be
concerned with the physical location of queues, and insulates them against the
details of networks. A systems administrator can move queues from one queue
manager to another, and change the routing between queue managers without
applications needing to know anything about it.

In order to uncouple from the application design the exact path over which the
data travels, it is necessary to introduce a level of indirection between the name
used by the application when it refers to the target queue, and the naming of the
channel over which the flow occurs. This indirection is achieved using the queue
name resolution mechanism.

In essence, when an application refers to a queue name, the name is mapped by
the resolution mechanism either to a transmission queue or to a local queue that is
not a transmission queue. In the case of mapping to a transmission queue, a
second name resolution is needed at the destination, and the received message is
placed on the target queue as intended by the application designer. The application
remains unaware of the transmission queue and channel used for moving the
message.

Note: The definition of the queue and channel is a system management
responsibility and can be changed by an operator or a system management
utility, without the need to change applications.

An important requirement for the system management of message flows is that
alternative paths should be provided between queue managers. For example,
business requirements might dictate that different classes of service should be sent
over different channels to the same destination. This is a system management
decision and the queue name resolution mechanism provides a very flexible way
to achieve it. The next section describes in detail how this is done, but the basic
idea is to use queue name resolution at the sending queue manager to map the
queue name supplied by the application to the appropriate transmission queue for
the type of traffic involved. Similarly at the receiving end, queue name resolution
maps the name in the message descriptor to a local (not a transmission) queue or
again to an appropriate transmission queue.

Not only is it possible for the forward path from one queue manager to another to
be partitioned into different types of traffic, but the return message that is sent to
the reply-to queue definition in the outbound message can also use the same traffic
partitioning. Queue name resolution satisfies this requirement and the application
designer need not be involved in these traffic partitioning decisions.

The point that the mapping is carried out at both the sending and receiving queue
managers is an important aspect of the way name resolution works. This allows
the queue name supplied by the putting application to be mapped to a local queue
or a transmission queue at the sending queue manager, and again remapped to a
local queue or a transmission queue at the receiving queue manager.

Reply messages from receiving applications or MCAs have the name resolution
carried out in exactly the same way, allowing return routing over specific paths by
means of queue definitions at all the queue managers on route.

Queue name resolution

Appendix C. Queue name resolution 635

How queue name resolution works
The MQSeries Application Programming Guide provides the rules for queue name
resolution.

Queue name resolution

636 MQSeries Intercommunication

|
|

Appendix D. Configuration file stanzas for distributed queuing

This appendix shows the stanzas in the queue manager configuration file that
relate to distributed queuing. It applies to:
v The queue manager configuration file for MQSeries for OS/2 Warp, called

qm.ini
v The queue manager configuration file for MQSeries on UNIX systems, called

qm.ini
v The queue manager initialization file for MQSeries for AS/400, called qm.ini, in

/QIBM/UserData/mqm/qmgrs/QMNAME/

Notes:

1. The stanzas in the QMINI file for Tandem NSK are different and are described
in the MQSeries for Tandem NonStop Kernel System Management Guide.

2. MQSeries for Windows NT, V5.1 uses the registry. Use the MQSeries Services
snap-in within the Microsoft Management Console (MMC) to make equivalent
changes to the configuration information.

The stanzas that relate to distributed queuing are:
v CHANNELS
v TCP
v LU62
v NETBIOS
v SPX
v EXITPATH

Figure 145 on page 638 shows the values that you can set using these stanzas.
When you are defining one of these stanzas, you do not need to start each item on
a new line. You can use either a semicolon (;) or a hash character (#) to indicate a
comment.

© Copyright IBM Corp. 1993, 2000 637

|
|

Notes:

1. MAXINITIATORS applies only to MQSeries for AIX, MQSeries for AS/400,
MQSeries for HP-UX, MQSeries for OS/2 Warp, and MQSeries for Sun Solaris.

CHANNELS:
MAXCHANNELS=n ; Maximum number of channels allowed, the

; default value is 100
MAXACTIVECHANNELS=n ; Maximum number of channels allowed to be active at

; any time, the default is the value of MaxChannels
MAXINITIATORS=n ; Maximum number of initiators allowed, the

; default value is 3 (see note 1)
MQIBINDTYPE=type ; Whether the binding for applications is to be

; “fastpath” or “standard”.
;The default is “standard”. (see note 2)

ADOPTNEWMCA=chltype ; Stops previous process if channel fails to start.
; The default is “NO”.

ADOPTNEWMCATIMEOUT=n ; Specifies the amount of time that the new
; process should wait for the old process to end.
; The default is 60.

ADOPTNEWMCACHECK= ; Specifies the type checking required.
typecheck ; For FAP1, FAP2, and FAP3, “NAME” and

; “ADDRESS” is the default.
; For FAP4 and later, “NAME”,
; “ADDRESS”, and “QM” is the
; default.

TCP: ; TCP entries
PORT=n ; Port number, the default is 1414
LIBRARY1=DLLName1 ; Name of TCP Sockets DLL (OS/2 only)
LIBRARY2=DLLName2 ; Same as above if code is in two libraries (OS/2 only)
KEEPALIVE=Yes ; Switch TCP/IP KeepAlive on

LU62: ; LU 6.2 entries (OS/2 only)
TPNAME=name ; TP Name to start on remote side
LIBRARY1=DLLName1 ; Name of APPC DLL (see note 3)
LIBRARY2=DLLName2 ; Same as above if code is in two libraries (see note 3)
LOCALLU=name ; LU to use on local system (OS/2 only)

NETBIOS: ; NetBIOS entries (OS/2 only)
LOCALNAME=name ; The name this machine will be known as on the LAN
ADAPTERNUM=n ; LAN adapter number, the default is adapter 0
NUMSESS=n ; Number of sessions to allocate, the default is 1
NUMCMDS=n ; Number of commands to allocate, the default is 1
NUMNAMES=n ; Number of names to allocate, the default is 1
LIBRARY1=DLLName1 ; Name of NetBIOS DLL
LIBRARY2=DLLName2 ; Same as above if code is in two libraries (OS/2 only)

SPX: ; SPX entries (OS/2 only)
SOCKET=n ; The socket number, the default is 5E86
BOARDNUM=0 ; LAN adapter number, the default is adapter 0 (OS/2 only)
KEEPALIVE=Yes ; Switch on “watchdog” to monitor sessions (OS/2 only)
LIBRARY1=DLLName1 ; Name of SPX DLL
LIBRARY2=DLLName2 ; Same as above if code is in two libraries (OS/2 only)

EXITPATH: ; Location of user exits (MQSeries for AIX,
; HP-UX, OS/2 Warp, and Sun Solaris only)

EXITPATHS= ; String of directory paths

QUEUEMANAGERSTARTUP:
CHINIT=Yes ; Start the CHINIT"

Figure 145. qm.ini stanzas for distributed queuing

Configuration file stanzas

638 MQSeries Intercommunication

|

|
|

2. MQIBINDTYPE applies only to MQSeries for AIX, MQSeries for AS/400,
MQSeries for HP-UX, MQSeries for OS/2 Warp, and MQSeries for Sun Solaris.

3. The default values for LIBRARY1 and LIBRARY2 are as follows:
TCP SO32DLL and TCP32DLL (OS/2)
LU 6.2 APPC and ACSSVC (OS/2)
NetBIOS

ACSNETB (OS/2)
SPX IPXCALLS.DLL and SPXCALLS.DLL (OS/2)

For more information about the qm.ini file and the other stanzas in it, refer to the
MQSeries System Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and to the MQSeries for AS/400 V5.1 System
Administration book for MQSeries for AS/400.

Configuration file stanzas

Appendix D. Configuration file stanzas for distributed queuing 639

|
|

|
||
||
|
|
||

|
|
|
|

Further intercommunication considerations

640 MQSeries Intercommunication

Appendix E. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2000 641

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information
This book is intended to help you set up and control message channels between
queue managers.

This book also documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and
Associated Guidance Information provided by:

MQSeries for AIX, V5.1,
MQSeries for AS/400 V5.1,
MQSeries for AT&T GIS UNIX V2.2,
MQSeries for Compaq (DIGITAL) OpenVMS, V2.2.1.1,
MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX), V2.2.1
MQSeries for HP-UX, V5.1,
MQSeries for OS/390, V2.1,

Notices

642 MQSeries Intercommunication

|

|

MQSeries for OS/2 Warp, V5.1,
MQSeries for SINIX and DC/OSx, V2.2,
MQSeries for Sun Solaris, V5.1,
MQSeries for Tandem NonStop Kernel, V2.2,
MQSeries for VSE/ESA V2.1,
MQSeries for Windows V2.0,
MQSeries for Windows V2.1,
MQSeries for Tandem NonStop Kernel, V2.2.0.1.

General-use programming interfaces allow the customer to write programs that
obtain the services of these products.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of these products. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

Advanced Peer-to-Peer
Networking

ACF/VTAM AIX

APPN AS/400 BookManager
CICS CICS/ESA CICS/VSE
CICS/400 C/400 FFST
First Failure Support
Technology

IBM IMS

Integrated Language
Environment

MQSeries MVS/ESA

OpenEdition OS/2 OS/390
OS/400 RACF RS/6000
System/390 S/390 VSE/ESA
VTAM

Lotus and LotusScript are trademarks of Lotus Development Corporation in the
United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Notices

Appendix E. Notices 643

|

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

644 MQSeries Intercommunication

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
OS/390. A complete list of MQSeries for OS/390 abend
reason codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes manual.

active log. See recovery log.

adapter. An interface between MQSeries for OS/390
and TSO, IMS™, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space. The area of virtual storage available for
a particular job.

address space identifier (ASID). A unique,
system-assigned identifier for an address space.

administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

Advanced Program-to-Program Communication
(APPC). The general facility characterizing the LU 6.2
architecture and its various implementations in
products.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alert monitor. In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local

queue manager. When an application or a queue
manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

allied address space. See ally.

ally. An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APAR. Authorized program analysis report.

APC. Advanced Program Communication.

APPC. Advanced Program-to-Program
Communication.

application environment. The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application log. In Windows NT, a log that records
significant application events.

application queue. A queue used by an application.

archive log. See recovery log.

ARM. Automatic Restart Management

ASID. Address space identifier.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorization file. In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of

© Copyright IBM Corp. 1993, 2000 645

commands and MQI calls for the user identifier
associated with the command or call.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

Automatic Restart Management (ARM). An OS/390
recovery function that can improve the availability of
specific batch jobs or started tasks, and therefore result
in faster resumption of productive work.

B
backout. An operation that reverses all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with commit.

basic mapping support (BMS). An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS). A VSAM data set that
contains:

v An inventory of all active and archived log data sets
known to MQSeries for OS/390

v A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

BSDS. Bootstrap data set.

buffer pool. An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

C
call back. In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel. See message channel.

channel control function (CCF). In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication
link to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

channel exit program. A user-written program that
can be entered from one of a defined number of places
during channel operation.

channel initiator. A component of MQSeries
distributed queuing, which monitors the initiation
queue to see when triggering criteria have been met
and then starts the sender channel.

channel listener. A component of MQSeries
distributed queuing, which monitors the network for a
startup request and then starts the receiving channel.

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint. In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

circular logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL. Control Language.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application. An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

646 MQSeries Intercommunication

client connection channel type. The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

CLUSRCVR. Cluster-receiver channel definition.

CLUSSDR. Cluster-sender channel definition.

cluster. A network of queue managers that are
logically associated in some way.

cluster-receiver channel (CLUSRCVR). A channel on
which a cluster queue manager can receive messages
from other queue managers in the cluster and cluster
information from the repository queue managers.

cluster-sender channel (CLUSSDR). A channel on
which a cluster queue manager can send messages to
other queue managers in the cluster and cluster
information to the repository queue managers.

cluster transmission queue. A transmission queue
that transmits all messages from a queue manager to
any other queue manager that is in the same cluster.
The queue is called
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF). In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor. The MQSeries component that
processes commands.

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with backout.

Common Run-Time Environment (CRE). A set of
services that enable system and application
programmers to write mixed-language programs. These
shared, run-time services can be used by C, COBOL85,
FORTRAN, Pascal, and TAL programs.

completion code. A return code indicating how an
MQI call has ended.

configuration file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows

NT, a file that contains configuration information
related to, for example, logs, communications, or
installable services. Synonymous with .ini file. See also
stanza.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

control interval (CI). A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL). In MQSeries for AS/400, a
language that can be used to issue commands, either at
the command line or by writing a CL program.

controlled shutdown. See quiesced shutdown.

CPF. Command prefix.

CRE. Common Run-Time Environment.

D
DAE. Dump analysis and elimination.

daemon. In UNIX systems, a program that runs
unattended to perform a standard service. Some
daemons are triggered automatically to perform their
tasks; others operate periodically.

data conversion interface (DCI). The MQSeries
interface to which customer- or vendor-written
programs that convert application data between
different machine encodings and CCSIDs must
conform. A part of the MQSeries Framework.

datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCE. Distributed Computing Environment.

Glossary of terms and abbreviations 647

DCE principal. A user ID that uses the distributed
computing environment.

DCI. Data conversion interface.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler. An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with a
user-written rules table.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection. A pending event that is activated
when a CICS subsystem tries to connect to MQSeries
for OS/390 before MQSeries for OS/390 has been
started.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE).
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging. A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode. See dual logging.

dump analysis and elimination (DAE). An OS/390
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

dynamic queue. A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E
environment. See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log. See application log.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer. A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE). An
OS/390 macro that provides recovery capability and
gives control to the specified exit routine for
processing, diagnosing an abend, or specifying a retry
address.

external security manager (ESM). A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F
FAP. Formats and Protocols.

FFST™. First Failure Support Technology™.

FIFO. First-in-first-out.

First Failure Support Technology (FFST). Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time. (A)

648 MQSeries Intercommunication

forced shutdown. A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

Formats and Protocols (FAP). The MQSeries FAPs
define how queue managers communicate with one
another, and also how MQSeries clients communicate
with server queue managers.

Framework. In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

v MQSeries data conversion interface (DCI)

v MQSeries message channel interface (MCI)

v MQSeries name service interface (NSI)

v MQSeries security enabling interface (SEI)

v MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR). An OS/390
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC). An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF). An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get. In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

global trace. An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

GTF. Generalized Trace Facility.

H
handle. See connection handle and object handle.

hardened message. A message that is written to
auxiliary (disk) storage so that the message will not be
lost in the event of a system failure. See also persistent
message.

heartbeat flow. A pulse that is passed from a sending
MCA to a receiving MCA when there are no messages

to send. The pulse unblocks the receiving MCA, which
otherwise, would remain in a wait state until a message
arrived or the disconnect interval expired.

heartbeat interval. The time, in seconds, that is to
elapse between heartbeat flows.

I
ICE. Intersystem Communications Environment is a
family of Tandem-based software products that enables
you to access a variety of applications on Tandem
computers.

ILE. Integrated Language Environment®.

immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

in-doubt unit of recovery. In MQSeries, the status of a
unit of recovery for which a syncpoint has been
requested but not yet confirmed.

Integrated Language Environment (ILE). The AS/400
Integrated Language Environment. This replaces the
AS/400 Original Program Model (OPM).

.ini file. See configuration file.

initialization file. In MQSeries for AS/400, a file that
contains two parameters; the TCP/IP listener port
number and the maximum number of channels that can
be current at a time. The file is called qm.ini.

initialization input data sets. Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

installable services. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name service,
and user identifier service.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides

Glossary of terms and abbreviations 649

instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS). A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating
standard screen panels and interactive dialogues
between the application programmer and terminal user.

Internet Protocol (IP). A protocol used to route data
from its source to its destination in an Internet
environment. This is the base layer, on which other
protocol layers, such as TCP and UDP are built.

Intersystem communication. In CICS, communication
between separate systems by means of SNA
networking facilities or by means of the
application-to-application facilities of an SNA access
method.

IP. Internet Protocol.

IPCS. Interactive Problem Control System.

ISC. Intersystem communication.

ISPF. Interactive System Productivity Facility.

L
linear logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence of
files. New files are added to the sequence as necessary.
The space in which the data is written is not reused
until the queue manager is restarted. Contrast with
circular logging.

listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale. On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

log control file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file. In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW). See unit of work.

luname. The name of the logical unit on your
workstation, that is the name of the software that
interfaces between your applications and the network.

LUWID. Logical unit of work identifier.

LU 6.2. A type of logical unit (LU) that supports
general communication between programs in a
distributed processing environment.

M
machine check interrupt. An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

media image. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

650 MQSeries Intercommunication

message. In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message flow control. A distributed queue
management task that involves setting up and
maintaining message routes between queue managers.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved, and whether a trigger event is
generated.

message queue. Synonym for queue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queue management. The Message Queue
Management (MQM) facility in MQSeries for Tandem
NSK V2.2 uses PCF command formats and control
commands. MQM runs as a PATHWAY SCOBOL
requester under the Terminal Control Process (TCP)
and uses an MQM SERVERCLASS server, which
invokes the C language API to perform PCF
commands. There is a separate instance of MQM for
each queue manager configured on a system, since each
queue manager is controlled under its own PATHWAY
configuration. Consequently, an MQM is limited to the
management of the queue manager to which it belongs.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message-retry. An option available to an MCA that is
unable to deliver a message. The MCA can wait for a
predefined amount of time and then try to send the
message again.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging. See synchronous messaging and asynchronous
messaging.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries Administration Interface (MQAI). A
programming interface to MQSeries.

MQSeries client. Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI calls
from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

MQSeries server. An MQSeries server is a queue
manager that provides queuing services to one or more
clients. All the MQSeries objects, for example queues,
exist only on the queue manager system, that is, on the
MQI server machine. A server can support normal local
MQI applications as well.

multi-hop. To pass through one or more intermediate
queue managers when there is no direct
communication link between a source queue manager
and the target queue manager.

N
namelist. An MQSeries object that contains a list of
names, for example, queue names.

Glossary of terms and abbreviations 651

name service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI). The MQSeries interface
to which customer- or vendor-written programs that
resolve queue-name ownership must conform. A part of
the MQSeries Framework.

name transformation. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, an internal process that changes a queue manager
name so that it is unique and valid for the system
being used. Externally, the queue manager name
remains unchanged.

NetBIOS. Network Basic Input/Output System. An
operating system interface for application programs
used on IBM personal computers that are attached to
the IBM Token-Ring Network.

New Technology File System (NTFS). A Windows NT
recoverable file system that provides security for files.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character. The character that is represented by
X'00'.

O
OAM. Object authority manager.

object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM). In MQSeries on
UNIX systems, MQSeries for AS/400, and MQSeries for
Windows NT, the default authorization service for
command and object management. The OAM can be
replaced by, or run in combination with, a
customer-supplied security service.

object descriptor. A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading. In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

OPM. Original Program Model.

Original Program Model (OPM). The AS/400
Original Program Model. This is no longer supported
on MQSeries. It is replaced by the Integrated Language
Environment (ILE).

OTMA. Open Transaction Manager Access.

output log-buffer. In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

P
page set. A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command. See programmable command format.

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

percolation. In error recovery, the passing along a
preestablished path of control from a recovery routine
to a higher-level recovery routine.

performance event. A category of event indicating
that a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel or a TCP/IP connection is
functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

point of recovery. In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries for
OS/390 page sets and the corresponding log data sets

652 MQSeries Intercommunication

|
|
|
|
|
|

required to recover these page sets. These backup
copies provide a potential restart point in the event of
page set loss (for example, page set I/O error).

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal. In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF). A type of
MQSeries message used by:

v User administration applications, to put PCF
commands onto the system command input queue of
a specified queue manager

v User administration applications, to get the results of
a PCF command from a specified queue manager

v A queue manager, as a notification that an event has
occurred

Contrast with MQSC.

program temporary fix (PTF). A solution or by-pass of
a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

v An error condition has occurred in relation to the
resources used by a queue manager. For example, a
queue is unavailable.

v A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects from MQSeries,
but only after all the currently active tasks have been
completed. Contrast with forced shutdown.

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R
RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log. In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the active
log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM). A program that
handles all normal and abnormal termination of tasks
by passing control to a recovery routine associated with
the terminating function.

Registry. In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor. In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive. In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA). The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

Glossary of terms and abbreviations 653

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

RESLEVEL. In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource. Any facility of the computing system or
operating system required by a job or task. In MQSeries
for OS/390, examples of resources are buffer pools,
page sets, log data sets, queues, and messages.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

return-to-sender. An option available to an MCA that
is unable to deliver a message. The MCA can send the
message back to the originator.

rollback. Synonym for back out.

RTM. Recovery termination manager.

rules table. A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEI. Security enabling interface.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages

654 MQSeries Intercommunication

from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service
interval.

session ID. In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be
used by a message channel agent when moving
messages from a transmission queue to a link.

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling. In MQSeries for OS/390 and MQSeries for
Windows 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging. A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout. A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

SNA. Systems Network Architecture.

source queue manager. See local queue manager.

SPX. Sequenced Packet Exchange transmission
protocol.

stanza. A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

star-connected communications network. A network
in which all nodes are connected to a central node.

storage class. In MQSeries for OS/390, a storage class
defines the page set that is to hold the messages for a
particular queue. The storage class is specified when
the queue is defined.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem. In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC). An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile. In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a
refresh security command is issued. Each switch profile
that MQSeries detects turns off checking for the
specified resource.

symptom string. Diagnostic information displayed in
a structured format designed for searching the IBM
software support database.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF). An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA). Data recorded
in a SYS1.LOGREC entry, which describes a program or
hardware error.

Glossary of terms and abbreviations 655

system initialization table (SIT). A table containing
parameters used by CICS on start up.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

T
TACL. Tandem Advanced Command Language.

target library high-level qualifier (thlqual).
High-level qualifier for OS/390 target data set names.

target queue manager. See remote queue manager.

task control block (TCB). An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching. The overlapping of I/O operations
and processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

teraspace. In MQSeries for AS/400, a form of shared
memory introduced in OS/400 V4R4.

termination notification. A pending event that is
activated when a CICS subsystem successfully connects
to MQSeries for OS/390.

thlqual. Target library high-level qualifier.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TMI. Trigger monitor interface.

trace. In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include

GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid. See transaction identifier.

transaction identifier. In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

Transmission Control Protocol (TCP). Part of the
TCP/IP protocol suite. A host-to-host protocol between
hosts in packet-switched communications networks.
TCP provides connection-oriented data stream delivery.
Delivery is reliable and orderly.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A suite of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission program. See message channel agent.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering. In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message containing information
about the program that a trigger monitor is to start.

trigger monitor. A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UDP. User Datagram Protocol.

UIS. User identifier service.

undelivered-message queue. See dead-letter queue.

656 MQSeries Intercommunication

|
|

undo/redo record. A log record used in recovery. The
redo part of the record describes a change to be made
to an MQSeries object. The undo part describes how to
back out the change if the work is not committed.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

User Datagram Protocol (UDP). Part of the TCP/IP
protocol suite. A packet-level protocol built directly on
the Internet Protocol layer. UDP is a connectionless and
less reliable alternative to TCP. It is used for
application-to-application programs between TCP/IP
host systems.

user identifier service (UIS). In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

Glossary of terms and abbreviations 657

658 MQSeries Intercommunication

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for AT&T GIS UNIX V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS,

V2.2.1.1
v MQSeries for DIGITAL UNIX (Compaq Tru64

UNIX), V2.2.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V2.1
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA V2.1
v MQSeries for Windows V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT, V5.1

Any exceptions to this general rule are indicated.

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a
brief introduction to the benefits of
MQSeries. It is intended to support the
purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and
Queuing

An Introduction to Messaging and Queuing,
GC33-0805, describes briefly what
MQSeries is, how it works, and how it
can solve some classic interoperability
problems. This book is intended for a
more technical audience than the
MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349,
describes some key MQSeries concepts,
identifies items that need to be considered
before MQSeries is installed, including

storage requirements, backup and
recovery, security, and migration from
earlier releases, and specifies hardware
and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book,
SC33-1872, defines the concepts of
distributed queuing and explains how to
set up a distributed queuing network in a
variety of MQSeries environments. In
particular, it demonstrates how to (1)
configure communications to and from a
representative sample of MQSeries
products, (2) create required MQSeries
objects, and (3) create and configure
MQSeries channels. The use of channel
exits is also described.

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters,
SC34-5349, describes MQSeries clustering.
It explains the concepts and terminology
and shows how you can benefit by taking
advantage of clustering. It details changes
to the MQI, and summarizes the syntax of
new and changed MQSeries commands. It
shows a number of examples of tasks you
can perform to set up and maintain
clusters of queue managers.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Clients
The MQSeries Clients book, GC33-1632,
describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book,
SC33-1873, supports day-to-day
management of local and remote
MQSeries objects. It includes topics such
as security, recovery and restart,
transactional support, problem

© Copyright IBM Corp. 1993, 2000 659

|

|
|
|
|

|

|

determination, and the dead-letter queue
handler. It also includes the syntax of the
MQSeries control commands.

This book applies to the following
MQSeries products only:
v MQSeries for AIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

MQSeries Command Reference
The MQSeries Command Reference,
SC33-1369, contains the syntax of the
MQSC commands, which are used by
MQSeries system operators and
administrators to manage MQSeries
objects.

MQSeries Programmable System Management
The MQSeries Programmable System
Management book, SC33-1482, provides
both reference and guidance information
for users of MQSeries events,
Programmable Command Format (PCF)
messages, and installable services.

MQSeries Administration Interface
Programming Guide and Reference

The MQSeries Administration Interface
Programming Guide and Reference,
SC34-5390, provides information for users
of the MQAI. The MQAI is a
programming interface that simplifies the
way in which applications manipulate
Programmable Command Format (PCF)
messages and their associated data
structures.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Messages
The MQSeries Messages book, GC33-1876,
which describes “AMQ” messages issued
by MQSeries, applies to these MQSeries
products only:
v MQSeries for AIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

v MQSeries for Windows V2.0
v MQSeries for Windows V2.1

This book is available in softcopy only.

For other MQSeries platforms, the
messages are supplied with the system.
They do not appear in softcopy manual
form.

MQSeries Application Programming Guide
The MQSeries Application Programming
Guide, SC33-0807, provides guidance
information for users of the message
queue interface (MQI). It describes how to
design, write, and build an MQSeries
application. It also includes full
descriptions of the sample programs
supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming
Reference, SC33-1673, provides
comprehensive reference information for
users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of
MQSeries objects; return codes; constants;
and code-page conversion tables.

MQSeries Application Programming Reference
Summary

The MQSeries Application Programming
Reference Summary, SX33-6095,
summarizes the information in the
MQSeries Application Programming
Reference manual.

MQSeries Using C++
MQSeries Using C++, SC33-1877, provides
both guidance and reference information
for users of the MQSeries C++
programming-language binding to the
MQI. MQSeries C++ is supported by
these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for OS/390, V2.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

MQSeries C++ is also supported by
MQSeries clients supplied with these
products and installed in the following
environments:
v AIX
v HP-UX

660 MQSeries Intercommunication

|

|

v OS/2
v Sun Solaris
v Windows NT
v Windows 3.1
v Windows 95 and Windows 98

MQSeries Using Java
MQSeries Using Java, SC34-5456, provides
both guidance and reference information
for users of the MQSeries Bindings for
Java and the MQSeries Client for Java.
MQSeries classes for Java are supported
by these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for MVS/ESA V1.2
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

This book is available in softcopy only.

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX

MQSeries for AIX, V5.1 Quick
Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 V5.1 Quick
Beginnings, GC34-5557
MQSeries for AS/400 V5.1 System
Administration, SC34-5558
MQSeries for AS/400 V5.1 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Digital UNIX (Compaq Tru64
UNIX)

MQSeries for Digital UNIX System
Management Guide, GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX, V5.1 Quick
Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp, V5.1 Quick
Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1
Licensed Program Specifications,
GC34-5377
MQSeries for OS/390 Version 2 Release 1
Program Directory

MQSeries for OS/390 System
Management Guide, SC34-5374
MQSeries for OS/390 Messages and
Codes, GC34-5375
MQSeries for OS/390 Problem
Determination Guide, GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1.2 User’s
Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris, V5.1 Quick
Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release
1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA System
Management Guide, GC34-5364

MQSeries for Windows

MQSeries for Windows V2.0 User’s
Guide, GC33-1822
MQSeries for Windows V2.1 User’s
Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT, V5.1 Quick
Beginnings, GC34-5389
MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387

Bibliography 661

|

|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

BookManager format
The MQSeries library is supplied in IBM
BookManager® format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1 (compiled

HTML)
v MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:
http://www.ibm.com/software/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:
http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1

v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1
v MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:
http://www.ibm.com/software/ts/mqseries/

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/ts/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

Related publications
This section describes the documentation
available for related products.

Programming
OS/390 C/C++ Programming Guide, SC09-2362

OS/390
OS/390 OpenEdition Planning, SC28-1890

CICS
CICS Family: Interproduct Communication,
SC33-0824
CICS/400 Intercommunication, SC33-1388

662 MQSeries Intercommunication

|

|

CICS Intercommunication Guide, SC33-1695
CICS Resource Definition Guide, SC33-1684

OS/400
OS/400 Communication Configuration, SC41-3401
OS/400 Communication Management, SC41-3406
OS/400 Work Management, SC41-3306
OS/400 APPC Communications Programming,
SC41-3443

Digital
Digital DECnet SNA Gateway Guide to IBM
Parameters
Digital DECnet for OpenVMS Networking
Manual

SNA
Microsoft SNA Server APPC Programmers Guide
Microsoft SNA Server CPI-C Programmers Guide
OpenNet LU 6.2, System Administrator’s Guide
OpenNet SNA Engine, System Administrator’s
Guide

SINIX
Transit SINIX Version 3.2 Administration of
Transit

You may also find the following International
Technical Support Organization “Red Books”
useful:

APPC Security: MVS/ESA, CICS/ESA, and OS/2,
GG24-3960
Examples of Using MQSeries on S/390, RS/6000,
AS/400, and PS/2, GG24-4326
Multiplatform APPC Configuration Guide,
GG24-4485

You can find a list of all the red books available at
URL http://www.almaden.ibm.com/redbooks/ > >

Request these books through your IBM
representative.

Related publications

Bibliography 663

Related publications

664 MQSeries Intercommunication

Index

A
active channels, maximum number 64
add routing entry 455
addressing information 25
addrtge 455
administration, channel 60
AgentBuffer parameter 547
AgentBufferLength parameter 547
aliases 25
ALTDATE attribute 78
alter channel

OS/390 325
OS/390 using CICS 356

Alter option 370
alternate channels 15
ALTTIME attribute 78
AMQCRCTA channel program 445
AMQCRS6A channel program 119
AMQCRSTA channel program 119, 445
AMQRMCLA channel program 445
APC pathway definition, example 295
APPC/MVS, defining a connection 342
applications, trusted 12, 121
ARM (Automatic Restart

Management) 344
assured delivery 22
AT&T GIS SNA Server 246
Attachmate PathWay 280
attributes

ALTDATE 78
alter date 78
alter time 78
ALTTIME 78
auto start 78
AUTOSTART 78
batch interval 79
batch size 79
BATCHINT 79
BATCHSZ 79
CHANNEL 80
channel description 84
channel name 80
channel type 81
CHLTYPE 81
CLUSNL 82
CLUSTER 81
cluster name 81
cluster namelist 82
communication connection

identifier 82
CONNAME 82
connection name 82
CONVERT 83
convert message 83
DESCR 84
DISCINT 84
disconnect interval 84
HBINT 85
heartbeat interval 85
long retry count 85
long retry interval 85

attributes (continued)
LONGRTY 85
LONGTMR 85
LU 6.2 mode name 86
LU 6.2 TP name 86
maximum message length 87
maximum transmission size 87
MAXMSGL 87
MCA name 87
MCA type 88
MCA user 88
MCANAME 87
MCATYPE 88
MCAUSER 88
message exit name 88
message exit user data 89
message retry count 89
message-retry exit name 89
message-retry exit user data 89
message retry interval 89
mode name 86
MODENAME 86
MRDATA 89
MREXIT 89
MRRTY 89
MRTMR 89
MSGDATA 89
MSGEXIT 88
NETPRTY 90
network-connection priority 90
nonpersistent message speed 90
NPMSPEED 90
password 90
profile name, CICS 81
PUT authority 90
PUTAUT 90
QMNAME 91
queue manager name 91
RCVDATA 92
RCVEXIT 91
receive exit name 91
receive exit user data 92
SCYDATA 93
SCYEXIT 92
security exit name 92
security exit user data 93
send exit name 93
send exit user data 93
SENDDATA 93
SENDEXIT 93
sequence number wrap 93
sequential delivery 93
SEQWRAP 93
short retry count 93
short retry interval 94
SHORTRTY 93
SHORTTMR 94
target system identifier 94
TPNAME 86
transaction identifier 94
transmission protocol 95

attributes (continued)
transmission queue name 94
transport type 95
TRPTYPE 95
user ID 95
USERID 95
XMITQ 94

authority, PUT 90
auto-definition exit program 516
auto-definition of channels 60
automatic channel reconnect for

TCP/IP 344
Automatic Restart Management

(ARM) 344
AUTOSTART attribute 78

B
back out in-doubt messages

Digital OpenVMS 116
OS/2 116
OS/400 439
Tandem NSK 116
UNIX systems 116
Windows NT 116

batch interval 79
batch size 79
BATCHINT attribute 79
BatchInterval field 573
BatchSize field 562
BATCHSZ attribute 79
bibliography 659
bind type 121
binding, fastpath 121
BINDING channel state 62
BookManager 662
browsing a channel 356, 430

C
caller

MCA 9
caller, responder 9
caller MCA 9
calls

MQ_CHANNEL_AUTO_DEF_EXIT 551
MQ_CHANNEL_EXIT 546
MQ_TRANSPORT_EXIT 555
MQXWAIT 553

CapabilityFlags field 601
CEDA CICS transaction 383
change definition, channel 113, 436
Change option 436
channel

administration 60
alter

OS/390 325
OS/390 using CICS 370

altering 356
attributes 111
auto-definition 60

© Copyright IBM Corp. 1993, 2000 665

channel (continued)
auto-definition exit program 516
browsing 356, 430
change definition 113, 436
channel control function

Digital OpenVMS 105
OS/2 105
OS/400 423
Tandem NSK 105
UNIX systems 105
Windows NT 105

characteristics
Digital OpenVMS 119
OS/2 119
OS/390 using CICS 351
OS/400 445
Tandem NSK 119
UNIX systems 119
Windows NT 119

client-connection 7
cluster-receiver 9
cluster-sender 8
command queue

OS/390 343
configuration 490
constants 627
control commands 60
copy definition 367, 436
create definition

Digital OpenVMS 113
OS/2 113
OS/390 using CICS 368
OS/400 435
Tandem NSK 113
UNIX Systems 113
Windows NT 113

creating 109, 356, 426
creating your own defaults 369, 435
default values supplied by MQSeries

for AS/400 435
default values supplied by OS/390

using CICS 369, 372
define

OS/390 324
OS/390 using CICS 372

definition, what is it? 57
definition file

Digital OpenVMS 106
OS/2 106
OS/390 using CICS 351
OS/400 423
Tandem NSK 106
UNIX systems 106
Windows NT 106

delete 113, 437
OS/390 326
OS/390 using CICS 370

description 84
display

Digital OpenVMS 113
OS/2 113
OS/400 437
Tandem NSK 113
UNIX systems 113
Windows NT 113

display, OS/390 325

channel (continued)
display settings

OS/390 using CICS 365
display status

Digital OpenVMS 113
OS/2 113
OS/390 using CICS 364
OS/400 437
Tandem NSK 113
UNIX systems 113
Windows NT 113

displaying 110, 437
displaying settings

Digital OpenVMS 113
OS/2 113
OS/390 using CICS 364
OS/400 437
Tandem NSK 113
UNIX Systems 113
Windows NT 113

displaying status 437
Digital OpenVMS 113
OS/2 113
OS/390 using CICS 364
OS/400 437
Tandem NSK 113
UNIX Systems 113
Windows NT 113

enabling 61
end 438
error 65

restarting after 69
exit current function 366
fastpath binding 121
find 370
in doubt 69
in-doubt channels 69
initial data negotiation 61
initiator

AIX, OS/2, HP-UX, Sun Solaris,
and Windows NT 118

OS/390 327
overview 10
starting 118
stopping 118

listener
overview 10
start, OS/390 329
start, OS/400 437
stop, OS/390 329
STRMQMLSR command 437
trusted 12

menu-bar choice 373
monitoring 60
MQI 7
OS/400

resolve 439
ping

Digital OpenVMS 113
OS/2 113
OS/390 331
OS/390 using CICS 366
OS/400 437
Tandem NSK 113
UNIX systems 113
Windows NT 113

planning form 623

channel (continued)
preparing 60
program types

Digital OpenVMS 119
MQSeries for AS/400 445
OS/2 119
Tandem NSK 119
UNIX systems 119
Windows NT 119

programs 445
AMQCCLA 445
AMQCRCTA 445
AMQCRS6A 119, 445
AMQCRSTA 119
AMQRMCLA 445
OS/390 using CICS 351

pull-down menu 373
quiescing 67
receiver 7
receiving parameters 59
refuses to run 613
renaming

Digital OpenVMS 111
OS/2 111
OS/390 using CICS 357
OS/400 432
Tandem NSK 111
UNIX Systems 111
Windows NT 111

requester 7
requester-sender 9
requester-server 9
reset

OS/390 332
OS/390 using CICS 362

Reset
Digital OpenVMS 116
OS/2 116
OS/400 439
Tandem NSK 116
UNIX systems 116
Windows NT 116

resolving
Digital OpenVMS 116
OS/2 116
OS/390 333
OS/390 using CICS 363
OS/400 439
Tandem NSK 116
UNIX Systems 116
Windows NT 116

restart 61
restarting when stopped 69
resync, OS/390 using CICS 361
run 110, 429
segregating messages 15
selecting 430
selecting OS/390 using CICS 354
sender-receiver 8
sequence numbers 59
server-connection 7
server-receiver 8
sharing 14
start 61

Digital OpenVMS 110, 114
OS/2 110, 114
OS/390 330

666 MQSeries Intercommunication

channel (continued)
OS/390 using CICS 357
OS/400 429, 437
Tandem NSK 110, 114
UNIX systems 114
UNIX Systems 110
Windows NT 110, 114

startup, data negotiation 61, 506, 507
startup negotiation errors 613
state 62
status 59
stopping 67, 438

Digital OpenVMS 115
OS/2 115
OS/390 334
OS/390 using CICS 359, 385
OS/400 438
Tandem NSK 115
UNIX systems 115
Windows NT 115

switching 617
synchronizing 361, 506
test, OS/390 331
transport-retry exit program 517
triggering 20, 358

OS/2 117
OS/390 342
OS/390 using CICS 358
Tandem NSK 117
UNIX systems 117
Windows NT 117

trusted 121
types 81, 111, 119, 352
using alternate channels 15
working with OS/390 using

CICS 354
CHANNEL attribute 80
channel attributes 533
channel auto-definition exit,

introduction 12
channel configuration

MQSeries for AIX 210
MQSeries for AS/400 471
MQSeries for AT&T GIS UNIX 252
MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX) 216
MQSeries for HP-UX 238
MQSeries for OS/2 Warp 163
MQSeries for OS/390 405
MQSeries for Sun Solaris 272
MQSeries for Windows NT 185

channel control error messages 611
channel control function 59

Digital OpenVMS 105
OS/2 105
OS/390 321
OS/390 using CICS 351
OS/400 423
Tandem NSK 105
UNIX systems 105
Windows NT 105

channel definition file
Digital OpenVMS 106
OS/2 106
OS/390 using CICS 351
OS/400 423
Tandem NSK 106

channel definition file (continued)
UNIX systems 106
Windows NT 106

channel description 84
channel exit

MQCXP structure 591
MQTXP structure 605
MQXWD structure 609

channel-exit programs 505, 542
channel definition structure,

MQCD 518
channel-exit programs 529
data buffer 518
introduction 12
MQSeries for AIX 526
MQSeries for AS/400 521
MQSeries for AT&T GIS UNIX 531
MQSeries for Compaq (DIGITAL)

OpenVMS 528
MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX) 529
MQSeries for HP-UX 530
MQSeries for OS/2 Warp 522
MQSeries for OS/390 using

CICS 521
MQSeries for OS/390 without

CICS 520
MQSeries for SINIX and

DC/OSx 532
MQSeries for Sun Solaris 532
MQSeries for Tandem NonStop

Kernel 533
MQSeries for Windows 526
MQSeries for Windows NT 524
parameter structure, MQCXP 518
supplied programs, DCE 537
Windows 3.1 client 524
Windows 95 and Windows 98

client 524
Windows NT client 524
writing and compiling 518

channel exits
auto-definition 516
message 514
message-retry 516
receive 512
security 507
send 512
transport-retry 517

channel functions
Digital OpenVMS 112
OS/2 112
Tandem NSK 112
UNIX systems 112
Windows NT 112

channel initiator
display, OS/390 326
overview 10
retries 65, 85
runmqchi command, MQSeries for

OS/2 Warp 114
runmqchi command, MQSeries for

Windows NT 114
runmqchi command, MQSeries on

UNIX systems 114
runmqchi command, Tandem

NSK 114

channel initiator (continued)
running the MCA as a thread 88
start, OS/2, Windows NT, Digital

OpenVMS, Tandem NSK, and UNIX
systems 118

start, OS/390 327
start, OS/400 438
stop, OS/2, Windows NT, Digital

OpenVMS, Tandem NSK, and UNIX
systems 118

stop, OS/390 328
STRMQMCHLI command 438

channel listener
overview 10
start, OS/390 329
start, OS/400 438
stop, OS/390 329
STRMQMLSR command 438
trusted 12

channel name attribute 80
channel planning example

Digital OpenVMS 305
OS/2 305
OS/390 345
OS/400 477
UNIX systems 305
Windows NT 305

channel planning form, how to use 623
channel programs

Digital OpenVMS 119
MQSeries for AS/400 445
OS/2 119
OS/390 using CICS 351
Tandem NSK 119
UNIX systems 119
Windows NT 119

channel refuses to run 613
channel settings panel, OS/390 using

CICS 374
channel startup negotiation errors 613
channel states

BINDING 62
INACTIVE 65
OS/400 446

channel status
display, Digital OpenVMS 113
display, OS/2 113
display, OS/390 335
display, OS/390 using CICS 364
display, OS/400 437
display, Tandem NSK 113
display, UNIX systems 113
display, Windows NT 113

channel type attribute 81
ChannelDefinition parameter

MQ_CHANNEL_AUTO_DEF_EXIT
call 551

MQ_CHANNEL_EXIT call 546
ChannelExitParms parameter

MQ_CHANNEL_AUTO_DEF_EXIT
call 551

MQ_CHANNEL_EXIT call 546
ChannelName field 558
channels, alternate to 15
CHANNELS stanza 637
ChannelType field 559
CHLTYPE attribute 81

Index 667

CICS
CEDA INSTALL command 383
installing communication

connection 383
profile name 81
regions 352
transaction

CEDA 383
CKMC 352
CKSG 384

Cisco MultiNet for Digital
OpenVMS 279

CKMC CICS transaction 352
CKSG CICS transaction 384
class of routing entry 457
class of service 47
client-connection channel 7
clients, problem determination 617
CLUSNL attribute 82
CLUSTER attribute 81
cluster channels, OS/390 337
cluster components 6
cluster name attribute 81
cluster namelist attribute 82
cluster-receiver 9
cluster-receiver channel 7
cluster-sender 8
cluster-sender channel 7
ClusterPtr field 577
clusters

choosing transmission queue 39
components 6
concentrating messages 44
distribution lists 46
message flow 35
networking considerations 52
passing messages 41
putting messages 38
reply-to queue 47
return routing 53
separating message flows 42
using 16

ClustersDefined field 578
command queue channel, OS/390 343
command validation 71
commit in-doubt messages

Digital OpenVMS 116
OS/2 116
OS/400 439
Tandem NSK 116
UNIX systems 116
Windows NT 116

committed messages
Digital OpenVMS 116
OS/2 116
OS/400 439
Tandem NSK 116
UNIX systems 116
Windows NT 116

communication
between CICS systems attached to one

queue manager 383
between queue managers 381
intersystem (ISC) 382

communications examples
ICE 299
SNAX 292

communications examples (continued)
TCP/IP 303

communications Manager/2 128
Communications Manager/2 127
Communications Server for AIX V5 202
Communications Server for Windows

NT 174
communications setup, Tandem

NSK 292
communications side object

OS/390 342
OS/400 451, 452

CompCode parameter 553
components, cluster 6
components of distributed-queuing

environment 13
channel initiator 10
channel listener 10
message channel 7
message channel agent 9
transmission queue 10

compression of data 512
concentrating messages 44
concentrators 31
concepts of intercommunication 3, 16,

22
configuration

MQSeries for AIX 209
MQSeries for AS/400 471
MQSeries for AT&T GIS UNIX 251
MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX) 215
MQSeries for HP-UX 238
MQSeries for OS/2 Warp 162
MQSeries for OS/390 405
MQSeries for Sun Solaris 271
MQSeries for VSE/ESA 490
MQSeries for Windows NT 184

configuration file 73
Digital OpenVMS 73
OS/2 73
SINIX and DC/OSx 311
Tandem NSK 73
UNIX systems 73

configuration worksheet 485
configuring the UDP transport-retry

exit 518
CONNAME attribute 82
connection

APPC/MVS, OS/390 339
deciding upon

OS/390 339
OS/400 449

DECnet Phase IV 285
DECnet Phase V 286
defining APPC/MVS (LU 6.2) 342
defining LU 6.2

Digital OpenVMS 281
OS/2 126
OS/400 451
UNIX systems 194
Windows NT 126

installing 383
LU 6.2

Digital OpenVMS 277
OS/2 123
OS/390 339

connection (continued)
LU 6.2 (continued)

OS/390 using CICS 382
OS/400 449
Tandem NSK 289
UNIX systems 191
Windows NT 123

NetBIOS
OS/2 123
Windows NT 123

SPX
OS/2 123
Windows NT 123

switching 617
TCP

Digital OpenVMS 277
OS/2 123
OS/390 339
OS/400 449
Tandem NSK 289
UNIX systems 191
Windows NT 123

UDP
UNIX systems 191

connection name 82
for function shipping 383

ConnectionName field 568
constants 627
constants, values of 627

channel capability flags
(MQCF_*) 628

channel data conversion
(MQCDC_*) 628

channel definition structure length
(MQCD_*) 628

channel definition structure version
(MQCD_*) 628

channel-exit parameter structure
identifier (MQCXP_*) 628

channel-exit parameter structure
version (MQCXP_*) 629

channel type (MQCHT_*) 628
exit identifier (MQXT_*) 631
exit reason (MQXR_*) 630
exit response (MQXCC_*) 630
exit user area (MQXUA_*) 631
exit wait descriptor structure identifier

(MQXWD_*) 631
exit wait descriptor version

(MQXWD_*) 631
lengths of character string and byte

fields (MQ_*) 627
MCA type (MQMCAT_*) 629
nonpersistent message speed

(MQNPMS_*) 629
put authority (MQPA_*) 629
secondary exit response

(MQXR2_*) 630
security identifier (MQSID_*) 629
security identifier type

(MQSIDT_*) 630
transmission protocol type

(MQXPT_*) 630
transport retry exit structure identifier

(MQTXP_*) 630
transport retry exit version

(MQTXP_*) 630

668 MQSeries Intercommunication

context security 91
control commands, channel 60
conversion failure, problem

determination 615
conversion of data 59
CONVERT attribute 83
convert message 83
coordination with adjacent systems 44
Copy option 367, 436
Create option 368, 435
creating

channel
Digital OpenVMS 109
OS/2 109
OS/390 using CICS 356
OS/400 426
Tandem NSK 109
UNIX systems 109
Windows NT 109

defaults 369, 435
objects

Digital OpenVMS 108
OS/2 108
OS/400 426
Tandem NSK 108
UNIX systems 108
Windows NT 108

queues 117, 441
transmission queue 117, 441

CRTCSI command 452
CRTMQM command 109
current channels

specifying maximum number 64

D
data

compression 512
conversion 514
decompression 512
encryption 514
negotiation 20, 60

data conversion 75
data types, detailed description

MQCD 556
MQCXP 591
MQTXP 605
MQXWD 609

DataConversion field 565
DataId field 607
DataLength field 607
DataLength parameter 546
DCE

supplied exit programs 537
dead-letter queue 52

Digital OpenVMS 119
MQSeries for AS/400 447
OS/2 119
overview 13
problem determination 612
processing 612
Tandem NSK 119
UNIX systems 119
Windows NT 119

DECnet Phase IV 277
DECnet Phase IV connection 285
DECnet phase V connection 286

decompression of data 512
default channel values

OS/390 using CICS 369, 372
OS/400 435

default object creation 108
define channel

OS/390 324
defining

an LU 6.2 connection
Digital OpenVMS 281
OS/2 126
OS/400 451
UNIX systems 194
Windows NT 126

APPC/MVS (LU 6.2) connection
OS/390 342

objects 384
OS/390 342

OS/390 324
OS/390 using CICS 372
queues 384

OS/390 342
definition file

data 544
Digital OpenVMS 106
OS/2 106
OS/390 using CICS 351
OS/400 423
Tandem NSK 106
UNIX systems 106
Windows NT 106

delete channel
distributed platforms 113
OS/390 326
OS/390 using CICS 370
OS/400 437

delivery, messages 22
Desc field 560
DESCR attribute 84
description, channel 84
DestAddress parameter 555
DestAddressLength parameter 555
destination queue 42
dial-up support 615
Digital TCP/IP services for

OpenVMS 278
disabled receiver channels 114, 437
disaster recovery 616
DISCINT attribute 84
DiscInterval field 562
disconnect interval 84
display

option 437
OS/390, DQM 326
settings 365
status 364

display channel
Digital OpenVMS 110
OS/2 110
OS/390 325
OS/400 437
Tandem NSK 110
UNIX systems 110
Windows NT 110

display channel initiator
OS/390 326

display channel status
OS/390 335

Display channel status
Digital OpenVMS 110
OS/2 110
Tandem NSK 110
UNIX systems 110
Windows NT 110

display DQM 326
display settings 365
display status 364
distributed queuing

components 7, 13
functions 57

distributed queuing in OS/390 using
CICS 381

distributed-queuing management in
MQSeries for AS/400 441

distribution lists 46, 59
diverting message flows 45
DQM

display, OS/390 326
DQM panels

OS/390 using CICS 352

E
ECB field 610
edit

alter, OS/390 using CICS 370
change

Digital OpenVMS 113
OS/2 113
OS/400 436
Tandem NSK 113
UNIX systems 113
Windows NT 113

copy
OS/390 using CICS 367
OS/400 436

create
Digital OpenVMS 113
OS/2 113
OS/390 using CICS 368
OS/400 435
Tandem NSK 113
UNIX systems 113
Windows NT 113

delete
Digital OpenVMS 113
OS/2 113
OS/390 using CICS 370
OS/400 437
Tandem NSK 113
UNIX systems 113
Windows NT 113

find
OS/390 using CICS 370

menu-bar choice
OS/390 using CICS 367

pull-down menu 367
enabling a channel to transmit

messages 61
encryption of messages 505
end 115
End option 438
ending a channel 115, 438

Index 669

ending SNA Listener process 284
ENDMQLSR command 119
error

at remote sites 611
channel 65
logs 115, 618
message from channel control 611
recovery 611

example
channel planning

Digital OpenVMS 305
OS/2 305
OS/390 345
OS/400 477
UNIX systems 305
Windows NT 305

communications setup
Tandem NSK 292

configuration file, SINIX and
DC/OSx 311

configurations 97, 98
flow control 35
local queue definition

Digital OpenVMS 308
OS/2 308
OS/390 348
OS/400 480
Tandem NSK 308
UNIX systems 308
Windows NT 308

process definition
Digital OpenVMS 307, 309
OS/2 307, 309
OS/390 347, 348
OS/400 479, 481
Tandem NSK 307, 309
UNIX systems 307, 309
Windows NT 307, 309

receiver channel definition
Digital OpenVMS 308, 309
OS/2 308, 309
OS/390 347, 348
OS/400 480, 481
Tandem NSK 308, 309
UNIX systems 308, 309
Windows NT 308, 309

remote queue definition
Digital OpenVMS 307
OS/2 307
OS/390 346
OS/400 478
Tandem NSK 307
UNIX systems 307
Windows NT 307

reply-to queue definition
Digital OpenVMS 308
OS/2 308
OS/390 347
OS/400 480
Tandem NSK 308
UNIX systems 308
Windows NT 308

running
Digital OpenVMS 309
OS/2 309
OS/390 349
OS/400 482

example (continued)
running (continued)

Tandem NSK 309
UNIX systems 309
Windows NT 309

sender channel definition
Digital OpenVMS 308, 309
OS/2 308, 309
OS/390 347, 348
OS/400 479, 481
Tandem NSK 308, 309
UNIX systems 308, 309
Windows NT 308, 309

transmission queue definition
Digital OpenVMS 307, 308
OS/2 307, 308
OS/390 347, 348
OS/400 479, 481
Tandem NSK 307, 308
UNIX systems 307, 308
Windows NT 307, 308

example configurations
MQSeries for AIX 197, 214
MQSeries for AS/400 459, 476
MQSeries for AT&T GIS UNIX 243,

257
MQSeries for Digital OpenVMS 277,

289
MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX) 215, 219
MQSeries for HP-UX 219, 243
MQSeries for OS/2 Warp 137, 168
MQSeries for OS/390 395, 419
MQSeries for Sun Solaris 257, 277
MQSeries for Windows NT 169, 189

examples
alias walk-through 51
channel initiators 10
channel listeners 10
channel names 30
channel planning

for distributed platforms 305
for OS/390 345
for OS/390 using CICS 387
for OS/400 477

choosing the transmission queue 39
cluster of queue managers 6
communication in MQSeries for

AS/400, TCP connection 449
concentrating messages 44
configuration file on bight 312
configuration file on forties 313
configuration files

for Pyramid DC/OSx 313
SINIX and DC/OSx 311

create channel 109
creating reply-to aliases 36
defining channels 18
defining queues 19
defining remote queue definitions 36
display channel 110
display channel status 110
diverting message flows 45
message channels

cluster-receiver 9
cluster-sender 8
requester-sender 9

examples (continued)
message channels (continued)

requester-server 9
sender-receiver 8

MQSeries for AIX configuration 197
MQSeries for AS/400

configuration 459
MQSeries for AT&T GIS UNIX

configuration 243
MQSeries for HP-UX

configuration 219
MQSeries for OS/2 Warp

configuration 137
MQSeries for OS/390

configuration 395
MQSeries for Sun Solaris

configuration 257
MQSeries for VSE/ESA

configuration 485
MQSeries for Windows NT

configuration 169
multi-hopping 14
passing messages through system 41
passing through intermediate queue

managers 14
putting messages on remote

queues 38
QM-concentrators 31
queue name resolution 54
receiving messages 40
renaming a channel 111
reply-to queue 47, 48
reply-to-queue alias 28
sending messages 5, 17
sending messages in both

directions 5
separating message flows 42
setting up communication for OS/2

and Windows NT
defining a NetBIOS

connection 128
defining a TCP connection 124
defining an LU 6.2

connection 126
defining an SPX connection 131

setting up communication in Digital
OpenVMS

defining a DECnet Phase IV
connection 285

defining a DECnet Phase V
connection 286

defining an LU 6.2
connection 281

setting up communication in
MQSeries for OS/390

LU 6.2 connection 342
TCP connection 339

setting up communication in Tandem
NSK

SNA channels 289
TCP channels 291

setting up communication in UNIX
systems

defining a TCP connection 191
defining an LU 6.2

connection 194

670 MQSeries Intercommunication

examples (continued)
setting up communications in Digital

OpenVMS
defining a TCP connection 278

sharing a transmission queue 14
SINIX and DC/OSx configuration

files 311
starting a channel 110, 429
triggering 21, 118
using multiple channels 15
using the remote queue definition

object 37
exit 366
exit wait descriptor structure 609
ExitBufferAddr parameter 548
ExitBufferLength parameter 548
ExitData field 599
ExitDataLength field 574
ExitId field 592
ExitNameLength field 574
ExitNumber field 601
ExitParms parameter 555
EXITPATH

stanza of qm.ini file 637
ExitReason field

MQCXP structure 593
MQTXP structure 606

ExitResponse field
MQCXP structure 595
MQTXP structure 607

ExitResponse2 field 596
exits

constants 627
ExitUserArea field

MQCXP structure 598
MQTXP structure 606

F
FAPLevel field 601
fast, nonpersistent messages 22

sequence of retrieval 56
specifying 90

Feedback field
MQCXP structure 598
MQTXP structure 608

fields
BatchInterval 573
BatchSize 562
CapabilityFlags 601
ChannelName 558
ChannelType 559
ClusterPtr 577
ClustersDefined 578
ConnectionName 568
DataConversion 565
DataId 607
DataLength 607
Desc 560
details of receiver channel panel 377
details of requester channel settings

panel 379
details of sender channel settings 376
details of server channel settings

panel 378
DiscInterval 562
ECB 610

fields (continued)
ExitData 599
ExitDataLength 574
ExitId 592
ExitNameLength 574
ExitNumber 601
ExitReason

MQCXP structure 593
MQTXP structure 606

ExitResponse
MQCXP structure 595
MQTXP structure 607

ExitResponse2 596
ExitUserArea

MQCXP structure 598
MQTXP structure 606

FAPLevel 601
Feedback

MQCXP structure 598
MQTXP structure 608

GroupId 607
HeaderLength 600
HeartbeatInterval 572
LongMCAUserIdLength 578
LongMCAUserIdPtr 579
LongRemoteUserIdLength 578
LongRemoteUserIdPtr 579
LongRetryCount 563
LongRetryInterval 563
MaxMsgLength 565
MaxSegmentLength 598
MCAName 561
MCASecurityId 579
MCAType 568
MCAUserIdentifier 567
ModeName 561
MsgExit 563
MsgExitPtr 575
MsgExitsDefined 574
MsgRetryCount

MQCD structure 571
MQCXP structure 599

MsgRetryExit 570
MsgRetryInterval

MQCD structure 572
MQCXP structure 599

MsgRetryReason 600
MsgRetryUserData 570
MsgUserData 566
MsgUserDataPtr 575
NetworkPriority 578
NonPersistentMsgSpeed 573
PartnerName 600
Password 567
PutAuthority 565
QMgrName 561
ReceiveExit 564
ReceiveExitPtr 577
ReceiveExitsDefined 575
ReceiveUserData 566
ReceiveUserDataPtr 577
RemotePassword 569
RemoteSecurityId 579
RemoteUserIdentifier 569
Reserved 606
Reserved1 609
Reserved2 609

fields (continued)
Reserved3 610
RetryCount 607
SecurityExit 563
SecurityUserData 565
SendExit 564
SendExitPtr 576
SendExitsDefined 575
SendUserData 566
SendUserDataPtr 576
SeqNumberWrap 564
SessionId 607
ShortConnectionName 561
ShortRetryCount 562
ShortRetryInterval 562
StrucId

MQCXP structure 591
MQTXP structure 605
MQXWD structure 609

StrucLength 574
TpName 562
TransportType

MQCD structure 560
MQTXP structure 606

UserIdentifier 566
Version

MQCD structure 558
MQCXP structure 592
MQTXP structure 605
MQXWD structure 609

XmitQName 561
find option 370
flow control 35
function keys

OS/390 using CICS 353
function shipping 383
functions available

Digital OpenVMS 106
OS/2 106
Tandem NSK 106
UNIX systems 106
Windows NT 106

G
glossary 645
GroupId field 607

H
HBINT attribute 85
Hconn parameter 553
HeaderLength field 600
heartbeat interval 85
HeartbeatInterval field 572
help

OS/390 using CICS 372
pull-down menus 372, 373

help menu-bar choice 372, 373
how to use

channel planning form 623
HTML (Hypertext Markup

Language) 662
Hypertext Markup Language

(HTML) 662

Index 671

I
IBM Communications Server for

Windows NT 174
ICE communications example 299
in-doubt 80
in-doubt channels, manual

resynchronization 69
in-doubt message on channel, resolve on

OS/390 333
in-doubt messages, commit or back out

Digital OpenVMS 116
OS/2 116
OS/400 439
Tandem NSK 116
UNIX systems 116
Windows NT 116

INACTIVE channel state 62, 65
ini file 73
initial data negotiation 20, 61
initialization data set, OS/390 without

CICS 73
initialization file 73
initiator for channel

AIX, OS/2, HP-UX, Sun Solaris, and
Windows NT 118

OS/390 327
installing

CICS communication connection 383
integrity of delivery 22
intercommunication

concepts 3, 16, 22
example 485
example configuration 97

intercommunication example 485, 503
intercommunication examples

MQSeries for AIX 197
MQSeries for AS/400 459
MQSeries for AT&T GIS UNIX 243
MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX) 215
MQSeries for HP-UX 219
MQSeries for OS/2 Warp 137
MQSeries for OS/390 395
MQSeries for Sun Solaris 257
MQSeries for VSE/ESA 485
MQSeries for Windows NT 169

interfaces
Interlink SNSTCPAccess 344
IUCV 344

Interlink SNSTCPAccess interface 344
intersystem communication (ISC) 381
ISC (intersystem communication) 381
IUCV interface 344

J
journaling 514

K
KEEPALIVE 66

OS/2 132, 162
keyboard functions

function keys
OS/390 using CICS 353

OS/390 using CICS
clear key 354

keyboard functions (continued)
OS/390 using CICS (continued)

enter key 354
unassigned keys and unavailable

choices 354

L
links, wide-band 31
list cluster channels, OS/390 337
listener, trusted 10, 12, 121
listening on LU 6.2

OS/2 127
OS/390 342
UNIX systems 195
Windows NT 127

listening on NetBIOS
OS/2 131
Windows NT 131

listening on SPX
OS/2 132, 162
Windows NT 132, 183

listening on TCP
Digital OpenVMS 278
OS/2 124
OS/390 340
OS/400 450
UNIX systems 192
Windows NT 124

local queue definition
example

Digital OpenVMS 308
OS/2 308
OS/390 348
OS/400 480
Tandem NSK 308
UNIX systems 308
Windows NT 308

local queue manager 3
location name 42
log

error 115, 618
file, @SYSTEM 618

logs for errors 115
long retry count attribute 85
long retry interval attribute 85
LongMCAUserIdLength field 578
LongMCAUserIdPtr field 579
LongRemoteUserIdLength field 578
LongRemoteUserIdPtr field 579
LongRetryCount field 563
LongRetryInterval field 563
LONGRTY attribute 85
LONGTMR attribute 85
loopback testing 56
LU 6.2

mode name 86
responder processes 291
settings

OS/2 126
OS/400 451
UNIX systems 194
Windows NT 126

TP name 86
LU 6.2 connection

MQSeries for AIX 197
MQSeries for AS/400 459

LU 6.2 connection (continued)
MQSeries for AT&T GIS UNIX 243
MQSeries for Digital OpenVMS 277
MQSeries for HP-UX 219
MQSeries for OS/2 Warp 137
MQSeries for OS/390 395
MQSeries for OS/390 with CICS 381,

402
MQSeries for OS/390 without

CICS 400
MQSeries for Sun Solaris 257
MQSeries for Tandem NSK 289
MQSeries for VSE/ESA 485
MQSeries for Windows NT 169
setting up

OS/2 123
OS/390 342
OS/390 using CICS 382
OS/400 449
UNIX systems 191
Windows NT 123

LU62
stanza of qm.ini file 637

M
maximum

active channels 64
current channels 64
message length 87
transmission size 87

MAXMSGL attribute 87
MaxMsgLength field 565
MaxSegmentLength field 598
MCA

caller 9
name 87
responder 9
type 88
user 88
user-written 75

MCANAME attribute 87
MCAName field 561
MCASecurityId field 579
MCATYPE attribute 88
MCAType field 568
MCAUSER attribute 88
MCAUserIdentifier field 567
message

committed
Digital OpenVMS 116
OS/2 116
OS/400 439
Tandem NSK 116
UNIX systems 116
Windows NT 116

concentrating 44
converting 83
diverting flows 45
encryption 505
error 611
for distribution list 46
passing through system 41
putting on remote queue 37
queue name translations 53
receiving 40
return routing 53

672 MQSeries Intercommunication

message (continued)
return to sender 72
routing 39
sending and receiving 58
separating flows 42
sequence numbering 54
sequential retrieval 55
splitting 59
undeliverable 71

message channel
cluster-receiver 7, 9
cluster-sender 7, 8
receiver 7
requester 7
requester-sender 9
requester-server 9
sender 7
sender-receiver 8
server 7
server-receiver 8

message channel agent
caller 9
initiation 507, 512
responder 9
security 91
termination 507, 512
user-written 75

message channel agent (MCA) 9, 57
message channels

list panel
OS/390 using CICS 353

message exit 12
message exit name 88
message exit program 514

overview 506
message exit user data 89
message flow control 35

networking considerations 52
message retry 72
message-retry exit

introduction 12
name 89
retry count 89
retry interval 89
user data 89

message-retry exit program 516
messages

assured delivery 22
back out in-doubt messages

OS/400 439
commit in-doubt messages

OS/400 439
resolve in-doubt messages

OS/400 439
sending 17

Messages
back out in-doubt messages 116
commit in-doubt messages 116
resolve in-doubt messages 116

messages and codes 71
mode name 86
MODENAME attribute 86
ModeName field 561
monitoring and controlling channels

Digital OpenVMS systems 105
OS/2 105
OS/390 321

monitoring and controlling channels
(continued)

OS/390 using CICS 351
OS/400 423
Tandem NSK 105
UNIX systems 105
Windows NT 105

monitoring channels 60
moving service component 4
MQ_* values 627
MQ_CHANNEL_AUTO_DEF_EXIT

call 551
MQ_CHANNEL_EXIT call 546
MQ_TRANSPORT_EXIT call 555
MQCD, channel definition structure 518
MQCD structure 556
MQCXP_* values 591
MQCXP, channel exit parameter

structure 518
MQCXP structure 591
MQFB_* values 598
MQI channels 7
MQIBindType 121
MQRMH, reference-message header 515
mqs.ini 74
MQSeries for AIX

channel configuration 210
channel-exit programs 526
configuration 209
intercommunication example 197,

214
LU 6.2 connection 197
TCP connection 209
UDP connection 209

MQSeries for AS/400
channel configuration 471
channel-exit programs 521
configuration 471
intercommunication example 459,

476
LU 6.2 connection 459
TCP connection 469

MQSeries for AT&T GIS UNIX
channel configuration 252
channel-exit programs 531
configuration 251
intercommunication example 243,

257
LU 6.2 connection 243
TCP connection 251

MQSeries for Digital OpenVMS
channel-exit programs 528
problem solving 285
setting up communication 277
SNA configuration 281

MQSeries for DIGITAL UNIX (Compaq
Tru64 UNIX)

channel configuration 216
configuration 215
intercommunication example 215
TCP connection 215

MQSeries for HP-UX
channel configuration 238
channel-exit programs 530
configuration 238
intercommunication example 219,

243

MQSeries for HP-UX (continued)
LU 6.2 connection 219
TCP connection 237

MQSeries for OS/2 Warp
channel configuration 163
channel-exit programs 522
configuration 162
intercommunication example 137,

168
LU 6.2 connection 137
NetBIOS connection 160
SPX connection 160
TCP connection 158

MQSeries for OS/390
channel configuration 405
configuration 405
intercommunication example 395,

419
LU 6.2 connection 395
reset channel sequence numbers 332
resolving in-doubt message on

channel 333
TCP connection 404

MQSeries for OS/390 using CICS
channel-exit programs 521

MQSeries for OS/390 without CICS
channel-exit programs 520

MQSeries for SINIX and DC/OSx
channel-exit programs 532

MQSeries for Sun Solaris
channel configuration 272
channel-exit programs 532
configuration 271
intercommunication example 257,

277
LU 6.2 connection 257
TCP connection 271

MQSeries for Tandem NonStop Kernel
channel-exit programs 533
setting up communication 289

MQSeries for VSE/ESA
channel configuration 490
configuration 490
configuration worksheet 485
LU 6.2 connection 485

MQSeries for Windows 104
channel-exit programs 526

MQSeries for Windows NT
channel configuration 185
channel-exit programs 524
configuration 184
intercommunication example 169,

189
LU 6.2 connection 169
NetBIOS connection 181
SPX connection 182
TCP connection 181

MQSeries publications 659
MQSINI 74
MQTXP_* values 605
MQTXP structure 605
MQXCC_* values

MQCXP structure 595
MQTXP structure 607

MQXQH, transmission header 515, 516
MQXR_* values

MQCXP structure 593

Index 673

MQXR_* values (continued)
MQTXP structure 606

MQXR2_* values 596
MQXT_* values 592
MQXUA_* values

MQCXP structure 606
MQTXP structure 598

MQXWAIT call 553
MQXWD_* values 609
MQXWD structure 609
MRDATA attribute 89
MREXIT attribute 89
MRO (multiregion operation) 381
MRRTY attribute 89
MRTMR attribute 89
MSGDATA attribute 89
MSGEXIT attribute 88
MsgExit field 563
MsgExitPtr field 575
MsgExitsDefined field 574
MsgRetryCount field

MQCD structure 571
MQCXP structure 599

MsgRetryExit field 570
MsgRetryInterval field

MQCD structure 572
MQCXP structure 599

MsgRetryReason field 600
MsgRetryUserData field 570
MsgUserData field 566
MsgUserDataPtr field 575
multi-hopping 14
multiple message channels per

transmission queue
Digital OpenVMS 120
OS/2 120
OS/390 using CICS 384
OS/400 447
Tandem NSK 120
UNIX systems 120
Windows NT 120

multiple queue managers 127
multiregion operation (MRO) 381

N
name resolution

conflicts 53
convention 52
description 633
introduction 26
location 42
queue name translations 53
restriction 48

NDF file configuration 128
negotiations on startup 61, 613
NetBIOS 4, 128
NETBIOS

stanza of qm.ini file 637
NetBIOS, example configurations 98
NetBIOS connection

MQSeries for OS/2 Warp 160
MQSeries for Windows NT 181
OS/2 123
Windows NT 123

NetBIOS products, in example
configurations 98

network-connection priority 90

network infrastructure, example
configurations 98

network planner 31
networking 41
networking considerations 52
NetworkPriority field 578
networks 29
node centric 36
nonpersistent message speed 90
NonPersistentMsgSpeed field 573

O
objects

creating
default 108
Digital OpenVMS 108
OS/2 108
OS/400 426
Tandem NSK 108
UNIX systems 108
Windows NT 108

defining 384
OS/390 342

security 120, 447
operator commands

OS/400 424
options

alter 370
change 436
copy 367, 436
create 368, 435
display 437
display settings 365
display status 364, 437
end 438
exit 366, 373
find 370
ping 366, 437
reset 362, 439
resolve 116, 363

OS/400 439
resync 361
save 373
start 357, 437
stop

OS/390 using CICS 359
OS/390 connections

connecting systems 381
LU 6.2 381

P
panel data, validation 71
panels

browsing a channel
OS/400 430

channel start
OS/400 437

creating a channel
OS/400 426

display
channel status 364
OS/400 437

display channel status 437
display settings

message channel list 365

panels (continued)
display status

message channel list 364
edit menu-bar options

message channel list 367
ending channel

OS/400 438
exit

message channel list 366
exit from 373
help menu-bar choice, message

channel list 372
OS/390 using CICS, message channel

list 354
OS/400

resolve 439
work with status 437

ping
message channel list 366
OS/400 437

receiver channel settings 377
reset

message channel list 362
OS/400 439

resolve
message channel list 363

resync
message channel list 361

selecting a channel
OS/400 430

starting channel
message channel list 357

stopping channel
message channel list 359

using, OS/390 322
view menu-bar choice

message channel list 371
work-with-channel choices

OS/400 434
Work with channel status

OS/400 432
parameters

AgentBuffer 547
AgentBufferLength 547
ChannelDefinition

MQ_CHANNEL_AUTO_DEF_EXIT
call 551

MQ_CHANNEL_EXIT call 546
ChannelExitParms

MQ_CHANNEL_AUTO_DEF_EXIT
call 551

MQ_CHANNEL_EXIT call 546
CompCode 553
DataLength 546
DestAddress 555
DestAddressLength 555
ExitBufferAddr 548
ExitBufferLength 548
ExitParms 555
Hconn 553
Reason 553
WaitDesc 553

parameters, receiving 59
PartnerName field 600
password 90
Password field 567
PAUSED channel state 62, 66

674 MQSeries Intercommunication

PDF (Portable Document Format) 662
ping 366, 437

Digital OpenVMS 113
OS/2 113
problem determination 611
Tandem NSK 113
UNIX systems 113
Windows NT 113

ping channel
OS/390 331

ping with LU 6.2 114, 437
planning

message channel planning example
OS/390 using CICS 387

planning form 623
port

in qm.ini file 637
MQSeries for AIX 203
MQSeries for Digital OpenVMS 278
MQSeries for HP-UX 225
MQSeries for OS/2 124
MQSeries for OS/390 327, 405
MQSeries for VSE/ESA 500
MQSeries for Windows NT 124
Tandem NSK 303

Portable Document Format (PDF) 662
PostScript format 662
preparation

getting started
Digital OpenVMS 108
OS/2 108
OS/400 426
Tandem NSK 108
UNIX systems 108
Windows NT 108

preparing channels 60
preparing MQSeries for AS/400 441
problem determination 611

channel refuses to run 613
channel startup negotiation

errors 613
channel switching 617
clients 617
connection switching 617
conversion failure 615
data structures 616
dead-letter queue 612
error messages 611
retrying the link 615
scenarios 611
transmission queue overflow 612
triggered channels 614
undelivered-message queue 612
user-exit programs 616
using the PING command 611
validation checks 612

process definition
example

Digital OpenVMS 309
OS/2 309
OS/390 348
OS/400 481
Tandem NSK 309
UNIX systems 309
Windows NT 309

process definition example
Digital OpenVMS 307

process definition example (continued)
OS/2 307
OS/390 347
OS/400 479
Tandem NSK 307
UNIX systems 307
Windows NT 307

process definition for triggering
Digital OpenVMS 117
OS/2 117
OS/390 343
OS/390 using CICS 358, 384
OS/400 443
Tandem NSK 117
UNIX systems 117
Windows NT 117

process security 91
processing problems 71
profile name, CICS 81
programs

AMQCRCTA 445
AMQCRS6A 119
AMQCRSTA 119, 445
AMQRMCLA 445
RUNMQCHI 119
RUNMQCHL 119
RUNMQLSR 119

publications
MQSeries 659
related 662

pull-down menus
channel 373
edit 367
help (channel definition panels) 373
help (message channel list panel) 372
selected 357
view 371

PUT authority 90
PUTAUT attribute 90
PutAuthority field 565
putting messages 37

on remote queues 37
to distribution lists 46

Q
qm.ini 74

stanzas used for distributed
queuing 637

QMgrName field 561
QMINI 74
QMINI file

stanzas used for distributed
queuing 637

QMNAME attribute 91
queue

destination 42
reply-to 47

queue manager
alias 25, 36

receiving 40
interconnection procedure

example 387
multiple 124
name 91

alias 42
types 3

queue manager alias 25, 36
introduction 26
receiving 40

queue name
resolution 633

how it works 636
what is it? 635

translations 53
queues

create a transmission queue 117, 441
defining 384

OS/390 342
quiescing channels 67

R
RCVDATA attribute 92
RCVEXIT attribute 91
Reason parameter 553
receive exit 12

name 91
program 512
user data 92

ReceiveExit field 564
ReceiveExitPtr field 577
ReceiveExitsDefined field 575
receiver

channel 7
channel definition example

Digital OpenVMS 308
OS/2 308
OS/390 347
OS/400 480
Tandem NSK 308
UNIX systems 308
Windows NT 308

channel panel
details 377

panel settings
OS/390 using CICS 377

receiver channel definition
example

Digital OpenVMS 309
OS/2 309
OS/390 348
OS/400 481
Tandem NSK 309
UNIX systems 309
Windows NT 309

overview 5
ReceiveUserData field 566
ReceiveUserDataPtr field 577
receiving

messages 40, 58
on DECnet Phase IV 286
on LU 6.2

OS/2 127
OS/390 342
Tandem NSK 291
UNIX systems 195
Windows NT 127

on SPX
OS/2 132, 162
Windows NT 132, 183

on TCP
Digital OpenVMS 278
OS/2 124
OS/390 340

Index 675

receiving (continued)
OS/400 450
Tandem NSK 304
UNIX systems 192
Windows NT 124

receiving messages 40, 58
receiving on DECnet Phase IV 286
receiving on LU 6.2

OS/2 127
OS/390 342
Tandem NSK 291
UNIX systems 195
Windows NT 127

receiving on SPX
OS/2 132, 162
Windows NT 132, 183

receiving on TCP
Digital OpenVMS 278
OS/2 124
OS/390 340
OS/400 450
Tandem NSK 304
UNIX systems 192
Windows NT 124

reference-message header
message exit program 515

registry 73, 74, 126, 129, 135, 182, 524
remote queue definition 36

example
Digital OpenVMS 307
OS/2 307
OS/390 346
OS/400 478
Tandem NSK 307
UNIX systems 307
Windows NT 307

introduction 15, 25
what it is 14

remote queue manager 3
RemotePassword field 569
RemoteSecurityId field 579
RemoteUserIdentifier field 569
renaming a channel

Digital OpenVMS 111
OS/2 111
OS/390 using CICS 357
OS/400 432
Tandem NSK 111
UNIX systems 111
Windows NT 111

reply-to alias 36
reply-to queue 47

alias definition 28
alias example 48
aliases 25
preparing for 29
specifying 28

reply-to queue definition
example

Digital OpenVMS 308
OS/2 308
OS/390 347
OS/400 480
Tandem NSK 308
UNIX systems 308
Windows NT 308

requester channel 7

requester channel settings panel,
details 379

REQUESTING channel state 62
Reserved field 606
Reserved1 field 609
Reserved2 field 609
Reserved3 field 610
reset 116, 362, 439
RESET CHANNEL command 614
reset channel sequence numbers,

OS/390 332
resolve 363
RESOLVE CHANNEL command 613
resolve in-doubt message on channel,

OS/390 333
resolve in-doubt messages 116

OS/400 439
resolve option 116

OS/400 439
responder

LU6.2 78, 114, 291
MCA 9

responder MCA 9
responder process 78, 114, 291
restarting

channels 61
restarting stopped channels 69
resync 361
RETRY channel state 62, 65
retry considerations 615
RetryCount field 607
retrying the link, problem

determination 615
return routing 53
return to sender 72
reusing exit programs 533
routing entry

add 456
class 457

routing entry class 457
routing messages 39
run channel 110, 429
run channel initiator 118
runmqchi command

AIX, OS/2, HP-UX, Sun Solaris, and
Windows NT 118

RUNMQCHI command 119
RUNMQCHL command 119
RUNMQLSR command 119

S
save option 373
scenarios, problem determination 611
SCF configuration file, example 292
SCYDATA attribute 93
SCYEXIT attribute 92
security

context 91
exit 12
exit name 92
exit program 507
exit program, overview 506
exit user data 93
levels for exit programs 121
message channel agent 91
objects

Digital OpenVMS 120

security (continued)
objects (continued)

MQSeries for AS/400 447
OS/2 120
Tandem NSK 120
UNIX systems 120
Windows NT 120

process 91
SecurityExit field 563
SecurityUserData field 565
segregating messages 15
selected menu-bar choice 357
selecting a channel 430

OS/390 using CICS 354
send

exit 12
exit name 93
exit program 512
message 57

send exit user data 93
SENDDATA attribute 93
sender channel 7
sender channel definition

example
Digital OpenVMS 308, 309
OS/2 308, 309
OS/390 347, 348
OS/400 479, 481
Tandem NSK 308, 309
UNIX systems 308, 309
Windows NT 308, 309

overview 5
sender channel settings

details 376
SENDEXIT attribute 93
SendExit field 564
SendExitPtr field 576
SendExitsDefined field 575
sending

messages 17, 58
on DECnet Phase IV 286
on SPX

OS/2 131
Windows NT 131

on TCP
Digital OpenVMS 278
OS/2 124
Windows NT 124

sending on TCP 191
SendUserData field 566
SendUserDataPtr field 576
SeqNumberWrap field 564
sequence number wrap 93
sequence numbering 54
sequence numbers 59

reset, OS/390 332
sequential delivery 93
sequential retrieval of messages 55
SEQWRAP attribute 93
server

AT&T GIS SNA 246
channel 7
channel settings panel, detail 378

server-connection channel 7
service, class of 47
SessionId field 607

676 MQSeries Intercommunication

setting up
CICS communication for OS/390 381
communication

Digital OpenVMS systems 277
OS/2 123
OS/400 449
Tandem NSK 289
UNIX systems 191
Windows NT 123

sharing channels 14
short retry

count 93
interval 94

ShortConnectionName field 561
ShortRetryCount field 562
ShortRetryInterval field 562
SHORTRTY attribute 93
SHORTTMR attribute 94
side object

OS/400 452
SINIX and DC/OSx configuration

files 311
SNA 4

configuration, Digital OpenVMS 281
listener process, ending 284
products, in example

configurations 98
Server 127

SNAplus2 223
SNAX communications examples 292
SO_KEEPALIVE

Digital OpenVMS 279
OS/2 126
OS/400 450
UNIX systems 194, 279
Windows NT 126

softcopy books 662
source queue manager 3
splitting messages 59
SPX 4

connection
MQSeries for OS/2 Warp 160
MQSeries for Windows NT 182
OS/2 123

example configurations 98
KEEPALIVE, OS/2 132, 162
products, in example

configurations 98
stanza of qm.ini file 637
Windows NT 123

stanza file 73
start

channel 61
Digital OpenVMS 110
OS/2 110
OS/390 330
Tandem NSK 110
UNIX systems 110
Windows NT 110

channel initiator, OS/390 327
channel listener, OS/390 329
DQM panels, OS/390 using

CICS 352
option 357, 437

STARTING channel state 62
startup dialog 506
state, channel 62

status
display channel 110
work with channel 432

status, channel 59
status panels 364, 437
stop

channel 67, 115, 359
channel, OS/390 334
channel, OS/390 using CICS 385
channel initiator, OS/390 328
channel listener, OS/390 329
controlled 439
immediate 439
option 359
quiesce 115, 361

stop channel initiator 118
stop force 116
stop immediate 360
STOPPED channel state 62, 65
stopped channels, restarting 69
STOPPING channel state 62
STRMQM command 109
StrucId field

MQCXP structure 591
MQTXP structure 605
MQXWD structure 609

StrucLength field 574
structures

MQCD 556
MQCXP 591
MQTXP 605
MQXWD 609

SunLink Version 9.1 261
switching channels 617
synchronization queue, OS/390 343
synchronizing channels 361, 506
syncpoint introduction 80
SYSTEM.CHANNEL.INITQ queue

Digital OpenVMS 305
OS/2 305
OS/390 321, 343
OS/400 477
UNIX systems 305
Windows NT 305

SYSTEM.CHANNEL.REPLY.INFO
queue 321, 343

SYSTEM.CHANNEL.SYNCQ 343
system extension 121, 448
system extensions

user-exit programs
Digital OpenVMS 121
MQSeries for AS/400 448
OS/2 121
Tandem NSK 121
UNIX systems 121
Windows NT 121

system identifier, target 94

T
target queue manager 3
target system identifier 94
TCP

channels, Tandem NSK 291
connection

listener backlog 125, 132, 193,
340, 450

MQSeries for AIX 209

TCP (continued)
connection (continued)

MQSeries for AS/400 469
MQSeries for AT&T GIS

UNIX 251
MQSeries for Digital

OpenVMS 277
MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX) 215
MQSeries for HP-UX 237
MQSeries for OS/2 Warp 158
MQSeries for OS/390 404
MQSeries for Sun Solaris 271
MQSeries for Tandem NSK 289
MQSeries for VSE/ESA 490
MQSeries for Windows NT 181

example configurations 98
listener backlog option 125, 132, 193,

340, 450
OpenEdition MVS sockets 344
products, in example

configurations 98
stanza of qm.ini file 637
stanza of QMINI file 637

TCP connection
setting up

OS/2 123
OS/390 339
UNIX systems 191
Windows NT 123

TCP/IP 4
TCP/IP communications example 303
TCP/IP KEEPALIVE 66

Digital OpenVMS 279
UNIX systems 279

TCP KEEPALIVE
OS/2 126
OS/400 450
UNIX systems 194
Windows NT 126

TCPware 280
terminology used in this book 645
test channel, OS/390 331
testing connections, lookback testing 56
time-out 84
TPNAME and TPPATH

OS/2 126
OS/400 451
UNIX systems 194
Windows NT 126

TPNAME attribute 86
TpName field 562
transaction

identifier, CICS 94
program name 86

transactions
CEDA 383
CKMC 352
CKSG 384

transmission header
alias

definition 26
message exit program 515
message-retry exit program 516
queue name 36

transmission protocol 95

Index 677

transmission queue
definition of 10
example definition

Digital OpenVMS 307
OS/2 307
OS/390 347
OS/400 479
Tandem NSK 307
UNIX systems 307
Windows NT 307

multiple message channels
Digital OpenVMS 120
MQSeries for AS/400 447
OS/2 120
OS/390 using CICS 384
Tandem NSK 120
UNIX systems 120
Windows NT 120

overflow 612
selecting 42
sharing 14

transmission queue definition
example

Digital OpenVMS 308
OS/2 308
OS/390 348
OS/400 481
Tandem NSK 308
UNIX systems 308
Windows NT 308

transmission queue name 94
transport-retry exit

introduction 12
transport-retry exit program 517
transport type 95

supported 4
TransportType field

MQCD structure 560
MQTXP structure 606

triggered channels, problem
determination 614

triggering
channels 20

Digital OpenVMS 117
MQSeries for AS/400 443
OS/2 117
OS/390 343
OS/390 using CICS 358
Tandem NSK 117
UNIX systems 117
Windows NT 117

MCAs
OS/390 using CICS 384

TRPTYPE attribute 95
trusted applications 12, 121
type, bind 121
types of channel 81

U
UCD products, in example

configurations 98
UDP

example configurations 98
UDP connection

MQSeries for AIX 209
setting up

UNIX systems 191

UDP transport-retry exit,
configuring 517

undeliverable message 71
user exit

data definition files 544
MQCXP structure 591
MQTXP structure 605
MQXWD structure 609

user-exit
programs 616

user-exit programs 505, 542
problem determination 616
security levels 121
system extension

Digital OpenVMS 121
OS/2 121
OS/400 448
Tandem NSK 121
UNIX systems 121
Windows NT 121

writing and compiling 518
user ID 95, 121
user identifier service 121
user-written MCAs 75
USERDATA parameter 358, 384, 443

OS/390 343
USERID attribute 95
UserIdentifier field 566

V
validation

checks 612
command 71
of user IDs 514
panel data 71

values supplied by MQSeries for
AS/400 435

values supplied by OS/390 using
CICS 369, 372

Version field
MQCD structure 558
MQCXP structure 592
MQTXP structure 605
MQXWD structure 609

view
activities

OS/390 using CICS 371
menu-bar choice 371

VSAM 351

W
WaitDesc parameter 553
WAITING channel state 62
wide-band links 31
Windows 3.1 client, channel-exit

programs 524
Windows 95 and Windows 98 client,

channel-exit programs 524
Windows Help 662
work-with-channel choices 434
work with channel status 432
work with status 437
worksheet

MQSeries for AIX configuration 197

worksheet (continued)
MQSeries for AS/400

configuration 459
MQSeries for AT&T GIS UNIX

configuration 243
MQSeries for HP-UX

configuration 219
MQSeries for OS/2 Warp

configuration 137
MQSeries for OS/390

configuration 396
MQSeries for Sun Solaris

configuration 257
MQSeries for Windows NT

configuration 170
writing your own message channel

agents 75
WRKCLS command 457
WRKSBSD command 455

X
XMITQ attribute 94
XmitQName field 561

678 MQSeries Intercommunication

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1993, 2000 679

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1872-03

Spine information:

IBM MQSeries® MQSeries Intercommunication

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Appearance of text in this book
	Terms used in this book

	Summary of changes
	Changes for this edition (SC33-1872-03)
	Changes for the previous edition (SC33-1872-02)
	Changes for the second edition (SC33-1872-01)

	Part 1. Introduction
	Chapter 1. Concepts of intercommunication
	What is intercommunication?
	How does distributed queuing work?
	What do we call the components?
	Components needed to send a message
	Components needed to return a message
	Cluster components

	Distributed queuing components
	Message channels
	Sender-receiver channels
	Server-receiver channel
	Cluster-sender channels
	Requester-server channel
	Requester-sender channel
	Cluster-receiver channels

	Message channel agents
	Transmission queues
	Channel initiators and listeners
	Channel-exit programs

	Dead-letter queues
	Remote queue definitions
	How to get to the remote queue manager
	Multi-hopping
	Sharing channels
	Using different channels
	Using clustering

	Chapter 2. Making your applications communicate
	How to send a message to another queue manager
	Defining the channels
	Defining the queues
	Sending the messages
	Starting the channel

	Triggering channels
	Safety of messages
	Fast, nonpersistent messages
	Undelivered messages

	Chapter 3. More about intercommunication
	Addressing information
	What are aliases?
	Queue name resolution

	Queue manager alias definitions
	Outbound messages - remapping the queue manager name
	Outbound messages - altering or specifying the transmissionqueue
	Inbound messages - determining the destination

	Reply-to queue alias definitions
	What is a reply-to queue alias definition?
	Reply-to queue name

	Networks
	Channel and transmission queue names
	Network planner

	Part 2. How intercommunication works
	Chapter 4. MQSeries distributed-messaging techniques
	Message flow control
	Queue names in transmission header
	How to create queue manager and reply-to aliases

	Putting messages on remote queues
	More about name resolution

	Choosing the transmission queue
	Receiving messages
	Receiving alias queue manager names

	Passing messages through your system
	Method 1: Using the incoming location name
	Method 2: Using an alias for the queue manager
	Method 3: Selecting a transmission queue
	Using these methods

	Separating message flows
	Concentrating messages to diverse locations
	Diverting message flows to another destination
	Sending messages to a distribution list
	Reply-to queue
	Reply-to queue alias example
	Definitions used in this example at QM1
	Definitions used in this example at QM2
	Put definition at QM1
	Put definition at QM2

	How the example works
	How the queue manager makes use of the reply-to queue alias
	Reply-to queue alias walk-through

	Networking considerations
	Return routing
	Managing queue name translations
	Message sequence numbering
	Sequential retrieval of messages
	Sequence of retrieval of fast, nonpersistent messages

	Loopback testing

	Chapter 5. DQM implementation
	Functions of DQM
	Message sending and receiving
	Channel parameters
	Channel status and sequence numbers

	Channel control function
	Preparing channels
	Auto-definition of channels
	Defining other objects
	Starting a channel (not MQSeries for Windows)
	Starting a channel on MQSeries for Windows

	Channel states
	Current and active
	Channel errors
	Checking that the other end of the channel is still available

	Stopping and quiescing channels (not MQSeries for Windows)
	Stopping and quiescing channels (MQSeries for Windows)
	Restarting stopped channels
	In-doubt channels
	Problem determination
	Command validation
	Processing problems
	Messages and codes

	What happens when a message cannot be delivered?
	Initialization and configuration files
	OS/390 without CICS
	OS/390 using CICS
	Windows NT
	OS/2, Digital OpenVMS, Tandem NSK, OS/400 and UNIXsystems
	MQSeries configuration file
	Queue manager configuration file

	VSE/ESA

	Data conversion
	Writing your own message channel agents

	Chapter 6. Channel attributes
	Channel attributes in alphabetical order
	Alter date (ALTDATE)
	Alter time (ALTTIME)
	Auto start (AUTOSTART)
	Batch interval (BATCHINT)
	Batch size (BATCHSZ)
	Channel name (CHANNEL)
	Channel type (CHLTYPE)
	CICS profile name
	Cluster (CLUSTER)
	Cluster namelist (CLUSNL)
	Connection name (CONNAME)
	Convert message (CONVERT)
	Description (DESCR)
	Disconnect interval (DISCINT)
	Heartbeat interval (HBINT)
	Long retry count (LONGRTY)
	Long retry interval (LONGTMR)
	LU 6.2 mode name (MODENAME)
	LU 6.2 transaction program name (TPNAME)
	Maximum message length (MAXMSGL)
	Maximum transmission size
	Message channel agent name (MCANAME)
	Message channel agent type (MCATYPE)
	Message channel agent user identifier (MCAUSER)
	Message exit name (MSGEXIT)
	Message exit user data (MSGDATA)
	Message-retry exit name (MREXIT)
	Message-retry exit user data (MRDATA)
	Message retry count (MRRTY)
	Message retry interval (MRTMR)
	Network-connection priority (NETPRTY)
	Nonpersistent message speed (NPMSPEED)
	Password (PASSWORD)
	PUT authority (PUTAUT)
	Queue manager name (QMNAME)
	Receive exit name (RCVEXIT)
	Receive exit user data (RCVDATA)
	Security exit name (SCYEXIT)
	Security exit user data (SCYDATA)
	Send exit name (SENDEXIT)
	Send exit user data (SENDDATA)
	Sequence number wrap (SEQWRAP)
	Sequential delivery
	Short retry count (SHORTRTY)
	Short retry interval (SHORTTMR)
	Target system identifier
	Transaction identifier
	Transmission queue name (XMITQ)
	Transport type (TRPTYPE)
	User ID (USERID)

	Chapter 7. Example configuration chapters in this book
	Network infrastructure
	Communications software
	How to use the communication examples
	IT responsibilities

	Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, DigitalOpenVMS, Tandem NSK, and UNIX systems
	Chapter 8. Monitoring and controlling channels on distributedplatforms
	The DQM channel control function
	Functions available
	Getting started with objects
	Creating objects
	Creating default objects
	How are default objects created?
	Changing the default objects

	Creating a channel
	Create channel example

	Displaying a channel
	Display channel examples

	Displaying channel status
	Display channel status examples

	Starting a channel
	Renaming a channel

	Channel attributes and channel types
	Channel functions
	Create
	Change
	Delete
	Display
	Display Status
	Ping
	Start
	Stop
	Reset
	Resolve

	Chapter 9. Preparing MQSeries for distributed platforms
	Transmission queues and triggering
	Creating a transmission queue
	Triggering channels
	Example definitions for triggering
	Examples for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, SunSolaris, and Windows NT
	Starting the channel initiator
	Stopping the channel initiator

	Channel programs
	Other things to consider
	Undelivered-message queue
	Queues in use
	Multiple message channels per transmission queue
	Security of MQSeries objects
	On UNIX systems, Digital OpenVMS, and Tandem NSK
	On Windows NT
	User IDs across systems
	User IDs on OS/2

	System extensions and user-exit programs
	Running channels and listeners as trusted applications

	What next?

	Chapter 10. Setting up communication for OS/2 andWindows NT
	Deciding on a connection
	Defining a TCP connection
	Sending end
	Receiving on TCP
	Using the TCP/IP listener
	Using the TCP listener backlog option
	Using the MQSeries listener
	Using the TCP/IP SO_KEEPALIVE option

	Defining an LU 6.2 connection
	Sending end for OS/2
	Sending end for Windows NT
	Receiving on LU 6.2
	Using the RUNMQLSR command
	Using Communications Manager/2 on OS/2
	Using Microsoft SNA Server on Windows NT

	Defining a NetBIOS connection
	Defining the MQSeries local NetBIOS name
	Establishing the queue manager NetBIOS session, command,and name limits
	Establishing the LAN adapter number
	Initiating the connection
	Target listener

	Defining an SPX connection
	Sending end
	Using the SPX KEEPALIVE option (OS/2 only)

	Receiving on SPX
	Using the TCP listener backlog option
	Using the MQSeries listener

	IPX/SPX parameters
	OS/2
	DOS and Windows 3.1 client
	Windows NT
	Windows 95 and Windows 98

	Chapter 11. Example configuration - IBM MQSeries for OS/2Warp
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing an LU 6.2 connection
	Defining local node characteristics
	Configuring a DLC
	Configuring the local node
	Adding a local LU
	Adding a transaction program definition
	Configuring a mode

	Connecting to a peer system
	Adding a peer connection
	Defining a partner LU

	Connecting to a host system
	Adding a host connection
	Defining a partner LU

	Verifying the configuration
	What next?

	Establishing a TCP connection
	What next?

	Establishing a NetBIOS connection
	Establishing an SPX connection
	IPX/SPX parameters
	IPX
	SPX

	SPX addressing
	Using the SPX KEEPALIVE option
	Receiving on SPX
	Using the MQSeries listener

	MQSeries for OS/2 Warp configuration
	Basic configuration
	Channel configuration
	MQSeries for OS/2 Warp sender-channel definitions using SNA
	MQSeries for OS/2 Warp receiver-channel definitions using SNA
	MQSeries for OS/2 Warp sender-channel definitions using TCP
	MQSeries for OS/2 Warp receiver-channel definitions usingTCP/IP
	MQSeries for OS/2 Warp sender-channel definitions usingNetBIOS
	MQSeries for OS/2 Warp receiver-channel definitions usingNetBIOS
	MQSeries for OS/2 Warp sender-channel definitions usingIPX/SPX
	MQSeries for OS/2 Warp receiver-channel definitions usingIPX/SPX

	Running channels as processes or threads

	Chapter 12. Example configuration - IBM MQSeries forWindows NT
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing an LU 6.2 connection
	Configuring the local node
	Adding a connection
	Adding a partner
	Adding a CPI-C entry
	Configuring an invokable TP
	What next?

	Establishing a TCP connection
	What next?

	Establishing a NetBIOS connection
	Establishing an SPX connection
	IPX/SPX parameters
	SPX addressing
	Receiving on SPX
	Using the MQSeries listener

	MQSeries for Windows NT configuration
	Default configuration
	Basic configuration
	Channel configuration
	MQSeries for Windows NT sender-channel definitions using SNA
	MQSeries for Windows NT receiver-channel definitions usingSNA
	MQSeries for Windows NT sender-channel definitions usingTCP/IP
	MQSeries for Windows NT receiver-channel definitions usingTCP
	MQSeries for Windows NT sender-channel definitions usingNetBIOS
	MQSeries for Windows NT receiver-channel definitions usingNetBIOS
	MQSeries for Windows NT sender-channel definitions using SPX
	MQSeries for Windows NT receiver-channel definitions usingSPX

	Automatic startup
	Running channels as processes or threads

	Chapter 13. Setting up communication in UNIX systems
	Deciding on a connection
	Defining a TCP connection
	Sending end
	Receiving on TCP
	Using the TCP/IP listener
	Using the TCP listener backlog option
	Using the MQSeries listener
	Using the TCP/IP SO_KEEPALIVE option

	Defining an LU 6.2 connection
	Sending end
	Receiving on LU 6.2

	Chapter 14. Example configuration - IBM MQSeries for AIX
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing a session using Communications Server for AIX V5
	Configuring your node
	Configuring connectivity to the network
	Defining a local LU
	Defining a transaction program

	Establishing a TCP connection
	What next?

	Establishing a UDP connection
	What next?

	MQSeries for AIX configuration
	Basic configuration
	Channel configuration
	MQSeries for AIX sender-channel definitions using SNA
	MQSeries for AIX receiver-channel definitions using SNA
	MQSeries for AIX TPN setup
	MQSeries for AIX sender-channel definitions using TCP
	MQSeries for AIX receiver-channel definitions using TCP
	MQSeries for AIX sender-channel definitions using UDP
	MQSeries for AIX receiver-channel definitions using UDP

	Chapter 15. Example configuration - IBM MQSeries forDIGITAL UNIX (Compaq Tru64 UNIX)
	Establishing a TCP connection
	What next?

	MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX) configuration
	Basic configuration
	Channel configuration
	MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)sender-channel definitions using TCP/IP
	MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)receiver-channel definitions using TCP/IP

	Chapter 16. Example configuration - IBM MQSeries for HP-UX
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing a session using HP SNAplus2
	SNAplus2 configuration
	Defining a local node
	Adding a Token Ring Port
	Defining a local LU

	APPC configuration
	Defining a remote node
	Defining a partner LU
	Defining a link station
	Defining a mode
	Adding CPI-C information
	Adding a TP definition using HP SNAplus2 Release 5
	Adding a TP definition using HP SNAplus2 Release 6

	HP-UX operation
	What next?

	Establishing a TCP connection
	What next?

	MQSeries for HP-UX configuration
	Basic configuration
	Channel configuration
	MQSeries for HP-UX sender-channel definitions using SNA
	MQSeries for HP-UX receiver-channel definitions using SNA
	MQSeries for HP-UX invokable TP setup
	MQSeries for HP-UX sender-channel definitions using TCP
	MQSeries for HP-UX receiver-channel definitions using TCP/IP

	Chapter 17. Example configuration - IBM MQSeries for AT&TGIS UNIX Version 2.2
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing a connection using AT&T GIS SNA Server
	Defining local node characteristics
	Configuring the SNA subsystem
	Defining a mode
	Defining a local Transaction Program

	Connecting to a partner node
	Configuring a remote node
	Defining a partner LU
	Adding a CPI-C Side Entry

	What next?

	Establishing a TCP connection
	What next?

	MQSeries for AT&T GIS UNIX configuration
	Basic configuration
	Channel configuration
	MQSeries for AT&T GIS UNIX sender-channel definitions usingSNA
	MQSeries for AT&T GIS UNIX receiver-channel definitions usingSNA
	MQSeries for AT&T GIS UNIX sender-channel definitions usingTCP
	MQSeries for AT&T GIS UNIX receiver-channel definitions usingTCP/IP

	Chapter 18. Example configuration - IBM MQSeries for SunSolaris
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing a connection using SunLink Version 9.1
	SunLink 9.1 base configuration
	Configuring a PU 2.1 server
	Adding a LAN connection
	Configuring a connection to a remote PU
	Configuring an independent LU
	Configuring a partner LU
	Configuring the session mode
	Configuring a transaction program
	Invokable TP path

	CPI-C side information
	What next?

	Establishing a TCP connection
	What next?

	MQSeries for Sun Solaris configuration
	Basic configuration
	Channel configuration
	MQSeries for Sun Solaris sender-channel definitions using SNA
	MQSeries for Sun Solaris receiver-channel definitions using SNA
	MQSeries for Sun Solaris sender-channel definitions using TCP
	MQSeries for Sun Solaris receiver-channel definitions usingTCP/IP

	Chapter 19. Setting up communication in Digital OpenVMSsystems
	Deciding on a connection
	Defining a TCP connection
	Sending end
	Receiving channels using Compaq (DIGITAL) TCP/IP services(UCX) for OpenVMS
	Using the TCP/IP SO_KEEPALIVE option

	Receiving channels using Cisco MultiNet for OpenVMS
	Receiving channels using Attachmate PathWay for OpenVMS
	Receiving channels using Process Software CorporationTCPware

	Defining an LU 6.2 connection
	SNA configuration
	Defining access names

	Specifying SNA configuration parameters to MQSeries
	Passing parameters to sender and requester channel pairs
	Running senders and requesters
	Passing parameters to servers and receivers
	Running servers and receivers
	Ending the SNA Listener process

	Sample MQSeries configuration
	Problem solving

	Defining a DECnet Phase IV connection
	Sending end
	Receiving on DECnet Phase IV

	Defining a DECnet Phase V connection

	Chapter 20. Setting up communication in Tandem NSK
	Deciding on a connection
	SNA channels
	LU 6.2 responder processes

	TCP channels
	Communications examples
	SNAX communications example
	SCF SNA line configuration file
	SYSGEN parameters
	SNAX/APC process configuration
	Channel definitions

	ICE communications example
	Configuring the ICE process
	Defining the line and APC information
	Channel definitions for ICE

	TCP/IP communications example
	TCPConfig stanza in QMINI
	Defining a TCP sender channel
	Defining a TCP receiver channel
	Defining a TCP/IP sender channel on the remote system

	Chapter 21. Message channel planning example fordistributed platforms
	What the example shows
	Queue manager QM1 example
	Queue manager QM2 example

	Running the example
	Expanding this example

	Chapter 22. Example SINIX and DC/OSx configuration files
	Configuration file on bight
	Configuration file on forties
	Working configuration files for Pyramid DC/OSx
	Output of dbd command

	Part 4. DQM in MQSeries for OS/390
	Chapter 23. Monitoring and controlling channels on OS/390
	The DQM channel control function
	Using the panels and the commands
	Using the initial panel

	Managing your channels
	Defining a channel
	Altering a channel definition
	Displaying a channel definition
	Displaying information about DQM
	Deleting a channel definition
	Starting a channel initiator
	Stopping a channel initiator
	Starting a channel listener
	Stopping a channel listener
	Starting a channel
	Testing a channel
	Resetting message sequence numbers for a channel
	Resolving in-doubt messages on a channel
	Stopping a channel
	Displaying channel status
	Displaying cluster channels

	Chapter 24. Preparing MQSeries for OS/390
	Setting up communication
	TCP setup
	Connecting to TCP
	Receiving on TCP
	Using the TCP listener backlog option

	APPC/MVS setup
	Connecting to APPC/MVS (LU 6.2)
	Receiving on LU 6.2

	Defining DQM requirements to MQSeries
	Defining MQSeries objects
	Synchronization queue
	Channel command queues

	Channel operation considerations
	OS/390 Automatic Restart Management (ARM)

	Chapter 25. Message channel planning example for OS/390
	What the example shows
	Queue manager QM1 example
	Remote queue definition
	Transmission queue definition
	Process definition
	Sender channel definition
	Receiver channel definition
	Reply-to queue definition

	Queue manager QM2 example
	Local queue definition
	Transmission queue definition
	Process definition
	Sender channel definition
	Receiver channel definition

	Running the example
	Expanding this example

	Chapter 26. Monitoring and controlling channels in OS/390with CICS
	The DQM channel control function
	CICS regions
	Starting DQM panels

	The Message Channel List panel
	Keyboard functions
	Function keys
	Enter key
	Clear key
	Unassigned keys and unavailable choices

	Selecting a channel
	Working with channels
	Creating a channel
	Altering a channel
	Browsing a channel
	Renaming a channel
	Selected menu-bar choice
	Start
	Stop
	Resync
	Reset
	Resolve
	Display status
	Display settings
	Ping
	Exit

	Edit menu-bar choice
	Copy
	Create
	Alter
	Delete
	Find

	View menu-bar choice
	Help menu-bar choice

	The channel definition panels
	Channel menu-bar choice
	Saving changes
	Exit from the panel

	Help menu-bar choice

	Channel settings panel fields
	Details of sender channel settings panel
	Details of receiver channel settings panel
	Details of server channel settings panel
	Details of requester channel settings panel

	Chapter 27. Preparing MQSeries for OS/390 when using CICS
	Setting up CICS communication for MQSeries for OS/390
	Connecting CICS systems
	Communication between queue managers
	Intersystem communication

	Defining an LU 6.2 connection
	Installing the connection
	Communications between CICS systems attached to onequeue manager
	Connection names for function shipping

	Defining DQM requirements to MQSeries
	Defining MQSeries objects
	Multiple message channels per transmission queue

	Channel operation considerations

	Chapter 28. Message channel planning example for OS/390using CICS
	Chapter 29. Example configuration - IBM MQSeries for OS/390
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing an LU 6.2 connection
	Defining yourself to the network
	Defining a connection to a partner
	What next?

	Establishing an LU 6.2 connection using CICS
	Defining a connection
	Defining the sessions
	Installing the new group definition
	What next?

	Establishing a TCP connection
	What next?

	MQSeries for OS/390 configuration
	Channel configuration
	MQSeries for OS/390 sender-channel definitions using non-CICSLU 6.2
	MQSeries for OS/390 receiver-channel definitions usingnon-CICS LU 6.2
	MQSeries for OS/390 sender-channel definitions using TCP
	MQSeries for OS/390 receiver-channel definitions using TCP
	MQSeries for OS/390 sender-channel definitions using CICS
	MQSeries for OS/390 receiver-channel definitions using CICS

	Defining a local queue
	Defining a remote queue
	Defining a sender channel when not using CICS
	Defining a receiver channel when not using CICS
	Defining a sender channel using CICS
	Defining a receiver channel using CICS

	Part 5. DQM in MQSeries for AS/400
	Chapter 30. Monitoring and controlling channels in MQSeriesfor AS/400
	The DQM channel control function
	Operator commands
	Getting started
	Creating objects
	Creating a channel
	Starting a channel
	Selecting a channel
	Browsing a channel
	Renaming a channel
	Work with channel status
	Work-with-channel choices
	Panel choices
	F6=Create
	2=Change
	3=Copy
	4=Delete
	5=Display
	8=Work with Status
	13=Ping
	Ping with LU 6.2

	14=Start
	15=End
	Stop immediate
	Stop controlled

	16=Reset
	17=Resolve

	Chapter 31. Preparing MQSeries for AS/400
	Creating a transmission queue
	Triggering channels
	Channel programs
	Channel states on OS/400
	Other things to consider
	Undelivered-message queue
	Queues in use
	Maximum number of channels
	Multiple message channels per transmission queue
	Security of MQSeries for AS/400 objects
	System extensions and user-exit programs

	Chapter 32. Setting up communication for MQSeries forAS/400
	Deciding on a connection
	Defining a TCP connection
	Receiving on TCP
	Using the TCP SO_KEEPALIVE option
	Using the TCP listener backlog option

	Defining an LU 6.2 connection
	Initiating end (Sending)
	Initiated end (Receiver)
	Note on Work Management

	Chapter 33. Example configuration - IBM MQSeries for AS/400
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms
	How to find network attributes
	How to find the value of Resource name

	Establishing an LU 6.2 connection
	Local node configuration
	Creating a line description
	Adding a routing entry

	Connection to partner node
	Creating a controller description
	Creating a device description
	Creating CPI-C side information
	Adding a communications entry for APPC
	Adding a configuration list entry

	What next?

	Establishing a TCP connection
	Adding a TCP/IP interface
	Adding a TCP/IP loopback interface
	Adding a default route
	What next?

	MQSeries for AS/400 configuration
	Basic configuration
	Channel configuration
	MQSeries for AS/400 sender-channel definitions using SNA
	MQSeries for AS/400 receiver-channel definitions using SNA
	MQSeries for AS/400 sender-channel definitions using TCP
	MQSeries for AS/400 receiver-channel definitions using TCP

	Defining a queue
	Defining a channel

	Chapter 34. Message channel planning example for OS/400
	What the example shows
	Queue manager QM1 example
	Queue manager QM2 example

	Running the example
	Expanding this example

	Part 6. DQM in MQSeries for VSE/ESA
	Chapter 35. Example configuration - MQSeries for VSE/ESA
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing an LU 6.2 connection
	Defining a connection
	Defining a session
	Installing the new group definition
	What next?

	Establishing a TCP connection
	MQSeries for VSE/ESA configuration
	Configuring channels
	MQSeries for VSE/ESA sender-channel definitions
	MQSeries for VSE/ESA receiver-channel definitions

	Defining a local queue
	Defining a remote queue
	Defining a SNA LU 6.2 sender channel
	Defining a SNA LU6.2 receiver channel
	Defining a TCP/IP sender channel
	Defining a TCP receiver channel

	Part 7. Further intercommunication considerations
	Chapter 36. Channel-exit programs
	What are channel-exit programs?
	Processing overview
	Channel security exit programs
	Channel send and receive exit programs
	Channel message exit programs
	Channel message retry exit program
	Channel auto-definition exit program
	Transport-retry exit program

	Writing and compiling channel-exit programs
	MQSeries for OS/390 without CICS
	MQSeries for OS/390 using CICS
	MQSeries for AS/400
	MQSeries for OS/2 Warp
	Windows 3.1 client
	MQSeries for Windows NT server, MQSeries client forWindows NT, and MQSeries client for Windows 95 andWindows 98
	MQSeries for Windows
	MQSeries for AIX
	MQSeries for Compaq (DIGITAL) OpenVMS
	MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)
	MQSeries for HP-UX
	MQSeries for AT&T GIS UNIX
	MQSeries for Sun Solaris
	MQSeries for SINIX and DC/OSx
	MQSeries for Tandem NonStop Kernel
	Building and using channel exit functions

	Supplied channel-exit programs using DCE security services
	What do the DCE channel-exit programs do?
	How do the DCE channel-exit programs work?
	How to use the DCE channel-exit programs
	Setup for DCE
	The supplied exit code
	Using DCE channel exits with the runmqlsr listener program

	Chapter 37. Channel-exit calls and data structures
	Data definition files
	MQ_CHANNEL_EXIT - Channel exit
	Syntax
	Parameters
	Usage notes
	C invocation
	COBOL invocation
	PL/I invocation
	RPG invocation (ILE)
	RPG invocation (OPM)
	System/390® assembler invocation

	MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit
	Syntax
	Parameters
	Usage notes
	C invocation
	COBOL invocation
	RPG invocation (ILE)
	RPG invocation (OPM)
	System/390 assembler invocation

	MQXWAIT - Wait
	Syntax
	Parameters
	C invocation
	System/390 assembler invocation

	MQ_TRANSPORT_EXIT - Transport retry exit
	Syntax
	Parameters
	Usage notes
	C invocation

	MQCD - Channel data structure
	Fields
	C declaration
	COBOL declaration
	PL/I declaration
	ILE RPG declaration
	OPM RPG declaration
	System/390 assembler declaration

	MQCXP - Channel exit parameter structure
	Fields
	C declaration
	COBOL declaration
	PL/I declaration
	ILE RPG declaration
	OPM RPG declaration
	System/390 assembler declaration

	MQTXP - Transport-exit data structure
	Fields
	C declaration

	MQXWD - Exit wait descriptor structure
	Fields
	C declaration
	System/390 assembler declaration

	Chapter 38. Problem determination in DQM
	Error message from channel control
	Ping
	Dead-letter queue considerations
	Validation checks
	In-doubt relationship
	Channel startup negotiation errors
	When a channel refuses to run
	Triggered channels
	Conversion failure
	Network problems
	Dial-up problems

	Retrying the link
	Retry considerations

	Data structures
	User exit problems
	Disaster recovery
	Channel switching
	Connection switching
	Client problems
	Terminating clients

	Error logs
	Error logs for OS/2 and Windows NT
	Error logs on UNIX systems
	Error logs on DOS, Windows 3.1, and Windows 95 andWindows 98 clients
	Error logs on OS/390
	Error logs on MQSeries for Windows
	Error logs on MQSeries for VSE/ESA
	Error logs on MQSeries for Tandem NSK

	Part 8. Appendixes
	Appendix A. Channel planning form
	How to use the form

	Appendix B. Constants for channels and exits
	List of constants
	MQ_* (Lengths of character string and byte fields)
	MQCD_* (Channel definition structure length)
	MQCD_* (Channel definition structure version)
	MQCDC_* (Channel data conversion)
	MQCF_* (Channel capability flags)
	MQCHT_* (Channel type)
	MQCXP_* (Channel-exit parameter structure identifier)
	MQCXP_* (Channel-exit parameter structure version)
	MQMCAT_* (MCA type)
	MQNPMS_* (Nonpersistent message speed)
	MQPA_* (Put authority)
	MQSID_* (Security identifier)
	MQSIDT_* (Security identifier type)
	MQTXP_* (Transport retry exit structure identifier)
	MQTXP_* (Transport retry exit version)
	MQXCC_* (Exit response)
	MQXPT_* (Transmission protocol type)
	MQXR_* (Exit reason)
	MQXR2_* (Secondary exit response)
	MQXT_* (Exit identifier)
	MQXUA_* (Exit user area)
	MQXWD_* (Exit wait descriptor structure identifier)
	MQXWD_* (Exit wait descriptor version)

	Appendix C. Queue name resolution
	What is queue name resolution?
	How queue name resolution works

	Appendix D. Configuration file stanzas for distributed queuing
	Appendix E. Notices
	Programming interface information
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	BookManager format
	HTML format
	Portable Document Format (PDF)
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet
	Related publications
	Programming
	OS/390
	CICS
	OS/400
	Digital
	SNA
	SINIX

	Index
	Sending your comments to IBM

