<|lI!

MQSeries® for Compaq NonStop Kernel

System Administration

Version 5 Release 1

SC34-5886-00

<|lI!

MQSeries® for Compaq NonStop Kernel

System Administration

Version 5 Release 1

SC34-5886-00

Note!
Before using this information and the product it supports, be sure to read the general information under m

mﬁ—nn—pw “ .

First Edition (June 2001)

This edition applies to MQSeries for Compaq NSK, Version 5.1 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1993, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures.IiX
TablesXi

About thisbook Xxiii

Who this book is for xiii
What you need to know to understand thls book xiii
How to use this book. L Xxiid
Information about MQSeries on the Internet .. L xdil

What’s new in MQSeries for Compaq
NSKV51.Xv

Performance enhancementsXV
Upgraded MQSeries functionalityxv
Intercommunicationsxvi
Compaq NSK-specific ease- of—use xvid
Part 1. Guidance1
Chapter 1. Introduction .5
MQSeries and message queuing . .5
Time-independent applications .5
Message-driven processing .5
Messages and queues .5
What is a message? . . 6
What is a queue? . .7
Objects . .8
Object names . .8
Managing objects . . 8
MQSeries queue managers. .9
MQSeries queues . .9
Process definitions12
Channels13
Clusters13
Namelists13
System default objects.13
Administration . . . B
Local and remote admmlstratlon B
Clients and servers. . . B
MOQI applications in a chent—server environment 15
Extending queue manager facilites15
Userexits15
Installable services16
Security16
Object Authorlty Manager (OAM) fac111ty .. .16
Transactional support 16

Performance tuning, reliability, scalablhty and 51zmg 17

Chapter 2. MQSeries for Compaq NSK

V5.1 architecture19
Queue manager process overview19
Product packaging21
Executables21

© Copyright IBM Corp. 1993, 2001

Comparing Version 5.1 with Version 2.2.0.1

architecture . . .)
Queue manager — funct10nal view22
Queue manager process model23
MQSeries files and subvolumes.24

Chapter 3. Using the MQSeries
commandsets27
Performing administration using control commands 27

Using control commands27
Performing administration using MQSC commands 28
Running MQSC commands28
Performing administration using PCF commands. . 28
Attributes in MQSC and PCFs29
Escape PCFs L)
TS/MP (PATHWAY) admlnlstratlon .o .. 29
Specifying and controlling TCP/IP hsteners . .30
Controlling the command server30
Specifying and controlling channel 1n1t1ators . .30
Specifying and controlling trigger monitors. . . 31
Specifying the distribution of processes across
CPUs] |
Addition of new status server processes .. 032
Addition of new queue server processes. . . . 32
Specifying the refresh frequency of MQM
monitor panels33

PATHWAY configuration for a queue manager .33
Changing the parameters of PATHWAY server

classes 039
Adding user—defmed server classes to an
MQSeries PATHWAY40

Chapter 4. Managing queue managers 41

Getting started R |

Guidelines for creating a queue manager 3 |
Backing up configuration files after creating a
queue manager T

Modifying queue manager propertres .
Home volume of the queue manager.44
Number of EC processes per queue manager . . 44
Home terminal of the queue manager45
The PATHMON process name for the queue
manager45
The CCSID of the queue manager R)
Controlling EBCDIC data conversion.46
The EMS Collector for the queue manager . . . 47
The pool of agents kept ready by each EC in the
queue manager 47
Maximum idle agents and process reuse. . . .48
Process priority of queue manager processes . . 48
Maximum number of channels for the queue
manager48
Maximum number of actlve channels for the
queue manager04
Guardian segment IDs used by MQSerles .o 49

iii

Default TCP/IP port . 49
TCP/IP ports listened on by the queue manager 49
TCP/IP process used by the queue manager . 50
Reconfiguring the MQS-TCPLISnn server class
for a nondefault TCP/IP process and port . . 50
Swap space allocation 51
Default status server name . . 51
Adding and removing nondefault status servers 52
Default queue server name54
Adding and removing nondefault queue servers . .55
Volume structure . . . 56
Queue manager FFST subvolume . . 56
Queue manager data files subvolume. . 56
Queue manager error log subvolume . . 57
Queue manager message queue subvolume . 57
Queue manager channel synchronization
subvolume . . 58
Object name transformatron . 58
Working with queue managers . . 58
Creating a default queue manager . . 59
Creating MQSeries principals . . 60
Running cleanrdf for an RDF-enabled queue
manager .o . 60
Starting a queue manager . . 60
Restoring the default and system ob]ects . 61
Looking at object files . . . 61
Stopping a queue manager . . 61
If you have problems 61
Immediate and preemptive queue manager
shutdowns . . 61
Restarting a queue manager . . 62
Making an existing queue manager the default . 62
Deleting a queue manager . 63
Using the Message Queue Management (MQM)
facility 63
Usrng the Queue Manager Menu . . 64
Using the Queues menu . . 67
Using the Channels menu .72
Chapter 5. Administering local
MQSeries objects . . 83
Supporting application programs that use the MQI 83
Performing local administration tasks using MQSC
commands. . 84
Before you start . . 84
Using the MQSC facility 1nteract1vely . 85
Feedback from MQSCs . . 86
Ending interactive input to MQSC . 86
Displaying queue manager attributes . . 86
Using a queue manager that is not the default . 87
Altering queue manager attributes. . 87
Running MQSC commands from text files . . 87
Using MQSC command files. . 88
Using MQSC reports . . 89
Running the supplied MQSC command frle .90
Using runmgsc to verify commands . .90
Resolving problems with MQSC .91
Working with local queues .92
Defining a local queue. . .92
Changing the physical file size for queues . .93
Defining a dead-letter queue .93

iV MQSeries for Compaq NSK V5.1 System Administration

Displaying default object attributes .93
Copying a local queue definition . . 94
Changing local queue attributes . 94
Changing the volume of a local queue .95
Changing the options for a local queue . .95
Reassigning objects to status servers and queue
servers . . 96
Clearing a local queue . 96
Deleting a local queue. .97
Browsing queues .97
Working with alias queues . . 100
Defining an alias queue . . . 100
Using other commands with queue ahases . 101
Working with model queues . 102
Defining a model queue. . 102
Using other commands with model queues . 102
Managing objects for triggering . . 103
Defining an application queue for triggering . . 103
Defining an initiation queue . 104
Creating a process definition . . 104
Displaying your process definition . 105
Chapter 6. Automating administration
tasks . . 107
PCF commands. . 107
Attributes in MQSC and PCFs . 108
Escape PCFs. . . 108
Using the MQAI to srmphfy the use of PCFs 108
Managing the command server for remote
administration . o . 109
Starting the command server o109
Displaying the status of the command server 109
Stopping a command server . 109
Chapter 7. Administering remote
MQSeries objects. .11
Channels, clusters and remote queuing . 111
Remote administration using clusters 112
Administering a remote queue manager . 113
Preparing queue managers for remote
administration . . . 113
Preparing channels and transmlssmn queues for
remote administration .o . 114
Defining channels and transmlss1on queues . 115
Starting the channels 116
Issuing MQSC commands remotely 117
Recommendations for remote queuing . . 118
If you have problems using MQSC remotely . . 118
Creating a local definition of a remote queue . . 119
Understanding how local definitions of remote
queues work . . 119
An alternative way of putting messages on a
remote queue . .o . 120
Using other commands w1th remote queues . . 120
Creating a transmission queue. . 121
Default transmission queues . 121
Using remote queue definitions as aliases . . 122
Queue manager aliases . . 122
Reply-to queue aliases . 122
Data conversion . 122

When a queue manager cannot convert

messages in built-in formats123
FileCCSID 123
Conversion of messages in user-deflned formats 123
Changing the queue manager CCSID 124

Chapter 8. Protecting MQSeries

objects 125

Why you need to protect MQSerres resources . . 125

Understanding user IDs in the MQM user group 125
Getting additional information . . . 126

Understanding the Object Authorlty Manager

0AM) 126
How the OAM works e 127
Managing access through user groups 127
Protecting resources with the OAM 127
Using groups for authorizations 128

Disabling the Object Authority Manager (OAM) 129
Using the Object Authority Manager (OAM)

commands . . . oo 0129
What to specify when usmg the OAM
commands 130
Using the altmqusr command 130
Using the dspmqusr command 131
Using the setmqaut command. 131
Access authorizations.132
Display authority command . . .o 132
Object Authority Manager (OAM) guldehnes .. 133
User IDs 133
Queue manager Volumes R K X
Queues . . . P 1)
Alternate user authorrty o 133
Context authority P
Remote security con51derat10ns B K)
Channel command security. . . . 135
Understanding the authorization specrﬁcatron
tables . . . P & ()
MQI authorlzatlons O 16 1¢)
Administration authorizations. . . . 139
Authorizations for MQSC commands in escape
PCFs R)
Understanding authorlzatlon flles P 3
The principal database 141
The OAM Database141
Class authorization records. 143
All-class authorization record 143

Chapter 9. MQSeries dead-letter
queue handler 145

Invoking the DLQ handler 145
DLQ handler rules table. 146
Control data. 146
Rules (patterns and actlons) e 147
Pattern-matching keywords 148
Action keywords149
Rules table conventions . . . B 1
How the rules table is processed o . 152
Ensuring that all DLQ messages are processed 153
Example DLQ handler rules table 153

Chapter 10. Instrumentation and EMS
events157

MQSeries instrumentation events. 157
Types of event o157
Event notification through event queues .. . 158
Using triggered event queues 158
Enabling instrumentation events 158
Event messages. 159

Event Management Service (EMS) events ... 159
EMS template files supplied with MQSeries for
Compaq NSK 159
Integrating the MQSeries EMS event templates 160
Defining the PARAM MQEMSEVENTS. . . . 162
Using an alternative collector 163
Writing programs to process MQSeries EMS
events.1e3

Chapter 11. Understanding

transactional support and messaging . 165

Using the NonStop TM/MP (Transaction Manager) 165
Syncpointing limits 166
No-syncpoint operations on persrstent messages 166
Syncpoint operations on non-persistent

messages. 166
Configuration requlrements for TM / MP and
MQSeries for Compag NSK167
Monitoring167
Audit-trail size. . . S (4
Resource manager conﬁguratlon B Y4
Troubleshooting168

Chapter 12. Recovery and restart. . . 169

Fault tolerance and recovery o169
Backing up and restoring MQSerles N V(0]
Backing up MQSeries.170
Restoring MQSeries170
Recovery and restart of status servers and queue
servers 170
Disaster recovery usmg RDF B v |

Chapter 13. Configuration files. . . . 173

What are configuration files? . . . N VE
MQSeries configuration file (MQSINI) 173
What the MQSeries configuration file contains 173
Queue manager configuration file (QMINI) . . . 174
What the queue manager configuration file
contains 175
Example queue manager conflguratlon flle .o 177
Editing configuration files 182
Implementing changes to confrguratron frles .. 182
Recommendations for configuration files . . . 182

Chapter 14. Problem determination 183

Making a preliminary check 183
Has MQSeries run successfully prevrously7 . . 183
Are there any error messages?. 183
Are there any return codes explamlng the
problem?. . . R £
Can you reproduce the problem'? 184

Contents V

Have any changes been made since the last
successful run? .

Has the application run successfully before7 .

If the application has not run successfully
previously

Does the problem affect spec1f1c parts of the

network? .

Does the problem occur at spec1f1c t1mes of the

day?
Is the problem mtermrttent?
Have you applied any service updates7
Common programming errors.
Problems with commands .
What to do next .
Have you obtained 1ncorrect output7
Have you failed to receive a response from a
PCF command? .
Are some of your queues fa1hng? .
Does the problem affect only remote queues7

Is your application or MQSeries for Compaq

NSK running slowly?.
Application design considerations
Effect of message length.
Searching for a particular message .
Queues that contain messages of different
lengths .
Frequency of syncpomts
Use of the MQPUT1 call.
Incorrect output .
Messages that do not appear on the queue

Messages that contain unexpected or corrupted

information .
Problems with 1ncorrect output when usmg
distributed queues.
Error logs
Log files .
Early errors .
Operator messages
Example error log .
EMS events .
Dead-letter queues

Configuration files and problem determmat1on .

Using MQSeries trace
Trace file names
Sample trace data .

First Failure Support Technology " (FFST)
How to examine the FFSTs . .o

Chapter 15. Scalablllty and

performance.

Introduction . .
Designing new appl1cat1ons for performance
and scalability .

Designing to minimize or el1m1nate the use of

shared resources . .
Performance tuning is 1nherently 1terat1ve
Persistent messages
Non-persistent messages .
Non-persistent messages and channels
Queue servers and queue files.
Persistent message storage .

. 184
. 184

. 185

. 185

. 186
. 186
. 186
. 187
. 187
. 187
. 187

. 188
. 189

189

. 190
. 190
. 191
. 191

. 191
. 191
. 191
. 192
. 192

. 193

. 193
. 195
. 195
. 196
. 196
. 196
. 197
. 198
. 198
. 198
. 198
. 199
. 199
. 199

. 201
. 201

. 201

. 201
. 202
. 202
. 202
. 203
. 203
. 204

Vi MQSeries for Compaq NSK V5.1 System Administration

Non-persistent message storage . 204
Queue server CPU distribution - . 204
Re-assigning queues to queue servers using
altmgfls . . 204
Cluster transmit queue:
SYSTEM.CLUSTER. TRANSMIT.QUEUE . 204
Changing queue file placement using altmqfls 205
Partitioning queue files . . 205
Message overflow files . . . 206
Buffering messages during browsmg . 206
Other queue server options. . 206
CPU assignment . 208
FASTPATH binding appl1cat10n programs . 209
Backgroundo . 209
Reducing MQI overhead . 209
Enabling FASTPATH binding . .. 210
Restrictions when using FASTPATH bmdmg .. 210
Chapter 16. Data |ntegr|ty and
availability. . 21
Data integrity . 211
Availability . . 212
Persistent and non- pers1stent data . 213
Persistent messages . 213
Non-persistent messages . 215
Database consistency . .o . 215
Internal database consistency . . 215
External database consistency . . 216
OpenTMF . 216
NonStop Tuxedo .o . 217
Interleaved application transactlons . . 217
MQSeries’ critical database files . . 217
Critical processes . . 218
Clusters . . . 223
Configuration cons1derat10ns for avallablllty . 224
Configuration considerations for data integrity . . 224
Part 2. Reference. 225
Chapter 17. The MQSeries control
commands . 227
Control commands summary . . 227
Using names . . . 227
How to read syntax d1agrams . 228
altmgfls (Alter queue file attributes) . . . 230
altmqusr (Alter MQSeries user information) . . 234
cleanrdf (Perform RDF housekeeping) . . . 236
cnvclchl (Convert client channel definitions) . . 238
crtmqcvx (Data conversion). . 240
crtmgm (Create queue manager) . . 242
dltmgm (Delete queue manager) . . 246
dspmgqaut (Display authority) . . 248
dspmgcsv (Display command server) . 252
dspmgfls (Display MQSeries file attributes) . 253
dspmgqtrc (Display MQSeries formatted trace
output) . .. 257
dspmqusr (D1splay MQSerles user 1nformatlon) 258
endmgqcsv (End command server) . 260
endmgm (End queue manager) . 263
endmgqtrc (End MQSeries trace) . 266

instmgm (Install MQSeries for Compaq NSK) . 267
runmgqchi (Run channel initiator) . . 268
runmqchl (Run channel). . 269
runmqdlq (Run dead-letter queue handler) . 270
runmglsr (Run listener) . . . 271
runmgsc (Run MQSeries commands) . 273
runmgqtrm (Start trigger monitor). . 276
setmqaut (Set/reset authority). . 277
strmqesv (Start command server). . 284
strmqm (Start queue manager) . 285
strmgqtrc (Start MQSeries trace) . 286
upgmgm (Upgrade V2.2.0.1 queue manager) . 289
Part 3. Appendixes . . 291
Appendix A. MQSeries for Compaq
NSK at a glance . 293
Program and part number . . 293
Hardware requirements . . 293
Software requirements . 293
Security . . . 293
Maintenance functions . 294
Compatibility . 294
Supported compllers . 294
License management . . 295
Language selection . 295
Internationalization . 295
Appendix B. System defaults . 297
Appendix C. Setting TACL
environment variables for MQSeries
for Compaq NSK . . 299
Queue server tuning parameters . . 300
Appendix D. Comparing command
sets . 303
Appendix E. Stopping and removing
queue managers manually. . 307
Stopping a queue manager manually . 307
Removing queue managers manually . 307
Appendix F. MQSeries and Compaq
NonStop Server for Java . 309
Transactional considerations . 309
Appendix G. MQSC supported by
MQSeries for Compaq NSK . 311
Attributes of MQSC . .o . 313
Channel Status information (DISPLAY
CHSTATUS) . . . 313
MAXUMSGS and MAXHANDS . . 313
HARDENBO and NOHARDENBO . . 313
CONNAME 314
USERDATA for trlggered programs . . 314
Using exit names as attributes of objects . 314

Appendix H. Appllcatlon Programmlng

Reference. . . . - 2
Structure data types 315
MQCNO - Connect Optlons316
MQGMO - Get Message Options. 316
MQMD - Message Descriptor317
MQPMO - Put Message Optlons < 1 V4
MQI calls.318
MQCLOSE - Close Ob]ect e .. 2319
MQDISC - Disconnect queue manager .. 2319
MOQINQ - Inquire about object attributes . . . 319
MQOPEN - Open Object319
MQSET- Set Object Attributes. 319
Attributes of MQSeries objects. 320
Attributes for all queues. 320
Attributes of local and model queues 320
Attributes of queue managers. 320
Data conversion321

Appendix I. Building and running

applications 323
Writing applications 323
Using MQGET Wait Interval and Channel
DISCINT and HBINT.323
Unit of work (transaction) management ... 324
General design considerations. 325
XA interface. . . . 325
MQGMO_BROWSE_* w1th MQGMO LOCK 325
Triggered applications32
Supported languages and enV1r0nments 326
Considerations for creating applications with
threads 0327
Compiling and b1nd1ng apphcatlons 328
FASTPATH versus STANDARD bmdmgs .. .328
Running applications. 0329

Appendix J. MQSeries Administration

Interface (MQAI) 331

Appendix K. MQSeries for Compaq

NSK sample programs 333

Building C sample programs 334
Non-Native (using non-native static llbrary
MQMLIB) 334
Native (using native statrc hbrary MQMLIBN) 334
Native (using SRL MQSRLLIB)335

Building C++ sample programs . . . 335
Native (using native static library MQMLIBN) 335
Native (using SRL MQSRLLIB) 336

Building COBOL sample programs 336
Non-Native (using non-native static hbary
MQMLIB) 336
Native (using native statlc hbrary MQMLIBN) 337
Native (using SRL MQSRLLIB)337

Building TAL sample programs 338
Non-Native (using non-native static hbrary
MQMLIB) 338

Building sample programs on OSS (Natlve mode

only)33

Contents Vil

Appendix L. Userexits 341

Supported user exits341

Exit name format 342

MQ_LOAD_ENTRY_ POINT EXIT Loadmg User

Exits 342
MQLXP - MQ LOAD ENTRY POINT EXIT
parameter structure342

Installing user exits 346

Installing an exit in the MQSerles prlvate SRL 346
Installing an exit in the MQSeries native static

library. 347
Installing an ex1t in the MQSenes non- natlve
static library.347

Appendix M. Setting up
communications 351

SNA channels R o1 |
LU 6.2 responder processes R 1574
TCP/IP channels357
Communications examples 358
SNAX communications example 358
ICE communications example 363
TCP/IP communications example 367

Appendix N. MQSeries clients 369

Client support369
Security considerations 369

Appendix O. Programmable System

Management.31
Instrumentation events37
Event types supported by MQSerles for
Compaq NSK . . . R 4t
Event-message format . . . L. 372
Programmable command formats (PCFs) .. . 373
PCF message descriptor.373

viii MQSeries for Compaq NSK V5.1 System Administration

PCF header (MQCFH)374

PCF string parameter (MQCFST) 374
PCF integer list parameter (MQCFIL) 375
PCF integer MQCFIN)375
PCF string list MQCFSL) 375
PCF commands supported by MQSerles for
Compaq NSK 376
PCF command responses377
Installable services. 377
Authorization service 1nterface o377
Name service interface377

Appendix P. EMS event template used
by MQSeries for Compaq NSK 379

Appendix Q. Notices 383
Trademarks38

Bibliography. 387

MQSeries cross-platform publications 387
MQSeries platform-specific publications 387
Softcopy books.388
HTML format 388
Portable Document Format (PDF)388
BookManager® format38
PostScript format38
Windows Help format . . . 389
MQSeries information available on the Internet . 389
Related publications389

Glossary of terms and abbreviations 391
Index.401

Sending your comments to IBM . . . 411

Figures

—_

-

® NG

©

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

MQSeries for Compaq NSK processes. .
Components of MQSeries for Compaq NSK
V5.1 . . .
Example PATHWAY conflguratlon

The MQSeries for Compaq NSK MQM Mam
Menu . .
The Queue Manager Menu panel .

The Queue Manager Menu panel 2. .
The QUEUE MANAGER TRACE MENU
The Search Criteria panel (queue)

The Queue Menu

The Create Queue panel .

The Create Local Queue panel .

The Create Local Queue panel 2

The Create Remote Queue panel

The Copy Queue panel

The Display/Modify Local Queue panel
The Monitor Local Queues panel

The Search Criteria panel (channel)

The Channel Menu .

The Display/Modify Sender Channel panel (1)
The Display/Modify Sender Channel panel (2)

The Create Channel panel. .

The Create Sender Channel panel .

The Create Receiver Channel panel .
The Create Server Connection Channel panel
The Create Cluster Sender Channel panel
The Create Cluster Receiver Channel panel

© Copyright IBM Corp. 1993, 2001

.19

.23
. 33

. 64
. 65
. 65

66

. 67
. 68
. 68
. 69
. 70
. 70
.71

71

.72
.73

.73
74
75
.75

.76
. 76

77

78

27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.

39.

40.
41.
42.

43.

44.
45.
46.
47.
48.

The Monitor Channels panel .

The Channel Status panel .

The Start/Stop Channel panel

The Reset Channel panel .

The Resolve Channel panel

The Copy Channel panel . .

Queues, messages, and applications

Example output for QMGR ALL

Extract from the MQSC command file,
mymgscin .

Extract from the MQSC report f1le, mquscou
Remote administration

Setting up channels and queues for remote
administration .

Using groups with SAFEGUARD to provrde
authorization . S .o
Example control data .

Example rule

Example MQSeries conﬁguratlon flle
(MQSINI) . .o

Example queue manager confrguratron frle
(QMINI) .

Sample trace .

Sample First Failure Symptom Report
Sample MQLOADEXIT . .
Sample MQSeries SNAX setup file

Sample MQSeries SNA setup file for ICE

.78
.79
. 80
. 80
.81
. 82
. 83
. 86

. 89
90

. 114
. 115
. 129
. 147
. 148
. 174

. 177
. 199

200

. 345
. 354

356

ix

X MQSeries for Compaq NSK V5.1 System Administration

Tables

LN

*®

10.

11.

12.
13.
14.
15.
16.

17.

MQSeries executables .

List of possible ISO CCSIDs .

Security authorization needed for MQI calls
MQSC commands and security authorization
needed. .

PCF commands and securlty authorlzatlon
needed. . .
Queue Overflow compared w1th Message
Overflow . .

Critical audited database flles .

Protection methods used for critical processes
Security authorities from the dspmgqaut
command . .

Specifying authorlzatlons for dlfferent ob]ect
types

Examples of flles that can be deleted after an
upgrade .

System and default ob]ects for queues
System and default objects for channels
System and default objects for namelists
System and default objects for processes
Commands for queue manager
administration . . .o

Commands for command server
administration .

© Copyright IBM Corp. 1993, 2001

.21
. 47

137

. 139

. 140

. 214

. 218
219

. 249

. 280

. 289

297
297
298
298

. 303

. 303

18.
19.
20.
21.
22.
23.

24.

25.
26.

27.

28.
29.
30.
31.
32.
33.
34.
35.
36.

Commands for queue administration
Commands for process administration
Commands for channel administration
Other control commands.

Java language interface .

MQSC supported by MQSeries for Compaq
NSK . . .

Summary of supported languages and
environments

Using the correct version of the MQI hbrary
User exits supported for MQSeries for
Compaq NSK

Event types supported by MQSerles for
Compaq NSK .

MQMD structure of an event message
Event header structure (MQCFH) .

PCF message descriptor .

PCF header . .

PCF string parameter .

PCF integer list .

PCF integer .

PCF string list

PCF commands supported by MQSerles for
Compaq NSK . .o

304
304
305

. 305
. 309

. 311

. 326

328

. 341

. 371

372

. 373
. 373
. 374
. 374
. 375
. 375
. 375

. 376

xi

Xii MQSeries for Compaq NSK V5.1 System Administration

About this book

MQSeries for Compaq NonStop Kernel, Version 5 Release 1—referred to in this
book as MQSeries for Compaq NSK or MQSeries, as the context permits—is part of
the MQSeries family of products. These products provide application programming
services that enable application programs to communicate with each other using
message queues. This form of communication is referred to as commercial messaging.
The applications involved can exist on different nodes on a wide variety of
machine and operating system types. They use a common application
programming interface, called the Message Queuing Interface or MQI, so that
programs developed on one platform can readily be transferred to another.

This book describes the system administration aspects of MQSeries for Compaq
NSK, Version 5 Release 1, and the services it provides to support commercial
messaging in a Compaq NSK environment. This includes managing the queues
that applications use to receive their messages, and ensuring that applications have
access to the queues that they require.

Who this book is for

Primarily, this book is for system administrators, and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book

To use this book, you should have a good understanding of the Compaq NSK
operating system and associated utilities. You do not need to have worked with
message queuing products before, but you should have an understanding of the
basic concepts of message queuing.

How to use this book

The body of this book:
* Introduces MQSeries

* Describes day-to-day management of an MQSeries for Compaq NonStop Kernel
system, addressing topics such as administration of local and remote MQSeries
objects, security, transactional support, and problem determination

Information about MQSeries on the Internet

MQSeries URL
The URL of the MQSeries product family home page is:

http://www.ibm.com/software/mgseries/

© Copyright IBM Corp. 1993, 2001 xiii

MQSeries on the Internet

Xiv MQSeries for Compaq NSK V5.1 System Administration

What’s new in MQSeries for Compaq NSK V5.1

The following new function is described in this edition of the MQSeries for Compaq
NSK V5.1 System Administration Guide.

Performance enhancements

New queue server process
A new queue server process has been introduced (into the queue manager)
which provides message storage for one or more local queues and manages
all GET and PUT operations on those queues. It provides an efficient
implementation for non-persistent messaging and supports the new

messaging functions for Version 5.1. See I/Chapter 2 MQSeries for Compad
NSK V5 1 architecture” on page 19 for more information.

Changes in status server operation
The status server replaces the file-based approach to channel status. It
supports the status information of those objects that are not local queues
and prov1des efficient access to channel status information. See Ella.p.t_erl‘
z for more

information.

Non-persistent messages
You can now take advantage of the performance improvements offered by
non-persistent messages.

FASTPATH binding support for trusted applications
If your application is suitable, you can connect to a queue manager using
FASTPATH bindings to enjoy significant performance improvements.
FASTPATH applications are restricted in certain ways and must be well
behaved since this form of binding provides less protection for the critical

internal data of the queue manager. See Appendix I Building and running
bpplications” on page 323 for more information.

Improvements to disk storage for persistent messages
As part of the new queue server architecture, the storage of persistent
messages on disk has been modified to provide enhanced performance for
all sizes of message. No alternate key files are required for queue files and
a new type of disk storage for very large messages has been introduced
that maximizes the efficiency of storage for messages up to 100 MB in size.

Upgraded MQSeries functionality

MQSeries queue manager clusters
MQSeries queue managers can be connected to form a cluster of queue
managers. Within a cluster, queue managers can make the queues they
host available to every other queue manager. Any queue manager can send
a message to any other queue manager in the same cluster without the
need for explicit channel definitions, remote queue definitions, or
transmission queues for each destination. The main benefits of MQSeries
clusters are:
* Fewer system administration tasks
¢ Increased availability
¢ Workload balancing

© Copyright IBM Corp. 1993, 2001 Xv

See the MQSeries Queue Manager Clusters book for a complete description
of this function.

MQSeries Administration Interface (MQAI)
MQSeries for Compaq NSK V5.1 now supports the MQSeries
Administration Interface (MQAI), a programming interface that snnphﬁes
the use of PCF messages to configure MQSeries. For more ipfermatios
about the MQAI, including full command descriptions, see m

Enhanced MQI support
MQSeries for Compaq NSK V5.1 now supports advanced message
functionality provided in Version 5.0 and Version 5.1 MQSeries releases on
other platforms. This includes distribution list processing, reference
messages, segmented messages and many other new options. See the

NQSeric d and the DMQSeries Application

d for more 1nformat10n

Increased size of messages and message queues
A message can be up to 100 MB in size. A message queue can be up to 4
GB.

Automatic default object creation
When you use the crtmgm command to create a queue manager, the
system default objects are automatically created.

Controlled, synchronous shutdown of a queue manager
A new option has been added to the endmgm command to allow
controlled, synchronous shutdown of a queue manager.

Java™ support
MQSeries for Compaq NSK V5.1 now works w1th Java compllers, allowing
applications to be coded in Java. See [

”

for more information.

OSS application support
MQSeries for Compaq NSK V5.1 now works with NSK OSS applications
using C, C++, Cobol and Java.

Web administration
With MQSeries for Compaq NSK V5.1, you can perform the following
tasks using a Microsoft® Windows NT® system in association with an
HTML browser, for example, Netscape Navigator or Microsoft Internet
Explorer:
* Log on as an MQSeries Administrator
* Select a queue manager and issue MQSC commands against it
* Create, edit and delete MQSC scripts.

Improved user exit mechanism
The mechanism for binding and configuring user exit code for use with
MQSeries has been considerably improved to provide an interface closer to
the standard, and a common mechanism for all exits. See

User_ena.ts_nn_pa.ge_’-ﬂ for details.

Intercommunications

TCP/IP
MQSeries for Compaq NSK V5.1 now permits multiple Guardian TCP/IP
server processes to be used by one queue manager. This means better
configurations for load balancing across network hardware, and

XVi MQSeries for Compaq NSK V5.1 System Administration

redundancy in network connections for a queue manager and applications.

See [!Appendix M. Setting up communications” on page 351 for more

information.

SNA

MQSeries for Compaq NSK V5.1 has an improved mechanism for
managing and controlling remote initiation of channels for the SNA
transport protocol. This new mechanism uses a listener process that runs
under PATHWAY and is supported for both SNAX and InSession ICE
products. The non-standard channel attribute AUTOSTART is no longer

supported. See ’Appendix M_Setting up communications” on page 351 for

more information.

Channels
Channels now support heartbeats and the ability to transmit non-persistent
messages outside of a unit of work to provide better performance.

MQSeries for Compaq NSK V5.1 now supports the optional automatic
definition of channels for remotely initiated channels from other queue
managers or clients.

Compaq NSK-specific ease-of-use

Compaq NSK Fix Command included with runmqsc
runmgqsc now includes the Compaq NSK Fix Command facility to allow
you to recall and edit MQSC commands. For more information, see

Enhanced altmgfls utility
The utility altmqfls has been changed substantially to provide detailed

administrative management of the storage options for messages. See
I’Chapfpr 15 _Scalability and pprfm‘manmﬂ” on page 201 and depmqﬂ_sl

h)iqp]av MQSeries file attributes)” on page 253 for more details.

MQMC panels
The MQMC administration panels provided as part of the queue manager
PATHWAY environment have been upgraded to support the enhanced
MQSeries functionality in this release.

What's new in MQSeries for Compaq NSK V5.1 xvii

XViii MQSeries for Compaq NSK V5.1 System Administration

Part 1. Guidance

Chapter 1. Introduction
MQSeries and message queuing .
Time-independent applications
Message-driven processing
Messages and queues

What is a message? .

Message lengths .

What is a queue? . .
How do applications send and receive
messages? . .
Predefined and dynamlc queues
Retrieving messages from queues

Objects .

Object names .

Managing objects .

Object attributes .

MQSeries queue managers.
MOQI calls

MQSeries queues .

Using queue objects .
Local queues used by MQSerles
Process definitions .
Channels .
Clusters
Namelists . .
System default objects .
Administration .

Local and remote admlnlstratron
Clients and servers .

MOQI applications in a chent—server environment

Extending queue manager facilities

User exits .

Installable services .
Security

Object Authorlty Manager (OAM) fac111ty
Transactional support .

Performance tuning, reliability, scalabrhty and 5121ng

Chapter 2. MQSeries for Compaq NSK V5.1
architecture . .o

Queue manager process overview .

Product packaging .

Executables

Comparing Version 5. 1 w1th Versmn 2 2. 0 1
architecture . .o
Queue manager — functlonal view

Queue manager process model .

MQSeries files and subvolumes.

Chapter 3. Using the MQSeries command sets

Performing administration using control commands

Using control commands .

Performing administration using MQSC commands

Running MQSC commands . .
Using Compaq NSK Fix Command

Performing administration using PCF commands.

© Copyright IBM Corp. 1993, 2001

N ooy Gl OO gt O

O O 00 0 0 0 NI NI

15

. 16

17

.19
. 19
.21
.21

.22
.22
. 23
. 24

27
27

. 27

28

. 28
. 28
. 28

Attributes in MQSC and PCFs .
Escape PCFs . .
TS/MP (PATHWAY) adm1n1strat10n
Specifying and controlling TCP/IP hsteners
Controlling the command server .
Specifying and controlling channel 1n1t1ators
Changing the default initiation queue for the
channel initiator . S
Specifying and controlling trlgger monltors
Specifying the distribution of processes across
CPUs . o
Addition of new status server processes .
Addition of new queue server processes.
Specifying the refresh frequency of MOM
monitor panels
PATHWAY configuration for a queue manager
Changing the parameters of PATHWAY server
classes . .
Adding user—deflned server classes to an
MQSeries PATHWAY .

Chapter 4. Managing queue managers
Getting started o
Guidelines for creating a queue manager
Backing up configuration files after creating a
queue manager . . .
Modifying queue manager propertles
Home volume of the queue manager .
Number of EC processes per queue manager .
System load balancing .
Home terminal of the queue manager .
The PATHMON process name for the queue
manager S
The CCSID of the queue manager
Controlling EBCDIC data conversion .
The EMS Collector for the queue manager .
The pool of agents kept ready by each EC in the
queue manager . .
Maximum idle agents and process reuse.
Process priority of queue manager processes
Maximum number of channels for the queue
manager . .
Maximum number of actlve channels for the
queue manager . .
Guardian segment IDs used by MQSerles
Default TCP/IP port
TCP/IP ports listened on by the queue manager
TCP/IP process used by the queue manager
Reconfiguring the MQS-TCPLISnn server class
for a nondefault TCP/IP process and port .
Swap space allocation . . .
Default status server name . .
Adding and removing nondefault status servers
Default queue server name . . .
Adding and removing nondefault queue servers .
Volume structure

. 29
. 29
. 29
. 30
. 30
. 30

. 30
.31

. 31
.32
.32

. 33
. 33

. 39

. 40

.M
.41
.41

. 43
. 44
. 44
. 44
. 44
. 45

. 45
. 46
. 46
. 47

. 47
. 48
. 48

. 48
. 49

.49
. 49

49

. 50

. 50
.51
. 51

52

. 54
. 55
. 56

Queue manager FFST subvolume .
Queue manager data files subvolume.
Queue manager error log subvolume .
Queue manager message queue subvolume
Queue manager channel synchronization
subvolume .
Object name transformatlon
Working with queue managers .
Creating a default queue manager .
Creating MQSeries principals .
Running cleanrdf for an RDF-enabled queue
manager -
Starting a queue manager
Restoring the default and system ob]ects
Looking at object files .
Stopping a queue manager .
If you have problems . e
Immediate and preemptive queue manager
shutdowns .o
Restarting a queue manager .
Making an existing queue manager the default
Deleting a queue manager .
Using the Message Queue Management (MQM)
facility . . .o .
Using the Queue Manager Menu .
Altering queue manager attributes.
Tracing MQSeries objects .
Using the Queues menu .
Creating a queue
Copying a queue
Modifying a queue .
Deleting a queue
Monitoring a queue
Using the Channels menu
Modifying a channel .
Creating a channel definition
Monitoring a channel .
Deleting a channel .
Displaying channel status
Starting and stopping a channel

Resetting a Message Sequence Number (MSN)

Resolving a channel
Copying a channel .

Chapter 5. Administering local MQSeries objects
Supporting application programs that use the MQI
Performing local administration tasks using MQSC

commands.
Before you start .
MQSeries object names
Case sensitivity on MQSC commands
Using the MQSC facility 1nteract1ve1y
Feedback from MQSCs . .
Ending interactive input to MQSC
Displaying queue manager attributes .
Using a queue manager that is not the default
Altering queue manager attributes.
Running MQSC commands from text files .
Using MQSC command files.
Using MQSC reports
Running the supplied MQSC command frle

. 56
. 56
. 57
. 57

. 58
. 58
. 58
. 59
. 60

. 60
. 60
. 61
. 61
. 61
. 61

. 61
. 62
. 62
. 63

. 63
. 64
. 65
. 66
. 67
. 68
.70
.71
.72
.72
.72
. 74
.75
.78
.79
.79

.79
80

. 81
. 81

83
83

. 84
. 84
. 84
. 85
. 85
. 86
. 86
. 86
. 87
. 87
. 87
. 88
. 89
. 90

2 MQSeries for Compaq NSK V5.1 System Administration

Using runmgsc to verify commands .
Resolving problems with MQSC
Working with local queues
Defining a local queue. .
Changing the physical file size for queues .
Defining a dead-letter queue .o
Displaying default object attributes
Copying a local queue definition .
Changing local queue attributes
Changing the volume of a local queue
Changing the options for a local queue .

Reassigning objects to status servers and queue

servers .

Clearing a local queue

Deleting a local queue.

Browsing queues
Working with alias queues .

Defining an alias queue . .

Using other commands with queue ahases
Working with model queues

Defining a model queue.

Using other commands with model queues
Managing objects for triggering .
Defining an application queue for triggering .

Defining an initiation queue

Creating a process definition .

Displaying your process definition

Chapter 6. Automating administration tasks .
PCF commands.
Attributes in MQSC and PCFs
Escape PCFs. . .
Using the MQAI to srmphfy the use of PCFs
Managing the command server for remote
administration . .
Starting the command server . .
Displaying the status of the command server
Stopping a command server

Chapter 7. Administering remote MQSeries

objects .

Channels, clusters and remote queulng
Remote administration using clusters

Administering a remote queue manager
Preparing queue managers for remote
administration .

Preparing channels and transmlssmn queues for

remote administration Lo
Defining channels and transmlss1on queues
Starting the channels . .

Automatic definition of channels
Issuing MQSC commands remotely .

Working with queue managers on MVS/ ESA

Recommendations for remote queuing .
If you have problems using MQSC remotely .
Creating a local definition of a remote queue .
Understanding how local definitions of remote
queues work
Example .
How it works

. 90
.91
.92
.92
. 93
. 93
. 93
. 94
. 94
. 95
. 95

. 96
.97
.. 97
. 100
. 100
. 101
. 102
. 102
. 102
. 103
. 103
. 104
. 104
. 105

. 107
. 107
. 108
. 108

108

. 109
. 109

109

. 109

.1
111
112
. 113

. 113

. 114
. 115
. 116
. 117
. 117

118

. 118
. 118
. 119

. 119
. 119
. 119

An alternative way of putting messages on a
remote queue B
Using other commands w1th remote queues .
Creating a transmission queue.

Default transmission queues .
Using remote queue definitions as aliases .

Queue manager aliases .

Reply-to queue aliases
Data conversion .o .

When a queue manager cannot convert

messages in built-in formats

File CCSID . .

Default data conversion .

Conversion of messages in user—defrned formats

Changing the queue manager CCSID

Chapter 8. Protecting MQSeries objects
Why you need to protect MQSeries resources

Understanding user IDs in the MQM user group

Getting additional information
Understanding the Object Authorlty Manager
(OAM) . . .

How the OAM works -

Managing access through user groups .

When a user belongs to more than one user

group . .
Group sets and the prlmary group

Protecting resources with the OAM .

Using groups for authorizations .

Disabling the Object Authority Manager (OAM)

Using the Object Authority Manager (OAM)
commands . .
What to specify when usmg the OAM
commands .o Lo
Authorization lists.
Using the altmqusr command .
Using the dspmqusr command
Using the setmqaut command .

Authority commands and installable services

Access authorizations.
Display authority command
Object Authority Manager (OAM) guldehnes
User IDs . .
Queue manager Volumes
Queues .
Alternate user authorlty
Context authority .
Remote security con51deratrons
Channel command security.

PCF commands. . .

MQSC channel commands .
Understanding the authorization spec1f1cat10n
tables .

MQI authorlzatlons .
Administration authorizations .

Authorizations for MQSC commands in escape

PCFs . . .
Authorizations for PCF commands .
Understanding authorization files
The principal database
The OAM Database

. 120
. 120
. 121
. 121
. 122
. 122
. 122
. 122

. 123
. 123
. 123

123

. 124

. 125
. 125

125

. 126

. 126
. 127
. 127

. 127
. 127
. 127

. 128
129

. 129

. 130
. 130
. 130
. 131
. 131

132

. 132
. 132
. 133
. 133
. 133
. 133
. 133
. 134
. 135
. 135
. 135
. 135

. 136
. 136
. 139

. 139
. 140
. 141
. 141
. 141

Class authorization records.
All-class authorization record .

Chapter 9. MQSeries dead-letter queue handler

Invoking the DLQ handler .

DLQ handler rules table.
Control data.
Rules (patterns and actlons)
Pattern-matching keywords
Action keywords .

Rules table conventions .

How the rules table is processed .

Ensuring that all DLQ messages are processed

Example DLQ handler rules table

Chapter 10. Instrumentation and EMS events

MQSeries instrumentation events.
Types of event . . .
Event notification through event queues
Using triggered event queues .
Enabling instrumentation events .
Event messages. .
Event Management Service (EMS) events .

EMS template files supplied with MQSeries for

Compaq NSK

Integrating the MQSeries EMS event templates

Defining the PARAM MQEMSEVENTS.
Using an alternative collector .

Writing programs to process MQSeries EMS

events .

Chapter 11. Understanding transactional
support and messaging

Using the NonStop TM/MP (Transactlon Manager)

Syncpointing limits

No-syncpoint operations on pers1stent messages

Syncpoint operations on non-persistent
messages .
Configuration requlrements for TM / MP and
MQSeries for Compaq NSK
Monitoring .
Audit-trail size . .
Resource manager conf1gurat10n .
Troubleshooting

Chapter 12. Recovery and restart .

Fault tolerance and recovery

Backing up and restoring MQSerles
Backing up MQSeries. ..
Restoring MQSeries

Recovery and restart of status servers and queue

servers
Disaster recovery usmg RDF

Chapter 13. Configuration files .
What are configuration files? . .
MQSeries configuration file (MQSINI) .

What the MQSeries configuration file contains

Queue manager configuration file (QMINI)
What the queue manager configuration file
contains .

Part 1. Guidance

. 143
. 143

145

. 145
. 146
. 146
. 147
. 148
. 149
. 151
. 152

153

. 153

157

. 157
. 157
. 158
. 158
. 158
. 159
. 159

. 159

160

. 162
. 163

. 163

165
165

. 166

166

. 166

. 167
. 167
. 167
. 167
. 168

. 169
. 169
. 170
. 170
. 170

. 170
. 171

. 173
. 173
. 173

173

. 174

. 175

3

Example queue manager configuration file
Editing configuration files . . .

Implementing changes to conflguratlon flles .

Recommendations for configuration files .

Chapter 14. Problem determination
Making a preliminary check .
Has MQSeries run successfully prev10usly7
Are there any error messages?.
Are there any return codes explammg the
problem? .
Can you reproduce the problem7 .
Have any changes been made since the last
successful run? . .
Has the application run successfully before7 .
If the application has not run successfully
previously .
Does the problem affect spec1f1c parts of the
network? . .
Does the problem occur at spec1f1c tlmes of the
day?
Is the problem mtermlttent?
Have you applied any service updates’
Common programming errors.
Problems with commands .
What to do next .
Have you obtained mcorrect output7
Have you failed to receive a response from a
PCF command? .
Are some of your queues fa111r1g7
Does the problem affect only remote queues7
Is your application or MQSeries for Compaq
NSK running slowly?. .o
Application design considerations
Effect of message length.
Searching for a particular message
Queues that contain messages of different
lengths .
Frequency of syncpomts
Use of the MQPUTT1 call.
Incorrect output
Messages that do not appear on the queue
Messages that contain unexpected or Corrupted
information . .
Problems with 1r1correct output when usmg
distributed queues.
Error logs
Log files .
Early errors .
Operator messages .
Deciphering EC numbers in the MQERRLG
file . . B
Example error log .
EMS events .
Dead-letter queues .
Configuration files and problem determmatlon .
Using MQSeries trace
Trace file names
Sample trace data .
First Failure Support TechrlologyTM (FFST)
How to examine the FFSTs . .o

. 177
. 182
. 182
. 182

. 183
. 183
. 183
. 183

. 183
. 184

. 184
. 184

. 185

. 185

. 186
. 186
. 186
. 187
. 187
. 187
. 187

. 188
. 189

189

. 190
. 190
. 191
. 191

. 191
. 191
. 191
. 192
. 192

. 193

. 193
. 195
. 195
. 196
. 196

. 196
. 196
. 197
. 198
. 198
. 198
. 198
. 199
. 199
. 199

4 MQSeries for Compaq NSK V5.1 System Administration

Chapter 15. Scalability and performance
Introduction . .
Designing new apphcatlons for performance
and scalability .
Designing to minimize or ehmmate the use of
shared resources . .
Performance tuning is mherently 1terat1ve
Persistent messages
Non-persistent messages
Non-persistent messages and channels
Queue servers and queue files.
Persistent message storage .
Non-persistent message storage
Queue server CPU distribution ..
Re-assigning queues to queue servers using
altmqfls
Cluster transmit queue
SYSTEM.CLUSTER.TRANSMIT.QUEUE
Changing queue file placement using altmqfls
Partitioning queue files .
Message overflow files .
Buffering messages during browsmg
Other queue server options.
Load on Startup
Lock In Cache .
Checkpoint NPM .
Measure Counter .
CPU assignment
FASTPATH binding apphcatlon programs
Background
Reducing MQI overhead
Enabling FASTPATH binding .
Restrictions when using FASTPATH bmdmg

Chapter 16. Data |ntegr|ty and avallablhty
Data integrity
Availability .
Persistent and non-per51stent data
Persistent messages
Non-persistent messages
Database consistency . .
Internal database consistency .
External database consistency .
OpenTMF
NonStop Tuxedo .o
Interleaved application transactlons .
MQSeries’ critical database files .
Critical processes .
Clusters . .
Configuration con51derat10ns for avallablhty
Configuration considerations for data integrity .

. 201
. 201

. 201

. 201
. 202
. 202
. 202
. 203
. 203
. 204
. 204
. 204

. 204

. 204

205

. 205
. 206
. 206
. 206
. 206
. 207
. 207
. 207
. 208
. 209
. 209
. 209
. 210
. 210

. 211
. 211
. 212
. 213
. 213
. 215
. 215
. 215
. 216
. 216
. 217
. 217
. 217
. 218
. 223
. 224
. 224

Chapter 1. Introduction

This chapter introduces MQSeries for Compaq NonStop Kernel Version 5.1
(MQSeries for Compaq NSK V5.1) from an administrator’s perspective. It describes

the basic concepts of MQSeries and messaging. It contains these sections:
o MQSeries and message rlnmn'ng’

. B] g

o FSecurity” on page 14

4 . 7

% . . .1 .1 . . 7

MQSeries and message queuing

MQSeries allows application programs to use message queuing to participate in
message-driven processing. Application programs can communicate across
different platforms by using the appropriate message queuing software products.
For example, Compaq NSK and MVS/ESA™ applications can communicate
through MQSeries for Compaq NSK and MQSeries for OS/390® respectively. The
applications are shielded from the mechanics of the underlying communications.

MQSeries products implement a common application programming interface
known as the message queue interface (MQI) whatever platform the applications
are run on. This makes it easier for you to port applications from one platform to
another.

The MQI is described in detail in the MQSeries Application Programming Referencd

book.

Time-independent applications

With message queuing, the exchange of messages between the sending and
receiving programs is independent of time. This means that the sending and
receiving applications are decoupled so that the sender can continue processing
without having to wait for the receiver to acknowledge the receipt of the message.
In fact, the target application does not even have to be running when the message
is sent. It can retrieve the message after it has been started.

Message-driven processing

Upon arrival on a queue, messages can automatically start an application using a
mechanism known as friggering. If necessary, the applications can be stopped when
the message or messages have been processed.

Messages and queues

Messages and queues are the basic components of a message queuing system.

© Copyright IBM Corp. 1993, 2001 5

Messages and queues

What is a message?

A message is a string of bytes that is meaningful to the applications that use it.
Messages are used for transferring information from one application to another (or
to different parts of the same application). The applications can be running on the
same platform, or on different platforms.

MQSeries messages have two parts:

e application data
The content and structure of the application data is defined by the application
programs that use them.

* message descriptor

The message descriptor identifies the message and contains other control
information, such as the type of message and the priority assigned to the
message by the sending application.

The format of the message descriptor is defined by MQSerles For a complete

description of the message descriptor, see the
Refozencd guide

The format of the message descriptor is defined by MQSeries. For a complete

descrlgtlon of the message descriptor, see the MQSeries Application Programming

There are two types of messages: persistent messages and non-persistent messages.

They differ in the following ways:

* DPersistent messages survive the restarting of a queue manager. Non-persistent
messages do not survive the restarting of a queue manager.

* Non-persistent messages are not normally written to disk and therefore are
faster and use less resources to be added and removed from a queue than
persistent messages.

* Under some failure conditions, non-persistent messages are not as reliable as
persistent messages.

* Persistent messages cannot be put on a temporary dynamic queue.

Message lengths
In MQSeries, the maximum message length is 100 MB (where, 1 MB equals

1 048 576 bytes). The message length can be limited by:
¢ The maximum message length defined for the receiving queue.
* The maximum message length defined for the queue manager.

¢ The maximum message length defined by either the sending or receiving
application.

¢ The amount of storage available for the message.

It might take several messages to send all the information that an application
requires.

Increasing the maximum message length could have some negative implications.
Also, it could result in the message being too large for the queue or queue
manager. In these cases, a message can be split into segments and then regrouped
into a logical message. Logical grouping of messages allows applications to group
messages that are similar and to ensure the sequence of the messages. For more on

message segmentation and grouping, see the MQSeries Application Programming
BGuidd

6 MQSeries for Compaq NSK V5.1 System Administration

Messages and queues

What is a queue?

A queue is a data structure used to store messages. The messages may be put on
the queue by application programs or by a queue manager as part of its normal
operation.

Each queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns and for storing all the messages it receives onto
the appropriate queues.

The maximum size of a queue is 4 GB. For information about planning the amount
of storage you require for queues, see the MQSeries Planning Guide or visit the
following web site for platform-specific performance reports:

http:/ /www.ibm.com/software/mgseries/txppacs/txpm1.html

How do applications send and receive messages?
Applications send and receive messages using MQI calls. For example, to put a

message onto a queue, an application:
1. Opens the required queue by issuing an MQI MQOPEN call.
2. Issues an MQI MQPUT call to put the message onto the queue

3. Another application can retrieve the message from the same queue by issuing
an MQI MQGET call.

For more information about MQI calls, see the MQSeries Application Programming

Predefined and dynamic queues
Queues can be characterized by the way they are created:

e Predefined queues are created by an administrator using the appropriate command
set. For example, the MQSC command DEFINE QLOCAL creates a predefined
local queue. Predefined queues are permanent; they exist independently of the
applications that use them and survive MQSeries restarts.

e Dynamic queues are created when an application issues an OPEN request
specifying the name of a model queue. The queue created is based on a template
queue definition, which is the model queue. You can create a model queue using
the MQSC command DEFINE QMODEL. The attributes of a model queue, for
example the maximum number of messages that can be stored on it, are
inherited by any dynamic queue that is created from it.

Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on a restart.

Retrieving messages from queues
In MQSeries, suitably authorized applications can retrieve messages from a queue
according to these retrieval algorithms:

* First-in-first-out (FIFO).
* Message priority, as defined in the message descriptor. Messages that have the
same priority are retrieved on a FIFO basis.

* A program request for a specific message.

The MQGET request from the application determines the method used.

Chapter 1. Introduction 7

Objects

Objects

Many of the tasks described in this book involve manipulating MQSeries objects. In
MQSeries Version 5.1, the object types include queue managers, queues, process
definitions, channels, clusters, and namelists.

The manipulation or administration of objects includes:
 Starting and stopping queue managers
* Creating objects, particularly queues, for applications.

other (remote) systems. This is described in detail in the
icatiod book.

* Creating clusters of queue managers to simplify the overall administration
process, or to achieve workload balancing.

* Working with channels to create communication paths to iueue managers on

This book contains detailed information about administration in the following

chapters:

. F 7

. F Z

. F Z

. 7

Object names

Each instance of a queue manager has an object name. This object name must be
unique within the network of queue managers for proper identification of the
target queue manager to which a message is sent.

The object name must be unique within a queue manager and object type. For
example, you can have a queue and a process with the same name; however, you
cannot have two queues with the same name.

An object name can have a maximum of 48 characters, with the exception of
channels. Channel objects can have a maximum of 20 characters. For more

information about names see ['lIsing names” on page 227.
Managing objects

MQSeries provides facilities for creating, altering, displaying, and deleting objects.

These include:

* MQSC commands (MQSC), which can be entered from the keyboard or read
from a file

* MQM (screen-based interface)
¢ Programmable Command Format (PCF) commands, which a program can use.

* Control commands, which you can enter interactively from the operating-system
command line.

For more information, see lChapter 3_Ising the MQSeries command sets” onl

Object attributes

The properties of an object are defined by its object attributes. You can specify or
change some object attributes, but only view others. For example, the maximum
message length that a queue can accommodate is defined by its MaxMsgLength

8 MQSeries for Compaq NSK V5.1 System Administration

Objects

attribute. You can specify this object attribute when you create a queue. The
DefinitionType attribute specifies how the queue was created. You can only
display the DefinitionType attribute.

In MQSeries, there are two ways of referring to an object attribute:

¢ Using its PCF name, for example, MaxMsgLength. The PCF name is the formal
name of an attribute.

 Using its MQSC name, for example, MAXMSGL.

The formal name of an attribute is its PCF name. Because using the MQSC facility
is an important part of this book, you are more likely to see the MQSC name in
examples than the PCF name of a given attribute.

MQSeries queue managers

A queue manager provides message queuing services to applications. It ensures
that:

* Object attributes are changed according to the commands received.

* Special events, such as trigger events or instrumentation events, are generated
when the appropriate conditions are met.

¢ Messages are put on the correct queue, as requested by the application making
the MQPUT call. The application is informed if this cannot be done, and you are
provided with the appropriate reason code.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager. The queue manager to which an application is connected is
said to be the local queue manager for that application. For the application, the
queues that belong to its local queue manager are local queues.

A remote queue is simply a queue that belongs to another queue manager.

A remote queue manager is any queue manager other than the local queue manager.
A remote queue manager may exist on a remote machine across the network or it
may exist on the same machine as the local queue manager.

MQSeries supports multiple queue managers on the same machine.

MQl calls

A queue manager object can be used for various MQI calls. For example, you can
inquire about object attributes using the MQINQ MQI call.

Note: Messages are always put on queue objects, not on queue manager objects.
You cannot put a message on a queue manager object.

MQSeries queues
Queues are defined to MQSeries for Compaq NSK using:
* MQSC DEFINE commands
* Message Queue Management (MQM) facility of MQSeries for Compaq NSK
* PCF command Create Queue
* MQAI commands
These commands specify the type of queue and its object attributes. For example, a

local queue has object attributes that specify when the applications reference that
queue in MQI calls. Examples of object attributes are:

Chapter 1. Introduction 9

MQSeries queues

* Whether applications can retrieve messages from the queue (GET enabled)
* Whether applications can put messages on the queue (PUT enabled)

e Whether access to the queue is exclusive to one application or shared among
applications

¢ The maximum number of messages that can be stored on the queue at the same
time (maximum queue depth)

¢ The maximum length of messages that can be put on the queue

For further information:

« About MQSC, see the WMQSeries A/Ig_g_acmmmd_&w
: @Abom MQM, see W&Nw@w&%ﬂ@mﬁdﬁem

« About PCF commands, see the MQSeries Programmable System Mauagemend book

Using queue objects

In MQSeries, there are various types of queue object. Each type of object can be
manipulated by the product commands and is associated with real queues in
different ways:

* Local queue object

A local queue object identifies a local queue belonging to the queue manager to
which the application is connected. All queues are local queues in the sense that
each queue belongs to a queue manager and, for that queue manager, the queue
is a local queue.

* Remote queue object

A remote queue object identifies a queue belonging to another queue manager.
This queue must be defined as a local queue to that queue manager. The
information you specify when you define a remote queue object allows the local
queue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager.

Before applications can send messages to a queue on another queue manager,
you must have defined a transmission queue and channels between the queue
managers, unless you have grouped one or more queue managers together into

a cluster. For more information about clusters, see ERemn.t&a.dmm:.sJIa.h.on_u.smg
| I l 7]] j

* Alias queue object

An alias queue object allows applications to access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call, the
name is resolved to the name of either a local or a remote queue at run time.
This allows you to change the queues that applications use without changing the
application in any way—you merely change the alias queue definition to reflect
the name of the new queue to which the alias resolves.

An alias queue is not a queue, but an object that you can use to access another
queue.

* Model queue object

A model queue object defines a set of queue attributes that are used as a
template for creating a dynamic queue. Dynamic queues are created by the
queue manager when an application issues an MQOPEN request specifying a
queue name that is the name of a model queue. The dynamic queue that is
created in this way is a local queue whose attributes are taken from the model
queue definition. The dynamic queue name can be specified by the application
or the queue manager can generate the name and return it to the application.

10 MQSeries for Compaq NSK V5.1 System Administration

MQSeries queues

Dynamic queues defined in this way may be temporary queues, which do not
survive product restarts, or permanent queues, which do.

Local queues used by MQSeries
MQSeries uses various local queues for specific purposes related to its operation.

You must define them before MQSeries can use them.

Application queues: A queue that is used by an application (through the MQ)I) is
referred to as an application queue. This queue can be a local queue on the queue
manager to which an application is connected, or it can be a remote queue that is

owned by another queue manager.

Applications can put messages on local or remote queues. However, they can get
messages from a local queue only.

Initiation queues: Initiation queues are queues that are used in triggering. A
queue manager puts a trigger message on an initiation queue when a trigger event
occurs. A trigger event is a logical combination of conditions that is detected by a
queue manager. For example, a trigger event can be generated when the number of
messages on a queue reaches a predefined depth. This event causes the queue
manager to put a trigger message on a specified initiation queue. This trigger
message is retrieved by a trigger monitor, a special application that monitors an
initiation queue. The trigger monitor then starts up the application program that
was specified in the trigger message.

If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.

7 A A . . 17

See . For more information about

[!Managing obijects for trigoering” on page 103
triggering, see the MQSeries Application Programming Guidd.

Transmission queues: A transmission queue temporarily stores messages that are
destined for a remote queue manager. You must define at least one transmission
queue for each remote queue manager to which the local queue manager is to send
messages directly. These queues are also used in remote administration. See

Administering a remate quene manager” on page 113. For information about the

use of transmission queues in distributed queuing, see the

Iutercommunication book.

Cluster transmission queues: Each queue manager within a cluster has a cluster
transmission queue called SYSTEM.CLUSTER. TRANSMIT.QUEUE. A definition of
this queue is created by default on every queue manager.

A queue manager that is a part of the cluster can send messages on the cluster
transmission queue to any other queue manager that is in the same cluster.

Cluster queue managers can communicate with queue managers that are not a part
of the cluster. To do this, the queue manager must define channels and a
transmission queue to the other queue manager in the same way as in a traditional
distributed-queuing environment.

During name resolution, the cluster transmission queue takes precedence over the
default transmission queue. When a queue manager that is not part of the cluster

puts a message onto a remote queue, the default action, if there is no transmission
queue with the same name as the destination queue manager, is to use the default
transmission queue.

Chapter 1. Introduction ~ 11

MQSeries queues

When a queue manager is part of a cluster, the default action is to use the
SYSTEM.CLUSTER. TRANSMIT.QUEUE, except when the destination queue
manager is not part of the cluster.

Dead-letter queues: A dead-letter queue stores messages that cannot be routed to
their correct destinations. For example, this event occurs when the destination
queue is full. The supplied dead-letter queue is called
SYSTEM.DEAD.LETTER.QUEUE. These queues are also referred to as
undelivered-message queues on other platforms.

For distributed queuing, you should define a dead-letter queue on each active
queue manager.

Command queues: The command queue, named
SYSTEM.ADMIN.COMMAND.QUEUIE, is a local queue to which suitably
authorized applications can send MQSeries for Compaq NSK commands for
processing. These commands are then retrieved by an MQSeries component called
the command server. The command server validates the commands, passes valid
commands to the queue manager for processing, and returns any responses to the
appropriate reply-to queue.

Reply-to queues: When an application sends a request message, the application
that receives the message can send a reply message to the sending application.
This message is put on a queue, called a reply-to queue, which is normally a local
queue to the sending application. The name of the reply-to queue is specified by
the sending application as part of the message descriptor.

Event queues: MQSeries for Compaq NSK supports instrumentation events,
which can be used to monitor queue managers independently of MQI applications.
Instrumentation events can be generated in several ways, for example:

* An application attempting to put a message on a queue that is not available or
does not exist

* A queue becoming full
* A channel being started

When an instrumentation event occurs, the queue manager puts an event message
on an event queue. This message can then be read by a monitoring application that
can inform an administrator or initiate remedial action if the event indicates a
problem.

Note: Trigger events are different from instrumentation events in that trigger
events are not caused by the same conditions, and do not generate event
messages.

For more information about instrumentation events, see the MQSeries Programmabld
Bystew Management book.

Process definitions

A process definition object defines an application that is to be started in resi onse to a
trigger event on an MQSeries for Compaq NSK queue manager. See Initiation

tueues” on page 11 for more information.

The process definition attributes include the application ID, the application type,
and data specific to the application.

12 MQSeries for Compaq NSK V5.1 System Administration

Process definitions

Use the MQSC command DEFINE PROCESS or the PCF command Create Process
to create a process definition.

Channels

Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. Channels shield applications from the
underlying communications protocols. The queue managers can exist on the same
or different platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages, and
another channel object at the queue manager that is to receive them.

MQSeries for Compaq NSK supports TCP/IP and SNA LU6.2 (SNAX or ICE)
transport protocols.

For information on channels and how to use them, see the MQSeried

Lutercommunicatiod book, and also I'Preparing channels and transmission queues fox
| Tmini — d.

Clusters

In a traditional MQSeries network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another
queue manager it must have defined a transmission queue, a channel to the remote
queue manager, and a remote queue definition for every queue to which it wants
to send messages.

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network
without the need for complex transmission queue, channels and queue definitions.

For information about clusters, see I!Chapter 7 Administering remate MQSeried
bhjects” on page 111 and the MQSeries Queue Manager Clusterd book.

Namelists

A namelist is an MQSeries object that contains a list of other MQSeries objects.
Typically, namelists are used by applications such as trigger monitors, where they
are used to identify a group of queues. The advantage of using a namelist is that it
is maintained independently of applications; that is, it can be updated without
stopping any of the applications that use it. Also, if one application fails, the
namelist is not affected and other applications can continue using it.

Namelists are also used with queue manager clusters so that you can maintain a
list of clusters referenced by more than one MQSeries object.

System default objects

The system default objects are a set of object definitions that are created
automatically for each queue manager, when the queue manager is created.

Default object names have the stem SYSTEM.DEFAULT; for example, the default
local queue is SYSTEM.DEFAULT.LOCAL.QUEUE; the default receiver channel is
SYSTEM.DEFAULT.RECEIVER. You cannot rename these objects; default objects of
these names are required.

Chapter 1. Introduction 13

System default objects

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, the attributes you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

After a queue manager is created, you can use the runmqsc command to replace
any defaults with other definitions.

See I‘Appendix B System defaults” on page 297 for more information about system

defaults.

Administration

In MQSeries, you execute administration tasks by issuing commands. Four
command sets are provided. Which set you use depends on the tasks you want to
perform and how yvou want to perform them. The command sets are described in
i’ i i ” . Administration tasks

include:
* Starting and stopping queue managers.
* Creating objects, particularly queues, for applications.

* Working with channels to create communication paths to queue managers on
other (remote) systems. This process is explained in detail in the W.E@
ication book.

Local and remote administration

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet, and carry out
administration there. In MQSeries, you can consider this as local administration
because no channels are involved, that is, the communication is managed by the
operating system.

MQSeries supports administration from a single point through what is known as
remote administration. This allows you to issue commands from your local system
that are processed on another system. You do not have to log on to that system,
although you do need to have the appropriate channels defined. The queue
manager and command server on the target system must be running. For example,
you can issue a remote command to change a queue definition on a remote queue
manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

Clients and servers

MQSeries for Compaq NSK supports client-server configurations for MQI
applications. There are no MQSeries for Compaq NSK clients, only an MQSeries
for Compaq NSK server; however, clients on other platforms can connect to the
MQSeries for Compaq NSK server.

An MQI client is part of the MQSeries product that is installed on a machine to
accept MQI calls from applications and pass them to an MQI server machine.

14 MQSeries for Compaq NSK V5.1 System Administration

Clients and servers

There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the MQSeries objects (for example, queues) exist only on the queue
manager system, that is, on the MQI server machine. A server can support normal,
local MQI applications as well.

For more information, see the EAQSZMWM book and the @

book.

MQl applications in a client-server environment

When linked to a server, MQI client applications can issue MQI calls in the same
way as local applications. The client application issues the MQCONN call to
connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
queue manager.

You must link your apphcatlons to the appropriate client libraries. See the

for further information. No MQI client is
currently provided for Compaq NSK; however, since Compaq NSK is an MQI
Server, it accepts connections from any MQSeries MQI client running on other
platforms.

Extending queue manager facilities

The facilities provided by a queue manager can be extended by:
* User exits
¢ Installable services

User exits

User exits let you insert your own programming code into a queue manager
function. Two types of user exit are supported:

* Channel exits
These exits change the way that channel operates. Channel exits are described in

the MQSeries Intercommunicatiod book.

e Data conversion exits

These exits create source code fragments that can be put into application
programs to convert data from one format to another. Data conversion exits are

described in the MQSeries Application Programming Guidd.

e The cluster workload exit

This exit can be used to change the way that a queue manager in a cluster
chooses between multiple instances of a remote queue. Call definition

information is given in the MQSeries Queue Manager Clusterd book.

Note: The mechanism for enabling user exits in MQSeries has changed in Version
5.1. Carefully review the description of the exit mechanism to determine the
changes that you need to make to migrate user exit code from previous
versions of MQSeries for Compaq NSK.

For more information about these exits, see f’_A.p.pen.deJ__User_em.’rsLm:_pa.ge_’nAJ]

Chapter 1. Introduction 15

Extending facilities

Installable services

Installable services are more extensive than user exits in that they have a
formalized Application Programming Interface (API) with multiple entry points.

An implementation of an installable service is called a service component. You can
use the components supplied with the product, or you can write your own
component to perform the functions that you require. Currently, the following
installable services are provided:

* Authorization service
The authorization service lets you build your own security facility.

The default service component that implements the service is the Object
Authority Manager (OAM), which is supplied with the product. By default, the
OAM is enabled. You can use the authorization service interface to create other
components to replace or augment the OAM. For more information about the
OAM, see L i i j ”

¢ Name service

The name service allows queue managers to share queues by allowing
applications to identify remote queues as though they were local queues.

You can write your own name service component. See the M

(Programmable System Managemend book for more information.

Security

MQSeries for Compaq NSK provides security through the Object Authority
Manager (OAM) facility.

Object Authority Manager (OAM) facility

Authorization for using MQI calls and commands and for accessing objects is
provided by the Object Authority Manager (OAM), which by default is enabled.
Access to MQSeries entities is controlled through MQSeries for Compaq NSK
principals and user groups, and the OAM. The principal and group names that the
OAM supports are resolved to Compaq NSK user and group names. In Version 5.1,
all users of MQSeries must have a principal name that maps to a Compaq NSK
user name. This is required regardless of whether the OAM is enabled. A
command-line interface is provided to allow you to add and delete principals, and
to grant and revoke authorizations, as required.

In addition, Compaq NSK security facilities can be used to control access to
MQSeries commands and database files. If SAFEGUARD is installed, MQSeries is
compatible with, and can take advantage of, some of the extended facilities that it

‘Erovides. For more information, see kCha.pte.r.&Jthechng_]MQSems.ahgecingﬂ

Transactional support

An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of

16 MQSeries for Compaq NSK V5.1 System Administration

Security

work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those belonging
to the MQSeries queue manager. Here syncpoint coordination is provided by the
queue manager itself using a single-phase commit process.

A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work may be coordinated by the
queue manager itself, or externally by another XA-compliant transaction manager
such as IBM® CICS®, Transarc Encina or BEA Tuxedo.

In MQSeries for Compaq NSK, all units of work are coordinated via TM/MDP, or a
compatible layered product that itself uses TM/MP (for example, NonStop Tuxedo
in the OSS environment.) Applications can use TM/MP to coordinate units of work
that include updates to any resource that is compatible with TM/MP as well as
MQSeries messages. There are no XA-compliant databases in the Compaq NSK
environment, but a similar interface is implemented. For example, updates to
NonStop SQL databases or ENSCRIBE files may be coordinated with MQSeries
messaging operations to maintain database integrity.

For more information, see LCha.pieuJ_LLn.d.ensran.dJ.n.g_ttansamnnaLsu.p.ponLand

17

Performance tuning, reliability, scalability and sizing

Facilities are provided to allow MQSeries for Compaq NSK to take advantage of
the features of the Compaq NSK hardware and software that provide for scalable,
high performance and reliable application infrastructure. These features include:

* Flexibility to configure queue managers and their objects across CPUs and disks
to increase parallelism

* Software features to ensure that any single point of failure may be tolerated with
at most a momentary interruption of service and automatic recovery to full
service

* Database integrity protected by software and the underlying transactional file
system

* Compatibility with products that provide disaster recovery protection.

For more information, see 'Chapter 15 _Scalability and performance” on page 201l

Chapter 1. Introduction 17

18 MQSeries for Compaq NSK V5.1 System Administration

Chapter 2. MQSeries for Compaq NSK V5.1 architecture

This chapter describes the overall architecture of MQSeries for Compaq NSK V5.1.
It contains these sections:

o FQueue manager — functional view” on page 27
° a 4
° 2 : M 7

The information may help you set the optimal configuration of the product for
your operating environment.

I’thpfpr 15_Scalability and pprﬁwmanrp" on page 201 and |2 hapter 161 !atd
integrity and availability” on page 211l also provide specific configuration guidance

in the context of this architectural information.

Queue manager process overview

The figure below shows the processes that make up an MQSeries queue manager
(PATHMON is shown for completeness, since the queue manager runs in
PATHWAY). The figure also provides an overview of the process IPC interactions.

PCF
Command
Server

MQTCP/IP
Listener '

TCP/IP
Network
Interface

Execution
Controller
Boss

;" Customer
/| | Applications '

Status
Server

[] Guardian Process
]
(I

LUB.2
Listener

SNA Network
Interface
MCA
Callers &
Responders,

Figure 1. MQSeries for Compaq NSK processes

Queue
Manager
Server

Shared Memory Access
Repository Cache

MQ Server Class Process
MQ Non-PATHWAY Process
PR Spawned Process
<4—>» WRITEREADX/REPLYX I/O
4—— SERVERCLASS_SEND_ /O
() NonStop Process Pair

Repository
Manager

© Copyright IBM Corp. 1993, 2001 19

When a queue manager starts, PATHWAY creates the key queue manager
processes. In the default configuration, PATHMON starts the Execution Controller
Boss (ECBoss), the Execution Controllers (EC), the status and queue servers and
the repository manager.

The ECBoss handles all incoming MQCONN requests and distributes them among
the available Execution Controllers, providing a load balancing function by
selecting the EC that is servicing the least connections.

The ECs manage and monitor the other queue manager processes and MQI
applications.

The Local Queue Manager Agents (LQOMA) perform the operations required to
process MQI calls on behalf of applications. The Agents execute the bulk of the
code that supports the MQI. The primary purpose of the agent is to separate
application programs from the queue manager’s critical resources, to protect
against rogue or malicious applications.

The number of agent processes depends on the number of connected applications
and the MinldleLQMAgents specified in the QMINI file. When the queue manager
starts, each Execution controller will start the specified number of idle agents. As
agents become active, the Execution Controller starts new agents to maintain the
minimum number of idle agents.

Central to the MQSeries architecture for Version 5.1 is the queue server. The queue
server is a NonStop process pair that supports all messaging operations for local
queues. When first created, a queue manager has a single default queue server.
Depending on your system configuration and performance requirements, you can
configure additional queue servers and assign local queues to them.

The status server handles status information for all objects other than local queues.
This server subsumes the functionality of the MQSS server used in Version 2.2.0.1.
Additionally, the default status server handles channel status information for the
queue manager. When first created, a queue manager has a single default status
server. Depending on your system configuration and performance requirements,
you can configure additional status servers and assign MQSeries objects to them.

The queue manager starts the channel initiator server class automatically when it
starts. This is to allow clustering operations to function without the requirement to
manually start the channel initiator.

New to Version 5.1 are the repository manager and repository cache server processes
for handling cluster queues. There is one repository manager process in each CPU
where an Execution Controller is running. The first of the processes to start
assumes the role of repository manager, which coordinates repository activities
across the queue manager. Subsequent processes manage a shared memory
segment containing the repository cache for the CPU in which they are executing.
There can be only one repository manager per CPU. The repository cache contains
information about clustered MQSeries objects, including queues and other queue
managers in the cluster.

Also new to Version 5.1 is the queue manager server. This server handles expired
messages and reporting.

20 MQSeries for Compaq NSK V5.1 System Administration

The Message Channel Agents (MCA) transfer messages to and from other queue
managers. In MQSeries for Compaq NSK V5.1, the MCAs are FASTPATH-bound

for efficiency. For more on FASTPATH applications, see 'EASTPATH binding

pplication programs” on page 209.

The LU6.2 hstener (which runs in a separate PATHWAY environment) is new for

Version 5.1. “ contains
detailed information on the operation and configuration of the listener and its
environment.

Product packaging

MQSeries for Compaq NSK V5.1 provides three types of bindings: native dynamic,
native static and non-native.

For native dynamic binding, MQSeries provides a native mode Shared Resource
Library (MQSRLLIB). One of the design goals for MQSeries for Compaq NSK V5.1
was to incorporate as much of the product as possible into the Shared Resource
Library (SRL), minimizing the product footprint. Using native dynamic binding is
the preferred approach for using MQSeries, since it makes the most efficient use of
system resources. From the OSS environment, this is the only binding supported.

For native static binding, MQSeries for Compaq NSK provides a re-linkable library
(MQSRLLNK). This library is provided for customers who are already using an
SRL and therefore cannot use the MQSeries SRL.

MQSeries provides a non-native static library for compatibility with legacy
applications that cannot use the native mode bindings.

Executables

The following table shows the MQSeries executables:

Table 1. MQSeries executables

MQSeries executable Name
Execution Controller MQEC
Execution Controller Boss MQECBOSS
Local Queue Manager Agent MQLOMAG
Status Server MQSTSVR
Queue Server MQQSSVR
Repository Manager MQREPSVR
Queue Manager Server MQMGRSVR
Command Server MQCMDSVR
MQSeries Management Server MQMSVR
Channel Initiator RUNMOQCHI
Caller MCA MQMCACAL
TCP/IP Responder MCA MQTCPRES
LU6.2 Responder MCA MQLUG6RES
Trigger Monitor RUNMQTRM

Chapter 2. MQSeries for Compaq NSK V5.1 architecture 21

Comparing Version 5.1 with Version 2.2.0.1 architecture

The major structural change between MQSeries Version 2.2.0.1 and Version 5.1 is
the introduction of queue servers. Each queue server maintains the data and files
associated with one or more local queue objects. When first created, a queue
manager has a single default queue server that is responsible for all local queues
associated with the queue manager. You can add additional queue servers (using
PATHWAY) and assign queues to them using altmqfls.

The queue servers are NonStop process pairs, which support all messaging
operations for local queues. The queue server also supports purely memory-based
non-persistent messages, providing significant performance advantages over
Version 2.2.0.1. MQSeries uses an internal interface to TM/MP to integrate these
memory-based messages into transactions, allowing both persistent and
non-persistent messages to be included in the same transaction, without the
overhead of writing the non-persistent messages to disk. The queue servers take
over the function of the Version 2.2.0.1 MQSS servers for local queues only.

The MQSS servers have been superceded by status servers. The status servers are
NonStop process pairs that maintain status information for objects other than local
queues.

A second major change in the architecture is the introduction of shared memory
segments. The queue manager Initialization file is distributed across the queue
manager using read-only shared memory. This provides improved performance
when connecting to a queue manager. The MQSeries Repository Cache (used to
implement clustering features) uses a read/write shared memory segment in each
CPU where MQSeries processes are running.

Version 5.1 incorporates more transparent support for LU6.2 channels. This version
introduces an LU6.2 listener, which is responsible for starting LU6.2 responders. As
a consequence of this, the "AUTOSTART" attribute for LU6.2 channels has been
removed.

Queue manager — functional view
The queue manager has the following major components:

Application Interface
Provides the environment and mechanism for execution of MQI calls.

Queue Manager Kernel
Provides most of the function of the MQI. For example, triggering is
implemented here.

Object Authority Manager (OAM)
Provides access control for the queue manager and its resources. It allows
specification of which users and groups are permitted to perform which
operations against which resources.

Data Abstraction and Persistence (DAP)
Provides storage and recovery of the data held by the queue manager.
DAP holds the messages.

Message Channel Agents
These are special applications that use the MQI for the majority of their
operations. They are concerned with reliable transmission of messages
between queue managers. MCAs are FASTPATH-bound.

22 MQSeries for Compaq NSK V5.1 System Administration

Command Server
The command server is a special MQI application that is concerned with
processing messages containing commands to manage the queue manager.

Common Services
This insulates the rest of the queue manager from the operating system. It
provides a set of operating system-like services such as storage
management, serialization and process management.

w shows the relationship between the components.

Communications Interface

Applications Message Channel Agent Command Server

Mal

Application Interface

Queue Manager Kernel

Object Authority
Manager

Data Abstraction and Persistence

Common Services

Compag NonStop Kernel

Figure 2. Components of MQSeries for Compaq NSK V5.1

Queue manager process model

The application communicates with the Execution Controller Boss (ECBoss) when
it needs to connect to an agent. The ECBoss selects the least used Execution
Controller (EC), in terms of the smallest number of connected applications, and
forwards the connection request to that EC. The EC selects an idle Local Queue
Manager Agent (LQMA). The EC returns a reply to the application via the ECBoss,
which then connects to the selected LOMA.

The application interface is split into two parts:

* The MQI application stub packages MQ requests and passes them to the agent
process using the Inter-Process Communication Component (IPCC).

Chapter 2. MQSeries for Compaq NSK V5.1 architecture 23

* The IPCC provides a message-passing interface between the MQI applications,
the agents, the ECs and the ECBoss. Underlying the MQSeries IPCC component
are standard GUARDIAN IPCs.

The application communicates with its agent process via the IPCC. The agent
process performs the MQI calls on the applications behalf. The IPCC exchanges
between the application and agent are synchronous request-reply messages. In
addition to communicating with the agent, when performing MQPUT and MQGET
operations, the application transfers message data directly to the queue server
responsible for the queue.

For FASTPATH-bound applications, MQSeries code is linked directly with the user
application. This provides performance benefits but carries the risk that a rogue
application could disrupt the operation of the queue manager and cause data loss
or other problems.

MQSeries files and subvolumes

MQSeries uses a number of Compaq NonStop ENSCRIBE files. The location and
names of files are summarized below.

The files associated with an MQSeries queue manager are distributed across a
number of subvolumes.

<qmgr> D
Data subvolume. Used for files that hold queue manager-wide information.

<qmgr> M
Message data subvolume. Used for files that are associated with message
data.

<qmgr> L
Error logs

<qmgr> S
Channel synchronization files.

<qmgr>
FEST™ files

Object Catalog
The object catalog (OBJCAT) contains information relating to MQSeries
objects. The object catalog is located in the queue manager Data
subvolume.

Queue Files
Each local queue has a queue file, a queue overflow file and a touch file
associated with it. The files are prefixed with Q, O and T respectively—the
remainder of the name is either part of the MQSeries name of the object, or
a system generated name. To find out the files associated with a particular
queue, use the dspmqfls utility. When a queue is created, the queue
manager creates the associated files in the queue manager message
subvolume (<qmgr>M). altmqfls provides a facility to relocate these files
to another volume, if you need to do so for performance or space reasons.

The queue manager creates message overflow files for each message that is
larger than the message overflow threshold configured for the queue.
Message overflow files are located in the queue server subvolume by
default. If you need to change the subvolume where the queue server
creates message overflow files, use the altmqfls utility. A message overflow

24 MQSeries for Compaq NSK V5.1 System Administration

file is an unstructured, non-audited file that is dedicated to a particular
message (See Queune servers and queue files” on page 203 for more on
queue file configuration). To ensure efficient data transfer, the data is
written to the message overflow file using the large transfer mode
(SETMODE 141), that enables transfer directly from the application process
memory in 56 KB segments.

For persistent messages smaller than approximately 3 KB, the message data
is stored in the queue file. For persistent messages between 3 KB and the
configured message overflow threshold for the queue, the queue server
writes additional records in the queue overflow file. For persistent
messages above the message overflow threshold, the queue server creates a
message overflow file to store the message.

If you need to partition queue or queue overflow files for size or

performance reasons, t‘Partitioning queue files” on page 203 describes how

to do this. If you partition the files, MQSeries distributes message data
equally across the partitions to provide optimum performance.

'Chapter 15 Scalability and perfarmance” on page 201 provides more

information on the performance tuning options related to queues and
queue files.

Alias and Remote
Alias and remote queues have a touch file associated with them. The touch
file begins with the prefix T and is located in the queue manager data
subvolume.

Namelist Files
Each namelist has an unstructured file associated with it. The files begin
with the prefix L and are located in the queue manager data subvolume.
The remainder of the file name is either part of the MQSeries object name,
or a system generated value. To find out the name of the file associated
with a particular namelist, use the dspmqfls utility.

Chapter 2. MQSeries for Compaq NSK V5.1 architecture 25

26 MQSeries for Compaq NSK V5.1 System Administration

Chapter 3. Using the MQSeries command sets

This chapter describes the commands you can use for performing system
administration tasks on MQSeries objects. Administration tasks include creating,
starting, altering, viewing, stopping, and deleting queue managers, queues,
processes, and channels. To perform these tasks, you must select the appropriate
command.

MQSeries for Compaq NSK V5.1 provides the following administration command
sets for performing administrative tasks:

* MQSC (MQSeries commands)

* PCF (Programmable Command Format) commands

* Control commands

* MQAI (MQSeries Administrator Interface)

In addition:
* Some TS/MP (PATHWAY) commands are used for administration purposes.

¢ The MQM (Message Queue Management) facility supports some administration
tasks. The MQM is described in [1lsi

This chapter introduces the MQSC, PCEF, and control command sets, and provides a
summary of the functions supported by each command set in m%'

” . How to use TS/MP commands is
described in 'TS/MP (PATHWAY) administration” on page 29

Performing administration using control commands

The following types of control commands are available:
* Commands for creating, starting, stopping, and deleting queue managers
* Commands for starting, stopping, and displaying command servers

 Utility commands associated with, for example, running MQSC commands,
managing access to MQSeries objects, starting and stopping an MQSeries trace,
and running trigger monitors

Using control commands

You run control commands from the Compaq TACL prompt. Command names are
not case sensitive. (Note, however, that queue manager names are case sensitive.)
For example:

runmqgsc

4 . ”

explains the syntax
and purpose of each command.

© Copyright IBM Corp. 1993, 2001 27

MQSeries commands

Performing administration using MQSC commands

You can use the MQSC commands to manage queue manager objects including the
queue manager, channels, queues, and process definitions. For example, you can
define, alter, display, and delete a specified queue using MQSC commands.

When you display a queue, using the DISPLAY QUEUE command, you display the
queue attributes. For example, the MAXMSGL attribute specifies the maximum
length of a message that can be put on the queue. The command does not show
Vou the messages on the queue. These commands are summarized in

Z . For detailed information
about each MQSC command, see the MOQSeries MOSC Command R;:fpwwml

Running MQSC commands

You can run MQSC interactively by invoking the control command runmgqsc from
the Compaq TACL prompt or running a script when a local queue manager is
running. You can run the runmgsc command itself in three modes, depending on
the flags set on the command:

e Verification mode, where the MQSC commands are verified on a local queue
manager, but are not run.

* Direct mode, where the MQSC commands are run on a local queue manager.

* Indirect mode, where the MQSC commands are run on a remote queue manager.

For more information about using the MQSC facility and text files, see m
MQSC facility interactively” on page 83. For more information about the runmgqsc

command, see Lumm.qsr_(Run_NLQqPﬂm mmmam‘k\ on page 273, MQSC

commands are summarized in

Using Compaq NSK Fix Command

If you run the runmgsc interactively (from the NSK TACL prompt), then you can
also use the Compaq NSK Fix Command facility which allows you to recall and
edit MQSC commands. For example:

* Typing history or h produces a list of the ten most recent commands
* Typing !n where n is the command number will re-execute that command

* Typing h n or history n where n is a number will list the n most recent
commands

* Typing fc presents the last command entered for editing. Typing fc n where n is
the command number presents that command for editing. Typing fc string
where string is the beginning part or all of a previously entered command
presents the last occurrence of that command for editing. The syntax is NSK
standard. For example, type d to delete a character, i to insert a character and r
to replace a character.

Performing administration using PCF commands

PCF commands let you program administrative tasks into your applications or an
administration program. PCF commands cover the same range of functions that are
provided by the MQSC facility. You can write a program to issue PCF commands
to any queue manager in the network from a single node. You can also centralize
and automate administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of an MQSeries message. Each command is sent to the target queue manager

28 MQSeries for Compaq NSK V5.1 System Administration

PCF commands

using the MQI function MQPUT. The command server on the queue manager
receiving the message interprets it as a command message and runs the command.
To get the replies, the application issues an MQGET call and the reply data is
returned as a data structure in the application data part of the MQSeries message.
The application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

You must specify the following items to create a PCF command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:
Message type (MsgType) is MQMT_REQUEST.
Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:
The PCF message type (Type) specifies MQCFT_COMMAND.
The command identifier specifies the command, for example,
ChangeQueue (MQCMD_CHANGE_Q).

For a complete description of the PCF data structures and how to implement them,

see the MQSeries Programmable System Managemend book.

Attributes in MQSC and PCFs

Object attributes specified in MQSC are in uppercase (for example, ROMNAME),
although they are not case sensitive. These attribute names are limited to eight
characters (for example, QDPHIEV). Object attributes in PCF are shown in italics,
and are not limited to eight characters. The PCF equivalent of ROMNAME is
RemoteQMgrName and of QDPHIEV is QDepthHighEvent.

Escape PCFs

Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.

For more information about using escape PCFs, see the MQSeries Programmabld
Bystem Managementl book.

The MQALI is an administration interface to MQSeries that is now available on the
Compaq NSK platform. It is an easy way to administer MQSeries; you do not have
to write your own PCF messages and this avoids the problems associated with
complex data structures. For more about using the MQAI, see f’.llsmg.tb.&M.QA.Ltd
Emohf g FPCES 0.

TS/MP (PATHWAY) administration

Most operations on the queue manager are accomplished by running MQSeries
control commands from TACL. Some operations, however, require the use of
PATHCOM to operate directly on the TS/MP server classes. Also, because of
system-configuration changes, you might need to perform some administration
actions on the TS/MP configuration itself.

This section summarizes these activities.

Chapter 3. Using the MQSeries command sets 29

TS/MP administration
Specifying and controlling TCP/IP listeners

To start TCP/ IP listeners, you can use the MQSeries control command runmgqlsr
(described in "), or you can use the
PATHCOM commands THAW SERVER and START SERVER. To stop TCP/IP
listeners, use the PATHCOM commands FREEZE SERVER and STOP SERVER. Use
the PATHCOM command STATUS SERVER to display the number of TCP/IP
listeners running, and their process names.

By default, each queue manager has one listener that is in server class
MQS-TCPLIS00. Use the PATHCOM command ADD SERVER to create additional
TCP/IP listener server classes to service more than one TCP/IP port. Each TCP/IP
listener should be configured in its own TS/MP server class for maximum
flexibility. If you add TCP/IP listeners, you must also add TCP/IP port definitions
to the queue manager 1mt1ahzat10n file (QMINI), as described in m

. The first listener to be started uses
the first listener port defined in QMINI, the second listener uses the second listener
port, and so on For an example of the QMINI entrles required to support multiple
listeners, see i Z

Controlling the command server

The command server is created as the TS/MP server class MQS-CMDSERV00. As
an alternative to the control commands strmqcsv, endmgqcsv, and dspmgqcsv, you
can use the PATHCOM commands THAW SERVER, START SERVER, FREEZE
SERVER, STOP SERVER, and STATUS SERVER.

Specifying and controlling channel initiators

The default channel initiator is created as the TS/MP server class

MQS- CHANINITOO As an alternative to usmg the runmgqchi control command
(described in ”), you can use the
PATHCOM commands THAW SERVER, START SERVER, FREEZE SERVER, STOP
SERVER, and STATUS SERVER to control and display the status of the channel
initiator. The default channel initiator processes the default channel initiation
queue, SYSTEM.CHANNEL.INITQ.

Changing the default initiation queue for the channel initiator
In Version 5.1, the queue manager starts the default channel initiator automatically.
The default channel initiator must be running to support cluster operations.

If you want to use an initiation queue other than the default
(SYSTEM.CHANNEL.INITQ), you must change the PATHWAY configuration.

Note: You should not change the initiation queue if the queue manager is part of a
cluster. Changing the default initiation queue for the default channel
initiator disables support for clusters.

You can change the default initiation queue while the queue manager is running,
but the channel initiator server class itself must be stopped. In PATHCOM, issue
the following command against the queue manager’s PATHWAY configuration:

ALTER SERVER MQS-CHANINITOO®, STARTUP "-g<init-queue>"

30 MQSeries for Compaq NSK V5.1 System Administration

TS/MP administration

where <init-queue> is the name of the alternative initiation queue. You can then
start the channel initiator and exit PATHCOM.

Specifying and controlling trigger monitors

A single default trigger monitor is created as the TS/MP server class
MQS-TRIGMONO00. You can use the PATHCOM commands THAW SERVER,
START SERVER, FREEZE SERVER, STOP SERVER, and STATUS SERVER to
administer this server class. If you need additional trigger monitors, you can
configure them as additional server classes, using MQS-TRIGMONOO as a template.
You are recommended to use separate server class objects for maximum flexibility.
You do not have to use TS/MP to control trigger monitors. For example, you can
run the trigger monitor from TACL using the control command runmqtrm.

The default trigger monitor processes the default initiation queue,
SYSTEM.DEFAULT.INITIATION.QUEUE. You can change this by adding or
changing the STARTUP message for the server class that holds the trigger monitor.
You need to do this if more than one trigger monitor is configured for the queue
manager. Use the PATHCOM ALTER SERVER command to add or change the
STARTUP attribute.

Specifying the distribution of processes across CPUs

An important aspect to the distribution of work among CPUs is the CPU assigned
to each EC in the queue manager. Each EC creates and manages a set of agent
processes in its own CPU only. Consequently, if the EC processes are distributed
among the CPUs of the system, the agent processes are similarly distributed.

By default, if multiple ECs are specified, the EC processes (each a separate server
class) are distributed as evenly as possible among the available CPUs on the
system. There is no built-in limit to the number of EC processes in a queue
manager: the number required depends entirely on the load to be handled by the
queue manager. By default, there is one EC process in the queue manager.

The default EC server class is called MQS-ECO00. Specify the -e flag on the crtmgm
command to create a queue manager with more than one EC. The number of EC
processes may be changed after the queue manager has been created by adding or
deleting EC process server classes, and making a corresponding modification to the
ExpectedNumECs entry in the ECBoss stanza in the QMINI file.

Each EC process must be in its own server class. Use the MQS-ECO00 server class as
a template if you need to create additional EC processes manually.

Each CPU which hosts an EC must also host a repository manager. When a queue
manager is created, MQSeries creates a repository manager server class (with
names of the form MQS-REPSVRO00) for each EC. If you manually add EC server
classes in CPUs that did not previously host ECs, you should use the
MQS-REPSVROO server class as a template to create a new repository manager
server class in the new CPU.

MQSeries requires a repository manager server class in each CPU where any of the
following are true:

e The CPU hosts an EC, or
* The CPU hosts the MQS-OMGRSVRO00 server class, or
* The CPU runs FASTPATH bound applications, or

Chapter 3. Using the MQSeries command sets 31

TS/MP administration

* Users of the CPU execute any of the following MQSeries applications: runmgsc,
runmgqchi, runmgqchl, or mqrepdmp.

The default assignment of CPUs to EC processes, or any other server class, may be
changed using the PATHCOM ALTER SERVER command with the CPU attribute.

The default status server is automatically created by crtmqm in the server class
MQS-STATUS00. By default, the only CPU assignment made is the primary in CPU
0 and the backup in CPU 1, or CPUS(0:1). The CPU assignment for the
MQS-STATUSOO server can be changed using the PATHCOM ALTER SERVER
command. You can specify a specific backup CPU for the status server by
providing two CPU numbers separated by a colon, for example CPUS(2:12). In this
case, PATHMON creates the primary in CPU 2 and the backup in CPU 12. If a
specific backup CPU is not provided, the Compaq NSK operating system decides
where to create the backup.

The default queue server is also automatically created by crtmqm in the server
class MQS-QUEUEOQ0. By default, the only CPU assignment made is the primary in
CPU 0 and the backup in CPU 1, or CPUS(0:1). The CPU assignment for the
MQS-QUEUEOQO server can be changed using the PATHCOM ALTER SERVER
command. You can specify a specific backup CPU for the queue server by
providing two CPU numbers separated by a colon, for example CPUS(2:12). In this
case, PATHMON creates the primary in CPU 2 and the backup in CPU 12. If a
specific backup CPU is not provided, the Compaq NSK operating system decides
where to create the backup.

Addition of new status server processes

To add additional status servers to a queue manager, create a server class using the
default status server class MQS-STATUSO00 as a template.

The name of any new status server class should begin with the character string
MQS-STATUS. If the server class names do not follow this naming convention,
strmgm will not start them automatically on queue manager startup, and access to
any objects that are configured for these status server classes will be disabled.

If additional status servers are configured, they each need unique process names.
You are also recommended to configure them to run in different CPUs in order to
benefit from the scalability that the status server architecture provides.

Addition of new queue server processes

To add additional queue servers to a queue manager, create a server class using
the default queue server class MQS-QUEUEQO as a template.

The name of any new queue server class should begin with the character string
MQS-QUEUE. If the server class names do not follow this naming convention,
strmqm will not start them automatically on queue manager startup, and access to
any objects that are configured for these queue server classes will be disabled.

If additional queue servers are configured, they each need unique process names.

You are also recommended to configure them to run in different CPUs in order to
benefit from the scalability that the queue server architecture provides.

32 MQSeries for Compaq NSK V5.1 System Administration

TS/MP administration

Specifying the refresh frequency of MQM monitor panels

The MOMOMREFRESHINT PATHWAY parameter for MQS-MQMSVR00
determines the frequency with which monitor screens for channels and queues are
refreshed. The default frequency is every 30 seconds. To change the frequency to
every 10 seconds, for example, enter from the PATHWAY for your queue manager:

ALTER SERVER MQS-MQMSVROO, PARAM MQMQMREFRESHINT 10

PATHWAY configuration for a queue manager

Here is an example PATHWAY configuration for a queue manager. This example
was generated by issuing a sequence of INFO commands on the objects in a
default queue manager configuration.

TCP MQS-TCP-01
AUTORESTART 0
CHECK-DIRECTORY OFF
CODEAREALEN 80000
CPUS 0:1
DEBUG OFF
DUMP OFF
HIGHPIN ON
HOMETERM \RAPTOR.$ZTNO.#PTY001C
INSPECT OFF
MAXINPUTMSGLEN 6000
MAXINPUTMSGS 0
MAXPATHWAYS 0
MAXREPLY 32000
MAXSERVERCLASSES 1
MAXSERVERPROCESSES 10
MAXTERMDATA 500000
MAXTERMS 10
NONSTOP 0
POWERONRECOVERY ON
PRI 175
PROGRAM \RAPTOR.$SYSTEM.SYSTEM.PATHTCP2
SERVERPOOL 32000
STATS OFF
TCLPROG \RAPTOR.$DEV.ZMQSEXE.POBJ
TERMBUF 1500
TERMPOOL 10000

Figure 3. Example PATHWAY configuration (Part 1 of 13)

PROGRAM MQMC
ERROR-ABORT OFF
OWNER \RAPTOR.44,1

SECURITY "N"
TCP MQS-TCP-01
TMF ON

TYPE T16-6520 (BREAK OFF,ECHO ON,EXCLUSIVE OFF,INITIAL MAINC,IOPROTOCOL
0,MAXINPUTMSGS 0, TRAILINGBLANKS ON)

Figure 3. Example PATHWAY configuration (Part 2 of 13)

Chapter 3. Using the MQSeries command sets 33

TS/MP administration

SERVER MQS-CHANINITOO
PROCESSTYPE GUARDIAN
AUTORESTART 10
CPUS (0,1)
CREATEDELAY 1 MINS
DEBUG OFF
DELETEDELAY 10 MINS
HIGHPIN ON
HOMETERM \RAPTOR.$ZTNO.#PTY001C
LINKDEPTH 255
MAXSERVERS 1
NUMSTATIC 1
OUT \RAPTOR.$ZTNO.#PTY001C
OWNER \RAPTOR.44,1
PARAM MQQUEMGRNAME "p101"
PARAM MQMACHINIFILE "$DATA1.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"

PRI 175

PROGRAM \RAPTOR.$DEV.ZMQSEXE.RUNMQCHI
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 3 of 13)

SERVER MQS-CMDSERVOO
PROCESSTYPE GUARDIAN
AUTORESTART 10
CPUS (0,1)
CREATEDELAY 1 MINS
DEBUG OFF
DELETEDELAY 10 MINS
HIGHPIN ON
HOMETERM \RAPTOR.S$ZTNO.#PTY001C
LINKDEPTH 255
MAXSERVERS 1
NUMSTATIC 1
OUT \RAPTOR.S$ZTNO.#PTY001C
OWNER \RAPTOR.44,1
PARAM MQQUEMGRNAME "p101"
PARAM MQMACHINIFILE "$DATAL.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"

PRI 175

PROGRAM \RAPTOR.$DEV.ZMQSEXE.MQCMDSVR
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 4 of 13)

34 MQSeries for Compaq NSK V5.1 System Administration

TS/MP administration

SERVER MQS-EC00
PROCESSTYPE GUARDIAN
AUTORESTART 10
CPUS (0,1)
CREATEDELAY 1 MINS
DEBUG OFF
DELETEDELAY 10 MINS
HIGHPIN ON
HOMETERM \RAPTOR.$ZTNO.#PTY001C
LINKDEPTH 255
MAXSERVERS 1
NUMSTATIC 1
OUT \RAPTOR.$ZTNO.#PTY001C
OWNER \RAPTOR.44,1
PARAM MQQUEMGRNAME "p101"
PARAM MQMACHINIFILE "$DATAL.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"

PRI 175

PROGRAM \RAPTOR.$DEV.ZMQSEXE.MQEC
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 5 of 13)

SERVER MQS-ECBOSS
PROCESSTYPE GUARDIAN
AUTORESTART 10
CPUS (0,1)
CREATEDELAY 1 MINS
DEBUG OFF
DELETEDELAY 10 MINS
HIGHPIN ON
HOMETERM \RAPTOR.$ZTNO.#PTY001C
LINKDEPTH 255
MAXSERVERS 1
NUMSTATIC 1
OUT \RAPTOR.$ZTNO.#PTY001C
OWNER \RAPTOR.44,1
PARAM MQQUEMGRNAME "p101"
PARAM MQMACHINIFILE "$DATAL.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"

PRI 175

PROGRAM \RAPTOR.$DEV.ZMQSEXE.MQECBOSS
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 6 of 13)

Chapter 3. Using the MQSeries command sets 35

TS/MP administration

SERVER MQS-MQMSVROO

PROCESSTYPE GUARDIAN
AUTORESTART 0

CPUS (0,1)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS

HIGHPIN ON

HOMETERM \RAPTOR.$ZTNO.#PTY001C
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \RAPTOR.$ZTNO.#PTY001C
OWNER \RAPTOR.44,1

PARAM MQQUEMGRNAME "p101"

PARAM MQMACHINIFILE "$DATA1.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"
PARAM MQMPAGESTORETRIEVE "20"

PRI 175

PROGRAM \RAPTOR.$DEV.ZMQSEXE.MQMSVR
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 7 of 13)

SERVER MQS-STATUSO0

PROCESSTYPE GUARDIAN
AUTORESTART 0

CPUS (0:1)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS

HIGHPIN ON

HOMETERM \RAPTOR.S$ZTNO.#PTY001C
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \RAPTOR.S$ZTNO.#PTY0O1C
OWNER \RAPTOR.44,1

PARAM MQQUEMGRNAME "p101"

PARAM MQMACHINIFILE "$DATAL.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"
PRI 176

PROCESS $PO1S

PROGRAM \RAPTOR.$DEV.ZMQSEXE.MQSTSVR
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATAL.P101D

Figure 3. Example PATHWAY configuration (Part 8 of 13)

36 MQSeries for Compaq NSK V5.1 System Administration

TS/MP administration

SERVER MQS-TCPLIS00
PROCESSTYPE GUARDIAN
AUTORESTART 10
CPUS (0,1)
CREATEDELAY 1 MINS
DEBUG OFF
DELETEDELAY 10 MINS
HIGHPIN ON
HOMETERM \RAPTOR.$ZTNO.#PTY001C
LINKDEPTH 255
MAXSERVERS 1
NUMSTATIC 1
OUT \RAPTOR.$ZTNO.#PTY001C
OWNER \RAPTOR.44,1
PARAM MQQUEMGRNAME "p101"
PARAM MQMACHINIFILE "$DATAL.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"

PRI 175

PROGRAM \RAPTOR.$DEV.ZMQSEXE.RUNMQLSR
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 9 of 13)

SERVER MQS-TRIGMONGO
PROCESSTYPE GUARDIAN
AUTORESTART 10
CPUS (0,1)
CREATEDELAY 1 MINS
DEBUG OFF
DELETEDELAY 10 MINS
HIGHPIN ON
HOMETERM \RAPTOR.$ZTNO.#PTY001C
LINKDEPTH 255
MAXSERVERS 1
NUMSTATIC 1
OUT \RAPTOR.S$ZTNO.#PTY001C
OWNER \RAPTOR.44,1
PARAM MQQUEMGRNAME "p101"
PARAM MQMACHINIFILE "$DATAL.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"

PRI 175

PROGRAM \RAPTOR.$DEV.ZMQSEXE.RUNMQTRM
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 10 of 13)

Chapter 3. Using the MQSeries command sets 37

TS/MP administration

SERVER MQS-QUEUEOO
PROCESSTYPE GUARDIAN
AUTORESTART 10
CPUS (0:1)
CREATEDELAY 1 MINS
DEBUG OFF
DELETEDELAY 10 MINS
HIGHPIN ON
HOMETERM \RAPTOR.$ZTNO.#PTY001C
LINKDEPTH 255
MAXSERVERS 1
NUMSTATIC 1
OUT \RAPTOR.$ZTNO.#PTY001C
OWNER \RAPTOR.44,1
PARAM MQQUEMGRNAME "p101"
PARAM MQMACHINIFILE "$DATA1.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"

PRI 176

PROGRAM \RAPTOR.$DEV.ZMQSEXE.MQQSSVR
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 11 of 13)

SERVER MQS-QMGRSVR
PROCESSTYPE GUARDIAN
AUTORESTART 10
CPUS (0,1)
CREATEDELAY 1 MINS
DEBUG OFF
DELETEDELAY 10 MINS
HIGHPIN ON
HOMETERM \RAPTOR.$ZTNO.#PTY001C
LINKDEPTH 255
MAXSERVERS 1
NUMSTATIC 1
OUT \RAPTOR.$ZTNO.#PTY001C
OWNER \RAPTOR.44,1
PARAM MQQUEMGRNAME "p101"
PARAM MQMACHINIFILE "$DATAL.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"

PRI 175

PROGRAM \RAPTOR.$DEV.ZMQSEXE.MQMGRSVR
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 12 of 13)

38 MQSeries for Compaq NSK V5.1 System Administration

TS/MP administration

SERVER MQS-REPSVROO

PROCESSTYPE GUARDIAN
AUTORESTART 10

CPUS (0,1)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS

HIGHPIN ON

HOMETERM \RAPTOR.$ZTNO.#PTY001C
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \RAPTOR.$ZTNO.#PTY001C
OWNER \RAPTOR.44,1

PARAM MQQUEMGRNAME "p101"

PARAM MQMACHINIFILE "$DATAL.pl01D.UMQSINI"
PARAM MQDEFAULTPREFIX "$DEV"
PARAM MQREPMANAGER "YES"

PRI 175

PROGRAM \RAPTOR.$DEV.ZMQSEXE.MQREPSVR
SECURITY "N"

TMF ON

VOLUME \RAPTOR.$DATA1.P101D

Figure 3. Example PATHWAY configuration (Part 13 of 13)

Changing the parameters of PATHWAY server classes
To alter the parameters of PATHWAY server classes:

1.

2.

Stop the queue manager by issuing the endmgm command. This also stops the
PATHMON process.

Go to the subvolume queue managerD, which contains the PATHCTL file. For
example:

>VOLUME $DATA2.MTO1D

Start a PATHMON with the same name as the queue manager’s PATHMON
and with the NOWAIT option. For example:

>PATHMON /NAME $MTO1, NOWAIT/

Start a PATHCOM against the new PATHMON. For example:

>PATHCOM $MTO1

Load the existing PATHWAY configuration for the queue manager by issuing
the following command from the PATHCOM prompt:

>START PATHWAY COOL

6. Make the required changes using PATHCOM commands.

Chapter 3. Using the MQSeries command sets 39

TS/MP administration
7. Shut down the PATHWAY system by issuing the following command:

>SHUTDOWN2

8. Start the queue manager using the strmgqm command.

Adding user-defined server classes to an MQSeries PATHWAY

You can add your own server class definitions to the MQSeries PATHWAY
configuration using PATHCOM. However, this is not recommended: servers must
be well behaved, or endmqm does not function correctly. Note also that
user-defined server class definitions are lost when a queue manager is deleted. To
minimize inconvenience, you are recommended to create a reusable script.

40 MQSeries for Compaq NSK V5.1 System Administration

Chapter 4. Managing queue managers

This chapter describes all aspects of the management of MQSeries queue
managers.

The following sections are in this chapter:

4 : 2

s Fridolnos £ . 1

o I'Modifving aueue manager properties” on page 44
e e M s

Getting started

Before you use messages and queues, you must create at least one queue manager.
Once you complete the installation process, you can use the MQSeries control
commands to create a queue manager, create MQSeries principals, and start the
queue manager.

When you create a queue manager, the required default objects and system objects
are automatically created. Default objects form the basis of any object definitions
that you make; system objects are required for queue manager operation. See

[Restoring the default and system obhjects” on page 61| for information about

restoring the default system objects.

mformatlon about commands that you can use w1th MQSerles for Compaq NSK,
and the different methods of invoking them.

Guidelines for creating a queue manager

A queue manager manages the resources associated with it, such as the queues
that it owns. A queue manager provides queuing services to applications for
Message Queuing Interface (MQI) calls and commands to create, modify, display,
and delete MQSeries objects. You create a queue manager using the crtmqm
command. Here is a list of items to consider when creating a queue manager:

* Specify a unique queue manager name.

© Copyright IBM Corp. 1993, 2001 41

Creating queue managers

When you create a queue manager, you must ensure that no other queue
manager has the same name in your network. Queue manager names are not
checked at create time, and non-unique names prevent you from creating
channels for distributed queuing.

You can ensure uniqueness by prefixing each queue manager name with its own
node name. For example, if a node is called accounts, you can name your queue
manager accounts.saturn.queue.manager, where saturn identifies a particular
queue manager and queue.manager is an extension you can give to all queue
managers. Alternatively, you can omit this extension; however, accounts.saturn
and accounts.saturn.queue.manager are different queue manager names.

Note: Queue manager names in control commands are case sensitive. For
example, you can create two queue managers with the names.
jupiter.queue.manager and JUPITER.queue.manager.

e Limit the number of queue managers.

In MQSeries for Compaq NSK, you can create as many queue managers as
resources allow. However, because each queue manager requires its own
resources, it is often more efficient to have one queue manager with 100 queues
than ten queue managers with ten queues each. Many nodes can be run with a
single queue manager; however, larger servers can run with multiple queue
managers. There can be special requirements of either performance, or
functionality that would require multiple queue managers.

* Specify a default queue manager.

Each node should have a default queue manager, though it is possible to
configure MQSeries on a node without one.

The default queue manager is the queue manager that applications connect to if
they do not specify a queue manager name in an MQCONN call. It is also the
queue manager that processes MQSC commands when you invoke the runmgqsc
command without specifying a queue manager name.

Specifying a queue manager as the default replaces any existing default queue
manager specification for the node.

If you change the default queue manager it can affect other users or
applications. The change has no effect on currently-connected applications
because they can use the handle from their original connect call in any further
MQI calls. This handle ensures that the calls are directed to the same queue
manager. Any applications connecting after the change connect to the new
default queue manager.

To create a default queue manager, specify the -q flag on the crtmgqm command.
For a detailed description of this command and its parameters, see

@WH .

* Specify a dead-letter queue.

The dead-letter queue is a local queue where messages are put if they cannot be
routed to their correct destination.

Attention: You should have a dead-letter queue on each queue manager in your
network. Failure to do so can result in application program errors, which causes
channels to be closed and causes replies to administration commands to fail. For
example, if an application attempts to put a message on a queue on another
queue manager, but the wrong queue name is given, the channel is stopped, and
the message remains on the transmission queue. Other applications cannot then
use this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues.
The undelivered message is put on the dead-letter queue at the receiving end,
leaving the channel and its transmission queue available.

42 MQSeries for Compaq NSK V5.1 System Administration

Creating queue managers

Therefore, when you create a queue manager you should use the -u flag to
specify the name of the dead-letter queue. You can also use an MQSC command
to alter the attributes of a queue manager and specify the dead-letter queue to

be used. See I‘Altering_queue manager attributes” on page 87 for an example of

an MQSC ALTER command.

When you find messages on a dead-letter queue, you can use the dead-letter
queue handler, Wthh is supphed with MQSeries, to process these messages. See
> 143 for further
1nf0rmat10n about the dead letter queue handler and how to reduce the number
of messages that might otherwise be placed on the dead-letter queue.

Specify a default transmission queue.

A transmission queue is a local queue on which messages in transit to a remote
queue manager are queued pending transmission. The default transmission
queue is the queue that is used when no transmission queue is explicitly
defined. Each queue manager can be assigned a default transmission queue.

When you create a queue manager you should use the -d flag to specify the
name of the default transmission queue. The -d flag does not actually create the

queue, which you have to create at a later time. See UNQ.\‘.k.IJJ.g_‘ALLth_].Qﬂa.“
lqueuies” on page 99 for more information.

Back up configuration files after creating a queue manager.

The MQSeries configuration file (MQSINI) is created when you install MQSeries.
This file contains a list of queue managers that is updated each time you create
or delete a queue manager. There is one MQSINI file per installation. By default,
MOQSINI is located in $SYSTEM.ZMQSSYS.

A queue manager configuration file (QMINI) is automatically created when you
create a new queue manager. This file contains configuration parameters for the
queue manager.

You should make a backup of these files. If you create another queue manager
that causes problems, you can reinstate the backups when you have removed the
source of the problem. You should back up your configuration files each time
you create a new queue manager.

For more information about configuration files, see I’‘Chapter 13 Configuration

ffiles” aon page 174

Backing up configuration files after creating a queue manager
There are two configuration files to back up, MQSINI and QMINI:

1.

The MQSeries configuration file (MQSINI) is created when you install
MQSeries. This file contains a list of queue managers that is updated each time

you create or delete a queue manager. There is one MQSINI file per installation.
By default, MQSINI is located in $SYSTEM.ZMQSSYS.

A queue manager configuration file (QMINI) is automatically created when you
create a new queue manager. This file contains configuration parameters for the
queue manager.

You should make a backup of these files. If you create another queue manager that
causes problems, you can reinstate the backups when you have removed the
source of the problem. You should back up your configuration files each time you
create a new queue manager.

Chapter 4. Managing queue managers 43

Creating queue managers

Modifying queue manager properties

Many of the properties of a queue manager can be modified when the queue
manager is created. Some properties can also be modified after the queue manager
is created, though you are usually required to stop and restart the queue manager
before the changes can take effect.

The remainder of this section describes some queue manager properties that you
might want to change.

Home volume of the queue manager

This is the volume where all databases, including queues, are created. (However,
individual queues may be moved to a different volume after creation using the
altmgﬂs control command, as described in I"n]fmqﬂc (Alter queue file attributes)?

)

The default value is taken from the QMDefaultVolume entry of the Al1QueueManagers
stanza in the MQSINI file. It is overridden by the -p DefaultPrefix parameter of
the crtmqm command, if specified.

The home volume can be specified only when a queue manager is created. It
cannot be changed after creation.

Number of EC processes per queue manager

By default, there is one EC process per queue manager. You specify the number of
EC processes for a queue manager on the -e NumECs parameter of the crtmqm
command.

Each EC is responsible for a subset of the server processes that perform messaging
and queuing for applications and channels in the same CPU as the EC itself. You
are recommended to have 1 EC per CPU, unless the number of applications per EC
is large, in which case having an additional EC running on the CPU would be
beneficial. For large installations, for example, more EC processes are desirable
(often distributed across multiple CPUs) so that large numbers of applications and
channels can be handled concurrently.

During queue manager creation, a TS/MP server class is created for each EC
specified on the crtmqm command. The specified EC server classes are distributed
across all CPUs in the system, in a round-robin fashion. For example, specifying
eight EC processes in a four-CPU system would result in two EC processes per
CPU by default.

The ExpectedNumECs field of the ECBoss stanza in the QMINI file of the queue
manager is set to the number of EC processes specified on creation. This value
must be consistent with the TS/MP configuration at all times.

It is possible to change the number of EC processes in a queue manager after
creation by adding or deleting TS/MP server classes, and modifying the
ExpectedNumECs entry of the ECBoss stanza in the QMINI file. This can be done
only while the queue manager is stopped.

System load balancing

The EC Boss is responsible for distributing the workload of a queue manager
among the ECs. The processing load of a queue manager can be distributed among
multiple CPUs in a balanced way, given an appropriate configuration of ECs.

44 MQSeries for Compaq NSK V5.1 System Administration

Creating queue managers

When a new connection request arrives from a local application, or when a channel
is to be started, the EC Boss allocates the request to the EC with the smallest
number of active LQOMAs and MCAs.

Home terminal of the queue manager

All Compaq NSK processes, including the queue manager server processes, have a
home terminal. The terminal must exist and be in the paused state. In general, the
queue manager home terminal is not used for output. The home terminal can be
any valid terminal device, including the Compaq Virtual Hometerm Service (VHS)
product.

Compaq NonStop Kernel allows up to 255 primary openers of a physical terminal.
Therefore, careful planning is required to ensure that this limit is not exceeded.
You are recommended to use Compaq’s VHS product if support for more than 255
openers is required.

You identify a queue manager’s home terminal on the -o HomeTerminalName
parameter of the crtmqm command. There is no default; this parameter is
mandatory.

The HOMETERM and OUT attributes of all TS/MP server classes are set to the
specified terminal device. These attributes may be altered at any time when server
classes are in the stopped state, normally when the queue manager is stopped.

The HomeTerminalName entry in the Configuration stanza in the QMINI file must
also be modified in order to change the home terminal of a queue manager.

The PATHMON process name for the queue manager

Each queue manager runs under its own TS/MP (Pathway) configuration. The
controlling process for this is the PATHMON process. A unique name must be
specified for each queue manager. Furthermore, the name must be unique within
the system.

You specify the PATHMON process name on the -n PATHMONProcessName parameter
of the crtmqm command. There is no default; this parameter is mandatory.

Specify a process name that is unique in the system, and is easy to associate with
the queue manager it controls.

You can change the PATHMON process name for a queue manager, as follows:
1. Stop the queue manager.

2. Set your default volume and subvolume to the location of the queue manager
data files (normally <QMgr name>D).

3. Modify the PathmonProcName entry in the queue manager’s QMINI file to
specify the new process name.

4. Run PATHMON up for the queue manager, using the new process name.

From TACL, execute the following command:

PATHMON /name $<newname>, nowait/

5. Run PATHCOM against the newly named PATHMON.

Chapter 4. Managing queue managers 45

Creating queue managers

From TACL, execute the following command:

PATHCOM $<newname>

6. Load the queue manager Pathway configuration and confirm the change of
name of the PATHMON process.

From PATHCOM, execute the following command:

START PATHWAY COOL

As the configuration is loading, you will be warned that the name of the new
PATHMON process is different from the one stored in the configuration file.
After this, you will be asked to confirm whether you want to proceed. Type y
at the prompt, and the configuration loading will complete.

7. Save the new PATHWAY configuration information back to the database.
From PATHCOM, execute the following commands:

SHUTDOWNZ
EXIT

The PathmonProcName entry in the Configuration stanza of the QMINI file must
also be changed.

The PATHMON process name change is now complete. The next strmqm will start
the queue manager using the new PATHMON process name.

The CCSID of the queue manager

This is the Coded Character Set ID (CCSID) of the character set that is used by the
queue manager to store information about messages.

You specify the CCSID on the -1 CCSID parameter of the crtmgm command. The
default is 819.

The CCSID of the queue manager can be changed at any time after queue manager
creation using runmgqsc, the MQM facility, or PCF commands.

Controlling EBCDIC data conversion

The way in which EBCDIC new line (NL) characters are handled during
conversion can be controlled using the ConvEBCDICNewline item in the
Al1QueueManagers stanza of the MQSINI configuration file.

ConvEBCDICNewline=NL_TO_LF | TABLE | ISO
EBCDIC code pages contain a new line (NL) character that is not
supported by ASCII code pages; although some ISO variants of ASCII do
contain an equivalent. Use the ConvEBCDICNewline attribute to specify the
method MQSeries is to use when converting the EBCDIC NL character into
ASCII format.

NL_TO_LF
Specify NL_TO_LF if you want the EBCDIC NL character (X'15’)

46 MQSeries for Compaq NSK V5.1 System Administration

Creating queue managers

converted to the ASCII line feed character, LF (X’0A’), for all
EBCDIC to ASCII conversions. NL_TO_LF is the default.

TABLE
Specify TABLE if you want the EBCDIC NL character converted
according to the conversion tables used on your platform for all
EBCDIC to ASCII conversions. Note that the effect of this type of
conversion may vary from platform to platform and from language
to language; while on the same platform, the behavior may vary if
you use different CCSIDs.

ISO Specify ISO if you want:
* ISO CCSIDs to be converted using the TABLE method.

* All other CCSIDs are to be converted using the NL_TO_CF
method.

Possible ISO CCSIDs are shown in [[able d.
Table 2. List of possible ISO CCSIDs

CCSID Code Set
819 1SO8859-1
912 1SO8859-2
915 1SO8859-5
1089 1SO8859-6
813 1SO8859-7
916 1SO8859-8
920 1SO8859-9
1051 roman8

If the ASCII CCSID is not an ISO subset, ConvEBCDICNewline
defaults to NL_TO_LF.

For more information about data conversion, see the MQSeries Applicatiod

The EMS Collector for the queue manager

The queue manager can be configured to use an alternative collector if required.
EMS Events are sent to $0 by default. The EMSCollectorName entry in the
Configuration stanza in the QMINI file specifies the name of the EMS Collector for
this queue manager.

The EMS collector can be changed at any time by modifying the value of this
entry, though it does not take effect until the queue manager has been restarted.

The pool of agents kept ready by each EC in the queue
manager

For each of the four basic types of agent, an EC can maintain a pool of idle agent
processes, ready to be assigned to new work. The size of these pools can be
configured in order to achieve an appropriate balance between response time to
new work and resource utilization. The values of the following fields of the
Configuration stanza in the QMINI file can be modified to specify a different
number of processes to be kept idle:

Chapter 4. Managing queue managers 47

Creating queue managers

MinldleMCALUG62Responders
Specifies the minimum number of SNA LU 6.2 responder MCAs to
maintain in an idle state. The default value is 0.

MinldleMCATCPResponders
Specifies the minimum number of TCP/IP responder MCAs to maintain in
an idle state. The default value is 0.

MinldleMCACallers
Specifies the minimum number of caller MCAs (not protocol specific) to
maintain in an idle state. The default value is 0.

MinldleLQMAgents
Specifies the minimum number of local queue manager agents (LQMAs) to
maintain in an idle state. The default value is 1.

Note that the number of processes specified in these fields applies to each EC, not
to each queue manager. Therefore, for a two-EC queue manager, there is a
minimum of two idle LQMAs by default.

These values can be changed at any time, though the change does not take effect
until the queue manager is restarted.

Maximum idle agents and process reuse

By default, a queue manager allows up to 10 agent processes of each type to be
idle. This value is controlled by the MaxIdleAgents entry in the Configuration
stanza of the QMINI file.

The MaxIdleAgentReuse entry determines the number of times an agent process can
be reused before it is replaced by a new agent process. By default,
MaxIdleAgentReuse is set to 10.

Process priority of queue manager processes

The priorities may need to be changed to balance resources between MQSeries and
other applications. The process priorities of the TS/MP server classes may be
changed by ALTERing the TS/MP objects when the queue manager is stopped.

The process priorities of the agent processes may be changed by editing the
MCAAgentPriority and LQMAgentPriority fields of the EC stanza of the QMINI file.

Apart from the status servers and queue servers, which have a default process
priority of 176, the TS/MP configured processes are all given a default priority of
175. By default, both MCAs and LOMAs have a process priority of 165.

Ensure that the status servers and queue servers have the highest priority, followed
by the EC Boss and EC, which in turn must have a higher process priority than the
MCAs and LQMAs.

Maximum number of channels for the queue manager

There is a limit to the number of channels that may be controlled at any one time
for a queue manager. If the limit is too high, performance may be affected as this
parameter dictates the size of the channel status table, on which numerous search
operations are performed. If the limit is too low, you may not be able to control
enough channels for your application. The MaxChannels field of the Channels stanza
in the QMINI file defines the maximum number of channels that can be controlled
simultaneously.

48 MQSeries for Compaq NSK V5.1 System Administration

Creating queue managers

The default on creation is 10. There is no way to override the default on creation.

The MaxChannels entry in the Channels stanza of the QMINI file can be changed at
any time, though the change does not take effect until the queue manager is
restarted.

Maximum number of active channels for the queue manager

There is a limit to the number of concurrently active (running) channels in a queue
manager. This may be used to control the peak demand on system resources by
channels. The MaxActiveChannels entry in the Channels stanza in the QMINI file
defines the maximum number of active channels for the queue manager.

The default on creation is 10. There is no way to override the default on creation.

The MaxActiveChannels entry in the QMINI file can be changed at any time,
though the change does not take effect until the queue manager is restarted.

Guardian segment IDs used by MQSeries

MQSeries allocates Guardian memory segments both in its own processes and in
the application program’s process. The Guardian Segment IDs used by MQSeries
for these segments are allocated from a range defined in the MQSINI configuration
file. The NSKSegidRange item in the Al1QueueManagers stanza of the MQSINI
configuration file defines the range of Segment IDs used by MQSeries when
allocating memory segments.

When MQSeries is installed, this range is set, by default, to NSKSegidRange=10-20.

Since these memory segments are also allocated in the application program’s
process, you should ensure that applications do not allocate segments in this range.
You can force MQSeries to allocate its segments in a different range by editing the
NSKSegidRange item in your MQSINI file. After editing this item, you must stop
and restart all queue managers before the new value will take effect.

The range defined by the NSKSegidRange parameter must be wholly contained
within the Guardian Segment ID limits of 0-1023. The NSKSegidRange parameter
must define a range containing at least 10 Segment IDs for use by MQSeries.

Default TCP/IP port

The TCPPort entry in the TCPConfig stanza in QMINI defines the default port
number for outgoing channels. By default, port number 1414 is used. This default
is overridden by port-number values specified in the CONNAME field for a
channel.

TCP/IP ports listened on by the queue manager

A queue manager with TCP/IP channels may be configured to listen for incoming
connections on one or more TCP/IP ports. The TCPNumListenerPorts and entries in
the TCPConfig stanza in the QMINI file define how many ports to listen on, and
the numbers of the ports assigned to this queue manager. For examples of the
QMINI entries, see L icati 7

There can be multiple queue managers on a single system. Each queue manager on
a system must be assigned nonoverlapping sets of TCP/IP ports to listen on. The
set of TCP/IP ports for each queue manager may be just one port, where the rate
of incoming TCP/IP connect requests is low, or may be more than one port for

Chapter 4. Managing queue managers 49

Creating queue managers

large configurations. The default TCP/IP port is 1414 and, by default, a queue
manager is created to listen on only this port.

The list of listening ports may be changed by editing the TCPConfig stanza in the
QMINI file and restarting the queue manager. In order to listen on more than one
port, a queue manager must also be configured with additional TCP/IP listener
server classes using TS/MP. This operation is performed manually using
PATHCOM.

Alternatively, a port number can be specified on the runmqlsr command

(described in Lmnm.qur.(.EunJastener.)Lan.pa.ge.ﬂ) The TCPListenerPort values

are overridden by a Listener server class program if the parameter
MQLISTENPORTNUM is present in the environment of that Listener program.

TCP/IP process used by the queue manager

The interface to the Compaq TCP/IP product is via a server process, known as the
TCP/IP process. By default, the system default, $ZTCO, is used. There is no way to
override this default when the queue manager is created. A queue manager s
channels can be configured to use a specific TCP/IP process, if the system default
is not sufficient. The TCP/IP Listener’s TS/MP server class configuration must be
manually changed if the system default TCP/IP process, $ZTC0, is not sufficient or
correct. This server class configuration can also be manually changed to enable a
Listener to listen on a specific port and override the ports defined in the QMINI
file.

Server class MQS-TCPLIS00 must have the DEFINE TCPIP' PROCESS NAME
added to reference the required alternative TCP/IP process name. Note that, if you
have multiple ECs, you must update all of them. Refer to the Compaq NSK
TCP/IP product manuals for further information.

The change to the TS/MP server classes can be made only when the queue
manager is stopped.

MQSeries for Compaq NSK can support multiple TCP/IP process per queue
manager. Also, multiple TCP/IP ports and listener processes are supported.

Reconfiguring the MQS-TCPLISnn server class for a
nondefault TCP/IP process and port
To reconfigure the MQS-TCPLISnn server class for a nondefault TCP/IP process

and port, follow the general instructions in [!Changing the parameters of
PATHWAY server classes” on page 39,

To specify a nondefault TCP/IP process, use the following PATHCOM commands:

ALTER SERVER MQS-TCPLIS@O, (DEFINE =TCPIP PROCESS NAME, FILE $7777)

where $7777 is the name of the required TCP/IP process.

To specify a specific port, use the following PATHCOM commands:

ALTER SERVER MQS-TCPLISOO, PARAM MQLISTENPORTNUM "nnnn"

50 MQSeries for Compaq NSK V5.1 System Administration

Creating queue managers
where nnnn is the number of the port on which you want to listen.
For listeners running from TACL (runmgqlsr) that require a different TCP/IP

process name from the default $ZTCO0, add the following to the TACL environment
from where that listener is going to run:

ADD DEFINE =TCPIP PROCESS NAME, FILE $277Z)

where $Z777 is the name of the required TCP/IP process.

Note: If individual TCP/IP listener server classes want to use different TCP/IP
processes with each port, they must define both the port and TCP/IP
process name in each server class instance, otherwise there is no guarantee
which TCP/IP process a port defined in the QMINI file will use.

If the parameter MQLISTENPORTNUM is not defined in the listener
program’s environment the Listener obtains the port from the QMINI file.

Swap space allocation

MQSeries for Compaq NSK allocates swap space according to the ExtPool1Size
values for the various executables in the QMINI configuration file. Therefore, if
your queue manager is using the default QMINI file, which allocates 300 KB to
each executable by default, and is running 10 outbound channels, 20 agents, and
10 TCP responders, you need at least 12 MB (40 * 300 KB) of swap space. To
reduce this requirement, you can lower the values in the QMINI file. The
ExtPoolSize values are the minimum additional memory allocated when the initial
memory allocation is exhausted. The value does not have to be larger than the
maximum message size for the queue manager.

A way of controlling the swap allocation of MQSeries executables is to alter the
MQ Pathway server classes by adding:

DEFINE =_DEFAULTS, CLASS DEFAULTS, VOLUME volume.qmD subvolume, SWAP volume

By adding the DEFINE, agent processes created by the EC server also inherit the
defined swap volume thereby creating some scalability of swap utilization when
multiple EC server classes are used.

Default status server name

A unique process name must be specified for the default status server process pair
when you create a queue manager. You specify the default status server name on
the mandatory -s StatusServerName parameter of the crtmgm command. There is no
default value for this parameter. Specify a process name that is both unique in the
system and easy to associate with the queue manager to which it belongs.

You can change the default status server process name for a queue manager as
follows:

1. Stop the queue manager.

2. Set your default volume and subvolume to the location of the queue manager
data files (usually <QMgrName>D).

Chapter 4. Managing queue managers 51

Creating queue managers

3.

4.

Edit the DefaultStatusServerName entry in the Configuration stanza of the
queue manager’s QMINI file to record the new process name.

Run PATHMON for the queue manager by entering the following command
from TACL:

PATHMON /name $<pmon>, nowait/

where <pmon> is the name of the PATHMON process for the queue manager.

Run PATHCOM against the PATHMON process by entering the following
command from TACL:

PATHCOM $<pmon>

Load the queue manager Pathway configuration by entering the following
command from PATHCOM:

START PATHWAY COOL

Alter the server MQS-STATUSO0 and reset the process by entering the
following commands from PATHCOM:

ALTER SERVER MQS-STATUS00, DELETE PROCESS $<oldname>
ALTER SERVER MQS-STATUS00, PROCESS $<newname>

Save the altered configuration back to disk by entering the following
commands from PATHCOM:

SHUTDOWNZ
EXIT

The default status server process name change is now complete. The next strmqm
command starts the queue manager using the new default status server process
name.

Adding and removing nondefault status servers

To add additional status servers, use the existing default status server as a
template. The queue manager does not need to be stopped to allow you to add a
new status server.

The following procedure adds a new status server:

Note: This procedure assumes that the queue manager is running. If this is not the

case, you must start PATHMON and load the PATHWAY configuration
before starting this procedure. You must also omit step ME, and
save the Pathway configuration to disk at the end using a SHUTDOWN?2
command.

52 MQSeries for Compaq NSK V5.1 System Administration

Creating queue managers

1. Run PATHCOM against the PATHMON process by entering the
following command from TACL:

PATHCOM $<pmon>

2. Create a working set of attributes based on the default status server class
as a template by entering the following commands from PATHCOM:

RESET SERVER
SET LIKE MQS-STATUS00

3. Modify the working set for the new server by entering the following
commands from PATHCOM:

SET SERVER CPUS(n:m)
RESET SERVER PROCESS $<default status server process name>
SET SERVER PROCESS $<new status server name>

4. Add the new server, giving it a new server class name by entering the
following command from PATHCOM:

ADD SERVER MQS-STATUSxx

5. Start the new status server, so that it can be used, and exit from
PATHCOM by entering the following commands:

START SERVER MQS-STATUSxx
EXIT

The recommended naming convention for additional server classes is
MQS-STATUS01, MQS-STATUS02, and so on. However, there is no requirement to
use this convention. Provided that the server class name begins with the character
string MQS-STATUS, the server class will be started by strmqm.

Once a status server has been added and started (either explicitly using
PATHCOM or implicitly by strmqm), objects can be reassigned to the new status
server using altmgqfls. For more information about reassigning objects, see

G ”

Before removing a status server, check that all objects configured against this status
server have been either deleted or reassigned to a different status server. You must
not delete the default status server, otherwise the queue manager will become
inoperable.

Chapter 4. Managing queue managers 53

Creating queue managers

Default queue server name

A unique process name must be specified for the default queue server process pair
when you create a queue manager. You specify the default queue server name on
the mandatory -v QueueServer parameter of the crtmqm command. There is no
default value for this parameter. Specify a process name that is both unique in the
system and easy to associate with the queue manager to which it belongs.

You can change the default queue server process name for a queue manager as
follows:

1. Stop the queue manager.

2. Set your default volume and subvolume to the location of the queue manager
data files (usually <QMgrName>D).

3. Edit the DefaultQueueServerName entry in the Configuration stanza of the
queue manager’s QMINI file to record the new process name.

4. Run PATHMON for the queue manager by entering the following command
from TACL:

PATHMON /name $<pmon>, nowait/

where <pmon> is the name of the PATHMON process for the queue manager.

5. Run PATHCOM against the PATHMON process by entering the following
command from TACL:

PATHCOM $<pmon>

6. Load the queue manager Pathway configuration by entering the following
command from PATHCOM:

START PATHWAY COOL

7. Alter server mqgs-queuenn and reset the process by entering the following
commands from PATHCOM:

ALTER SERVER MQS-QUEUEnn, DELETE PROCESS $<oldname>
ALTER SERVER MQS-QUEUEnn, PROCESS $<newname>

8. Save the altered configuration back to disk by entering the following
commands from PATHCOM:

SHUTDOWN2
EXIT

The default status server process name change is now complete. The next strmqm
command starts the queue manager using the new default status server process
name.

54 MQSeries for Compaq NSK V5.1 System Administration

Creating queue managers

Adding and removing nondefault queue servers

To add additional queue servers, use the existing default queue server as a
template. The queue manager does not need to be stopped to allow you to add a
new queue server.

The following procedure adds a new queue server:

Note: This procedure assumes that the queue manager is running. If this is not the
case, you must start PATHMON and load the PATHWAY configuration
before starting this procedure. You must also omit step B, and save the
PATHWAY configuration to disk at the end using a SHUTDOWN?2
command.

1. Run PATHCOM against the PATHMON process by entering the
following command from TACL:

PATHCOM $<pmon>

2. Create a working set of attributes based on the default queue server class
as a template by entering the following commands from PATHCOM:

RESET SERVER
SET LIKE MQS-QUEUEnn

3. Modify the working set for the new server by entering the following
commands from PATHCOM:

SET SERVER CPUS(n:m)
RESET SERVER PROCESS $<default queue server process name>
SET SERVER PROCESS $<new queue server name>

4. Add the new server, giving it a new server class name by entering the
following command from PATHCOM:

ADD SERVER MQS-QUEUEnn

5. Start the new queue server, so that it can be used, and exit from
PATHCOM by entering the following commands:

START SERVER MQS-QUEUEnn
EXIT

The recommended naming convention for additional server classes is
MQS-QUEUEO1, MQS-QUEUEQ2, and so on. However, there is no requirement to
use this convention. Provided that the server class name begins with the character
string MQS-QUEUE, the server class will be started by strmqm.

Chapter 4. Managing queue managers 55

Creating queue managers

Once a queue server has been added and started (either explicitly using
PATHCOM or implicitly by strmqm), objects can be reassigned to the new queue
server using altmgqfls. For more information about reassigning objects, see

7 7

Before removing a queue server, check that all objects configured against this
queue server have been either deleted or reassigned to a different queue server.
You must not delete the default queue server, otherwise the queue manager will
become inoperable.

Volume structure

Files for MQSeries for Compaq NSK are distributed over several subvolumes. The
volume in which these subvolumes reside is selected when you create the queue
manager: it is either taken from the default volume value in MQSINI or specified
on the -p DefaultPrefix parameter of the crtmgqm command.

There are five subvolumes per queue manager. The contents of the subvolumes are
determined by the final character of the subvolume name. For example, for a
queue manager called QMGR resident on a volume $DATA, the following
subvolumes would be present:

$DATA.QOMGR FFST subvolume

$DATA.QMGRD Queue manager data files subvolume
$DATA.QMGRL Queue manager error logs subvolume
$DATA.QMGRM Message queue subvolume
$DATA.QMGRS Channel synchronization subvolume

If the queue manager name is more than seven characters, the subvolume names
are transformed or shortened. The MQSINI file stanzas QMVolume and QMSubvolume
for the queue manager are used to record the locations and names of these
subvolumes.

Queue manager FFST subvolume

The FFST subvolume contains first failure support files. These files are all prefixed
with the letters FD. They indicate serious problems with the MQSeries system,
such as resource shortage, internal MQSeries errors, or problems with the Compaq
NSK system.

Queue manager data files subvolume

AMQRFNxx Are the Repository Cache Shared Memory files for each CPU
(number xx).

CCHDEFS Is the client connection channel definition file.
CCSIDMEM Is the Read Only shared memory file for data conversion CCSID

support.

CHDEFS Is the channel definition file. This file contains configuration
information for the channels that are defined for a queue manager.

Lxxxxxxx Are the namelist files. Lxxxxxxx is derived from the object name;
otherwise it is a generated value.

OAMDB Is the authorization database.

OBJCAT Is the object catalog.

56 MQSeries for Compaq NSK V5.1 System Administration

Volume structure

ABJCAT Is the alternate key file for OBJCAT that contains an index by
object name.

PATHCTL Is the PATHWAY control file.

PRIDB Is the MQSeries principal (user) database.
PRIDBA Is the alternate key file for PRIDB.
QMINI Is the queue manager initialization file.

OMINIMEM Is the Read Only shared memory file for the queue manager wide
static configuration information.

REPMGR Is a file used for coordinating the startup of multiple repository
server processes.

RDFPURGE s the database used by the queue manager to record logically
deleted files that will eventually be removed by cleanrdf.

RUNTIME Is the file for ECBOSS and EC recovery coordination.
SHUTDOWN s the file that controls endmqm.

STATABLE Is the channel status table file. This file holds dynamic information
associated with channel status. Used to save channel status
information over a queue manager shutdown and restart.

TRACEOPT The TRACEOPT file contains the current trace settings for a queue
manager in the form of an unformatted bit-map record. The control
commands strmqtrc and endmgqtrc modify the contents of the file,
using the CONTROL 27 mechanism to notify all processes of the
update.

UMOQSINI Is a snapshot of the unstructured MQSINI file at queue manager
startup.

Queue manager error log subvolume

The error log subvolume contains the error and trace logging files. The TR prefix
identifies trace files. (You can change the prefix by editing the TracePrefix entry in
the QMINI file.) Trace files contain diagnostic information, and are created only if
tracing is switched on using either the MQM facility or the strmqtrc control
command.

The error logs have names in the format MQERRLGn, where n is 1, 2, or 3.
MQERRLGI1 is always the current error log. Its contents are moved to MQERRLG2
when MQERRLGT1 is full; MQERRLG?2 is moved to MQERRLG3 when MQERRLG1
is next emptied. MQERRLGS3 is overwritten if necessary. There are never more than
three error logs, so they must be sized correctly to avoid loss of useful error
information.

Queue manager message queue subvolume

The message subvolume contains files associated with the storage of messages on
local queues. The file names are in the following format:

QXXXXXXX Are the queue files themselves, that contain persistent messages.

Txooooxx Are the Touch files. If an object is altered, the Touch files change
the object date stamp. Txxxxxxx is derived from the object name;
otherwise it is a generated value.

OXXXXXXX Is the queue overflow file.

Chapter 4. Managing queue managers 57

Volume structure

XXXXXXX May be the queue name if it is a unique, short name; otherwise it

is a generated value. (See I’Object name transformation’.)

In addition to the files described above, with specific file name prefix letters,
message overflow files are created in the message queue subvolume by default.
Message overflow files are created to store large messages and, although they have
no specific file name prefix, they can be readily identified because they are
unaudited, unstructured files. The location of new message overflow files may be
changed using altmgfls on a per-queue ba31s bV spec1fv1ng the --msgofsubvol
parameter. (See L i for more
information.)

Queue manager channel synchronization subvolume

The queue manager synchronization subvolume contains internal databases that
record the status of units of work (or batches of messages) transmitted or received
over the channels that are owned by the queue manager.

Once channels have been used on a queue manager, the subvolume contains the
following files:

SYNCHIDX
The synchronization index file. Contains an entry for each synchronization
file created by the queue manager.

Sxxxxxxx
Individual synchronization files. There is one file for each unique
combination of local and remote channel that has been used in the queue
manager. These files record the identities of the messages that have been
transmitted or received within a batch of messages. The information is
used in the resynchronization of channels following failure and the
resolution of in-doubt channels.

Object name transformation

Object names are not necessarily valid file system names. Therefore, the object
names might need to be transformed. The method used is different from that used
for queue-manager names because, although there may be only a few
queue-manager names per system, there can be a large number of other objects for
each queue manager. Only process definitions, namelists and queues are
represented using separate files in the file system; channels and other objects are
not affected by these considerations because they are stored as records in databases
that hold multiple object definitions.

When a new name is generated by the transformation process there is no
relationship with the original object name. You can use the dspmgqfls command to
convert between real and transformed object names: dspmgqfls displays the names
of the main files associated with an MQSeries object.

Working with queue managers

MQSeries provides control commands for creating, starting, ending, and deleting
queue managers. You can also display a queue manager’s attributes using the
MQSC command DISPLAY QOMGR and change them using ALTER QMGR. See
['Displaying gueue manager attributes” on page 84 and I‘Altering queue managed

58 MQSeries for Compaq NSK V5.1 System Administration

Working with queue managers

Ensure that the environment variable PMSEARCHLIST specifies the location of
your MQSeries executables before you attempt to use the control commands. For

more on this environment variable, see [!Appendix C. Setting TACI. environment

Creating a default queue manager

You create a default queue manager using the crtmqm command. The crtmqm
command specified with a -q flag:

* Creates a default queue manager called saturn.queue.manager
* Creates the default and system objects

* Specifies the names of both its default transmission queue and its dead-letter
queue

crtmgm -q -d MY.DEF.XMITQ -u SYSTEM.DEAD.LETTER.QUEUE -n $PMON -o $TRMO1 -s $MQSS
-v $MQQS saturn.queue.manager

where:
-q Indicates that this queue manager is the default queue manager.

-d MY.DEEXMIT.Q
is the name of the default transmission queue.

-u SYSTEM.DEAD.LETTER.QUEUE
Is the name of the dead-letter queue.

-n $PMON
Is the process name of PATHMON for the queue manager.

-0 $TRMO01
Is the home terminal name (must be paused).

-s $MQSS
Is the process name of the default status server.

-v $MQQS

Is the process name of the default queue server.

saturn.queue.manager
Is the name of this queue manager. For crtmqm, this name must be the last
parameter in the command.

A queue manager with the name and options you specified is created. By creating
a queue manager, you also automatically created the following:

* MQSeries default principal for the creator of the queue manager

* Status server for the queue manager

* Queue server for the queue manager

* A configuration file for the queue manager

”

You can now start the queue manager. For more information, see l‘Starting a queud

You may want to alter some of the attributes of a queue manager. You can do this
using the MQM or the control command Etrmgnd. For more information, see

4 7

or

Chapter 4. Managing queue managers 59

Working with queue managers

You should backup the two configuration files that were created when the queue
manager was created. If you create another queue manager that causes problems,
you can reinstate the backups. For more information, see

Creating MQSeries principals

The crtmgm command automatically creates a principal for the user that created
the queue manager. This principal (also known as the default principal) is always
called mgm for compatibility with other MQSeries implementations.

Once you have created a queue manager you may define principals for other users
of MQSeries. This step may be performed at any time (whether or not the queue
manager has been started). If no other users are required for the queue manager,
this step can be omitted.

To create an MQSeries principal named MQPRINCIPAL corresponding to Compaq
NSK user MQM.MQUSER, enter the command:

altmqusr -m saturn.queue.manager -p MQPRINCIPAL -u MQM.MQUSER

To display all the principals currently created, enter the command:

dspmqusr -m saturn.queue.manager

Remember that if you do not create a principal entry for a user, any attempt to
access the queue manager by that user (whether the OAM is enabled or not) will
result in an authorization error. This change was introduced in MQSeries for
Compaq NSK Version 2.2.0.1 and is a part of all later versions.

Running cleanrdf for an RDF-enabled queue manager

If you are running a queue manager in the RDF environment and have enabled
RDPF-specific behavior using the MOQRDF PARAM, you should run the cleanrdf
utility periodically, as follows:

* After making any configuration changes (such as creating or deleting objects, or
making changes to the QMINI file), cleanrdf should be run.

 If your application creates and deletes objects as part of its normal operation,
especially if it uses dynamic queues, cleanrdf should be run during normal
operation at a frequency depending upon the rate of object deletion. NetBatch or
other scheduling software should be used.

Starting a queue manager

Although you have created a queue manager, it cannot process commands or MQI
calls until it is started. Start the queue manager by entering this command:

strmgm saturn.queue.manager

The strmqm command does not return control until the queue manager has started
and is ready to accept connect requests.

60 MQSeries for Compaq NSK V5.1 System Administration

Working with queue managers

Restoring the default and system objects

Default and system objects are automatically created when the queue manager is
created, however, the objects can be replaced by other object definitions at any
time. To restore the default and system objects to a queue manager named
saturn.queue.manager, issue the strmqm command with the -c option:

strmgm -c saturn.queue.manager

The queue manager is started, the default and system objects that were created
when the queue manager was created are restored, then the queue manager is
stopped.

Looking at object files

Each MQSeries queue, queue manager, or process object is represented by a file.
Because the names of these objects are not necessarily valid file names, the queue
manager converts the object name into a valid file name, where necessary. This

process is described in I‘Ohject name transformation” on page 58

Stopping a queue manager

To stop a queue manager, use the endmqm command. For example, to stop a
queue manager called saturn.queue.manager use this command:

endmgm saturn.queue.manager

By default, this command performs a controlled or quiesced shutdown of the
specified queue manager. This process might take a while to complete—a
controlled shutdown waits until all connected applications have disconnected and
until all running channels have stopped.

s

1 describes optional flags
for the endmqm command that specify how the shutdown is to be carried out.

If you have problems

Problems in shutting down a queue manager are often caused by applications. For
example, when applications:

* Do not check MQI return codes properly.

* Do not request a notification of a quiesce.

Immediate and preemptive queue manager shutdowns

If a shutdown of a queue manager is slow, or the queue manager does not stop,
you can terminate the endmqm command using BREAK followed by STOP. You
can then issue another endmqm command, but this time with a flag specifying
either an immediate or a preemptive shutdown.

For an immediate shutdown any current MQI calls are allowed to complete, but any

new calls fail. This type of shutdown does not wait for applications to disconnect
from the queue manager. For an immediate shutdown, the command is:

Chapter 4. Managing queue managers 61

Working with queue managers

endmgm -i saturn.queue.manager

If an immediate shutdown does not work, try a preemptive shutdown by specifying
the -p flag. For example:

endmgm -p saturn.queue.manager

Attention
Do not use this method unless all other attempts to stop the queue manager
using the endmgm command have failed. This method can have
unpredictable consequences for connected applications.

If this method still does not work, see 'Stopping a queue manager manually” orl

for an alternative.

For a detailed description of the endmqm command and its options, see w

End % %)

Restarting a queue manager

To restart a queue manager, use the command:

strmgm saturn.queue.manager

Making an existing queue manager the default

When you create a default queue manager, the name of the default queue manager
is inserted in the DefaultQueueManager stanza in the MQSeries configuration file
(MQSINI). The stanza and its contents are automatically created if they do not
exist.

You might need to edit this stanza:

* To make an existing queue manager the default. To perform this task you have
to change the queue manager name in this stanza to the name of the new
default queue manager. You must perform this step manually using a text editor.

 If you do not have a default queue manager on the node, and you want to make
an existing queue manager the default. To perform this task, you must create the
DefaultQueueManager stanza—with the required name—yourself.

* If you accidentally make another queue manager the default and want to revert
to the original default queue manager. To perform this task, edit the
DefaultQueueManager stanza in the MQSeries configuration file, replacing the
name of the unwanted default queue manager with that of the one you do want.

The default queue manager changes to the one specified. All subsequent

connection attempts where the application does not specify a queue manager will
connect to the new default queue manager.

62 MQSeries for Compaq NSK V5.1 System Administration

Working with queue managers

See [‘Chapter 13_Configuration files” on page 173 for information about

configuration files.

When the stanza contains the required information, stop the queue manager and
restart it.

Deleting a queue manager

To delete a queue manager, first stop it, then use the following command:

dltmgm saturn.queue.manager

Attention
Use caution if deleting a queue manager as you also delete all the resources
associated with it, including all queues and their messages and all object
definitions. Also, all files in the queue manager subvolumes might be purged
(even if they were not created by MQSeries).

For a description of the dltmqm command and its options, see I‘dltmgm (Deletd
Z . You should ensure that only trusted administrators
have the authority to use this command.

If the usual methods for deleting a queue manager do not work, see m

fueue managers manually” on page 307 for an alternative.

Using the Message Queue Management (MQM) facility

The Message Queue Management (MQM) facility of MQSeries for Compaq NSK,
V5.1 runs as a PATHWAY SCOBOL requester under the Terminal Control Process
(TCP). It uses an MQM server class server, which invokes the C language APL

There is a separate instance of the MQM for each queue manager configured on a
system, because each queue manager is controlled under its own PATHWAY
configuration. Consequently, MQM is limited to the management of the queue
manager to which it belongs.

Note: By default, a maximum of 10 users may use the MQM facility concurrently.
To change this limit to 20, for example, enter from the PATHWAY of the
queue manager:

ALTER TCP MQS-TCP-01, MAXTERMS 20

For more information, see /Chapter 3 Using the MQSeries command sets’]

Note:

To invoke MQM, enter run mqmc from the queue manager’s PATHCOM prompt.

Chapter 4. Managing queue managers 63

Message Queue Management (MQM)
The MQM Main Menu is as follows:

IBM MQSeries for Compaq NonStop Kernel Version 5.1

*% Main Menu #**

Enter Choice:
1. Queue Manager
2. Queues

3. Channels

F1 - Enter F16 - Return

(C) Copyright IBM Corp. 1993, 2001 A1l Rights Reserved.

-

Figure 4. The MQSeries for Compagq NSK MQM Main Menu

You can select the following submenus from the MQM Main Menu:
1. Queue Manager

2. Queues

3. Channels

These submenus are described in the remainder of this chapter. You can return to
the MQM Main Menu at any time by pressing Alt+F6. You can return to the
previous screen by pressing the Return key (F16). When selected from the MQM
Main Menu, F16 exits from the MQM facility.

Using the Queue Manager Menu

To select the Queue Manager option, type 1 in the Enter Choice field on the MQM
Main Menu, then press the Enter key (F1). The Queue Manager Menu panel is
displayed:

64 MQSeries for Compaq NSK V5.1 System Administration

Message Queue Management (MQM)

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)
**% Queue Manager Menu **
Name : MTO1
Description 8
Command Level 8 510 Trigger Interval : 999999999
Coded Char Set 8 819 Platform : NSK
Max Handles 8 256 Max Uncommitted Msg: 10000
Max Message ¢ 4194304 Max Priority 9
Dead Letter Queue Name : SYSTEM.DEAD.LETTER.QUEUE
Command Input Queue Name : SYSTEM.ADMIN.COMMAND.QUEUE
Default Xmit Queue Name
Authority Event Enabled Y/N? : N Inhibit Event Enabled Y/N? : N
Local Event Enabled Y/N? : N Remote Event Enabled Y/N? : N
Start/Stop Event Enabled Y/N?: N Performance Event Enabled Y/N?: N
FORCE Y/N? _
F1 - Modify F2 - Trace PGDN - Next Page F16 - Return
& %
Figure 5. The Queue Manager Menu panel
Press PGDN key to display the second panel of information.
4 . . N
IBM MQSeries for Compaq NonStop Kernel Version 5.1
% Queue Manager Menu **
Queue Manager Id : ROBERT_2001-01-15_10.28.40
Channel Auto Definition: N Channel Auto Definition Events Enabled Y/N?: N
Auto Definition Exit
Cluster Workload Data
Cluster Workload Exit
Cluster Workload Length: 100 Distribution List Support: Y
Repository Name
Repository Name List
PGUP - Return
%

Figure 6. The Queue Manager Menu panel 2

You can use the Queue Manager Menu panel to:
* Alter some attributes of the queue manager
* Control tracing of MQSeries objects

Altering queue manager attributes

Overtype those values you want to alter on the Queue Manager Menu panel, and
press the Modify key (F1). You are prevented from overtyping those values that
cannot be modified.

Chapter 4. Managing queue managers 65

Message Queue Management (MQM)

Tracing MQSeries objects
Press the Trace key (F2) to display the QUEUE MANAGER TRACE MENU:

-

~
IBM MQSeries for Compaq NonStop Kernel Version 5.1
** QUEUE MANAGER TRACE MENU **
_ API MQI.
_ COMMS Communications networks processing flow.
_ CSFLOWS Common services processing flow.
_ LQMFLOWS : Local queue manager processing flow.
_ REMOTEFLOWS : Communications component processing flow.
_ ADMINFLOW Administrative processing flow.
_ OTHERFLOWS Other components processing flow.
_ CSDATA Common services data buffers.
_ LQMDATA Local queue manager internal data buffers.
_ REMOTEDATA Communications component internal data buffers.
_ ADMINDATA Administrative internal data buffers.
_ OTHERDATA : Other components internal data buffers.
_ VERSIONDATA : Output version of MQSeries running.
_ COMMENTARY Qutput program comments in the MQSeries components.
_ ATl Select all options.
F1-Start Trace F2-Stop Trace F16-Return
J

Figure 7. The QUEUE MANAGER TRACE MENU

The following trace options are available:

API Output data for trace points associated with the MQI and major
queue manager components.

COMMS Output data for trace points associated with data flowing over
communications networks.

CSFLOWS Output data for trace points associated with processing flow in
common services.

LOMFLOWS Output data for trace points associated with processing flow in the
local queue manager.

REMOTEFLOWS
Output data for trace points associated with processing flow in the
communications component.

ADMINFLOW
Output data for trace points associated with administrative internal
data buffers.

OTHERFLOWS
Output data for trace points associated with other components’
processing flow.

CSDATA Output data for trace points associated with internal data buffers
in common services.

LOMDATA Output data for trace points associated with internal data buffers
in the local queue manager.

REMOTEDATA
Output data for trace points associated with internal data buffers
in the communications component.

66 MQSeries for Compaq NSK V5.1 System Administration

Message Queue Management (MQM)

ADMINDATA
Output data for trace points associated with internal data buffers
in the communications component.

OTHERDATA Output data for trace points associated with other components’
internal data buffers.

VERSIONDATA
Output data for trace points associated with the version of
MQSeries that is running.

COMMENTARY
Output data for trace points associated with comments in the
MQSeries components.

ALL Trace points are enabled and a full trace is generated.

Type any character against the names of the components for which you want to
start (or stop) tracing.

To start tracing of the selected components, press the Start Trace key (F1). To stop
tracing of the selected components, press the Stop Trace key (F2).

Using the Queues menu

To select the Queues option, type 2 in the Enter Choice field on the MQM Main
Menu, then press the Enter key (F1). The Search Criteria panel is displayed:

IBM MQSeries for Compaq NonStop Kernel Version 5.1

**% Search Criteria =

Queue Name:
Enter a queue name or part of one:

Queue Type: _
choose one or Teave blank: 1. Local
2. Model
3. Remote
4. Alias
F1 - Enter F16 - Return
- J

Figure 8. The Search Criteria panel (queue)

In the Queue Name field of the Search Criteria panel, type a partial or complete
queue name. You may also provide a Queue Type identifier if you wish to limit
your search to queues of one type. Press the Enter key (F1). The Queue menu,
which you use to display, modify, create, copy, delete, and monitor MQSeries
queues, is displayed.

Chapter 4. Managing queue managers 67

Message Queue Management (MQM)

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1
*%x Queue Menu **
Queue Name Type
_ ANNE.ETO1.RQSD.LOCAL QLOCAL
_ ANNE.ETO1.RQSD.REMOTE QREMOTE
_ ANNE.ETO1.RQSV.LOCAL QLOCAL
_ ANNE.ETO1.RQSV.REMOTE QREMOTE
_ ANNE.ETO1.SDRC.LOCAL QLOCAL
_ ANNE.ETO1.SDRC.REMOTE QREMOTE
_ ANNE.M401.RQSD.LOCAL QLOCAL
_ ANNE.M401.RQSD.REMOTE QREMOTE
_ ANNE.M401.RQSV.LOCAL QLOCAL
_ ANNE.M401.RQSV.REMOTE QREMOTE
_ ANNE.M401.SDRC.LOCAL QLOCAL
_ ANNE.M401.SDRC.REMOTE QREMOTE
F1 - Enter/Display/Modify F2 - Create F3 - Copy F4 - Delete
F5 - Monitor PGDN PGUP F16 - Return
o

Figure 9. The Queue Menu

Note: You can create, modify, and delete queues only on the queue manager
associated with the MQM requester that you are using.

Use the PGUP and PGDN keys to scroll the list of queues.

Creating a queue
From the Queue Menu, press the Create key (F2) to display the Create Queue
panel:

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1
** Create Queue **
Queue Type: _ 1l=Local, 2=Model, 3=Remote, 4=Alias,
Name:
Replace [Y/N]: _
F1 - Enter F16 - Return
-

Figure 10. The Create Queue panel

To create a new queue definition:

68 MQSeries for Compaq NSK V5.1 System Administration

Message Queue Management (MQM)
1. Type 1 (for a local queue), 2 (for a model queue), 3 (for a remote queue), or 4
(for an alias queue) in the Queue Type field.
2. Type the queue manager name in the Name field.

3. If the queue is to replace an existing queue of the same name and type, type Y
in the Replace field.

4. Press the Enter key (F1).

If you create a local queue, the Create Local Queue panel is displayed:

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)
** Create Local Queue **

Queue Name : TEST

Description:

Default Msg Priority : 0 Put Enabled [Y/N] _

Default Persistence : _ Get Enabled [Y/N]

Retention Interval 0 Queue Definition Type

Max Queue Depth 0 Priority/FIFO [P/F]

Max Message Length 0 Share [Y/N] _

Backout Threshold 0 Usage [N/X] B

Backout Requeue Name

Init. Queue :

Process Name 8

Trigger Type [N/E/F/D]: _ Trigger/NoTrigger [Y/N]

Trigger Depth 8 0 Trigger Priority : 0

Trig. Data :

Q Depth Max Event 8 _ Q Serv. Int. Event[H/O/N]: _

Q Depth High Limit 3 0 Q Depth High Event 8 _

Q Depth Low Limit 0 Q Depth Low Event _

Q Service Interval 8 0 Scope B

F1 - Enter PGDN - Next Page F16 - Return
& %

Figure 11. The Create Local Queue panel

Press the PGDN key to display the second panel of information.

Chapter 4. Managing queue managers 69

Message Queue Management (MQM)

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)

** Create Local Queue **

Cluster Name
Cluster Name List

Distribution List Y/N : _ Default Binding [0/N]

PGUP - Return

- J

Figure 12. The Create Local Queue panel 2

Complete the panel, and press the Enter key (F1).

If you create a remote queue, the Create Remote Queue panel is displayed:

IBM MQSeries for Compaq NonStop Kernel Version 5.1
** Create Remote Queue **

Queue Name : TEST_REMOTE
Description:

Default Msg Priority : 0 Put Enabled (Y/N) _
Default Persistence : _ Default Binding [0/N]
Scope

Remote Queue Name
Remote Queue Manager
Transmit Queue Name
Cluster Name

Cluster Name List

F1 - Enter F16 - Return

- J

Figure 13. The Create Remote Queue panel
Complete the panel, and press the Enter key (F1).
Copying a queue

From the Queue Menu, press the Copy key (F3) to define a new queue by copying
an existing definition. The Copy Queue panel is displayed:

70 MQSeries for Compaq NSK V5.1 System Administration

Message Queue Management (MQM)

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)
*% Copy Queue #**
Name: ANNE.ETO1.RQSD.LOCAL.2
Replace [Y/N]: _
Like Queue: ANNE.ETO1.RQSD.LOCAL
Queue Type: QLOCAL__
F1 - Enter F16 - Return
& %

Figure 14. The Copy Queue panel

Type the name of the new queue definition in the Name field; type Y in the
Replace field if the new queue is to replace an existing queue of the same name
and type; type the name of the definition you are copying in the Like Queue field;
type the queue type in the Queue Type field. Press the Enter key (F1).

Modifying a queue

From the Queue Menu, press the Modify key (F1) to display the Display/Modify

Local Queue panel:

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)
*% Display/Modify Local Queue **

Queue Name : ANNE.ETO1.RQSD.LOCAL

Description: Local queue ETOL receiver

Default Msg Priority : 0 Put Enabled [Y/N] . Y

Default Persistence : N Get Enabled [Y/N] g Y

Retention Interval : 999999999 Queue Definition Type : PREDEFINED

Max Queue Depth 5000 Priority/FIFO [P/F] : P

Max Message Length 1024 Share [Y/N] g Y

Backout Threshold 0 Usage [N/X] : N

Backout Requeue Name

Init. Queue

Process Name 3

Trigger Type [N/E/F/D]: F Trigger/NoTrigger [Y/N] N

Trigger Depth 3 1 Trigger Priority 0

Trig. Data :

Q Depth Max Event Y Q Serv. Int. Event[H/O/N]: N

Q Depth High Limit 80 Q Depth High Event : N

Q Depth Low Limit 8 20 Q Depth Low Event : N

Q Service Interval : 999999999 Scope : QMGR

F1 - Modify PGDN - Next Page F16 - Return
o %
Figure 15. The Display/Modify Local Queue panel

Chapter 4. Managing queue managers 71

Message Queue Management (MQM)

Overtype those values you want to modify, and press the Modify key (F1). You are
prevented from overtyping those values that cannot be modified.

Deleting a queue
On the Queue Menu, enter any character against the name of the queue that you
want to delete. Press the Delete key (F4), then press F4 again to confirm deletion.

Monitoring a queue
Press the Monitor key (F5) from the Queue Menu to display the Monitor Local
Queues panel:

IBM MQSeries for Compaq NonStop Kernel Version 5.1
*% Monitor Local Queues **
Queue OPEN INPUT OPEN OUTPUT DEPTH

ANNE_M401_RQSD_LOCAL
ANNE_M401_RQSV_LOCAL
ANNE_M401_SDRC_LOCAL
ANNE_MA02_RQSD_LOCAL
ANNE_MAO2_RQSV_LOCAL
ANNE_MA0O2_SDRC_LOCAL
ANNE_MDO1_RQSD_LOCAL
ANNE_MDO1_RQSV_LOCAL
ANNE_MDO1_SDRC_LOCAL
ANNE_MDO1_SVRC_LOCAL
ANNE_MEO2_RQSD_LOCAL
ANNE_MEO2_RQSV_LOCAL
ANNE_MEO2_SDRC_LOCAL 10
ANNE_MEO2_SVRC_LOCAL

F12 - Refresh PGDN PGUP F16 - Return

Figure 16. The Monitor Local Queues panel

In this example, the queues are open neither for input nor for output. One queue,
ANNE_MEQ2_SDRC_LOCAL, contains 10 messages.

The MOMOQMREFRESHINT PATHWAY parameter for MQS-MQMSVR00
determines the frequency with which monitor screens for channels and queues are
refreshed. The default frequency is every 30 seconds. To change the frequency to
every 10 seconds, for example, enter from the PATHWAY for your queue manager:

ALTER SERVER MQS-MQMSVROO, PARAM MQMQMREFRESHINT 10

Using the Channels menu

To select the Channels option, type 3 in the Enter Choice field on the MOM Main
Menu, then press the Enter key (F1). The channel Search Criteria panel is
displayed:

72 MQSeries for Compaq NSK V5.1 System Administration

Message Queue Management (MQM)

4 N
IBM MQSeries for Compaq NonStop Kernel Version 5.1
**% Search Criteria =
Channel Name:
Enter a channel name or part of one:
Channel Type: _
choose one or Teave blank: 1. Sender
2. Server
3. Receiver
4. Requester
5. SvrConn
6. Cluster Sender
7. Cluster Receiver
F1 - Enter F16 - Return
& %

Figure 17. The Search Criteria panel (channel)

In the Channel Name field, type a partial or complete channel name. In the
Channel Type field, you may enter a number between 1 and 5 to identify the type
of channel you are interested in. Press the Enter key (F1) to display the Channel

Menu:
4)) N
IBM MQSeries for Compaq NonStop Kernel Version 5.1
% Channel Menu #

Channel Name TYPE STATUS

MAG2 .MTO1.SDRC.0001 RECEIVER

MAO2_MTO1_RQSD_0001 REQUESTER

MAO2_MTO1_RQSV_0001 REQUESTER

MAO2_MTO1_SDRC_0001 RECEIVER

MDO1_MTO1_RQSD_0001 REQUESTER

MDO1_MTO1_RQSV_0001 REQUESTER

MDO1_MTO1_SDRC_0001 RECEIVER

MDO1_MTO1_SVRC_0001 RECEIVER

MEO2_MTO1_RQSD_ 0001 REQUESTER

MEO2_MTO1_RQSV_0001 REQUESTER

MEO2_MTO1_SDRC_0001 RECEIVER

MEO2_MTO1_SVRC_0001 RECEIVER
F1 - Enter/Display/Modify F2 - Create F3 - Copy F4 - Delete
F5 - Monitor F6 - Resolve F7 - Reset MSN F8 - Start/Stop F10 - Status
F12 - Refresh PGDN PGUP F16 - Return

- J

Figure 18. The Channel Menu

The Channel Menu displays a list of channels that match your search criteria. From
the Channel Menu you can:
* Display and modify channel status.
* Create a new channel definition.

Chapter 4. Managing queue managers 73

Message Queue Management (MQM)

* Copy a channel definition.
* Delete a channel definition.
* Monitor channel status.

* Resolve a channel.

* Reset a message sequence number (MSN).
* Start or stop a channel.

Modifying a channel
On the Channel Menu, type any character against the channel you want to modify,
and press the Enter/Display/Modify key (F1). The appropriate panel is displayed.
For example, if you select a sender channel, the Display/Modify Sender Channel

panel is displayed:

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)
+% Display/Modify Sender Channel **
Channel Name : MTO1.M401.SDRC.0001_
Description : Sender to M401
Xmit Queue Name : M401.TQ.SDRC.0001
Data Conversion Y/N: N NonPersistent Msg Speed [FAST/NORMAL]: FAST _
User Id PassWord g
MCA Name MCA UserID :
Batch Size 50 Max Message Size 4194304
MSN Wrap Count 9999999 Disconnect Interval: 60
Short Retry Count 10 Short Timer 8 60
Long Retry Count 9999999 Long Timer 1200
Heartbeat Interval : 300 Batch Interval 3 0
Transport Protocol : 1 (1=Lu6.2/ 2=TCP/IP) TCP/IP Port Number :
TCP/IP Address
TCPIP/SNA Process : $ZTC1
Local LU Name : IYAHTO80 Remote LU Name . IYAFT110
Local TP Name : INTCRS6A Mode Name ¢ LU62PS__
Remote TP Name
F1 - Modify PGDN - Exits F16 - Return
Ao %

Figure 19. The Display/Modify Sender Channel panel (1)

Press the PGDN key to display the second panel of information:

74 MQSeries for Compaq NSK V5.1 System Administration

Message Queue Management (MQM)

IBM MQSeries for Compag NonStop Kernel Version 5.1)
*x Display/Modify Sender Channel *x*

Scrty Data:
Scrty Exit:

NOTE: RUNMQSC must be used to update the Send, Receive and Message
Data and Exit attributes of channels

PGUP - Return

Figure 20. The Display/Modify Sender Channel panel (2)

Overtype those values you want to modify, and press the Modify key (F1). You are
prevented from overtyping those values that cannot be modified.

Creating a channel definition
From the Channel Menu, press the Create key (F2) to display the Create Channel

panel:
4) . N
IBM MQSeries for Compaq NonStop Kernel Version 5.1
** Create Channel =**
Channel Type: 1 1=Sender, 2 = Server, 3=Receiver,
4=Requester, 5 = Server Connection
6 = Cluster Sender, 7 = Cluster Receiver
Name:
Replace [Y/N]: _
F1 - Enter F16 - Return
%

Figure 21. The Create Channel panel

To create a new channel definition:

1. Type 1 (for a sender channel), 2 (for a server channel), 3 (for a receiver

channel), 4 (for a requester channel), or 5 (for a server connection) in the
Channel Type field.

2. Type the name of the channel definition in the Name field.

Chapter 4. Managing queue managers 75

Message Queue Management (MQM)

3. Press the Enter key (F1).

4. Type Y in the Replace field if the definition is to replace an existing definition
of the same name and type.

If you enter a 1 in the Channel Type field, the Create Sender Channel panel is
displayed:

IBM MQSeries for Compaq NonStop Kernel Version 5.1
** Create Sender Channel xx
Channel Name : Compaq_TO_SOLARIS__
Description B

Xmit Queue Name

Data Conversion Y/N: NonPersistent Msg Speed [FAST/NORMAL]: FAST__

User Id 8 PassWord 8

MCA Name 8 MCA UserID 3

Batch Size 3 50 Max Message Size : 4194304
MSN Wrap Count 3 999999999 Disconnect Interval: 6000
Short Retry Count : 999999 Short Timer 8 60
Long Retry Count : 999999 Long Timer 8 1200
Heartbeat Interval : 300 Batch Interval g 0
Transport Protocol : _ (1=Lu6.2/ 2=TCP/IP) TCP/IP Port Number :

TCP/IP Address 3

TCPIP/SNA Process : $ZTCl

Local LU Name 2 Remote LU Name
Local TP Name g Mode Name
Remote TP Name

F1 - Enter PGDN - Exits F16 - Return

Figure 22. The Create Sender Channel panel

If you enter a 3 in the Channel Type field, the Create Receiver Channel panel is

displayed:
4) . N
IBM MQSeries for Compaq NonStop Kernel Version 5.1
*% Create Receiver Channel #**
Channel Name : SOLARIS_TO_Compaq___
Description 3
Put Authority D/C : _ NonPersistent Msg Speed [FAST/NORMAL]: FAST _
User Id 8 MCA UserID g
Batch Size 3 50 Max Message Size : 4194304
Msg Retry Count B 10 Msg Retry Interval : 1000
Heartbeat Interval : 300 MSN Wrap Count 2 999999999
Transport Protocol : _ (1=Lu6.2/ 2=TCP/IP)
F1 - Enter PGDN - Exits F16 - Return
o J

Figure 23. The Create Receiver Channel panel

76 MQSeries for Compaq NSK V5.1 System Administration

Message Queue Management (MQM)

If you enter a 5 in the Channel Type field, the Create Server Connection Channel
panel is displayed:

/) . N
IBM MQSeries for Compaq NonStop Kernel Version 5.1
% Create Server Connection Channel #
Channel Name : WINDOWS_CLIENT
Description 3
MCA UserID 8
Max Message Size : 4194304
Heartbeat Interval : 300
Transport Protocol : _ (1=Lu6.2/ 2=TCP/IP)
F1 - Enter PGDN - Exits F16 - Return
- J

Figure 24. The Create Server Connection Channel panel

To create a new channel definition, complete the requested panel and press the

Enter key (F1).

If you enter a 6 in the Channel Type field, the Create Cluster Sender Channel panel

is displayed:

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)
** Create Cluster Sender Channel #**
Channel Name : CLUSTER_SENDER
Description 3
Cluster Name
Cluster Name List
Data Conversion Y/N: _ NonPersistent Msg Speed [FAST/NORMAL]: FAST
User Id : PassWord 3
MCA Name 2 MCA UserID
Batch Size 3 50 Max Message Size 4194304
MSN Wrap Count 8 999999999 Disconnect Interval: 6000
Short Retry Count : 999999 Short Timer 8 60
Long Retry Count : 999999 Long Timer 1200
Heartbeat Interval : 300 Batch Interval B 0
Transport Protocol : _ (1=Lu6.2/ 2=TCP/IP) TCP/IP Port Number :
TCP/IP Address
TCPIP/SNA Process
Local LU Name Remote LU Name
Local TP Name Mode Name
Remote TP Name
F1 - Enter PGDN - Exits F16 - Return
- J

Figure 25. The Create Cluster Sender Channel panel

Chapter 4. Managing queue managers 77

Message Queue Management (MQM)

If you enter a 7 in the Channel Type field, the Create Cluster Receiver Channel
panel is displayed:

IBM MQSeries for Compaq NonStop Kernel Version 5.1
** Create Cluster Receiver Channel x*
Channel Name : CLUSTER_RECEIVER___
Description 8 Put Authority D/C: _

Network Priority : _

Cluster Name
Cluster Name List
Data Conversion Y/N

NonPersistent Msg Speed [FAST/NORMAL]: FAST _

User Id 2 PassWord

MCA Name : MCA UserID :

Batch Size g 50 Max Message Size : 4194304

MSN Wrap Count 8 999999999 Disconnect Interval: 6000

Short Retry Count : 999999 Short Timer 8 60

Long Retry Count : 999999 Long Timer : 1200

Heartbeat Interval : 300 Batch Interval : 0

Msg Retry Count g 0 Msg Retry Interval : 0

Transport Protocol : _ (1=Lu6.2/ 2=TCP/IP) TCP/IP Port Number :

TCP/IP Address

TCPIP/SNA Process : Local LU Name

Local TP Name 8 Remote LU Name

Remote TP Name 2 Mode Name 2

F1 - Enter PGDN - Exits F16 - Return
o J

Figure 26. The Create Cluster Receiver Channel panel

Monitoring a channel
Press the Monitor key (F5) from the Channel Menu panel to display the Monitor

Channels panel:

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)
% Monitor Channels =%
Channel Name Status Curr MSN Last MSN MCA Status Stop
MTO1.MHO1.SDRC.0002 BINDING RUNNING NO
MT01.VM0O3.SDRC.0002 RUNNING 6266 6266 RUNNING NO
F12 - Refresh PGDN PGUP F16 - Return
Refreshing..........
- J

Figure 27. The Monitor Channels panel

The MOMOQMREFRESHINT PATHWAY parameter for MQS-MQMSVR00
determines the frequency with which monitor screens for channels and queues are

78 MQSeries for Compaq NSK V5.1 System Administration

Message Queue Management (MQM)

refreshed. The default frequency is every 30 seconds. To change the frequency to
every 10 seconds, for example, enter from the PATHWAY for your queue manager:

ALTER SERVER MQS-MQMSVROO, PARAM MQMQMREFRESHINT 10

Deleting a channel

On the Channel Menu, select a channel to delete by typing any character against
the channel name. Press the Delete key (F4) to delete the channel, then press F4
again to confirm the deletion request.

Displaying channel status
Press the Status key (F10) from the Channel Menu panel to display the Channel

Status panel:

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)
Channel Status
Channel Name : MTO1.VMO3.SDRC.0002_
Xmit Queue Name: VMO3NCM.TQ.SDRC.0001
Connection Name: $BPO1.IYAHTO80.IYCNVMO3
Channel Status : RUNNING__ In Doubt : NO_
Start Date : 2001-02-03 Start Time : 15.07.14
Last Msg Date : 2001-02-03 Last Msg Time : 16.34.04
MCA Job Name : 000069AA
Current LUW ID : 03544240E28B0277
Last LUW ID : 03544240E28B0277 Current Messages 8 0
MCA Status : RUNNING Current Seq Num 3 6266
Stop Requested : NO_ Last Seq Num 8 6266
Number of Batches 8 6 Number of Messages 8 6
Number of Buffers Sent: 14 Number of Buffers Recvd: 7
Number of Bytes Sent : 3204 Number of Bytes Recvd : 196
Num of Long Retry Left: 9999999 Num of Short Retry Left: 10
F12 - Refresh F16 - Return
o %

Figure 28. The Channel Status panel
Starting and stopping a channel

Press the Start/Stop key (F8) from the Channel Menu to display the Start/Stop
Channel panel:

Chapter 4. Managing queue managers 79

Message Queue Management (MQM)

Ve
IBM MQSeries for Compaq NonStop Kernel Version 5.1
Start/Stop Channel
Name: MTO1_MAO2_SDRC_0001_
Status:
Action: _ choose one of the following:
1. Start Channel
2. Stop Immediate
3. Stop Quiesce
F1 - Enter F16 - Return
-

Figure 29. The Start/Stop Channel panel

Type the name of the channel in the Name field, and type a number between 1
and 3 in the Action field. Press the Enter key (F1).

Resetting a Message Sequence Number (MSN)
From the Channel Menu, press the Reset MSN key (F7) to display the Reset
Channel panel:

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1
Reset Channel
Name: MTO1 M401 RQSD_0001
Sequence Number: 1
F1 - Enter F16 - Return
o

Figure 30. The Reset Channel panel

The MSN ensures nonduplication of messages, and ensures that messages are
stored in the same order as they are transmitted. This screen lets you reset the
sequence number of a channel if necessary.

80 MQSeries for Compaq NSK V5.1 System Administration

Message Queue Management (MQM)

Resolving a channel
From the Channel Menu, press the Resolve key (F6) to display the Resolve
Channel panel.

IBM MQSeries for Compaq NonStop Kernel Version 5.1
Resolve Channel

Name: MTO1_MDO1_RQSV_0001_
Commit or Backout In Doubt Msg: [C/B] _

F1 - Enter F16 - Return

Figure 31. The Resolve Channel panel

You can:
 Backout the in-doubt message batch (B)
* Commit the in-doubt message batch (C)

Copying a channel

On the Channel Menu, press the Copy key (F3). The Copy Channel panel is
displayed:

Chapter 4. Managing queue managers 81

Message Queue Management (MQM)

4 IBM MQSeries for Compaq NonStop Kernel Version 5.1)

% Copy Channel #

Name:

Replace [Y/N]: _

Like Name: MTO1_M4O1_RQSV_0001

Channel Type: SERVER

F1 - Enter F16 - Return

Figure 32. The Copy Channel panel

Type the name of the new channel in the Name field; type the name of the channel
definition you are copying in the Like Name field; type the channel type in the
Channel Type field. Press the Enter key (F1) to copy the channel definition.

82 MQSeries for Compaq NSK V5.1 System Administration

Chapter 5. Administering local MQSeries objects

This chapter explains how to administer local MQSeries objects to support
application programs that use the Message Queuing Interface (MQI). The MQI lets
application programs access message queuing services.

Local administration is when you create, display, change, copy, and delete
MQSeries objects.

This chapter contains these sections:

. I:’S]]ppor_tjng apphcatlon programs that use the M(!|”I

G . . ”

Supporting application programs that use the MQl

MQI application programs need specific objects before they can run successfully.
An MQI application can remove messages from a queue, process them, and send
the results to another queue on the same queue manager.

Queue Manager

Application
get 7] B put From other
< < ‘ applications
put ; [get . To other
applications

Figure 33. Queues, messages, and applications

Whereas applications can put (using MQPUT) messages on local or remote queues,
they can only get (using MQGET) messages directly from local queues.

Before this application can be run, these conditions must be satisfied:
¢ The queue manager must exist and be running.

* The first application queue, from which the messages are to be removed, must
be defined.

* The second queue, on which the application puts the messages, must also be
defined (unless it is a dynamic queue).

© Copyright IBM Corp. 1993, 2001 83

Supporting applications

* The application must be able to connect to the queue manager. To perform this
task, it must be linked to the product code. See L

hmmng_a.p.phca.tmus_on_pa.g&&ﬂ for more information.

* The applications that put the messages on the first queue must also connect to a
queue manager. If they are remote, they must also be set up with transmission
queues and channels.

Performing local administration tasks using MQSC commands

MQSeries commands (MQSC) let you manipulate MQSeries objects. You can issue
commands using the runmqsc command at the command prompt.

for more 1nformat10n about usmg MQSC in the MQSerles for Compaq NSK
environment.

You can use MQSeries script commands (MQSC) to manage queue manager
objects, including the queue manager itself, clusters, channels, queues, namelists
and process definitions. This section deals with queue managers, queues and
process definitions; for information about administering channel objects, see DQM

implementation in the MQSeries Intercommunication book.

You issue MQSC commands to a queue manager using the runmgqsc command.
You can do this interactively, issuing commands from the keyboard, or you can
redirect standard input to run a sequence of commands from an ASCII text file. In
both cases, the format of the commands is the same.

You can run the runmgqsc command in three modes, depending on the flags set on
the command:

e Verification mode, where the MQSC commands are verified on a local queue
manager, but are not actually run.

* Direct mode, where the MQSC commands are run on a local queue manager.
* Indirect mode, where the MQSC commands are run on a remote queue manager.
Object attributes specified in MQSC are shown in this book in upper case (for

example, ROMNAME) although they are not case sensitive. MQSC attribute names
are limited to eight characters.

Before you start

Before you begin, you must create and then start the queue manager, which runs

the MQSC commands. See [!Creating a default quene manager” on page 59 for

more information.

MQSeries object names
In examples, we use some long names for objects. This is to help you identify what
type of object it is you are dealing with.

When you are issuing MQSC commands, you need only specify the local name of
the queue. In our examples, we use queue names such as: ORANGE. LOCAL.QUEUE

The LOCAL.QUEUE part of the name is simply to illustrate that this queue is a
local queue. It is not required for the names of local queues in general.

We also use the name saturn.queue.manager as a queue manager name.

84 MQSeries for Compaq NSK V5.1 System Administration

Issuing MQSC commands

The queue.manager part of the name is simply to illustrate that this object is a
queue manager. It is not required for the names of queue managers in general.

You do not have to use these names, but if you do not, you must modify any
commands in examples that specify them.

Case sensitivity on MQSC commands

MQSC commands and their attributes can be in upper case or lower case letters
and are not case sensitive. Object names on the other hand are case sensitive (that
is, input-queue and INPUT-QUEUE are different objects). Object names in MQSC
commands are folded to upper case (that is, QUEUE and queue are not
differentiated), unless the names are put in single quotation marks. If quotation
marks are not used, upper case letters are used for the object name. See the
MQSeries MQSC Command Reference for more information.

However, some arguments of the runmgsc command, which invokes the MQSC

facility, are case sensitive; see ['lsing control commands” on page 27.
Using the MQSC facility interactively

To enter commands interactively, open a TACL session and enter:

runmqsc

In this example, a queue manager name has not been specified, therefore the
MQSCs are processed by the default queue manager. You can enter any MQSC
command. For example:

MQSC>DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

Continuation characters must be used to indicate that a command is continued on
the following line:

* A minus sign (-) indicates that the command is to be continued from the start of
the following line.

* A plus sign (+) indicates that the command is to be continued from the first
nonblank character on the following line.

Command input terminates with the final character of a nonblank line that is not a
continuation character.

The runmqsc command also supports the standard Compaq NSK history and fix
command facilities. For example:

* Typing history or h produces a list of the ten most recent commands
* Typing !n where 7 is the command number will re-execute that command

* Typing h n or history n where # is a number will list the n most recent
commands

+ Typing fc presents the last command entered for editing. Typing fc n where n is
the command number presents that command for editing. Typing fc string
where string is the beginning part or all of a previously entered command
presents the last occurrence of that command for editing. The syntax is NSK
standard. For example, type d to delete a character, i to insert a character and r
to replace a character.

Chapter 5. Administering local MQSeries objects 85

Issuing MQSC commands

Feedback from MQSCs

When you issue MQSCs, the queue manager provides confirmation or error
messages. For example:

AMQ8006: MQSeries queue created

AMQ8405: Syntax error detected at or near end of command segment below:-

The first message confirms that a queue has been successfully created. The second
message indicates that you have made a syntax error. If you have not entered the
command correctly, refer to the MQSeries MQSC Command Reference for the correct

syntax.

Ending interactive input to MQSC

If you are using MQSC interactively, you can exit by entering the EOF character
CTRL+Y, or by typing exit or quit or end and pressing Enter.

If you are redirecting input from other sources, such as a text file, MQSC
terminates when the end of file is reached.

Displaying queue manager attributes

To display the attributes of the queue manager specified on the runmgqsc
command, use the following MQSeries command:

MQSC>DISPLAY QMGR ALL

A typical output is displaying in wz

1 : dis gmgr all
AMQ8408: Display Queue Manager details.
DESCR() DEADQ(SYSTEM.DEAD. LETTER.QUEUE)
DEFXMITQ(MY.DEFAULT.XMIT.QUEUE) CHADEXIT()
CLWLEXIT() CLWLDATA()
REPOS() REPOSNL()
COMMANDQ (SYSTEM.ADMIN.COMMAND.QUEUE) QMNAME (saturn.queue.manager)
CRDATE(2001-03-12) CRTIME(09.24.30)
ALTDATE (2001-03-12) ALTTIME(09.26.27)
QMID(SIMONW_2001-03-12_09.24.30) TRIGINT(10000)
MAXHANDS (256) MAXUMSGS (10000)
AUTHOREV (ENABLED) INHIBTEV (ENABLED)
LOCALEV (ENABLED) REMOTEEV (ENABLED)
PERFMEV (ENABLED) STRSTPEV (ENABLED)
CHAD (DISABLED) CHADEV (ENABLED)
CLWLLEN(100) MAXMSGL (100000000)
CCSID(819) MAXPRTY (9)
CMDLEVEL(510) PLATFORM(NSK)
SYNCPT DISTL(YES)

Figure 34. Example output for QUGR ALL

The ALL parameter on the DISPLAY QMGR command causes all the queue
manager attributes to be displayed. The output tells us the queue manager name
(saturn.queue.manager), and the names of the dead-letter queue

86 MQSeries for Compaq NSK V5.1 System Administration

Issuing MQSC commands

(SYSTEM.DEAD.LETTER.QUEUE) and the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE). Note that, if you do not specify the name
of a dead-letter queue on the crtmqm command, you must alter the queue
manager to associate a dead-letter queue with the queue manager.

You should confirm that these queues are created by entering the command:

DISPLAY QUEUE (*)

Using a queue manager that is not the default

You can specify a queue manager name when executing the runmqgsc command to
run MQSCs on a local queue manager (other than the default). For example, to run
MQSCs on queue manager named jupiter.queue.manager, use this command:

runmgsc jupiter.queue.manager

All the MQSCs you enter are processed by this queue manager providing the
queue manager is on the same node and is already running.

You can also run MOSC commands on a remote queue manager; see @

”

Altering queue manager attributes
To alter the attributes of the queue manager specified with the runmqsc command,
use the MQSC ALTER QMGR, specifying the attributes and values that you want
to change. For example, use the following commands to alter the attributes of
jupiter.queue.manager:

runmgsc jupiter.queue.manager

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

The ALTER QMGR command changes the dead-letter queue used, and enables
inhibit events.

Running MQSC commands from text files

Running MQSCs interactively is appropriate for quick tests; however, if you have
long commands, or commands that you want to repeat, you should take input
from a text file.

To perform this task, create a text file containing the MQSCs using your text editor.
When you use the runmgsc command, use the TACL IN and OUT redirection
operators, or the flags -i and -0 on runmgqsc. For example, the following command
runs a sequence of commands contained in the text file mymgqscin:

runmgsc /IN mymgscin/

Chapter 5. Administering local MQSeries objects 87

Running MQSC commands

or

runmgsc -i mymgscin

Similarly, you can redirect the output to a file. A file containing the MQSCs for
input is called an MQSC file. The output file containing replies from the queue
manager is called the report file.

To redirect both input and output on the runmqsc command, use this command:

runmgsc /IN mymgscin, OUT mymgscou/

or

runmgsc -i mymgscin -0 mymgscou

This command invokes the MQSC commands contained in the file mymgscin.
Because a queue manager name is not specified, the MQSC commands are run
against the default queue manager. The output is sent to the report file mymgscou.

Eicure 35 on page 89 shows an extract from the MQSC command file mymgscin, and
Eigure 36 on page 90 shows the corresponding extract of the output in mymgscou.

To redirect input and output on the runmgsc command for a queue manager
(saturn.queue.manager) that is not the default, use the command:

runmgsc /IN mymgscin, OUT mymgscou/ saturn.queue.manager

or

runmgsc -i mymgscin -o mymgscou saturn.queue.manager

Using MQSC command files

MQSC command files are written as EDIT files (Compagq file type code 101).

Eigure 35 on page 89 is an extract from an MQSC file showing an MQSeries
command (DEFINE QLOCAL) with its attributes. The MQSeries MQSC Command

contains a description of each MQSC command and its syntax.

88 MQSeries for Compaq NSK V5.1 System Administration

Running MQSC commands

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) REPLACE +
DESCR(' ') +
PUT (ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH (5000) +
MAXMSGL (1024) +
DEFSOPT (SHARED) +
NOHARDENBO +
USAGE (NORMAL) +
NOTRIGGER

Figure 35. Extract from the MQSC command file, mymqscin

You must limit lines to a maximum of 72 characters. The plus sign (+) indicates
that the command is continued on the next line. Note that the plus sign must be
preceded by a space.

Using MQSC reports

The runmgsc command returns a report, which is sent to the current OUT stream
The report contains:

* A header identifying MQSC as the source of the report:

Starting MQSeries Commands.

* An optional numbered listing of the MQSC commands issued. By default, the
text of the input is echoed to the output. Within this output, each command is

prefixed by a sequence number, as shown in [Figure 36 an page 90. However, you

can use the -e flag on the runmgsc command to suppress the output.

* A syntax error message for any commands found to be in error.

* An operator message indicating the outcome of running each command. For
example, the operator message for the successful completion of a DEFINE
QLOCAL command is:

AMQ8006: MQSeries queue created.

¢ Other messages resulting from general errors when running the script file.

A brief statistical summary of the report indicating the number of commands
read, the number of commands with syntax errors, and the number of
commands that could not be processed.

Note: The queue manager attempts to process only those commands that have
no syntax errors.

Chapter 5. Administering local MQSeries objects 89

Running MQSC commands

Starting MQSeries Commands.

12: DEFINE QLOCAL('RED.LOCAL.QUEUE') REPLACE +
: DESCR(' ') +
PUT (ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL (1024) +
DEFSOPT (SHARED) +
USAGE (NORMAL) +
: NOTRIGGER
AMQ8006: MQSeries queue created.

15 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

Figure 36. Extract from the MQSC report file, mymqscou

Running the supplied MQSC command file

When you install MQSeries for Compaq NSK, an MQSC file called AMQSCOSO is
supplied. This file contains the definitions of objects used by sample programs. The
file is located in the samples subvolume, by default $SYSTEM.ZMQSSMPL.

Using runmgsc to verify commands

You can use the runmgqgsc command to verify MQSC commands on a local default
queue manager without actually running them. To perform this step, set the -v flag
on the runmgsc command. For example:

runmgsc -i mymgscin -0 mymgscou -v

When you invoke runmgsc against an MQSC command file, the queue manager
verifies each command and returns a report without actually running the MQSC
commands. This action lets you check the syntax of all the commands in your
command file. This step is important if you are:

* Running a large number of commands from a command file

* Using an MQSC command file many times over.
This report is similar to that shown in Eigure 3d.

You cannot use this method to verify MQSC commands remotely. For example, if
you attempt this command:

runmgsc -i mymgscin -o mymgscou -w 30 -v jupiter.queue.manager

the -w flag, which you use to indicate that the queue manager is remote, is
ignored, and the command is run locally in verification mode .

90 MQSeries for Compaq NSK V5.1 System Administration

Problems with MQSC

Resolving problems with MQSC

If the MQSC commands do not run properly, use the following checklist to see if
any of these common problems apply to you.

When you use the runmgsc command:
¢ Check that $SYSTEM.ZMQSEXE is in PMSEARCH in TACLCSTM.
* Use the IN operator or the -i flag when redirecting input from a file. Otherwise,

the queue manager interprets the file name as a queue manager name and issues
the following error message:

AMQ8118: MQSeries queue manager does not exist.

* If you redirect output to a file, use the OUT operator or the -o flag. By default,
the output file is created using the TACL defaults in effect at the time the
command was issued. Specify a fully qualified file name to send your output to
a specific file.

* Check that you created the queue manager that is going to run the commands.
To do this, look in the configuration file MQSINI, which by default is located in
the installation subvolume, $SYSTEM.ZMQSSYS. This file contains the names of
the queue managers and the name of the default queue manager, if you have
one.

* The queue manager should already be started; if it is not, start it, as described in

{'Starting a quene manager” on page 6(. You get an error message if the queue

manager is already started.

* Specify a queue manager name on the runmgsc command if you have not
defined a default queue manager, otherwise you get this error:

AMQ8146: MQSeries queue manager not available.

For information about correcting this type of problem, see “‘Making an existing]

7

* You cannot specify an MQSC command as a runmqsc parameter. For example,
the following is invalid:

runmgsc DEFINE QLOCAL(FRED)

* You cannot enter MQSC commands from TACL before you issue the runmgsc
command. For example:

DEFINE QLOCAL(QUEUE1)

* Error Name of Variable, built-in, or file needed.

* You cannot run control commands from runmgqsc. For example, you cannot start
a queue manager once you are running MQSC interactively:

Chapter 5. Administering local MQSeries objects 91

Working with local queues

runmqsc
(C) Copyright IBM Corp. 1993, 2001. A1l Rights Reserved
Starting MQSeries Commands.

strmgm saturn.queue.manager
1 : strmgm saturn.queue.manager
AMQ8405: Syntax error detected at or near end of command segment below:

See also LIf you have problems using MQSC remotely” on page 118,

Working with local queues

This section contains examples of some of the MQSC commands that you can use.
Refer to the MQSeries MQSC Command Reference for a complete description of these
commands.

Defining a local queue

For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager are
local to that queue manager.

Use the MQSC DEFINE QLOCAL to create a definition of a local queue and also to
create the data structure that is called a queue. You can also modify the queue
characteristics from those of the default local queue.

In this example, ORANGE.LOCAL.QUEUE is specified to have these
characteristics:

* It is enabled for gets, disabled for puts, and operates on a first-in-first-out (FIFO)
basis.

 Itis an ‘ordinary” queue. That is, it is not an initiation queue or a transmission
queue, and it does not generate trigger messages.

¢ The maximum queue depth is 1000 messages; the maximum message length is
2000 bytes.

The following MQSC command performs this action:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +
DESCR('Queue for messages from other systems') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFQ) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL)

Notes:

1. Most of these attributes are the defaults as supplied with the product.
However, they are shown here for purposes of illustration. You can omit them
if you are sure that the defaults are what you want or have not been changed.

2. USAGE (NORMAL) indicates that this queue is not a transmission queue.

3. If you already have a local queue on the same queue manager with the name
ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute, if

92 MQSeries for Compaq NSK V5.1 System Administration

Working with local queues

you want to overwrite the existing definition of a queue, but see also

Changing the physical file size for queues

By default, the queue manager creates queue data files that support up to 100 MB
of data. If this limit is reached, applications receive the return code
MQRC_Q_SPACE_NOT_AVAILABLE. To change the maximum storage allocated to
a queue, first identify the physical files that hold the data for the queue using
dspmgqfls, then use the altmqfls command to resize the primary and secondary
extent sizes and the maximum extents. If the file is already partitioned, altmgqfls
will resize all of the partitions. For more information, see L

i i Z . If more storage is required, you can partition the file

across multiple volumes.

Defining a dead-letter queue

Each queue manager should have a local queue to be used as a dead-letter queue
so that messages that cannot be delivered to their correct destination can be stored
for later retrieval.

You must tell the queue manager about the dead-letter queue. You can do this by
specifying a dead-letter queue on the crtmgqm command or you can use the ALTER
QOMGR command to specify one later. You must also define the dead-letter queue
before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
with the product. This queue is automatically created when the queue manager is
created. You can modify this definition, if required. There is no need to rename it.

A dead-letter queue has no special requirements except that:
It must be a local queue

* Its MAXMSGL (maximum message length) attribute must enable the queue to
accommodate the largest messages that the queue manager has to handle plus
the size of the dead-letter header (MQDLH).

MQSeries provides a dead-letter queue handler that lets you specify how messages
found on a dead-letter queue are to be processed or removed. For further
information, see I i = ”

Displaying default object attributes

When you define an MQSeries object, it takes any attributes that you do not
specify from the default object. For example, when you define a local queue, the
queue inherits any attributes that you omit in the definition from the default local
queue, which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what
these attributes are, use the following command:

DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE)

Note: The syntax of this command is different from that of the corresponding
DEFINE command.

You can selectively display attributes by specifying them individually. For example:

Chapter 5. Administering local MQSeries objects 93

Displaying default object attributes

DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +
MAXDEPTH +
MAXMSGL +
CURDEPTH

This command displays the three specified attributes as follows:

AMQ8409: Display Queue details.
QUEUE (ORANGE. LOCAL . QUEUE)
MAXDEPTH(1000)

MAXMSGL (2000)
CURDEPTH(0)

CURDEPTH is the current queue depth, that is, the number of messages on the
queue. This is a useful attribute to display, because by monitoring the queue depth
you can ensure that the queue does not become full.

Copying a local queue definition

You can copy a queue definition using the LIKE attribute on the DEFINE
command. For example:

DEFINE QLOCAL (MAGENTA.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE)

This command creates a queue with the same attributes as our original queue
ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.

You can also use this form of the DEFINE command to copy a queue definition,
but substituting one or more changes to the attributes of the original. For example:

DEFINE QLOCAL (THIRD.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE) +
MAXMSGL (1024)

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the
queue THIRD.QUEUE, but specifies that the maximum message length on the new
queue is to be 1024 bytes, rather than 2000.

Notes:

1. When you use the LIKE attribute on a DEFINE command, you are copying the
queue attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as
DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE).

Changing local queue attributes
You can change queue attributes in two ways, using either the ALTER QLOCAL
command or the DEFINE QLOCAL command with the REPLACE attribute. In
‘Defini i , we defined the queue
ORANGE.LOCAL.QUEUE. Suppose, for example, you wanted to increase the
maximum message length on this queue to 10 000 bytes.

94 MQSeries for Compaq NSK V5.1 System Administration

Changing local queue attributes
¢ Using the ALTER command:

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000)

This command changes a single attribute, that of the maximum message length;
all the other attributes remain the same.

¢ Using the DEFINE command with the REPLACE option, for example:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000) REPLACE

This command changes not only the maximum message length, but all the other
attributes, which are given their default values. The queue is now put enabled,
whereas previously it was put inhibited. Put enabled is the default, as specified
by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have changed it.

If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Changing the volume of a local queue

Use the altmqfls command to change the volume on which a local, predefined
queue is stored. This might be necessary to spread disk I/O across volumes to
balance the system for optimum performance. The queue manager must have been
started before this command is issued, and the queue itself must not be open. Only
one queue may be named on any altmgqfls command. See L

file attributes)” on page 230 for the syntax of the altmgfls command.
Changing the options for a local queue

Use the altmgfls command to change:

* Whether the queue is loaded from disk into cache when the queue manager
starts. Use --qsoptions S.

* Whether the queue remains in memory while the queue server is running after it
is first loaded. If set, the queue server retains the queue’s structures and any
data in memory once loaded. If not set, the storage associated with a queue may
be removed from the queue server’s address space when it is no longer being
accessed. Use --gsoptions L.

* Whether the non-persistent messages are checkpointed to the backup queue
server, providing fault tolerance at the expense of the CPU loading required to
handle the extra checkpointing, extra IPC messages and extra memory required
to store the messages. Use --qsoptions C.

Note: All of the --gsoptions SLC are set each time the command is issued. For
example, --gsoptions S will unset L and C. The --gsoptions option can be
specified once and once only on a command line.

¢ The maximum number of bytes of data each persistent message can keep in the
queue server’s cache (as well as on disk). The number of bytes set are kept in
memory and the browse operation returns this data to the application without
having to access the disk. Using this will increase the memory resources in use
by the queue server. Use the --browse parameter.

Chapter 5. Administering local MQSeries objects 95

Recalculation, update, and retrieval

¢ The minimum message size used by a message overflow file to store message
data. Persistent messages that are smaller than this are stored in the queue
overflow file. persistent messages larger than this have their bulk data stored in
a dedicated message overflow file. Use the --msgofthresh parameter.

* The subvolume on the volume where the queue resides where the queue server
creates new message overflow files. Use the --msgofsubvol parameter.

* The name of a measure counter which, if part of an active measurement, is
initialized to the current depth and then incremented and decremented by the
queue server responsible for the queue when messages are added or removed
from the queue. Use the --meascount parameter.

* The primary and secondary extent size and the maximum number of extents for
the queue file. Use the --gsize (primaryextent,secondaryextent,maxextents)
parameter. With the --gsize parameter, all of the values must be specified.

* The primary and secondary extent size and the maximum number of extents for
the queue overflow file. Use the --osize
(primaryextent,secondaryextent,maxextents) parameter. With the --osize
parameter, all of the values must be specified.

Reassigning objects to status servers and queue servers

Status servers handle all objects except local and model queues. Queue servers
handle all local queue and model queue objects.

Initially, all objects are created to use the default queue server or status server,
depending on the object. Using altmqfls after an object has been created, you can
configure the object to use an appropriate server other than the default. You must
have configured the new PATHWAY server class for the server and have started it
before you can use the object.

You may specify either a process name or the word DEFAULT on the command
line for altmqfls. No checking is performed that the new server is active or
configured at the time the object is reconfigured.

You can use the dspmgqfls command to display the current status server for an
object.

Note that the queue server can be set for local and model queues. Dynamic queues
inherit the queue server from the model queue that is used to create them.

Clearing a local queue

To delete all the messages from a local queue called MAGENTA.QUEUE, use the
following command:

CLEAR QLOCAL (MAGENTA.QUEUE)

You cannot clear a queue if:

* There are uncommitted messages that have been put on the queue under
syncpoint.

* An application currently has the queue open.

96 MQSeries for Compaq NSK V5.1 System Administration

Deleting local queues

Deleting a local queue

Use the MQSC command DELETE QLOCAL to delete a local queue. A queue
cannot be deleted if it has uncommitted messages on it. However, if the queue has
one or more committed messages, and no uncommitted messages, it can only be
deleted if you specify the PURGE option. For example:

DELETE QLOCAL (PINK.QUEUE) PURGE

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it
contains any committed messages.

Browsing queues

MQSeries for Compaq NSK provides a sample queue browser to enable you to
look at the contents of the messages on a queue. The browser is supplied both as
source and as a module that can be run. By default, the file names and paths are:

Source $SYSTEM. ZMQSSMPL . AMQSBCGO
Executable $SYSTEM. ZMQSSMPL . AMQSBCG

The sample takes two parameters:
Queue name For example, SYSTEM.ADMIN.RESPQ. tppO1.

Queue manager name
For example, snooker.

For example:

AMQSBCG SYSTEM.ADMIN.RESPQ.tppOl1 snooker

There are no defaults; both parameters are required. Typical results from this
command are:

AMQSBCG - starts here

kkhkkhkhkkhkhhkhkkhkkkkkkkkhkkkkx

MQCONN to snooker
MQOPEN - 'SYSTEM.ADMIN.RESPQ.tppOl'

MQGET of message number 1
**x*Message descriptor#x*x

Strucld : 'MD ' Version : 1

Report : 0 MsgType : 8

Expiry : -1 Feedback : O

Encoding : 273 CodedCharSetId : 850

Format : 'AMQMRESP'

Priority : 5 Persistence : 1

MsgId : X'414D5120736E6F6F6B657220202020202ED47690071A6D00 "
Correlld : X'00"
BackoutCount : 0

ReplyToQ ! !
ReplyToQMgr : 'snooker !
*x Jdentity Context

UserIdentifier : 'tppOl !

AccountingToken :
X'043730373000"

Chapter 5. Administering local MQSeries objects 97

Browsing queues

ApplldentityData : '
*% Origin Context
PutApp1Type : '6'
PutApp1Name .

PutDate : '19941124' PutTime

Appl10riginData :
*k Kk Message *kxK
length - 268 bytes

00000000: 736E 6F6F 6B65 7220
00000010: 2020 2020 2020 2020
00000020: 2020 2020 2020 2020
00000030: 534E 4F4F 4B45 522E
00000040: 5020 2020 2020 2020
00000050: 2020 2020 2020 2020
00000060: 0000 0001 0000 0024
00000070: 0000 0001 0000 0001
00000080: 0000 0003 0000 0004
00000090: 0000 0000 0000 0014
000000A0: 5749 4748 542E 5443
000000BO: 0000 0010 0000 O5E7
000000CO: 0000 0050 0000 ODAE
000000D0: 2066 726F 6D20 736E
000000EQ: 2077 6967 6874 2076
000000F0: 7020 2020 2020 2020
00000100: 2020 2020 2020 2020

MQGET of message number 2
*x**xMessage descriptorxx*x

Strucld : 'MD ' Version :
Report : 0 MsgType : 2
Expiry : -1 Feedback : O

2020
2020
2020
5749
2020
2020
0000
0000
0000
534E
5020
0000
0000
6F6F
6961
2020
2000

1

Encoding : 273 CodedCharSetld :

Format : 'MQADMIN '
Priority : 8 Persistence :

: '11184015'

2020
2020
2020
4748
2020
2020
0001
0000
0028
AF4F
2020
0001
0000
6B65
2074
2020
0000

850

2020
2020
2020
542E
2020
2020
0000
0000
0000
4B45
0000
0000
0000
7220
6370
2020

2020
2020
2020
5443
2020
2020
0015
0000
ODAD
522E
0003
0004
0039
746F
2F69
2020

"snooker !

"SNOOKER.WIGHT.TC'

................

' from snooker to'
" wight via tcp/i'
p 1

MsgId : X'414D5120736E6F6F6B657220202020202ED476901524D200"
Correlld : X'414D5120736E6F6F6B657220202020202ED47690071A6D00"

BackoutCount : 0

ReplyToQ !
ReplyToQMgr : 'snooker
=% Identity Context
UserIdentifier : 'tpp0Ol
AccountingToken :

X'043730373000 '

ApplldentityData : '
*% Origin Context
PutApp1Type :'6!
PutApp1Name .

PutDate : '19941124' PutTime

App1OriginData : ' !
*hKkK Message * kKK

length - 36 bytes

: '11184035'

00000000: 0000 0002 0000 0024 0000 OOOL 0000 0015 '....... $ovivnnnn '
00000010: 0000 0001 0000 0001 0000 0000 0000 0000 '................ '

00000020: 0000 0000

MQGET of message number 3
**kxMessage descriptorxx*x

98 MQSeries for Compaq NSK V5.1 System Administration

1

Strucld 'MD ' Version :
Report : O MsgType : 8
Expiry : -1 Feedback : O
Encoding : 273 CodedCharSetld :
Format : 'AMQMRESP'

Priority : 5 Persistence :
Msgld :

Correlld :

BackoutCount : 0

ReplyToQ !
ReplyToQMgr : 'snooker

=% Jdentity Context

UserIdentifier :

AccountingToken :

X'043730373000*

ApplIdentityData :
*% Origin Context
PutApp1Type
PutApp1Name

PutDate
ApplOriginData :

"trevor

6|

119941124

**x%% Message

length - 188 bytes

00000000
00000010:
00000020
00000030:
00000040
00000050
00000060
00000070
00000080
00000090
000000A0:
000000B0O:

MQGET of message number 4
***xMessage descriptorxx**

Strucld

Report
Expiry

Encoding :
Format :
Priority :
MsgId :
Correlld :
BackoutCount :
ReplyToQ

736E
2020
2020
534E
5020
2020
0000
0000
0000
0000
5749
0000

'MD

6F6F
2020
2020
AF4F
2020
2020
0001
0001
0002
0000
4748
0010

*kkk

6B65
2020
2020
4B45
2020
2020
0000
0000
0000
0000
542E
0000

PutTime

7220
2020
2020
522E
2020
2020
0024
0001
0004
0014
5443
05E7

Version :

: 0 MsgType :
Feedback : 0

: -1

'MQADMIN

ReplyToQMgr
% Jdentity Context

UserIdentifier :

0

2

8 Persistence :
X'414D5120736E6F6F6B657220202020202ED477D63826C000"
X'414D5120736E6F6F6B657220202020202ED477D62A9EA100"

: 'snooker

AccountingToken :

X'043730373000*

ApplIdentityData :
*% Origin Context
PutApp1Type
PutApp1Name

PutDate
ApplOriginData :

tiger

6|

119941124

*x%% Message

length - 36 bytes

*kkk

2020
2020
2020
5749
2020
2020
0000
0000
0000
534E
5020
0000

1

273 CodedCharSetId :

PutTime

850

: '11240678'

2020
2020
2020
4748
2020
2020
0001
0000
0028
4F4F
2020
0001

850

2020
2020
2020
542E
2020
2020
0000
0000
0000
4B45
0000

2020
2020
2020
5443
2020
2020
0015
0000
ODAD
522E
0003

: '11240694'

Chapter 5. Administering local MQSeries objects

Browsing queues

X'414D5120736E6F6F6B657220202020202ED477D62A9EA100"
X'00

snooker

"SNOOKER.WIGHT.TC'

P

........ SNOOKER.
WIGHT.TCP

99

Browsing queues

00000000: 0000 0002 0000 0024 0000 0001 0000 0015 '....... $oviinnnn '
00000010: 0000 0001 0000 0001 0000 0000 0000 0000 '........eeevunn. '
00000020: 0000 0000 el '

No more messages
MQCLOSE
MQDISC

Working with alias queues

An alias queue (also known as a queue alias) provides a method of redirecting
MQI calls. An alias queue is not a real queue but a definition that resolves to a real
queue. The alias queue definition contains a target queue name which is specified
by the TARGQ attribute (BaseQName in PCF). When an application specifies an alias
queue in an MQI call, the queue manager resolves the real queue name at run
time.

For example, an application has been developed to put messages on a queue called
MY.ALIAS.QUEUE. It specifies the name of this queue when it makes an
MQOPEN request and, indirectly, if it puts a message on this queue. The
application is not aware that the queue is an alias queue. For each MQI call using
this alias, the queue manager resolves the real queue name, which could be either
a local queue or a remote queue defined at this queue manager.

By changing the value of the TARGQ attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for maintenance,
migration, and load-balancing.

Defining an alias queue

The following command creates an alias queue:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (YELLOW.QUEUE)

This command redirects MQI calls that specify MY.ALIAS.QUEUE, to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls
fail if the queue YELLOW.QUEUE does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE) REPLACE

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear to
have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:

* Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed
to get messages from it.

100 MQSeries for Compaq NSK V5.1 System Administration

Defining an alias queue

* Application BETA can get messages from YELLOW.QUEUE, but is not allowed
to put messages on it.

You can perform this action using the following commands:

* This alias is put enabled and get disabled for application ALPHA

DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (ENABLED) +
GET (DISABLED)

* This alias is put disabled and get enabled for application BETA

DEFINE QALIAS (BETAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (DISABLED) +
GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses
the queue name BETAS.ALIAS.QUEUE. They both access the same queue, but in
different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in
the same way that you use them with local queues.

Using other commands with queue aliases

You can use the appropriate MQSC commands to display or alter queue alias
attributes, or delete the queue alias object. For example:

* Display the queue alias' attributes
* ALL = Display all attributes

DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE) ALL
* ALTER the base queue name, to which the alias resolves.
* FORCE = Force the change even if the queue is open.

ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

* Delete this queue alias, if you can.

DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

You cannot delete a queue alias if, for example, an application currently has the
queue open or has a queue open that resolves to this queue. See the IﬁYM
MQSC Command Referencd for more information about this and other queue alias
commands.

Chapter 5. Administering local MQSeries objects 101

Working with model queues

Working with model queues

A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue

You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not). For example:

DEFINE QMODEL (GREEN.MODEL.QUEUE) +
DESCR('Queue for messages from application X') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIF0) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL) +
DEFTYPE (PERMDYN)

This command creates a model queue definition. From the DEFTYPE attribute, the
actual queues created from this template are permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in
the same way that you use them with local queues.

Using other commands with model queues

You can use the appropriate MQSC commands to display or alter a model queue’s
attributes, or delete the model queue object. For example:

102 MQSeries for Compaq NSK V5.1 System Administration

Managing objects for triggering

* Display the model queue's attributes
* ALL = Display all attributes

DISPLAY QUEUE (GREEN.MODEL.QUEUE) ALL
* ALTER the model to enable puts on any
* dynamic queue created from this model.

ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

* Delete this model queue:

DELETE QMODEL (RED.MODEL.QUEUE)

Managing objects for triggering

MQSeries provides a facility for starting an application automatically when certain
conditions on a queue are met. One example of the conditions is when the number
of messages on a queue reaches a specified number. This facility is called triggering
and is described in detail in the BMQSeries Application Programming Guidd. This
section describes how to set up the required objects to support triggering on
MQSeries for Compaq NSK.

Defining an application queue for triggering

An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the Trigger attribute
(TRIGGER in MQSC).

In this example, a trigger event is to be generated when there are 100 messages of
priority five or greater on the local queue MOTOR.INSURANCE.QUEUE, as
follows:

DEFINE QLOCAL (MOTOR.INSURANCE.QUEUE) +
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
MAXMSGL (2000) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INIT.QUEUE) +
TRIGGER +
TRIGTYPE (DEPTH) +
TRIGDPTH (100)+
TRIGMPRI (5)

Where:

QLOCAL (MOTOR.INSURANCE.QUEUE)
Specifies the name of the application queue being defined.

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
Specifies the name of the application to be started by a trigger monitor
program.

MAXMSGL (2000)
Specifies the maximum length of messages on the queue.

Chapter 5. Administering local MQSeries objects 103

Application queue for triggering

DEFPSIST (YES)
Specifies that messages are persistent on this queue.

INITQ (MOTOR.INS.INIT.QUEUE)
Is the name of the initiation queue on which the queue manager is to put
the trigger message.

TRIGGER
Is the trigger attribute value.

TRIGTYPE (DEPTH)
Specifies that a trigger event is generated when the number of messages of
the required priority (TRIMPRI) reaches the number specified in
TRIGDPTH.

TRIGDPTH (100)
Specifies the number of messages required to generate a trigger event.

TRIGMPRI (5)
Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority
5 or higher are counted.

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues

have no special settings, but you can use the following definition of the local
queue MOTOR.INS.INIT.QUEUE for guidance:

DEFINE QLOCAL(MOTOR.INS.INIT.QUEUE) +
GET (ENABLED) +
NOSHARE +
NOTRIGGER +
MAXMSGL (2000) +
MAXDEPTH (10)

Creating a process definition

Use the DEFINE PROCESS command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PROCESS attribute on the
application queue MOTOR.INSURANCE.QUEUE. The following MQSC command
defines the required process, MOTOR.INSURANCE.QUOTE.PROCESS, identified
in this example:

DEFINE PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
DESCR ('Insurance request message processing') +
APPLTYPE (NSK) +
APPLICID ('$DATA1.TEST.IRMPO1') +
USERDATA ('open, close, 235')

Where:

MOTOR. INSURANCE . QUOTE . PROCESS
Is the name of the process definition.

DESCR ('Insurance request message processing’)
Is the descriptive text of the application program to which the definition

104 MQSeries for Compaq NSK V5.1 System Administration

Creating a process definition

relates, following the keyword. This text is displayed when you use the
DISPLAY PROCESS command. This can help you to identify what the
process does. If you use spaces in the string, you must enclose the string in
single quotes.

APPLTYPE(NSK)
Is the type of the application that runs on Compaq NSK.

APPLICID ('$DATA1.TEST.IRMPO1’)
Is the name of the application executable program on the local system.

USERDATA (‘open, close, 235")
Is user-defined data, which can be used by the application.

Displaying your process definition
Use the DISPLAY PROCESS command, with the ALL keyword, to examine the
results of your definition. For example:

DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL

24 : DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL
AMQ8407: Display Process details.

DESCR (Insurance request message processing)

APPLICID ($DATAL.TEST.IRMPO1)

ENVRDATA ()

USERDATA (open, close, 235)

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

APPLTYPE (NSK)

USERDATA is a string representing the arguments passed to the triggered application.
See the sample programs AMQSTRGO and AMQINQA (in ZMQSSMPL subvolume)
for examples of how to write trigger monitors and triggered applications.

You can also use the MQSC ALTER PROCESS to alter an existing process
definition and DELETE PROCESS to delete a process definition.

Chapter 5. Administering local MQSeries objects 105

106 MQSeries for Compaq NSK V5.1 System Administration

Chapter 6. Automating administration tasks

This chapter assumes that you have experience of administering MQSeries objects.

There may come a time when you decide that it would be beneficial to your
installation to automate some administration and monitoring tasks. You can
automate administration tasks for both local and remote queue managers using
programmable command format (PCF) commands.

This chapter describes:

* How to use programmable command formats to automate administration tasks
i, Dot - i min - e DCE .
* How to use the command server in Managing the command server for remaotd

PCF commands

The purpose of MQSeries programmable command format (PCF) commands is to
allow administration tasks to be programmed into an administration program. In
this way you can create queues, process definitions, channels, and namelists, and
change queue managers, from a program.

PCF commands cover the same range of functions provided by the MQSC facility.

Therefore, you can write a program to issue PCF commands to any queue manager
in the network from a single node. In this way, you can both centralize and
automate administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of an MQSeries message. Each command is sent to the target queue manager
using the MQI function MQPUT in the same way as any other message. The
command server on the queue manager receiving the message interprets it as a
command message and runs the command. To get the replies, the application
issues an MQGET call and the reply data is returned in another data structure. The
application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things the application programmer must specify to
create a PCF command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:
Message type (MsqType) is MOMT_REQUEST.
Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:
The PCF message type (Type) specifies MQCFT_COMMAND.

The command identifier specifies the command, for example, Change
Queue (MQCMD_CHANGE_Q).

© Copyright IBM Corp. 1993, 2001 107

PCF commands

For a complete description of the PCF data structures and how to implement them,

see the MQSeries Programmable System Managemend book.
Attributes in MQSC and PCFs

Object attributes specified in MQSC are shown in this book in uppercase (for
example, ROMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

Object attributes in PCF, which are not limited to eight characters, are shown in
this book in italics. For example, the PCF equivalent of ROMNAME is
RemoteQ@MgrName.

Escape PCFs

Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.

For more information about using escape PCFs, see the MQSeries Programmabld
Bystem Management book.

Using the MQAI to simplify the use of PCFs

The MQAI is an administration interface to MQSeries that is now available on the
Compaq NSK platform.

It performs administration tasks on a queue manager through the use of data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that
is easier than using PCFs.

The MQAI can be used:

* To simplify the use of PCF messages. The MQALI is an easy way to administer
MQSeries; you do not have to write your own PCF messages and this avoids the
problems associated with complex data structures.

To pass parameters in programs that are written using MQI calls, the PCF
message must contain the command and details of the string or integer data. To
do this, several statements are needed in your program for every structure, and
memory space must be allocated. This task is long and laborious.

On the other hand, programs written using the MQAI pass parameters into the
appropriate data bag and only one statement is required for each structure. The
use of MQAI data bags removes the need for you to handle arrays and allocate
storage, and provides some degree of isolation from the details of the PCF.

* To handle error conditions more easily. It is difficult to get return codes back
from MQSC commands, but the MQAI makes it easier for the program to
handle error conditions.

After you have created and populated your data bag, you can then send an
administration command message to the command server of a queue manager,
using the mgExecute call, which will wait for any response messages. The
mgqExecute call handles the exchange with the command server and returns
responses in a response bag.

For more information about using the MQAI, see the MQSeries Administration

For more information about PCFs in general, see the MQSeries Pragrammable Systeul

book.

108 MQSeries for Compaq NSK V5.1 System Administration

Command server remote administration

Managing the command server for remote administration

Each queue manager can have a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command.

A command server is mandatory for all administration involving PCFs, the MQAI,
and also for remote administration.

Note: For remote administration, you must ensure that the target queue manager
is running. Otherwise, the messages containing commands cannot leave the
queue manager from which they are issued. Instead, these messages are
queued in the local transmission queue that serves the remote queue
manager. This situation should be avoided, if at all possible.

Starting the command server

To start the command server use this command:

strmgcsv saturn.queue.manager

where saturn.queue.manager is the queue manager for which the command server
is being started.

The command server can also be started in PATHCOM by thawing and starting its
serverclass.

Displaying the status of the command server

For remote administration, ensure that the command server on the target queue
manager is running. If it is not running, remote commands cannot be processed.
Any messages containing commands are queued in the target queue manager’s
command queue.

To display the status of the command server for a queue manager, called here
saturn.queue.manager, the command is:

dspmgcsv saturn.queue.manager

You must issue this command on the target machine. If the command server is
running, the following message is returned:

AMQ8027 MQSeries Command Server Status ..: Running

Stopping a command server

To end a command server, the command, using the previous example is:

Chapter 6. Automating administration tasks 109

Command server remote administration

endmgcsv saturn.queue.manager

You can stop the command server in two different ways:

* For a controlled stop, use the endmqcsv command with the -c flag, which is the
default.

* For an immediate stop, use the endmqcsv command with the -i flag.

Note: Stopping a queue manager also ends the command server associated with it
(if one has been started).

110 MQSeries for Compaq NSK V5.1 System Administration

Chapter 7. Administering remote MQSeries objects

This chapter explains how to administer MQSeries objects on another queue
manager. It also explains how you can use remote queue objects to control the
destination of messages and reply messages.

It contains these sections:

° I:lé] l l 7]]j

. ” . e ege 7

. | . . 7

For more information about channels, their attributes, and how to set them up,
refer to the MQSeries Intercommunication book.

Channels, clusters and remote queuing

A queue manager communicates with another queue manager by sending a
message and, if required, receiving back a response. The receiving queue manager
could be:

¢ On the same machine

¢ On another machine in the same location or on the other side of the world

* Running on the same platform as the local queue manager

* Running on another platform supported by MQSeries

These messages may originate from:
¢ User-written application programs that transfer data from one node to another.
* User-written administration applications that use PCFs or the MQAI
* Queue managers sending:
— Instrumentation event messages to another queue manager.

- MQSC commands issued from a runmgqsc command in indirect mode (where
the commands are run on another queue manager).

Before a message can be sent to a remote queue manager, the local queue manager
needs a mechanism to detect the arrival of messages and transport them
consisting:

* Of at least one channel

* A transmission queue

* A message channel agent (MCA)

* A channel listener

* A channel initiator

A channel is a one-way communication link between two queue managers and can
carry messages destined for any number of queues at the remote queue manager.

Each end of the channel has a separate definition. For example, if one end is a
sender or a server, the other end must be a receiver or a requester. A simple
channel consists of a sender channel definition at the local queue manager end and a
receiver channel definition at the remote queue manager end. The two definitions
must have the same name and together constitute a single channel.

© Copyright IBM Corp. 1993, 2001 111

administering remote objects

If the remote queue manager is expected to respond to messages sent by the local
queue manager, a second channel needs to be set up to send responses back to the
local queue manager.

Channels are defined using the MQSC DEFINE CHANNEL command. In this
chapter, the examples relating to channels use the default channel attributes unless
otherwise specified.

There is a message channel agent (MCA) at each end of a channel which controls
the sending and receiving of messages. It is the job of the MCA to take messages
from the transmission queue and put them on the communication link between the
queue managers. Conversely, it is the job of the Receiving MCA to take messages
from the communications link and put them on the target queues.

A transmission queue is a specialized local queue that temporarily holds messages
before they are picked up by the MCA and sent to the remote queue manager. You
specify the name of the transmission queue on a remote queue definition.

For more information about setting up distributed queuing in general, see the

MQSeries Intercommunication book.

Remote administration using clusters

In a traditional MQSeries network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another
queue manager it must have defined a transmission queue, a channel to the remote
queue manager, and a remote queue definition for every queue to which it wants
to send messages.

A cluster is a group of queue managers set up in such a way so that the queue
managers can communicate directly with one another over a single network
without the need for complex transmission queue, channels, and queue definitions.
Clusters can be set up easily, and typically contain queue managers that are
logically related in some way and need to share data or applications.

Once a cluster has been created the queue managers within it can communicate
with each other without the need for complicated channel or remote queue definitions.
Even the smallest cluster will reduce system administration overheads.

Establishing a network of queue managers in a cluster involves fewer definitions
than establishing a traditional distributed queuing environment. With fewer
definitions to make, you can set up or change your network more quickly and
easily, and the risk in making an error in your definitions is reduced.

To set up a cluster, you usually need one cluster sender (CLUSSDR) definition and
one cluster receiver (CLUSRCVR) definition per queue manager. You do not need
any transmission queue definitions or remote queue definitions. The principles of
remote administration are the same when used within a cluster, but the definitions
themselves are greatly simplified.

For more information about clusters, their attributes, and how to set them up, refer

to the hAQSams_leMMna.gaLChu.t&zﬂ book.

112 MQSeries for Compaq NSK V5.1 System Administration

Administering a remote queue manager

Administering a remote queue manager

This section explains how to administer a remote queue manager from a local
queue manager. You can implement remote administration from a local node using;:
e MQSC commands

* PCF commands

Preparing the queues and channels is essentially the same for both methods. In this
book, the examples show MQSC commands, because they are easier to understand.
However, you can convert the examples to PCFs if you wish. For more information
about writing administration programs using PCFs, see the MQSeries Programmable
System Management book.

In remote administration you send MQSC commands to a remote queue
manager—either interactively or from a text file containing the commands. The
remote queue manager may be on the same machine or, more typically, on a
different machine. You can remotely administer queue managers in different
MQSeries environments, including UNIX®, Compaq NSK, AS/ 400®°, MVS/ESA,
Windows® 2000, and OS/390.

To implement remote administration, you must create certain objects. Unless you
have specialized requirements, you should find that the default values (for
example, for message length) are sufficient.

Preparing queue managers for remote administration
Eigure 37 on page 114 shows the configuration of queue managers and channels

that are required for remote administration. source.queue.manager is the source
queue manager from which you can issue MQSC commands and to which the
results of these commands (operator messages) are returned, if possible.
target.queue.manager is the destination queue manager, which processes the
commands and generates any operator messages.

Note: source.queue.manager must be the default queue manager on the machine
you are using. For further information on creating a queue manager, see

|:/ l (C I)II 2]2

Chapter 7. Administering remote MQSeries objects 113

Administering a remote queue manager

source.queue.manager target.queue.manager

I
1
1
runmgsc !
o

MQSC commands
— [- >
Process commands
| for example:
repllies DEFINE QLOCAL
<= <

Local system Remote system

Figure 37. Remote administration

On both systems, if you have not already done so, you must:
¢ Create the queue manager, using the crtmqm command.
* Start the queue manager, using the strmgm command.

See ['Restaring the defanlt and system ohjects” on page 61| for more information

about these steps. You have to run these commands locally or over a network
facility, for example Telnet.

On the target queue manager:

¢ The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present.
This queue is created by default when a queue manager is created.

e The command server must be started, using the strmqcsv command.

Preparing channels and transmission queues for remote
administration

To run MQSC commands remotely, you must set up two channels, one for each
direction, and their associated transmission queues. This example assumes that
TCP/IP is being used as the transport type and that you know the TCP/IP
address.

The channel source.to.target is for sending MQSC commands from the source
queue manager to the destination. Its sender is at source.queue.manager and its
receiver is at queue manager target.queue.manager. The channel target.to.source
is for returning the output from commands and any operator messages that are
generated to the source queue manager. You must also define a transmission queue
for each sender. This queue is a local queue that is given the name of the receiving
queue manager. The XMITQ name must match the remote queue manager name
for remote administration to work, unless you are using a queue manager alias.

i summarizes this configuration. However, you should be
aware that the SYSTEM.MQSC.REPLY.QUEUE is the name of the model queue that
is used by MQSC to develop its own dynamic reply queue. This queue name
varies and is internal to MQSC.

114 MCQSeries for Compaq NSK V5.1 System Administration

Administering a remote queue manager

runmgsc

commands

— |:j>| source.to.target ||::">
replies

— <,‘::|| target.to.source |<:|

|

1
1
source.queue.manager | target.queue.manager
1
1

XMITQ=target.queue.manager | SYSTEM.ADMIN.COMMAND.QUEUE

SYSTEM.MQSC.REPLY.QUEUE XMITQ=source.queue.manager

Local system Remote system

Figure 38. Setting up channels and queues for remote administration

See the MQSeries Intercommunication book for more information about setting up
remote channels.

Defining channels and transmission queues

On the source queue manager, issue these MQSC commands to define the channels
and the transmission queue:

* Define the sender channel at the source queue manager
DEFINE CHANNEL ('source.to.target') +

CHLTYPE(SDR) +

CONNAME ('198.210.60.37(1414)') +

XMITQ ('target.queue.manager') +

TRPTYPE(TCP)

* Define the receiver channel at the source queue manager
DEFINE CHANNEL ('target.to.source') +

CHLTYPE(RCVR) +

TRPTYPE(TCP)

* Define the transmission queue on the source

DEFINE QLOCAL ('target.queue.manager') +
USAGE (XMITQ)

Issue these commands on the destination queue manager (target.queue.manager),
to create the channels and the transmission queue there:

Chapter 7. Administering remote MQSeries objects 115

Administering a remote queue manager

* Define the sender channel on the destination queue manager

DEFINE CHANNEL ('target.to.source') +
CHLTYPE(SDR) +
CONNAME ('198.210.60.37(1414)") +
XMITQ ('source.queue.manager') +
TRPTYPE(TCP)

* Define the receiver channel on the destination queue manager
DEFINE CHANNEL ('source.to.target') +

CHLTYPE (RCVR) +

TRPTYPE(TCP)

* Define the transmission queue on the destination queue manager

DEFINE QLOCAL ('source.queue.manager') +
USAGE (XMITQ)

Note: The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the IP address or
network name of the machine at the other end of the connection. Use the
values appropriate for your network.

Starting the channels

The following description assumes that both ends of the channel are running on
MQSeries for Compaq NSK. If this is not the case, refer to the relevant
documentation for the non-Compaq NSK end of the channel.

To start the two channels, first ensure that the Compaq NSK TCP listener process
has been configured for MQSeries on both nodes and are running at both ends of
the connections. Then start the channels in runmgqsc.

* On the source queue manager, enter:

start channel ('source.to.target')

* On the destination queue manager, enter:

start channel ('target.to.source')

116 MQSeries for Compaq NSK V5.1 System Administration

Administering a remote queue manager

Automatic definition of channels

Automatic definition of channels applies only if the target queue manager is
running on MQSeries Version 5.1, or later, products. If an inbound attach request is
received and an appropriate receiver or server-connection definition cannot be
found in the channel definition file (CDF), MQSeries creates a definition
automatically and adds it to the CDF. Automatic definitions are based on two
default definitions supplied with MQSeries: SYSTEM.AUTO.RECEIVER and
SYSTEM.AUTO.SVRCONN.

You enable automatic definition of receiver and server-connection definitions by
updating the queue manager object using the MQSC command, ALTER QMGR (or
the PCF command Change Queue Manager).

For more information about the automatic creation of channel definitions, see the
MQSeries Intercommunication book.

For information about the automatic definition of channels for clusters, see the
MQSeries Queue Manager Clusters book.

Issuing MQSC commands remotely

The command server must be running on the destination queue manager, if it is
going to process MQSC commands remotely. (This is not necessary on the source
queue manager.)

* On the destination queue manager, type:

strmgcsv target.queue.manager

* On the source queue manager, you can then run MQSC interactively in queued
mode by entering:

runmgsc -w 30 target.queue.manager

This form of the runmgsc command—with the -w flag—runs the MQSC
commands in queued mode, where commands are put (in a modified form) on the
command-server input queue and executed in order.

When you type in an MQSC command, it is redirected to the remote queue
manager, in this case, target.queue.manager. The timeout is set to 30 seconds; if a
reply is not received within 30 seconds, the following message is generated on the
local (source) queue manager:

AMQ8416: MQSC timed out waiting for a response from the command server.

At the end of the MQSC session, the local queue manager displays any timed-out
responses that have arrived. When the MQSC session is finished, any further
responses are discarded.

In queued mode, you can also run an MQSC command file on a remote queue
manager. For example:

Chapter 7. Administering remote MQSeries objects 117

Administering a remote queue manager

runmgsc /IN mycmds, OUT report/ -w 60 target.queue.manager

where mycmds is a file containing MQSC commands and report is the report file.

Working with queue managers on MVS/ESA

You can issue MQSC commands to an MVS/ESA queue manager from an
MQSeries for Compaq NSK queue manager. However, to do this, you must modify
the runmqsc command and the channel definitions at the sender.

In particular, you add the -x flag to the runmqsc command on a Compaq NSK
node:

runmgsc -w 30 -x QMRI

The channel definition is as follows:

* Define the sender channel at the source
queue manager on Compaq NSK

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(SDR) +
CONNAME ('198.210.60.37(1414)") +
XMITQ (QMRI) +
TRPTYPE(TCP) +

You must also define the receiver channel and the transmission queue at the source
queue manager as before. Again, this example assumes that TCP/IP is the
transmission protocol being used.

Recommendations for remote queuing
When you are implementing remote queuing:
1. Put the MQSC commands to be run on the remote system in a command file.

2. Verity your MQSC commands locally, by specifying the -v flag on the runmgqsc
command.

You cannot use runmgqsc to verify MQSC commands on another queue
manager.

3. Check, as far as possible, that the command file runs locally without error.
4. Finally, run the command file against the remote system.

If you have problems using MQSC remotely

If you have difficulty in running MQSC commands remotely, use the following
checklist to see if you have:

* Started the command server on the destination queue manager.
* Defined a valid transmission queue.

* Defined the two ends of the message channels for both:
— The channel along which the commands are being sent.
— The channel along which the replies are to be returned.

* Specified the correct connection name (CONNAME) in the channel definition.
* Started the listeners before you started the message channels.

118 MQSeries for Compaq NSK V5.1 System Administration

Problems using MQSC remotely

¢ Checked that the disconnect interval has not expired, for example, if a channel
started but then shut down after some time. This is especially important if you
start the channels manually.

* Ensured that you are not sending requests from a source queue manager that do
not make sense to the target queue manager (for example, request include new
parameters.)

See also Resalving problems with MQSC” on page 91l

Creating a local definition of a remote queue

You can use a remote queue definition as a local definition of a remote queue. You
create a remote queue object on your local queue manager to identify a local queue
on another queue manager.

Understanding how local definitions of remote queues work

An application connects to a local queue manager and then issues an MQOPEN
call. In the open call, the queue name specified is that of a remote queue definition
on the local queue manager. The remote queue definition supplies the names of the
destination queue, the destination queue manager, and optionally, a transmission
queue. To put a message on the remote queue, the application issues an MQPUT
call, specifying the handle returned from the MQOPEN call. The queue manager
appends the remote queue name and the remote queue manager name to a
transmission header in the message. This information is used to route the message
to its correct destination in the network.

As administrator, you can control the destination of the message by altering the
remote queue definition.

Example
An application is required to put a message on a queue owned by a remote queue

manager.

How it works
The application connects to a queue manager, for example, saturn.queue.manager.
The destination queue is owned by another queue manager.

On the MQOPEN call, the application specifies these fields in the MQOD:

Field value Description
ObjectName Specifies the local name of the remote queue
CYAN.REMOTE.QUEUE object. This defines the destination queue
and the destination queue manager.
ObjectType Identifies this object as a queue.
(Queue)
ObjectQmgrName This field is optional.
Blank
or If blank, the name of the local queue
saturn.queue.manager manager is assumed. (This is the queue

manager on which the remote queue
definition was made and to which the
application is connected).

If not blank, the name of the local queue
manager must be specified.

Chapter 7. Administering remote MQSeries objects 119

Creating a local definition of remote queue

After this, the application issues an MQPUT call to put a message on to this queue.

On the local queue manager, you can create a local definition of a remote queue
using the following MQSC commands:

DEFINE QREMOTE ('CYAN.REMOTE.QUEUE') +
DESCR ('Queue for auto insurance requests from the branches') +
RNAME ('AUTOMOBILE.INSURANCE.QUOTE.QUEUE') +
RQMNAME ('jupiter.queue.manager') +
XMITQ ('INQUOTE.XMIT.QUEUE')

Where:

QREMOTE ('CYAN.REMOTE.QUEUE')
Is the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the
MQOPEN call to open the queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the remote queue
manager jupiter.queue.manager.

DESCR ('Queue for auto insurance requests from the branches')
Is additional text that describes the use of the queue.

RNAME ('AUTOMOBILE.INSURANCE.QUOTE.QUEUE')
Is the name of the destination queue on the remote queue manager. This is
the real destination queue for messages that are sent by applications that
specify the queue name 'CYAN.REMOTE.QUEUE’. The queue
"AUTOMOBILE.INSURANCE.QUOTE.QUEUE’ must be defined as a local
queue on the remote queue manager.

RQMNAME ('jupiter.queue.manager')
Is the name of the remote queue manager that owns the destination queue
"AUTOMOBILE.INSURANCE.QUOTE.QUEUE'.

XMITQ (*INQUOTE.XMIT.QUEUE')
Is the name of the transmission queue. This is optional; if the name is not
specified, a queue with the same name as the remote queue manager is
used.

In either case, the appropriate transmission queue must be defined as a
local queue with a Usage attribute specifying that it is a transmission queue
(USAGE(XMITQ) in MQSC).

An alternative way of putting messages on a remote queue

Using a local definition of a remote queue is not the only way of putting messages
on a remote queue. Applications can specify the full queue name, which includes
the remote queue manager name, as part of the MQOPEN call. In this case, a local
definition of a remote queue is not required. However, this alternative means that
applications must either know or have access to the name of the remote queue
manager at run time.

Using other commands with remote queues

You can use the appropriate MQSC commands to display or alter the attributes of
a remote queue object, or you can delete the remote queue object. For example:

120 MQSeries for Compaq NSK V5.1 System Administration

Other commands with remote queues

* Display the remote queue's attributes.
* ALL = Display all attributes

DISPLAY QUEUE (CYAN.REMOTE.QUEUE) ALL

* ALTER the remote queue to enable puts.
* This does not affect the destination queue,
* only applications that specify this remote queue.

ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

* Delete this remote queue
* This does not affect the destination queue
* only its Tocal definition

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: If you delete a remote queue, you only delete the local representation of the
remote queue. You do not delete the remote queue itself or any messages on
it.

Creating a transmission queue

A transmission queue is a local queue that is used when a queue manager
forwards messages to a remote queue manager through a message channel. The
channel provides a one-way link to the remote queue manager. Messages are
queued at the transmission queue until the channel can accept them. When you
define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The Usage attribute (USAGE in MQSC) defines whether a queue is a transmission
queue or a normal queue.

Default transmission queues

Optionally, you can specify a transmission queue in a remote queue object, using
the XmitQName attribute (XMITQ in MQSC). If no transmission queue is defined, a
default is used. When applications put messages on a remote queue, if a
transmission queue with the same name as the destination queue manager exists,
that queue is used. If this queue does not exist, the queue specified by the
DefaultXmitQ attribute (DEFXMITQ in MQSC) on the local queue manager is used.

For example, the following MQSC command creates a default transmission queue
on source.queue.manager for messages going to target.queue.manager:

DEFINE QLOCAL ('target.queue.manager') +
DESCR ('Default transmission queue for target gm') +
USAGE (XMITQ)

Applications can put messages directly on a transmission queue, or they can be
put there indirectly, for example, through a remote queue definition. See also

7 .

Chapter 7. Administering remote MQSeries objects 121

Aliases

Using remote queue definitions as aliases

In addition to locating a queue on another queue manager, you can also use a local
definition of a remote queue for both:

* Queue manager aliases

* Reply-to queue aliases

Both types of alias are resolved through the local definition of a remote queue.

As usual in remote queuing, the appropriate channels must be set up if the
message is to arrive at its destination.

Queue manager aliases

An alias is the process by which the name of the destination queue manager—as
specified in a message—is modified by a queue manager on the message route.
Queue manager aliases are important because you can use them to control the
destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the
point of control. The sending application is not aware that the queue manager
name specified is an alias.

For more information about queue manager aliases, see the MQSeries
Intercommunication book.

Reply-to queue aliases

Optionally, an application can specify the name of a reply-to queue when it puts a
request message on a queue. If the application that processes the message extracts
the name of the reply-to queue, it knows where to send the reply message, if
required.

A reply-to queue alias is the process by which a reply-to queue—as specified in a
request message—is altered by a queue manager on the message route. The
sending application is not aware that the reply-to queue name specified is an alias.

A reply-to queue alias lets you alter the name of the reply-to queue and optionally
its queue manager. This in turn lets you control which route is used for reply
messages.

For more information about request messages, reply messages, and reply-to
queues, see the MQSeries A eferencd. For more information
about reply-to queue aliases, see the M 0Se annunication book.

Data conversion

Message data in MQSeries-defined formats (also known as built-in formats) can be
converted by the queue manager from one coded character set to another,
provided that both character sets relate to a single language or a group of similar
languages.

For example, conversion between coded character sets whose identifiers (CCSIDs)
are 850 and 500 is supported, because both apply to Western European languages.

For EBCDIC new line (NL) character conversions to ASCII, see

122 MQSeries for Compaq NSK V5.1 System Administration

Aliases

Supported conversions are defined in Appendix F. "Code page conversion tables”
in the ' icati '

When a queue manager cannot convert messages in built-in
formats

The queue manager cannot automatically convert messages in built-in formats if
their CCSIDs represent different national-language groups. For example,
conversion between CCSID 850 and CCSID 1025 (which is an EBCDIC coded
character set for languages using Cyrillic script) is not supported because many of
the characters in one coded character set cannot be represented in the other. If you
have a network of queue managers working in different national languages, and
data conversion among some of the coded character sets is not supported, you can
enable a default conversion. Default data conversion is described in m

File CCSID

The file CCSID specifies any additional code sets and any default data conversion.
You can update the information recorded in the CCSID file; you might want to do
this if, for example, a future release of your operating system supports additional
coded character sets. To specify additional code sets, you need to edit the CCSID
file. Guidance on how to do this is provided in the file.

Default data conversion

To implement default data conversion, you edit the CCSID file to specify a default
EBCDIC CCSID and a default ASCII CCSID, and also to specify the defaulting
CCSIDs. Instructions for doing this are included in the file.

If you update the CCSID file to implement default data conversion, the queue
manager must be restarted before the change can take effect.

The default data-conversion process is as follows:

* If conversion between the source and target CCSIDs is not supported, but the
CCSIDs of the source and target environments are either both EBCDIC or both
ASCI], the character data is passed to the target application without conversion.

* If one CCSID represents an ASCII coded character set, and the other represents
an EBCDIC coded character set, MQSeries converts the data using the default
data-conversion CCSIDS defined in the CCSID file.

Note: You should try to restrict the characters being converted to those that have
the same code values in the coded character set specified for the message
and in the default coded character set. If you use only that set of characters
that is valid for MQSeries object names you will, in general, satisfy this
requirement. Exceptions occur with EBCDIC CCSIDs 290, 930, 1279, and
5026 used in Japan, where the lowercase characters have different codes
from those used in other EBCDIC CCSIDs.

Conversion of messages in user-defined formats

Messages in user-defined formats cannot be converted from one coded character
set to another by the queue manager. If data in a user-defined format requires
conversion, you must supply a data-conversion exit for each such format. The use
of default CCSIDs for converting character data in user-defined formats is not
recommended, although it is possible. For more information about converting data
in user-defined formats and about writing data conversion exits, see the m%ﬂ

Wpplication Programming Guidd.

Chapter 7. Administering remote MQSeries objects 123

Aliases

Changing the queue manager CCSID

You are recommended to stop and restart the queue manager when you change the
CCSID of the queue manager, by using the CCSID attribute of the ALTER QMGR
command.

This ensures that all running applications, including the command server and
channel programs, are stopped and restarted.

This is necessary, because any applications that are running when the queue
manager CCSID is changed, continue to use the existing CCSID.

124 MQSeries for Compaq NSK V5.1 System Administration

Chapter 8. Protecting MQSeries objects

This chapter explains the features of security control in MQSeries for Compaq
NSK, and describes how you can implement security control.

This chapter contains these sections:
o 1 Inderstanding user 1Ds in the MQM user grnnp”l

. I”Why yvou need to protect MQSeries resources’]
o 1 Inderstanding the Qbject Authority Manager (QAM)” on page 12d
o 1 Ising the Object Authority Manager (OAM) commands” on page 129

7 : : 7

. I”n}“:pr‘f Authority Manager (QAM) cuidelines” on page 133

” 7

Why you need to protect MQSeries resources

Because MQSeries queue managers handle the transfer of information that is
potentially valuable, you need the safeguard of an authority system. This step
ensures that the resources that a queue manager owns and manages are protected
from unauthorized access, which could lead to the loss or disclosure of the
information. In a secure system, it is essential that none of the following are
accessed or changed by any unauthorized user or application:

* Connections to a queue manager.
* Access to MQSeries objects such as queues, clusters, channels, and processes.

* Commands for queue manager administration, including MQSCs and PCF
commands.

e Access to MQSeries messages.

* Context information associated with messages.

You should develop your own policy with respect to which users have access to
which resources.

Understanding

user IDs in the MQM user group

All queue manager resources run with the group ID MQM.

To be able to access MQSeries for Compaq NSK, your user ID must correspond to
an MQSeries principal. Initially, only the user ID that created the queue manager
has the MQSeries principal mgm. You must use the altmqusr command to create a
principal for each user that will access MQSeries. The principal and user must both
be unique. To display the principals and their properties for a queue manager, use
the dspmqusr command.

If your user ID belongs to the MQSeries for Compaq NSK group MQM, and an
MQSeries principal has been created for your user ID, you have all authorities to
all MQSeries resources. Your user ID must belong to the MQM group to be able to
use all the MQSeries for Compaq NSK control commands (except crtmqcvx). In
particular, you need this authority to:

* Use the runmgsc utility to run MQSC commands.

© Copyright IBM Corp. 1993, 2001 125

Understanding user IDs

* Administer authorities on MQSeries for Compaq NSK using the setmqaut
command.

If you are sending channel commands to queue managers on a remote Compaq
NSK system, you must ensure that your user ID is a member of Compaq NSK
group MOM on the target system. For a list of PCF and MQSC channel commands,
see L ity .

It is not essential for your user ID to belong to group MQM for issuing:
* PCF commands—including Escape PCFs—from an administration program
* MQI calls from an application program

Note: Authorisations for the mqm principal (and MQM groups) are important
because the mqm principal is used by the internal queue manager
components themselves to access protected resources. If you remove
authorizations for the mqm principal or MOQM group from objects within the
queue manager, or if you remove the mqm principal itself, you could end
up with a queue manager that cannot be administered, or in the worst case,
cannot be used at all.

Getting additional information

For more information about:
+ MQSeries for Compaq NSK command sets, see ‘C hapter3 [sing the MQSeried

+ MQSeries for Compaq NSK control commands, see l/‘Chapter 17 The MQSeried
| l I I 4 zzz
* PCF commands and Escape PCFs, see the MQSeries Programmahle System

book

* MOQI calls, see the MQSeries Application Programming Guidd and MQSeried
Bpaloatios D = R |

Understanding the Object Authority Manager (OAM)

By default, access to queue manager resources is controlled through an
authorization service installable component. The authorization service component
supplied with MQSeries for Compaq NSK is called the OAM and is automatically
installed and enabled for each queue manager you create, unless you specify
otherwise. In this chapter, the term OAM is used to denote the Object Authority
Manager supplied with this product.

The OAM is an installable component of the authorization service. Providing the
OAM as an installable component gives you the flexibility to:

* Replace the supplied OAM with your own authorization service component
using the interface provided.

* Augment the facilities supplied by the OAM with those of your own
authorization service component, again using the interface provided.

¢ Remove or disable the OAM and run with no authorization service at all.

For more information on installable services, see the MQSeries Programmable Systeud

book.

The OAM manages users’ authorizations to manipulate MQSeries objects,
including queues, process definitions, and channels. It also provides a command
interface through which you can grant or revoke access authority to an object for a

126 MQSeries for Compaq NSK V5.1 System Administration

Object authority manager

specific group of users. The decision to allow access to a resource is made by the
OAM, and the queue manager follows that decision. If the OAM cannot make a
decision, the queue manager prevents access to that resource.

How the OAM works

The OAM uses the user and group IDs and security features of the Compaq NSK
operating system. Users can access queue manager objects only if they have the
required authority.

Managing access through user groups

Managing access permissions to MQSeries resources is based on Compaq NSK
groups. The OAM maintains authorizations at the group level.

In the command interfaces, MQSeries principals are used rather than user IDs. The
reason for this is that authorities granted to a user ID can also be granted to other
entities. For example, authorities can be granted to an application program that
issues MQI calls, or to an administration program that issues PCF commands. In
these cases the principal associated with the program is not necessarily the user ID
that was used when the program was started.

Compaq NSK user IDs may have the form <group>.<name> where both group and
name may be up to 8 characters each, whereas MQSeries principal names can be
up to 12 characters. In addition, the period character (.) is illegal in user IDs on
some other platforms. In MQSeries for Compaq NSK, the principal database
contains mappings of Compaq NSK user IDs to MQSeries principal names of 12
characters or fewer.

When a user belongs to more than one user group
The authorization that a user has is the union of the authorizations of all the

groups to which the user belongs and the default authorization for all users. You
can use the control command setmqaut to set the authorizations for a specific

group.

Note: Any changes made using the setmqaut command take immediate effect,
unless the object is in use. In this case, the change occurs when the object is
next opened.

Group sets and the primary group

Management of access permissions to MQSeries resources is based on Compaq
NSK user groups. When SAFEGUARD is running, a Compaq NSK user ID can be
associated with more than one group, and therefore the corresponding MQSeries
principal is also associated with these groups. The primary group is always the
Compaq Administrative Group. Secondary groups are configured by creating
SAFEGUARD File Sharing Groups, and associating a Compaq NSK user ID with
that File Sharing Group.

The OAM maintains authorizations at the level of groups rather than individual
principals. The mapping of principals to group names is carried out within in the
OAM using the principal database and the Compaq NSK and SAFEGUARD
facilities; OAM operations are carried out at the group level. You can, however,
display the authorizations of an individual principal.

Protecting resources with the OAM
Through OAM you can control:

Chapter 8. Protecting MQSeries objects 127

Object authority manager

* Access to MQSeries objects through the MQI. When an application program
attempts to access an object, the OAM checks if the user ID making the request
has the authorization (through its user group) for the operation requested.

In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

* Permission to use MQSC commands; only members of user group mqm, or
those authorized via setmqaut, can execute queue manager administration
commands, for example, to create a queue.

* Permission to use control commands; only members of user group mqm can
execute control commands, for example, creating a queue manager or starting a
command server.

¢ Permission to use PCF commands.

Different groups of users can be granted different kinds of access authority to the
same object. For example, for a specific queue, one group might be allowed to
perform both put and get operations; another group can only be allowed to browse
the queue (MQGET with browse option). Similarly, some groups might have get
and put authority to a queue, but are not allowed to alter or delete the queue.

Using groups for authorizations

Using groups rather than individual principals for authorization reduces the
amount of administration required. Typically, a particular kind of access is required
by more than one principal. For example, you might define a group consisting of
end users who want to run a particular application. New users can be given access
by adding the appropriate group to their Compaq NSK user ID. Unless MQSeries
is installed on a system using SAFEGUARD to create data sharing groups, each
user ID can be associated with a single, primary group only.

Without SAFEGUARD there is a limit of 255 principals per group. With the use of
SAFEGUARD file sharing, the limit is 65535 principals per group. Using
SAFEGUARD file sharing also allows a principal to have its own authorizations.
For example if the SAFEGUARD administrative group is not given any
authorization then each file sharing member belonging to the group can have its
own authority (Principal A, Group MQSEC member TESTSEC1 has PUT only,
Principal B Group MQSEC member TESTSEC2 has GET only).

Without SAFEGUARD two groups (two Compaq NSK Userids in different groups,
for example MQ.TEST (connect/put) and MQ1.TEST (connect/get)) would need to
be created to accomplish this because authorizations for the group are combined
with the principal (Compaq NSK userid MOM.MANAGER group MQM (connect)
principal mgqm and Compaq NSK user ID MQM.APPS group MQM principal apps
(get/put)). The authority set for the group (connect for mqm) and that of the
principal (get/put for apps) are added together (connect/get/put). Validation of
the users authority is then done on the combined data. If an application attempts
an MQGET while logged on using the user ID MQ.TEST, the operation is rejected
with a MQRC_NOT_AUTHORIZED (2035). Logging on as MQ1.TEST would pass.
Any user logged on a Compaq user ID in the MQM group would pass. Once a
principal is given authority, all principals in the group are granted the same
authority.

128 MQSeries for Compaq NSK V5.1 System Administration

Object authority manager

Principal Compaq Userid Group GroupType Security

mgm MQM.MANAGER MQM connect

apps MQM. APPS MQM get/put

ing MQM. INQ MQM ing

mq MQ.TEST MQ connect/put

mql MQL.TEST MQ1 connect/get

A MQSEC.FRED MQSEC safeguard admin none
TESTSEC1 safeguard file sharing connect/put

B MQSEC.JOE MQSEC safeguard admin none
TESTSEC2 safeguard file sharing connect/get

C MQSEC. FRANK MQSEC safeguard admin none
TESTSEC3 safeguard file sharing none

Figure 39. Using groups with SAFEGUARD to provide authorization

In m any logged on user for group MQM would have connect, get, put and
inq authority. User MQ.TEST connect and put while MQ1.TEST connect and get.
Users in the MQSEC group would have the authority of the safeguard file sharing
member that has been granted.

You should keep the number of groups as small as possible. For example, you can
divide users into one group for application users and one for administrators.

Disabling the Object Authority Manager (OAM)

By default, the OAM is enabled. You can disable the OAM by setting the Compaq
NSK environment variable MOQSNOAUT before the queue manager is created, as
follows:

PARAM MQSNOAUT 1

However, if you disable the OAM for a queue manager, you cannot restart the
OAM later. You might want to have the OAM enabled and ensure that all users
and applications have access through an appropriate user ID. You can also disable
the OAM for testing purposes only either by removing the authorization service
stanza in the queue manager configuration file (QMINI) or by setting MQAUTH off in
the Authority stanza of QMINI, as described in L i i i

(QMINT)” on page 174.

Note: Specifying PARAM MQSNOAUT 0 does not enable the OAM. The environment
variable must not exist in the environment if the OAM is to be re-enabled.

Using the Object Authority Manager (OAM) commands

The OAM provides a command interface for granting and revoking authority.
Before you can use these commands, you must be authorized—your user ID must
belong to the Compaq NSK MQM group. (This group should have been set up
before you installed MQSeries for Compaq NSK.)

If your user ID is a member of group MQM, you have a ‘super user’ authority to
the queue manager. You are now authorized to issue any MQI request or control

command from your user ID.

The OAM provides four commands that you can invoke from TACL to manage the
authorizations of users. These are:

Chapter 8. Protecting MQSeries objects 129

Using OAM commands

* altmqusr (Create, remove, or alter an MQSeries principal)
* dspmqusr (Display principal)

* setmqaut (Set or reset authority)

* dspmgqaut (Display authority)

Authority checking occurs in the following calls: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE. Authority checking is only performed at the first instance of any
of these calls, and authority is not amended until you reset (that is, close and
reopen) the object. Therefore, any changes made to the authority of an object using
setmqaut do not take effect until you reset the object.

What to specify when using the OAM commands

The OAM commands apply to the specified queue manager; if you do not specify
a queue manager, the default queue manager is used. On these commands, you
must specify the object uniquely, that is, you must specify the object name and its
type. You also have to specify the user or group name to which the authority
applies.

Authorization lists

You specify a list of authorizations with setmqaut command. This is a quick way
of specifying whether authorization is to be granted or revoked, and which
resources in which the authorization applies. Each authorization in the list is
specified as a lowercase keyword, prefixed with a plus sign (+) or a minus sign (-).
You can use a plus sign to add the specified authorization or a minus sign to
remove the authorization. You can specify any number of authorizations in a single
command. For example:

+browse -get +put

Using the altmqusr command

Provided you have the required authorization, you can use the altmqusr command
to create an MQSeries principal and associate it with a Compaq NSK user ID (or
SAFEGUARD alias). The following example shows how the altmqusr command is
used:

altmqusr -m saturn.queue.manager -p MQPRINCIPAL -u MQM.MQUSER

In this example:

This term... Specifies the...
saturn.queue.manager Queue manager name
MQPRINCIPAL Principal name to be created
MQM.MQUSER Compaq NSK user ID

See laltmqusr (Alter MQSeries nser information)” on page 234 for a description of

this command.

The altmqusr command can also be used to remove a principal (and thereby
revoke all access rights to MQSeries). For example:

130 MQSeries for Compaq NSK V5.1 System Administration

Using OAM commands

altmqusr -m saturn.queue.manager -p MQPRINCIPAL -remove

In this example:

This term...

Specifies the...

saturn.queue.manager

Queue manager name

MQPRINCIPAL

Principal name to be removed

-remove

Instruction to delete the principal

Using the dspmqusr command
You can display the contents of the principal database, in addition to the Compaq
NSK administrative and file-sharing groups that the user ID corresponding to each
MQSeries principal belongs to, using the dspmqusr command. The -p parameter
restricts the information displayed to the specified principal. For example:

dspmqusr -m saturn.queue.manager -p MQPRINCIPAL

In this example:

This term...

Specifies the...

saturn.queue.manager

Queue manager name

MQPRINCIPAL

Principal name to be displayed

See '[dspmqusr (Display MQSeries user information)” on page 258 for a description

of this command.

Using the setmgaut command
Provided you have the required authorization, you can use the setmgaut command

to grant or revoke authorization of a principal or user group to access a particular
object. The following example shows how the setmqaut command is used:

setmgaut -m saturn.queue.manager -t queue -n RED.LOCAL.QUEUE -g GroupA +browse -get +put

In this example:

This term....

Specifies the....

saturn.queue.manager

Queue manager name

queue

Object type

RED.LOCAL.QUEUE

Object name

GroupA

ID of the group to be given the authorizations

+browse -get +put

Authorization list for the specified queue. There must be no
spaces between the "+” or "-" signs and the keyword.

Chapter 8. Protecting MQSeries objects 131

Using OAM commands

The authorization list specifies the authorizations to be given, where:

This term... Specifies...

+browse Add authorization to browse (MQGET with browse option)

-get Remove authorization to get (MQGET) messages from the
queue.

+put Add authorization to put (MQPUT) messages on the queue.

Applications started with user IDs that belong to Compaq NSK user group GroupA
have these authorizations.

The following command revokes put authority on the queue MyQueue to groups
GroupA and GroupB.

setmgaut -m saturn.queue.manager -t queue -n MyQueue -g GroupA -g GroupB -put

For a formal definition of the command and its syntax, see I‘’setmqgaut (Set/resef

buthority)” on page 277,

Authority commands and installable services

The setmqaut command takes an additional parameter that specifies the name of
the authorization service component to which the update applies. You must specify
this parameter if you have multiple authorization components running at the same
time. By default, this is not the case. If the parameter is omitted, the update is
made to the first authorization component it finds, if one exists. By default, this is
the supplied OAM.

Access authorizations

Authorizations defined by the authorization list associated with the setmqaut
command can be categorized as follows:

* Authorizations related to MQI calls

* Authorization related administration commands

* Context authorizations

* General authorizations, that is, for MQI calls, for commands, or both

Each authorization is specified by a keyword used with the setmgaut and

dsgmgaut commands. These are described in I'setmgaut (Set/reset authority)” onl

Display authority command

You can use the command dspmgqaut to view the authorizations that a specific
principal or group has for a particular object. The flags have the same meaning as
those in the setmqaut command. Authorization can be displayed for only one

group or principal at a time. See ’dspmgaut (Display autharity)” on page 248 for a

formal specification of this command.

For example, the following command displays the authorizations that the group
GpAdmin has to a process definition named Annuities on queue manager QueueManl.

132 MQSeries for Compaq NSK V5.1 System Administration

Display authority command

dspmgaut -m QueueManl -t process -n Annuities -g GpAdmin

The keywords displayed as a result of this command identify the authorizations
that are active.

Object Authority Manager (OAM) guidelines
Some operations are particularly sensitive and should be limited to privileged
users. For example:
* Creating, deleting, starting, and stopping queue managers

* Accessing certain special queues, such as transmission queues or the command
queue SYSTEM.ADMIN.COMMAND.QUEUE

¢ Programs that use full MQI context options
* Creating and copying application queues

User IDs

The special group called MQM that you create is intended for use by product
administrators only. It should never be available to nonprivileged users.

Queue manager volumes

The volume containing queues and other queue manager data is private to the
product. Objects in this directory have Compaq NSK user authorizations that relate
to their OAM authorizations. Standard Compaq NSK commands cannot be used to
grant or revoke authorizations to MQI resources because:

* MQSeries objects are not necessarily the same as the corresponding system

object name. See 'Volume structure” on page 56 for more information about this.

* MQSeries objects do not necessarily map to the object’s NSK security settings.

Queues

The authority to access a dynamic queue is based on—but not necessarily the same
as—that of the model queue from which it is derived.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is, therefore, possible
to authorize a principal to access an alias queue that resolves to a local queue to
which the principal has no access permissions.

You should limit the authority to create queues to privileged users. If you do not
limit this authority, users can bypass the normal access control by creating an alias.

Alternate user authority

Alternate user authority controls whether one user ID can use the authority of
another user ID when accessing an MQSeries object. This method is essential when
a server receives requests from a program and the server needs to ensure that the
program has the required authority for the request. The server can have the
required authority, but it needs to know whether the program has the authority for
the actions it has requested.

For example:

* A server program running under user ID PAYSERYV retrieves a request message
from a queue that was put on the queue by user ID USER1.

Chapter 8. Protecting MQSeries objects 133

OAM guidelines

* When the server program gets the request message, it processes the request and
puts the reply back into the reply-to queue specified with the request message.

¢ Instead of using its own user ID (PAYSERV) to authorize opening the reply-to
queue, the server can specify some other user ID, in this case, USER1. In this
example, you can use alternate user authority to control whether PAYSERYV is
allowed to specify USER1 as an alternate user ID when it opens the reply-to
queue.

The alternate user ID is specified on the AlternatelUserlId field of the object
descriptor.

Both the user ID and the alternate user IDs must be specified as principals
corresponding to entries in the principal database associated with a Compaq NSK
user ID for authorization to be granted.

Note: You can use alternate user IDs on any MQSeries object. Use of an alternate
user ID does not affect the user ID used by any other resource managers.

Context authority

Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message. The context information
comes in two sections:

Identity section
This part specifies who the message came from. It consists of the following
fields:
e Userldentifier
* AccountingToken
* ApplldentityData

Origin section
This section specifies where the message came from, and when it was put
onto the queue. It consists of the following fields:
* PutApplType
* PutApplName
* PutDate
* PutTime
e ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT
call is made. This data can be generated by the application, it can be passed on
from another message, or it can be generated by the queue manager by default.
For example, context data can be used by server programs to check the identity of
the requester, testing whether the message came from an application, running
under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an
alternate user. The UserIdentifier must be specified as a principal corresponding
to an entry in the principal database.

You use context authorization to control whether the user can specify any of the
context options on any MOQOPEN or MQPUT1 call. For information about the
context options, see the MQSeries Application Programming Guidd. For descriptions

of the message descriptor fields relating to context, see the MQSeries Application

Programming Referencd book.

134 MQSeries for Compaq NSK V5.1 System Administration

OAM guidelines
Remote security considerations

For remote security, you should consider:

Put authority
For security across queue managers you can specify the put authority that
is used when a channel receives a message sent from another queue
manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user ID. The user ID that the message channel agent is
running under.

CTX The user ID in the message context.

In both cases, the user ID must be specified as a principal corresponding to
an entry in the principal database.

Transmission queues
Queue managers automatically put remote messages on a transmission
queue; no special authority is required. However, putting a message

directlg on a transmission queue requires special authorization; see

Channel exits
Channel exits can be used for added security.

For more information, see the MQSeries Intercommunicatiod book.

Channel command security

Channel commands can be issued as PCF commands, through the MQAI, MQSC
commands, and control commands.

PCF commands

You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote Compaq NSK system. The
user ID as specified in the message descriptor of the PCF message must be
specified as a principal corresponding to an entry in the principal database
associated with a Compaq NSK user ID belonging to the mqm group on the target
system. These commands are:

* ChangeChannel

¢ CopyChannel

* CreateChannel

* DeleteChannel

¢ PingChannel

* ResetChannel

e StartChannel

* StopChannel

* ResolveChannel

See the MQSeries Pragrammable System Managemend book for the PCF security

requirements.

MQSC channel commands

You can issue MQSC channel commands to a remote Compaq NSK system either
by sending the command directly in a PCF escape message or by issuing the
command using runmgqsc in indirect mode. The user ID as specified in the
message descriptor of the PCF message must be specified as a principal

Chapter 8. Protecting MQSeries objects 135

OAM guidelines

corresponding to an entry in the principal database associated with a Compaq
NSK user ID belonging to the mgm group on the target system. (PCF commands
are implicit in MQSC commands issued from runmgsc in indirect mode.) These
commands are:

* ALTER CHANNEL

+ DEFINE CHANNEL

+ DELETE CHANNEL

* PING CHANNEL

* RESET CHANNEL

* START CHANNEL

* START CHINIT

+ STOP CHANNEL

* RESOLVE CHANNEL

For MQSC commands issued from the runmqgsc command, the user ID in the PCF
message is normally that of the current user.

Understanding the authorization specification tables

The authorization specification tables starting on page 132 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these
situations:

* Applications that issue MQI calls.

* Administration programs that issue MQSC commands as escape PCFs.

* Administration programs that issue PCF commands.

In this section, the information is presented as a set of tables that specify the

following:

Action to be performed MQI option, MQSC command, or PCF command.
Access control object Queue, process, or queue manager.
Authorization required Expressed as an ‘"MQZAO_’ constant.

In the tables, the constants prefixed by MQZAQ_ correspond to the keywords in
the authorization list for the setmqaut command for the particular entity. For
example, MQZAO_BROWSE corresponds to the keyword +browse; similarly, the
keyword MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall and
so on. These constants are defined in the header file CMQZCH in subvolume
ZMQSLIB, which is supplied with the product.

MQI authorizations

An application is allowed to issue certain MQI calls and options only if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls may require authorization checks: MQCONN, MQOPEN,
MQPUT1, and MQCLOSE.

For MQOPEN and MQPUT]1, the authority check is made on the name of the
object being opened, and not on the name, or names, resulting after a name has
been resolved. For example, an application may be granted authority to open an
alias queue without having authority to open the base queue to which the alias
resolves. The rule is that the check is carried out on the first definition encountered
during the process of name resolution that is not a queue-manager alias, unless the
queue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the

136 MQSeries for Compaq NSK V5.1 System Administration

Authorization specification tables

particular object being opened; in some cases additional queue-independent

authority—which is obtained through an authorization for the queue-manager

object—is required.

fable 3 summarizes the authorizations needed for each call.

Table 3. Security authorization needed for MQI calls

Authorization
required for:

Queue object

Process object

Queue manager

Namelists

MQCONN option

Not applicable

Not applicable

MQZAO_
CONNECT

Not applicable

MQOPEN Option

MQOO_INQUIRE

MQZAO_INQUIRE
@

MQZAO_INQUIRE
@

MQZAO_INQUIRE
@

MQZAO_INQUIRE

)

MQOO_BROWSE MQOO_BROWSE Not applicable No check Not applicable
MQOO_INPUT_* MQZAO_INPUT Not applicable No check Not applicable
MQOO_SAVE_ MQZAO_INPUT Not applicable No check Not applicable
ALL_CONTEXT @)
MQOO_OUTPUT MQOO_OUTPUT Not applicable No check Not applicable
(Normal queue) (E)
MQOO_PASS_ MQZAO_PASS_ Not applicable No check Not applicable
IDENTITY_CONTEXT | IDENTITY _
) CONTEXT
MQOO_PASS_ MQZAO_PASS Not applicable No check Not applicable
ALL_CONTEXT & B) | _ALL_CONTEXT
MQOO_SET_ MQZAO_SET_ Not applicable MQZAO_SET_ Not applicable
IDENTITY_CONTEXT | IDENTITY_ IDENTITY_

, CONTEXT CONTEXT
MQOO_SET_ MQZAO_SET_ Not applicable MQZAO_SET_ Not applicable
ALL_CONTEXT & B) | ALL_CONTEXT ALL_CONTEXT (@)
MQOO_OUTPUT MQZAQO_SET_ Not applicable MQZAO_SET_ Not applicable

(Transmission queue)

ALL_CONTEXT

ALL_CONTEXT (@)

@
MQOO_SET MQZAQO_SET Not applicable No check Not applicable
MQOO_ALTERNATE | (Ld) (M)} MQZAO_ Not applicable

_USER _AUTHORITY

ALTERNATE_ USER_
AUTHORITY (id, 1)

MQPUT1 Option

MQPMO_PASS_ MQZAQO_PASS_ Not applicable No check Not applicable
IDENTITY_CONTEXT | IDENTITY _

CONTEXT ([2)
MQPMO_PASS_ MQZAQO_PASS_ Not applicable No check Not applicable
ALL_CONTEXT ALL_CONTEXT (fd)
MQPMO_SET_ MQZAO_SET_ Not applicable MQZAO_SET_ Not applicable
IDENTITY_CONTEXT | IDENTITY_ IDENTITY_

CONTEXT (L2 CONTEXT ()
MQPMO_SET_ MQZAO_SET_ Not applicable MQZAO_SET_ Not applicable
ALL_CONTEXT ALL_CONTEXT (1d) ALL_CONTEXT @

MQZAO_SET_ Not applicable MQZAO_SET_ Not applicable

gransmission queue)

)

ALL_CONTEXT

ALL_CONTEXT (@

Chapter 8. Protecting MQSeries objects

137

Authorization specification tables

Table 3. Security authorization needed for MQI calls (continued)

Authorization

USER_ AUTHORITY

required for: Queue object Process object Queue manager Namelists
MQPMO_ (7)) Not applicable MQZAO_ Not applicable
ALTERNATE _ ALTERNATE_ USER _

AUTHORITY ()

MQCLOSE Option

MQCO_DELETE

MQZAO_DELETE

(i)

Not applicable Not applicable Not applicable

MQCO_DELETE_
PURGE

MQZAO_DELETE

@)

Not applicable Not applicable Not applicable

Specific notes:

1.

10.

11.
12.

13.

If a model queue is being opened:

* MQZAQO_DISPLAY authority is needed for the model queue, in addition to
whatever other authorities (also for the model queue) are required for the
open options specified.

* MQZAO_CREATE authority is not needed to create the dynamic queue.

* The user identifier used to open the model queue is automatically granted
all of the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

Either the queue, process, namelist or queue manager object is checked,

depending on the type of object being opened.

MQOQO_INPUT_* must also be specified. This is valid for a local, model, or

alias queue.

This check is performed for all output cases, except the case specified in note

MQOO_OUTPUT must also be specified.
MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.

This authority is required for both the queue manager object and the
particular queue.

MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and
MQOO_SET_IDENTITY_CONTEXT are also implied by this option.

This check is performed for a local or model queue that has a Usage queue
attribute of MQUS_TRANSMISSION, and is being opened directly for output.
It does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must
also be specified. The check carried out is as for the other options specified,
using the supplied alternate user identifier for the specificcnamed object

authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

This authorization allows any AlternateUserld to be specified.

An MQZAO_OUTPUT check is also carried out, if the queue does not have a
Usage queue attribute of MQUS_TRANSMISSION.

The check carried out is as for the other options specified, using the supplied
alternate user identifier for the specific-named queue authority, and the

138 MQSeries for Compaq NSK V5.1 System Administration

Authorization specification tables

current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

14. The check is carried out only if both of the following are true:
* A permanent dynamic queue is being closed and deleted.

¢ The queue was not created by the MQOPEN which returned the object
handle being used.

Otherwise, there is no check.

General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that
are relevant to the object type:
* MQZAO_CONNECT
* MQZAO_INQUIRE
* MQZAO_SET
* MQZAO_BROWSE
* MQZAO_INPUT
* MQZAO_OUTPUT
* MQZAO_PASS_IDENTITY_CONTEXT
* MQZAO_PASS_ALL_CONTEXT
* MQZAO_SET_IDENTITY_CONTEXT
* MQZAO_SET_ALL_CONTEXT
* MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note W) and MQZAO_DISPLAY are classed
as administration authorizations. They are not therefore included in
MQZAO_ALL_MQI.

3. ‘No check’ means that no authorization checking is carried out.

4. 'Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue an MQPUT call to a process object.

Administration authorizations

These authorizations allow a user to issue administration commands. This can be
an MQSC command as an escape PCF message or as a PCF command itself. These
methods allow a program to send an administration command as a message to a
queue manager, for execution on behalf of that user.

Authorizations for MQSC commands in escape PCFs

[able 4 summarizes the authorizations needed for each MQSC command that is
contained in Escape PCFE.

Table 4. MQSC commands and security authorization needed

@ Authorization
required for:

Queue manager

Queue object

Process object

object

Namelists

ALTER object

MQZAO_CHANGE

MQZAO_CHANGE

MQZAO_CHANGE

MQZAO_CHANGE

CLEAR QLOCAL

MQZAO_CLEAR

Not applicable

Not applicable

Not applicable

DEFINE object
NOREPLACE (B)

MQZAO_CREATE (H)

MQZAO_CREATE (H)

Not applicable

MQZAO_CREATE ()

DEFINE object
REPLACE (8, B)

MQZAO_CHANGE

MQZAO_CHANGE

Not applicable

MQZAO_CHANGE

DELETE object

MQZAO_DELETE

MQZAO_DELETE

Not applicable

MQZAO_DELETE

DISPLAY object

MQZAO_DISPLAY

MQZAO_DISPLAY

MQZAO_DISPLAY

MQZAO_DISPLAY

Chapter 8. Protecting MQSeries objects

139

Authorization specification tables

Specific notes:

1. The user identifier, under which the program (for example, runmgsc) which
submits the command is running, must also have MQZAO_CONNECT
authority to the queue manager.

2. Either the queue, process, namelist or queue manager object is checked,
depending on the type of object.
3. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the

LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT.xxx
object if LIKE is omitted.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the SETMQAUT command.

5. This applies if the object to be replaced does in fact already exist. If it does not,
the check is as for DEFINE object NOREPLACE.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the

queue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue

manager object.

Authorizations for PCF commands
summarizes the authorizations needed for each PCF command.

Table 5. PCF commands and security authorization needed

(E) Authorization
required for:

Queue object

Process object

Queue manager
object

Namelists

Change object

MQZAO_CHANGE

MQZAO_CHANGE

MQZAO_CHANGE

MQZAO_CHANGE

Clear Queue

MQZAO_CLEAR

Not applicable

Not applicable

Not applicable

Copy object (without
replace) (E)

MQZAO_CREATE (H)

MQZAO_CREATE (H)

Not applicable

MQZAO_CREATE (H)

Copy object (with
replace) (E, E)

MQZAO_CHANGE

MQZAO_CHANGE

Not applicable

MQZAO_CHANGE

Create object (without
replace) (H)

MQZAO_CREATE (H)

MQZAO_CREATE (H)

Not applicable

MQZAO_CREATE (H)

Create obéect (with
replace) (H, E)

MQZAO_CHANGE

MQZAO_CHANGE

Not applicable

MQZAO_CHANGE

Delete object

MQZAO_DELETE

MQZAO_DELETE

Not applicable

MQZAO_DELETE

Inquire object

MQZAO_DISPLAY

MQZAO_DISPLAY

MQZAO_DISPLAY

MQZAO_DISPLAY

Inquire object names

No check

No check

No check

No check

Reset queue statistics

MQZAO_DISPLAY
and
MQZAO_CHANGE

Not applicable

Not applicable

Not applicable

Specific notes:

1. The user identifier under which the program submitting the command is
running must also have authority to connect to its local queue manager, and to
open the administration command queue for output.

140 MQSeries for Compaq NSK V5.1 System Administration

Authorization specification tables

2. Either the queue, process, or queue-manager object is checked, depending on
the type of object.

3. For Copy commands, MQZAO_DISPLAY authority is also needed for the From
object.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the SETMQAUT command.

5. For Create commands, MQZAQO_DISPLAY authority is also needed for the
appropriate SYSTEM.DEFAULT.* object.

6. This applies if the object to be replaced already exists. If it does not, the check
is as for Copy or Create without replace.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The special authorization MQZAO_ALL_ADMIN includes all of the following
that are relevant to the object type:
* MQZAO_CHANGE
* MQZAO_CLEAR
* MQZAO_DELETE
* MQZAO_DISPLAY

MQZAO_CREATE is not included, because it is not specific to a particular
object or object type.

3. ‘No check’ means that no authorization checking is carried out.

4. 'Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot use a Clear Queue command on a process
object.

Understanding authorization files

For MQSeries for Compaq NSK, V5.1, all authorization information is stored in the
following TM/MP audited files in location $VOL.<QMgrSubVol>D:

OAMDB The OAM Database
PRIDB The principal database
PRIDBA The principal database alternate key file

The principal database

Each record in the principal database maps a Compaq NSK user ID to a principal
name. The principal database is an ENSCRIBE key-sequenced file that provides a
mapping between the OAM principals and Compaq NSK logon IDs.

OAM Principal MQPRINCIPAL

Compagq logon ID Ox2CFF

The primary key is the OAM principal (12 characters). The alternate key is the
Compagq logon ID (a 2-byte short integer). The OAM principal is always case
sensitive. The bytes of the logon ID field are <group>.<user>; the example above is
for Compaq NSK ID (44,255).

The OAM Database

Each record in the new OAM authorizations database refers to a specific queue
manager object, or class of object. The primary key is the object name plus object
type. The records are of variable length, and the record layout is as follows:

Chapter 8. Protecting MQSeries objects 141

Authorization files

Object Name | Type #Auth Entries | Auth Entries

QUEUE.AUTH] 1 2 PAYROLL 0x00000004, ADMIN 0xFFFFFFFF

The Object Name field is the full 48-character, blank-filled object name. The type
field (4 bytes) differentiates between the types of MQSeries object, and the classes
of object required by the OAM.

The Type field may take the following values:

1 Queue name

2 Process name

4 Queue manager name
128 Class

The #Auth Entries field (4 bytes) specifies the number of individual authorizations
in the Auth Entries field in this record. Each of the Auth Entries specifies a group
name and the authorization for that group for this object:

Group Name PAYROLL

Auth 0x00000004

The Group Name field is 12 bytes in length and contains a blank-filled Compaq
NSK Administrative or SAFEGUARD File-sharing Group Name (first 12 characters
only). The Auth field is a 4-byte (ULONG) bit mask with the authority for the
group. There may be up to 250 individual Group and Auth pairs in each record.

Multiple records for the same object are used to hold authorization information for
more than 250 groups if necessary.

The authority specification is the union of the individual bit patterns based on the
following assignments:

Authorization Formal name Hexadecimal
keyword Value

connect MQZAO_CONNECT 0x00000001
browse MQZAO_BROWSE 0x00000002
get MQZAO_INPUT 0x00000004
put MQZAO_OUTPUT 0x00000008
ing MQZAO_INQUIRE 0x00000010
set MQZAO_SET 0x00000020
passid MQZAO_PASS_IDENTITY_CONTEXT 0x00000040
passall MQZAO_PASS_ALL_CONTEXT 0x00000080
setid MQZAO_SET IDENTITY_CONTEXT 0x00000100
setall MQZAO_SET_ALL_CONTEXT 0x00000200
altusr MQZAO_ALTERNATE_USER_AUTHORITY 0x00000400
allmqi MQZAO_ALL_MQI 0x000007FF
crt MQZAO_CREATE 0x00010000
dit MQZAO_DELETE 0x00020000
dsp MQZAO_DISPLAY 0x00040000
chg MQZAO_CHANGE 0x00080000
clr MQZAO_CLEAR 0x00100000
chgaut MQZAO_AUTHORIZE 0x00800000
alladm MQZAO_ALL_ADMIN 0x009E0000
none MQZAO_NONE 0x00000000
all MQZAO_ALL 0X009EO7FF

142 MQSeries for Compaq NSK V5.1 System Administration

Authorization files

These definitions are made in the header file cmqzc h. In the following example,
groupB has been granted authorizations based on the hexadecimal number 0x40007.

This corresponds to:

MQZAO_CONNECT
MQZAO_BROWSE
MQZAO_INPUT
MQZAO_DISPLAY

Authority is:

0x00000001
0x00000002
0x00000004
0x00040000

0x00040007

These access rights mean that anyone in groupB can issue the MQI calls:

+ MQCONN
* MQGET (with browse)

They also have DISPLAY authority for the object associated with this authorization

file.

Class authorization records

The class authorization records hold authorizations that relate to the entire class.
The object name and type fields correspond as follows:

Object Name Type
@QMGRCLASS 0x80
@PROCESSCLASS 0x80
@QUEUECLASS 0x80

The entry MQZAO_CRT in the authorization field gives authorization to create an
object in the class. This is the only class authority.

All-class authorization record

The all-class authorization record holds authorizations that apply to an entire
queue manager. The object name and type fields correspond as follows:

Object Name Type
@ALLCLASSES 0x80

The following authorizations apply to the entire queue manager and are held in

the all class authorization file.

Entry...

Gives authorization to...

MQZAO_ALTUSER

Assume the identity of another user when
interacting with MQSeries objects.

MQZAO_SET_ALL_CONTEXT

Set the context of a message when issuing
MQPUT.

MQZAO_SET_IDENTITY_CONTEXT

Set the identity context of a message when
issuing MQPUT.

Chapter 8. Protecting MQSeries objects 143

Authorization files

144 MQSeries for Compaq NSK V5.1 System Administration

Chapter 9. MQSeries dead-letter queue handler

MQSeries for Compaq NSK provides a dead-letter queue (DLQ), also known as an
undelivered-message queue, which is a holding queue for messages that cannot be
delivered to their destination queues. Every queue manager in a network should
have a DLQ.

Messages are put on the DLQ by queue managers, message channel agents
(MCAs), and applications. All messages on the DLQ should be prefixed with the
dead-letter header structure MQDLH. Messages put on the DLQ by a queue manager
or by a message channel agent always have this header structure. Applications
putting messages on the DLQ should also supply an MQDLH. The Reason field of
the MQDLH structure contains a reason code that identifies why the message is on
the DLQ.

You should have a routine that runs regularly to process messages on the DLQ.
MQSeries supplies a default routine called the dead-letter queue handler (the DLQ
handler), which you invoke using the runmqdlq command.

Instructions for processing messages on the DLQ are supplied to the DLQ handler
by means of a user-written rules table. That is, the DLQ handler matches messages
on the DLQ against entries in the rules table. When a DLQ message matches an
entry in the rules table, the DLQ handler performs the action associated with that
entry.

This chapter contains the following sections:

% A

e DI (Q handler rules table” on page 144
o I'How the rules table is processed” on page 152

. I”anmp]p DI.O handler rules table” on page 153

Invoking the DLQ handler

You invoke the DLQ handler using the runmqdlq command. You can name the
DLQ that you want to process and the queue manager that you want to use as
follows:

¢ From the command prompt using parameters. For example:

runmgdlq /IN qrule/ ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER

¢ In the rules table. For example:

INPUTQ(ABCL.DEAD.LETTER.QUEUE) INPUTQM(ABCL.QUEUE.MANAGER)

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

© Copyright IBM Corp. 1993, 2001 145

Invoking the DLQ handler

If you do not specify the DLQ or the queue manager as shown above, the default
queue manager for the installation is used along with the DLQ belonging to that
queue manager.

The runmqdlq command reads input from the rules table, supplied to the standard
IN file. You associate the rules table with runmqdlq by redirecting IN to the rules
file.

To run the DLQ handler, you must be authorized to access both the DLQ itself and
any message queues to which messages on the DLQ are forwarded. Furthermore, if
the DLQ handler is to be able to put messages on queues with the authority of the
user ID in the message context, you must be authorized to assume the identity of
other users.

For more information about the runmqdlq command, see {runmqdlg (Runl

7

DLQ handler rules table

The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:

¢ The first entry in the table, which is optional, contains control data.
e All other entries in the table are rules for the DLQ handler to follow. Each rule
consists of a pattern (a set of message characteristics) that a message is matched

against, and an action to be taken when a message on the DLQ matches the
specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

For a description of the syntax rules applicable to the rules tables, see

tonventions” on page 151

Control data

This section explains the keywords that you can include in a control-data entry in
a DLQ handler rules table. Please note the following:

¢ The default value for a keyword, if any, is underlined.

* The vertical line (1) separates alternatives, only one of which can be specified.
* All keywords are optional.

INPUTQ (QueueNamel' ')
This keyword is the name of the DLQ to which the rules table applies. It lets
you name the DLQ you want to process:

1. If you specify a QName parameter on the runmqdlq command, it overrides
any INPUTQ value in the rules table.

2. If you do not specify a QName parameter on the runmqdlq command, but
you specify a value in the rules table, the INPUTQ value in the rules table
is used.

3. If you do not specify a DLQ or you specify INPUTQ(" ’) in the rules table,
the DLQ belonging to the queue manager whose name is supplied on the
QMgrName parameter on the runmqdlq command or on the INPUTQM
keyword in the rules table is processed.

146 MQSeries for Compaq NSK V5.1 System Administration

Rules table

INPUTQM (QueueManagerName|' ')
This keyword is the name of the queue manager that owns the DLQ. It lets
you name the queue manager that owns the DLQ named on the INPUTQ
keyword:

1. If you specify a QMgrName parameter on the runmqdlq command, it
overrides any INPUTQM value in the rules table.

2. If you do not specify a QMgrName parameter on the runmqdlq command,
the INPUTQM value in the rules table is used.

3. If no queue manager is specified or you specify INPUTOQM(' ') in the rules
table, the default queue manager for the installation is used.

RETRYINT (Interval | 60)
This keyword is the interval (in seconds) at which the DLQ handler should
attempt to reprocess messages on the DLQ that could not be processed at the
first attempt, and for which repeated attempts are requested. By default, the
retry interval is 60 seconds.

WAIT (YES INO | nnn)
This keyword indicates whether the DLQ handler should wait for further
messages to arrive on the DLQ when it detects that there are no further
messages that it can process.

YES This keyword causes the DLQ handler to wait indefinitely.

NO This keyword causes the DLQ handler to terminate when it detects
that the DLQ is either empty or contains no messages that it can
process.

nnn This keyword causes the DLQ handler to wait for nnn seconds for new
work to arrive before terminating, after it detects that the queue is
either empty or contains no messages that it can process.

You should specify WAIT (YES) for busy DLQs, and WAIT (NO) or WAIT
(nnn) for DLQs that have a low level of activity. If the DLQ handler is allowed
to terminate, you should reinvoke it by using triggering.

The control data shown in Eigure 40 shows that the rules table applies to the DLQ
belonging to queue manager QM1. The plus sign (+) at the end of line 1 indicates
that the control data continues from the first nonblank character on line 2.

INPUTQ' ' +
INPUTQM' QM1

Figure 40. Example control data

As an alternative to including control data in the rules table, you can supply the
names of the DLQ and its queue manager as input parameters of the runmqdlq
command. If any value is specified both in the rules table and on input to the
runmqdlq command, the value specified on the runmqdlq command takes
precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry
in the table.

Rules (patterns and actions)
Ei.gJ.l.l:eAJ_gn_pa.ge_]AQ shows an example rule from a DLQ handler rules table. This

rule instructs the DLQ handler to make three attempts to deliver to its destination

Chapter 9. MQSeries dead-letter queue handler ~ 147

Rules table

queue any persistent message that was put on the DLQ because MQPUT and
MQPUT1 were inhibited.

PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT INHIBITED) +
ACTION (RETRY) RETRY (3)

Figure 41. Example rule. The plus sign (+) at the end of line 1 indicates that the rule
continues from the first nonblank character on line 2.

All keywords that you can use on a rule are explained in the remainder of this
section. Please note the following:

* The default value for a keyword, if any, is underlined. For most keywords, the
default value is * (asterisk), which matches any value.

* The vertical line (1) separates alternatives, only one of which can be specified.
* All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched), and then explains the action
keywords (those that determine how the DLQ handler is to process a matching
message).

Pattern-matching keywords

The pattern-matching keywords that you use to specify values against matched
messages on the DLQ are explained below. All pattern-matching keywords are
optional.

APPLIDAT (ApplldentityDatal *)
This keyword is the ApplldentityData value specified in the message descriptor
(MQMD) of the message on the DLQ.

APPLNAME (PutAppIName*)
This keyword is the name of the application that issued the MQPUT or
MQPUT1 call, as specified in the PutAppIName field of the message descriptor
(MQMD) of the message on the DLQ.

APPLTYPE (PutApplType|*)
This keyword is the PutApplType value specified in the message descriptor
(MQMD) of the message on the DLQ.

DESTQ (QueueName | *)
This keyword is the name of the message queue for which the message is
destined.

DESTOM (QueueManagerName | *)
This keyword is the name of the queue manager of the message queue for
which the message is destined.

FEEDBACK (Feedback 1)
If the MsgType value is MQFB_REPORT, the keyword Feedback describes the
nature of the report.

Symbolic names can be used. For example, you can use the symbolic name
MQFB_COA to identify those messages on the DLQ that require confirmation
of their arrival on their destination queues.

FORMAT (Format | *)
This keyword is the name that the sender of the message uses to describe the
format of the message data.

148 MQSeries for Compaq NSK V5.1 System Administration

Rules table

MSGTYPE (MsgType|*)
This keyword is the message type of the message on the DLQ.

Symbolic names can be used. For example, you can use the symbolic name
MQMT_REQUEST to identify those messages on the DLQ that require replies.

PERSIST (Persistence | *)
This keyword is the persistence value of the message. (The persistence of a
message determines whether it survives restarts of the queue manager.)

Symbolic names can be used. For example, you can use the symbolic name
MQPER_PERSISTENT to identify those messages on the DLQ that are
persistent.

REASON (ReasonCode 1 *)
This keyword is the reason code that describes why the message was put to
the DLQ.

Symbolic names can be used. For example, you can use the symbolic name
MQRC_Q_FULL to identify those messages placed on the DLQ because their
destination queues were full.

REPLYQ (QueueName | *)
This keyword is the name of the reply-to queue specified in the message
descriptor (MQMD) of the message on the DLQ.

REPLYOM (QueueManagerName | *)
This keyword is the name of the queue manager of the reply-to queue, as
specified in the message descriptor (MQMD) of the message on the DLQ.

USERID (Userldentifier | *)
This keyword is the user ID of the user who originated the message on the
DLQ, as specified in the message descriptor (MQMD).

Action keywords

The action keywords that you use to describe how a matching message is to be
processed are detailed as follows:

ACTION (DISCARD I IGNORE | RETRY | FWD)
This keyword is the action to be taken for any message on the DLQ that
matches the pattern defined in this rule.

DISCARD This keyword causes the message to be deleted from the DLQ.
IGNORE This keyword causes the message to be left on the DLQ.

RETRY This keyword causes the DLQ handler to try again to put the
message on its destination queue.

FWD This keyword causes the DLQ handler to forward the message
to the queue named on the FWDQ keyword.

You must specify the ACTION keyword. The number of attempts made to
implement an action is governed by the RETRY keyword. The interval between
attempts is controlled by the RETRYINT keyword of the control data.

FWDQ (QueueName | &DESTQ | &REPLYQ)
This keyword is the name of the message queue to which the message should
be forwarded when ACTION (FWD) is requested.

QueueName
This keyword is the name of a message queue. FWDQ(' ') is not valid.

Chapter 9. MQSeries dead-letter queue handler 149

Rules table

&DESTQ
This keyword causes the queue name to be taken from the DestQName
field in the MQDLH structure.

&REPLYQ
This keyword causes the name to be taken from the ReplyToQ field in
the message descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ (&REPLYQ)
matches a message with a blank ReplyToQ field, you can specify
REPLYQ (?*) in the message pattern.

FWDOQM (QueueManagerName | &DESTQM | &REPLYQM |' ')
This keyword identifies the queue manager of the queue to which a message is
to be forwarded.

QueueManagerName
This keyword is the name of the queue manager of the queue to which
a message is to be forwarded when ACTION (FWD) is requested.

&DESTQM
This keyword causes the queue manager name to be taken from the
DestQMgrName field in the MQDLH structure.

&REPLYQM
This keyword causes the name to be taken from the ReplyToQMgr field
in the message descriptor (MQMD).

' FWDQM(' ") is the default value and identifies the local queue
manager.

HEADER (YESINO)
This keyword specifies whether the MQDLH should remain on a message for
which ACTION (FWD) is requested. By default, the MQDLH remains on the
message. The HEADER keyword is not valid for actions other than FWD.

PUTAUT (DEF | CTX)
This keyword defines the authority with which messages should be put by the
DLQ handler:

DEF This keyword causes messages to be put with the authority of the DLQ
handler itself.

CTX This keyword causes the messages to be put with the authority of the
user ID in the message context. If you specify PUTAUT (CTX), you
must be authorized to assume the identity of other users.

RETRY (RetryCount 1)
RETRY is the number of times, in the range 1-999, that an action should be
attempted (at the interval specified on the RETRYINT keyword of the control
data).

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If the DLQ handler is restarted,
the count of attempts made to apply a rule is reset to zero.

150 MQSeries for Compaq NSK V5.1 System Administration

Rules table conventions

Rules table conventions

The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:

A rules table must contain at least one rule.
Keywords can occur in any order.

A keyword can be included once only in any rule.
Keywords are not case sensitive.

A keyword and its parameter value must be separated from other keywords by
at least one blank or comma.

Any number of blanks can occur at the beginning or end of a rule, and between
keywords, punctuation, and values.

Each rule must begin on a new line.

For reasons of portability, the significant length of a line should not be greater
than 72 characters.

Use the plus sign (+) as the last nonblank character on a line to indicate that the
rule continues from the first nonblank character in the next line. Use the minus
sign () as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

Comment lines, which begin with an asterisk (*), can occur anywhere in the
rules table.

Blank lines are ignored.

Each entry in the DLQ handler rules table comprises one or more keywords and
their associated parameters. The parameters must follow these syntax rules:

— Each parameter value must include at least one significant character. The
delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:

FORMAT('ABC') 3 significant characters
FORMAT (ABC) 3 significant characters
FORMAT('A") 1 significant character
FORMAT (A) 1 significant character
FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant characters:
FORMAT("'")

FORMAT()

FORMAT ()

FORMAT

— Wildcard characters are supported: you can use the question mark (?) in place
of any single character, except a trailing blank; you can use the asterisk (*) in
place of zero or more adjacent characters. The asterisk (*) and the question
mark (?) are always interpreted as wildcard characters in parameter values.

— Wildcard characters cannot be included in the parameters of these keywords:
ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

— Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard matches.
However, leading and embedded blanks within strings in quotation marks are
significant to wildcard matches.

Chapter 9. MQSeries dead-letter queue handler 151

Rules table conventions

— Numeric parameters cannot include the question mark (?) wildcard character.
The asterisk (*) can be used in place of an entire numeric parameter, but
cannot be included as part of a numeric parameter. For example, these are
valid numeric parameters:

MSGTYPE (2) Only reply messages are eligible
MSGTYPE (*) Any message type is eligible
MSGTYPE('*') Any message type is eligible

However, MSGTYPE('2*') is not valid, because it includes an asterisk (*) as
part of a numeric parameter.

— Numeric parameters must be in the range 0-999. If the parameter value is in
this range, it is accepted, even if it is not currently valid in the field to which
the keyword relates. Symbolic names can be used for numeric parameters.

— If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8-character

field:

"ABCDEFGH' 8 characters

'"AxC+ExG*I' 5 characters excluding asterisks
") AxC*ExG*I*K*M*Q*"'

8 characters excluding asterisks

— Strings that contain blanks, lowercase characters, or special characters other
than period (.), forward slash (/), underscore (_), and percent sign (%) must
be enclosed in single quotation marks. Lowercase characters not enclosed in
quotation marks are folded to uppercase. If the string includes a quotation,
two single quotation marks must be used to denote both the beginning and
the end of the quotation. When the length of the string is calculated, each
occurrence of double quotation marks is counted as a single character.

How the rules table is processed

The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table and
continues sequentially through the table. When a rule with a matching pattern is
found, the action from that rule is attempted. The DLQ handler increments the
retry count for a rule by one whenever it attempts to apply that rule. If the first
attempt fails, the attempt is repeated until the count of attempts made matches the
number specified on the RETRY keyword. If all attempts fail, the DLQ handler
searches for the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is successful.
When each matching rule has been attempted the number of times specified on its
RETRY keyword, and all attempts have failed, ACTION (IGNORE) is assumed.
ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule can consist of
an action only. However, action-only rules are applied to all messages on the
queue that have MQDLHs and that have not already been processed in
accordance with other rules in the table.

152 MQSeries for Compaq NSK V5.1 System Administration

Rules table processing

3. The rules table is validated when the DLQ handler is started, and errors are
flagged at that time. (Error messages issued by the DLQ handler are described
in the MQSeries Messaged book.) You can make changes to the rules table at any
time, but those changes do not take effect until the DLQ handler is restarted.

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
queues with the message option MQPMO_PASS_ALL_CONTEXT.

5. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

6. Multiple instances of the DLQ handler could run concurrently against the same
queue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed

The DLQ handler keeps a record of all messages on the DLQ that have been
viewed but not removed. If you use the DLQ handler as a filter to extract a small
subset of the messages from the DLQ, the DLQ handler still has to keep a record
of those messages on the DLQ that it did not process. Also, the DLQ handler
cannot guarantee that new messages arriving on the DLQ are viewed, even if the
DLQ is defined as first-in-first-out (FIFO). Therefore, if the queue is not empty, a
periodic rescan of the DLQ is performed to check all messages. For these reasons,
you should ensure that the DLQ contains as few messages as possible. If messages
that cannot be discarded or forwarded to other queues (for whatever reason) are
allowed to accumulate on the queue, the workload of the DLQ handler increases
and the DLQ itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, do not use ACTION (IGNORE), which leaves messages on the DLQ.
ACTION (IGNORE) is assumed for messages that are not explicitly addressed by
other rules in the table. Instead, for those messages that you would otherwise
ignore, use an action that moves the messages to another queue. For example:

ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Similarly, the final rule in the table should process messages that have not been
addressed by earlier rules in the table. For example, the final rule in the table
could be:

ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This action causes messages that fall through to the final rule in the table to be
forwarded to the queue REALLY.DEAD.QUEUE, where they can be processed manually.
If you do not have such a rule, messages are likely to remain on the DLQ
indefinitely.

Example DLQ handler rules table

The following is an example rules table that contains a single control-data entry
and several rules:

khhkkkhhkhkhhhhhhhdhhdrhhhhhhhhhdhhdhrhdhhhhhdhhdrhdhhhhdhhdrhdrhdrhrhhrhdx *k*k
* An example rules table for the runmgdlq command *
Khhkhhkkhhkhkdhhhkhhhhhhhdhhhdhrhdhhhhhdhhhdhhhdhhddhdhhdhhhrhrhhrkhk kkhkkkhkhkhkkhhkkhhkkk

* Control data entry

Chapter 9. MQSeries dead-letter queue handler 153

Example rules table

If no queue manager name is supplied as an explicit parameter to
runmqdlq, use the default queue manager for the machine.

If no queue name is supplied as an explicit parameter to runmqdlq,
use the DLQ defined for the local queue manager.

= %k 3k X X

nputgm(' ') inputq(' ')

*
=l
=
—
(]
w

*

We include rules with ACTION (RETRY) first to try to
deliver the message to the intended destination.

*

If a message is placed on the DLQ because its destination
queue is full, attempt to forward the message to its
destination queue. Make 5 attempts at approximately
60-second intervals (the default value for RETRYINT).

* Ok %X X

REASON(MQRC_Q FULL) ACTION(RETRY) RETRY(5)

If a message is placed on the DLQ because of a put inhibited
condition, attempt to forward the message to its

destination queue. Make 5 attempts at approximately
60-second intervals (the default value for RETRYINT).

* Ok X X

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

The AAAA corporation are always sending messages with incorrect
addresses. When we find a request from the AAAA corporation,

we return it to the DLQ (DEADQ) of the reply-to queue manager
(&REPLYQM) .

The AAAA DLQ handler attempts to redirect the message.

* %k ok X X

MSGTYPE (MQMT_REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never do things by half measures. If
* the queue manager BBBB.l is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdgm(bbbb.2) header(no)

The CCCC corporation considers itself very security

conscious, and believes that none of its messages

will ever end up on one of our DLQs.

Whenever we see a message from a CCCC queue manager on our

DLQ, we send it to a special destination in the CCCC organization
where the problem is investigated.

* % X X X %

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

Messages that are not persistent run the risk of being
lost when a queue manager terminates. If an application
is sending nonpersistent messages, it should be able

to cope with the message being lost, so we can afford to
discard the message.

* % X X %

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

For performance and efficiency reasons, we like to keep
the number of messages on the DLQ small.

If we receive a message that has not been processed by
an earlier rule in the table, we assume that it
requires manual intervention to resolve the problem.
Some problems are best solved at the node where the

EE I

154 MQSeries for Compaq NSK V5.1 System Administration

Example rules table

problem was detected, and others are best solved where
the message originated. We don't have the message origin,
but we can use the REPLYQM to identify a node that has
some interest in this message.

Attempt to put the message onto a manual intervention
queue at the appropriate node. If this fails,

put the message on the manual intervention queue at

this node.

EE I R

REPLYQM('?%') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

Chapter 9. MQSeries dead-letter queue handler 155

Example rules table

156 MQSeries for Compaq NSK V5.1 System Administration

Chapter 10. Instrumentation and EMS events

This chapter:

* Provides a brief introduction to MQSeries instrumentation events, which you can

use to monitor the operation of queue managers. See LMQ.Seu.&s.msttumenta.h.aﬂ

kxentsd For detailed information about instrumentation events, see the w
book.

e Describes the use of Event Management Service (EMS) events by MQSeries for

Compaq NSK. See I‘Event Management Service (EMS) events” on page 15d.

MQSeries instrumentation events

Instrumentation events cause event messages to be generated when a queue
manager detects a predefined set of conditions. For example, a Queue Full event
results from the following conditions:

* Queue Full events are enabled for a specified queue.

* An application issues an MQPUT call to put a message on that queue, but the
call fails because the queue is full.

Other conditions that can cause instrumentation events include:
* A limit on the number of messages on a queue being reached
* A queue not being serviced within a specified time

* A channel instance being started or stopped

* An application attempting to open a queue specifying a user ID that is not
authorized

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

The event message contains information about the conditions resulting in the
event. It is put onto an event queue. An application can retrieve the event message
from this queue for analysis.

If you define event queues as remote queues, you can put all the event queues on
a single queue manager (for those nodes that support instrumentation events). You
can then use the events generated to monitor a network of queue managers from a
single node.

Types of event

There are four types of instrumentation event:

Queue manager events
Queue manager events are related to the definitions of resources within
queue managers. For example, a queue manager event could be generated
when an application attempts to put a message to a queue that does not
exist.

Performance events
Performance events are notifications that a threshold has been reached by a
resource. For example, a performance event could be generated when a

© Copyright IBM Corp. 1993, 2001 157

Instrumentation events

queue-depth limit has been reached or, following an MQGET call, if a
queue has not been serviced within a predefined time.

Channel events

Channel events are reported by channels as a result of conditions detected
during their operation. For example, a channel event could be generated
when a channel instance is stopped.

Trigger events

A trigger event can occur when a queue manager detects that the
conditions for the trigger event have been met. For example, a queue can
be configured to generate a trigger event each time a message arrives. (The
conditions for trigger events and instrumentation events are quite

different.)

A trigger event causes a trigger message to be put on an initiation queue
and, optionally, an application program is started.

Event notification through event queues

When an event occurs, the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:

* Gets the message from the queue.

* Processes the message to extract the event data. For a description of event

message formats, see the MQSeries Programmable System Managemen} book.

Each category of event has its own event queue. All events in that category result
in an event message being put onto the same queue.

This event queue...

Contains messages from...

SYSTEM.ADMIN.QMGR.EVENT

Queue manager events

SYSTEM.ADMIN.PERFM.EVENT

Performance events

SYSTEM.ADMIN.CHANNEL.EVENT

Channel events

Using triggered event queues

You can set up the event queues with triggers so that, when an event is generated,
the event message put onto the event queue starts a user-written monitoring
application. This application can process the event messages and take appropriate
action. For example, some events can require that an operator be informed, and
others can start an application that performs various administration tasks

automatically.

Enabling instrumentation events

How you enable an instrumentation event depends on the event type:

* Queue manager events are enabled by setting attributes on the queue manager.

* Performance events as a whole must be enabled on the queue manager. You
must also enable specific performance events by setting the appropriate queue
attribute, and identify the conditions, such as a queue-depth-high limit, that will

result in the event.

* Channel events occur automatically; they do not need to be enabled. If you do
not want to monitor channel events, you can put-inhibit the channel event

queue.

158 MQSeries for Compaq NSK V5.1 System Administration

Instrumentation events

You enable and disable the generation of instrumentation events using either of the
following;:

* MQSC commands. For more information, see the MQSeries MQSC Command

* PCF commands for queue managers. For more information, see the M
book.

e MQAI commands. For more information, see the MQS.eues_Admmzs.tmtzaﬁ

Event messages

Event messages contain information relating to the origin of an event, including
the type of event, the name of the application that caused the event, and, for
performance events, a short statistics summary for the queue.

The format of event messages is similar to that of PCF response messages. The
message data can be retrieved from event messages by user-written administration

Eroirams using the data structures described in the MQSeries Programmable Systen)

book.

Event Management Service (EMS) events

MQSeries for Compaq NSK generates Event Management Service (EMS) event
messages that correspond to the MQSeries queue-manager events, channel events,
and performance events. EMS messages may also be generated that correspond to
the message entries in the MQSeries logs and to FFSTs. These event messages can
alert system operators and administrators to software conditions that could have
an adverse effect on the MQSeries operating environment.

EMS template files supplied with MQSeries for Compaq NSK
The following files are supplied in subvolume ZMQSSYS:

ZMQSTMPL (file code 839)
An EMS template object file containing the formatting templates
for the EMS events generated by MQSeries.

ZMQSDDL (file code 101)
The Data Definition Language schema for the EMS events
generated by MQSeries.

ZMQSC (file code 101)
Compiled output (C) from the DDL compiler of definitions of the
EMS events generated by the product.

ZMQSCOB (file code 101)
Compiled output (COBOL) from the DDL compiler of definitions
of the EMS events generated by the product.

ZMQSPAS (file code 101)
Compiled output (PASCAL) from the DDL compiler of definitions
of the EMS events generated by the product.

ZMOQSTACL (file code 101)
Compiled output (TACL) from the DDL compiler of definitions of
the EMS events generated by the product.

ZMQSTAL (file code 101)
Compiled output (TAL) from the DDL compiler of definitions of
the EMS events generated by the product.

Chapter 10. Instrumentation and EMS events 159

EMS events

The subvolume ZMQSSYS contains the EMS template file SMQSTMPL, from which
the template file ZMQSTMPL is generated. The file ZMQSTMPL is ready for
integration with your system’s event templates using COUP and SYSGEN. The
source of the event templates is supplied, so that you can modify the formatting of
the events when they are used in your environment.

For example, you might not be interested in displaying all of the information that
is contained in an event, or you might want to add or change text that is displayed
along with the information in the event. See the Compaq documentation for a
description of the EMS event template source language, and for the procedures
used to compile the definitions to produce an alternative ZMQSTMPL file.

Integrating the MQSeries EMS event templates

The template object file must be integrated into your system’s resident and
nonresident EMS template files, so that programs such as VIEWPOINT and
EMSDIST can format and display MQSeries EMS events.

A procedure for integrating the MQSeries EMS templates into the system templates
is described in the remainder of this section. Note that different procedures might
be preferred in your installation.

1. Determine the names of the current system templates using the COUP
command INFO ALLPROCESSORS: note the values displayed for the EMS TEMPLATES
parameter. For example:

$DEV2 ZMQSSYS 425> coup
CONFIGURATION UTILITY PROGRAM - T9023D30 - (26MAY95) SYSTEM
\RAPTOR
COPYRIGHT Compag COMPUTERS INCORPORATED 1987-1994
CONFIG $SYSTEM.SYS06.0SCONFIG
1) info allprocessors
EMS TEMPLATES (RESIDENT $SYSTEM.SYSO1.RTMPLATE,
. NONRESIDENT $SYSTEM.SYSO1.RTMPLATE)
SYSTEMAID (NAME \RAPTOR, NUMBER 001)
SYSTEM TIME (GMT OFFSET -05:00, DST USA66)
DP2_UPSOPTION (OFF)
2) exit

2. Determine the name of the current system template for a G Series operating
system using the SCF command ASSUME SUBSYS $ZZKRN; INFO. Note the
values displayed for NONRESIDENT_TEMPLATES and
RESIDENT_TEMPLATES. For example:

160 MQSeries for Compaq NSK V5.1 System Administration

EMS events

SCF;ASSUME SUBSYS $ZZKRN; INFO
NONSTOP KERNEL - Info SUBSYS \HAWK.$ZZKRN
Current Settings

*DAYLIGHT SAVING TIME ..uvvvvvvunnnnns USA66
*NONRESIDENT TEMPLATES....vvvvvenn.... $SYSTEM.SYSOL. TEMPLATE
*POWERFAIL_DELAY TIME......uvuuunnnnns 30

*RESTDENT TEMPLATES ... ''uurrrvnnnnnn.. $SYSTEM.SYSO1.RTMPLATE
SUPER_SUPER_IS_UNDENIABLE............ OFF

*SYSTEM NAME. . -\ v vvvseennnnnnns \HAWK

*SYSTEM NUMBER. . v v vvveeeeeeeennnnnnns. 2
SYSTEM_PROCESSOR TYPE +vvvvvvnnnnnnn. NSR-W

*TIME_ZONE_OFFSET. .. nnnnnnnnnnnn. -05:00

Pending Changes (will take effect at next system load)
None Total Errors = 0 Total Warnings = 0

3. Run the TEMPLI compiler to create new system template files combining the
current system templates with the new MQSeries templates. This is a two-step
process:

a. Create a text file containing the following commands:

FILE <current NONRESIDENT system template file>
FILE <MQSeries install volume>.ZMQSSYS.ZMQSTMPL
EXIT

For example:

FILE $SYSTEM.SYS06.TEMPLATE
FILE $DEV2.ZMQSSYS.ZMQSTMPL
EXIT

b. Run the TEMPLI compiler, specifying the new text file as input:

TEMPLI /IN <command file>/<new resident template file>, <new
nonresident template file>

For example, if the command file you created is called TEMGUIDE and you
are creating new template files in $SYSTEM.EMS:

TEMPLI /IN TEMGUIDE/$SYSTEM.EMS.NEWRES, $SYSTEM.EMS.NEWNRES

The compilation of the new template files can take several minutes, as all
the EMS event templates required on your system are processed.

4. Using the COUP command, configure your system to use the new EMS event
templates in place of the current templates:

Chapter 10. Instrumentation and EMS events 161

EMS events

Defining the PARAM MQEMSEVENTS

ASSUME ALLPROCESSORS

ALTER EMS TEMPLATES(RESIDENT <new resident template file>,
NONRESIDENT <new nonresident template file>)

EXIT

For G Series use the SCF commands to configure your system to use the new
EMS event templates:

ALTER $ZZKRN, RESIDENT_TEMPLATES $SYSTEM.SYSO1.NEWRES
ALTER $ZZKRN, NONRESIDENT TEMPLATES $SYSTEM.SYSO1.NEWNRES

EXIT

Note: To make this change permanent, you must update the system using

SYSGEN.

For further information about EMS templates, see the Compaq DSM Template
Services Manual. This book also describes how to use SYSGEN to perform this

task.

To complete the enablement of MQSeries EMS events, you must ensure that the
PARAM MQEMSEVENTS is correctly defined. The value is a four-character string
interpreted as a bit map, as follows:

EMS message Bit-map entry MQEMSEVENT value
FFST 0x00000001 1
START / STOP 0x00000002 2
PERFORMANCE 0x00000004 4
CHANNEL 0x00000008 8
QUEUE MANAGER 0x00000010 16
MESSAGE 0x00000020 32
ERROR 0x00000040 64
ALL 0x0000007F 127

Thus, to switch on all EMS events for MQSeries, you must define the following
PARAM in the TACL environment from which any administration commands are

issued:

PARAM MQEMSEVENTS 127

This definition is also required in server class definitions of all server classes for
MQSeries. Each server class may be configured with different options. See

lChangmg the parameters of PATHWAY server classes _on_p.a,gp_&q for more

information.

By default, no EMS events are generated (that is, the PARAMs are not defined).

162 MQSeries for Compaq NSK V5.1 System Administration

EMS events

Using an alternative collector

On a Compaq NSK system, the default EMS event collector is called $0, and is
always present. All EMS events generated by an MQSeries queue manager are sent
to the default collector. If you want a different collector to collect EMS events for a
queue manager, modify the EMSCollector entry in the Configuration stanza in the
QMINI file, and restart the queue manager. You may specify a different EMS event
collector for each queue manager.

Writing programs to process MQSeries EMS events

You can write an application to monitor an MQSeries queue manager by
processing EMS event messages. Such an application could also affect the
operation of the queue manager by issuing PCF commands in response to the EMS
event messages generated.

The files ZMQSC, ZMQSTAL, ZMQSCOB, ZMQSPAS, and ZMQSTACL supplied
with MQSeries for Compaq NSK in the ZMQSSYS subvolume define the tokens
contained in the MQSeries EMS event messages in C, TAL, COBOL, PASCAL, and
TACL. These definitions could be used by an administration program to
understand the format of the messages.

For further information about the EMS events generated by MQSeries, see

”

‘Anpnendix \V4 even emplate ed b MQSerie Q ompag NSK

Chapter 10. Instrumentation and EMS events 163

164 MQSeries for Compaq NSK V5.1 System Administration

Chapter 11. Understanding transactional support and
messaging

Applications that use the Message Queue Interface (MQI) let you execute put and
get operations under syncpoint control. In MQSeries for Compaq NSK, there are
two transactional operations as follows:

* Commit — the act of completing a transaction so that changes to the database
are recorded and stable. Protected resources are released after the transaction is
committed.

* Back out — an operation that reverses all the changes made during the current
unit of recovery or unit of work. After the operation is complete, a new unit of
recovery or unit of work may be started.

Commit and back out are provided as part of the TM/MP (or TMF) Transaction
environment on Compaq NSK. On MQSeries for Compaq NSK, MQPUT, MQGET,
and MQPUT1 are syncpointed operations by default. That is, unless no
syncpointing is requested explicitly by an application, a TMF transaction must be
in progress or the MQI call fails.

An application initiates a TM/MP transaction using the TM/MP
BEGINTRANSACTION procedure, commits the transaction using
ENDTRANSACTION and can backout the transaction using
ABORTTRANSACTION.

MQSeries for Compaq NSK also supports products that provide syncpoint
operation via TM/MDP, for example, NonStop Tuxedo.

Using the NonStop TM/MP (Transaction Manager)

MQSeries for Compaq NSK V5.1 relies on the transaction management facilities of
Compaq’s NonStop TM/MP to maintain transaction integrity.

The NonStop TM/MP transaction system provides transactional protection and
concurrency, and object-catalog and message integrity.

TM/MP transactions can coordinate MQSeries put and get operations with updates
to ENSCRIBE or NonStop SQL database files made by the application.

MQSeries handles TM/MP transactions transparently. If you have a TM/MP
transaction in progress when an MQI function is called, any put and get operations
with the syncpoint option become part of the same transaction. That is, the
updates to the queues occur when the transaction is committed. In the event of
any failure, TM/MP ensures that all committed transactions are applied to the
database files, and uncommitted transactions are backed out. A transaction backout
reapplies before-images to database records to undo the effects of a cancelled
transaction. Changes do not occur until a commit operation is complete.

If the user application has a transaction in progress and attempts an MQI call out
of syncpoint, MQSeries suspends the current, inherited transaction, starts one of its
own, commits that transaction, and resumes the original transaction prior to
returning control to the user application. Updates to queues resulting from put and
get operations occur immediately.

© Copyright IBM Corp. 1993, 2001 165

Using TM/MP

TM/MP transactions are used to coordinate put and get operations on
non-persistent messages as well as persistent ones. MQSeries for Compaq NSK
uses a special interface to TM/MP called OpenTMF to allow this coordination to
occur.

Syncpointing limits
The file system can limit the amount of persistent message data that can be put or

got within a single transaction by limiting the number of record locks on the
physical files that hold persistent message data.

The file system default lock limit per transaction is 5000 locks per disk volume.
You can change this using SCFE. For example, the following command changes the
limit to 10000 locks per transaction per disk volume:

ALTER DISK $DISKO1, MAXLOCKSPERTCP 10000

For messages that are stored in queue overflow files (because their size is below
the threshold size for the use of message overflow files) the number and size of
messages is limited.

We advise you to set the message overflow threshold size to no more than 200 KB.
At this message size, the default record lock limit can accommodate about 100
messages within a single transaction — more than adequate for most applications.
In addition, the performance benefits of using message overflow files become
significant at this message size.

Also note that the use of TM/MP audit trail is greatly reduced when message
overflow files are used instead of queue overflow files.

For more information about the differences and benefits of message and queue

overflow files, see [Message overflow files” on page 204,
No-syncpoint operations on persistent messages

Persistent messages require TM/MP transactions started internally by the queue
server in order to update the ENSCRIBE files that hold message data. There is a
limit imposed by the NSK File System of 100 concurrent transactions started by
any one process. Therefore, a single queue server can support no more than 100
concurrent no-syncpoint persistent message PUT or GET operations. The only way
this can happen is if multiple large messages (larger than 32 KB) are being
enqueued or dequeued at the same time through the same queue server.

If this situation occurs, the MQPUT or MQGET will be terminated by the reason
code MQRC_SYNCPOINT_LIMIT_REACHED. Re-assign queues to alternate queue
servers in order to spread the load across multiple processes, or change
applications to use different queues hosted by different queue servers.

Syncpoint operations on non-persistent messages

Since non-persistent messages are stored in memory and not in audited disk files,
they require no audit trail space themselves. MQSeries uses an internal interface of
TM/MP to control the availability of non-persistent messages that are enqueued or
dequeued in syncpoint. Any mixture of persistent and non-persistent messages
may be included within a syncpoint operation—MQSeries will ensure that at the
time the TM/MP transaction completes, the operations on all non-persistent

166 MQSeries for Compaq NSK V5.1 System Administration

Using TM/MP

messages will be logically committed or backed out at the same time as those for
persistent messages, depending on the actual outcome of the transaction.

Configuration requirements for TM/MP and MQSeries for Compaq NSK

Your NSK system needs to be configured with TMF (TM/MP) auditing enabled for
all volumes that are to contain queue managers or queues. Use the TMFCOM
command status datavols to determine the status of auditing on any volume on
your system. (Note that you have to be SUPER.SUPER to use TMFCOM.) In
addition, the TMF audit trails configured for the data volumes that support queue
managers must be large enough to allow for the peak rate and size of message
traffic expected on all queue managers that use these volumes.

Since misbehaved applications can cause long-running transactions, the TMF
system should be configured automatically to cancel long-running transactions.
The size of the audit trail, and the time limit on long-running transactions, are
application-dependent tuning parameters. The audit trail configured for MQSeries
does not need to be configured for dumping to tape.

Monitoring

Use the TMFCOM interface to monitor the status of TME, with MQSeries running.
Use the status tmf and status datavols commands to investigate the general
status of TME, and the status of individual data volumes.

The System event log (EMS) should also be monitored for critical TM/MP events
that indicate potential future problems within TM/MP that could affect MQSeries
or the applications that use it. TM/MP is a critical resource for MQSeries and must
operate continuously for MQSeries to function properly.

Audit-trail size

Approximate TM/MP audit-trail sizings can be calculated using the following
guidelines:

* Audit trail space is required for persistent message operations (put and
destructive get) only.

* The audit trail space should be approximately the total message data size plus
1500 bytes.

* DPersistent message operations involving messages that are above the message
overflow threshold require only 4 KB of audit trail per put or get, irrespective of
their size.

Resource manager configuration

The internal interface of TM/MP needs to be configured appropriately for the
volume of transactions that are expected to be processed using MQSeries. The
MQSeries queue servers take the role of resource manager as far as the TM/MP
subsystem is concerned, and there are various thresholds and limits in the TM/MP
subsystem that apply to resource managers. The required configuration depends
on the number of queue servers you use, the distribution of queue servers across
the CPUs and how many concurrent syncpoint operations are in progress at any
one time. The ALTER BEGINTRANS command of TMFCOM is used to change the
values, as described below:

RMOPENPERCPU - should be at least twice the maximum number of queue
servers that will run in any CPU. The default value of 128 is usually sufficient.

Chapter 11. Understanding transactional support and messaging 167

TM/MP configuration requirements

BRANCHESPERRM - should be at least the maximum number of concurrent
syncpoint operations that can be handled by any single queue server. The default
value of 128 is usually sufficient, but if not then this parameter may be increased
to the maximum value of 1024, or Queues may be assigned to other queue servers
to reduce the maximum number of concurrent syncpoint operations handled by a
queue server.

For new values of these parameters to take effect, the TM/MP subsystem must be
stopped and restarted.

Troubleshooting

EMS events or FFST reports indicating that BEGINTRANSACTION commands
have been disabled by TMF usually mean that the audit trail is filled. This can
occur because the audit trail is too small, or because a badly behaved application
has held a long-running transaction and TMF has not terminated it in time.

In this instance:

¢ Increase the size of the audit trail, or

* Identify the cause of the long-running transaction and correct it, or

* Reconfigure TMF to terminate long-running transactions after a shorter period.

EMS events and FFST reports indicating that TMF is not running indicate a
configuration problem with TMF that must be corrected before running the queue
manager again. In general, the MQSeries queue manager requires TMF to be
running correctly to operate in any capacity. Although messages are not lost or
corrupted, the queue manager is not able to operate without TME.

168 MQSeries for Compaq NSK V5.1 System Administration

Chapter 12. Recovery and restart

A messaging system ensures that messages entered into the system are delivered to
their destination. A messaging system must also provide a method of tracking the
messages in the system, and of recovering messages if the system fails for any
reason.

MQSeries for Compaq NSK ensures that persistent messages are not lost by using
the Compaq NonStop Transaction Manager (TM/MP). TM/MP provides
transaction protection, queue-file consistency, and queue-file recovery.

MQSeries for Compaq NSK also uses NonStop process pair technology to ensure
that even non-persistent messages are resilient to failures. The queue servers that
are responsible for the storage of messages checkpoint non-persistent messages to
their backup process running in a different CPU.

Non-persistent message checkpointing is a per-queue option that you can configure
using altmqfls. Checkpointing of non-persistent messages is enabled by default.

The TM/MP subsystem manages the complex operations for current transactions
and database consistency, both user operations and MQSeries operations, making
these operations transparent to both users and application programs.

A recovery restores the queue manager to the state it was in when the queue
manager stopped. Any transactions that are in process are rolled back, removing
from the queues any messages that were not committed at the time the queue
manager stopped. Recovery restores all persistent messages; non-persistent
messages are lost during the process.

The remainder of this chapter introduces the concepts of recovery and restart in
more detail and explains how to recover if you experience any problems. It covers
the following topics:

 [“Fault tolerance and recovery’]

. 7 . . . 173

Fault tolerance and recovery

If you properly configure the MQSeries Version 5.1 product and the Compaq NSK
system software and hardware (for example, all components are configured as
redundant or mirrored devices or process pairs as prescribed by Compaq), the
failure of any single hardware or software component does not result in loss,
duplication or corruption of data or the permanent loss (that is, requiring outside
intervention to restore) of any function of the system. MQSeries for Compaq NSK
V5.1 can recover from a single point of failure while maintaining data integrity as
specified above.

Repeated consecutive failure (for example, fail-recovery looping) of the same
software component is trapped once a configured maximum number of failures is
exceeded. In such instances, or in the case of multiple-point failure, the MQSeries
product cannot preserve queue integrity.

For more on setting up a queue manager for data integrity and availability, see

4 1

© Copyright IBM Corp. 1993, 2001 169

Backup and restore

Backing up and restoring MQSeries

Periodically, you might want to make a backup of your queue manager data to
provide protection against possible corruption due to hardware failures.

Backing up MQSeries
To back up a queue manager’s data, you must:
1. Ensure that the queue manager is not running.

If your queue manager is running, stop it with the endmqm command.

Note: If you try to make a backup of a running queue manager, the backup
might not be consistent due to updates in progress when the files were
copied.

2. Locate the volumes and subvolumes under which the queue manager stores its
data

You can use the information in the configuration files to determine these
directories. For more information, see L i i iles”

Note: If you have difficulty understanding the names that appear in the
directory it is because the names are transformed to ensure that they are
compatible with the platform on which you are using MQSeries. For
more information about name transformations, see [

7

3. Make copies of all the queue manager’s data and log file subvolumes.
Ensure that you do not overlook any of the files.

Restoring MQSeries
To restore a backup of a queue manager’s data, you must:
1. Ensure that the queue manager is not running.

2. Locate the subvolumes under which the queue manager stores its data. This
information is located in the configuration file.

3. Empty the subvolumes into which you are going to place the backed up data.
4. Copy the backed up queue manager data into the correct places.

Check the resulting directory structure to ensure that you have all of the required
directories.

Check that the MQSeries and queue manager configuration files are consistent so
that MQSeries can look in the correct places for the restored data.

If the data was backed up and restored correctly, the queue manager starts.

Recovery and restart of status servers and queue servers

The status server and queue server processes are Compaq NSK process pairs. This
means that they are designed to continue to provide their services in the event of a
failure of a single CPU, or of the process itself. In the case of a single failure (for
example, the CPU that contains the primary status server or queue server process
fails, or the primary status server or queue server process itself fails) the backup
status server or queue server process takes over as the new primary without
interruption of queue manager processing.

170 MQSeries for Compaq NSK V5.1 System Administration

Recovery and restart of status servers and queue servers

In normal single-point-of-failure situations, therefore, no recovery actions specific
to the status server or queue server are required. A message is logged to the home
terminal and the message log file by an status server or queue server whenever the
backup has to be restarted by the primary, or the backup takes over as primary.

In the case of a more serious failure (for example, an environmental failure that
prevents initialization of the primary or backup status server or queue servers) the
TS/MP PATHMON process attempts to restart the status server or queue server up
to 10 times.

The status server or queue server accesses only databases that are protected by
TM/MP, so that in the event of failures affecting access to the disks, the protection
provided by TM/MP and the DP2 disk subsystem can be relied upon.

The status server or queue server can be individually stopped and restarted by use
of TS/MP PATHCOM commands if necessary, though this is not normally
required. The strmqm command automatically starts all status server or queue
server classes that have names that begin with the character string MQS-STATUS,
or MQS-QUEUE. On queue manager shutdown, all active status server or queue
server classes coordinate their shutdown and, when all active queue manager
connections are closed, any status server or queue server involved with those
connections shuts down.

Compaq NSK aborts transactions under certain circumstances on the failure of a
Primary process of a NonStop process pair. This can cause the failure of MQPUT
or MQGET operations in progress at the time of a failure of the Primary process.

See !Chapter 16 Data integrity and availahility” on page 211 for more information.
Disaster recovery using RDF

The following procedures should be used to bring into operation a queue manager
on the backup site, if a disaster makes the primary site unusable:

1. Ensure that RDF has completed updating the databases.

2. Use FUP to set the audit flag on for the following files:

a. All files in the <qmgr>M subvolume.

b. All files in the <qmgr>D subvolume, except QMINI, AMQRFNXxx,
CCSIDMEM, QMINIMEM, STATABLE, UMQSINI, PATHCTL, TRACEOPT,
and SHUTDOWN.

c. All files in the <qgmgr>S subvolume.

3. Set your default volume to the <qmgr>D subvolume. Run up PATHMON
manually, run PATHCOM against it, and load the PATHWAY configuration for
the queue manager.

4. Perform an INFO command on all objects.

a. Verify that all instances of the node name appear either as "*" or have the
correct node name for the backup system.

b. Verify that the CPU numbers assigned to the server classes are still valid
for this backup site.

c. Verify that the Home Terminal and Out file names are valid for the backup
site. If they are not, change them.

d. Verify that any alternate TCP/IP process name specified is valid for this
system.

e. If the backup site is itself not configured for RDF operation, remove any
PARAM MOQRDEF settings from the EC server class definitions.

f. After verifying the PATHWAY configuration, save it back to disk using the
shutdown2 command and exit from PATHCOM. If the home terminal name

Chapter 12. Recovery and restart 171

Recovery and restart of status servers and queue servers

has been changed, modify the QMINI file for the queue manager to match
the PATHWAY configuration. If necessary, change the TCP/IP listener ports
configuration in the QMINI file.

g. Use strmgm to start the queue manager.

h. Using runmgsc verify the channel configuration, and adjust if necessary.

i. If you attempt to bring up the same channels as were running before, the
channel configuration on the remote queue managers might also have to be
changed unless the backup system can be reconfigured to use the same IP
address of hostname, for TCP/IP channels, or the same SNAX/APC and
ICE resource names (for example, process name, LU names, and so on) for
SNA channels.

j. Be prepared for channel synchronization or sequence errors, particularly if
the primary site channels were running at the time of the disaster. RDF
does not ensure that the databases on the backup site are up to date (in
lockstep with the primary) so data can be lost as a result of a complete
disaster. To minimize the chances of this, ensure that your RDF
configuration can handle the volume of database updates associated with
your message flow.

172 MQSeries for Compaq NSK V5.1 System Administration

Chapter 13. Configuration files

MQSeries for Compaq NSK uses configuration files to hold basic product
configuration information. This chapter describes what configuration files are and
how you can use them to change the way that queue managers operate. It contains
the following sections:

. g 7 o filec2]

o MQSeries configuration file (M()Qﬂ\ﬂ)’l

o FQueue manager conficuration file (QMINI)” on page 174

. ” ogs . . N 7

What are configuration files?

Configuration files define optional values for individual queue managers and for
MQSeries on the node as a whole. These files are referred to as ini files or stanza
files. A configuration file contains one or more stanzas, where a stanza is a group
of lines in the file that together have a common function or define part of a
system. For example, there are stanzas associated with logs, channels, and
installable services.

Configuration files can be modified automatically by commands that change the
configuration of queue managers on the node and also by editing them manually.
In general, however, configuration files should not be modified manually while
queue managers are running.

There are two types of configuration file:

e The MQSeries configuration file, MQSINI, which specifies values for MQSeries on
the node as a whole. There is normally one MQSeries configuration file per
node.

* Queue manager configuration files, QMINI, which specify values for specific queue
managers. There is one queue manager configuration file for each queue
manager on the node.

MQSeries configuration file (MQSINI)

The MQSeries configuration file, MQSINI, contains information relevant to all the
queue managers on an MQSeries installation node. It is created automatically
during installation. In particular, the MQSeries configuration file is used to locate
the data associated with each queue manager. The MQSeries configuration file is
located in the ZMQSSYS subvolume, by default $SYSTEM.ZMQSSYS.MQSINI. An
environment variable, MQMACHINIFILE, is provided for use on systems where
the MQSeries configuration file does not have the default name or location.

What the MQSeries configuration file contains

The MQSINI file contains installation-wide defaults, the names of the queue
managers, the name of the default queue manager, and the location of the files
associated with each of them. The following stanzas can appear in MQSINI:

AllQueueManagers
Specifies values for installation-wide file locations and volumes.

DefaultQueueManager
Specifies the default queue manager for the installation. This queue

© Copyright IBM Corp. 1993, 2001 173

MQSeries configuration file

QueueManager

manager processes MQSC commands when a queue manager
name is not explicitly specified. The stanza is automatically
updated if you create a new default queue manager. If you
inadvertently create a default queue manager and then want to
revert to the original, you must alter this stanza manually.

There is one such stanza for each queue manager. The
QueueManager stanza specifies the queue manager name and the
location of the files associated with that queue manager. The names
of these files are based on the queue manager name but are
transformed if the queue manager name is not a valid file name.

w shows an example MQSINI file.

#*

#***#

#* Module Name: MQSINI *#
#* Type: MQSeries machine-wide ini file *#
#* Function: Define configuration data for all queue managers *#
#* *#

#***#
#* Notes :
#x 1) This file defines configuration data for all queue managers x#

#***#
A1TQueueManagers:

MQSVoTlume=$DATAOO /Volume for the installation
MQSExePath=$DATAQO.ZMQSEXE /Location of product executables
QMDefaultVolume=$DATAQO /Default volume for queue manager creation
ConvEBCDICNewline=NL_TO_LF /Data Conversion EBCDIC Newline
NSKSegidRange=10-20 /Segment Id Range
QueueManager:
Name=MT01 /A queue manager called MTO1
QMVolume=$DATAOO /Volume of the queue manager
QMSubvolume=MTO1 /Subvolume prefix for the queue manager
DefaultQueueManager:
Name=MTO1 /Name of the default queue manager (optional)

*#

*i

Figure 42. Example MQSeries configuration file (MQSINI). The MQSINI file is initialized
during installation with the volume and subvolume information you provide.

Note: Because the MQSeries configuration file is used to locate the data associated
with queue managers, a nonexistent or incorrect configuration file can cause
some or all MQSeries commands to fail. Also, applications cannot connect to
a queue manager that is not defined in the MQSeries configuration file.

Queue manager configuration file (QMINI)

A queue manager configuration file, QMINI, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager. It is created automatically when the queue manager with which it
is associated is created.

The file is held in the subvolume of the queue manager. For example, the path and
name for a configuration file for a queue manager called QMNAME could be
$VOLUME . QMNAMED. QMINI.

174 MQSeries for Compaq NSK V5.1 System Administration

Queue manager configuration file

Note: The queue manager name can be up to 48 characters in length. A subvolume
name is generated based on the queue manager name. This process is
known as name transformation, and ensures the name is both valid and
unique.

What the queue manager configuration file contains

The stanzas that can appear in a queue manager configuration file, QMINI, are as
follows:

Configuration
This stanza defines the global configurations for the queue manager.

The following entries can be modified:
DefaultQueueServerName
DefaultStatusServerName
HomeTerminalName
PathmonProcName
EMSCoTlectorName
MinId1eMCALU62Responders
MinId1eMCATCPResponders
MinIdleMCACallers
MinIdleLQMAgents

For more information about these entries, see 'Madifying queue managed
properties” an page 44. Other entries in this stanza must not be changed.

DefaultProcess
This stanza defines the default values used for MQSeries processes. Entries
in this stanza must not be changed.

ECBoss
This stanza defines the configuration of the MQSeries EC Boss process. The
ExpectedNumECs entry defines the number of EC processes for this queue
manager. This value must correspond with the PATHWAY configuration

for the queue manager. For more information, see ’Modifying quend
manager properties” on page 44, Other entries in this stanza must not be

changed.

EC The MCAAgentPriority and LQMAgentPriority entries of the EC stanza,
which control the process priorities of agent processes, can be modified.

For more information, see ’Modifying quene manager properties” orl

m. Other entries in this stanza must not be modified.

The following stanzas define the specific operating parameters for each MQSeries
process type. Tvplcallv, vou do not need to change the Values of these parameters.
However, see i

MCACaller
MCATCPResponder
MCALU62Responder
MQIServer
LOMAgent

Channellnitiator

TCPListener

Chapter 13. Configuration files 175

Queue manager configuration file

Authority
Provides the recommended mechanism for enabling and disabling the
OAM for a queue manager. Set the MQAUTH flag to On or Off to enable
or disable the OAM without having to add and remove the Service and
Service Component stanzas.

Service
Specifies the name of one of the installable services, and the number of
entry points to that service. There is one stanza for each service. These
services are available:
* Authorization service
* Name service

The Object Authority Manager (OAM) is enabled by default: the
authorization service stanza and its associated ServiceComponent stanza are
present in QMINI by default.

You can disable the OAM simply by setting the MQAUTH flag in the
Authority stanza to Off and restarting the queue manager. Alternatively,
you can:

1. Delete the queue manager (using the dltmqm command)

2. Create the queue manager again (using the crtmqm command) with the
MQSNOAUT environment variable set.

3. Delete the authorization service stanzas from QMINI.

The name service stanza must be added manually to QMINI if you want to
enable the supplied name service.

ServiceComponent
These stanzas define the service component associated with a particular
service. There can be more than one service component stanza for each
service, but each service component stanza must match the corresponding

service stanza. See the MQSeries Programmable System Managemend book for

more information.

TuningParameters
This stanza defines internal tuning parameters used by the local queue
manager agents. You should not change these values.

Channels
This stanza contains information about the channels. As well as defining
the maximum number of channels (MaxChannels) that can be defined for
the queue manager, a second entry (MaxActiveChannels) limits the number
of channels that can be active simultaneously. MaxActiveChannels must
not be greater than MaxChannels. The channels stanza also contains an
entry (ChanInitDiscInterval) that can be used to tune the performance of
the channel initiator. For more information about these entries, see
. ifyi ieg” . Other entries in this

stanza must not be modified.

See the MQ.Szzws_thazcammunwuimﬁ book for more information about

channels.

TCPConfig
Specifies network-protocol configuration parameters. These stanzas
override the default parameters for channels. Only stanzas representing
changed default values are actually present.

176 MQSeries for Compaq NSK V5.1 System Administration

Queue manager configuration file

The TCPListenerPort values are overridden by the listener program if the
parameter MQLISTENPORTNUM is present in the environment of the
listener process.

See the B4QSeries Intercammunicatiod book for more information.

For information about modifying the TCPPort, TCPNumListenerPorts, and
TCPListenerPort entries, see L. ifyi ies”

Example queue manager configuration file
w shows a sample queue manager configuration file (QMINI).

#***#

#x Module Name: QMINI *f
#* Type : MQSeries queue manager configuration file *#
Function : Define the configuration of a single queue manager *#
#* *#
#***#
#* Notes : *#
#x 1) This file defines the configuration of the queue manager *#
#* *#
#******************** """"""""""""""""""""""" *****#

Configuration:
PathmonProcName=$p01p
DefaultStatusServerName=$p01s
ServerClassName=MQS-ECBOSS
EMSCollectorName=$0
HomeTerminalName=$ZTNO.#PTY001C
ShutdownF1i1eName=SHUTDOWN
TraceOptionsFileName=TRACEOPT
RuntimeFileName=RUNTIME
StatableFileName=STATABLE
ChannelDefFileName=CHDEFS
DefaultCCSID=819
DefaultTraceOptions=0
MaxIdleAgents=10
MinId1eMCALU62Responders=0
MinId1eMCATCPResponders=0
MinIdleMCACallers=0
MinIdleLQMAgents=1
MaxIdleAgentReuse=10

DefaultProcess:
ExeFileName=DEFAULT
TraceVolSubvol=$DATAL.p101L
TracePrefix=TR
ErrorVolSubvol=$DATAL.p101L
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=256000
IniPoo1Size=256000
Priority=175

Figure 43. Example queue manager configuration file (QMINI) (Part 1 of 6)

Chapter 13. Configuration files 177

Queue manager configuration file

ECBoss:
ExeFileName=MQECBOSS
TraceVolSubvol=$DATAL.p101L
TracePrefix=TR
ErrorVolSubvol=$§DATA1.p101L
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=300000
IniPoo1Size=256000
Priority=175
ExpectedNumECs=1

EC:
ExeFileName=MQEC
TraceVolSubvol=$DATAL.p101L
TracePrefix=TR
ErrorVolSubvol=$§DATA1.p101L
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=256000
IniPoo1Size=256000
Priority=175
LQMAgentExe=MQLQMAG
MCACallerExe=MQMCACAL
MCATCPResponderkExe=MQTCPRES
MCALU62ResponderExe=MQLUGRES
MCAAgentPriority=165
LQMAgentPriority=165
StopProcessTimer=3000
IdTeProcessTimer=3000

Figure 43. Example queue manager configuration file (QMINI) (Part 2 of 6)

178 MQSeries for Compaq NSK V5.1 System Administration

Queue manager configuration file

MCACaller:
ExeFileName=MQMCACAL
TraceVolSubvol=$DATAL.p101L
TracePrefix=TR
ErrorVolSubvol=$§DATA1.p101L
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=300000
IniPoo1Size=256000
Priority=175

MCATCPResponder:
ExeFileName=MQTCPRES
TraceVolSubvol=§DATALl.pl0O1L
TracePrefix=TR
ErrorVolSubvol=§DATA1.p101L
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=300000
IniPoo1Size=256000
Priority=175

MCALU62Responder:
ExeFileName=MQLU6RES
TraceVolSubvol=§DATALl.pl01L

TracePrefix=TR
ErrorVolSubvol=$DATA1.p101L
ErrorPrefix=ER

DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=300000
IniPoo1Size=256000
Priority=175

Figure 43. Example queue manager configuration file (QMINI) (Part 3 of 6)

Chapter 13. Configuration files 179

Queue manager configuration file

MQIServer:
ExeFileName=MQMQISER
TraceVolSubvol=$DATAL.p101L
TracePrefix=TR
ErrorVolSubvol=$§DATA1.p101L
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=300000
IniPoo1Size=256000
Priority=175

LQMAgent:

ExeFileName=MQLQMAG
TraceVolSubvol=$§DATAl.pl01L
TracePrefix=TR
ErrorVolSubvol=§DATA1.p101L
ErrorPrefix=ER

DebugMode=0

IPCCTimeOut=50
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=120000
IniPoo1Size=200000
Priority=175

Channellnitiator:
ExeFileName=RUNMQCHI
TraceVolSubvol=$§DATALl.pl01L
TracePrefix=TR
ErrorVolSubvol=$§DATA1.p101L
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000

MemSetSize=16000
ExtPoo1Size=256000
IniPoo1Size=256000
Priority=175

TCPListener:
ExeFileName=RUNMQLSR
TraceVolSubvol=§DATALl.pl01L
TracePrefix=TR
ErrorVolSubvol=§DATA1.p101L
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=256000
IniPoo1Size=256000
Priority=175

Figure 43. Example queue manager configuration file (QMINI) (Part 4 of 6)

180 MQSeries for Compaq NSK V5.1 System Administration

Queue manager configuration file

Queue Manager Server:
ExeFileName=MQMGRSVR
TraceVolSubvol=$DATAQ1.MVIL
TracePrefix=TR
ErrorVolSubvol=$DATAO1.MVIL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=300000
IniPoo1Size=256000
Priority=175

Repository Server:
ExeFileName=MQREPSVR
TraceVolSubvol=$DATAQ1.MV1L
TracePrefix=TR
ErrorVolSubvol=$DATAO1.MVIL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=256000
IniPoo1Size=256000
Priority=175

Figure 43. Example queue manager configuration file (QMINI) (Part 5 of 6)

Authority:
MQAUTH=0n

Service:
Service=AuthorizationService
EntryPoints=9

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.Compaq.auth.service
ModuTe=MQOAM
ComponentDataSize=0
ComponentID=0

TuningParameters:
KernelMemSetSize=32000
ObjCatMemSetSize=32000
QueueMemSetSize=16000
MQGETActiveQPol11=50
MQGETInactiveQPol11=1000

Channels:
RetryAll=1
MaxChannels=10
MaxActiveChannels=10
MaxTries=3
MaxTriesInterval=10
ChanInitDiscInterval=10
AdoptNewMCA=NO
AdoptNewMCATimeout=60
AdoptNewMCACheck=NAME ,ADDRESS,QM

TCPConfig:
TCPPort=1414
TCPNumListenerPorts=1
TCPListenerPort=1414
TCPKeepAlive=1

Figure 43. Example queue manager configuration file (QMINI) (Part 6 of 6)

Chapter 13. Configuration files 181

Editing configuration files

Editing configuration files

You can edit the default configuration files to alter the system defaults. However,
before editing any configuration file, ensure that you have a backup that you can
restore if necessary, and that any affected queue managers are stopped.

You might have to edit your configuration files if, for example:
* You lose a configuration file (recover from backup, if possible).
* You need to change the distribution of your queue manager across CPUs.

* You need to change your default queue manager (for example, if you
accidentally delete the existing queue manager).

* You are advised to do so by your IBM Support Center.

For more information, see 'Madifying queue manager properties” on page 44.
Implementing changes to configuration files

If you edit a configuration file, the changes are not implemented immediately by
the queue manager. Changes made to the MQSeries configuration file (MQSINI)
take effect only when MQSeries queue managers are created or started. Changes
made to a queue manager configuration file (QMINI) take effect when the queue
manager is started. If the queue manager is running when you make the changes,
you must stop and then restart the queue manager for any changes to be
recognized by the system.

Recommendations for configuration files

When you create a new queue manager, you should:
* Back up the MQSeries configuration file (MQSINI)
* Back up the new queue manager configuration file (QMINI)

182 MQSeries for Compaq NSK V5.1 System Administration

Chapter 14. Problem determination

This chapter provides troubleshooting information for MQSeries for Compaq NSK.
To determine a problem, you should list the symptoms and then trace them back
to the cause.

Performance problems caused by the limitations of your hardware cannot be
solved immediately. If you believe that the cause of the problem is in the MQSeries
code, contact your IBM Support Center. This chapter contains these sections:

o [“1lsi Series trace” on page 198

o [‘First Failure QHPPnﬂ' Tp(*hnn]ngvm (EEST)” on page 199

Making a preliminary check

The cause of a problem can be in:
* MQSeries

* Your network

* An application

* The Compaq system software

The sections that follow provide questions that you might want to consider.
Answer the questions and make a note of any issues that might be relevant to the
problem.

Has MQSeries run successfully previously?

If MQSeries has not successfully run previously, you might not have set it up
correctly. See the MQSeries for Compaq NSK Quick Beginnings book to check that you
have carried out all the steps correctly.

Are there any error messages?

MQSeries uses error logs to capture messages concerning the operation of
MQSeries itself, any queue managers that you start, and error data coming from
the channels that are in use. Check the error logs for any messages have been
recorded that are associated with your problem.

See 'Error logs” on page 193 for information about the contents of the error logs

and their locations.

Are there any return codes explaining the problem?

If your application gets a return code indicating that a Message Queue Interface

(MQI) call has failed, refer to the MQSeries Application Programming Referencd for a

description of that return code.

© Copyright IBM Corp. 1993, 2001 183

Preliminary checks

Can you reproduce the problem?

If you can reproduce the problem, consider the following questions:

Is the problem caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

Is the problem caused by a program?

Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application for errors.

Is the volume that the queue manager database is to reside on TM/MP
protected? Issue a TMFCOM; STATUS DATAVOLS to verify the volume is
TM/MP protected.

Have the required TACL environment parameters as described in m'

% been added? Issue a PARAM at the TACL prompt to display the

parameters that are currently set.

Is the TM/MP audit trail sized to handle the load. (See m

i i ing” .) Issue a
TMFCOM,; INFO AUDITTRAIL to display the audit trail configuration.
Does Compagq file security allow access to the qmD database files? A minimum
of read access is required to the files to enable access by users outside the MQM
group. A return code 2035 (MQRC_NOT_AUTHORIZED) will be returned for a
MQCONN request when Compaq file security attributes preclude access.

Have any changes been made since the last successful run?

When you are considering changes that might recently have been made, think
about the MQSeries system, and also about the other programs it interfaces with,
the hardware, and any new applications. Consider also the possibility that a new
application that you are not aware of might have been run on the system.

Have you changed, added, or deleted any queue definitions?

Have you changed or added any channel definitions? Changes may have been
made to either MQSeries channel definitions or any underlying communications
definitions required by your application.

Do your applications deal with return codes that they might get as a result of
any changes you have made?

Have any modification to the MQSeries PATHWAY been made?

Have any modifications to the MQSeries Installation files been made, for
example changing file security?

Have any modifications to the MQSeries Compaq NSK database files been
made, for example changing file security or altering TM/MP audit?

Has the queue manager QMINI file had changes applied?

Has the application run successfully before?

If the problem appears to involve one particular application, consider whether the
application has run successfully before.

Consider the following questions:

Have any changes been made to the application since it last ran successfully?

184 MQSeries for Compaq NSK V5.1 System Administration

Preliminary checks

If so, can the error exist in the new or modified part of the application. Check
the changes and see if you can find an obvious reason for the problem. Is it
possible to retry using a back level of the application?

* Have all the functions of the application been fully exercised previously?

Does the problem occur when part of the application that has never been
invoked before is used for the first time? If so, the error might exist in that part
of the application. Analyze what the application was doing when it failed, and
check the source code in that part of the program for errors.

If a program has run successfully on previous occasions, check the current queue
status, and the files that were being processed when the error occurred. It is
possible that they contain some unusual data value that causes a rarely used
path in the program to be invoked?

* Does the application check all return codes?
Has your MQSeries system been changed, such that your application does not
check the return codes it receives as a result of the change. For example, does
your application assume that the queues it accesses can be shared? If a queue
has been redefined as exclusive, can your application deal with return codes
indicating that it can no longer access that queue?

* Does the application run on other MQSeries systems?

Is there a difference in the way that this MQSeries system is set up which is
causing the problem? For example, have the queues been defined with the same
message length or priority?

* Have you set PARAM SAVE-ENVIRONMENT ON?
If not, you will receive MQRC 2058 on MQCONN calls. Set the PARAM in your

apphcatlon env1ronment as descr1bed in ‘Appendix C_Setting TACI|

Z)

If the application has not run successfully previously

If your application has not yet run successfully, you should examine it carefully for
any errors.

Before you look at the code, and depending upon which programming language
the code is written in, examine the output from the translator, or the compiler and
linkage editor, if applicable, to see if any errors are reported.

If your application fails to translate, compile, or link-edit into the load library, it

cannot run. See the IMQSeries Application Programming Referencd for information

about building your application.

If the documentation shows that each of these steps was accomplished without
error, you should consider the coding logic of the application. Do the symptoms of
the problem indicate the functlon that is failing and, therefore, the piece of code in
error? See - for some examples of
common errors that cause problems with MQSeries applications.

Does the problem affect specific parts of the network?

You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the
intercommunication component of MQSeries has been started.

Chapter 14. Problem determination 185

Preliminary checks

Check that messages are reaching the transmission queue, and check the local
queue definition of the transmission queue and any remote queues.

Have you made any network-related changes, or changed any MQSeries
definitions, that might account for the problem?

Check that the MQSeries PATHWAY TCP Listener server MQS-TCPLISxx is started.
If the server is failing to start, check that there are no ending connections (for
example a FIN-WAIT status) for the port using SCF (for example SCF; STATUS
PROCESS $ZTC0). The remote partner needs to be stopped and restarted to release
the port. For SNA, check that the MQSeries SNA Listener is configured for the

SNAX/APC or ICE PATHWAY, see I'L11 62 responder processes” on page 352,

Check that the correct TCPIP process name, hostname or ipaddress, and port is
used for the connection name for channels and corresponds with the remote
channel definition.

Does the problem occur at specific times of the day?

If the problem occurs at specific times of day, it could be that it is dependent on
system loading. Typically, peak system loading is at mid-morning and
mid-afternoon, so these are the times when load-dependent problems are most
likely to occur. (If your MQSeries network extends across more than one time zone,
peak system loading might seem to occur at some other time of day.)

Is the problem intermittent?

An intermittent problem could be caused by failing to take into account the fact
that processes can run independently of each other. For example, a program may
issue an MQGET call, without specifying a wait option, before an earlier process
has completed. An intermittent problem may also be seen if your application tries
to get a message from a queue while the call that put the message is in-doubt (that
is, before it has been committed or backed out).

Occassionly, PATHWAY errors may be logged while ENDMQM is executing. The
error: *1018* SERVER FILE (6006) or *1018* SERVER FILE (7006) may be displayed
while the queue manager is shutting down. These are expected while the
MQS-QMGRSVR00, MQS-STATUS00 or MQS-QUEUEOQO servers are ending.

Have you applied any service updates?

If a service update has been applied to MQSeries, check that the update action
completed successfully and that no error message was produced.

* Did the update have any special instructions?

* Was any test run to verify that the update had been applied correctly and
completely?

* Does the problem still exist if MQSeries is restored to the previous service level?

e If the installation was successful, check with the IBM Support Center for any
patch error.

 If a patch has been applied to any other program, consider the effect it might
have on the way MQSeries interfaces with it.

* Verify the service level. Edit ZMQSSYS.MEMOPTF read only. Note the entry A)
for CSD HISTORY. Enter at the TACL prompt VPROC
$vol.ZMQSLIB.MQSRLLIB where $vol is your MQ installation volume. It should

186 MQSeries for Compaq NSK V5.1 System Administration

Preliminary checks

match the VPROC information of the MEMOPTF or may be newer if an efix has
been applied. Refer to the MEMOEFIX file provided with the efix for the
updated VPROC information.

Common programming errors

The errors in the following list illustrate the most common causes of problems
encountered while running MQSeries programs. You should consider the
possibility that the problem with your MQSeries system could be caused by one or
more of these errors:

Assuming that queues can be shared, when they are in fact exclusive.
Passing incorrect parameters in an MQI call.

Passing insufficient parameters in an MQI call. This may mean that MQI cannot
set up completion and reason codes for your application to process.

Failing to check return codes from MQI requests.
Passing variables with incorrect lengths specified.
Passing parameters in the wrong order.

Failing to initialize MsgId and Correlld correctly.

Failing to issue BEGINTRANSACTION when MQPMO_SYNCPOINT is
specified on the MQPUT command.

Problems with commands

You should be careful when including special characters, such as back slash (\)
and double quotation marks (”), in descriptive text for some commands. If you use
either of these characters in descriptive text, precede them with a \. That is, enter
\\ or \"” if you want \ or ” in your text.

What to do next

When you have established that no changes have been made to your system, and
that there are no problems with your application programs, choose the option that
best describes the symptoms of your problem.

I'Have vou obtained incorrect ﬂl]fpl]f7,|

I'Have vou failed to receive a response from a PCF command?” on page 188

I'Daes the problem affect only remate queues?” on page 189
7 — - - 57

Have you obtained incorrect output?

In this book, “incorrect output” refers to your application:

Not receiving a message that it was expecting.
Receiving a message containing unexpected or corrupted information.

Receiving a message that it was not expecting, for example, one that was
destined for a different application.

Is the structure you are using to display the information correct? For example is
the MQDLH structure that is used to display the dead letter queue header data
added to the beginning of the message text for a message on the dead letter
queue?

Is it reproducible on a MQSeries installation on another machine at a different
operating system (OS) level or same level? If not reproducible there may be an
OS error that is corrected with a Interim Program Maintenance (IPM) from
Compagq that needs to be applied. Check with Compaq support.

Chapter 14. Problem determination 187

What next

In all cases, check that any queue or queue manager aliases that your applications
are using are correctly specified and accommodate any changes that have been
made to your network.

If an MQSeries error message is generated, all of which are prefixed with the

letters “AMQ”, you should look in the error log. See [Error logs” on page 193 for

further information.

Have you failed to receive a response from a PCF command?

If you have issued a command but you have not received a response, consider the
following questions:

* Is the command server running?

Work with the dspmgqcsv command to check the status of the command server.
If the response to this command indicates that the command server is not
running, use the strmqcsv command to start it. If the response to the command
indicates that the SYSTEM.ADMIN.COMMAND.QUEUE is not enabled for
MQGET requests, enable the queue for MQGET requests.

* Has a reply been sent to the dead-letter queue?

The dead-letter queue header structure contains a reason or feedback code
describing the problem. See the MQSeries Application Programming Referencd for
information about the dead-letter queue header structure (MQDLH).

If the dead-letter queue contains messages, you can use the supplied browse
sample application (AMQSBCG) to browse the messages using the MQGET call.
The sample application steps through all the messages on a named queue for a
named queue manager, displaying both the message descriptor and the message
context fields for all the messages on the named queue.

* Has a message been sent to the error log?

See [‘Errar logs” on page 193 for further information.

* Are the queues enabled for put and get operations?
* Is the WaitInterval long enough?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a
reason code of MQRC_NO_MSG_AVAILABLE are returned. (See the

Application Programming Referencd for information about the WaitInterval field,

and completion and reason codes from MQGET.)

* If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to commit a transaction?

Unless you have specifically excluded your request message from syncpoint, you
need to commit a transaction before attempting to receive reply messages.

* Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

* Are you using the Correlld and MsgId fields correctly?

Set the values of MsgId and Correlld in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with the queue manager.
Try stopping the queue manager and then restarting. If the problem still occurs
after restart, contact your IBM Support Center for help.

188 MQSeries for Compaq NSK V5.1 System Administration

What next

Are some of your queues failing?

If you suspect that the problem occurs with only a subset of queues, check the
local queues that you think are having problems:

1.

Display the information about each queue. You can use the MQSC command
DISPLAY QUEUE to display the information.

Use the data displayed to do the following checks:

 If CURDEPTH is at MAXDEPTH, this indicates that the queue is not being
processed. Check that all applications are running normally.

+ If CURDEPTH is not at MAXDEPTH, check the following queue attributes to
ensure that they are correct:
- If triggering is being used:
- Is the trigger monitor running?
- Is the trigger depth too great? That is, does it generate a trigger event
often enough?
- Is the process name correct?
- Is the process available and operational?

— Can the queue be shared? If not, another application could already have it
open for input.
- Is the queue enabled appropriately for GET and PUT?

e If there are no application processes getting messages from the queue,
determine why this is so. It could be because the applications need to be
started, a connection has been disrupted, or the MQOPEN call has failed for
some reason.

Check the queue attributes IPPROCS and OPPROCS. These attributes
indicate whether the queue has been opened for input and output. If a value
is zero, it indicates that no operations of that type can occur. Note that the
values may have changed and that the queue was open but is now closed.

You need to check the status at the time you expect to put or get a message.

If you are unable to solve the problem, contact your IBM Support Center for help.

Does the problem affect only remote queues?

If the problem affects only remote queues, check the following:

Check that required channels have been started and are triggerable, and that any
required initiators are running.

Check that the programs that should be putting messages to the remote queues
have not reported problems.

If you use triggering to start the distributed queuing process, check that the
transmission queue has triggering set on. Also, check that the trigger monitor is
running.

Check the error logs for messages indicating channel errors or problems.

If necessary, start the channel manually. See the MQSeries Intercommunicatiod

book for information about how to do this.

For information about how to define channels, see Appendix M_Setting ug

tommunications” on page 351 and the IMQSeues_Ln.tezmm.mzm.matmd book.

Chapter 14. Problem determination 189

What next

Is your application or MQSeries for Compaq NSK running
slowly?

If your application is running slowly, this could indicate that it is in a loop, or
waiting for a resource that is not available.

Has MQSeries tracing been enabled using either strmqtrc or the MQMC queue
manager panel. This will cause a performance degradation. Check if any TR files
are open in the qmL subvolume. Disable tracing using either endmgqtrc or MQMC
queue manager panel.

This could also be caused by a performance problem. Perhaps it is because your
system is operating near the limits of its capacity. This type of problem is probably
worst at peak system load times, typically at mid-morning and mid-afternoon. (If
your network extends across more than one time zone, peak system load might
seem to occur at some other time.)

Examine the priority of application and queue manager processes using the
STATUS command. A loop causes the priority of the process to be reduced
gradually to zero by NSK.

Check that each of the CPUs in the NSK system is being utilized fully. If some
processors are only lightly loaded, your NSK system needs balancing. Consider
adding ECs to other processors to distribute MQSeries workload.

A performance problem may be caused by a limitation of your hardware.

Note: After a fresh install of MQSeries or a cold load of the Compaq NSK system,
MQSeries executables might take longer to run than expected when they are
first invoked. This is because the Compaq NSK operating system goes
through a “fixup” phase, during which it ensures that all external
declarations are resolved.

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly designed
application program is probably to blame. This could manifest itself as a problem
that only occurs when certain queues are accessed.

The following symptoms might indicate that MQSeries is running slowly:
* Your system is slow to respond to MQSeries commands.
* Repeated displays of the queue depth indicate that the queue is being processed

slowly for an application with which you would expect a large amount of queue
activity.

If the performance of your system is still degraded after reviewing the above
possible causes, the problem may lie with MQSeries for Compaq NSK itself. If you
suspect this, you need to contact your IBM Support Center for assistance.

Application design considerations

There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well,
while impacting the performance of other tasks. Several problems specific to
programs making MQSeries calls are discussed in the following sections.

190 MQSeries for Compaq NSK V5.1 System Administration

Application design considerations

For more information about application design, see the MQSeries Applicatiod

Effect of message length

Although MQSeries allows messages to hold up to 100 MB of data, the amount of
data in a message affects the performance of the application that processes the
message. To achieve the best performance from your application, you should send
only the essential data in a message; for example, in a request to debit a bank
account, the only information that may need to be passed from the client to the
server application is the account number and the amount of the debit.

Searching for a particular message

The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (Msgld and Correlld) in the message descriptor
to specify a particular message, the queue manager has to search the queue until it
finds that message. Using the MQGET call in this way affects the performance of
your application.

Queues that contain messages of different lengths

If the messages on a queue are of different lengths, to determine the size of a
message, your application could use the MQGET call with the BufferLength field
set to zero so that, even though the call fails, it returns the size of the message
data. The application could then repeat the call, specifying the identifier of the
message it measured in its first call and a buffer of the correct size. However, if
there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends
time searching for a message that another application has retrieved in the time
between your two calls.

If your application cannot use messages of a fixed length, another solution to this
problem is to use the MQINQ call to find the maximum size of messages that the
queue can accept, then use this value in your MQGET call. The maximum size of
messages for a queue is stored in the MaxMsgLength attribute of the queue. This
method could use large amounts of storage, however, because the value of this
queue attribute could be as high as 100 MB, the maximum allowed by MQSeries
for Compaq NSK.

Frequency of syncpoints

Programs that issue numerous MQPUT calls within syncpoint, without committing
them, can cause performance problems. Affected queues can fill up with messages
that are currently inaccessible, while other tasks might be waiting to get these
messages. This has implications in terms of: storage; TMF audit trail usage; and
processes tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call

Use the MQPUT1 call if you have only a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

Chapter 14. Problem determination 191

Incorrect output

Incorrect output

The term “incorrect output” can be interpreted in many different ways. For the
purpose of problem determination within this book, the meaning is explained in

Two types of incorrect output are discussed in this section:

* Messages that do not appear when you are expecting them
* Messages that contain the wrong information, or information that has been
corrupted

Additional problems that you might find if your application includes the use of
distributed queues are also discussed.

Messages that do not appear on the queue

If messages do not appear when you are expecting them, check for the following:

e Has the message been put on the queue successfully?

* Has the queue been defined correctly. For example, is MAXMSGL sufficiently
large?

* Is the queue enabled for putting?

¢ Is the queue already full? This could mean that an application was unable to put
the required message on the queue.

* Are you able to get any messages from the queue?
* Do you need to take a syncpoint?

If messages are being put or retrieved within syncpoint, they are not available to
other tasks until the unit of recovery has been committed.

* Is your wait interval long enough?

You can set the wait interval as an option for the MQGET call. You should
ensure that you are waiting long enough for a response.

* Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or Correlld)?

Check that you are waiting for a message with the correct MsgId or Correlld. A
successful MQGET call sets both these values to that of the message retrieved, so
you may need to reset these values in order to get another message successfully.

Also, check whether you can get other messages from the queue.
* Can other applications get messages from the queue?
* Was the message you are expecting defined as persistent?

If not, and MQSeries has been restarted, the message has been lost.
* Has another application got exclusive access to the queue?

If you are unable to find anything wrong with the queue, and MQSeries is
running, make the following checks on the process that you expected to put the
message on to the queue:

* Did the application get started?
If it should have been triggered, check that the correct trigger options were
specified.

* Did the application stop?

¢ Is a trigger monitor running?

* Was the trigger process defined correctly?

* Did the application complete correctly?

192 MQSeries for Compaq NSK V5.1 System Administration

Incorrect output

Look for evidence of an abnormal end in the job log.
* Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another.
For example, suppose one transaction issues an MQGET call with a buffer length
of zero to find out the length of the message, and then issues a specific MQGET
call specifying the Msgld of that message. However, in the meantime, another
transaction issues a successful MQGET call for that message, so the first
application receives a reason code of MOQRC_NO_MSG_AVAILABLE. Applications
that are expected to run in a multi-server environment must be designed to cope
with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to

s

Messages that contain unexpected or corrupted information

If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following points:

* Has your application, or the application that put the message onto the queue,
changed?
Ensure that all changes are simultaneously reflected on all systems that need to
be aware of the change.

For example, the format of the message data may have been changed, in which
case, both applications must be recompiled to pick up the changes. If one
application has not been recompiled, the data will appear corrupt to the other.

* Is an application sending messages to the wrong queue?

Check that the messages your application is receiving are not really intended for
an application servicing a different queue. If necessary, change your security
definitions to prevent unauthorized applications from putting messages on to
the wrong queues.

If your application has used an alias queue, check that the alias points to the
correct queue.

¢ Has the trigger information been specified correctly for this queue?

Check that your application should have been started; or should a different
application have been started?

If these checks do not enable you to solve the problem, you should check your
application logic, both for the program sending the message, and for the program
receiving it.

Problems with incorrect output when using distributed queues

If your application uses distributed queues, you should also consider the following
points:

* Has MQSeries been correctly installed on both the sending and receiving
systems, and correctly configured for distributed queuing?

* Are the links available between the two systems?

Check that both systems are available, and connected to MQSeries. Check that
the connection between the two systems, and the channels between the two
queue managers, are active.

* Is triggering set on in the sending system?

Chapter 14. Problem determination 193

Incorrect output

* Is the message you are waiting for a reply message from a remote system?
Check that triggering is activated in the remote system.
* Is the queue already full?

This could mean that an application was unable to put the required message
onto the queue. If this is so, check if the message has been put onto the
dead-letter queue.

The dead-letter queue header contains a reason or feedback code explaining why
the message could not be put onto the target queue. See the MQSeries Application

book for information about the dead-letter queue header

structure.
* Is there a mismatch between the sending and receiving queue managers?

For example, the message length could be longer than the receiving queue
manager can handle.
* Are the channel definitions of the sending and receiving channels compatible?

For example, a mismatch in sequence number wrap stops the distributed

queuing component. See the MQSeries Intercommunication book for more

information about distributed queuing.
* Have you started a TCP/IP listener?

If you are using TCP/IP as a communications protocol for MQSeries
communications to the Compag, a TCP/IP listener process must be running. See

‘Specifying and controlling TCP /TP listeners” an page 30 for more information.

¢ Is the TCP/IP listener listening on the correct TCP/IP port?

The TCP/IP listener listens on a port defined on a TCPListenerPort entry in the
TCPCon fig stanza of the QMINI ﬁle for your queue manager. See m
for more information.

* Is the TCP/IP process name correct ?

If you are using the TCP/IP communications protocol, is your Compaq system
using the default process name ($ztc0) for the TCP/IP process? If not, you must
alter some of the server classes in your MQSeries pathway to enable the correct
process name to be used by MQSeries channels. See [‘Recanfiguring thd

m for more information.

* Is the MQSeries SNA Listener configured?
If:

- You are running MQSeries channels using SNA as a communications protocol
and

— The channel type on Compagq is one that is waiting to be initiated from a
remote MQSeries system (for example, a RECEIVER) and

— The remote system is having problems starting the channel.

the PATHWAY MQSeries SNA Listener might not be running for your queue
manager. Check that MQSeries SNA Listener has been configured for the queue

manager SNAX/APC or ICE PATHWAY. See ‘LU 6.2 responder processes” onl

for more information.

* Is data conversion involved? If the data formats between the sending and
receiving applications differ, data conversion is necessary. Automatic conversion
occurs when the MQGET is issued if the format is recognized as one of the
built-in formats.

If the data format is not recognized as a built-in format, a data conversion exit
can be used to allow you to perform the translation with your own routines.
Check that your routine is being loaded correctly.

194 MQSeries for Compaq NSK V5.1 System Administration

Incorrect output

See the MQSeries Application Programming Guidd for more information about data

conversion.
Error logs
MQSeries for Compaq NSK uses a number of error logs to capture messages
concerning the operation of MQSeries itself, any queue managers that you start,
and error data coming from the channels that are in use.
The location of the error logs depends on whether the queue manager name is
known and whether the error is associated with a client.
* If the queue manager name is known and the queue manager is available:
<QMVOL>.<SUBVOL>L.MQERRLG1
* If the queue manager is not available:
<MQSVOL>.ZMQSSYS.MQERRLG1
* First Failure Symptom Trap (FFST) in
<QMVOL>.<SUBVOL>.FDnnnnn
* See 'How to examine the FFSTs” on page 199,
Log files

The error log subvolume can contain up to three error log files named:
* MQERRLGI1
* MQERRLG2
¢ MQERRLG3

After you have created a queue manager, three error log files are created when
they are needed by the queue manager. These files are called MQERRLGI,
MQERRLG2, and MQERRLG3, and are placed in the subvolume of each queue
manager that you create.

As error or log messages are generated they are placed in MQERRLG1. When
MQERRLGT is filled it is copied to MQERRLG2. Before the copy, MQERRLG2 is
copied to MQERRLGS3. The previous contents, if any, of MQERRLGS3 are discarded.

The latest error messages are thus always placed in MQERRLG], the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager’s errors files unless the name of their queue manager is unknown or the
queue manager is unavailable. When the queue manager name is unavailable or its
name cannot be determined, channel-related messages are placed in the system
error log (ZMQSSYS.MQERRLGI).

Chapter 14. Problem determination 195

Error logs

To examine the contents of any error log file, you can use either the fup copy
command or your usual Compaq NSK editor in read-only mode. (If you open the
error log in update mode, error messages might be lost.)

Early errors

There are a number of special cases where the above error logs have not yet been
established and an error occurs. MQSeries attempts to record any such errors in an
error log. The location of the log depends on how much of a queue manager has
been established.

If, due to a corrupt configuration file for example, no location information can be
determined, errors are logged to an error file that is created at installation time on
the ZMQSSYS subvolume in the file MQERRLGI.

For further information about configuration files, see [!Chapter 13_Configuration

Operator messages

In MQSeries for Compaq NSK, operator messages identify normal errors, typically
caused directly by users doing things like using parameters that are not valid on a
command. These messages are written to the associated window, if any, and are
also written to a file in the queue manager subvolume.

Errors that can be associated with a particular queue manager are logged to
MQERRLGT1 in the queue manager’s log subvolume. Those that cannot be linked
to a defined and operational queue manager are logged in the MQERRLGI file
located in subvolume ZMQSSYS.

Deciphering EC numbers in the MQERRLG file

The EC number in the messages logged in the MQERRLGI file is a number that is
assigned by the ECBOSS for its tracking of the EC process. There is no direct
correlation between of the number assigned by the ECBOSS in the MQERRLG1
and number used in the name of the MQS-ECxx PATHWAY server. For example,
MQS-EC00 may not get assigned EC number 0. The EC number assigned is
associated with the EC process name in the initialization complete message. Use
the EC process name for determining the MQS-ECxx PATHWAY server and for
problem analysis.

Example error log
This example shows part of an MQSeries for Compaq NSK error log:

196 MQSeries for Compaq NSK V5.1 System Administration

Error logs

02/01/01 11:41:56 AMQ8003: MQSeries queue manager started.
EXPLANATION: MQSeries queue manager janet started.

ACTION: None.

02/01/01 11:56:52 AMQ9002: Channel program started.
EXPLANATION: Channel program 'JANET' started.

ACTION: None.

02/01/01 11:57:26 AMQ9208: Error on receive from host 'camelot
(9.20.12.34)".

EXPLANATION: An error occurred receiving data from 'camelot
(9.20.12.34) "' over TCP/IP. This may be due to a communications failure.
ACTION: Record the TCP/IP return code 232 (X'E8') and tell the
systems administrator.

02/01/01 11:57:27 AMQ9999: Channel program ended abnormally.
EXPLANATION: Channel program 'JANET' ended abnormally.

ACTION: Look at previous error messages for channel program
"JANET' in the error files to determine the cause of the failure.
02/01/01 14:28:57 AMQ8004: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.

ACTION: None.

02/02/01 15:02:49 AMQ9002: Channel program started.
EXPLANATION: Channel program 'JANET' started.

ACTION: None.

02/02/01 15:02:51 AMQ9001: Channel program ended normally.
EXPLANATION: Channel program 'JANET' ended normally.

ACTION: None.

02/02/01 15:09:27 AMQ7030: Request to quiesce the queue manager
accepted. The queue manager will stop when there is no further
work for it to perform.

EXPLANATION: You have requested that the queue manager end when
there is no more work for it. In the meantime, it will refuse
new applications that attempt to start, although it allows those
already running to complete their work.

ACTION: None.

02/02/01 15:09:32 AMQ8004: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.

ACTION: None.

EMS events

An EMS event is generated for each error entry made in the MQERRLGI file. For
more information about EMS events, see L i

ELEDJ‘S_QD_pa.gE;LSg” .

Chapter 14. Problem determination 197

Dead-letter queues

Dead-letter queues

Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by issuing an
MQSC DISPLAY QUEUE command. If the queue contains messages, you can use
the provided browse sample application (MQSBCGOE) to browse messages on the
queue using the MQGET call. The sample application steps through all the
messages on a named queue for a named queue manager, displaying both the
message descriptor and the message context fields for all the messages on the
named queue.

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems may occur if you do not have a dead-letter queue on each queue
manager you are using. When you created this dead-letter queue, you must alter
the DEADQ attribute of the queue manager using runmqsc.

Configuration files and problem determination

Configuration file errors typically prevent queue managers from being found and
result in “queue manager unavailable” type errors.

There are several checks you can make on the configuration files:
* Ensure that the configuration files exist.
* Ensure that they have appropriate permissions.

* Ensure that the MQSeries configuration file references the correct queue manager
and directories.

Using MQSeries trace

MQSeries for Compaq NSK uses the following commands for the trace facility:
* strmqtrc — see I”qh‘mqh‘r (Start MQSeries trace)” on page 284

. dsgmgtrc — see ’dspmgtre (Display MQSeries formatted trace output)” on
+ endmgqtrc - see endmgqtrc (Fnd MQSeries trace)” on page 264

The trace facility uses one file for each entity being traced, with the trace
information being recorded in the appropriate file.

Trace options are specified in the QMINI file.

Note: With MQSeries for Compaq NSK, tracing can also be controlled via the
Queue Manager menu of the Message Queue Management (MQM) facility.

Trace file names

Trace file names are constructed in the error log subvolume as follows:
TRccpppp

where ccpppp is the process identifier (PID) of the process producing the trace. The
PID is made up of:

cc, the CPU number.

pppp, the Process number.

198 MQSeries for Compaq NSK V5.1 System Administration

Using MQSeries trace

If the tracing utility encounters a trace file of an identical process identifier that has
not been deleted, it replaces the final character of the process number with a letter,
giving 26 processes of the same PID the opportunity to write output. For example,
the first trace file for PID 00, 0315 would be TR000315. For a second process started
on completion of process 00, 0315 with the same PID, the trace file would be
TROOO31A.

Note: Because of this restriction, trace files should be purged from the system as
soon as they have been examined.

Sample trace data

The following sample is an extract from a trace:

1D ELAPSED_MSEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT
30d 0 0 MQS CEI Exit!. 12484.1 xcsWaitEventSem rc=10806020
30d 0 0 MQS CEI Exit! 12484.1 zcpReceiveOnLink rc=20805311
30d 0 0 MQS FNC Entry 12484.1 zxcProcessChildren

36d 0 0 MQS CEI Entry. 12484.1 xcsRequestMutexSem

30d 1 0 MQS CEI Entry.. 12484.1 xcsHSHMEMBtoPTR

30d 1 0 MQS CEI Exit... 12484.1 xcsHSHMEMBtoPTR rc=00000000
30d 1 0 MQS FNC Entry.. 12484.1 x11SemGetVal

30d 1 0 MQS FNC Exit... 12484.1 x11SemGetVal rc=00000000

30d 1 0 MQS FNC Entry.. 12484.1 x11SemReq

30d 1 0 MQS FNC Exit... 12484.1 x11SemReq rc=00000000

30d 1 0 MQS CEI Exit.. 12484.1 xcsRequestMutexSem rc=00000000
30d 2 0 MQS CEI Entry. 12484.1 xcsReleaseMutexSem

30d 2 0 MQS CEI Entry.. 12484.1 xcsHSHMEMBtoPTR

30d 2 0 MQS CEI Exit... 12484.1 xcsHSHMEMBtoPTR rc=00000000
30d 2 0 MQS FNC Entry.. 12484.1 x11SemRel

30d 2 0 MQS FNC Exit... 12484.1 x11SemRel rc=00000000

30d 2 0 MQS CEI Exit.. 12484.1 xcsReleaseMutexSem rc=00000000
30d 2 0 MQS CEI Entry. 12484.1 xcsHSHMEMBtoPTR

Figure 44. Sample trace

Notes:

1. In this example the data is truncated. In a real trace, the complete function
names and return codes are present.

2. The return codes are given as values, not literals.

First Failure Support Technology™ (FFST)

FFST errors are normally severe, and indicate either a configuration problem with
the system or an MQSeries internal error. In most cases, the queue manager
remains operational, though there may be a brief interruption of service to some or
all applications. FFSTs are referenced in the file ZMQSSYS.MQSYSLOG.

How to examine the FFSTs

The files are named FDnnnnn, where:
nnnnn Is the process ID reporting the error

When a process creates an FFST report, it also generates an EMS event.

Chapter 14. Problem determination 199

FFST
A typical FEST report is shown in [Figure 43.

Probe severity

Process File Name :

Probe Description :

Date/Time February 6 12:23:26 2001
Host Name \HURSLEY

PIDS 5724A39

LVLS :- 510

Product Long Name :- MQSeries for Compaq NonStop Kernel
Vendor IBM

Probe Id RM020011

Application Name MQM

Component rrxOpenSync

Build Date Feb 5 2001

Exe File Name \HURSLEY . $DATAQ.ZMQSEXE .MQMCACAL
UserID MQM.MANAGER

\HURSLEY.$Z734:15441941

Node number 1

CPU 0

PIN 339

QueueManager MTO1

Major Errorcode xecF_E_UNEXPECTED_RC
Minor Errorcode Unknown (A)

Probe Type MSGAMQ6118

Severity 2: error
AMQ6118: An internal MQSeries error has occurred.

Text Error creating synch file

Arithl 10 (0xa)

Comment1l error 0000000010 in function 0000000020
G ——————————————— +

Figure 45. Sample First Failure Symptom Report

However, there is one set of problems that they may be able to solve. If the FFST
shows “out of resource” or “out of space on device” descriptions, it is likely that
the relevant system limit is exceeded.

To resolve the problem, increase the appropriate limit and restart the queue
manager.

200 MQSeries for Compaq NSK V5.1 System Administration

Chapter 15. Scalability and performance

This chapter discusses techniques for maximizing the performance and scalability

of ME ESerieS aEEIication programs. It contains the following sections:

G . ”

° G _ : ”

o FQueue servers and queue files” on page 203

4 . 7

” 7

Introduction

Tuning for performance and scalability is done to minimize the use of two key
resources: CPU and the Disk subsystem. Applications that use less CPU and less
disk IO will perform better and scale better (for example, they can be configured to
process ever growing workloads by using the using hardware and system software
to its fullest).

This chapter addresses techniques to improve the performance of both application
programs themselves, and MQSeries. The following sections summarize the broad
principles for improving application performance.

Designing new applications for performance and scalability

Early in the design phase for new applications, you should consider how MQSeries
and other subsystems are used. The business need should determine which
MQSeries features are needed or are relevant for each application. Some MQSeries
features, such as message persistence, carry strong integrity and delivery
assurances, which require larger amounts of CPU and disk 1O to provide. If these
assurances are not required for a particular application, then configuring MQSeries
accordingly can yield significant performance gains. This judgment is best made
early in the design phase when the driving business need is being examined.

Designing to minimize or eliminate the use of shared
resources

Absorbing growth in message traffic demands that the underlying hardware and
system software be used to its fullest. Usually, any resource that is shared becomes
a bottleneck, as the load increases. This bottleneck develops either because the
degree of sharing has increased (for example, more users sharing the same CPU) or
there is simply more of the resource is being consumed (for example, each user is
performing more work).

From a performance and scalability perspective, the CPU and the Disk subsystem
represent the most often-shared resources, and therefore require most attention.

MQSeries processes can be spread across as many CPUs as you want. On a system
with several CPUs, distributing the MQSeries processes across the available CPUs
provides better performance than using the default CPU assignment. Similarly, to
maximize utilization of the disk subsystem, it is wise to position separate queue
files on separate disks volumes, serviced by separate Compaq NSK disk processes,
if possible.

© Copyright IBM Corp. 1993, 2001 201

Introduction to scalability and performance

Performance tuning is inherently iterative

Achieving objectively better performance requires a measure-tune-remeasure cycle.
Each tuning cycle should involve the change of only one major variable so that the
effect of that variable can be compared against the effect of other variables. It is
usually counter-productive to alter more than one setting at the same time, since
some changes may improve overall performance more than others, while still
others may reduce it. The performance of an application system is usually
determined by the single, limiting, bottleneck. Making a tuning change to a system
usually causes some other resource to become the bottleneck. The interplay
between changes of this nature emphasizes the need to carefully follow the
measure-tune-remeasure method when tuning for performance.

For example, a given application may write large numbers of small persistent
messages to a queue. It may be useful to test the effects of making all those
messages non-persistent, or writing the same amount of data inside a smaller
number of large messages. Both changes improve performance (usually) but
without a separate measure-tune-remeasure cycle for each change, it may not be
clear which brings the greatest improvement.

Persistent messages

Persistent messages carry the strongest assurances offered by MQSeries regarding
delivery and recoverability. Persistent messages are always stored on hardened
media, and therefore survive a queue manager restart. Nonstop TM/MP audits
queue files so that reading or writing persistent messages results in disk activity to
both the queue file itself, and the TM/MP audit files. TM/MP audit logging is
required to maintain transactional integrity for persistent messages, even in the
case of a system or hardware failure. The TM/MP audit logging associated with
persistent messages must be considered when assessing the performance of an
MQSeries application design.

Persistence is a property of a message, not the queue in which it is stored. Queues
can store both persistent and non-persistent messages, although the administrator
can specify whether new messages are persistent when a putting application does
not otherwise specify. (See the Queue DEFPSIST attribute described in

).

Non-persistent messages

Unlike persistent messages, non-persistent messages are not hardened to disk and
do not survive a queue manager restart. Depending on the queue server options
for the queue, non-persistent messages may get checkpointed to the backup queue
server. The primary reason for using non-persistent messages is performance.
Persistent messages carry strong assurances for delivery and recoverability, so
reading or writing them require disk activity to both the queue files themselves,
and the TM/MP audit files. This disk activity reduces the performance of
applications that read or write persistent messages, and MQSeries channels that
move persistent messages to other queue managers.

Using non-persistent messages whenever possible can dramatically improve the
performance because they are not hardened to disk, but are instead cached in

memory managed by the Nonstop queue servers.

Persistence is a property of a message, not the queue in which it is stored. Queues
can store both persistent and non-persistent messages, although the administrator

202 MQSeries for Compaq NSK V5.1 System Administration

Non-persistent messages

can specify whether new messages are persistent when a putting application does
not otherwise specify (see the Queue DEFPSIST attribute).

Non-persistent messages and channels

Message channels use synchronization logging at both the sending and receiving
end to assure once and once-only delivery of messages sent over the network. This
synchronization logging is additional to any audit logging performed by TM/MP
(on behalf of the queue manager) when channels read and write messages to
queues. Message channels can be configured to not perform synchronization
logging when sending and receiving non-persistent messages, by setting the
NPMSPEED attribute to FAST. The NPMSPEED channel attribute controls the
behavior of both sending and receiving channels that are processing non-persistent
messages. When NPMSPEED is set to NORMAL for a channel, non-persistent
messages are part of the channel’s message batch (as defined by the BATCHINT
and BATCHSZ attributes) and require synchronization logging in the same way as
persistent messages. Further, when NPMSPEED is set to NORMAL, the channel
reads and writes non-persistent messages under syncpoint control, which causes a
small amount of TM/MP audit file activity at the beginning and end of a
transaction.

When NPMSPEED is set to FAST, non-persistent messages are not part of the
channel’s current batch and are read and written to queues outside of syncpoint
control. Using NPMSPEED(FAST) therefore removes two sources of channel disk
activity; the logging done by the channel batch synchronization mechanism, and
the TM/MP audit logging that would otherwise be done for reading and writing
messages under syncpoint.

NPMSPEED(FAST) is a performance option that trades recoverability of
non-persistent messages after a failure for considerably higher performance; using
NPMSPEED(FAST) can cause non-persistent messages to be lost if the channel or
network fails.

The default value for NPMSPEED is FAST.

Queue servers and queue files

Queue servers are MQSeries processes that mediate the reading and writing of
messages and the storage of those messages. As such, queue servers represent a
key MQSeries component worthy of close attention. Queue server configuration
can have a major impact on performance of a busy MQSeries system.

Queue servers have responsibility for the physical storage of messages held in
queue. It is useful to examine the storage of persistent and non-persistent messages
separately, because queue servers manage them in fundamentally different ways.

A queue server can manage one or more queues. When created, a queue is
managed by the default queue server. Therefore, by default, all queues are
managed by the default queue server unless they are assigned to other queue
servers.

For each queue managed by a queue server, the following files exist:
* A queue file

* A queue overflow file

* A touch file

Chapter 15. Scalability and performance 203

Queue servers and queue files

Additionally, there may exist a message overflow file for each large message in the
queue (as defined by the queue’s message overflow threshold). Message overflow
files are discussed in a later section.

Persistent message storage

Persistent messages are always hardened to disk. The way that persistent messages
are stored depends mostly on the size of the message:

Message Size How stored

< 3000 bytes (approx) Stored entirely in the queue file.

> 3000 bytes (approx) <= Message Overflow |1 st 3000 bytes (approx) stored in the queue
threshold file the rest in the Queue Overflow file

> Message Overflow Threshold 1 st 3000 bytes (approx) stored in the queue

file, rest in the Message Overflow File

Non-persistent message storage

Non-persistent messages are stored in memory buffers in the queue server’s
process. For this reason, the queue server performs no disk IO when reading and
writing non-persistent messages.

Queue server CPU distribution

Queue servers are PATHWAY server classes, and are therefore defined in the queue
manager’'s PATHWAY. When the queue manager is created, a default queue server
is defined in the PATHWAY with the queue server’s primary process running in
CPU 0. Since CPU 0 normally contains many high-priority system processes, it is
usually better to not run a queue server in CPU 0. Rather, you should identify a
number of relatively quiet CPUs, and then create a queue server in each of them. A
new queue server does not manage any queues until a queue is explicitly assigned
to it.

Re-assigning queues to queue servers using altmqfls

When you create a queue (using runmqsc), MQSeries assigns it to the default
queue server. Unless you create new queue servers and assign queues to them, all
queues are managed by the single, default, queue server.

In a busy MQSeries system it is neither efficient nor scalable to have all queues
assigned to a single queue server. The major reason for creating new queue servers
and assigning queues to them is to distribute the queue server CPU load more
evenly across the available CPUs.

You can use altmqfls to assign a queue to a different queue server. For example:

altmgfls --gmgr QMGR --type QLOCAL --server $QSO1 TEST.QUEUE

For more information about using altmqfls, see I‘altmgfls (Alter queue fild

Cluster transmit queue: SYSTEM.CLUSTER.TRANSMIT.QUEUE

MQSeries uses a single cluster transmit queue for all clustering operations. If your
queue manager is part of a busy cluster, this queue should be assigned to a

204 MQSeries for Compaq NSK V5.1 System Administration

Queue servers and queue files

dedicated queue server, both to maximize performance of clustering operations
and to minimize the impact on other applications.

Changing queue file placement using altmqfls

By default, the three primary queue files (queue, queue overflow and touch file)
are stored in the queue manager’s M subvolume. Message overflow files are stored
in the queue server’s subvolume.

There are two reasons why you might consider re-locating queue files to other disk
volumes:

* To spread the disk IO load more evenly
* To overcome OS limits on the number of open files per disk volume

You can use altmqfls to move existing queue files to another disk volume:

altmgfls --gmgr QMGR --type QLOCAL --volume $DATAO1 TEST.QUEUE

To use altmgqfls to move a queue, the queue must not be open.
You cannot move existing message overflow files. You can however cause new
message overflow files to be created elsewhere using the --msgofsubvol option of

altmqfls:

You can cause new message overflow files to created in a new location:

altmgfls --gmgr QMGR --type QLOCAL --msgofsubvol $DATAO1.TESTMOF TEST.QUEUE

For more information about using altmgqfls, see Faltmgfls (Alter queue fild

Partitioning queue files

File partitioning is a technique that splits a file across more than one disk volume.
The file then logically consists of more than one partition, one on each disk
volume.

The advantages of partitioning a queue file are:

* Partitioning spreads the one disk IO load for a single queue across more than
disk volume and therefore more than one 10 path

* Partitioning allows a logical queue file to be larger than the maximum size of a
physical file on a disk volume.

You can partition an existing queue file using standard TACL commands (the FUP
utility). MQSeries supplies a TACL script called PARTIT that shows how to use FUP
to partition an existing queue file.

Once a queue file has been partitioned, the managing queue server attempts to
spread new messages evenly across all available partitions. This further enhances

the benefits of partitioning.

Note: altmgqfls cannot move a partitioned queue file.

Chapter 15. Scalability and performance 205

Queue servers and queue files

Message overflow files

Message overflow files are created for each message that is larger than the defined
message overflow threshold. Message overflow files are unstructured files that are
not audited by TM/MP. For very large messages, it is more efficient to store most
of the message in the message overflow file (unaudited by TM/MP). For smaller
messages, it is more efficient to the store the entire message in the TM/MP audited
queue files (queue and queue overflow files). The crossover point has been
empirically determined to be about 200 KB.

The message overflow threshold is set to its default of 200 KB when a queue is
created. The threshold can be changed using the --oflowsize switch of altmqfls.

You can use the altmqfls command to set the message overflow threshold to new
value:

altmgfls --gmgr QMGR --type QLOCAL --oflowsize 400000 TEST.QUEUE

Buffering messages during browsing

The queue server can maintain the first n bytes of all persistent messages for a
queue, in memory. This feature can have a dramatic effect of the performance of
applications that are browsing persistent messages in a queue. If the messages that
the application is browsing are smaller than this Browse Threshold, then no disk
IO is needed to browse each persistent message.

If you wish, you may also include information in, for example, the first 100 bytes
of the persistent messages that identify the content of a message. Browsing the first
100 bytes of data of each message can be done with no disk IO in order to locate
messages of interest. Once found, the entire message data can be read and
dequeued if required.

You can use the --browse option of altmqfls to set a browse threshold for a queue.
By default, no persistent message data is kept in memory (for example, the Browse
Threshold is zero). The maximum value is 25000.

altmgfls --gmgr QMGR --type QLOCAL --browse 100 TEST.QUEUE

Other queue server options

Other queue server options, such as whether the queue is loaded from disk into
cache when the queue manager starts or, whether the non-persistent messages are
checkpointed to the backup queue server, use the --gsoptions parameter with the L,
S and C options. These options can be used either alone or combined, to fine tune
the queue’s retrievability and reliability.

Note: All of the --gsoptions SLC are set each time the command is issued. For
example, --gsoptions S will unset L and C. The --gsoptions option can be
specified once and once only on a command line.

Load on Startup
Controlled by the altmqfls --gsoptions S switch. This option causes the queue
server to read the queue files, and build its internal message data structures at

206 MQSeries for Compaq NSK V5.1 System Administration

Queue servers and queue files

queue server startup (typically, at queue manager start) rather than when the
queue is first opened.

altmgfls --gmgr QMGR --type QLOCAL --gsoptions S TEST.QUEUE

Using the option results in less CPU and disk 1O activity when a queue is first
opened, but causes more queue server activity (CPU and disk IO) during queue
manager start.

Lock In Cache
Controlled by the altmqfls --qsoptions L switch. This option causes the queue

server to lock in memory, the data structures and chains associated with a queue.
The queue’s memory data structures are not unloaded to disk, to make room for
other queues. The default behavior is to unload to disk, a queue’s data structures
when required.

altmgfls --gmgr QMGR --type QLOCAL --gsoptions L TEST.QUEUE

Using these options results in faster access to a queue’s memory data structures at
the possible expense of other queues.

Checkpoint NPM

Controlled by the altmqfls --qsoptions C switch. This option causes the queue
server to checkpoint non-persistent messages with its non-stop backup process.
The default behavior is to checkpoint non-persistent message data.

Using this option results in a higher degree of reliability for non-persistent
messages, at the cost of greater IPC traffic and greater CPU and memory
utilization for both the primary and backup queue server processes.

altmgfls --gmgr QMGR --type QLOCAL --gsoptions C TEST.QUEUE

Measure Counter
Controlled by the altmqfls --meascount switch. This option causes the queue

server to maintain a user-defined Measure Counter with the queue’s CURDEPTH.
The measure counter is useful when you gather data to assess the overall
performance behavior of a system. By using this option, you can correlate message
reads and write activity (MQGETs and MQPUTs) to a queue with other
system-related variables such as CPU and disk IO.

altmgfls --gmgr QMGR --type QLOCAL --meascount TESTCOUNT1 TEST.QUEUE

Using this option allows you to accurately assess the performance and scalability
of a system using MQSeries, and hence improves the results of your tuning effort.

Chapter 15. Scalability and performance 207

CPU assignment

CPU assignment

When you start a queue manager, MQSeries for Compaq NSK creates a number of
processes. Some of these processes provide the core messaging operations while
others perform functions that indirectly support these operations. Processes that
provide the core messaging features of MQSeries are busy when applications are
busy making MQI messaging calls (MQGETs and MQPUTs).

The following MQSeries and Compaq NSK processes are involved in core
messaging operations:

* LOMAs (Local Queue Manager Agents)

* Queue servers

* Status servers

* NSK Disk processes

The following MQSeries and NSK processes are involved in distributed queuing
operations:

* MCAs

* Default Status Server

e NSK TCPIP or SNA processes

The following MQSeries processes are involved in support or administrative
operations:

* Queue Manager Server

* Repository Servers

* Execution Controllers (ECs and ECBoss)

* Channel Initiators

 Trigger Monitors

* Listeners

A heavily loaded MQSeries system usually shows high CPU utilizations for the
processes in the first two categories shown above (core messaging processes and
distributed queuing processes).

Distributing the CPU load of MQSeries therefore usually involves spreading the
queue manager’s LOMAs, queue servers and MCAs across as many CPUs as
possible.

The default configuration for a new queue manager is to run processes in CPU 0
(for Nonstop process pairs, the primary processes run in CPU 0 and the backup in
CPU 1). This is not adequate for a production environment, and you should be
prepared to re-configure the queue manager’s PATHWAY to sensibly spread busy
processes across as many CPUs as possible. CPU 0 usually contains many
high-priority operating system processes and is therefore a poor choice for running
busy MQSeries processes.

The CPU distribution of ECs, which are defined in the queue manager’s
PATHWAY, control the execution of both LOMAs and MCAs. Queue servers are
also defined in the queue manager’'s PATHWAY.

Looking beyond MQSeries processes, the NSK operating system disk processes are
an important component of messaging operations (particularly when queue servers
are handling persistent messages). Heavy use of distributed queuing over a
network necessarily causes the corresponding TCPIP or SNA processes to consume
CPU. You should consider the number and CPU placement of these processes
when assessing the overall performance profile on an MQSeries installation.

208 MQSeries for Compaq NSK V5.1 System Administration

CPU assignment

For information on assigning processes to CPUs, the configuration of disk
processes or TCPIP refer to the relevant Compaq NSK system documentation. For
information on the configuration of SNA processes, refer to relevant SNAX or ICE
documentation For information on configuring TCPIP or SNA processes, see

0 12

FASTPATH binding application programs

FASTPATH binding is a feature of the MQI that is designed to make MQSeries
applications run more efficiently. FASTPATH binding can be used to reduce the
overhead inherent in all MQI verbs issued by MQSeries application programs.
Applications that use FASTPATH binding are referred to as trusted applications
because of the proximity of the queue manager software and memory to the
customer’s application software. Errors in trusted applications can damage
MQSeries data structures and can compromise queue manager integrity.

Background

When an application program executes an MQCONN verb, MQSeries creates (or
reuses) a special process called a Local Queue Manager Agent (LQOMA). The
LOMA services all subsequent MQI calls made by the application using that
connection handle. On MQSeries for Compaq NSK, the LOMA may be running in
the same or a different CPU as the connecting application.

Since the LOMA is a separate process, an application program does not have direct
access to the memory or files used by MQSeries. An errant application program
cannot therefore damage the LOMA. In this way, MQSeries software and data
structures that are critical to its operation are isolated from the customer’s
application software and data. This isolation comes at a price. The MQCONN verb
cannot complete until the new LQMA process is created (or an existing one is
re-used), but the greater cost results from the fact that information must be passed
to the LOMA each time the application issues an MQI verb.

This MQI information is passed to the LOMA using an Interprocess
Communications (IPC) mechanism. IPC requests may be intra-CPU (if the LOMA
happens to be running in the same CPU as the connecting application) or the more
expensive inter-CPU.

Reducing MQI overhead

Application designers can use FASTPATH binding as a way of removing the
application-LQMA IPC overhead associated with each MQI verb (the possible
LQMA process creation is also avoided). When FASTPATH binding is enabled for
an application, no separate LOMA process is used. Instead, the components of
MQSeries normally contained in the LOMA, are loaded into the user’s process (for
example, the connecting application’s process).

Subsequent MQI verbs issued by the application require no IPC activity with the
LQOMA, since the MQSeries software and data structures (normally stored in the
LQOMA process) are held locally within the application’s process. Note that other
IPC activity may still occur when the queue manager needs to communicate with
other MQSeries processes such as queue servers. FASTPATH binding does not
remove all IPC activity, but it does remove an important source of IPC activity.

Chapter 15. Scalability and performance 209

FASTPATH binding application programs

Enabling FASTPATH binding

To use FASTPATH binding, connect to the queue manager using the MQCONNX
verb with the MQCNO_FASTPATH_BINDING option. The value (if any) of the
MQCONNECTTYPE PARAM influences the behavior of MQCONNX. If the
MQCONNECTTYPE PARAM is present, its value must be FASTPATH to allow
MQCONNX to setup a FASTPATH connection. Once a FASTPATH binding
connection is established, all other MQI verbs behave as they would for a standard
binding connection, with the exceptions noted in the section below.

Restrictions when using FASTPATH binding

When using STANDARD binding connections, application software is isolated
from internal MQSeries data. This isolation is removed when a trusted application
establishes a FASTPATH binding connection. Errors in trusted applications can
therefore damage MQSeries data structures and can compromise queue manager
integrity. This must be taken in consideration when assessing whether to use
FASTPATH bindings for a given application.

The following additional considerations apply to trusted applications:

* Trusted applications must explicitly Disconnect from the queue manager (for
example, issue MQDISC).

* Trusted applications must be stopped before the endmgm command is issued.
Trusted applications must run as Administrator user id. (the User id
corresponding to mqgm principal).

* Trusted applications can run only in CPUs that contain a running MQSeries
repository server.

210 MQSeries for Compaq NSK V5.1 System Administration

Chapter 16. Data integrity and availability

This chapter describes concepts of data integrity and availability and how these
important aspects of a system apply to the management and configuration of
MQSeries for Compaq NSK V5.1. This chapter describes the levels of data integrity
and availability you can expect from MQSeries and the configuration choices that
can_influence these levels. It contains the following sections:

. FDat mioaries]

. n . .1 77

. G : _ : ”

o FDatabase consistency” on page 21 E|

4 LR ”

G ”

. I"(’nnﬁgnrah’nn considerations for availability” on page 224

” N 7y

You need to have read and understood I!Chapter 2 MQSeries for Compag NSK|
V5 1 architecture” on page 19 to properly understand and use the information in

this chapter.

Data integrity

The concept of data integrity can be understood best by considering the following
desirable aspects of the storage and management of data, particularly for on-line
transaction processing applications:

* When a record of data is written or read from a record in a database, the data
must not be corrupted, duplicated or lost without an error indication during the
transfer.

* When data is required to be accessed concurrently by multiple processes, these
processes must be presented with the same view of the data and the data must
be protected from corruption, duplication or loss.

* When a set of consistent changes are required to data in multiple databases, the
changes must either be all made or none made.

For MQSeries, the data integrity requirements for data storage listed above are just
as applicable to messaging operations (for example, MQPUT and MQGET) on
queues. Note that consistency of multiple database changes must be preserved
across and between application databases and MQSeries queues.

MQSeries for Compaq NSK V5.1 is designed to maintain data integrity for
persistent data operations through any single point of failure (hardware or
software). In fact, data integrity can be maintained in several cases through
multiple points of failure. This does not imply that non-persistent messages are
unreliable; queue server architecture provides features for making non-persistent
messages as reliable as persistent ones, except in the case of a Catastrophlc system
failure. (For more on queue server architecture, see

7 ')

With MQSeries for Compaq NSK V5.1, data integrity is provided by a combination
of fundamental features of the Compaq NSK system software and hardware, and
the MQSeries software itself.

© Copyright IBM Corp. 1993, 2001 211

Data integrity

There are several ways in which the level of data integrity can be influenced by
choices in the configuration of MQSeries:

* Choice of message persistence by the application

* Choice of storage technique for persistent messages

* Choice of non-persistent message tuning options

* Choice of queue server configuration options

* Configuration of hardware supporting queue files

* Use and configuration of NonStop TM/MP

* Use and configuration of Remote Database Facility (NonStop RDEF).

Each is described later in this chapter.

Availability

Availability in general terms is a measure of the time that an application, or service
is operational and usable compared to elapsed time. Thus continuous availability
expresses the ultimate aim of all such systems. Of course, such measurements
mean nothing without a corresponding time period associated with the
measurement—since it is easy to claim 100% Availability over a short period of
time.

In a real-world situation over a reasonable operational time span, a system will
suffer a number of different types of challenge to its availability:

* Hardware and system software failures
¢ Failures within the application software itself

* The need to make changes to any aspect of the system for preventative
maintenance

* Traffic or transaction load that exceeds design constraints or resource limitations

As for data integrity, with MQSeries for Compaq NSK V5.1, availability is
provided by a combination of fundamental features of the Compaq NSK system
software and hardware, and MQSeries itself.

It is important to recognize that (at least in its current form) MQSeries for Compaq
NSK does not aim to provide a level of continuous availability equivalent to that
provided by Compaq NSK system software such as the file system. There are in
fact some components of the queue manager that do provide this level of
availability, but the queue manager as a whole does not.

MQSeries for Compaq NSK, V5.1 is intended to provide a level of availability such
that on any single point of failure (hardware or software):

* The queue manager connections that suffer interruption or discontinuation of
service are limited to those with components that suffer the failure directly (for
example, on a CPU failure, connections that fail should only be those that are
provided by LQMA processes that were running in that CPU)

* The queue manager remains available for new connection attempts without
manual intervention being required from system administrators

* Access to a queue manager object (for example a local queue) must not be
prevented from any connection other than those directly affected by the failure.

In addition to these Compaq NSK specific features of MQSeries, there are several
features that are common to all MQSeries Version 5.1 platforms that you can make

212 MQSeries for Compaq NSK V5.1 System Administration

Availability

use of to enhance the availability of MQSeries for Compaq NSK. There are several
ways in which in which the level of availability can be influenced by choices in the
configuration of MQSeries:

* Choice of application design

* Choice of PATHWAY configuration options

* Use and configuration of standard MQSeries functions (including clusters)
* Choice of hardware supporting MQSeries

* Choice of non-persistent message configuration options

¢ Use and configuration of NonStop TM/MP

* Use and configuration of NonStop RDF.

Persistent and

non-persistent data

When used in relation to MQSeries, the term persistence implies several qualities to
data:

* A change to persistent data survives queue manager restart

* Persistent data is stored in non-volatile media

* DPersistent data satisfies the highest requirement for data integrity provided by
the particular operating environment

* Persistent data operations trade this higher level of integrity for speed and
resource utilization.

Most administrative operations are made to persistent data, since the configuration
databases of MQSeries must have the highest level of data integrity to minimize
the risk that the availability of MQSeries is seriously degraded. The speed or
resource utilization of most administrative operations is not of prime concern, since
they are performed infrequently.

Examples of persistent administrative operations:
* Change to a queue’s attributes
¢ Change to a channel’s attributes

* Creating a new queue, process, namelist or channel.

Examples of non-persistent administrative operations:
* Starting or stopping a channel
 Inquiring about the attributes of a queue manager object.

MQSeries for Compaq NSK provides several choices for the way messages are
stored, based on the choice between persistent and non-persistent made by the
application when enqueuing a message, and on queue level configuration choices
made by the system administrator.

Persistent messages

Persistent messages are always stored on disk. As system administrator, you can
choose between two storage techniques for persistent messages on a queue by
queue basis. The choice of which type of storage technique to use is based on
message size since the primary purpose for implementing different storage
techniques is to improve the performance of messaging operations on very large
messages.

Chapter 16. Data integrity and availability 213

Persistent and non-persistent data

All persistent messages have a single record in the audited queue file. This record
contains the headers and important control information about the message, plus as
much message data as can be accommodated within the maximum record size of
4096 bytes.

The fastest and most efficient mechanism for storage of small and medium size
persistent messages under TM/MP control is to store overflow message data in the
queue overflow file in multiple records, using the same basic technique as used in
MQSeries for Compaq NSK Version 2.2.0.1. All data for these messages is logged in
TM/MP and is therefore fully recoverable from audit trails if necessary.

For large messages (over about 200 KB of data), the most efficient mechanism turns
out to be the use of a dedicated message overflow file which is unaudited. The
data that is written to a message overflow file does not therefore get written to the

TM/MP audit trail, saving CPU and disk IO and can also be transferred in large

blocks.

The aspects of data integrity that differ slightly between these two mechanisms are

expressed in

Table 6. Queue Overflow compared with Message Overflow

Data Integrity aspect

Queue Overflow method

Message Overflow method

Amount of data that is
audited by TM/MP

All message data is audited

Only the data that will fit in
the Q-file record is audited

Recoverability of data from
audit trail in case of multiple
failures resulting in total
volume loss.

Entire message is recoverable
from audit trail

Only the message header
and first part of data is
recoverable from audit trail.

Maximum size of message
possible

Limited by number of record
locks per volume per
transaction imposed by
ENSCRIBE. For a
non-partitioned file, this is
approximately 20 MB for a
default ENSCRIBE
configuration. The practical
limit may be smaller than
this due to physical memory
limitations.

Limited only by available
disk space or 100 MB which
is the maximum permissible
message size for MQSeries.

Compatibility with Remote
Database Facility (RDF)

Fully compatible (specify the
MQRDF environment
parameter).

Incompatible with RDEF. Since
message data is not audited,
RDF cannot be used to
propagate message
operations using message
files to the backup system.

Fault-tolerance to disk
hardware problems

Fully fault-tolerant to any
single point of failure if
mirrored disks are employed
and since all data is audited,
file recovery can be
performed in the event of
failure of both disks in a
mirrored pair, or the only
disk if not mirrored.

Fully fault-tolerant to any
single point of failure if
mirrored disks are employed
to hold message overflow
files. Message data cannot be
recovered in the event of
total volume failure.

214 MQSeries for Compaq NSK V5.1 System Administration

Persistent and non-persistent data

In summary, for persistent messages, both storage techniques attain a very high
level of data integrity, but there are some limitations for message overflow files
because not all message data is audited. Normally these limitations are only of
concern for very large messages, and in such cases can be addressed by the use of
segmentation (to split an application message into smaller physical messages).

Non-persistent messages

Non-persistent messages (NPM) are normally stored in memory. If a queue server
is managing a large amount of non-persistent data and reaches a threshold
whereby it is close to running out of virtual memory, then the queue server will
force NPM to disk. Occasionally the queue server will also copy NPM to disk files
for certain administrative operations while changes are made to configuration
online. When applications access NPM they are always resident in memory.

The queue server manages the storage of all messages for the queues that it is
responsible for, and for each queue provides a configuration option to control the
level of data integrity applied to NPM. The configuration parameter controls
whether the queue server checkpoints NPM to the backup process, so that the
NPM are as tolerant as persistent messages to the failure of the CPU containing the
primary queue server process.

The price paid for the use of NPM checkpointing is that the queue server
consumes more CPU (primary and backup), transfers more data to the backup
during checkpointing and consumes more memory in the backup process since it
has to store the message again.

If NPM checkpointing is not enabled for a queue, and the primary queue server
process terminates abnormally (due to process or CPU failure) then any NPM that
were present on the queue before the takeover are discarded since they were only
stored in the primary process.

The option of fault-tolerant non-persistent messages is not available on any other
MQSeries platform, and for consistency across the product line, NPM
checkpointing is enabled by default (use altmgqfls to disable this feature). You
should consider carefully whether non-persistent messages meet your needs for
data integrity. If they do, then you should be able to take advantage of their
significant resource utilization savings and performance gains.

Database consistency

Database consistency must be preserved both internally by MQSeries, and
externally when the Syncpoint option is used for messaging operations. Both are
vital for data integrity and availability.

Internal database consistency

All critical database files within the queue manager are audited by TM/MP. The
queue manager processes must therefore use transactions to make changes to them.
All changes are logged in the TM/MP audit trail and also (if used) duplicated
using RDF to one or more disaster recovery systems. Thus the highest level of data
integrity for internal databases can be assured.

The use of TM/MP to protect internal databases helps ensure that on system
failures as well as software failures the integrity of the critical databases is not

Chapter 16. Data integrity and availability =~ 215

Database consistency

compromised. This means that restarting (automatically or manually) the processes
or services that use these databases is much more likely to be successful, leading to
higher availability.

External database consistency

The coordination of changes to and consistency of external databases with
MQSeries databases is enabled by the use of TM/MP within MQSeries and by
applications. MQSeries messaging operations may be made under syncpoint
control, which requires the application to have an active current transaction (either
inherited from another process or started using TM/MP BEGINTRANSACTION
service). This transaction is inherited by the queue manager and any storage or
critical database update that is required is performed using this transaction.
TM/MP ensures that the appropriate audit trail entries are recorded for all disk IO
performed under the transaction in whatever process performs the update.

TM/MP also maintains a consistent view of the updates that have been made but
not yet committed by holding record locks on the affected records in all database
files. For example, a row in a SQL table that has been inserted under TM/MP
control cannot be updated or deleted until the transaction commits.

When the queue manager replies to the application process (and returns from the
MQ)I), the application may continue to do more work under this transaction—by
using MQSeries to enqueue or dequeue more messages or performing database
updates of its own using ENSCRIBE or NonStop SQL. When the application is
ready to make the changes to MQSeries queues and, other databases permanent,
the ENDTRANSACTION service of TM/MP is called, which commits the changes
to all databases, system wide at the same time.

If the application determines that an error has occurred during the processing of
the transaction, and some updates to databases have been performed, then the
application should call ABORTTRANSACTION to cause TM/MP to back-out the
changes to all databases, system wide at the same time. This could cause, for
example, a message to be replaced on a queue after is has been de-queued in a
Syncpoint MQGET operation as well as the removal of a prior insert into an SQL
database table. With careful application design, these errors can be handled to
maintain consistency and enhance data integrity and availability for applications.

When MQSeries performs a syncpoint MQPUT or MQGET operation, it adjusts the
queue depth at the time of the operation on the assumption that the transaction
will eventually be committed. Thus the queue depth includes the number of
uncommitted messages that are on the queue as well as the committed ones. If the
transaction eventually aborts (either deliberately or due to failure) MQSeries
adjusts the queue depth to maintain a fully accurate value. This is an improvement
from prior V2.2 releases of MQSeries on Compaq NSK, where it was impossible for
the queue manager to determine the outcome of transactions and so maintain an
accurate depth under all conditions.

W describes the mechanism by which this is possible.

OpenTMF

OpenTMF is the informal name for a new internal interface to the NonStop
TM/MP product which MQSeries, with Compaq’s assistance, has been able to use
to determine the outcome of a transaction that the queue manager uses to perform
syncpoint messaging operations.

216 MQSeries for Compaq NSK V5.1 System Administration

Database consistency

This new feature of TM/MP is the foundation for the introduction of the
heterogeneous transaction processing capability of NonStop TM/MDP, introduced
with D42. OpenTMF allows MQSeries to register as a participant in any transaction
it has inherited from applications. TM/MP then sends MQSeries a notification at
the completion of the transaction to tell it whether the transaction completed
successfully or was backed out. This new notification from TM/MP allows
MQSeries to:

* Keep accurate queue depth counts under all conditions
* Keep other internal status information relating to local queues accurate

* Control the availability of non-persistent messages involved in syncpoint
operations

* Improve the efficiency and response time of waited MQGET operations

From the system administrator’s point of view, the use of OpenTMF is visible in
only one way: MQSeries processes are visible in a list of resource managers that
can be produced using the STATUS RESOURCEMANAGER command of the
TMFCOM utility. All MQSeries processes that use OpenTMF appear in this list as
VOLATILE resource managers named automatically by TM/MP.

No special administrative actions are required for this new use of
TM/MP—MQSeries uses and manages it automatically. You must ensure that the
RMOPENPERCPU (maximum number of VOLATILE and RECOVERABLE
resource managers per CPU) configuration parameter of TM/MP is set to a value
that is larger than the maximum number of queue servers and status servers that
can run in a single CPU across the system. Note that you need to allow for Backup
processes since these servers are NonStop process pairs. The default value of 128 is
usually adequate for most installations. The Compag NSK NonStop TM/MP
Configuration and Planning Guide describes the subject of resource managers and
heterogeneous transaction processing.

NonStop Tuxedo

MQSeries can coordinate messaging operations for OSS applications using
NonStop Tuxedo, since this product is based on NonStop TM/MP and uses the
same facilities for heterogeneous transaction processing as does MQSeries.

The Compaq NSK NonStop Tuxedo System Application Development Guide provides
information about the use of the NonStop Tuxedo transaction environment and
how it interacts with TM/MP.

Interleaved application transactions

With MQSeries for Compaq NSK, applications can take advantage of the unique
transaction environment in ways that are not possible on other platforms. In
general on Compaq NSK, a process may manage multiple transactions
concurrently. An update to an audited database is always performed under the
control of the current transaction and the application can switch to any one of the
other active transactions before committing any of them. This allows an application
to perform multiple MQSeries syncpoint messaging operations concurrently.

MQSeries’ critical database files
The critical audited database files for MQSeries are described in able 7 od

Chapter 16. Data integrity and availability 217

Database consistency

Table 7. Critical audited database files

Descriptive Name

Location/Name

Use

Object Catalog

Data Subvolume/OBJCAT
and ABJCAT

Holds the attributes of each
queue, process and namelist
object as well as the queue
manager itself.

Non-Client Channel
Definitions

Data Subvolume/CHDEFS

Holds attributes of each
non-client channel (SENDER,
RECEIVER, SERVER,
REQUESTER and CLUSTER
channel types)

Client Channel Definitions

Data Subvolume/CCHDEFS

Holds attributes of each
client channel (SVRCONN
channel types)

OAM database

Data Subvolume/OAMDB

Holds permissions (access
rights) for each object and
OAM principal authorized to
access the queue manager.

Principal database

Data Subvolume/PRIDB and
PRIDBA

Holds the name of each
authorized OAM Principal
and the Guardian User
Identifier that the principal
corresponds to.

EC control file

Data Subvolume/RUNTIME

Holds information used by
EC Boss and ECs to
coordinate startup and
recovery operations.

Namelist definitions

Data Subvolume/Lxxxxxxx

Holds the content of each
namelist object defined.

Queue files Message Holds one header
Subvolume / Qxxxxxxx information and some data
for every persistent message
on a local queue.
Queue overflow files Message Holds data for all medium to
Subvolume / Oxxxxxxx large size persistent

messages on a local queue.

Object Touch files

Data and Message
Subvolumes / Txxxxxxx

Used to detect administrative
changes to the attributes of
any object.

Channel Sync files

Sync Subvolume /Sxxxxxxx

Holds channel sync
information for a channel
instance.

Critical processes

[able 8 on page 219 describes the critical processes of the queue manager, and
shows how MQSeries is protected from and can recover from their failure due to

software or system failures. In the table below, disaster refers to cases of multiple
system failures, or total system loss.

218 MQSeries for Compaq NSK V5.1 System Administration

Table 8. Protection methods used for critical processes

Critical processes

Process

Protection methods used

Recovery processing

Queue Server

NonStop process pair.
Maintains accurate status of
local queues and messages at
all times, except in cases of
disaster.

Re-initializes from audited
databases after catastrophic
failure. No other recovery
required. NPM will be lost in
cases of disaster.

Status Server

NonStop process pair.
Maintains accurate status of
non-local queue objects, and
channel status at all times,
except in cases of disaster.

Re-initializes from audited
databases after catastrophic
failure. No other recovery
required.

Local Queue Manager Agent
(LQMA)

Connection is marked as
broken for application (2009).

The repository manager
garbage collection cleans up
registration areas of the
cluster cache that are left by
failed processes.

EC, EC Boss, queue server
and Status Server
immediately recognize
failure via NSK IPC
connection and
correct/adjust status data
appropriately.

TM/MP aborts any active

transaction that was active
and used by the process at
the time of failure.

None. An LOMA services
one connection. The
connection is dropped on
failure and a new connection
must be initiated by the
application.

Message Channel Agent

Status Server immediately
notices failure via NSK IPC
connection and marks the
channel status appropriately.

Status Server ensures retry of
outbound channels that fail.

Adopt MCA feature can be
used to allow restart of the
failed channel.

Channel Synchronization
data is audited by TM/MP
and is used by MQSeries to
preserve the integrity of the
channel. In rare case of
in-doubt situation that
cannot be resolved
automatically, standard
administrative facilities exist
for resolving.

All other protection methods
as for the LQMA process.

None. An MCA services one
channel. The channel stops
on failure and automated
facilities of MQSeries exist to
restart the channel.

MQSeries for Compaq NSK
V5.1 also introduces new
features such as channel
heartbeats and clustering
which increase the
availability of channels.

Chapter 16. Data integrity and availability =~ 219

Critical processes

Table 8. Protection methods used for critical processes (continued)

Process

Protection methods used

Recovery processing

Channel Initiator

Multiple Initiators may be
configured to provide higher
availability by spreading
channel initiation queues
across multiple Channel
Initiators.

The Channel Initiator is
normally run as a PATHWAY
server class, configured to
AUTOSTART on failure a
number of times (default 10)
within a fixed 10 minute
time interval.

Standard PATHWAY
configuration options can be
used to configure alternate
CPUs to be used in the event
of a CPU failure.

None. Default Status Server
maintains accurate channel
status under all conditions
and is responsible for
channel retry. Channel
Initiator uses the triggering
capabilities of MQSeries to
cause initiation.

Command Server

Command Server performs
administrative commands in
syncpoint, so that
consistency is maintained.

Standard PATHWAY features
as for the Channel Initiator.

None. Restart causes a new
connection to the queue
manager.

EC Boss

Standard PATHWAY
protection features as
described above.

EC Boss coordinates recovery
with ECs using the audited
RUNTIME file. ECs
re-register with the EC Boss
and continue processing.

EC

Standard PATHWAY
protection features as
described above.

EC coordinates recovery with
EC Boss using the audited
RUNTIME file. EC
re-registers with the EC Boss
and continues processing.

TCP/IP Listener

Multiple TCP/IP Listener
processes can be configured
to provide higher availability
by spreading channels across
multiple ports, IP addresses
or TCP/IP Server processes.

Standard PATHWAY
protection features as
described above.

None. TCP/IP Listener
attempts to connect to any of
the ports configured for the
queue manager on restart
that are available.

220 MQSeries for Compaq NSK V5.1 System Administration

Critical processes

Table 8. Protection methods used for critical processes (continued)

Process

Protection methods used

Recovery processing

Repository Manager or
Repository Cache Manager

On failure of the repository
manager or repository cache
manager, current or new
users of the cache in the
same CPU experience no
interruption of access to the
cache or clustered operations.

The repository manager
maintains a consistent
hardened version of the
Cluster Cache on the
Repository queue at all
times. When changes are
made, they are made in
syncpoint with the MQGET
of the message from the
Cluster Command Queue
that causes the change,
thereby maintaining
consistency even if the
repository manager fails
during the hardening.

Standard PATHWAY
protection features as
described above.

On recovery, a Repository
process will become the
repository manager if one
does not yet exist in the
queue manager. Otherwise it
will assume the role of a
Repository Cache Server for
the CPU in which it is
running.

A repository manager or
repository cache manager
re-attaches to the cache if it
still exists in memory. If not,
the cache is reloaded from
the disk if it is present. If the
disk file doesn’t exist, a new
cache is created in the CPU
and initialized from the
Repository queue.

Queue Manager Server

Queue Manager Server
performs the retrieval of
expired messages and
generation of expiry reports
in syncpoint so that failure of
the server will not cause
inconsistency.

Standard PATHWAY
protection features as
described above.

A restarted queue manager
server will re-synchronize
automatically with the queue
servers as they report the
current set of expired
messages requiring reports
each time they perform
housekeeping.

Chapter 16. Data integrity and availability =~ 221

Critical processes

Table 8. Protection methods used for critical processes (continued)

Process

Protection methods used

Recovery processing

Applications —
STANDARD-bound

Failures within MQSeries are
detected by connection
broken or unexpected error
returns from MQI calls. The
application should call
MQDISC and then
MQCONN again to
reestablish connection with
the Queue Manager.

The queue manager detects
failure of the application
process immediately. The
queue manager performs an
implicit MQDISC on behalf
of the application causing all
open resources to be closed
and released.

Any in progress syncpoint
operations are aborted by
TM/MP and MQSeries reacts
to this performing the
appropriate adjustments to
local queues.

Application code that
contains errors is not able to
corrupt queue manager
critical databases or shared
resources since the only
shared memory that is in the
address space of the
application is read-only and
no critical database files are
directly accessed.

None. Applications connect
to the queue manager anew.

222 MQSeries for Compaq NSK V5.1 System Administration

Critical processes

Table 8. Protection methods used for critical processes (continued)

Process Protection methods used Recovery processing
Applications — Failures within MQSeries are | None. Applications on restart
FASTPATH-bound detected by unexpected error | connect anew.

returns from MQI calls. The
application should call
MQDISC and then
MQCONNX again to
reestablish connection with
the queue manager.

The queue manager detects
failure of the application
process immediately. The
queue manager performs an
implicit MQDISC on behalf
of the application causing all
open resources to be closed
and released.

Any in progress syncpoint
operations are aborted by
TM/MP and MQSeries reacts
to this by performing the
appropriate adjustments to
local queues.

Application code that
contains errors are able to
corrupt queue manager
critical databases and shared
resources since they have
access to the read/write
Repository Cache and
internal Queue Manager
structures that have the
potential to corrupt the
Object Catalog. Note that the
Queue structures and
messages themselves are safe
since only queue servers
access them.

Clusters

MQSeries for Compaq NSK V5.1 clusters are aimed at reducing the administration
requirements of an MQSeries network and also to enhance the overall availability
and scalability of MQSeries as a distributed service.

Queue Managers that belong to clusters can MQPUT to queues that are advertised
to the cluster as if they are local queues. The MQSeries clustering function deals
with the administration and management of all the definitions and channels
required to transfer the message to the destination queue.

Clustered queues may be defined on more than one queue manager within a
cluster. This creates multiple instances of a queue within the cluster. An application
puts to only one instance of a queue as chosen by the Cluster Workload Manager
(CWLM), a component of MQSeries. This choice may be made when the queue is

Chapter 16. Data integrity and availability =~ 223

Clusters

opened, or dynamically for every put. The CWLM can determine the best instance
of a cluster queue to use based on whether the channel to the instance is running
or not, and on certain other factors like network priority and also application
consideration via the Cluster Workload Management Exit.

Clusters can therefore provide an MQSeries network-level availability
enhancement. MQSeries on Compaq NSK is a good choice to act as a Full
Repository for clusters due to the reliability and scalability of its operation.

Configuration considerations for availability

This section summarizes the configuration options enhancing the availability of
MQSeries for Compaq NSK V5.1 and its applications on Compaq NSK:

¢ Configure PATHWAY with alternate CPUs for all server classes to protect against
CPU failures

* Consider the use of clustering for enhanced availability of MQSeries network
resources

* Consider the use of non-persistent messages with checkpointing enabled to
obtain high performance with high availability for suitable message types

* Ensure that your TM/MP configuration is sized to cope with the peak predicted
demand of MQSeries and its applications

* Consider using message overflow files to reduce the audit trail requirement for
very large messages

* If a disaster recovery requirement exists, consider the use of RDF for creating
and maintaining a backup site for MQSeries

* Ensure that CPUs run with enough available physical memory to cope with
peak demands of MQSeries and its applications

* Ensure that sufficient swap space is available for the CPUs that hold MQSeries
and its applications.

Configuration considerations for data integrity

This section summarizes the configuration options enhancing the data integrity of
MQSeries for Compaq NSK V5.1 and its applications on Compaq NSK:
* Determine which message or transaction types carried by MQSeries require

which level of data integrity as provided by persistent messages and
non-persistent messages

* Determine whether message overflow files are a suitable storage mechanism for
storing any very large messages that you need to use

¢ Determine whether non-persistent messages require checkpointing or whether
only some do. The different types of message should be put to different queues
to enable different checkpointing options to be specified

* Ensure that when applications require the highest data integrity that syncpoint
operations using persistent messages are employed

* If a disaster recovery requirement exists, configure and use RDF to create and
maintain a duplicate backup of the MQSeries environment.

224 MQSeries for Compaq NSK V5.1 System Administration

Part 2. Reference

Chapter 17. The MQSeries control commands
Control commands summary .

Using names .

How to read syntax d1agrams

altmgqfls (Alter queue file attributes) . .
altmqusr (Alter MQSeries user information) .
cleanrdf (Perform RDF housekeeping) .
cnvclchl (Convert client channel definitions) .
crtmqevx (Data conversion).

crtmgm (Create queue manager) .

dltmgm (Delete queue manager) .

dspmgaut (Display authority) .

dspmqcsv (Display command server)
dspmgqfls (Display MQSeries file attributes)
dspmgqtrc (Display MQSeries formatted trace
output) .

dspmqusr (Dlsplay MQSerles user 1nformat10n)
endmgqcsv (End command server)

endmgm (End queue manager)

endmgqtre (End MQSeries trace)

instmgm (Install MQSeries for Compaq NSK)
runmqchi (Run channel initiator) .

runmgchl (Run channel).

runmqdlq (Run dead-letter queue handler)
runmglsr (Run listener) . .o
runmgsc (Run MQSeries Commands)
runmqtrm (Start trigger monitor) .

setmqaut (Set/reset authority).

strmqesv (Start command server).

strmgm (Start queue manager)

strmqtrc (Start MQSeries trace) .
upgmgm (Upgrade V2.2.0.1 queue manager)

© Copyright IBM Corp. 1993, 2001

227

. 227
. 227
. 228
. 230
. 234
. 236
. 238
. 240
. 242
. 246
. 248
. 252
. 253

. 257

258

. 260
. 263
. 266
. 267
. 268
. 269
. 270
. 271
. 273
. 276
. 277
. 284
. 285
. 286
. 289

225

226 MQSeries for Compaq NSK V5.1 System Administration

Chapter 17. The MQSeries control commands

This chapter contains reference material for the control commands used with
MQSeries for Compaq NSK.

Control commands summary

The following control commands are supported by MQSeries for Compaq NSK via
TACL macros and compiled programs:

* altmgfls (alter queue file attributes)

* altmqusr (alter MQSeries user information)

¢ cleanrdf (RDF housekeeping utility)

» cnvclchl (convert client channel definitions)

e crtmqcvx (data conversion)

e crtmgm (create queue manager)

* dltmgm (delete queue manager)

* dspmgqaut (display authority)

* dspmgqcsv (display command server)

* dspmgfls (display MQSeries file attributes)

* dspmgqtrc (display MQSeries formatted trace output)
e dspmgqusr (display MQSeries user information)
¢ endmgqcsv (end command server)

¢ endmgm (end queue manager)

* endmgqtrc (end MQSeries trace)

* instmgm (install MQSeries for Compaq NSK)

* runmgqchi (run channel initiator)

e runmgqchl (run channel)

* runmqdlq (run dead-letter queue handler)

* runmglsr (run TCP/IP listener)

¢ runmgsc (run MQSeries commands)

* runmgtrm (start trigger monitor)

* setmqaut (set/reset authority)

* strmqcsv (start command server)

* strmqm (start queue manager)

* strmqtrc (start MQSeries trace)

* upgmgm (upgrade V2.2.0.1 queue manager)

Detailed descriptions of these commands are provided in the remainder of this
chapter.
Notes:

1. Flags, which are single-character identifiers preceded by a dash (for example, -v
on the runmqgsc command), must be specified in lowercase.

2. Usage messages are displayed if control commands are invoked with -?, ?, or
with no parameters when parameters are expected.

Using names

The names for the following MQSeries objects can be a maximum of 48 characters:
* Queue managers

* Queues

* Process definitions

© Copyright IBM Corp. 1993, 2001 227

Names

The maximum length of channel names is 20 characters.

The characters that can be used for all MQSeries names are:
* Uppercase A - Z

* Lowercase a - z

* Numerics 0 - 9

* Period (.)

* Underscore (_)

* Forward slash (/)

* Percent sign (%)

Notes:

1. Forward slash and percent are special characters. If you use either of these
characters in a name, the name must be enclosed in double quotation marks
whenever it is used.

2. Leading or embedded blanks are not allowed.
3. National language characters are not allowed.

4. Names may be enclosed in double quotation marks, but this is essential only if
special characters are included in the name.

How to read syntax diagrams

This chapter contains syntax diagrams (sometimes referred to as “railroad”
diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and
left arrow pair. Lines beginning with a single right arrow are continuation lines.
You read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

Convention Meaning

You must specify values A, B, and C. Required values are shown on
»»>—A—B—(—»<| the main line of a syntax diagram.

You may specify value A. Optional values are shown below the main

»_L_—I—>< line of a syntax diagram.
A

228 MQSeries for Compaq NSK V5.1 System Administration

Names

Convention Meaning
Values A, B, and C are alternatives, one of which you must specify.
[. A >
B
¢
Values A, B, and C are alternatives, one of which you may specify.
A
B
¢

A\
A

You may specify one or more of the values A, B, and C. Any required
separator for multiple or repeated values (in this example, the
comma (,)) is shown on the arrow.

| B—|
—C-
Values A, B, and C are alternatives, one of which you may specify. If
A you specify none of the values shown, the default A (the value
> »« | shown above the main line) is used.
B
L C—

»—| Name

Name:

|—><

B

The syntax fragment Name is shown separately from the main syntax
diagram.

Chapter 17. The MQSeries control commands 229

altmqfls

altmqfls (Alter queue file attributes)

Purpose

You use the altmqfls command to alter queue file attributes. A single altmqfls
command can perform only one of the following three groups of operations at any
one time:

* Move the message files that belong to a predefined local queue to a different
volume to distribute disk I/O across volumes, or

* Change the size of the queue and overflow files associated with a local queue.
This operation cannot be performed if the queue is open, or

* Change the queue server options associated with a local queue. These options
allow you optimize the way the queue server handles storage associated with
the queue, and controls the checkpointing of non-persistent messages. In
addition, you can change the queue server associated with a local queue, or the
status server associated with an alias, remote or model queue, or process and
associate a measure counter with a queue.

altmqfls does not permit the queue to be reloaded while it is in use.

Note: The user interface and command line options for altmqfls have changed
substantially from Version 2.2.0.1. The changes reflect the new functionality
and provide more meaningful names for command line options. As well, all
parameters start with ’--’ to comply with POSIX rules. You will need to
update any scripts that invoke altmgqfls to reflect the changes because
MQSeries Version 5.1 will reject the Version 2.2.0.1 command line options.

230 MQSeries for Compaq NSK V5.1 System Administration

altmqfls
Syntax

»»—altmqfls— --type ObjectType

v

I— --gmgr QMgr‘Name—|

Yy

v

|— -=server ServerName—l \\

A

--qgsoptions

I— --browse MemBr‘owsePM—| I— --oflowsize MngveerowThresh—|

l— --volume VolumeName—| l— --msgofsubvol MngvaSubvol—|

Yy

ObjectName > <

|— --meascount MeasureCoumterJ

Required parameters

ObjectName
Is the name of the permanent local queue whose message files are to be
relocated. The queue must not be open, nor must it contain uncommitted
messages.

--type ObjectType
Identifies a permanent queue. ObjectType must be specified and may one of
the following:
ql or qlocal A local queue
qa or qalias An alias queue
qr or qremote A remote queue
qm or qmodel A model queue
proc or process
A process

Optional parameters

--qmgr QMgrName
Is the name of the queue manager to which the local queue belongs. The queue
manager must have been started. If no queue manager name is specified, the
default queue manager is used.

--server ServerName
Is the name of a the status server process or queue server process that is to be
responsible for the status data for this object. If the object is a local queue or
model queue, use a queue server name. If the object is anything other than a
local queue or model queue, use the status server name.

Chapter 17. The MQSeries control commands 231

altmqfls

When an object is created, the ServerName is set to DEFAULT to indicate that
the default server is responsible for the queue. When the responsibility for a
queue is changed, the queue must not be in use and all non-persistent
messages are discarded during the change.

--volume VolumeName
Is a Compaq NSK volume name (for example, $DEV). This value is required if
you are using altmgqfls to move message files to a different volume. This
parameter can be specified only with type and object name. It is not allowed in
combination with the other options.

--qsoptions LSC
Use the L, S and C options, either alone or combined, to fine tune the queue’s
retrievability and reliability.

Note: All of the --gsoptions SLC are set each time the command is issued. For
example, --gsoptions S will unset L and C. The --gsoptions option can be
specified once and once only on a command line. You must specify at
least one option, but you can specify more than one.

C Specifies that the non persistent messages are checkpointed to the
backup queue server, providing fault tolerance at the expense of CPU
loading required to handle the extra checkpointing, extra IPC messages
and extra memory required to store the messages.

Use this option if you want a high degree of recoverability for
non-persistent messages.The default for this parameter when a queue
is created is to be set (that is, checkpointed).

L Specifies that the queue server locks in memory the data structures and
chains associated with a queue. Normally the storage associated with a
queue is a candidate for removal from the queue server’s address
space when it is no longer being accessed. Use this option for faster
access to a queue’s memory data structures at the possible expense of
other queues.

The default for this parameter when a queue is created is not set (that
is, not locked in memory).

S Specifies that the queue server loads the local queue from disk into
cache when the queue manager is started up. Normally the messages
for a queue are loaded when first referenced by an application. If this
option is set, the queue is loaded when the queue manager starts. The
default for this parameter when a queue is created is not set (that is,
not loaded on startup).

Use this option to reduce CPU and disk IO activity when a queue is
first opened, at the cost of an increase in queue server activity (CPU
and disk I0) during queue manager startup.

None Specifies that no options are set.

--browse MemBrowsePM
Specifies a maximum number of bytes of data of each persistent message to
keep in the queue server’s cache (as well as on disk). During a browse
operation on a persistent message, the queue manager normally reads the data
for a message from disk storage and returns it to the application. If this
parameter is set to a value other than zero, the specified number of bytes of
data will also be kept in memory and the browse operation will return this
data to the application without having to access the disk. By using this
parameter, you can increase the memory resources in use by the queue server.

232 MQSeries for Compaq NSK V5.1 System Administration

altmqfls

The minimum value of this parameter is zero (0) bytes, the maximum value is
25,000 bytes. The default for this parameter when a queue is created is zero.

--oflowsize MsgOverflowThresh
Specifies the minimum message size for the use of a message overflow file to
store the message data. Persistent messages that are smaller than this threshold
are stored in the queue overflow file. Persistent messages of the threshold size
or larger will have their bulk data stored in a dedicated message overflow file.
The default for this parameter when a queue is created is 200,000 bytes.

--msgofsubvol MsgOvfiSubvol
Specifies a subvolume on the volume that the queue resides on where the
queue server creates new message overflow files. All queues will initially use
their queue manager message subvolume by default.

--meascount MeasureCounter
Specifies the name of a MEASURE counter which, if part of an active
measurement, is initialized to the current depth and then incremented and
decremented by the queue server responsible for the queue when messages are
added and removed.

Return codes
0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

Examples

1. In the following example, message files belonging to the local queue

flint.queue, owned by queue manager target.queue.mgr, are moved to
volume $DATAS3.

altmgfls --gmgr target.queue.mgr --type ql --volume $DATA3 flint.queue

2. In the following example, the queue server process name is being changed for
an object:

altmgfls --gqmgr target.queue.mgr --type q1 --server $TQS2 flint.queue

This command results in local queue flint.queue, which belongs to

target.queue.mgr being moved to a queue server with a process name of
$TQS2.

Related commands
dspmgqfls Display MQSeries files

Chapter 17. The MQSeries control commands 233

altmqusr

altmqusr (Alter MQSeries user information)

Purpose

Use the altmqusr command to define or remove a principal corresponding to a
Compaq NSK user ID that will have access to MQSeries.

Syntax

»»—altmqusr— -m QMgrName— -p PrincipaZName—[-u CompaqUserlId <
-r;

Description
You can use this command to:

* Create a principal (that is, to grant access to a queue manager to a Compaq NSK
user ID).

* Remove a principal (that is, to revoke access to a queue manager from a
Compagq user ID).

* Change a principal definition.

When -u CompagUserld is specified, altmqusr creates a principal, if one does not
already exist, or changes the existing definition. CompaqUserld can be specified as a
Compaq Administrative user ID or, if SAFEGUARD is running, as a SAFEGUARD
alias.

When -r is specified, the principal is deleted from the principal database.

You must specify either -u CompaqUserld or -r.

Required parameters

-m QMgrName
Is the name of the queue manager to which the principal belongs.

-p PrincipalName
Is the name of the principal to be created, changed, or removed.

-u CompaqUserId
Is the Compaq NSK Administrative user ID or SAFEGUARD alias to be
associated with the principal definition.

-r Specifies that the principal definition is to be removed from the queue
manager.

Return codes
0 Successful operation
36 Invalid arguments supplied
69 Storage not available
71 Unexpected error

234 MQSeries for Compaq NSK V5.1 System Administration

altmqusr

Examples
To add a principal mquserl mapping to a Compaq user ID mqtest.fred:

altmqusr -m MTO2 -p mquserl -u mqtest.fred

To add a principal mquser2 mapping to group group.user01:

altmqusr -m MTO2 -p mquser2 -u group.user0l

To see the results of these commands, use the dspmqusr command, as described in

To remove principal mquserl:

altmqusr -m MT02 -p mquserl -r

Related commands

dspmqusr Display MQSeries user information

Chapter 17. The MQSeries control commands 235

cleanrdf

cleanrdf (Perform RDF housekeeping)

Purpose

Use the cleanrdf utility to perform routine housekeeping on the primary system
queue manager in an RDF environment. The cleanrdf utility completes the
removal of files that have been logically deleted on both the primary and backup
systems. The utility also duplicates some non-audited databases to the correct
location on the backup system.

Note that the utility invoked by cleanrdf traverses the entire object catalog and
message database, so some degradation of performance is likely to occur while the
utility is running.

The non-audited database files duplicated to the backup system by the utility are:
* MQERRLGI1

* MQSINI

* QMINI

* PATHCTL

+ SHUTDOWN

* SYNCHIDX

* TRACEOPT

* UMQSINI

Syntax

»»—cleanrdf—-b BkupSystem ><

|—-m QMngameJ

Required parameters

-b BkupSystem
Is the Compaq NSK system name of the RDF backup site for this queue
manager. BkupSystem is specified in the form \name (as is standard in the
Compaq NSK environment).

Optional parameters

-m QMgrName
Is the name of the queue manager for which cleanrdf is to be run. If no
queue-manager name is specified, cleanrdf is run against the default queue
manager.

Return codes

0 Command completed normally
20 An error occurred during processing

236 MQSeries for Compaq NSK V5.1 System Administration

cleanrdf

Examples

In the following example, cleanrdf is run against the queue manager
test.queue.mgr. Compaq NSK node \HAWK has been configured as the backup RDF
site for this queue manager.

cleanrdf -b \HAWK -m test.queue.mgr

Chapter 17. The MQSeries control commands 237

cnvclichl

cnvclchl (Convert client channel definitions)

Purpose

Use the cnvclchl command to convert the client channel definition file, created for
CLNTCONN channels by MQSC, from a Compagq structured file to an
unstructured format acceptable to MQSeries clients.

Note:
Version 2.2.0.1 definition files do not work with Version 5.1 clients because
the format of the records have changed. After MQSeries for Compaq NSK

V5.1 is installed, you can rerun the enveclchl command to create definition
files that will work with Version 5.1 clients.

Syntax

»»>—cnvclchl— -m QMgrName |_ J ><
-0 OutputFile

Required parameters

-m QMgrName
Identifies the queue manager that owns the channel definitions file (CCHDEFS)
to be converted. This value is required.

Optional parameters

-0 OQutputFile
Identifies the file that will contain the converted definitions. The default
filename is AMQCLCHL.

Examples

The following command converts the Compagq structured client channel definition
file for queue manager MT01 to an unstructured file. Two client connection channel
definitions are contained in the output file AMQCLCHL,
SYSTEM.DEFE.CLNTCONN and SOLARIS_TO_Compagq:

238 MQSeries for Compaq NSK V5.1 System Administration

cnvclchl

$DATAO1 SZMON 330> cnvclchl -m Mv4

MQSeries client channel table being converted

Opening Compaq NSK v5.1 CLNTCONN table

Opening Common v5.1 CLNTCONN table AMQCLCHL for output

Writing Common v5.1 CLNTCONN table entry for SYSTEM.DEF.CLNTCONN
Closing Compag NSK v5.1 CLNTCONN table

Closing Common v5.1 CLNTCONN table
MQSeries client channel table conversion complete.

Chapter 17. The MQSeries control commands 239

crtmqcvx

crtmqgcvx (Data conversion)

Purpose

Use the crtmqcvx command to create a fragment of code that performs data
conversion on data type structures. The command generates a C function that can
be used in an exit to convert your C structures.

The command reads an input file containing a structure or structures to be
converted. It then writes an output file containing a code fragment or fragments to

convert those structures.

For further information about this command and how to use it, refer to the

MQSeues_AppLLcatum_Emgzmﬂ.mg_Gmdd
Syntax

»»—crtmqcvx—SourceFile—TargetFile ><

Required parameters

SourceFile
Specifies the input file containing the C structures to be converted.

TargetFile
Specifies the output file containing the code fragments generated to convert the
structures.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following example shows the results of using the data conversion command
against a source C structure. The command issued is:

crtmgcvx source target

The input file, source looks like this:

240 MQSeries for Compaq NSK V5.1 System Administration

crtmqcvx

/* crtmgcvx utility

struct my_structure
{
int code;
MQLONG value;
bs

/* This is a test C structure which can be converted by the */

*/

The output file, target, produced by the command is shown below. You can use
these code fragments in your applications to convert data structures. However, if
you do so, you should understand that the fragment uses macros supplied in the

MQSeries header file MQSVMHTH in subvolume ZMQSLIB.

PMQBYTE
PMQBYTE
PMQBYTE
PMQBYTE
MQHCONN
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG

AlignLong();

Fail:

}

MQLONG ReturnCode

MQLONG Convertmy_structure(

*in_cursor,
*out_cursor,
in_Tlastbyte,
out_lastbyte,
hConn,

opts,
MsgEncoding,
ReqEncoding,
MsgCCSID,
ReqCCSID,
CompCode,
Reason)

= MQRC_NONE;

ConvertlLong(1); /* code */

ConvertlLong(1); /* value */

return(ReturnCode) ;

Chapter 17. The MQSeries control commands 241

crtmgm

crtmgm (Create queue manager)

Purpose

Use the crtmqm command to create a local queue manager. Once a queue manager
has been created, use the strmqm command to start it.

Creating a queue manager automatically creates the associated system and default
objects.

Syntax

»>—Ccrtmgm

I— -C Text—l I— -d DefaultTransmissz’onQueue—l I— -e NumECs—|

\
4

I— -h MaximumHandleLimi1,‘—| I— -1 CCSID—l I— -m MachIniFile—|

»
>

v

I— -p Default‘Prefix—| I— -q —| I— -t Inter'valValue—|

| 2

v

I— -u DeadLetter‘()ueue—| I— -X MaximumUncommittedMessages—| I— -z —|

»— -n PATHMONProcessName— -o HomeTerminalName— -s StatusServerName——

»— -v QueueServerName—QMgrName

A\
A

Required parameters

-n PATHMONProcessName
The process name of the TS/MP PATHMON process for the queue manager.
This process name must be unique in the system.

-0 HomeTerminalName
Home terminal device name. ($DDDD.#SS). For example, $TRM1.#A.

-s StatusServerName
The process name to be given to the default status server for the queue
manager. The process name must be unique in the system.

-v QueueServerName
Specifies a unique process name to be given to the default queue server
process for this queue manager.

QMgrName
The name of the queue manager to be created. The name can contain up to 48
characters. This must be the last item in the command.

242 MQSeries for Compaq NSK V5.1 System Administration

crtmgm

Optional parameters

-c Text
Some text (up to 64 characters) that describes this queue manager. The default
is all blanks.

If special characters are required, the description must be enclosed in double
quotation marks.

-d DefaultTransmissionQueue
The name of the local transmission queue that remote messages are placed on
if a transmission queue is not explicitly defined for their destination. There is
no default.

-e NumECs
The number of EC processes in the queue manager. The default is 1.

-h MaximumHandlelimit
In MQSeries for Compaq NSK, this parameter is ignored.

The maximum number of handles that any one application can have open at
the same time. Specify a value in the range 1 through 999 999 999. The default
value is 256.

-1 CCSID
Qmgr CCSID. The default value is 819.

-m MachIniFile
Overrides the default MQSINI file location and that specified in the
environment variable MOQMACHINIFILE.

-p DefaultPrefix
The volume for the queue manager. Overrides the QMDefaultVolume entry in
the MQSINI file.

-q Specifies that this queue manager is to be made the default queue manager.
The new queue manager replaces any existing queue manager as the default.

If you accidentally use this flag and wish to revert to an existing queue
manager as the default queue manager, you can edit the DefaultQueueManager
stanza in the MQSeries configuration file.

-t IntervalValue
The trigger-time interval in milliseconds for all queues controlled by this queue
manager. This value specifies the time after the receipt of a trigger-generating
message when triggering is suspended. That is, if the arrival of a message on a
queue causes a trigger message to be put on the initiation queue, any message
arriving on the same queue within the specified interval does not generate
another trigger message.

You can use the trigger time interval to ensure that your application is allowed
sufficient time to deal with a trigger condition before it is alerted to deal with
another on the same queue. You may wish to see all trigger events that
happen; if so, set a low or zero value in this field.

Specify a value in the range 0 through 999 999 999. The default is 999 999 999
milliseconds, a time of more than 11 days. Allowing the default to be taken
effectively means that triggering is disabled after the first trigger message.
However, triggering can be reenabled by an application servicing the queue
using an alter queue command to reset the trigger attribute.

Chapter 17. The MQSeries control commands 243

crtmgm

-u DeadletterQueue

The name of the local queue that is to be used as the dead-letter
(undelivered-message) queue. Messages are put on this queue if they cannot be
routed to their correct destination.

By default, there is no dead-letter queue.

-X MaximumUncommittedMessages

In MQSeries for Compaq NSK, this parameter is ignored.

Specifies the maximum number of uncommitted messages under any one
syncpoint. That is, the sum of:

¢ The number of messages that can be retrieved from queues

e The number of messages that can be put on queues

* Any trigger messages generated within this unit of work

This limit does not apply to messages that are retrieved or put outside
syncpoint control.

Specify a value in the range 1 through 10 000. The default value is 1000
uncommitted messages.

Suppresses error messages.

This flag is normally used within MQSeries to suppress unwanted error
messages. As use of this flag could result in loss of information, you are
recommended not to use it when entering commands on a command line.

Return codes

0 Queue manager created

8 Queue manager already exists

49 Queue manager stopping

69 Storage not available

70 Queue space not available

71 Unexpected error

72 Queue manager name error

111 Queue manager created. However, there was a problem processing the
default queue manager definition in the product configuration file. The
default queue manager specification may be incorrect.

Examples

1.

This command creates a default queue manager named Paint.queue.manager,
which is given a description of Paint Shop:

crtmgm -c "Paint Shop" -n $PANT -o $TRMI1.#A -s $PNT1 -v $PQS1 Paint.queue.manager

2.

In this example, another queue manager, travel, is created. The trigger interval
is defined as 5000 milliseconds (or 5 seconds) and its dead-letter queue is
specified as SYSTEM.DEAD.LETTER.QUEUE.

crtmgm -t 5000 -u SYSTEM.

DEAD.LETTER.QUEUE -n $TRAV -0 $TRM1.#A -s $TRV1 -v $TQSI1 travel

Once a trigger event is generated, further trigger events are disabled for five
seconds.

244 MQSeries for Compaq NSK V5.1 System Administration

crtmgm

Related commands

strmgqm Start queue manager
endmqgm End queue manager
dltmgm Delete queue manager

Chapter 17. The MQSeries control commands 245

ditmgm

ditmgm (Delete queue manager)

Purpose

Use the dltmgm command to delete a specified queue manager. All objects
associated with this queue manager are also deleted. Before you can delete a queue
manager you must end it using the endmqm command.

Syntax

»>—d] tmqm—L—J—OMg rName ><
-z

Required parameters

QMgrName
Specifies the name of the queue manager to be deleted.

Optional parameters

-z Suppresses error messages.

Return codes

0 Queue manager deleted

5 Queue manager running

16 Queue manager does not exist

69 Storage not available

71 Unexpected error

72 Queue manager name error

112 Queue manager deleted. However, there was a problem processing the

default queue manager definition in the product configuration file. The
default queue manager specification may be incorrect.

Examples

1. The following command deletes the queue manager saturn.queue.manager:

dTtmgm saturn.queue.manager

2. The following command deletes the queue manager travel and also suppresses
any messages caused by the command:

d1tmgm -z travel

246 MQSeries for Compaq NSK V5.1 System Administration

ditmgm
Related commands

crtmgm Create queue manager
strmgqm Start queue manager
endmgm End queue manager

Chapter 17. The MQSeries control commands 247

dspmgaut

dspmgaut (Display authority)

Purpose

Use the dspmqaut command to display the current authorizations to a specified
object. Only one group may be specified.

If a user ID is a member of more than one group, examine the authorizations of
each group to determine all the authorizations that apply to the user ID.

Syntax

»»>—dspmgaut

v

-t ObjectType
I— -m QMngame—| I— -n 0bjectName—|

v
A

>—|: -g GroupName
-p PrincipalName—| I— -s ServiceComponent—l

Required parameters

-g GroupName
Specifies the name of the user group on which the inquiry is to be made. You
can specify only one name, which must be the name of an existing user group.
You must specify either -g GroupName or -p PrincipalName.

-p PrincipalName
Specifies the name of the principal for which the authorizations to the specified

object are to be displayed. You must specify either -g GroupName or -p
PrincipalName.

-t ObjectType
Specifies the type of object on which the inquiry is to be made. Possible values

are:
queue or q A queue or queues matching the object type parameter
qmgr A queue manager object
process or prcs
A process

namelist or nl A namelist

Optional parameters
-m QMgrName
Specifies the name of the queue manager on which the inquiry is to be made.

-n ObjectName
Specifies the name of the object on which the inquiry is to be made.

This is a required parameter unless it is the queue manager itself.

You must specify the name of a queue manager, queue, or process definition.

-s ServiceComponent

This parameter applies only if you are using installable authorization services,
otherwise it is ignored.

248 MQSeries for Compaq NSK V5.1 System Administration

dspmgaut

If installable authorization services are supported, this parameter specifies the
name of the authorization service to which the authorizations apply. This
parameter is optional; if it is not specified, the authorization update is made to
the first installable component for the service.

Returned parameters

This command returns an authorization list, which can contain none, one, or more
authorization parameters. Each authorization parameter returned means that any
user ID in the specified group has the authority to perform the operation defined
by that parameter.

[Cable d shows the authorities that can be given to the different object types.

Table 9. Security authorities from the dspmqaut command

Authority Queue Process Qmgr Namelist
all I I < '
alladm I I I 4
allmgqi I d I I I
altusr I

browse I

chg 4 4 I I
chgaut I I -

clr -

connect 4

crt g 4 4 4
dlt I I I '
dsp 4 4 I I
get 4

inq Id Id I I
passall I d

passid I

put 4

set < < 4

setall I d -

setid I v

The following list defines the authorizations associated with each parameter:

all
alladm
allmqi
altusr
browse

chg
chgaut

clr

Use all operations relevant to the object.

Perform all administration operations relevant to the object.

Use all MQI calls relevant to the object.

Specify an alternate user ID on an MQI call.

Retrieve a message from a queue by issuing an MQGET call with
the BROWSE option.

Change the attributes of the specified object, using the appropriate
command set.

Specify authorizations for other groups of users on the object,
using the setmqaut command.

Clear a queue (PCF command Clear queue only).

Chapter 17. The MQSeries control commands 249

dspmgaut

connect Connect the application to the specified queue manager by issuing
an MQCONN call.

crt Create objects of the specified type, using the appropriate
command set.

dlt Delete the specified object, using the appropriate command set.

dsp Display the attributes of the specified object, using the appropriate
command set.

get Retrieve a message from a queue by issuing an MQGET call.

inq Make an inquiry on a specific queue by issuing an MQINQ call.

passall Pass all context.

passid Pass the identity context.

put Put a message on a specific queue by issuing an MQPUT call.

set Set attributes on a queue from the MQI by issuing an MQSET call.

setall Set all context on a queue.

setid Set the identity context on a queue.

The authorizations for administration operations, where supported, apply to these

command sets:

* Control commands
e MQSC commands
¢ PCF commands

Return codes

0 Successful operation

36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name error
133 Unknown object name

145 Unexpected object name

146 Object name missing

147 Object type missing
148 Invalid object type
149 Entity name missing

Examples
The following example shows a command to display the authorizations on queue

manager saturn.queue.manager associated with user group staff:

dspmgaut -m saturn.queue.manager -t gmgr -g staff

The results from this command are:

250 MQSeries for Compaq NSK V5.1 System Administration

dspmgaut

Entity staff has the following authorizations for object :
get
browse
put
ing
set
connect
altusr
passid
passall
setid

Related commands

setmqaut Set or reset authority

Chapter 17. The MQSeries control commands 251

dspmqcsv

dspmqcsv (Display command server)

Purpose

Use the dspmqcsv command to display the status of the command server for the
specified queue manager.

The status can be one of the following:

* Starting

* Running

¢ Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets
* Ending

* Stopped

Syntax

»»—dspmqcsv—~QMgrName ><

Required parameters

QMgrName
Specifies the name of the local queue manager for which the command server
status is being requested.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following command displays the status of the command server associated with
venus.q.mgr:

dspmgcsv venus.q.mgr

Related commands

strmqcsv Start a command server
endmqcsv End a command server

252 MQSeries for Compaq NSK V5.1 System Administration

dspmqfls

dspmqfls (Display MQSeries file attributes)

Purpose

Use the dspmqfls command to display the real file system name for all MQSeries
objects that match a specified criterion. You can use this command to identify the
files associated with a particular MQSeries object. This is useful for backing up

specific objects. See ['Volume structure” on page 5d for further information about

name transformation.

You can also use the dspmgqfls command to display the current settings for the
queue server process-name and options of an object.

Syntax

»»—dspmqfls ObjectName ><

I— -t ObjectType—| I— -m (\)Mngame—|

Required parameters

ObjectName
Specifies the name of the MQSeries object. The name is a string with no flag
and is a required parameter. If the name is omitted an error is returned.

This parameter supports a wild card character * at the end of the string.

Optional parameters

-m QMgrName
Specifies the name of the queue manager for which files are to be examined. If
this parameter is omitted, the command operates on the default queue
manager.

-t ObjType
Specifies the MQSeries object type. The following list shows the valid object
types. The abbreviated name is shown first followed by the full name.
* or all All object types; this is the default
q or queue A queue or queues matching the object name parameter
ql or qlocal A local queue
qa or qalias An alias queue
qr or qremote A remote queue
qm or qmodel A model queue
qmgr A queue manager object
prcs or process
A process
ctlg or catalog An object catalog
nl or namelist A namelist

Note: The dspmqfls command displays the names of all the files for the queue.

Return codes

0 Command completed normally

Chapter 17. The MQSeries control commands 253

dspmgfls

10 Command completed but not entirely as expected
20 An error occurred during processing

Examples

1. The following command displays the details of all objects with names
beginning SYSTEM.ADMIN that are defined on the default queue manager:

dspmqfls SYSTEM.ADMIN*

2. The following command displays file details for all processes with names
beginning PROC defined on queue manager RADIUS:

dspmgqfls -m RADIUS -t prcs PROC*

3. The following command displays file information for MY.LOCAL.QUEUE:

dspmqfls -m MT02 -t g MY.LOCAL.QUEUE
MQSeries Display MQ Files

CONNECTING.

QLOCAL MY.LOCAL.QUEUE
$DATAO.MTO2M.QMYXLOCA
$DATAQ.MTO2M.OMYXLOCA
$DATAOQ.MTO2M. TMYXLOCA

Queue/Status Server: DEFAULT
Persistent message browse buffer: 0
Message overflow threshold: 200000
Queue Server Options: None
Message overflow subvolume: QMGR0OO10

Measure Counter:

* QMYXLOCA is the queue file, OMYXLOCA is the overflow file for the
queue, and TMYXLOCA is the touch file in the queue manager’s data
directory.

4. The following example shows an altmqfls command that sets load on startup
and checkpoint NPM queue server options. The dspmqfls command displays
the results of the altmqfls command.

254 MQSeries for Compaq NSK V5.1 System Administration

dspmqfls

altmqfls --gmgr MTO2 --type g1 --gsoptions SC MY.LOCAL.QUEUE
dspmqfls -m MT02 -t g MY.LOCAL.QUEUE
MQSeries Display MQ Files

CONNECTING.

QLOCAL MY.LOCAL.QUEUE
$DATA4 .MTO2M. QMYXLOCA
$DATA4 .MTO2M. OMYXLOCA
$DATA4 .MTO2M. TMYXLOCA

Queue/Status Server: DEFAULT
Persistent message browse buffer: 0
Message overflow threshold: 200000
Queue Server Options: SC
Message overflow subvolume: QMGR0OO10

Measure Counter:

Chapter 17. The MQSeries control commands 255

dspmgfls
Related commands

altmqfls Alter queue volume

256 MQSeries for Compaq NSK V5.1 System Administration

dspmqtrc

dspmaqtrc (Display MQSeries formatted trace output)

Purpose

Use the dspmqtrc command to display MQSeries formatted trace output. For more
information about using MQSeries trace, see Llsi i 7

Syntax

»»—dspmqtrc— -t FormatTemplate —InputFileName ><

Required parameters

InputFileName
Specifies the name of the file containing the unformatted trace. For example
$DATA.MQTRACE.AMQ12345..

-t FormatTemplate
Specifies the name of the template file containing details of how to display the
trace. A trace-format template file, AMQTRC, is provided in subvolume
ZMQSSMPL.

Related commands

endmgqtrc End MQSeries trace
strmqtrc Start MQSeries trace

Chapter 17. The MQSeries control commands 257

dspmqusr

dspmqusr (Display MQSeries user information)

Purpose

Use the dspmqusr command to display information about a specified principal, or
all principals for the queue manager.

Syntax

»»—dspmqusr— -m QMgriName |_ _| ><
-p PrincipalName

Description
You can use this command to:
* Display all principals, or a particular principal, defined for a queue manager.

* Display the Compaq NSK Administrative and SAFEGUARD file-sharing groups
corresponding to the Compaq NSK user ID associated with each principal.

Required parameters
-m QMgrName
Is the name of the queue manager to which the principals belong.
Optional parameters
-p PrincipalName

Is the name of the principal to be displayed.

Return codes

0 Successful operation

36 Invalid arguments supplied
69 Storage not available

71 Unexpected error

Examples

1. This example shows dspmqusr for a newly created queue manager:

dspmqusr -m MT02

Principal Userid Username Alias GroupName GroupType
0.1

NOBODY 0.0

mgm 20.255 MQM.MANAGER n MQM a

The principal database contains the principal mqm, which maps to the user
name of the user who created the queue manager.

258 MQSeries for Compaq NSK V5.1 System Administration

dspmqusr

2. This example shows output from dspmqusr after additional principals have
been added with altmqusr:

dspmqusr -m MT02

Principal Userid Username Alias GroupName GroupType
0.1
NOBODY 0.0
mgm 20.255 MQM.MANAGER n MQM a
mquserl 50.3 MQTEST.FRED n MQTEST a
MQM S
mquser2 1.1 GROUP.USERO1 n GROUP a

Principal mquserl, which maps to Compaq user ID MQTEST.FRED, has been
added. FRED is a member of group MQTEST and a member of group MQM using
SAFEGUARD aliasing.

Principal mquser2 maps to Compaq user ID GROUP.USERO1.

Related commands

altmqusr Alter MQSeries user information

Chapter 17. The MQSeries control commands 259

endmqcsv

endmqcsv (End command server)

Purpose

Use the endmqcsv command to stop the command server on the specified queue
manager.

Syntax

\4
A

[]
»»—endmgcsv QMgriName
L

Required parameters

QMgrName
Specifies the name of the queue manager for which the command server is to
be ended.

Optional parameters

-¢ Specifies that the command server is to be stopped in a controlled manner. The
command server is allowed to complete the processing of any command
message that it has already started. No new message is read from the
command queue.

This is the default.

-i Specifies that the command server is to be stopped immediately. Actions
associated with a command message currently being processed may not be
completed.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

1. The following command stops the command server on queue manager
saturn.queue.manager:

endmgcsv -c saturn.queue.manager

The command server can complete processing any command it has already
started before it stops. Any new commands received remain unprocessed in the
command queue until the command server is restarted.

2. The following command stops the command server on queue manager pluto
immediately:

260 MQSeries for Compaq NSK V5.1 System Administration

endmgqcsv

endmgcsv -i pluto

Chapter 17. The MQSeries control commands

261

endmqcsv

Related commands

strmqcsv Start a command server
dspmqcsv Display the status of a command server

262 MQSeries for Compaq NSK V5.1 System Administration

endmgm

endmgm (End queue manager)

Purpose

Use the endmgm command to end (stop) a specified local queue manager. This
command stops a queue manager in one of three modes:

* Normal or quiesced shutdown

¢ Immediate shutdown

* Preemptive shutdown

The attributes of the queue manager and the objects associated with it are not
affected. You can restart the queue manager using the strmqm (Start queue
manager) command.

To delete a queue manager, you must stop it and then use the ditmqm (Delete
queue manager) command.

Syntax

v
A

-C
»>—endmgm |_

5
i: :1‘ :‘ I— -z —| |—QMgr'Name—|

p

Optional parameters

QMgrName
Is the name of the message queue manager to be stopped. If no name is
specified, the default queue manager is stopped.

-¢ Controlled (or quiesced) shutdown. The queue manager stops but only after all
applications have disconnected. Any MQI calls currently being processed are
completed. This is the default.

-i Immediate shutdown. The queue manager stops after it has completed all the
MQI calls currently being processed. Any MQI requests issued after the
command has been issued fail. Any incomplete units of work are rolled back
when the queue manager is next started.

-p Preemptive shutdown.

Use this type of shutdown only in exceptional circumstances. For example,
when a queue manager does not stop as a result of a normal endmgm
command.

The queue manager stops without waiting for applications to disconnect or for
MQI calls to complete. This can give unpredictable results for MQI
applications. All processes in the queue manager that fail to stop are
terminated 30 seconds after the command is issued.

-z Suppresses error messages on the command.

Return codes

0 Queue manager ended

Chapter 17. The MQSeries control commands 263

endmgm

16 Queue manager does not exist
36 Invalid arguments

40 Queue manager not available
69 Storage not available

71 Unexpected error

72 Queue manager name error

Examples

The following examples show commands that end (stop) the specified queue
managers.

1. This command ends the default queue manager in a controlled way. All
applications currently connected are allowed to disconnect.

endmgm

2. This command ends the queue manager named saturn.queue.manager
immediately. All current MQI calls complete, but no new ones are allowed.

endmgm -i saturn.queue.manager

264 MQSeries for Compaq NSK V5.1 System Administration

endmgm

Related commands

crtmgm Create a queue manager
strmgqm Start a queue manager
dltmgm Delete a queue manager

Chapter 17. The MQSeries control commands 265

endmgqtrc

endmgqtrc (End MQSeries trace)

Purpose

Use the endmgqtrc command to end tracing for a specified queue manager.

For more information about using MQSeries trace, see ‘Using MQSeries trace” orl

Syntax

v
A

»—enqutrc—[-a
-m ()Mngame~h4|J
-e

Required parameters

-m QMgrName
Is the name of the queue manager for which tracing is to be ended.

A queue manager name can be specified on the same command as the -e flag.
-a If this flag is specified, all tracing is ended.

This flag must be specified alone.

Optional parameters

-e If this flag is specified, early tracing is ended on the named queue manager.

Return codes

AMOQ5611 This message is issued if arguments that are not valid are supplied
to the command.

Examples
This command ends tracing of data for a queue manager called QM1:

endmgtrc -m QM1

Related commands

dspmgqtrc Display formatted trace output
strmqtrc Start MQSeries trace

266 MQSeries for Compaq NSK V5.1 System Administration

instmgm

instmgm (Install MQSeries for Compaq NSK)

Purpose
Use the instmgm command to install MQSeries for Compaq NSK or update license
information.
Syntax
»>—instmgm ><
L,

Optional parameters

-1 Invokes instmqm for license information updates.

Chapter 17. The MQSeries control commands 267

runmgchi

runmgchi (Run channel initiator)

Purpose

Use the runmqchi command to run a channel initiator process. For more
information about the use of this command, refer to the
cationd book.

Syntax

»>—runmqchi ><
I— -q InitiationOName—l I— -m ()Mngame—|

Optional parameters

-q InitiationQName
Specifies the name of the initiation queue to be processed by this channel
initiator. If no value is specified, SYSTEM.CHANNEL.INITQ is used.

-m QMgrName
Specifies the name of the queue manager on which the initiation queue exists.
If the name is omitted, the default queue manager is used.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If errors occur that result in return codes of either 10 or 20, you should review the
queue manager error log that the channel is associated with for the error messages.
You should also review the system error log, as problems that occur before the
channel is associated with the queue manager are recorded there. For more
information about error logs, see tErrar logs” on page 195

268 MQSeries for Compaq NSK V5.1 System Administration

runmgqchl

runmgqchl (Run channel)

Purpose

Use the runmqchl command to start either a sender (SDR), requester (RQSTR), or
fully qualified server channel.

The channel runs asynchronously. To stop the channel, issue the MQSC command
STOP CHANNEL.

Syntax

A\
A

»»>—runmqchl— -c ChannelName

I— -m QMgr'Name—|

Required parameters

-c ChannelName
Specifies the name of the channel to start.

Optional parameters

-m QMgrName
Specifies the name of the queue manager with which this channel is associated.
If no name is specified, the default queue manager is used.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If return codes 10 or 20 are generated, review the error log of the associated queue
manager for the error messages. You should also review the MQSeries system error
logs (located in ZMQSSYS) because problems that occur before the channel is
associated with the queue manager are recorded there.

Chapter 17. The MQSeries control commands 269

runmgqdiq

runmqdiq (Run dead-letter queue handler)

Purpose

Use the runmqdlq command to start the dead-letter queue (DLQ) handler, a utility
that processes messages on a dead-letter queue.

Syntax

»—runmqdlq ><
|—()Name J | |—RulesTabZe—|

I— QMgrName

Optional parameters

QName
Is the name of the dead-letter queue to be processed.

If you specify a QName value, it overrides any INPUTQ value specified in a
rules table. If no (nonblank) name is specified either on input to runmqdlq or
in the rules table, the dead-letter queue associated with the queue manager
named on the QMgrName parameter is processed.

QMgrName
Is the name of the queue manager that owns the queue to be processed.

If you specify a QMgrName value, it overrides any INPUTQM value specified in
a rules table. If no (nonblank) name is specified either on input to runmqdlq
or in the rules table, the queue is assumed to belong to the default queue
manager.

RulesTable
Is the name of the file containing the rules table, which must contain at least
one rule.

By default, the runmqdlq command takes its input from the standard IN file.
When the command is processed, the results and a summary are put into a
report that is sent to the standard OUT file. Alternatively, by redirecting the
input from a file, you can apply a rules table to the specified queue.

If no rules table is specified on input to runmqdlgq, rules and actions must be
specified interactively.

In this case, the DLQ handler:
* Reads its input from the keyboard.

* Does not start to process the named queue until it receives an end_of_file
(Ctrl-Y) character.

The MQSC rules for comment lines and for joining lines also apply to the
DLQ handler input parameters.

For more information about rules tables and how to construct them, see m

handler rules table” on page 144,

270 MQSeries for Compaq NSK V5.1 System Administration

runmqlsr

runmglsr (Run listener)

Purpose
The runmglsr (Run listener) command runs a TCP/IP listener process.
Syntax
»>—runmqlsr ><
|— -t tcpJ |— -p Por‘tJ |— -m QMngameJ
Description

When run from a TACL prompt, runmgqlsr does not return the control to the TACL
prompt until the listener terminates. That is, runmgqlsr is run waited.

The TACL prompt returns only if there is a failure or the listener stops. If the
terminal (TACL) is stopped before runmglsr, the listener is unable to access its
home terminal or out file. Before runmgqlsr is invoked, all PARAMs (such as
MQEMSEVENTS) must be defined.

For these reasons, you are recommended to start and stop the listener from the
queue manager’s PATHWAY, which gives a greater degree of control.

Optional parameters

-p Port
Port number for TCP/IP. If a value is not specified, the port number specified
on a TCPListenerPort entry in the TCPConfig stanza in the QMINI file is used.
The default value is 1414. If multiple listener ports are defined in QMINI, the
next available port is used.

If the PARAM MPORTNUMBER is specified in the TACL environment, or a
PATHWAY server class definition for the program, runmglsr listens on the
specified port, instead of the one in the QMINI file.

If none of the ports specified in QMINI is free, or the port specified on the
runmgqlsr command is not available, runmgqlsr fails.

-m QMgrName
Specifies the name of the queue manager. If no name is specified, the
command operates on the default queue manager.

-t tcp
Identifies TCP/IP as the transmission protocol.

If the DEFINE =TCPIP PROCESS NAME exists in the TACL environment, or a
PATHWAY server class definition for the program, runmglsr uses the Guardian
TCP/IP server process instead of the default.

If the PARAM MQPORTNUMBER is specified, or PATHWAY server class
definition for the program is specified, runmglsr listens on the specified port,
instead on the one listed in the QMINI file.

This is the only valid value (and the default) in MQSeries for Compaq NSK.

Chapter 17. The MQSeries control commands 271

runmgqlsr

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

272 MQSeries for Compaq NSK V5.1 System Administration

runmgqsc

runmgsc (Run MQSeries commands)

Purpose

Use the runmqsc command to issue MQSC commands to a queue manager. MQSC
commands enable you to perform administration tasks, for example defining,

altering, or deleting a local queue object. MOSC commands and their syntax are
described in the MOSeries MOSC Command Rpfpvaml

Syntax

»>—runmqsc—v

-e |—OMg rName—|

-w Wait Time—L——l—
-X

Description

You can invoke the runmqgsc command in three modes:

Verify mode
MQSC commands are verified but not actually run. An output report is
generated indicating the success or failure of each command. This mode is
only available on a local queue manager.

Direct mode
MQSC commands are sent directly to a local queue manager.

Indirect mode
MQSC commands are run on a remote queue manager. These commands
are put on the command queue on a remote queue manager and are run in
the order in which they were queued. Reports from the commands are
returned to the local queue manager.

The runmqsc command takes its input from the standard IN file. When the
commands are processed, the results and a summary are put into a report that is

sent to the standard OUT file.

By taking the standard IN file from the keyboard, you can enter MQSC commands
interactively.

By redirecting the input from a file you can run a sequence of frequently-used
commands contained in the file. You can also redirect the output report to a file.

Note: To run this command, your user ID must belong to user group MQM.

Chapter 17. The MQSeries control commands 273

runmgqsc

Optional parameters

-e Prevents source text for the MQSC commands from being copied into a report.
This is useful when you enter commands interactively.

-i Input file name
-0 Output file name

-v Specifies verification mode; this verifies the specified commands without
performing the actions. This mode is available locally only. The -w and -x flags
are ignored if they are specified at the same time.

-w WaitTime
Specifies indirect mode, that is, the MQSC commands are to be run on another
queue manager. You must have the required channel and transmission queues
set up for this.

WaitTime
Specifies the time, in seconds, that runmgqsc waits for replies. Any
replies received after this are discarded, however, the MQSC
commands are still run. Specify a time between 1 and 999 999 seconds.

Each command is sent as an Escape PCF to the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE) of the target queue manager.

The replies are received on queue SYSTEM.MQSC.REPLY.QUEUE and
the outcome is added to the report. This can be defined as either a
local queue or a model queue.

Indirect mode operation is performed through the default queue
manager.

This flag is ignored if the -v flag is specified.

-x Specifies that the target queue manager is running under . This flag applies
only in indirect mode. The -w flag must also be specified. In indirect mode, the
MQSC commands are written in a form suitable for the MQSeries for
MVS/ESA command queue.

QMgrName
Specifies the name of the target queue manager on which the MQSC
commands are to be run. If omitted, the MQSC commands run on the default
queue manager.

Return codes

00 MQSC command file processed successfully.

10 MQSC command file processed with errors-report contains reasons for failing
commands.

20 Error-MQSC command file not run.

Examples
1. Enter this command at the TACL prompt:

runmgsc

Now you can enter MQSC commands directly. No queue manager name was
specified, therefore the MQSC commands are processed on the default queue
manager.

274 MQSeries for Compaq NSK V5.1 System Administration

runmgqsc

2. The following example shows how to specify that MQSC commands are
verified only:

runmgsc -i $SYSTEM.CONFIG.MQSCIN -v BANK

This verifies the MQSC command file $SYSTEM.CONFIG.MQSCIN. The queue
manager name is BANK. The output is displayed in the current window.

3. This command runs an MQSC command file against the queue manager called
BANK:

runmgsc -i MQSCFILE -o $TEST.MQ.MQSCOUT BANK

In this example, the output is directed to file $TEST.MQ.MQSCOUT. The input file
is MQSCFILE in the current subvolume.

Chapter 17. The MQSeries control commands 275

runmgtrm

runmgqtrm (Start trigger monitor)

Purpose

Use the runmqtrm command to invoke a trigger monitor. For further information
about using trigger monitors, refer to the } icati ' }

Syntax

A

»>—runmqgtrm >
I— -m QMngame—| I— -q InitiationOName—l

Optional parameters

-m QMgrName
Specifies the name of the queue manager on which the trigger monitor
operates. If this parameter is omitted, the trigger monitor operates on the
default queue manager.

-q InitiationQName
Specifies the name of the initiation queue to be processed. If this parameter is
omitted, SYSTEM.DEFAULT.INITIATION.QUEUE is used.

Return codes

10 Trigger monitor interrupted by an error.
20 Error—trigger monitor not run.

276 MQSeries for Compaq NSK V5.1 System Administration

setmqaut

setmqaut (Set/reset authority)

Purpose

Use the setmqaut command to change the authorizations to an object or to a class
of objects. Authorizations can be granted to, or revoked from, any number of
principals or groups.

Syntax

v

»»>—setmqaut— -m QMgriName -t ObjectType

I— -n 0bj ectName—|

> B o A B -g GroupName] >
-s ServiceComponent -p PrincipalName

> MQI authorizations }
Context authorizations
Administration authorizations |—

Generic authorizations |7

v
A

MQI authorizations:

Context authorizations:

Chapter 17. The MQSeries control commands 277

setmqaut

f——— +passid |
— —passid —
— +passall —
— —passall —
— +setid —
— —setid —
— +setall —
— -setall —

Administration authorizations:

| +ert I
— —crt —
— +d1t —
— —d1t —
— +Chg —
— —chg —|
— +dsp —
— —dsp —
— +clr —
— —clr ~

Generic authorizations:

+allmgi |
-allmgqi —
+alladm —
-alladm —
+all
-all —

Description

You can use this command both to set an authorization, that is, give a user group
permission to perform an operation, and to reset an authorization, that is, remove
the permission to perform an operation. You must specify the user groups to which
the authorizations apply and also the queue manager, object type, and object name
of the object. You can specify any number of groups in a single command.

The authorizations that can be given are categorized as follows:
* Authorizations for issuing MQI calls

* Authorizations for MQI context

* Authorizations for issuing commands for administration tasks
* Generic authorizations

Each authorization to be changed is specified in an authorization list as part of the
command. Each item in the list is a string prefixed by ‘+" or ‘~’. For example, if

278 MQSeries for Compaq NSK V5.1 System Administration

setmqaut

you include +put in the authorization list, you are giving authority to issue
MQPUT calls against a queue. Alternatively, if you include -put in the
authorization list, you are removing the authorization to issue MQPUT calls.

Authorizations can be specified in any order provided that they do not clash. For
example, specifying allmgi with set causes a clash.

You can specify as many groups or authorizations as you require in a single
command.

If a user ID is a member of more than one group, the authorizations that apply are
the union of the authorizations of each group to which that user ID belongs.

Required parameters

-g GroupName
Specifies the name of the user group whose authorizations are to be changed.
You can specify more than one group name, but each name must be prefixed
by the -g flag.

You must specify at least one principal or group.

-m QMgrName
Specifies the name of the queue manager of the object for which the
authorizations are to be changed. The name can contain up to 48 characters.

-p PrincipalName
Specifies the name of the principal for which the authorizations are to be
changed. You can specify more than one principal name, but each name must
be prefixed by the -p flag.

You must specify at least one principal or group.

-t ObjectType
Specifies the type of object for which the authorizations are to be changed.

Possible values are:
* q or queue

* prcs or process

s qmgr

* nl or namelist

Optional parameters

-n ObjectName
Specifies the name of the object for which the authorizations are to be changed.

This is a required parameter unless it is the queue manager itself. You must
specify the name of a queue manager, queue, or process, but must not use a
generic name.

-s ServiceComponent
This parameter applies only if you are using installable authorization services,
otherwise it is ignored.

If installable authorization services are supported, this parameter specifies the
name of the authorization service to which the authorizations apply. This
parameter is optional; if it is not specified, the authorization update is made to
the first installable component for the service.

Chapter 17. The MQSeries control commands 279

setmqaut

Authorizations
Specifies the authorizations to be given or removed. Each item in the list is
prefixed by a ‘+” indicating that authority is to be given, or a ‘~’, indicating
that authorization is to be removed. For example, to give authority to issue an
MQPUT call from the MQ]I, specify +put in the list. To remove authority to
issue an MQPUT call, specify -put.

[Cable 1d shows the authorities that can be given to the different object types.

Table 10. Specifying authorizations for different object types

Authority Queue Process Qmgr Namelist
all I I I I
alladm I I I ¥
allmqi » l/ - I
altusr I

browse 4

chg I I I 1/
clr I

connect vV

crt e I 4 I
dlt I Il I I
dsp 4 4 I I
put I

inq I I Id I
get I

passall I

passid I

set ' I I

setall I L

setid I I

Authorizations for MQI calls

altusr Use an alternate user ID in a message.

browse

connect

get
inq
put

set

See the MQSeries Application Programming Guidd for more information

about alternate user IDs.

Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

Connect the application to the specified queue manager by issuing an
MQCONN call.

Retrieve a message from a queue by issuing an MQGET call.
Make an inquiry on a specific queue by issuing an MQINQ call.
Put a message on a specific queue by issuing an MQPUT call.

Set attributes on a queue from the MQI by issuing an MQSET call.

280 MQSeries for Compaq NSK V5.1 System Administration

setmqaut

Note: If you open a queue for multiple options, you have to be authorized for
each of them.

Authorizations for context

passall
Pass all context on the specified queue. All the context fields are copied
from the original request.

passid Pass identity context on the specified queue. The identity context is the
same as that of the request.

setall Set all context on the specified queue. This is used by special system
utilities.

setid Set identity context on the specified queue. This is used by special
system utilities.

Authorizations for commands
chg Change the attributes of the specified object.
clr Clear the specified queue (PCF Clear queue command only).
crt Create objects of the specified type.
dlt Delete the specified object.
dsp Display the attributes of the specified object.
Authorizations for generic operations
all Use all operations applicable to the object.

alladm
Perform all administration operations applicable to the object.

allmqi Use all MQI calls applicable to the object.

Return codes

0 Successful operation

36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name error
133 Unknown object name

145 Unexpected object name

146 Object name missing

147 Object type missing
148 Invalid object type

149 Entity name missing

150 Authorization specification missing

151 Invalid authorization specification
Examples

1. This example shows a command that specifies that the object on which
authorizations are being given is the queue orange.queue on queue manager
saturn.queue.manager.

Chapter 17. The MQSeries control commands 281

setmqaut

setmgaut -m saturn.queue.manager -n orange.queue -t queue -g tango +ing +alladm

The authorizations are being given to user group tango and the associated
authorization list specifies that user group tango:

* Can issue MQINQ calls.

* Has authority to perform all administration operations on that object.

2. In this example, the authorization list specifies that user group foxy:
* Cannot issue any calls from the MQI to the specified queue.
* Has authority to perform all administration operations on the specified
queue.

setmgaut -m saturn.queue.manager -n orange.queue -t queue -g foxy -allmgi +alladm

282 MQSeries for Compaq NSK V5.1 System Administration

setmqaut

Related commands
dspmgqaut Display authority

Chapter 17. The MQSeries control commands 283

strmqcsv

strmqcsv (Start command server)

Purpose

Use the strmqesv command to start the command server for the specified queue
manager. This enables MQSeries to process commands sent to the command
queue.

Syntax

A

»»>—strmqcsv—OQMgriName >

Required parameters

QMgrName
Specifies the name of the queue manager for which the command server is to
be started.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following command starts a command server for queue manager earth:

strmgcsv earth

Related commands

endmqcsv End a command server
dspmqcsv Display the status of a command server

284 MQSeries for Compaq NSK V5.1 System Administration

strmgqm

strmgm (Start queue manager)

Purpose

Use the strmgm command to start a local queue manager. Only after the queue
manager is available to process connections or other requests, will the strmqm
command return to the command line.

Syntax

»>—strmgm B . T L .] LQMngame—l ‘

Optional parameters

-c Starts the queue manager, redefines the default and system objects, then stops
the queue manager. (The default and system objects for a queue manager are
created initially by the crtmgm command.) Any existing system and default
objects belonging to the queue manager are replaced if you specify this flag.

QMgrName
Specifies the name of a local queue manager to be started. If omitted, the
default queue manager is started.

-z Suppresses error messages.

This flag is used within MQSeries to suppress unwanted error messages.
Because using this flag could result in loss of information, you should not use
it when entering commands on a command line.

Return codes

0 Queue manager started

3 Queue manager being created
5 Queue manager running

16 Queue manager does not exist
49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name error

Examples

The following command starts the queue manager account:

strmgm account

Related commands

crtmgm Create a queue manager
dltmgm Delete a queue manager
endmqm End a queue manager

Chapter 17. The MQSeries control commands 285

strmqtrc

strmqtrc (Start MQSeries trace)

Purpose

Use the strmqtrc command to enable tracing. This command can be run whether
tracing is enabled or not. If tracing is already enabled, the trace options in effect
are modified to those specified on the latest invocation of the command.

For more information about using MQSeries trace, see hUsm.gMQSenes_tnaceLgd

Syntax

»»—strmgtrc >
I— -m QMngame—| I— -e —| I— -1 MaxSize—|

l— -t Tr"aceType—|

Optional parameters
-m QMgrName

-

Is the name of the queue manager to be traced. If no name is specified, the
default queue manager is used.

The specified queue manager does not have to be running or even to exist.
Consequently, it is possible to trace the creation or startup of a queue manager.

A queue manager name can be specified on the same command as the -e flag.
If more than one trace specification applies to a given entity being traced, the
trace includes all of the specified options.

If this flag is specified, early tracing is requested. This involves trace
information being written, before the processes know to which MQSeries
component they belong. Any process, belonging to any component of any
queue manager, traces its early processing if this flag is specified. The default,
if this flag is not specified, is not to perform early tracing.

-1 MaxSize

The value of MaxSize denotes the maximum size of a trace file
(AMQnnnn.TRC) in millions of bytes. For example, if you specify a MaxSize of
1, the size of the trace is limited to 1 million bytes.

When a trace file reaches the specified maximum, it is renamed from
AQnnnn.TRC to AMQnnnn.TRS and a new AMQnnnn.TRC file is started. All
trace files are restarted when the maximum limit is reached. If a previous copy
of an AMQnnnn.TRS file exists, it will be deleted.

-t TraceType

Defines which points during processing can be traced. One or more of the
following options can be supplied:

286 MQSeries for Compaq NSK V5.1 System Administration

strmqtrc

all Output data for every trace point in the system. This is also the
default if the -t flag is not specified.

api Output data for trace points associated with the MQI and
major queue manager components.

comms Output data for trace points associated with data flowing over
communications networks.

csflows Output data for trace points associated with processing flow in
common services.

Iqmflows Output data for trace points associated with processing flow in
the local queue manager.

remoteflows Output data for trace points associated with processing flow in
the communications component.

otherflows Output data for trace points associated with processing flow in
other components.

csdata Output data for trace points associated with internal data
buffers in common services.

Iqmdata Output data for trace points associated with internal data
buffers in the local queue manager.

remotedata Output data for trace points associated with internal data
buffers in the communications component.

otherdata Output data for trace points associated with internal data
buffers in other components.

versiondata ~ Output data for trace points associated with the version of
MQSeries running.

commentary Output data for trace points associated with comments in the
MQSeries components.

If this flag is omitted, all trace points are enabled and a full trace generated.

Note: If multiple trace types are supplied, each must have its own -t flag. Any
number of -t flags can be specified, provided that each has a valid trace type
associated with it.

It is not an error to specify the same trace type on multiple -t flags.

Return codes

AMQ7024
This message is issued if arguments that are not valid are supplied to the
command.

AMOQS8304
The maximum number of nine concurrent traces is already running.

Examples

This command enables tracing of data from common services and the local queue
manager, for a queue manager called QM1.

strmqtrc -m QM1 -t csdata -t 1gmdata

Chapter 17. The MQSeries control commands 287

strmqtrc

Related commands

dspmgqtrc Display formatted trace output
endmgqtrc End MQSeries trace

288 MQSeries for Compaq NSK V5.1 System Administration

upgmgm

upgmgm (Upgrade V2.2.0.1 queue manager)

Purpose

This command upgrades a Version 2.2.0.1 queue manager for use with MQSeries
for Compaq NSK V5.1. The utility invoked by upgmqm sends progress messages
to the terminal from which it is invoked. When the utility completes, the named
queue manager is ready for use with MQSeries for Compaq NSK V5.1. Queue
manager attributes new in Version 5.1 are set to their default values. You can alter
these in the usual way.

Because the functionality of the new Version 5.1 status server is different from the
MQSS Server in Version 2.2.0.1, this upgrade deletes all existing MQS-Statusnn
server classes from your existing PATHWAY configuration and replaces them with
one default MQS-Status00 server class and one default MQS-Queue00 server class.
This means that after you have upgraded your queue manager, any objects that are
assigned to your present MQSS server processes will need to be re-assigned to
your new status server processes or queue server processes, depending on which is
appropriate. (In Version 5.1, only local queues are assigned to the queue servers
and all other objects are assigned to the status servers.) You may also need to
change any existing scripts that refer to your status server classes in PATHWAY.

If you elected not to clean up during the upgrade, you can delete the following
files at your convenience:

Table 11. Examples of files that can be deleted after an upgrade

Location Files Example
Subvolume indicated by -p | All files $VOL.scratch
option on upgmqm

Queue managers 'S’ z* $VOL.myv2201S
subvolume

These examples assume that your existing queue manager resides on
$VOL.myv2201? subvolumes.

Note: If a Version 2.2.0.1 queue manager is not upgraded using upgmqm, no
control commands will work for that queue manager. This includes dltmqm,
which will fail with trying to open the principal database. A queue manager
from Version 2.2.0.1 no longer needed under Version 5.1 must be removed
prior to the code upgrade, or upgraded using upgmqm, then removed.

Chapter 17. The MQSeries control commands 289

upgmgm
Syntax

»>—upgmqm—-m QMgrName—-v DefaultQueueServer—-p SubvolumePath >

A\
A

»—-s DefaultStatusServer

Required parameters

-m QMgrName
Specifies the name of the queue manager to which the upgmqm utility is to be
applied.

-v DefaultQueueServer
A unique process name for the default queue server for the queue manager.

-p SubvolumePath
A subvolume path ($VOL.SUBVOL) that the upgrade utility can use for
working files. This subvolume must be on the same volume as the queue
manager. Specify only the subvolume part of the path; do not specify the
volume name. The upgmgm command checks that the subvolume does not
already exist, before accepting the subvolume as valid.

-s DefaultStatusServer
A unique process name for the default status server for the queue manager.

Examples

This example upgrades a Version 2.2.0.1 queue manager Myv2201qm with a default
queue server name of $MYQS, a default status server name of $MYSS, and uses
subvolume $VOL.scratch for the working files (where $VOL is the volume on which
the queue manager resides):

upgmgm -m Myv2201gm -p scratch -s $MYSS -v $MYQS

290 MQSeries for Compaq NSK V5.1 System Administration

Part 3. Appendixes

© Copyright IBM Corp. 1993, 2001 291

292 MQSeries for Compaq NSK V5.1 System Administration

Appendix A. MQSeries for Compaq NSK at a glance

Program and part nhumber
* 5724-A39 MQSeries for Compaq NSK, Version 5 Release 1, part number 0791003

Hardware requirements

Minimum hardware requirements are:

* Any of the Compaq NSK range of machines supported by Guardian D45 or later
D4x, G06 or later GOx.

* Specific hardware in support of user-selected network transport protocols.

You are also recommended to have one or more mirrored data disks with specified
space requirements for TMF audit space and the MQSeries database.

Software requirements

Minimum software requirements are:

¢ Compaq NSK Guardian D45 or later D4x (K-series hardware) and GO06 or later
GOx (S-series hardware) operating systems, including TM/MP (TMF),
ENSCRIBE, and EMS.

e TS/MP (PATHWAY) to match operating system.

* SCF for configuration, command, and control of TCP and SNA network
transports.

For SNA connectivity:
* SNAX/APC and SNAX/XF or SNAX/APN to match operating system

or
¢ Insession ICE Version 3.2 or later

For TCP/IP connectivity:

* TCP/IP to match operating system.

To use the OSS-based parts of MQSeries (MQI bindings, OSS applications, Java
bindings, you require the OSS product version compatible with the operating

system.

Transaction logging is maintained with the Compaq TM/MP (TMF) product.

Security

MQSeries for Compaq NSK uses the security features of the NSK file system,
which provide file-level access control to USER and GROUP for read, write,
execute, and purge operations. SAFEGUARD is not required for the use of
MQSeries for Compaq NSK; however, the product is compatible with a
SAFEGUARD environment.

© Copyright IBM Corp. 1993, 2001 293

Security

All MQSeries resources are owned by a single user ID in group MQM. To
administer MQSeries with either the SCOBOL menus or runmgqsc, you must be
logged in with a user ID assigned or linked to the MQM group.

Maintenance functions

MQSeries functions with:

* The Message Queue Management (MQM) facility using SCOBOL requester
configuration screens in a PATHWAY environment.

* The runmqsc command-line interface.

* SCF utility for configuration, command and control functionality to maintain
TCP/IP and SNA environments for Compaq network protocol offerings.

* ICE utilities provided with that product for control of ICE LU 6.2 interface.
* MQSeries Explorer (not included with MQSeries for Compaq NSK).

* Any other product or utility that uses standard PCF commands for remote
administration.

Compatibility

The MQI for MQSeries for Compaq NSK V5.1, is compatible with existing
applications running on MQSeries for Tandem NonStop Kernel V2.2.0.1, with
maintenance fix PTF U473441.

Supported compilers

MQSeries for Compaq NSK V5.1 is built using the Common Runtime Environment
(CRE) to link all objects. This method imposes the following requirements on users
of versions of the MQI prior to Version 2.2.0.1:

1. All pre-D45 COBOL and C object code must be recompiled with the D45 (or
later) compiler to integrate the CRE linkage.

2. All pre-D45 TAL object code must be recompiled with a D45 (or later) compiler
and you must ensure that the TAL program is compliant with the special
programming considerations specified in the Common Run-time Environment
Programmer’s Guide. More detailed information on each of these programming
considerations is provided in the TAL Programmer’s Guide.

3. For object code produced with native compilers on D45, a separate binding is
provided.

4. C programs must use the WIDE memory model (32-bit integers).

o

COBOL programs must conform to the requirements of the CRE.

6. In TAL programs, all integers passed to the MQI functions must be 32 bits (or
be cast to 32 bit with the $INT32() macro).

The MQSeries programs themselves are compiled and linked using the native
mode tools for Guardian NSK. Native mode applications normally link with the
queue manager SRL directly unless the application already uses a Private SRL. In
this case, since applications are restricted to using at most a single Private SRL, the
application must either link with the static MQI binding library, or the code that
resides in the application’s private SRL must be combined with the MQSeries SRL
into a new Private SRL.

294 MQSeries for Compaq NSK V5.1 System Administration

License management

License management

You must enter the system type to define the program entitlement. This parameter
can be entered at installation time or at any subsequent time in the event of a
license upgrade being purchased. At startup this value is checked against the
physical Compaq machine configuration. If the license registration and program
entitlement are insufficient, a warning message is issued.

Language selection

A supplied message text file is encoded in the 7-bit character set that is native to
the Compaq NSK operating system. MQSeries for Compaq NSK lets the national
language be specified when the product is installed. The message language
defaults to U.S. English.

Internationalization

MQSeries for Compaq NSK lets the CCSID be specified when the queue manager
is created (Although the CCSID call also be changed after the queue manager is
created.) The queue manager CCSID defaults to 819. MQSeries for Compaq NSK
supports character-set conversion into the configured CCSID of the queue manager.
For information about the CCSIDs that can be specified for an MQSeries for
Compaq NSK queue manager, including those that provide support for the euro
character, see the icati [

Appendix A. MQSeries for Compaq NSK at a glance 295

296 MQSeries for Compaq NSK V5.1 System Administration

Appendix B. System defaults

When you create a queue manager using the crtmqm control command, the system
objects and default objects are created automatically.

¢ The system objects are those MQSeries objects required for the operation of a

queue manager or channel.

* The default objects define all of the attributes of an object. When you create an
object, such as a local queue, any attributes that you do not specify explicitly are

inherited from the default object.

Table 12. System and default objects for queues

Object Name

Description

SYSTEM.DEFAULT.ALIAS.QUEUE

Default alias queue

SYSTEM.DEFAULT.LOCAL.QUEUE

Default local queue

SYSTEM.DEFAULT.MODEL.QUEUE

Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE

Default remote queue.

SYSTEM.DEAD.LETTER.QUEUE

Sample dead-letter (undelivered-message)
queue

SYSTEM.DEFAULT.INITIATION.QUEUE

Default initiation queue

SYSTEM.CICS.INITIATION.QUEUE

Default CICS® initiation queue

SYSTEM.ADMIN.COMMAND.QUEUE

Administration command queue. Used for
remote MQSC commands, and PCF
commands.

SYSTEM.MQSC.REPLY.QUEUE

MQSC reply-to-queue. This a model queue
that creates a temporary dynamic queue for
replies to remote MQSC commands.

SYSTEM.ADMIN.QMGR.EVENT

Event queue for queue manager events.

SYSTEM.ADMIN.PERFM.EVENT

Event queue for performance events.

SYSTEM.ADMIN.CHANNEL.EVENT

Event queue for channel events.

SYSTEM.CHANNEL.INITQ

Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ

The queue which holds the synchronization
data for channels. (This object is created but
not used In MQSeries for Compaq NSK.
Channel Syncq information is stored in
TM/MP protected databases.)

SYSTEM.CLUSTER.COMMAND.QUEUE

The queue used to carry messages to the
repository queue manager.

SYSTEM.CLUSTER.REPOSITORY.QUEUE

The queue used to store all repository
information.

SYSTEM.CLUSTER. TRANSMIT.QUEUE

The transmission queue for all messages to
clusters.

Table 13. System and default objects for channels

Object Name

Description

SYSTEM.DEESENDER

Default sender channel

SYSTEM.DEE.SERVER

Default server channel

© Copyright IBM Corp. 1993, 2001

297

System defaults

Table 13. System and default objects for channels (continued)

Object Name Description
SYSTEM.DEF.RECEIVER Default receiver channel
SYSTEM.DEEREQUESTER Default requester channel
SYSTEM.DEE.SVRCONN Default server connection channel
SYSTEM.DEF.CLNTCONN Default client connection channel
SYSTEM.AUTO.RECEIVER Dynamic reciever channel
SYSTEM.AUTO.SVRCONN Dynamic server-connection channel
SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster used
to supply default values for any attributes
not specified when a CLUSRCVR channel is
created on a queue manager in a cluster.
SYSTEM.DEF.CLUSSDR Default sender channel for the cluster used
to supply default values for any attributes
not specified when CLUSSDR channel is
created on a queue manager in the cluster.

Table 14. System and default objects for namelists

Object Name

Description

SYSTEM.DEFAULT.NAMELIST

Default namelist

Table 15. System and default objects for processes

Object Name

Description

SYSTEM.DEFAULT.PROCESS

Default process definition

298 MQSeries for Compaq NSK V5.1 System Administration

Appendix C. Setting TACL environment variables for
MQSeries for Compaq NSK

MQSeries creates and uses a number of Compaq NSK environment variables, or
PARAMSs. When setting these PARAMSs, consider the following points:

* The MQDEFAULTPREFIX PARAM must be present in the environment of all
programs. The TS/MP (Pathway) configuration established automatically by the
crtmqm command ensures that these PARAMs are set correctly for any queue
manager server processes. Users of MQSeries applications and control
commands must ensure that the TACLs and TS/MP configurations used also
specify these variables.

* You are recommended to include the PARAM statements in your TACLCSTM
files so that, when you log on, these PARAMs are created correctly, and any
programs run from the TACL inherit the correct values. The following
environment variable should also be modified to allow location of MQSeries
executables:

#SET #PMSEARCH $SYSTEM.ZMQSEXE [#PMSEARCH]

MQCONNECTTYPE
This PARAM, if present, can be used to disable the ability of applications
to use FASTPATH connections. If this PARAM is set to the value
STANDARD, applications are only able to use STANDARD connections,
even if they request FASTPATH. Any other value is treated as if the
PARAM was not specified (and therefore applications, if they request it, are
able to use FASTPATH connections).

MOQODEFAULTPREFIX
The name of the volume containing the installed subvolume, ZMQSSYS.
This PARAM must be correctly defined in all environments.

For example:

PARAM MQDEFAULTPREFIX $data00

MQEMSEVENTS
This PARAM enables MQSeries EMS events. For example, to switch on all
EMS events for MQSeries, you set the PARAM MQEMSEVENTS as
follows:

PARAM MQEMSEVENTS 127

MQMACHINIFILE
The location of the MQSINI file for the installation. The default value is
MQDEFAULTPREFIX.ZMQSSYS.MQSINI. This PARAM is required only if a
nondefault location is required.

For example:

© Copyright IBM Corp. 1993, 2001 299

TACL environment variables

PARAM MQMACHINIFILE $data00.altinst.mgsini

MQRDF
If this PARAM is set ON, MQSeries changes the behavior of the delete
operation to work with RDF for audited files. If this PARAM is not
defined, or is set to anything other than ON, the MQSeries delete operation
functions normally. If used, this PARAM must be set in the TACL
environment of any user that runs administrative programs, and in the
environment of all TS/MP server classes configured in the queue manager.

MQRDFFUPPROCESSNAME
This PARAM is interpreted only by the cleanrdf utility. It is used to specify
a Guardian process name that will be assigned to the FUP server process
that the cleanrdf utility creates. If this PARAM is not defined, the FUP
server process name is assigned by the operating system.

MOQRDFFUPPROGNAME
This PARAM is interpreted only by the cleanrdf utility. It is used to specify
the fully qualified name of the FUP executable file to be used by the utility.
The default value is <default system name>.$SYSTEM.SYS00.FUP.

MQSNOAUT
If this PARAM is set to 1 when crtmqm is run, the new queue manager is
created with the OAM disabled.

For example:

PARAM MQSNOAUT 1

MQLISTENPORTNUM
If this PARAM is set then the TCP/IP Listener process uses it to find out
which port to listen on. If the PARAM is not specified, the port is
determined from the QMINI file TCP/IP stanza.

SAVE-ENVIRONMENT ON
Required when running application programs to ensure the Common
Run-Time Environment (CRE) passes PARAMs from the environment to
the application program.

For example:

PARAM SAVE-ENVIRONMENT ON

If this PARAM is not set, applications receive return code 2058, indicating a
queue manager name error.

This PARAM is required for TAL or COBOL applications only, running as
non-native programs.

Queue server tuning parameters

The following PARAMS, if defined in the TACL environment of a queue server,
can be used to override the built-in defaults of the queue server, for various
housekeeping operations:

300 MQSeries for Compaq NSK V5.1 System Administration

TACL environment variables

MQQSHKEEPINT

If this PARAM is set, a numeric value in seconds may be specified to
override the default houskeeping interval (60s) of the queue server. The
houskeeping interval controls the frequency at which the queue server
looks at queues to detect expired messages, and examines its memory
utilization in order to optimize operations.

MQQSSIGTIMEOUT

If this PARAM is set, a numeric value is seconds my be specified to
override the default timeout (60s) for the delivery of a signal IPC to an
application that has initiated an MQGET with the MQGMO_SET_SIGNAL
option. If a queue server is unable to deliver the signal within this timeout
(once the conditions for generating the signal have been met) the queue
server logs the fact and then cancels the signal.

MQQSMAXBATCHEXPIRE

If this PARAM is set, a numeric value may be specified to override the
default maximum number of expired Persistent Messages (100) that will be
discarded within a single transaction during housekeeping by a queue
server. When Persistent Messages expire, they must be physically removed
from the queue databases, which requires an internal TM/MP transaction.
This PARAM allows control over the maximum number of messages that
will be removed within a single TM/MP transaction.

MQQSMAXMSGSEXPIRE

If this PARAM is set, a numeric value may be specified to override the
default maximum number of expired messages (300) that will be detected
and discarded within a single housekeeping instance of a queue server.

Appendix C. Setting TACL environment variables for MQSeries for Compaq NSK 301

TACL environment variables

302 MQSeries for Compaq NSK V5.1 System Administration

Appendix D. Comparing command sets

fCable 14 through [[able 21 on page 303 compare the facilities available from the

different administration command sets.

Note: Only those MQSC commands that apply to MQSeries for Compaq NSK are

shown.

Table 16. Commands for queue manager administration

PCF MQSC Control
Change Queue Manager ALTER QMGR -

(Create queue manager)* - crtmgm
(Delete queue manager)* - dltmgm

Inquire Queue Manager

DISPLAY QMGR -

(Stop queue manager)* - endmgm
Ping Queue Manager PING QMGR -
(Start queue manager)* - strmgm

Note: * Not available as PCF commands.

Table 17. Commands for command server administration

Description Control

Display command server dspmgqcsv
Stop command server endmgqcsv
Start command server strmqcsv

described in &

Note: As an alternative to the control commands, you may use PATHCOM commands, as

equivalents of commands in this group.

“ . There are no MQSC or PCF

© Copyright IBM Corp. 1993, 2001

303

Comparing command sets

Table 18. Commands for queue administration

PCF

MQSC

Change Queue

ALTER QLOCAL
ALTER QALIAS
ALTER QMODEL
ALTER QREMOTE

Clear Queue

CLEAR QLOCAL

Copy Queue

DEFINE QLOCAL(x) LIKE(y)
DEFINE QALIAS(x) LIKE(y)
DEFINE QMODEL(x) LIKE(y)
DEFINE QREMOTE(x) LIKE(y)

Create Queue

DEFINE QLOCAL
DEFINE QALIAS
DEFINE QMODEL
DEFINE QREMOTE

Delete Queue

DELETE QLOCAL
DELETE QALIAS
DELETE QMODEL
DELETE QREMOTE

Inquire Queue

DISPLAY QUEUE

Inquire Queue Names

DISPLAY QUEUE

Note: There are no control commands for these functions.

Table 19. Commands for process administration

PCF

MQSC

Change Process

ALTER PROCESS

Copy Process

DEFINE PROCESS(x) LIKE(y)

Create Process

DEFINE PROCESS

Delete Process

DELETE PROCESS

Inquire Process

DISPLAY PROCESS

Inquire Process Names

DISPLAY PROCESS

Note: There are no control commands for these functions.

304 MQSeries for Compaq NSK V5.1 System Administration

Table 20. Commands for channel administration

Comparing command sets

PCF MQSC Control
Change Channel ALTER CHANNEL -

Copy Channel DEFINE CHANNEL(x) LIKE(y) |-

Create Channel DEFINE CHANNEL -

Delete Channel DELETE CHANNEL -

Inquire Channel DISPLAY CHANNEL -

Inquire Channel Names DISPLAY CHANNEL -

Inquire Channel Status DISPLAY CHSTATUS -

Ping Channel PING CHANNEL -

Reset Channel RESET CHANNEL -
Resolve Channel RESOLVE CHANNEL -

Start Channel START CHANNEL runmgqchl
Start Channel Initiator - runmgqchi
Start Channel Listener - runmglsr
Stop Channel STOP CHANNEL -

Note: In MQSeries for Compaq NSK, use TS/MP or the control command runmglsr to

start TCP/IP channel listeners. For more information, see LSpecﬁ;zmg_and_contm.llmé

[LCP/IP listeners” on page 3d and Lrunmglsr (Run listener)” on page 271

Table 21. Other control commands

Description Control
Alter queue volume, queue server altmgqfls
message storage options

Add, delete, or alter MQSeries principals altmqusr
RDF housekeeping utility cleanrdf
Convert client channel definition table cvclchl
Create MQSeries conversion exit crtmqevx
Display authority dspmgqaut
Display files used by objects; queue server dspmqfls
message storage options configured for

an object

Display MQSeries formatted trace output dspmgtrc
Display MQSeries principals dspmqusr
End MQSeries trace endmgqtrc
Install MQSeries for Compaq NSK instmgm
Run dead-letter queue handler runmqdlq
Run MQSC commands runmgsc
Run trigger monitor runmgtrm
Set or reset authority setmqaut
Start MQSeries trace strmqtrc
Upgrade V2201 queue manager upgmam

Appendix D.

Comparing command sets

305

Comparing command sets

Table 21. Other control commands (continued)

Description Control

Note: As an alternative to the control command runmgtrm, you may use PATHCOM
commands, as described in ‘TS /MP (PATHWAY) administration” on page 29. There are no

MQSC or PCF equivalents of commands in this group.

306 MQSeries for Compaq NSK V5.1 System Administration

Appendix E. Stopping and removing queue managers

manually

If the normal methods for stopping and removing queue managers fail, you can
resort to the more drastic methods described here.

Stopping a queue manager manually

The normal method of stopping queue managers, using the endmqm command,
should work even in the event of failures within the queue manager. In exceptional
circumstances, if this method of stopping a queue manager fails, use the following
procedure to stop it manually:

1.
2.

Find the process IDs of the queue manager programs that are still running.

FUP LISTOPENS on the TRACEOPT file in the queue manager’s data
subvolume gives CPU, PIN of processes belonging to the queue manager.
End the queue manager processes that are still running. Use the STOP
command, together with the process IDs discovered in the previous step.
End the processes in the following order:

a. MQECBOSS — EC Boss

b. MQEC — ECs

C. Any other processes that are still running

Note: Manual ending of the queue manager may result in FFSTs being taken, and

the production of FD files. This should not be regarded as a defect in the
queue manager.

The queue manager should restart normally, even if it was ended by using the
preceding method.

If you want to delete the queue manager after stopping it manually, use the
dltmgm command as normal. If, for some reason, this command fails to delete the

Eueue manager, the manual process detailed in ‘Removing quene managerd

can be used.

Removing queue managers manually

To remove queue managers manually:

1.

Ensure that there are no queue manager processes running for the queue
manager you want to remove.

Edit the MQSINI file to remove the queue manager stanza and if necessary,
modify the default queue manager stanza. Note the location of the queue
manager files before deleting the stanza.

Delete all files in all subvolumes of the queue manager using the FUP PURGE
command. For example, FUP PURGE $VOL.QMSVOL*.*.

© Copyright IBM Corp. 1993, 2001 307

Removing queue managers manually

308 MQSeries for Compaq NSK V5.1 System Administration

Appendix F. MQSeries and Compaq NonStop Server for Java

MQSeries for Compaq NSK is compatible with the Compaq NonStop Server for
Java, Version 1.5 and later. The product supports the full set of MQSeries Java

classes. The BQSeries Lsing Jaud book describes these in detail.

MQSeries can operate in conjunction with NonStop Server for Java in two ways:

* As a Servlet running in the context of the Compaq iTP Webserver

¢ As a Java application running directly from the command line

The Compaq NonStop Server for Java 1.5 Reference gives information on using
Servlets.

To access MQSeries from Java, either using Servlets or applications, it is necessary
to create a custom version of the NonStop JVM that links in the following
MQSeries product libraries:

e The Product SRL MQSRLLIB, from the Guardian ZMQSEXE subvolume
* Java binding archive libMQSESSION.a from /opt/mqgm/lib

The Compaq Java documentation provides information on how to relink the JVM.
The MQSeries samples directory (/opt/mgm/samp) contains two sample make files:

MakeJVM.smp
This is a sample make file illustrating how to rebuild the NonStop JVM to
provide access to MQSeries. To use this make file, modify it to reflect the
installed location of your MQSeries product libraries.

MakeJava.smp
Sample make file to build a Java application.

Transactional considerations

The Java language does not provide direct access to the TM/MP interface.
MQSeries supports transactions in Java via the JTS Current Class. The table below
describes the Current interface.

Table 22. Java language interface

Function Description

begin() Start a new transaction and associate it with the calling
thread.

commit(boolean) Commit the transaction associated with the calling
thread.

get_control() Obtain a Control object representing the transaction

associated with the calling thread.

get_status() Obtain the status of the transaction associated with the
calling thread.

get_transaction_name() Obtain a descriptive name of the transaction associated
with the calling thread.

resume(ControlRef) Set or resume association of a transaction with the
calling thread.

© Copyright IBM Corp. 1993, 2001 309

Table 22. Java language interface (continued)

Function Description

rollback() Roll back the transaction associated with the calling
thread.

suspend () Suspend the association of the calling thread with a
transaction context.

For more information on JTS, refer to the Compaq NSK NonStop Java
documentation or the JDK documentation.

310 MQSeries for Compaq NSK V5.1 System Administration

Appendix G. MQSC supported by MQSeries for Compaq NSK

This appendix lists the MQSeries commands (MQSC) supported by MQSeries for
Compaq NSK. For information about the syntax of these commands, see the

MQSeries MOSC Command Rpfprpwrpl

Table 23. MQSC supported by MQSeries for Compaq NSK

queue.

Command Description As described in MQSeries
Command Reference
ALTER CHANNEL Change channel attributes. Yes, but with the exceptions
described in m
ALTER NAMELIST Alter a list of names. Yes
ALTER PROCESS Change process attributes. Yes
ALTER QALIAS Change attributes of an alias | Yes
queue.
ALTER QLOCAL Change attributes of a local | Yes, but with _the exceptions
queue. described in m
ALTER QMGR Change queue manager Yes, but with the exceptions
attributes. described in IME@
End MAXHANDS od
ALTER QMODEL Change attributes of a model | Yes, but with the exceptions
queue. described in mﬁ
ALTER QREMOTE Change attributes of a local | Yes
definition of a remote queue,
a queue-manager alias, or a
reply-to queue alias.
CLEAR QLOCAL Clear messages from a local | Yes

DEFINE CHANNEL

Create a channel definition.

Yes, but with the exceptions
described in m

DEFINE NAMELIST

Define a list of names.

Yes

DEFINE PROCESS Create a process definition. Yes
DEFINE QALIAS Create an alias-queue Yes
definition.
DEFINE QLOCAL Create a local-queue Yes, but with the exceptions
definition. described in m
bnd NOHARDENBQ” onl

bagea1d

DEFINE QMODEL

Create a model-queue
definition.

Yes, but with the exceptions
described in m
bnd NQHARDENEBQ” o

© Copyright IBM Corp. 1993, 2001

311

MQSeries commands

Table 23. MQSC supported by MQSeries for Compaq NSK (continued)

Command

Description

As described in MQSeries
Command Reference

DEFINE QREMOTE Create a local definition of a | Yes
remote queue, a
queue-manager alias, or a
reply-to-queue alias.

DELETE CHANNEL Delete a channel definition. | Yes

DELETE NAMELIST Delete a list of names. Yes

DELETE PROCESS Delete a process definition. Yes

DELETE QALIAS Delete an alias-queue Yes
definition.

DELETE QLOCAL Delete a local-queue Yes
definition.

DELETE QMODEL Delete a model-queue Yes
definition.

DELETE QREMOTE Delete a local definition of a | Yes

remote queue.

DISPLAY CHANNEL Display a channel definition. | Yes, but with _the exceptions
described in Imm
DISPLAY CHSTATUS Display the status of one or | Yes, but with the exceptions
more channels. described in m
information (DISPLAY
[CHSTATIUIS)” on page 313
and ECONNAME” on
DISPLAY CLUSQMGR Display the status of one or | Yes, but with the exceptions
more channels. described in m
DISPLAY NAMELIST Display a list of names. Yes
DISPLAY PROCESS Display a process definition. | Yes
DISPLAY QMGR Display queue-manager Yes, but with the exceptions
attributes. described in m
Eod MAXHANDS od
DISPLAY QUEUE Display queue attributes. Yes, but with the exceptions
described in FELARDENEG
bnd NOHARDENBO” onl
PING CHANNEL Test a channel. Yes
PING QMGR Test whether queue manager | Yes
is responding to commands.
REFRESH CLUSTER Discard all locally held Yes
cluster information and force
it to be rebuilt.
RESET CHANNEL Reset the message sequence | Yes
number for a channel.
RESET CLUSTER Perform special operations Yes

on clusters.

312 MQSeries for Compaq NSK V5.1 System Administration

MQSeries commands
Table 23. MQSC supported by MQSeries for Compaq NSK (continued)

Command Description As described in MQSeries
Command Reference
RESOLVE CHANNEL Resolve in-doubt messages | Yes
on sender or server channel.
RESUME QMGR Inform other queue Yes

managers in a cluster that
the local queue manager is
available again for processig
and can be sent messages.

START CHANNEL Start a channel. Yes
STOP CHANNEL Stop a channel. Yes
SUSPEND QMGR Inform other queue Yes

managers in a cluster that
the local queue manager is
not available for processing
and cannot be sent messages.

If you build MQSC commands into a script, there must be no more than 72
characters on each line.

Attributes of MQSC

This section provides information about MQSC attributes that is specific to
MQSeries for Compaq NSK.

Channel Status information (DISPLAY CHSTATUS)

The DISPLAY CHSTATUS command is implemented as described in haQseried
MQSC Command Referencd except that channel status is updated only at the
boundaries of batch processing. Channel status information is not updated for
every message transfer because of the potential impact on the performance of
channels. This means the common status data values are identical for both the
current and saved sets.

MAXUMSGS and MAXHANDS

The queue manager object attributes MAXUMSGS and MAXHANDS are ignored.
This affects the following commands:

ALTER QMGR

DISPLAY QMGR

HARDENBO and NOHARDENBO

In MQSeries for Compaq NSK, the local and model queue attributes HARDENBO
and NOHARDENBO are ignored. The Backoutcount of a message is always
hardened for persistent messages and never hardened for non-persistent messages.
This affects the following commands:

ALTER QLOCAL

ALTER QMODEL

DEFINE QLOCAL

DEFINE QMODEL

DISPLAY QUEUE

Appendix G. MQSC supported by MQSeries for Compaq NSK 313

HARDENBO and NOHARDENBO

CONNAME

The CONNAME attribute of TCP channels can optionally take an additional field
at the start of the value, specifying the name of a specific Guardian TCP/IP Server
process to be used for the channel. This affects the following commands:

ALTER CHANNEL

DEFINE CHANNEL

DISPLAY CHANNEL

DISPLAY CHSTATUS

DISPLAY CLUSQMGR

USERDATA for triggered programs

Data passed to the trigger monitor via the USERDATA attribute of MQSC DEFINE
PROCESS or ALTER PROCESS must be in double quotation marks if it is a string
containing spaces. For example, if this USERDATA -o $DISK.VOLUME.PROGRAM -d 1
is to be passed to the trigger monitor, it must be specified on input to MQSC in
double quotation marks, as follows:

'" -0 $DISK.VOLUME.PROGRAM -d 1"'

If you display the process definition via MQSC, it appears as follows:

"-0 $DISK.VOLUME.PROGRAM -d 1"

Using exit names as attributes of objects

Wherever exit names are specified in attributes of objects, they will be in a format
specific to MQSeries for Compaq NSK.

314 MQSeries for Compaq NSK V5.1 System Administration

Appendix H. Application Programming Reference

The following sections are new to MQSerles for Compaq NSK, and should be used
in conjunction with the

Structure data types

This section describes changes to data types.

Structure Data Type |Supported in Supported in | Works as described in MQSeries
V2.x V5.1 Application Programming Reference

MQBO - Begin No No

Options

MQCH - CICS No Yes Yes

Bridge Header

MQCNO - Connect |No Yes Yes but with some additional

Options notes. See 'MQCNQ = Connecl
{)ptions” on paga.?.ld for more
information.

MQDH - No Yes Yes

Distribution Header

MQDLH - Dead Yes Yes Yes

Letter Header

MQGMO - Get Yes Yes Yes but with some additional

Message Options notes. See
t] () . r” :i] El
for more information.

MQIH - IMS Bridge | Yes Yes Yes

Header

MQMD - Message Yes Yes Yes but with some additional

Descriptor notes. See EMQMD — Messagd
Descriptor” on page 3114 for
more information.

MQMDE - Message |No Yes Yes

Descriptor Extension

MQOD - object Yes Yes Yes

Descriptor

MQOR - Object No Yes Yes

Record

MQPMO - Put Yes Yes Yes but with some additional

Message Options notes. See
b] () b ” 3] j
for more information.

MQPMR - Put No Yes Yes

Message Record

MQRMH - Message |No Yes Yes

Reference Header

MOQRR - Response No Yes Yes

Record

© Copyright IBM Corp. 1993, 2001 315

Structure data types

Structure Data Type |Supported in Supported in | Works as described in MQSeries
V2.x V5.1 Application Programming Reference

MQTM - Trigger Yes Yes Yes

Message

MQTMC2 — Trigger | Yes Yes Yes

Message Character

Format

MQWIH - Workload |No Yes Yes

Information Header

MQXQH - Yes Yes Yes

Transmission Queue

Header

This section describes the following MQSeries structure data types:

MQCNO - Connect Options
The MQCNO data structure is as specified in MQSeries Application Programming

with the following additional notes:

* The unit of execution is defined as a process

* MQCNO_FASTPATH_BINDING can be used only in a process that has a single
connection to a queue manager

* MQCNO_FASTPATH_BINDING requires that the application is run under the
user ID that is a part of the MOM Administrative User Group that created the
queue manager

* The Guardian parameter MQCONNECTTYPE can be used in association with
the bind type specified by the Options field, to control the type of binding used.
If this parameter is specified, it should have the value FASTPATH or
STANDARD:; if it has some other value, it is ignored. The value of the
parameter is case sensitive.

* MQSeries for Compaq NSK supports MCNO_VERSION_2 as well as
MQCNO_VERSION_1, but the ClientConnOffset and ClientConnPtr fields are
ignored.

MQGMO - Get Message Options

The MQGMO structure is an input/output parameter of the MGET call. Note the
following information about the MQGMO_SET_SIGNAL, MQGMO_WAIT,
MQGMO_SYNCPOINT, and MQGMO_NO_SYNCPOINT options in MQSeries for
Compaq NSK:

 If you want the application to proceed with other work while waiting for a
message to arrive, consider using the signal option MQGMO_SET_SIGNAL
instead of MQGMO_WAIT. However, the signal option is environment specific
and should not be used by applications that are to be ported between different
environments.

e If there is more than one MQGET call waiting for the same message with a
mixture of wait and signal options, each waiting call is considered equally. It is
an error to specify MQGMO_SET_SIGNAL with MOQGMO_WAIT. It is also an
error to specify this option with a queue handle for which a signal is
outstanding.

 If an application specifies MQGET with MQGMO_SET_SIGNAL and a
WaitInterval of 0, the MQGMO_SET_SIGNAL option will be ignored and treated
as an MQGET with MQGMO_NO_WAIT.

316 MQSeries for Compaq NSK V5.1 System Administration

Structure data types

This means that an application must be prepared to receive
MQRC_NO_MSG_AVAILABLE on an MQGET with MQGMO_SET_SIGNAL if
the WaitInterval can ever be zero. Applications receive a signal IPC only if:

— The application experiences MQRC_SIGNAL_REQUEST_ACCEPTED from the
MQGET (indicates that a signal has been posted)

— the application has been able to process the file_open_ system message and
accept the signal IPC within the queue server’s timeout for signal delivery.
This is 60s by default, but may be overridden for a queue server by
specifying the MQQSSIGTIMEOUT PARAM in the environment of the queue
server.

The queue manager logs the failure to deliver an IPC message to an application
if it has not been able to open the process and send the IPC before the timeout
expires. At this point the queue manager will not attempt delivery again.
Applications should be resilient to this by not waiting indefinitely for an IPC
signal.

* MQGMO_SYNCPOINT_IF_PERSISTENT is now supported

* If neither of the options MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT
is set, MQSeries for Compaq NSK defaults to MQGMO_SYNCPOINT.

* MQSeries for Compaq NSK does not support the MsgToken field.

MQMD - Message Descriptor

The MQMD structure contains the control information that describes a message.
Please note the following information:

* The BackoutCount functions as described in the MQSeries Application Programming

. This is a count of the number of times the message has been
previously returned by the MQGET call as part of a unit of work, and
subsequently backed out. It is provided as an aid to the application in detecting
processing errors that are based on message content. In Version 2.2.0.1, the
BackoutCount was estimated.

* In MQSeries for Compaq NSK, the discarding of a message (and generation of a
report, if required) is not performed during an MQGET call, but is under the
control of the queue server that performs periodically, according to settings for
the queue manager.

¢ The value of the Userldentifier field, when set by the queue manager during an
MQPUT or MQPUT1 is the MQSeries Principal name found in the queue
manager’s Principal database corresponding to the effective user identifier of the
application.

MQPMO - Put Message Options

The MQPMO structure is an input/output parameter of the MQPUT and MQPUT1
calls. Please note the following information about the MQPMO_NO_SYNCPOINT
option in MQSeries for Compaq NSK:

* If neither of the options MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT
is set, MQSeries for Compaq NSK defaults to MQPMO_SYNCPOINT.

Appendix H. Application Programming Reference 317

MQl calls

This section describes changes to the following MQI calls:

MOQI Call
Description

Supported in
V2.x

Supported in
V5.1

Works as described in
MQSeries Application
Programming Reference

MQBACK - Back

1
Returns error?

Returns error®

Yes

Attributes

Out Changes

MQBEGIN - Begin No Returns error® Yes

Unit of Work

MQCLOSE - Close Yes Yes Yes but with some additional

object notes. See
Close Ohject” on page 319 for
more information.

MQCMIT - Commit |No Returns error® Yes

changes

MQCONN - Connect | Yes Yes Yes

queue manager

MQCONNX — No Yes Yes

Connect Queue

manager (Extended)

MQDISC - Yes Yes Yes but with some additional

Disconnect queue notes. See

manager i 4

for more

information.

MQGET - Get Yes Yes Yes

Message

MQINQ - Inquire Yes Yes Yes but with some additional

About Object notes. See F'MQINQ — Inquird

Attributes i i “
m for more
information.

MQOPEN - Open Yes Yes Yes but with some additional

object notes. See P'MQOPEN — Openl
Qbject” on page 319 for more
information.

MQPUT - Put Yes Yes Yes

Message

MQPUT1 - Put One | Yes Yes Yes

Message

MQSET - Set Object | Yes Yes Yes but with some additional

notes. See

T TG AT

for more information.

MQSYNC -
Synchronize Statistics
Updates

Returns error®===

[—

Returns error®
bpagea1d

Yes

Notes:

1. The MQI call can be issued by the application but always returns completion
code MQCC_FAILED and reason code MQRC_ENVIRONMENT_ERROR.

318 MQSeries for Compaq NSK V5.1 System Administration

MQl calls

2. This call always returns a CompCode of MQCC_OK and a reason code of
MQRC_NONE.

MQCLOSE - Close Object

The MQCLOSE call, which is the inverse of the MQOPEN call, relinquishes access
to an object.

On MQSeries for Compaq NSK, if there is a MQGET request with the
MQGMO_SET_SIGNAL option outstanding against the queue handle being closed,
the request is canceled. Signal requests for the same queue but lodged against
different handles (Hobj) are not affected (unless it is a dynamic queue that is being
deleted, in which case, they are also canceled.)

For a FASTPATH application opening or closing a dynamic queue, MQSeries may
start and end a TM/MP transaction in order to update audited databases. If the
application has opened the TM/MP T-file (because it can initiate multiple
transactions) then ENDTRANSACTION is a no-waited operation, and the
application will receive a completion for the transaction initiated by MQSeries.
Applications should review their design to determine if this is the case and verify
that the logic handling completions can cope with ENDTRANSACTION
completions that are caused by MQSeries.

MQDISC - Disconnect queue manager

The MQDISC call, which is the inverse of MQCONN, breaks the connection
between the MQSeries queue manager and the application program.

Usage Note 3 in the MQSeries Application Programming Referencd is incorrect. On

MQSeries for Compaq NSK an implicit syncpoint does not occur if a queue
manager coordinated unit of work is in progress when MQDISC is called. This is
because the NSK queue manager cannot be a coordinator of a UOW. Coordination
is provide by the TM/MP subsystem.

MQINQ - Inquire about object attributes

The MQPUT call returns an array of integers and a set of character strings
containing the attributes of an object.

MQOPEN - Open Object

The MQOPEN call establishes access to an object. On MQSeries for Compaq NSK,
the MaxHandles attribute of the queue manager is ignored.

For a FASTPATH application opening or closing a dynamic queue, MQSeries may
start and end a TM/MP transaction in order to update audited databases. If the
application has opened the TM/MP T-file (because it can initiate multiple
transactions) then ENDTRANSACTION is a no-waited operation, and the
application will receive a completion for the transaction initiated by MQSeries.
Applications should review their design to determine if this is the case and verify
that the logic handling completions can cope with ENDTRANSACTION
completions that are caused by MQSeries.

MQSET- Set Object Attributes

The MQSET call changes the attributes of an object represented by a handle. The
object must be a queue. On MQSeries for Compaq NSK, the MQIA_DIST_LISTS
selector is supported.

Appendix H. Application Programming Reference 319

MQl calls

For a FASTPATH application changing an object’s attributes using MQSET,
MQSeries will start and end a TM/MP transaction in order to update audited
databases. If the application has opened the TM/MP T-file (because it can initiate
multiple transactions) then ENDTRANSACTION is a no-waited operation, and the
application will receive a completion for the transaction initiated by MQSeries.
Applications should review their design to determine if this is the case and verify
that the logic handling completions can cope with ENDTRANSACTION
completions that are caused by MQSeries.

Attributes of MQSeries objects

In MQSeries for Compaq NSK, the attributes of all objects are as described in the

MQSeries Application Programming Referencd, with the following exceptions and

additions.

Attributes for all queues

In MQSeries for Compaq NSK, the attributes of all queues are as described in the
1 icati i , with the following exceptions and

additions.

The AlterationDate and AlterationTime attributes are updated only when
administrative changes are made to attributes of an object. CurrentQDepth,
OpenlnputCount and OpenOutputCount attributes may only be changed
dynamically. QDepthHighCount, QDepthLowEvent, QDepthMaxEvent and
QServicelntervalEvent may be changed both dynamically and administratively, but
only the administrative changes (such as is performed using MQSC commands or
via MQSET) will cause a change in the AlterationDate and AlterationTimes
attributes.

Attributes of local and model queues
In MQSeries for Compaq NSK,
* the Archive attribute is ignored.

* The HardenGetBackout attribute is ignored because the backout count is not
saved to disk. There is no ability to archive messages.

 For persistent messages, the BackoutCount attribute is always hardened. For
non-persistent messages, the BackoutCount attribute is never hardened. If,
however, the Local Queue has its -q server C option attribute set, BackoutCount
will be checkpointed to the backup queue server. Messages checkpointed in this
way are resilient against queue server failure. To maintain compatibility with
other MQSeries platforms, the attribute may be queried by the MQINQ call
using the MQIA_HARDEN_GET_BACKOUT selector.

Attributes of queue managers
* MaxMsglength is 100 MB.
e Commandlevel is MQCMDL_LEVEL_510.
* SyncPoint is MQSP_AVAILABLE.

* The value of CodedCharSetId is as specified when the queue manager instance
was created.

* MaxHandles attribute is ignored. It is not possible to specify a maximum number
of open handles for MQSeries for Compaq NSK. The maximum value will be
determined by system resource constraints.

320 MQSeries for Compaq NSK V5.1 System Administration

Attributes for all queues

* MaxUncommittedMsgs attribute is ignored. It is not possible to specify a maximum
number of messages to be allowed within a single unit of work. The maximum
value is determined by resource constraints.

e CCSID can be altered.

Data conversion
Refer to t“Appendix T User exits” on page 341 which describes the scheme for

supporting all exits on MQSeries for Compaq NSK V5.1. The mechanism has
changed from previous versions to support a more consistent and portable exit
implementation.

Appendix H. Application Programming Reference 321

Data conversion

322 MQSeries for Compaq NSK V5.1 System Administration

Appendix I. Building and running applications

The sample programs and the sample compilation and binding scripts, provided in
subvolume ZMQSSMPL, illustrate the main features of the MQI in MQSeries for
Compaq NSK, and demonstrate how to compile and bind an application.

Writing applications

This section provides updated information for some minor differences between the
standard Version 5.1 MQI interface, as documented in the

Programming Guidd, and the MQI interface for MQSeries for Compaq NSK. Use this

section to update the BMQSeries Application Programming Guidd for MQSeries for

Compaq NSK V5.1.

Using MQGET Wait Interval and Channel DISCINT and HBINT

When performing MQGET using MQGMO_NO_SYNCPOINT, a TM/MP
transaction is started and ended by MQSeries only when a persistent message is
available that satisfies the retrieval criteria. No consideration needs to be given by
applications to the value of WaitInterval for no syncpoint operation.

For an MQGET issued with the MQGMO_SYNCPOINT or
MQGMO_SYNCPOINT_IF_PERSISTENT option, the TM/MP transaction is under
the control of the user application which issues the BEGINTRANSACTION. The
wait interval should not exceed the TMF Autoabort timeout value and ideally
should be small to avoid pinning a significant amount of the TM/MP audit trail
(values under a minute should normally be used). Specifying wait unlimited on a
lightly used queue or a queue that is idle overnight may cause the autoabort
timeout to be exceeded and a MQRC_UOW_CANCELLED (2297) to be returned to
the MQGET when a message becomes available on the queue. Having a high wait
interval or using unlimited can cause TMF audit trails to be pinned, eventually
leading (if uncorrected) to the TM/MP subsystem disabling transactions on a
system-wide basis.

Similarly the DISCINT value and HBINT value for sending channels controls the
length of a TM/MP transaction. Channels are capable of cycling transactions when
idle to allow long disconnect intervals, without having a detrimental affect on
TM/MP audit trails.

A parameter, MQTRANSACTIONLIFE, can be used to control the refreshing of the
TM/MP transaction for channel disconnect intervals and heartbeats that are zero.
This is useful if a longer or shorter TM/MP transaction life is desired or to change
the amount TM/MP activity the idle channel produces. A higher value will
produce less, a lower setting more.

Add to each MQSeries MQS-ECxx PATHWAY server class:

PARAM MQTRANSACTIONLIFE <number>

where <number> is a number such as 100.

© Copyright IBM Corp. 1993, 2001 323

Writing applications

This parameter overrides the use of the 10 second default TM/MP transaction
refresh interval. For example, a channel with a disconnect interval unlimited
without the parameter would cause a refresh approximately every 10 seconds
while it waits for a message to arrive.

Unit of work (transaction) management

Transaction management is performed under the control of Compaq’s TM/MP
product, rather than by MQSeries itself.

The effects of this difference are:

The default SYNCPOINT option for the MQPUT and MQGET calls is
SYNCPOINT, rather than NO_SYNCPOINT.

To use the default (SYNCPOINT) option for MQPUT, MQGET and MQPUT1
operations, the application must have an active TM/MP Transaction that defines
the unit of work to be committed. An application initiates a TM/MP transaction
by calling the BEGINTRANSACTION() function. All MQPUT, MQPUT1 and
MQGET operations performed by the application while this transaction is active
are within the same unit of work (transaction). Any other database operations
performed by the application are also within this UOW. Note that there are
system-imposed limits on the number and size of messages that can be written
and deleted within a single TM/MP transaction. When the application has
completed the UOW, the TM/MP transaction is ended (the UOW is committed)
using the ENDTRANSACTION() function. If any error is encountered, the
application can cancel the TM/MP transaction (backout the UOW) using the
ABORTTRANSACTION() function. Consequently, the standard Version 5
functions MQCMIT(), MQBACK() and MQBEGIN() are not supported on this
product. If they are called, an error is returned.

If an application uses the NO_SYNCPOINT option for MQPUT, MQGET and
MQPUTT1 operations, MQSeries starts a TM/MP transaction itself, performs the
queueing operation, and commits the transaction before returning to the
application. Each operation is therefore performed in its own UOW and, once
complete, cannot be backed out by the application using TM/MP.

It is necessary for MQSeries to start a TM/MP transaction itself for a
NO_SYNCPOINT operation only if the message is persistent and therefore
requiring update to a TM/MP protected queue file.

A TM/MP transaction does not need to be active for MQI calls other than
MQGET, MQPUT and MQPUT]1.

The MQRC_SYNCPOINT_LIMIT_REACHED reason code is used by MQSeries
for Compaq NSK to inform an application that the system-imposed limit on the
number of I/O operations within a single TM/MP transaction has been reached.
If the application specified the SYNCPOINT option, it should cancel the
transaction (backout the UOW) and retry with a smaller number of operations in
that UOW.

The MQRC_UOW_CANCELED reason code informs the application that the
UOW (TM/MP transaction) has been canceled, either by the system itself
(TM/MP imposes some system-wide resource-usage thresholds that will cause
this), by user action, or by the initiator of the transaction itself.

The MQRC_BACKED_OUT reason code informs the application that MQSeries
was forced to cancel the UOW because of an error, or Primary Queue Server
failure. The application should call ABORTTRANSACTION (if the operation was
syncpoint) and retry.

The MQRC_SYNCPOINT_NOT_AVAILABLE reason code informs the
application that MQSeries was unable to start or use a TM/MP transaction that

324 MQSeries for Compaq NSK V5.1 System Administration

Writing applications

was required in order to complete an operation. Typically this indicates a
problem with TM/MP, and additional information may be available in the error
log or from FFSTs produced by the queue manager.

General design considerations

Note that:

e The MQI library (bound into the application process) does not open $RECEIVE
and does not open $TMP (TM/MP transaction pseudo-file) itself, so you may
code your application to use these features.

¢ The MQI library uses a SERVERCLASS_SEND_() call in initial communication
with the queue manager. While connected, it maintains a minimum of two
process file opens (with the LINKMON process and a Local Queue Manager
Agent) and a small number of disk file opens (fewer than 10). Process opens are
also made to any queue servers that support local queues that are opened for
input, output or browse as a result of an MQOPEN call.

* You should ensure that there is no outstanding nowait PATHSEND 1/0O before
calling MQCONN. MQCONN performs nowaited PATHSEND I/O and could
intercept the completion of the application’s outstanding 1/O causing errors.

¢ FASTPATH-bound applications have special considerations if they are also
multi-threaded TM/MP requesters (see the descriptions of MQOPEN,
MQCLOSE and MQSET earlier).

XA interface

No XA interface for unit of work (UOW) coordination is provided. All UOW
coordination is performed by TM/MP.

MQGMO_BROWSE_* with MQGMO_LOCK
MQGMO_BROWSE _* with MQGMO_LOCK is now supported. See the MQSeried

Wpplication Programming Referencd.
Triggered applications

Triggered MQSeries applications in the Compaq NSK environment receive user
data through environment variables set up in the TACL process that is running.
This is because there is a limit to the length of the argument list that can be passed
to a Compaq C process.

In order to access this information, triggered applications should contain code
similar to the following (see sample amgsinga for more details):

Appendix L. Building and running applications 325

Writing applications

MQTMC2 *trig; /* trigger message structure */
MQTMC2 trigdata; /* trigger message structure */
char *applld;

char *envData;

char *usrData;

char *qmName;

/**/

/* */
/* Set the program argument into the trigger message */
/* */
/**/
trig = (MQTMC2+)argv[1]; /* -> trigger message */

/* get the environment variables and load the rest of the trigger */
memcpy (&trigdata, trig, sizeof(trigdata));

memset (trigdata.Applld,

' ', sizeof(trigdata.ApplId));
memset (trigdata.EnvData, ' '

, sizeof(trigdata.EnvData));
, sizeof(trigdata.UserData));
, sizeof(trigdata.QMgrName));

memset (trigdata.UserData,
memset (trigdata.QMgrName,

if((applIld = getenv("TRIGAPPLID")) != 0)
{

strncpy(trigdata.ApplId ,applld, strlen(applld));

if ((envData = getenv("TRIGENVDATA")) != 0)
{

strncpy(trigdata.EnvData , envData, strlen(envData));

if ((usrData = getenv("TRIGUSERDATA")) != 0)
{

strncpy(trigdata.UserData, usrData, strlen(usrData));

if ((gmName = getenv("TRIGQMGRNAME")) != Q)

{
strncpy(trigdata.QMgrName, gmName, strlen(gmName));

}

trig = &trigdata;

Supported languages and environments

MQSeries for Comgaq NSK V5.1 supports the languages and environments

described in

. The table also describes whether the application can use

FASTPATH or STANDARD bindings.

Table 24. Summary of supported languages and environments

Language Runs on Runs on OSS? | Can use Can use
Guardian?l STANDARD |FASTPATH
binding? binding?Ii
C native Yes Yes Yes Yes

326 MQSeries for Compaq NSK V5.1 System Administration

Writing applications

Table 24. Summary of supported languages and environments (continued)

Language Runs on Runs on OSS? | Can use Can use
Guardian?® STANDARD |FASTPATH
binding? binding?®

C non-native Yes No Yes No

COBOL native Yes Yes Yes Yes
COBOL non-native Yes No Yes No

C++ native Yes Yes Yes Yes

TAL non-native Yes No Yes No
NonStop]avaIi No Yes Yes No

Notes:

1. The Guardian environment and FASTPATH-bound OSS applications cannot use
threads. Only OSS STANDARD-bound and Java can use threads. For more
1nformat1on on usmg threads in your application, see 'Cansiderations ford

2. NonStop Java applications use the Java Transaction Services (JTS) for
transactions.

3. A native application that uses FASTPATH binding may resolve the MQI only
through MQSeries for Compaq NSK’s Shared Resource Library. A native
application that uses STANDARD bindings is able to resolve the MQI using
either MQSeries for Compaq NSK’s Shared Resource Library or a static Native
MQI library. For more information about FASTPATH and STANDARD binding,
see L indings” .

Considerations for creating applications with threads

Guardian applications do not support threads. They may implement their own
cooperative threading mechanism, but the rules for using the MQI from the
Guardian environment must be obeyed for the process that is using it.

In the OSS environment, a thread emulation package based on POSIX threads is

available. The emulation implements a cooperative scheduling mechanism where a

thread must give up execution control before the code in any other thread can

execute. Applications can use this threading package to organize processing into

threads, but the following restrictions apply:

¢ The MQI does not support cooperative scheduling between threads. This means
that when the MQI is called from an application thread, no other thread can
obtain execution control, regardless of how long it takes. For example, if a
thread calls MQGET with the ‘wait indefinitely " option, no other thread can
execute in the application process until the MQGET returns.

* FASTPATH-bound applications running in an OSS environment cannot use
threads.

* The queue manager does not support multi-threaded Local Queue Manager
Agents (LOMA or MQLOMAG processes) or Message Channel Agents (MCAs).

Appendix I. Building and running applications 327

Compiling applications

Compiling and binding applications

The MQSeries for Compaq NSK MQI is implemented using the Compaq wide
memory model (the int datatype is 4 bytes) and the Common Runtime
Environment (CRE). Applications must be compatible with this environment in
order to work correctly. Refer to the sample build files for the correct options for
each compiler in order to ensure compatibility.

In particular, TAL and COBOL applications must follow the rules that are required
for compatibility with the CRE, documented in the Compaq books relating to the
CRE.

Note that, for successful use of the MQGMO_SET_SIGNAL function of MQGET,
you must set the HIGHREQUESTERS attribute to ON in object code for COBOL
and TAL applications.

For an installation, three versions of the MQI library are delivered with MQSeries
for Compaq NSK, contained in ZMQSLIB. You must ensure that you use the
correct library, as shown in

Table 25. Using the correct version of the MQI library

Programming Nonnative Native/Static Native/Dynamic
Language

TAL MQMLIB Not applicable Not applicable
COBOL MQMLIB MQMLIBN MQSRLLIB

C MQMLIB MQMLIBN MQSRLLIB

C++ Not applicable MQMLIBN MQSRLLIB

FASTPATH versus STANDARD bindings

MQSeries for Compaq NSK V5.1 supports both FASTPATH and STANDARD
bindings. describes the languages and environments that support each
type of binding.

STANDARD bindings

Consider the following when using STANDARD bindings in an application:

* Non-native and native applications can use STANDARD bindings.

* A native application that uses STANDARD bindings can resolve the MQI using
either:

— MQSeries for Compaq NSK’s Shared Resource Library

— A static Native MQI library. This provides support for applications that
already use a shared resource library.

FASTPATH bindings
Consider the following when using FASTPATH bindings in an application:

* Only native applications can use FASTPATH binding.

* A native application using a FASTPATH binding can resolve the MQI only
through MQSeries for Compaq NSK’s Shared Resource Library.

* FASTPATH-bound applications running on OSS cannot use threads.

* FASTPATH-bound applications must run under the User ID in the Compaq NSK
MOQM Administrative User group that created the queue manager.

328 MQSeries for Compaq NSK V5.1 System Administration

Running applications

Running applications

To be able to connect to a queue manager, the environment of an application
program must be correctly defined:

¢ The PARAM MQDEFAULTPREFIX is mandatory in the environment of all
applications.

* If you have chosen an alternative (nondefault) location for your MQSINI file, an
application will not be able to connect to the queue manager if the PARAM
MQMACHINIFILE is not set correctly.

* TAL and COBOL applications must have the PARAM SAVE-ENVIRONMENT
ON defined in their environment, or they will not be able to connect to the
queue manager.

An application may run as either low-pin or high-pin. MQSeries executables
themselves are configured to run as high-pin.

MQSeries applications are supported in both the Guardian and OSS environments.
An MQSeries application may run under PATHWAY, from TACL, or as a child
process of another process. Applications can even be added to the queue manager

PATHWAY configuration itself, provided they behave correctly on queue manager
shutdown.

Appendix I. Building and running applications 329

Running applications

330 MQSeries for Compaq NSK V5.1 System Administration

Appendix J. MQSeries Administration Interface (MQALI)

MQSeries for Compaq NSK V5.1 supports the MQALI interface.

The MQALI is a programming interface to MQSeries, using the C language. It
performs administration tasks on an MQSeries queue manager using data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that
is easier than using the other administration interface, Programmable Command
Formats (PCFs).

The MQAI offers easier manipulation of PCFs than using the MQGET and MQPUT
calls. You can use the MQAI to:

* Implement self-administering applications and administration tools.
* Simplify the use of PCF messages. The MQAI is an easy way to administer

MQSeries; you do not have to write your own PCF messages and thus avoid the
problems associated with complex data structures.

* Handle error conditions more easily. It is difficult to get return codes back from
the MQSeries commands (MQSC), but the MQAI makes it easier for the program
to handle error conditions.

Note: MQSeries for Compaq NSK V5.1 provides C header files only. It does not
provide Visual Basic header files.

For more information about the MQAI, see the h@ﬂmﬁiﬂmﬂﬁm&iﬂgﬁd

© Copyright IBM Corp. 1993, 2001 331

332 MQSeries for Compaq NSK V5.1 System Administration

Appendix K. MQSeries for Compaq NSK sample programs

The following C and COBOL sample programs are supplied with MQSeries for
Compaq NSK V5.1:

Description C source C executable COBOLS85 source | COBOLS5
executable

Read and output message descriptor | amqsbeg0 amgsbcg No sample No sample

and context for each message on a

queue

Echo a message from a message amgsecha amgsech amqOech0 amqQech

queue to the reply-to queue

Write messages from a queue to amqsgbr0 amqsgbr amqOgbr0 amqOgbr

stdout, leave messages on the queue

(Browse)

Remove messages from the named |amgqsget0 amgsget amqOget0 amgq(Oget

queue and write to stdout

Read the triggered queue, respond |amgsinqga amgsing No sample No sample

with queue information

Use a shared input queue No sample No sample amq0inq0 amqOinq

Copy stdin to a message and put the | amqgsput0 amgsput amqOput0 amqOput

message on a specified queue

Put a request message on a specified | amqsreq0 amgsreq amqOreq0 amqOreq

queue and display the replies

(Trigger function) inhibit puts on a |amgsseta amgsset amqOset0 amqOset

named queue and respond with a

statement of the result

Trigger monitor amgqstrg0 amgstrg No sample No sample

Sample skeleton for data conversion |amgqsvfcn No sample No sample No sample

exit

Sample skeleton for channel exit amqsvchn No sample No sample No sample

Sample skeleton for cluster amqswlmO No sample No sample No sample

workload exit

Sample skeleton for MQLOADEXIT | amqslxp0 No sample No sample No sample

The following TAL sample programs are supplied with MQSeries for Compaq NSK

V5.1:

Description TAL source TAL executable
Read 1 messages from a queue zmqreadt zmgread

Write n messages of n length to a queue zmqwritt zmqwrit

© Copyright IBM Corp. 1993, 2001

333

Building C samples

Building C sample programs

Non-Native (using non-native static library MQMLIB)

The subvolume ZMQSSMPL contains the following TACL macro files to be used
for building non-native sample C applications:

CSAMP

BSAMP

COMPALL

BINDALL

BUILDC

Usage: CSAMP source-code-file-name

This is a basic macro for compiling a C source file
using the include files contained in subvolume
ZMQSLIB. For example, to compile the sample
AMQSBCGO, use CSAMP AMQSBCGO. If the
compilation is successful, the macro produces an
object file with the last character of the file name
replaced by the letter O; for example, AMQSBCGO.

Usage: BSAMP exe-file-name

This is a basic macro used to bind an object file
with the user library MQMLIB in ZMQSLIB. For
example, to bind the compiled sample
AMQSBCGO, use BSAMP AMQSBCG. The macro
produces an executable file called exe-file-nameE;
for example, AMQSBCGE.

Usage: COMPALL

This TACL macro compiles each of the sample
source code files using the CSAMP macro.

Usage: BINDALL

This TACL macro binds each of the sample object
files into executables using the BSAMP macro.

Usage: BUILDC

This TACL macro compiles and binds all of the C
sample files using the macros COMPALL and
BINDALL.

Native (using native static library MQMLIBN)

For a native install, the following TACL macro files are to be used for building

sample MQI applications:
NMCALL

NMCSAMP

NMLDSAMP

334 MQSeries for Compaq NSK V5.1 System Administration

Usage: NMCALL

Macro to compile all samples native using
NMCSAMP.

Usage: NMCSAMP source-code-file-name

This is a basic macro for compiling a C source file
using the include files contained in subvolume
ZMQSLIB. For example, to compile the sample
AMQSBCGO, use NMCSAMP AMQSBCGO. If the
compilation is successful, the macro produces an
object file with the last character of the file name
replaced by the letter O; for example, AMQSBCGO.

Usage: NMLDSAMP exe-file-name

Building C samples

This basic macro links an object file with the static
Native MQI library MQMLIBN in ZMQSLIB.

NMLDALL Usage: NMLDALL

This TACL macro binds each of the sample object
files into executables using the NMLDSAMP
macro.

NMBUILDC Usage: NMBUILDC

This TACL macro compiles and binds all of the
Native C sample files using the macros NMCALL
and NMLDALL.

Native (using SRL MQSRLLIB)

NMLDSSMP
Usage: NMLDSSMP exe-file-name

This basic macro links an object file with the Native MQ SRL MQSRLLIB
in ZMQSLIB.

NMLDSALL
Usage: NMLDSALL

This TACL macro binds each of the sample object files into executables
using the NMLDSSMP macro.

NMBULDSC
Usage: NMBULDSC

This TACL macro compiles and binds all of the Native C sample files using
the macros NMCALL and NMLDSALL.

NMLDPSRL
Usage: NMLDPSRL exe-file-name

This basic macro links an object file with the MQSeries private SRL in
ZMQSLIB

NMCPSRL
Usage: NMCPSRL source-code-file-name

Macro to compile user code for inclusion in the MQSeries PSRL.

NMLDUSRL
Usage: NMLDUSRL object-input-file, where object-input-file is a file
containing a list of objects to be linked.

This is a basic macro for linking user code into a relinkable library.
Note: Non-native applications can connect to native queue managers, and vice

versa. All combinations of native and non-native operation are valid and
supported.

Building C++ sample programs

Native (using native static library MQMLIBN)
NMCPPALL Usage: NMCPALL

Macro to compile all samples native using
NMCCPP.

Appendix K. MQSeries for Compaq NSK sample programs 335

Building C++ samples
NMCCPP Usage: NMCCPP source-code-file-name

This is a basic macro for compiling a C++ source
file using the include files contained in subvolume
ZMQSLIB. For example, to compile the sample
IMQSGETP, use NMCCPP IMQSGETP. If the
compilation is successful, the macro produces an
object file with the last character of the file name
replaced by the letter O; for example, IMQSGETO.

NMLDCPP Usage: NMLDCPP exe-file-name

This basic macro links an object file with the Static
Native MQI library MOMLIBN in ZMQSLIB.

NMLDCPPA Usage: NMLDCPPA

This TACL macro binds each of the sample object
files into executables using the NMLDSAMP
macro.

NMBLDCPP Usage: NMBUILDC

This TACL macro compiles and binds all of the
Native C++ sample files using the macros
NMCPPALL and NMLDCPPA.

Native (using SRL MQSRLLIB)

NMLDCPPS
Usage: NMLDCPPS exe-file-name

This basic macro links an object file with the Native MQ SRL MQSRLLIB
in ZMQSLIB.

NMLDCPSA
Usage: NMLDCPSA

This TACL macro binds each of the sample object files into executables
using the NMLDCPPS macro.

NMBLDSCP
Usage: NMBLDSCP

This TACL macro compiles and binds all of the Native C sample files using
the macros NMCPPALL and NMLDCPSA.

Building COBOL sample programs

Non-Native (using non-native static libary MQMLIB)

The subvolume ZMQSSMPL contains the following files to be used for building
sample COBOL applications.

COBSAMP Usage: COBSAMP source-code-file-name

This is a basic macro for compiling a COBOL
source file using the definition files contained in
subvolume ZMQSLIB. For example, to compile the
program AMQOGBRO, use COBSAMP AMQOGBRO. If the
compilation is successful, the macro produces an
object file with the last character of the file name
replaced by the letter O; for example AMQOGBRO.

336 MQSeries for Compaq NSK V5.1 System Administration

BCOBSAMP

CCBSMPLS

BCBSMPLS

BUILDCOB

Building COBOL samples
Usage: BCOBSAMP exe-file-name

This is a basic macro used to bind an object with
the user libraries in ZMQSLIB. For example to bind
the compiled sample AMQOGBRO, use BCOBSAMP
AMQOGBR. The macro produces an executable called
exe-file-name AMQOGBR.

Usage: CCBSMPLS

This TACL macro compiles each of the COBOL
sample source code files.

Usage: BIND /IN BCBSMPLS/

This bind input file binds each of the COBOL
sample object files into executables.

Usage: BUILDCOB

This TACL macro compiles and binds all of the
COBOL sample files using the macros CCBSMPLS
and BCBSMPLS.

Native (using native static library MQMLIBN)

NMCOBSMP

NMLDCOB

NMCOBALL

NMLDACOB

NMBLDCOB

Usage: NMCOBSMP source-code-file-name

This is a macro for compiling Native mode COBOL
"NMCOBOL’ using the MQSeries Native Library
MQMLIBN in ZMQSLIB. For example, to compile
the program AMQOGBRO, use NMCOBSMP AMQOGBRO.
If the compilation is successful, the macro produces
an object file with the last character of the file
name replaced by the letter O; for example
AMQOGBRO.

Usage: NMLDCOB exe-file-name

This macro binds object with the MQSeries Native
library MOQMLIBN in ZMQSLIB. For example to
bind the compiled sample AMQOGBRO, use
NMLDCOB AMQOGBR. The macro produces an
executable called exe-file-name AMQOGBR.

Usage: NMCOBALL

This TACL macro compiles each of the COBOL
sample source code files using NMCOBSMP.

Usage: NMLDACOB

This bind input file binds each of the NMLDCOB
sample object files into executables.

Usage: NMBLDCOB

This TACL macro compiles and binds all of the
COBOL sample files using the macros NMCOBALL
and NMLDACOB.

Native (using SRL MQSRLLIB)

NMCBSSMP

Usage: NMCBSSMP source-code-file-name

Appendix K. MQSeries for Compaq NSK sample programs 337

Building COBOL samples

NMLDSCOB

NMCBSALL

NMLDSCOB

NMBLDSCB

This is a macro for compiling Native mode COBOL
'"NMCOBOL’ using the MQSeries SRL MQSRLLIB
in ZMQSLIB. For example, to compile the program
AMOQOGBRO, use NMCBSSMP AMQOGBRO. If the
compilation is successful, the macro produces an
object file with the last character of the file name
replaced by the letter O; for example AMQOGBRO.

Usage: NMLDSCOB exe-file-name

This macro binds object with the MQSeries SRL
MQSRLLIB in ZMQSLIB. For example to bind the
compiled sample AMQOGBRO, use NMLDSCOB
AMQOGBR. The macro produces an executable called
exe-file-name AMQOGBR.

Usage: NMCBSALL

This TACL macro compiles each of the COBOL
sample source code files using NMCBSSMP.

Usage: NMLDSCOB

This bind input file binds each of the NMLDSCOB
sample object files into executables.

Usage: NMBLDSCB

This TACL macro compiles and binds all of the
COBOL sample files using the macros NMCBSALL
and NMLDSCOB.

Building TAL sample programs

Non-Native (using non-native static library MQMLIB)
The subvolume ZMQSSMPL contains the following files to be used for building

sample TAL programs.
TALSAMP

BTALSAMP

CTLSMPLS

BTLSMPLS

338 MQSeries for Compaq NSK V5.1 System Administration

Usage: TALSAMP source-code-file-name This is a
basic macro for compiling a TAL source file using
the definition files contained in subvolume
Appendix I. MQSeries for Compaq NSK sample
programs 335.ZMQSLIB. For example, to compile the
program ZMQWRITT, use TALSAMP ZMQWRITT. If the
compilation is successful, the macro produces an
object file with the last character of the file name
replaced by the letter O; for example ZMQWRITO.

Usage: BTALSAMP exe-file-name

This is a basic macro used to bind an object with
the user libraries in ZMQSLIB. For example to bind
the compiled sample ZMQWRITO, use BTALSAMP
ZMQWRIT.

Usage: CTLSMPLS

This TACL macro compiles each of the TAL sample
source code files.

Usage: BIND /IN BTLSMPLS/

Building TAL samples

This bind input file binds each of the TAL sample
object files into executables.

BUILDTAL Usage: BUILDTAL

This TACL macro compiles and binds all of the
TAL sample files using the macros CTLSMPLS and
BTLSMPLS.

Building sample programs on OSS (Native mode only)

The directory - /opt/mgqm/samp contains the sample programs for MQSeries and the
make file MOMAKE.SMP. This MakeFile contains all the targets needed to build all
the C, C++ and NMCOBOL samples

The directory - /opt/mgm/inc contains all the copylibs and header files needed to
build programs on OSS.

Note: The MQSeries SRL file and the native MQI library—MQMLIBN exist only
on the Guardian file system. You will need to edit your build scripts and
make files to point to them if needed, for example,
/G/system/zmgqs1ib/mgsr11ib.

Appendix K. MQSeries for Compaq NSK sample programs 339

Building samples on OSS

340 MQSeries for Compaq NSK V5.1 System Administration

Appendix L. User exits

MQSeries for Compaq NSK V5.1 supports channel exit programs, data conversion
exit programs and the Cluster Workload Management (CLWL) exit program. In
addition, a Compaq NSK specific load program exit is supported. For information
about channel exits, see the MQSM_Lutazcamnunmaf.mnl book. For information
about data conversion exits, see the MQSeries Aﬂﬂhrﬂhnw pvnorﬂmm1wo Guidd and

h@ﬁwﬂpﬂm@m&ugmmmng_&&rmd For information about Cluster

Workload Management exits, see the IM.Q.Saﬂ.es_Quzuf_AAa.wzgzr_ChzstezJ book.

This appendix provides information specific to the use of exit programs in
MQSeries for Compaq NSK.

Supported user exits

[Cable 2d lists the characteristics of each type of user exit supported for MQSeries
for Compaq NSK.

Table 26. User exits supported for MQSeries for Compag NSK

User Exit Type Exit Name Exit Data Where enabled | Chained?
Length Length
Maximum Maximum
Channel MSG Exit 32 32 DEFINE Yes
CHANNEL
Channel SEND Exit 32 32 DEFINE Yes
CHANNEL
Channel RECEIVE Exit 32 32 DEFINE Yes
CHANNEL
Channel SECURITY Exit 32 32 DEFINE
CHANNEL
Channel MSGRETRY Exit 32 32 DEFINE
CHANNEL
Channel Auto-Definition Exit | 32 32 ALTER QMGR
Cluster Workload 32 32 ALTER QMGR
Management Exit
Data Conversion Exit 8 Not Unknown
applicable FORMAT name
MQ_LOAD_ENTRY Fixed Name |Not Called when any
_POINT_EXIT applicable | of the above
exits are
required or
enabled.

MQ_LOAD_ENTRY_POINT_EXIT is the only user exit that is specific to Compaq
NSK.

© Copyright IBM Corp. 1993, 2001 341

Supported exit programs

Exit name format

Exit names (other than MQ_LOAD_ENTRY_POINT_EXIT) can be any
alpha-numeric string up 32 characters long. For exits that support an associated
data field, the data can be any string up 32 characters long.

MQ_LOAD_ENTRY_POINT_EXIT - Loading User Exits

All user exit programs must be linked into the MQSeries Private SRL or static
library. User exit programs must contain at least one external function (symbol)
that can be called by MQSeries when required.

Before enabling any other MQSeries user exit, you must install an
MQ_LOAD_ENTRY_POINT_EXIT program to map your exit names to entry-point
addresses. Your MQ_LOAD_ENTRY_POINT_EXIT program must be linked into
the MQSeries SRL or static library, and is called by MQSeries whenever one of the
other user exits is enabled.

The MQ_LOAD_ENTRY_POINT_EXIT program’s name is fixed, that is, its external
function name must remain MQ_LOAD_ENTRY_POINT.

The MQ_LOAD_ENTRY_POINT_EXIT is free to map an exit name to any entry
point address or to map many exit names to the same entry-point address.

MQSeries supplies a stub MQ_LOAD_ENTRY_POINT_EXIT function that always
returns MQXCC_FAILED (Exit Name not found) when called. You must replace
this stub exit with your own before enabling any of the other user exits.

MQ_LOAD_ENTRY POINT EXIT (ExitParms)

Parameters:

Exitparms (PMQLXP) — input/output
LoadExit Parameter Block

Usage notes: The function performed by the MQ_LOAD_ENTRY_POINT_EXIT
program is defined by the provider of the exit.

Eigure 46 on page 349 contains a sample MQ_LOAD_ENTRY_POINT_EXIT that

maps three exit names to entry point addresses.

MQLXP - MQ_LOAD_ENTRY_POINT_EXIT parameter structure

The MQLXP structure describes the information that is passed to the load exit.

This structure is supported for Compaq NSK only.

Fields

Strucld (MQCHAR4)
Structure identifier.

The value is: MQLXP_STRUC_ID.

Identifier for load exit parameter structure.

342 MQSeries for Compaq NSK V5.1 System Administration

Supported exit programs

For the C programming language, the constant
MQLXP_STRUC_ID_ARRAY is also defined. This has the same value as
MQLXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.
Version (MQLONG)

Structure version number.

The value is: MQLXP_VERSION 1

Version-1 load exit parameter structure.

The following constant specifies the version number of the current version:
MQLXP_CURRENT_VERSION

Current version of load exit parameter structure.
This is an input field to the exit.

OMgrName (MQCHAR48)
Name of local queue manager.

This is the name of the queue manager that has invoked the load exit. The
name is padded with blanks to the length of the field.

This is an input field to the exit.

EntryPointName (MQCHAR32)
Name of the requested Entry Point.

This is the name of the Entry Point that the load exit needs to resolve to a
callable address. The name is padded with blanks to the length of the field.

This is an input field to the exit.
EntryAddress (PMQFUNC)
Returned Callable Address.
This is the address of the requested EntryPoint.
This is an output field from the exit.

ExitResponse (MQLONG)
Response from exit.

This is set by the exit to indicate whether resolving of the Entry Name to a
callable address was successful. It must be one of the following;:

MQXCC_OK
Success.

This indicates that processing of the exit successfully resolved the
EntryPointName supplied in the ExitParms to a callable adddress. The
callable address is returned in the EntryAddress field in the MQLXP
structure.

MQXCC_FAILED
Failed.

This indicates that the exit was unable to resolve the EntryPointName
supplied in the ExitParms to a callable adddress.

Any other value that is returned in the ExitResponse field has the same
meaning as MQXCC_FAILED.

Appendix L. User exits 343

Supported exit programs

This is an output field from the exit.

MQ LOAD_ENTRY_POINT_EXIT example
Eigure 46 on page 345

is an example of a working
MQ_LOAD_ENTRY_POINT_EXIT program that maps three exit names (two
channels exits and one data-conversion exit) to entry point addresses. The source
code for the MQ_LOAD_ENTRY_POINT_EXIT sample program is provided in the
samples subvolume (AMQSLXPO0).

344 MQSeries for Compaq NSK V5.1 System Administration

Supported exit programs

/************************** """""""""""""""""" *******/
/* */
/* Program name: AMQSLXPO (Compag NSK only) */
/* */
/* Description: Sample C skeleton of a Load Exit function */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* (C) Copyright IBM Corp. 1993, 2001 */
/* */
/**/
/* */
/* Function: */
/* */
/* AMQSLXPO is a sample C skeleton of a Load Exit function */
/* */
/* The function resolves EntryNames to callable addresses */
/* */
/* */
/* Once complete the code should be compiled into a loadable x/
/* object, the name of the object should be the name of the */
/* format to be converted. Instructions on how to do this are */
/* contained in the README file in this directory. */
/* */
/**/
/* */
/* AMQSLXPO takes the parameters defined for a Load Exit x/
/* routine in the CMQXC.H header file. */
/* */

/**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#include <cmqc.h>
#include <cmgxc.h>

/**/

/* Load Exit */
/* */
/* */

/**/
void
MQENTRY MQ_LOAD_ENTRY_POINT(

PMQLXP pExitParms /* exit Parameter */

/* No Toadable entry points are defined */
pExitParms->ExitResponse = MQXCC_FAILED;

return;

}

/**/

/* End of AMQSLXPO */

/**/

Figure 46. Sample MQLOADEXIT

Appendix L. User exits 345

Supported exit programs

With the above MQ_LOAD_ENTRY_POINT_EXIT program and the channel and
data-conversion exits installed, you can enable your channel receive and send exit
using the following MQSC command:

ALTER CHANNEL (CHAN) CHLTYPE(SDR) SENDEXIT(MY CHANNEL_SEND EXIT)
ALTER CHANNEL(CHAN) CHLTYPE(SDR) RCVEXIT(MY_CHANNEL_RCV_EXIT)

The Data Conversion exit will be called by MQSeries when an MQGET is done
with conversion enabled (MQGMO_CONVERT) and the message format name is
MY_FORMAT.

Installing user exits

All user exits that you create need to be installed into the MQSeries private SRL.
Additionally, some exit types need to installed in any MQSeries static libraries
used by application programs.

User Exit Type Where Installed

Channel MSG Exit Private SRL

Channel SEND Exit Private SRL

Channel RECEIVE Exit Private SRL

Channel SECURITY Exit Private SRL

Channel MSGRETRY Exit Private SRL

Channel Auto-Definition Exit Private SRL

Cluster Workload Management Private SRL

Exit

Data Conversion Exit Private SRL (also native static library and/or
non-native static library if used by applications)

MQ_LOAD_ENTRY_POINT Private SRL (also native static library and/or

_EXIT non-native static library if used by applications)

Installing an exit in the MQSeries private SRL

To install an exit program into the MQSeries private SRL, create a new version of
the MQSeries private SRL containing the new exit:

1. Compile the exit function. For example:

NMCPSRL AMQSVFCN

2. Compile the MQLOAD entry point function. For example:

NMCPSRL ~ AMQSLXPO

3. Link the exit and entry point objects into a relinkable library for use in the SRL.
For example:

346 MQSeries for Compaq NSK V5.1 System Administration

Supported exit programs

NMLDUSRL OBJECTS EXITS

4. Create a new version of the MQSeries private SRL called NEWMQSRL by
linking this data conversion object with the relinkable version of the MQSeries
private SRL. For example:

MAKEPSRL EXITS $VOL.ZMQSLIB NEWMQSRL

5. Stop all queue managers and applications accessing the current MQSeries
private SRL.

6. Relink all MQSeries applications to the new PSRL. For example:

NMLDEXES $VOL.ZMQSLIB.NEWMQSRL $VOL.ZMQSEXE

7. Compile the get application. For example:

NMCSAMP AMQSGETO

8. Relink all user applications to the new PSRL. For example:

AMQSGET NMLDPSRL AMQSGET

9. Restart MQSeries and all MQI applications.

Steps H and B are quite fast, but can be omitted if the new MQSeries PSRL is
placed in ZMQSLIB and called MQSRLLIB. The steps can be repeated to link to a
different MQSeries PSRL.

Installing an exit in the MQSeries native static library

An exit can be linked with the chosen application and the MQI library by using
the TACL macro NMLDEXIT. For example:

NMLDEXIT Object-File Exit-Object-File

Installing an exit in the MQSeries non-native static library

An exit can be bound into the chosen executable (or library) using the TACL macro
BEXITE.

Note: This procedure modifies the target executable; it is recommended you make
a backup copy of the target executable or library before using the macro.

Exit functions, once compiled, must be bound directly into the target executable or

library to be accessible by MQSeries. The TACL macro, BEXITE, is used for this
purpose. For example:

Appendix L. User exits 347

Supported exit programs

BEXITE Target-Executable-Or-Library Source-Exit-File-Or-Library

For example, to bind the sample data conversion exit into the sample MQSGETA,
follow these steps:

1. Compile the exit function. For example:

CSAMP AMQSVFCN

2. Compile the MQLOAD entry point function. For example:

CSAMP AMQSLXPO

3. Compile the get application. For example:

CSAMP AMQSGETO

4. Bind the get application. For example:

BSAMP AMQSGET

5. Bind the exit function into the get application. For example:

BEXITE AMQSGET AMQSVFCO

6. Bind the entry point function into the get application. For example:

BEXITE AMQSGET AMQSLXPO

Alternatively, if all applications are to have this data conversion exit, the following
steps would create both a user library and an application with the exit bound in:

1. Compile the exit function. For example:

CSAMP AMQSVFCN

2. Compile the MQLOAD entry point function. For example:

CSAMP AMQSLXPO

3. Compile the get application. For example:

348 MQSeries for Compaq NSK V5.1 System Administration

Supported exit programs

CSAMP AMQSGETO

4. Bind the exit function into the user library. For example:

BEXITE ZMQSLIB.MQMLIB AMQSVFCO

5. Bind the exit function into the user library. For example:

BEXITE ZMQSLIB.MQMLIB AMQSLXPO

6. Bind the get application with the modified library. For example:

BSAMP AMQSGET

Appendix L. User exits 349

Supported exit programs

350 MQSeries for Compaq NSK V5.1 System Administration

Appendix M. Setting up communications

This appendix describes how to set up communications for MQSeries for Compaq
NSK using the SNA and TCP/IP communications protocols. The following
examples are provided:

° 4 ”

° G : . 77

° 4 : : ”

SNA channels

The following channel attributes are necessary for SNA channels in MQSeries for
Compaq NSK V5.1:

CONNAME

The value of CONNAME depends on whether SNAX or ICE is used as the
communications protocol:

If SNAX is used:

CONNAME('$PPPP.LOCALLU.REMOTELU")
Applies to sender, requester and fully qualified server channels,
where:
$PPPP Is the process name of the SNAX/APC process.
LOCALLU Is the name of the Local LU.
REMOTELU s the name of the partner LU on the remote
machine.

For example:

CONNAME (' $BPO1.IYAHTO80.IYCNVMO3')

If ICE is used:

CONNAME('$PPPP#OPEN.LOCALLU.REMOTELU’)
Applies to sender, requester and fully qualified server channels,

where:
$PPPP Is the process name of the ICE process.
#OPEN Is the ICE open name.

LOCALLU Is the name of the Local LU.
REMOTELU s the name of the partner LU on the remote
machine.

For example:

CONNAME (' $ICE.#IYAHTOC.IYAHTOCO.IYCNVMO3")+

MODENAME
Is the SNA mode name. For example, MODENAME(LU62PS).

TPNAME(LOCALTP[.REMOTETP]")
Is the Transaction Process (TP) name.

© Copyright IBM Corp. 1993, 2001 351

Setting up communications

LOCALTP Is the name of the server class (usually MQSeries) in the
PATHWAY used for SNA communication. In the case of
SNAX, the server class must exist in the same PATHWAY
as the SNAX dispatcher and the APC Process’ server class.
In the case of ICE, it must be in the PATHWAY declared in
the NOF - ADD TP command.

REMOTETP Is the name of the TP on the remote machine. This value is
optional. If it is not specified, and the channel is one that
initiates a conversation (that is, a sender, requester, or fully
qualified server channel) the LOCALTP name is used.

Both the LOCALTP and REMOTETP values can be up to 16 characters in
length.

LU 6.2 responder processes

In MQSeries for Compaq NSK V5.1, a SNA Listener process is needed to listen for
incoming attach requests from remote queue manager channels.

MQSeries SNA listeners must be dispatched by the SNA product, when an
incoming Attach arrives from a remote channel.

Using the SNAX APC Dispatcher allows SNAX to accept incoming Attach requests
from partner Transaction Programs. To do this, the SNAX Dispatcher requires that:

* the SNAX Dispatcher is run in a different PATHWAY from the queue managers
* the APC process is run as a server class from that same PATHWAY

Using Insession’s ICE requires:
* That a transaction program (server class) is defined in a PATHWAY
* That a transaction program is added in NOF that points to this server class.

There is no separate ICE Dispatcher, the ICE process itself handles incoming Attach
requests.

SNAX TP dispatching

The Compaq SNAX SNA product supports the starting of APPC transaction
programs (TPs) when an APPC Attach arrives from a partner transaction program.
A SNAX Dispatcher dispatches these requests to its associated SNAX $APC process
via a local transaction program server class.

The SNAX Dispatcher for MQSeries has the following requirements:

* The SNAX Dispatcher must run in the same PATHWAY as the associated $APC
process.

* Each incoming TPNAME must be defined as a server class (usually named
MQSERIES) in the same PATHWAY as the Dispatcher and the $APC process.

* The server class program name is the runmqlsr program that exists in the
MQSeries executables subvolume (usually ZMQSEXE).

* The Dispatcher process starts the server class and passes all relevant information
($APC Process, LUName, TPName) to this server class(TP) in a DISPATCH-TP
IPC request.

ICE TP dispatching
ICE Version 3.2 implements its SNA Attach Manager similarly to SNAX in that its
TP is a PATHWAY server class. The ICE process accepts an Attach request and is

352 MQSeries for Compaq NSK V5.1 System Administration

Setting up communications

itself the Dispatcher. However this ICE process does not need to run in the same
PATHWAY as the TP (ServerClass). The environment in this case has the following
requirements:

* An active Ice process must be running.

* A Dispatch TP must be added in NOF. For example,

ADD TP <tpname>, PROCESS <$process>, SERVERCLASS <Serverclass name>

Serverclass name is usually MQSeries.

* Each incoming TPNAME be defined as a server class (usually named
MQSERIES) in the PATHWAY <$process>.

* The server class program name is the RUNMQLSR program that exists in the
MQSeries executables subvolume (usually ZMQSEXE)

¢ The ICE process starts the server class and passes all relevant information ($ICE
Process, ApplName, TPName) to this server class(TP) in a DISPATCH-TP IPC
request.

Sample SNA environment setup
The following are examples of how to configure your SNA environments.

Using SNAX APC: If using SNAX APC:
* A PATHWAY must be created to be used exclusively for this listener
¢ An APC process serverclass needs to be run from this PATHWAY.

Enter the following at a TACL prompt:

TACL> Pathmon /name $PMAP, nowait, out $vhs, cpu 3/4
TACL> Pathcom $PMAP
= 0 LU62SCFG

where LU62SCFG is an edit file containing the following:

Appendix M. Setting up communications 353

Setting up communications

[SET PATHMON BACKUPCPU 6

SET
SET
SET
SET
SET
SET
SET
SET
SET

PATHWAY MAXTCPS 10

PATHWAY MAXTERMS 10

PATHWAY MAXPROGRAMS 10
PATHWAY MAXSERVERCLASSES 10
PATHWAY MAXSERVERPROCESSES 10
PATHWAY MAXSTARTUPS 10
PATHWAY MAXPATHCOMS 40
PATHWAY MAXASSIGNS 32

PATHWAY MAXPARAMS 32

START PATHWAY COLD!

SET
SET
SET
SET
SET
SET
SET
SET
ADD

TCP PROGRAM $ SYSTEM.SYSTEM.PATHTCP2
TCP CPUS 3:4

TCP MAXTERMS 5

TCP MAXSERVERCLASSES 010

TCP MAXSERVERPROCESSES 010

TCP MAXTERMDATA 08960

TCP MAXREPLY 20000 SET TCP NONSTOP 0
TCP TCLPROG $system.system.APCP

TCP SNAXAPC-TCP

Figure 47. Sample MQSeries SNAX setup file (Part 1 of 3)

[Configure the SNAX/APC SERVER]
RESET SERVER

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
ADD

SERVER PARAM LOGFILE APCLOG
SERVER PARAM TRACEFILE APCTRC
SERVER PARAM BACKUPCPU -1
SERVER PARAM MAXINRUSIZE 4096
SERVER PARAM MAXOUTRUSIZE 4096
SERVER PARAM MAXAPPLIOSIZE 4096
SERVER PARAM DATAPAGES 100
SERVER PARAM TRACEPAGES 300
SERVER PARAM RMTATTACHDISP QUEUE
SERVER PARAM RMTATTACHTIMER -1
SERVER PARAM CONFIG APCCFG
SERVER PROGRAM $system.system.APCOBJ
SERVER OUT $VHS

SERVER HOMETERM $VHS

SERVER PROCESS $APO2

SERVER NUMSTATIC 1

SERVER MAXSERVERS 1

SERVER CREATEDELAY 0 SECS
SERVER DELETEDELAY 1 MINS
SERVER CPUS 3:4

SERVER SNAXAPCSVR

Figure 47. Sample MQSeries SNAX setup file (Part 2 of 3)

354 MQSeries for Compaq NSK V5.1 System Administration

Setting up communications

[Add MQSeries SNAX Listener]

RESET SERVER

SET SERVER PROGRAM $DATA00.ZMQSEXE.RUNMQLSR
SET SERVER PROCESS $1rcv

SET SERVER NUMSTATIC 1

SET SERVER MAXSERVERS 1

SET SERVER CREATEDELAY 0 SECS

SET SERVER DELETEDELAY 1 MINS

SET SERVER STARTUP "-t LU62"

SET SERVER PARAM MQQUEMGRNAME "QMGR"

SET SERVER PARAM MQMACHINIFILE "$DATAO3.QMGRD.UMQSINI"
SET SERVER PARAM MQDEFAULTPREFIX "$DATAOQ"
SET SERVER OUT $VHS

SET SERVER HOMETERM $VHS

SET SERVER CPUS 3:4

[ADD SERVER MQSERIES]

ADD SERVER MQSERIES

START TCP =*

[Configure the DISPATCHER]

SET TERM FILE $s.#displog

SET TERM INITIAL SNAXAPC-DISPATCHER

SET TERM TYPE CONVERSATIONAL

SET TERM TCP SNAXAPC-TCP

ADD TERM SNAXAPCSVRO1 [First 10 chars are the SNAX/APC server name]

start server MQSERIES
start server SNAXAPCSVR
start term SNAXAPCSVRO1

Figure 47. Sample MQSeries SNAX setup file (Part 3 of 3)

Note: The Listener server class is identical to the MQS-TCPLIS00 server class in
the queue managers own PATHWAY, except there is an addition startup
parameter: SET SERVER STARTUP "-t LU62"

Using Insession ICE
If you are using Insession ICE, a PATHWAY should be created to be used
exclusively for this listener. The ICE process is not run from this PATHWAY.

1. Add the TP in NOF as follows:

ADD TP <tpname>, PROCESS <process>, SERVERCLASS <server> [, <option> ...]

where:

process is the name of the PATHMON process that manages the TP

server is the name of the PATHMON SERVERCLASS to which the TP
belongs

option can be

* [ATTACHTIMER n] -- the amount of time (in hundredths of
a second) ICE will wait for an ATTACH after dispatching a
new TP thread. The default is 6000 (60 seconds).

* [MAXDISPATCHTHREADS n] -- maximum number of
simultaneous dispatched TP’s DEFAULT: 0 (no limit on the
number of simultaneous DISPATCHED TP’s)

e [TIMEOUT n] -- determines how ICE will respond to an
ATTACH if MAXDISPATCHTHREADS has been reached on
a TP TIMEOUT -1 = ATTACH is queued indefinitely
TIMEOUT >0 = ATTACH is queued for n/100 seconds
DEFAULT: 0 (ATTACH is rejected immediately)

Appendix M. Setting up communications 355

Setting up communications

2. It is still necessary to add the server class to the PATHWAY. At the TACL
prompt, enter:

TACL> Pathmon /name $PMAP, nowait, out $vhs, cpu 3/4
TACL> Pathcom $PMAP
= 0 LUG2ICFG

where LU62ICFG is an edit file containing the following:

[

SET PATHMON BACKUPCPU 6

SET PATHWAY MAXTCPS 10

SET PATHWAY MAXTERMS 10

SET PATHWAY MAXPROGRAMS 10

SET PATHWAY MAXSERVERCLASSES 10

SET PATHWAY MAXSERVERPROCESSES 10
SET PATHWAY MAXSTARTUPS 10

SET PATHWAY MAXPATHCOMS 40

SET PATHWAY MAXASSIGNS 32

SET PATHWAY MAXPARAMS 32

START PATHWAY COLD!

SET TCP PROGRAM $SYSTEM.SYSTEM.PATHTCP2
SET TCP CPUS 3:4

SET TCP MAXTERMS 5

SET TCP MAXSERVERCLASSES 010

SET TCP MAXSERVERPROCESSES 010

SET TCP MAXTERMDATA 08960SET TCP MAXREPLY 20000
SET TCP NONSTOP 0

SET TCP TCLPROG $system.system.APCP
ADD TCP SNAXAPC-TCP

Figure 48. Sample MQSeries SNA setup file for ICE (Part 1 of 2)

[Add MQSeries ICE Listener]

RESET SERVER

SET SERVER PROGRAM $DATA00.ZMQSEXE.RUNMQLSR
SET SERVER PROCESS $1rcv

SET SERVER NUMSTATIC 1

SET SERVER MAXSERVERS 1

SET SERVER CREATEDELAY 0 SECS

SET SERVER DELETEDELAY 1 MINS

SET SERVER STARTUP "-t LU62"

SET SERVER PARAM MQQUEMGRNAME "QMGR"

SET SERVER PARAM MQMACHINIFILE "$DATAO3.QMGRD.UMQSINI"
SET SERVER PARAM MQDEFAULTPREFIX "$DATAOO"
SET SERVER OUT $VHS

SET SERVER HOMETERM $VHS

SET SERVER CPUS 3:4

[ADD SERVER MQSERIES]

ADD SERVER MQSERIES

START TCP =
start server MQSERIES
Figure 48. Sample MQSeries SNA setup file for ICE (Part 2 of 2)

Note: The Listener server class is identical to the MQS-TCPLIS00 server class in
the queue managers own PATHWAY, except there is an addition startup
parameter: SET SERVER STARTUP "-t LU62"

356 MQSeries for Compaq NSK V5.1 System Administration

Setting up communications

TCP/IP channels

MQSeries for Compaq NSK gives you the option of using multiple TCP/IP
processes within a single MQSeries queue manager environment. This means you
can select TCP/IP processes used within a queue manager by associating the
required TCP/IP process with a given channel. Outbound Channels (Sender,
Server, Requester) can specify the required TCP/IP Process Name in the
CONNAME field of the channel definition.

Using runmgsc:

alter channel ... conname ('$Z7C1.123.456.789.012(1415)")
alter channel ... conname ('$ZTCl.dnshostname(1415)")

Using the MOMC panels:

TCPIP/SNA Process: $ZTC1

Using PCF commands:

strncpy(pPCFString->String, '('$Z7C1.123.456.789.012(1415)', len);

To reconfigure DNS resolution for non-default resolver, add to all PATHWAY ECnn
server classes the following:

DEFINE =TCPIP RESOLVER NAME, FILE filename

where filename is the location of the resolver file.

If using a hosts file, add to all PATHWAY ECnn server classes the following:

DEFINE =TCPIP HOST FILE, FILE filename

where filename is the location of the hosts file.

Inbound channels use environment variables to determine which TCP/IP process
to use. The TCP/IP Listeners pass this process value to their respective ECs and
onto their respective TCP/IP Responder processes via their agents. To set the
inbound channel TCP/IP process:

Using TACL:

ADD DEFINE =TCPIP PROCESS NAME, FILE processname

where processname is the name of the TCP/IP process.

Appendix M. Setting up communications 357

Setting up communications

Using PATHWAY, for MQS-TCPLISnn server classes, where nn is the Listener
server class number:

DEFINE =TCPIP PROCESS NAME, FILE \HAWK.$ZTC1
PARAM MQLISTENPORTNUM "1415"

For information about using a nondefault TCP/IP process for communications via

TCP/IP, see L =
” . For information about the TCP/IP ports a
(Eueue manager listens on, see L'TCP/IP parts listened on by the quene manager’]

Communications examples

This section provides communications setup examples for SNA (SNAX and ICE)
and TCP/IP.

SNAX communications example

This section provides:

* An example SCF configuration file for the SNA line

* Some example SYSGEN parameters to support the line

* An example SCF configuration file for the SNA process definition
* Some example MQSC channel definitions

SCF SNA line configuration file

Here is an example SCF configuration file:

SCF configuration file for defining SNA LINE, PUs and LUs to VTAM®
Line is called $SNAO2 and SYSGEN'd into the Compaq system

ALLOW ALL
ASSUME LINE $SNAG2

ABORT, SUB LU
ABORT, SUB PU
ABORT

DELETE, SUB LU

DELETE, SUB PU
DELETE

ADD $SNAG2 LINE DEFINITION

ADD LINE $SNAG2, STATION SECONDARY, MAXPUS 5, MAXLUS 1024, RECSIZE 2048, &
CHARACTERSET ASCII, MAXLOCALLUS 256, &
PUIDBLK %HO5D, PUIDNUM %H312FB

ADD REMOTE PU OBJECT, LOCAL IS IMPLICITLY DEFINED AS #ZNT21

ADD PU #PU2, ADDRESS 1, MAXLUS 16, RECSIZE 2046, TYPE (13,21), &
TRRMTADDR 04400045121088, DYNAMIC ON, &
ASSOCIATESUBDEV $CHAMB.#p2, &

TRSSAP %H04, &
CPNAME IYAQCDRM, SNANETID GBIBMIYA

358 MQSeries for Compaq NSK V5.1 System Administration

ADD LOCAL LU OBJECT

ADD LU #ZNTLU1, TYPE (14,21), RECSIZE 1024, &

CHARACTERSET ASCII, PUNAME #ZNT21, SNANAME IYAHTO80

ADD PARTNER LU OBJECTS

== spinach (HP)

ADD LU #PU2LU1, TYPE(14,21),
== stingray (AIX)

ADD LU #PU2LU2, TYPE(14,21),
== coop007 (0S/2)

ADD LU #PU2LU3, TYPE(14,21),
== MVS CICS

ADD LU #PU2LU4, TYPE(14,21),
== MVS Non-CICS

ADD LU #PU2LU5, TYPE(14,21),
== finnrl00 (NT)

ADD LU #PU2LU6, TYPE(14,21),
== winas18 (AS400)

ADD LU #PU2LU7, TYPE(14,21),
== MQ-Portugese (0S/2)

ADD LU #PU2LU8, TYPE(14,21),

== VSE

ADD LU #PU2LU10, TYPE(14,21), PUNAME #PU2, SNANAME IYZMZSI2

START LINE $CHAMB, SUB ALL

START
START, SUB PU

STATUS

STATUS, SUB PU
STATUS, SUB LU

SYSGEN parameters

PUNAME

PUNAME

PUNAME

PUNAME

PUNAME

PUNAME

PUNAME

PUNAME

#PU2,

#PU2,

#PU2,

#PU2,

#PU2,

#PU2,

#PU2,

#PU2,

SNANAME

SNANAME

SNANAME

SNANAME

SNANAME

SNANAME

SNANAME

SNANAME

Setting up communications

IYABTOFO

IYA3T995

IYAFT170

IYCMVMO3

IYCNVMO3

IYAFTO80

IYAFT110

IYAHT090

START UP TOKEN RING ASSOCIATE SUB DEVICE $CHAMB.#P2
then start the line, pu's and Tu's

The following are CONFTEXT file entries for a SYSGEN to support the SNA and

token ring lines:

Appendix M. Setting up communications

359

Setting up communications

!**

! LAN MACRO

!**
I This macro is used for all 361x LAN controllers
I REQUIRES T9375 SOFTWARE PACKAGE

C3613 MLAM = MLAM
TYPE 56, SUBTYPE 0,
PROGRAM €9376P00,)
INTERRUPT I0P INTERRUPT HANDLER,
MAXREQUESTSIZE 32000,
RSIZE 32000,
BURSTSIZE 16,
LINEBUFFERSIZE 32,
STARTDOWN #;
!** """"""""""" * %%

! SNAX macro for Token ring lines
!**
TOKEN RING SNAX MACRO = SNATS

TYPE 58,

SUBTYPE 4,

RSIZE 1024,

SUBTYPE 4,

FRAMESIZE 1036 # ;

R L X T T

! SNAX MANAGER

R L L L L X X T

SSCPMACRO = SNASVM
TYPE 13, SUBTYPE 5,
RSIZE 256 #;

R L L X T T

! LAN CONTROLLER

[R L L L L X X

LAN1 3616 0,1 %130 H

Ikxxkxkxk*x% Service manager
SNAX 6999 0,1 %370 5

Ixxsxxxxkxxx SNAX/Token Ring Pseudocontroller
RING 6997 0,1 %360 H

Iexxxxxxkxxx Token Ring Line .
$CHAMB LAN1.0, LANI1.1 C3613 MLAM, NAME #LAN1;

Laxswsxswxwsx Configure the SSCP
$SSCP SNAX.O, SNAX.1 SSCP MACRO;

Pxswsswsswsx Sna Tines for Dummy Controller over Token Ring
$SNAO1L RING.O, RING.1 TOKEN RING SNAX MACRO;
$SNAO2 RING.2, RING.3 TOKEN RING SNAX MACRO;

SNAX/APC process configuration
The following definitions configure the example APC process (process name
$BP01) via SCF for the SNA line.

Note: The APC process $BP01 is defined as a server class process running in the
same PATHWAY as the SNAX APC Dispatcher.

== SCF Configuration file for SNAX/APC Lus

ALLOW ERRORS

360 MQSeries for Compaq NSK V5.1 System Administration

ASSUME

ABORT
ABORT
ABORT
ABORT
ABORT

DELETE
DELETE
DELETE
DELETE

ADD

ADD LU

== TPnames for MQSeries
ADD TPN IYAHTO80.MQSeries
=== Spinach (HP) Partner LU

ADD PTNR-LU

PROCESS $BPO1

SESSION *
TPN *
PTNR-MODE *
PTNR-LU =
LU =

TPN *
PTNR-MODE *
PTNR-LU =
LU *

LOCAL LU

Setting up communications

IYAHT080, SNANAME GBIBMIYA.IYAHT080, SNAXFILENAME $SNAQ2.#ZNTLU1, &

MAXSESSION 256, AUTOSTART YES

IYAHTO80.IYABTOFO, SNANAME GBIBMIYA.IYABTOFO, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYABTOFO.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &

ADD PTNR-LU

SENDWINDOW 4

Winas18 (AS400) Partner LU

IYAHTO80.IYAFT110, SNANAME GBIBMIYA.IYAFT110, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYAFT110.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &

ADD PTNR-LU

SENDWINDOW 4

Stingray (AIX) Partner LU

IYAHT080.IYA3T995, SNANAME GBIBMIYA.IYA3T995, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYA3T995.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &

ADD PTNR-LU

SENDWINDOW 4

coop007 (0S/2) Partner LU

IYAHTO80.IYAFT170, SNANAME GBIBMIYA.IYAFT170, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYAFT170.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

Appendix M. Setting up communications 361

Setting up communications

DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

MQ-Portugese (0S/2) Partner LU

ADD PTNR-LU IYAHTO80.IYAHT090, SNANAME GBIBMIYA.IYAHT090, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYAHT090.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

finnr100 (NT) Partner LU

ADD PTNR-LU IYAHTO80.IYAFTO80, SNANAME GBIBMIYA.IYAFT080, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYAFT080.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

MVS CICS Partner LU

ADD PTNR-LU IYAHTO80.IYCMVMO3, SNANAME GBIBMIYA.IYCMVMO3, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYCMVMO3.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

MVS Non CICS Partner LU

ADD PTNR-LU IYAHTO80.IYCNVMO3, SNANAME GBIBMIYA.IYCNVMO3, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHT080.IYCNVMO3.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

VSE Partner LU

ADD PTNR-LU IYAHT080.I1YZMZSI2, SNANAME GBIBMIYA.IYZMZSIZ, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYZMZSI2.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

Start the LUs

362 MQSeries for Compaq NSK V5.1 System Administration

Setting up communications

START LU IYAHT080, SUB ALL
START TPN =

MQSeries applications require the Maxapplio value, which controls the maximum
size of interprocess data transfers between MQSeries and the communications
server process, to be set to 32000, which is larger than the default.

Channel definitions
Here are some example MQSeries channel definitions that support the SNAX
configuration:

* A sender channel to MQSeries on MVS/ESA (non-CICS mover):

DEFINE CHANNEL (MTO1.VMO3.SDRC.0002) CHLTYPE(SDR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL (2048) +
XMITQ('VMO3NCM.TQ.SDRC.0001") +
CONNAME (' $BPO1. IYAHTO80.IYCNVMO3') +
MODENAME (' LU62PS') TPNAME (MQSERIES)

* A receiver channel from MQSeries on MVS/ESA:

DEFINE CHANNEL(VMO3.MTO1.SDRC.0002) CHLTYPE(RCVR) +
TRPTYPE(LU62) REPLACE DESCR('Receiver channel from VMO3NCM') +
SEQWRAP(9999999) +
MAXMSGL (2048)

* A server channel to MQSeries on MVS/ESA which is capable of initiating a
conversation, or being initiated by a remote requester channel:

DEFINE CHANNEL(MTO1.VMO3.RQSV.0002) CHLTYPE(SVR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL (2048) +
XMITQ('VMO3NCM.TQ.RQSV.0001') +
CONNAME (' $BPO1. IYAHTO80.IYCNVMO3') +
MODENAME (' LU62PS') TPNAME (MQSERIES)

where MQSeries is the TPNAME the MVS™ queue manager is listening on.

ICE communications example
There are two stages in configuring ICE for MQSeries:
1. The ICE process itself must be configured.

2. Line ($ICEQ1, in the following example) and SNA information must be input to
the ICE process.

Configuring the ICE process
Here is an example ICE process configuration. This configuration is located by
default in a file called GOICE:

Appendix M. Setting up communications 363

Setting up communications

?tacl macro

clear all

param backupcpu 1

param cinittimer 120

param collector $0

param config icectl

param idblk 05d

param idnum 312FF

param cpname IYAHROOC

param datapages 64

param dynamicrlu yes

param genesis $gen

param maxrcv 32000

param loglevel info

param netname GBIBMIYA
param password XXXXXXXXXXXXXXXXXXXX
param retrysl 5

param secuserid super.super
param startup %1%

param timerl 20

param timer2 300

param usstable default

run $system.ice.ice/name $ICE,nowait,cpu 0,pri 180,highpin off/

Notes:
1. The password PARAM has been replaced by xxxxxxXXXXXXXXXXXXXX.

2. MQSeries applications require the maxrcv PARAM, which controls the
maximum size of interprocess data transfers between MQSeries and the
communications server process, to be set to 32000, which is larger than the
default.

Defining the line and APC information

Once the ICE process has been started with this configuration, the following
information is input to the ICE process using the Node Operator Facility (NOF**).
This example defines a line called $ICE(01 running on the token ring port
$CHAMB #ICE:

ICE definitions for PU IYAHROOC.
Local LU for this PU is IYAHTOCO.

ALLOW ERRORS
OPEN $ICE
ABORT LINE $ICEO1, SUB ALL

DELETE LINE $ICEQ1, SUB ALL

ADD TOKEN RING LINE

ADD LINE $ICEOQ1, TNDM $CHAMB.#ICE, &
IDBLK %HO5D, &
PROTOCOL TOKENRING, WRITEBUFFERSIZE 8192

ADD PU OBJECT

364 MQSeries for Compaq NSK V5.1 System Administration

Setting up communications

ADD PU IYAHROOC, LINE $ICEO1, MULTIROUTE YES, &
DMAC 400045121088, DSAP %H04, &

NETNAME GBIBMIYA, IDNUM %H312FF, IDBLK %HO5D, &

RCPNAME GBIBMIYA.IYAQCDRM, SSAP %HO8

Add Local APPL Object

DELETE APPL IYAHTOCO
ADD APPL IYAHTOCO, ALIAS IYAHTOCO, PROTOCOL CPIC, &
OPENNAME #IYAHTOC

Add Mode LU62PS

DELETE MODE LU62PS
ADD MODE LU62PS, MAXSESS 8, MINCONWIN 4, MINCONLOS 3

Add Partner LU Objects

== spinach (HP)
ABORT RLU IYABTOFO

DELETE RLU IYABTOFO
ADD RLU IYABTOFO, MODE LU62PS, PARSESS YES

== stingray (AIX)

ABORT RLU IYA3T995

DELETE RLU IYA3T995

ADD RLU IYA3T995, MODE LU62PS, PARSESS YES
== coop007 (0S/2)

ABORT RLU IYAFT170

DELETE RLU IYAFT170

ADD RLU IYAFT170, MODE LU62PS, PARSESS YES
== MVS CICS

ABORT RLU IYCMVMO3

DELETE RLU IYCMVMO3

ADD RLU IYCMVMO3, MODE LU62PS, PARSESS YES
== MVS Non-CICS

ABORT RLU IYCNVMO3

DELETE RLU IYCNVMO3

ADD RLU IYCNVMO3, MODE LU62PS, PARSESS YES
== finnrl00 (NT)

ABORT RLU IYAFT080

DELETE RLU IYAFT080

ADD RLU IYAFTO80, MODE LU62PS, PARSESS YES
== winas18 (AS400)

ABORT RLU IYAFT110

DELETE RLU IYAFT110

ADD RLU IYAFT110, MODE LU62PS, PARSESS YES

ABORT RLU IYAHTO80

Appendix M. Setting up communications

365

Setting up communications

DELETE RLU IYAHTO80
ADD RLU IYAHTO80, MODE LU62PS, PARSESS YES

START UP ICE LINE $ICEO1 AND SUB DEVICE

START LINE $ICEO1, SUB ALL

Note: For this configuration to work, the port #ICE must have been defined to the
token ring line.

For example, these commands could be entered into SCF:

add port $chamb.#ice, type tr8025, address %HO8
start port $chamb.#ice

where $chamb is a token-ring controller, and the SAP of the port is %08.

Channel definitions for ICE
Here are some MQSeries channel definitions that would support this ICE
configuration:

* A sender channel to MQSeries on MVS/ESA (non-CICS mover):

DEFINE CHANNEL(MTO1.VMO3.SDRC.ICE) CHLTYPE(SDR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL (2048) +
XMITQ('VMO3NCM.TQ.SDRC.ICE') +
CONNAME (' $ICE.#IYAHTOC. IYAHTOCO. IYCNVMO3 ')+
MODENAME (' LU62PS') TPNAME (MQSERIES)

* A receiver channel from MQSeries on MVS/ESA:

DEFINE CHANNEL (VMO3.MTO1.SDRC.ICE) CHLTYPE(RCVR) +
TRPTYPE(LU62) REPLACE DESCR('Receiver channel from VMO3NCM') +
SEQWRAP(9999999) +
MAXMSGL (2048) +
TPNAME (VMO3NCMSDRCRCVR)

* A server channel to MQSeries on MVS/ESA that is capable of initiating a
conversation, or being initiated by a remote requester channel:

DEFINE CHANNEL (MTO1.VMO3.RQSV.ICE) CHLTYPE(SVR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL (2048) +
XMITQ('VMO3NCM.TQ.RQSV.ICE') +
CONNAME (' $ICE. #IYAHTOC. IYAHTOCO. IYCNVMO3 ')+
MODENAME (' LU62PS') TPNAME (MQSERIES) +

where MQSeries is the TPNAME the MVS queue manager is listening on.

366 MQSeries for Compaq NSK V5.1 System Administration

Setting up communications

TCP/IP communications example

This example shows how to establish communications with a remote MQSeries
system over TCP/IP.

TCPConfig stanza in QMINI
The QMINI file must contain an appropriate TCPConfig stanza. For example:

TCPConfig:
TCPPort=1414
TCPNumListenerPorts=1
TCPListenerPort=1996
TCPKeepAlive=1

The TCPPort value is the default outbound port for channels without a port value
in the CONNAME field. TCPListenerPort identifies the default port that is used if
the —p option is not supplied when using runmgqlsr on the command line.

Defining a TCP/IP sender channel
A TCP/IP sender channel must be defined. In this example, the queue manager is
MHO1 on a host called SPINACH:

DEFINE CHANNEL(MTOL _MHO1 SDRC_0001) CHLTYPE(SDR) +
TRPTYPE(TCP) +
SEQWRAP(9999999) MAXMSGL (4194304) +
XMITQ('MHO1 TQ SDRC_0001') +
CONNAME (' SPINACH. HURSLEY . IBM.COM(2000) ')

This channel would try to attach to a TCP/IP port number 2000 on the host
SPINACH.

The following example shows a TCP/IP sender channel definition for a queue
manager MHO1 on the host SPINACH using the default outbound TCP/IP port:

DEFINE CHANNEL(MTO1 _MHO1_SDRC_0001) CHLTYPE(SDR) +
TRPTYPE(TCP) +
SEQWRAP(9999999) MAXMSGL(4194304) +
XMITQ('MHO1_TQ_SDRC_0001') +
CONNAME (* SPTNACH. HURSLEY . IBM.COM")

No port number is specified in the CONNAME. Therefore, the value specified on
the TCPPort entry in the QMINI file (1414) is used.

Defining a TCP/IP receiver channel
An example TCP/IP receiver channel:

DEFINE CHANNEL(MHO1 MTO1 SDRC_0001) CHLTYPE(RCVR) +
TRPTYPE (TCP)

A TCP/IP receiver channel requires no CONNAME value, but a TCP/IP listener
must be running. There are two ways of starting a TCP/IP listener. Either:

1. Go into the queue manager’s PATHWAY using PATHCOM, and enter:

Appendix M. Setting up communications 367

Setting up communications

start server mgs-tcplis00

or

From the TACL prompt, enter:

runmglsr -m QMgriName

A TCP/IP listener, which will listen on the port defined in the QMINI file (in this
example, 1996), is started.

Note: This port number can be overridden by the -p Port flag on runmglsr.

Defining a TCP/IP sender channel on the remote system
The sender channel definition on the remote system to connect to this receiver
channel could look like:

DEFINE CHANNEL(MHO1 MTO1 SDRC 0001) CHLTYPE(SDR) +
TRPTYPE(TCP) +
XMITQ('MTO1_TQ_SDRC_0001') +
CONNAME (' Compag. ISC. UK. IBM.COM(1996) ')

Configuring QMINI to support multiple TCP/IP listeners

To enable a queue manager to support multiple TCP/IP listeners, you must create
a new PATHWAY server class for each additional listener, based on
MQS-TCPLIS00.

In addition, each TCP/IP listener must have its own listener port entry in the
TCPConfig stanza of the QMINI file.

For example:

TCPConfig:
TCPPort=1414
TCPNumListenerPorts=3
TCPListenerPort=1996
TCPListenerPort=1997
TCPListenerPort=1998
TCPKeepAlive=1

TCPNumListenerPorts must match the number of TCPListenerPort entries (three in
this example). This QMINI file is capable of supporting three TCP/IP listeners
listening on ports 1996, 1997 and 1998. Typically, the server classes to support these
three ports would be named MQS-TCPLIS00, MQS-TCPLIS01, and MQS-TCPLIS02.

For more information about adding server classes, see [TS/MP (PATHWAY)
i — >9

368 MQSeries for Compaq NSK V5.1 System Administration

Appendix N. MQSeries clients

An MQSeries client is an MQSeries system that does not include a queue manager.
The MQSeries client code directs MQI calls from applications running on the client
system to a queue manager on an MQSeries server system to which it is connected.

This appendix provides information about MQSeries clients that is specific to
MQSeries for Compaq NSK V5.1. It should be used in conjunction with the
MQSeries Clientd book.

Client support

MQSeries for Compaq NSK can function as an MQSeries server system to all
MQSeries clients that can connect to the server using TCP/IP or SNA LU 6.2
protocols. However, there is no MQSeries for Compaq NSK client.

When an MQSeries client connects to a queue manager on MQSeries for Compaq

NSK:

* Any MQGET, MQPUT, or MQPUT1 with an MQ*_SYNCPOINT option initiates
a Compagq transaction, if one has not already been associated with the
connection handle.

* Any MQGET, MQPUT, or MQPUT1 with neither an MQ*_SYNCPOINT nor an
MQ*_NO_SYNCPOINT option initiates a Compaq transaction, if one has not
already been associated with the connection handle.

¢ The MQCMIT call commits a Compaq transaction, if one is associated with the
connection handle. The MQBACK call cancels the Compaq transaction, if one is
associated with the connection handle.

In all cases, if the Compaq BEGINTRANSACTION fails, a CompCode of
MQCC_FAILED, and a Reason of MQRC_SYNCPOINT_NOT_AVAILABLE are
returned to the caller.

Security considerations

MQSeries for Compaq NSK supports the use of channel security exits for the
validation of clients, as follows:

* After a connection is established between the MQSeries client and the server, the
client invokes the security exit on the server prior to returning from the
MQCONN call.

* The server security exit can return information to the client security exit.

This dialog allows, for example, the communication of confidential data between
the server and client. If the client has not defined a security exit, the values of the
local environment variables MQ_USER_ID and MQ_PASSWORD are passed to the
server via channel attributes. These attributes are available to the server security
exit for validation.

© Copyright IBM Corp. 1993, 2001 369

MQSeries clients

370 MQSeries for Compaq NSK V5.1 System Administration

Appendix O. Programmable System Management

MQSeries for Compaq NSK supports these system-management functions of

MQSeries:

* Instrumentation events

* Programmable Command Formats (PCFs)
* Installable services

This appendix provides a summary of these functions in MQSeries for Compagq

NSK. For detailed descriptions, see the
book.

Instrumentation events

MQSeries for Compaq NSK supports the standard MQSeries instrumentation
events, which result in the generation of an event message on an event queue.

You enable and disable events by specifying appropriate values for queue and

queue manager attributes using:

book

« MQSC, as described in the MQSeries MQSC Command Referencd

* PCF commands, as described in the MQSeries Programmable System Management

book

*+ Message Queue Management (MQM), as described in I‘Chapter 4 Managing]

Event types supported by MQSeries for Compaq NSK
MQSeries for Compaq NSK supports the following event types:

Table 27. Event types supported by MQSeries for Compaq NSK

Event type Event name
Authority events Not Authorized (type 1)
Channel events Channel Activated

Channel Conversion Error
Channel Not Activated
Channel Started

Channel Stopped

Inhibit events Get Inhibited
Put Inhibited

Local events Alias Base Queue Type Error
Queue Type Error

Unknown Alias Base Queue
Unknown Object Name

Performance events Queue Depth High

Queue Depth Low

Queue Full

Queue Service Interval High
Queue Service Interval OK

© Copyright IBM Corp. 1993, 2001

371

Events

Table 27. Event types supported by MQSeries for Compaq NSK (continued)

Event type Event name

Remote events Default Transmission Queue Type Error
Default Transmission Queue Usage Error
Queue Type Error

Remote Queue Name Error
Transmission Queue Usage Error
Unknown Default Transmission Queue
Unknown Remote Queue Manager
Unknown Transmission Queue

Start and stop events Queue Manager Active
Queue Manager Not Active

Event-message format

MQSeries for Compaq NSK supports the standard MQSeries event-message format.
That is, the event message has two parts, the message descriptor (MQMD) and the
message data. The message data comprises an event header and some data that is
specific to the type of event.

The MQMD structure of an event message is summarized in MQMD — Messagd
Descu.p.tor_gn_pa.ge.ﬁuﬂ The event header structure (MQCFH) is summarized in

Table 28. MQMD structure of an event message

Parameter Type Values

Strucld MQCHAR4 MQMD_STRUC_ID

Version MQLONG MQMD_VERSION_1

Report MQLONG MQRO_NONE

MsgType MQLONG MQOMT_DATAGRAM

Expiry MQLONG MQEI_UNLIMITED

Feedback MQLONG MQFB_NONE

Encoding MQLONG Encoding of the queue manager generating
the event.

CodedCharSetId MQLONG Coded character set ID (CCSID) of the
queue manager generating the event.

Format MQCHARS MQFMT_EVENT

Priority MQLONG Default priority of the event queue, if it is a

local queue, or its local definition at the
queue manager generating the event.

Persistence MQLONG Default persistence of the event queue, if it
is a local queue, or its local definition at the
queue manager generating the event.

MsgId MQBYTE24 The value is uniquely generated by the
queue manager.

Correlld MQBYTE24 MQCI_NONE

BackoutCount MQLONG The value is always 0.

ReplyToQ MQCHAR48 Always blank.

ReplyToQMgr MQCHARA48 The queue manager name at the originating
system.

372 MQSeries for Compaq NSK V5.1 System Administration

Events

Table 28. MQMD structure of an event message (continued)

Parameter Type Values

UserIdentifier MQCHAR12 Always blank.

AccountingToken MQBYTE32 MQACT_NONE

ApplldentityData MQCHAR32 Always blank.

PutApplType MQLONG Type of application that put the message.

PutApplName MQCHAR28 Name of the application that put the
message.

PutDate MQCHARS Date when the message was put, generated
by the queue manager.

PutTime MQCHARS Time when message was put, generated by
the queue manager.

ApplOriginData MQCHAR4 Always blank.

Table 29. Event header structure (MQCFH)

Parameter Type Values

Type MQLONG MQCFT_EVENT

StruclLength MQLONG MQCFH_STRUC_LENGTH

Version MQLONG MQCFH_VERSION_1

Command MQLONG MQCMD_Q _MGR_EVENT
MQCMD_PERFM_EVENT
MQCMD_CHANNEL_EVENT

MsqSeqNumber MQLONG Always 1.

Control MQLONG MQCFC_LAST

CompCode MQLONG MQCC_OK MQCC_WARNING

Reason MQLONG Reason code identifying event.

ParameterCount MQLONG The number of parameter structures that

follow the MQCFH structure.

Programmable

command formats (PCFs)

MQSeries for Compaq NSK supports the standard Programmable Command
Format (PCF) functions, as described in the MQSeries Programmable Systen
DManagemend book. PCF messages are made up of two parts, the message descriptor
(MQMD) and the message data. The message data comprises a PCF header
(MQCFH) and some PCF parameters defined by the structures MQCFIN, MQCFIL,

MQCFST, and MQCEFSL.

The PCF message descriptor (MQMD) is summarized in [Lable 30 on page 374. The
PCF header structure (MQCFH) is summarized in tl:able_;’u;l_gn_pa.ge_;’uﬂ The PCF

PCF message descriptor

For MQSeries for Compaq NSK, the standard PCF message descriptor applies. That
is, the message descriptor contains these fields:

Appendix O. Programmable System Management

‘Earameter structures are summarized in [Table 32 on page 374 through

373

PCFs

Table 30. PCF message descriptor

Field Values

Report Any valid value

MsgType MOMT_REQUEST

Expiry Any valid value

Feedback MQFB_NONE

Encoding Encoding used for the message data; conversion is performed if
necessary.

CodedCharSetId | CCSID used for the message data; conversion is performed if necessary.

Format MQFMT_ADMIN MQFMT_PCF (for user data)

Priority Any valid value

Persistence Any valid value

MsgId Any valid value, including MOQMI_NONE

Correlld Any valid value, including MQMI_NONE

ReplyToQ Queue name

ReplyToQMgr Queue manager name

Message context | Any valid value, including MOQPMO_DEFAULT_CONTEXT

fields

PCF header (MQCFH)

For MQSeries for Compaq NSK, the standard PCF header applies. That is, the PCF
header structure contains these fields:

Table 31. PCF header

Field Type Values

Type MQLONG MQCFT_COMMAND MQCFT_RESPONSE
MQCFT_EVENT

Struclength MQLONG MQCFH_STRUC_LENGTH

Version MQLONG MQCFH_VERSION_1

Command MQLONG Valid command identifier.

MsgSeqNumber MQLONG Sequence number of the message.

Control MQLONG MQCFC_LAST MQCFC_NOT_LAST

CompCode MQLONG MQCC_OK MQCC_WARNING MQCC_FAILED
MQCC_UNKNOWN

Reason MQLONG Reason code qualifying the completion code.

ParameterCount MQLONG Count of parameter structures.

PCF string parameter (MQCFST)

For MQSeries for Compaq NSK, the standard PCF string parameter structure
(MQCEFST) applies. That is, the PCF string parameter structure contains these

fields:

Table 32. PCF string parameter

Field Type Value

Type MQLONG MQCFT_STRING

374 MQSeries for Compaq NSK V5.1 System Administration

PCFs

Table 32. PCF string parameter (continued)

Field Type Value

Struclength MQLONG Length in bytes of the MQCFST
structure.

Parameter MQLONG Parameter identifier.

CodedCharSetId MQLONG Coded character set identifier (CCSID).

Stringlength MQLONG Length in bytes of the data in the String
field.

String MQCHAR x Stringlength |String value.

PCF integer list parameter

(MQCFIL)

For MQSeries for Compaq NSK, the standard PCF integer list parameter structure
(MQCFIL) applies. That is, the PCF integer list parameter structure contains these

fields:

Table 33. PCF integer list

Field Type Value

Type MQLONG MQCFT_INTEGER_LIST

Struclength MQLONG Length in bytes of the MQCEFIL structure.
Parameter MQLONG Parameter identifier.

Count MQLONG Number of elements in the Values array.
Values MQLONG x |Parameter values.

Count

PCF integer (MQCFIN)

For MQSeries for Compaq NSK, the standard PCF integer structure (MQCFIN)
applies. That is, the PCF integer structure contains these fields:

Table 34. PCF integer

Field Type Value

Type MQLONG MQCFT_INTEGER
StrucLength | MQLONG MQCFIN_STRUC_LENGTH
Parameter MQLONG Parameter identifier

Value MQLONG Parameter value

PCF string list (MQCFSL)

For MQSeries for Compaq NSK, the standard PCF string list structure (MQCFSL)
applies. That is, the PCF string list structure contains these fields:

Table 35. PCF string list

Field Type Value

Type MQLONG MQCFT_STRING_LIST

Struclength MQLONG Length in bytes of the MQCFSL
structure

Parameter MQLONG Parameter identifier

CodedCharSetId MQLONG CCSID of the data in the Strings field.

Appendix O. Programmable System Management 375

PCFs
Table 35. PCF string list (continued)

Field Type Value

Count MQLONG Number of strings in the Strings field.

Stringlength MQLONG Length in bytes of each string in the
Strings field.
Strings MQCHAR x Stringlength |Set of string values for the parameter
x Count identified by the Parameter field.

PCF commands supported by MQSeries for Compaq NSK

The following MQSeries PCF commands are supported by MQSeries for Compaq
NSK. For a complete description of these commands, see the

Programmable System Managemens book.

Table 36. PCF commands supported by MQSeries for Compaq NSK

Command

Command identifier

Change Channel

MQCMD_CHANGE_CHANNEL

Change Namelist

MQCMD_CHANGE_NAMELIST

Change Process

MQCMD_CHANGE_PROCESS

Change Queue

MQCMD_CHANGE_Q

Change Queue Manager

MQCMD_CHANGE_Q_MGR

Clear Queue

MQCMD_CLEAR_Q

Copy Channel

MQCMD_COPY_CHANNEL

Copy Namelist

MQCMD_COPY_NAMELIST

Copy Process

MQCQ_COPY_PROCESS

Copy Queue

MQCMD_COPY_Q

Create Channel

MQCMD_CREATE_CHANNEL

Create Namelist

MQCMD_CREATE_NAMELIST

Create Process

MQCMD_CREATE_PROCESS

Create Queue

MQCMD_CREATE_Q

Delete Channel

MQCMD_DELETE_CHANNEL

Delete Namelist

MQCMD_DELETE_NAMELIST

Delete Process

MQCMD_DELETE_PROCESS

Delete Queue

MQCMD_DELETE_Q

Escape

MQCMD_ESCAPE

Inquire Channel

MQCMD_INQUIRE_CHANNEL

Inquire Channel Names MQCMD_INQUIRE_CHANNEL_NAMES

Inquire Channel Status MQCMD_INQUIRE_CHANNEL_STATUS

Inquire Cluster Queue MQCMD_INQUIRE_CLUSTER_Q_MGR

Manager

Inquire Namelist MQCMD_INQUIRE_NAMELIST

Inquire Process MQCMD_INQUIRE_PROCESS

Inquire Process Names MQCMD_INQUIRE_PROCESS_NAMES

Inquire Queue MQCMD_INQUIRE_Q

Inquire Queue Manager MQCMD_INQUIRE_Q_MGR

376 MQSeries for Compaq NSK V5.1 System Administration

PCFs
Table 36. PCF commands supported by MQSeries for Compaq NSK (continued)

Command Command identifier

Inquire Queue Names MQCMD_INQUIRE_Q_NAMES

Ping Channel MQCMD_PING_CHANNEL

Ping Queue Manager MQCMD_PING_Q_MGR

Refresh Cluster MQCMD_REFRESH_CLUSTER

Reset Channel MQCMD_RESET_CHANNEL

Reset Queue Statistics MQCMD_RESET_Q_STATS

Resolve Channel MQCMD_RESOLVE_CHANNEL
Resume Queue Manager MQCMD_RESUME_Q_ MGR_CLUSTER
Cluster

Start Channel MQCMD_START_CHANNEL

Stop Channel MQCMD_STOP_CHANNEL

Suspend Queue Manager MQCMD_SUSPEND_Q_MGR_CLUSTER
Cluster

Note: MQSeries for Compaq NSK does not support the Start Channel Initiator and
Start Channel Listener commands.

PCF command responses

In MQSeries for Compaq NSK, the command server generates standard response
messages to each PCF command. There are three types of response:

* OK response

* Error response

* Data response

For more information, see the BMQSeries Programmable System Managemend book.

Installable services

MQSeries for Compaq NSK supports the authorization service and the name
service.

Authorization service interface

The authorization service enables queue managers to invoke authorization
facilities. For example, a queue manager can check that a particular user ID is
authorized to open a queue using the authorization service.

An authorization service component is supplied with MQSeries for Compaq NSK.
This component is called the Object Authority Manager (OAM). By default, the
OAM is active and works with the control commands dspmgqaut (display
authority) and setmqaut (set authority).

You can augment or replace the OAM with your own authorization service

component, as described in the MQSeries Programmable System Managemend book.

Name service interface

The name service provides support to the queue manager for resolving the name
of the queue manager that owns a queue.

Appendix O. Programmable System Management 377

Installable services

The standard name service interface, as described in the MQSeries Programmabld
Bystem Management book, is supported by MQSeries for Compaq NSK.

378 MQSeries for Compaq NSK V5.1 System Administration

Appendix P. EMS event template used by MQSeries for
Compaq NSK

The EMS template file (SMQSTMPL) contains the source code for the definitions of
MQSeries EMS events. These definitions control how the information in the EMS
event messages is displayed, and also show the type and meaning of the data
contained in each EMS Event message.

The following types of event are generated:

ZMQS-VAL-EVT-ERROR
An FFST (a system resource problem, a software problem, or a hardware
problem).

ZMQS-VAL-EVT-ERR
An error with MQSeries, referencing an FFST event and logged data on
disk.

ZMQS-VAL-EVT-MSG
An MQSeries message, such as the starting of a queue manager or channel.
All of these events correspond to an MQSeries AMQxxxxx log message
and contain the same information and text. The variable data in each
message is contained in individual tokens within the event message. For
more information about the AMQxxxxx messages, see the mﬁg
book.

ZMQS-VAL-EVT-QMGR
A queue manager event for authority, inhibit, local, remote, start, and stop
events. These EMS events have effectively the same information content as
their corresponding PCF event messages, which are described in the
1 book. Individual tokens in the
event message contain the variable data in each event message.

ZMQS-VAL-EVT-PERF
A performance event, corresponding with the standard MQSeries
performance events. These events report statistical data about queues
within a queue manager. The variable data in performance events is
contained in individual tokens within the event message.

ZMQS-VAL-EVT-CHNL
A channel event, corresponding with the standard MQSeries channel
events. Channel events report changes in status of channels, or problems in
communication between queue managers. As with the other event message
types, the variable data in channel events is contained in individual tokens
within the event message.

Here is an extract from the definitions of the EMS templates:

VERSION: "IBM.MQS - 10JAN97"
SSID: ZMQS-VAL-SSID
SSNAME: "MQSeries", "MQS"

This is an EMS FFST message

MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-ERROR
OVERRIDE ZEMS-TKN-EMPHASIS ZSPI-VAL-TRUE
"MQSeries FFST from component COMP_<1> "

© Copyright IBM Corp. 1993, 2001 379

EMS event template

"<*CR> Error Code : <2> "
"<xCR> Severity : <3> !
"<*CR> Module Name : <4> "
"<xCR> Probe ID : "
"<*CR> Error Text : "
"<xCR> <p>"

1: ZMQS-TKN-COMPONENT

2: ZMQS-TKN-ERROR-CODE

ZMQS-TKN-SEVERITY
ZMQS-TKN-MODULE-NAME
ZMQS-TKN-PROBE-ID
ZMQS-TKN-ERROR-TEXT

[o) & I = OV}

== This is an EMS Display Message Event

MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-MSG

"MQSeries message: <l1> "

"<xCR> EXPLANATION : "
"<%CR> <2> "

"<*CR> ACTION : "
"<%CR> <3>"

1: ZMQS-TKN-ERROR-TEXT

2: ZIMQS-TKN-ERROR-TEXT-2

3: ZMQS-TKN-ERROR-TEXT-3

== This is an EMS Report Error Event

MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-ERR
OVERRIDE ZEMS-TKN-EMPHASIS ZSPI-VAL-TRUE
"MQSeries Error "
"<xCR> Error Code : <I1> "
"<*CR> Function : <2> "
"<*CR> Probe ID : <3> "
"<xCR> FFST File : <4> "
1: ZMQS-TKN-ERROR-CODE
2: ZMQS-TKN-MODULE-NAME
3: ZMQS-TKN-PROBE-ID
4: ZMQS-TKN-FILE-NAME

= This is an EMS copy of PCF Queue Manager event message
= for authority, inhibit, local, remote, start and stop events

MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-QMGR
"MQSeries QMgr Event from <1> "
"<xCR> Reason : <2> "

"<xIF 3><*CR> Reason Qualifier : <4> <xENDIF>"
"<x[F 5><*CR> User ID : <6> <*ENDIF>"
"<*IF 13><*CR> Object QMgr : <14> <xENDIF>"
"<xIF 9><*CR> Options : <10> <*ENDIF>"
"<x[F 11><*CR> Command : <12> <*ENDIF>"
"<#IF 15><*CR> Queue Name : <16> <*xENDIF>"
"<*IF 17><*CR> Queue Type : <18> <*ENDIF>"
"<xIF 19><*CR> Base Queue Name : <20> <xENDIF>"
"<*IF 21><*CR> XMit Queue Name : <22> <*xENDIF>"
"<xIF 30><*CR> Application Type : <31> <*ENDIF>"
"<*IF 32><*CR> Application Name : <33> <*ENDIF>"

1: ZMQS-TKN-QMGR
2: ZMQS-TKN-REASON

380 MQSeries for Compaq NSK V5.1 System Administration

EMS event template

3: TOKENPRESENT (ZMQS-TKN-REASON-QUALIFIER)
4: ZMQS-TKN-REASON-QUALIFIER

5: TOKENPRESENT (ZMQS-TKN-USER-1ID)

6: ZMQS-TKN-USER-ID

9: TOKENPRESENT (ZMQS-TKN-OPTIONS)

10: ZMQS-TKN-OPTIONS

11: TOKENPRESENT (ZMQS-TKN-COMMAND)

12: ZMQS-TKN-COMMAND

13: TOKENPRESENT (ZMQS-TKN-0BJ-QMGR)
14: ZMQS-TKN-0BJ-QMGR

15: TOKENPRESENT (ZMQS-TKN-Q-NAME)

16: ZMQS-TKN-Q-NAME

17: TOKENPRESENT (ZMQS-TKN-Q-TYPE)

18: ZMQS-TKN-Q-TYPE

19: TOKENPRESENT (ZMQS-TKN-BASE-Q-NAME)
20: ZMQS-TKN-BASE-Q-NAME

21: TOKENPRESENT (ZMQS-TKN-XMIT-Q-NAME)
22: ZMQS-TKN-XMIT-Q-NAME

30: TOKENPRESENT (ZMQS-TKN-APPL-TYPE)
31: ZMQS-TKN-APPL-TYPE

32: TOKENPRESENT (ZMQS-TKN-APPL-NAME)
33: ZMQS-TKN-APPL-NAME

This is an EMS copy of PCF Performance event message

MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-PERF
"MQSeries Performance Event from <1>
"<*CR> Reason : <2> "
"<x*CR> Queue Name : <3> "
"<#*CR> Time Since Last Reset : <4> "
"<*CR> Highest Queue Depth ¢ "
"<xCR> # Of Messages Enqueued : <6> "
"<xCR> # Of Messages Dequeued : <7> "
¢ ZMQS-TKN-QMGR

ZMQS-TKN-REASON

ZMQS-TKN-Q-NAME

ZMQS-TKN-TIME-SINCE-RESET

ZMQS-TKN-HIGH-Q-DEPTH

ZMQS-TKN-MSG-ENQ-COUNT

: ZMQS-TKN-MSG-DEQ-COUNT

NO OB WN

This is an EMS copy of PCF Channel event message

MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-CHNL

"MQSeries Channel Event from <1> "
"<xCR> Reason : <2> "
"<*CR> Channel Name : <3> "
"<*CR> XMit Queue Name : <5> "
"<*CR> Connection Name : <7> "
"<xCR> Reason Qualifier : <9> "
"<*CR> Format : <l11> "
"<*CR> Return Code : <13> "
"<*CR> Auxiliary rc 1 : <15> "
"<xCR> Auxiliary rc 2 : <17> "

"<xCR> CCSID 1 :
"<xCR> Auxiliary
"<xCR> CCSID 2 :
"<xCR> Auxiliary
"<xCR> CCSID 3 :
"<*CR> Auxiliary
1: ZMQS-TKN-QMGR

<19> "

string 1 : <21>
<23>
string 2 :
<27>
string 3 :

<25>

<29>

2: ZMQS-TKN-REASON
3: ZMQS-TKN-CHANNEL-NAME

Appendix P. EMS event template used by MQSeries for Compaq NSK 381

EMS event template

¢ ZMQS-TKN-XMIT-Q-NAME

: ZMQS-TKN-CONN-NAME

: ZMQS-TKN-REASON-QUALIFIER
: ZMQS-TKN-FORMAT

: ZMQS-TKN-RETURN-CODE

: ZMQS-TKN-RETURN-CODE-2
: ZMQS-TKN-RETURN-CODE-3
: ZMQS-TKN-CCSID

: ZMQS-TKN-ERROR-TEXT

¢ ZMQS-TKN-CCSID-2

: ZMQS-TKN-ERROR-TEXT-2
: ZMQS-TKN-CCSID-3

: ZMQS-TKN-ERROR-TEXT-3

382 MQSeries for Compaq NSK V5.1 System Administration

Appendix Q. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2001 383

Notices

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

S0O21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:

AIX IBM
MQSeries AS/400
MVS/ESA FFST

CICS 0S/2

First Failure Support Technology VSE/ESA
0S/390 BookManager
IBMLink MVS
SupportPac VTAM

384 MQSeries for Compaq NSK V5.1 System Administration

Notices

Compaq and NonStop are trademarks of Compaq Computer Corporation.

Intel is a registered trademark of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows and Windows NT are trademarks of Microsoft Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix Q. Notices 385

386 MQSeries for Compaq NSK V5.1 System Administration

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications

Most of these publications, which are sometimes

referred to as the MQSeries “family” books, apply

to all MQSeries products. The latest MQSeries

products are:

* MQSeries for AIX, V5.2

* MQSeries for AS/400, V5.2

* MQSeries for AT&T GIS UNIX, V2.2

* MQSeries for Compaq OpenVMS Alpha, V5.1

* MQSeries for Compaq Tru64 UNIX, V5.1

* MQSeries for HP-UX, V5.2

* MQSeries for Linux, V5.2

* MQSeries for OS/2 Warp, V5.1

* MQSeries for OS/390, V5.2

* MQSeries for SINIX and DC/OSx, V2.2

* MQSeries for Sun Solaris, V5.2

* MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

* MQSeries for Compaq NSK, V5.1

* MQSeries for VSE/ESA, V2.1.1

* MQSeries for Windows, V2.0

* MQSeries for Windows, V2.1

* MQSeries for Windows NT and Windows 2000,
V5.2

The MQSeries cross-platform publications are:
* MQSeries Brochure, G511-1908

GC33-0805

o MQSeries Intercommunicatiod, SC33-1872

* MQSeries Queue Manager Clusterd, SC34-5349

o MQSeries Clientd GC33-1632

o WOSeries System Adminiqfrﬂfinvl, SC33-1873

e MOQSeries MOSC Command Rpfprpwrpl SC33-1369
* MQSeries Event Monitoring, SC34-5760

4

S5C33-1482

o WMOSeries Administration waprfﬂrp Prngrﬂmmingl

Guide and Referencd, SC34-5390
o MOSeries MpqqngPJ, GC33-1876

SC33-0807

© Copyright IBM Corp. 1993, 2001

SC33-1673

* MQSeries Programming Interfaces Reference
Summary, SX33-6095

o DMQSeries 1Ising Cadl, SC33-1877
o DMQSeries 1Tsing Jand, SC34-5456

* MQSeries Application Messaging Interface,
SC34-5604

MQSeries platform-specific
publications

Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX, V5.2

M QSeries fnr AIX Quick Rpginningd
GC33-1867

MQSeries for AS/400, V5.2

D

GC34-5557

MMQSeries for AS/400 Systend
Wdministration, SC34-5558
MQSeries for AS/400 A,n'nlimfinﬁ

7

SC34-5559

MQSeries for AT&T GIS UNIX, V2.2
B1QSeries for ATET GIS LINIX® qblcfprnl

Management Guidd, SC33-1642
MQSeries for Compaq OpenVMS Alpha, V5.1

MQSeries for Compag OpenVMS Alpha
Quick Beginnings, GC34-5885

MQSeries for Compag OpenVMS Alpha
System Administration Guide, SC34-5884
MQSeries for Compaq NSK, V5.1

MQSeries for Compaq NSK Quick
Beginnings, GC34-5887

MQSeries for Compaq NSK System

Administration Guide, SC34-5886
MQSeries for Compaq Tru64 UNIX, V5.1

MOSeries fnr (’nmrmq Tru6d 1INIX Ouicld

Beginningd, GC34-5684

MQSeries for HP-UX, V5.2

387

Bibliography

MOQSeries for HP-1IX Quick Rpginningd
GC33-1869

MQSeries for Linux, V5.2

MQSeries for Linux Quick Beginnings,
GC34-5691

MQSeries for OS/2 Warp, V5.1

MQSeries for OS/390, V5.2
MQSeries for nc/%qn® inr‘ppfc and

Planning Guidd, GC34-5650

% SC34-5651

MMQSeries fnr QS/390 chfmﬂ

IAim.Lmstza.tm.n_Gu.zdd SC34-5652

MQSeries for OS/390 System
Administration Guide, GC34-5892

MQSeries for OS/390 Messages and
Codes, GC34-5891

MQSeries for OS/390 Licensed Program
Specifications, GC34-5893

MQSeries for OS/390 Program Directory
MQSeries link for R/3, Version 1.2

GC33-1934

MQSeries for SINIX and DC/OSx, V2.2
MOSeries for SINIX gud DC/OSx System

Management Guidd, GC33-1768

MQSeries for Sun Solar1s, V5.2

MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

MQSeries for Sun Solaris, Intel Platform
Edition Quick Beginnings, GC34-5851
MQSeries for VSE/ESA, V2.1.1

MQSeries for VSE/ESA™ Licensed
Program Specifications, GC34-5365
NMQSeries for VSE/ESA Systend

Masageusent Guidd, GC34-5364

MQSeries for Windows, V2.0

I;S'EIZ'Z ® 1 lsor's Cuidd
GC33-1822

MQSeries for Windows, V2.1
MOQSeries fnr Windows 1lser’s C11id.¢l,
GC33-1965

388 MQSeries for Compaq NSK V5.1 System Administration

MQSeries for Windows NT and Windows 2000,
V5.2

IMQSeries for Windows NT and Windowd

EQQO_Qluck_Begmnmgfl GC34 5389

SC34-5387

B1QSeries Tnfucfow'pf Extension
SC34-5404

Softcopy books

Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

HTML format

Relevant MQSeries documentation is provided in

HTML format with these MQSeries products:

* MQSeries for AIX, V5.2

* MQSeries for AS/400, V5.2

* MQSeries for Compaq OpenVMS Alpha, V5.1

¢ MQSeries for Compaq Tru64 UNIX, V5.1

* MQSeries for HP-UX, V5.2

* MQSeries for Linux, V5.2

¢ MQSeries for OS/2 Warp, V5.1

* MQSeries for OS/390, V5.2

* MQSeries for Sun Solaris, V5.2

* MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

* MQSeries for Windows NT and Windows 2000,
V5.2 (compiled HTML)

* MQSeries link for R/3, V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:

http://www.ibm.com/software/mgseries/

Portable Document Format (PDF)

PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:

* MQSeries for AIX, V5.2

* MQSeries for AS/400, V5.2

* MQSeries for Compaq OpenVMS Alpha, V5.1

¢ MQSeries for Compaq Tru64 UNIX, V5.1

* MQSeries for HP-UX, V5.2

* MQSeries for Linux, V5.2

¢ MQSeries for OS/2 Warp, V5.1

e MQSeries for OS/390, V5.2

* MQSeries for Sun Solaris, V5.2

* MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

* MQSeries for Windows NT and Windows 2000,
V5.2

* MQSeries link for R/3, V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:

http://www.ibm.com/software/mgseries/

BookManager® format

The MQSeries library is supplied in IBM®
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2

BookManager READ /6000

BookManager READ/DOS

BookManager READ/MVS

BookManager READ/VM

BookManager READ for Windows

PostScript format

The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format

The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows, Version 2.0 and MQSeries for
Windows, Version 2.1.

Bibliography
* Obtain latest information about the MQSeries
product family.

* Access the MQSeries books in HTML and PDF
formats.

+ Download an MQSeries SupportPac .

MQSeries information available
on the Internet

The MQSeries product family Web site is at:

http://www.ibm.com/software/mgseries/

By following links from this Web site you can:

Related publications

* SNAX/APC Planning and Configuration Manual,
(Compagq Part No. 098289)

SNAX/APC provides LU 6.2 support for the
Compaq implementation of SNA. This guide

explains how to install and configure
SNAX/APC.

* SCF Reference Manual for SNAX/APC, (Compaq
Part No. 064525)

SNAX/APC provides LU 6.2 support for the
Compaq implementation of SNA. This guide
explains the Subsystem Control Facility (SCF)
interactive interface that lets operators and

network managers configure and control
SNAX/APC.

e Pathway System Management Guide, (Compaq
Part No. 096881)

This guide presents guidelines for configuring
and controlling Pathway transaction processing
systems.

* Introduction to NonStop Transaction Manager/MP
(TM/MP), (Compaq Part No. 085812)

This guide describes how to use the TMF
subsystem to protect your business transactions
and the integrity of your databases.

* Introduction to Compaq Networking and Data
Communications, (Compaq Part No. 093148)

This guide provides an overview of Compaq
networking and data communications concepts,
tasks, products, and manuals.

* Intersystem Communications Environment (ICE)
Installation Guide, (Version 3 Release 2, or later
edition)

This guide describes how to install ICE and
configure the ICE start-up parameters. (ICE
provides LU 6.2 support for Insessions’s
implementation of SNA.)

* Intersystem Communications Environment (ICE)
Administrator’s Guide, (Version 3 Release 2, or
later edition)

This guide describes how to configure and
operate ICE, its interfaces, and its utilities.

Bibliography 389

Related publications

390 MQSeries for Compaq NSK V5.1 System Administration

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you cannot
find a particular term, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill,
1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies can be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A

administration bag. In the MQAI, a type of data bag
that is created for administering MQSeries by implying
that it can change the order of data items, create lists,
and check selectors within a message.

administration commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

Advanced Program-to-Program Communication
(APPC) . The general facility characterizing the LU 6.2
architecture and its various implementations in
products.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID, for example, to open an MQSeries object.

APAR. Authorized Program Analysis Report.

APPC. Advanced Program to Program
Communication.

application queue. A queue used by an application.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous

© Copyright IBM Corp. 1993, 2001

messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when you attempt to open an MQSeries
object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorization file. A file that provides security
definitions for an object, a class of objects, or all classes
of object.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

back out. An operation that reverses all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins.

bag. See data bag.

basic mapping support (BMS). An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic Mapping Support.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

C

call back. A requester message channel initiates a
transfer from a sender channel by first calling the
sender, then closing down and awaiting a call back.

CCFE. Channel control function.

391

CCSID. Coded character set identifier.
CDE. Channel definition file.
channel. See message channel.

channel control function (CCF). A program to move
messages from a transmission queue to a
communication link, and from a communication link to
a local queue, together with an operator panel interface
to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event that indicates that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint. In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CICS. Customer Information Control System.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQI client.

client application. An application running on a
workstation and linked to a client that gives the
application access to queuing services on a server.

client connection channel type. The type of MQI
channel definition associated with an MQI client. See
also server connection channel type.

cluster. A network of queue managers that are
logically associated in some way.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

command. In MQSeries, an instruction that can be
carried out by the queue manager.

command bag. In the MQAI, a type of bag that is
created for administering MQSeries objects, but cannot
change the order of data items nor create lists within a
message.

command processor. The MQSeries component that
processes commands.

392 MQSeries for Compaq NSK V5.1 System Administration

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. The act of completing a transaction so that
changes to the database a recorded and stable.
Protected resources are released after the transaction is
committed.

Common Run-Time Environment (CRE). A set of
services that enable system and application
programmers to write mixed-language programs. These
shared, run-time services can be used by C, COBOLS5,
FORTRAN, Pascal, and TAL programs.

completion code. A return code indicating how an
MQI call has ended.

configuration file (also known as ini file). A file that
contains configuration information related to logs,
communications, or installable services. See also stanza.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call or automatically by the MQOPEN call.

connection handle. The identifier, or token, by which
a program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. A method of allowing security to be
handled such that messages are obliged to carry details
of their origins in the message descriptor.

controlled shutdown. See quiesced shutdown.
CRE. Common Run-Time Environment.

Customer Information Control System (CICS). An
IBM transaction management system that provides
concurrent online access to data files by means of
user-written application programs. CICS also includes
facilities for building, using, and maintaining databases.

D

data bag. In the MQAI, a bag that allows you to
handle properties (or parameters) of objects.

data item. In the MQAI, an item contained within a
data bag. This can be an integer item or a
character-string item, and a user item or a system item.

data conversion interface (DCI). The MQSeries
interface to which customer- or vendor-written
programs that convert application data between
different machine encodings and CCSIDs must
conform. A part of the MQSeries Framework.

datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCE. Distributed Computing Environment.
DCI. Data conversion interface.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler. An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with a
user-written rules table.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE).
Middleware that provides basic services, making the
development of distributed applications easier. DCE is
defined by the Open Software Foundation (OSF).

distributed queue management. In message queuing,
the setup and control of message channels to queue
managers on other systems.

DLQ (dead-letter queue). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dynamic queue. A local queue that is created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E

EC. EC is a subsidiary controlling process in the
queue manager, responsible for a set of agents.

EC Boss. The Execution Controller Boss is the main
controlling process in the queue manager.

EMS. Event Monitoring System.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

F

FFST. First Failure Support Technology.

FIFO (first-in-first-out). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time.

First Failure Support Technology (FFST). Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT and Windows 2000, and
MQSeries for AS/400 to detect and report software
problems.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time.

Framework. In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

* MQSeries data conversion interface (DCI)

* MQSeries message channel interface (MCI)

* MQSeries name service interface (NSI)

* MQSeries security enabling interface (SEI)

* MQSeries trigger monitor interface (TMI)

G

get. In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

H

handle. See connection handle and object handle.

ICE. Intersystem Communications Environment is a
family of Compag-based software products that enables
you to access a variety of applications on Compaq
computers.

Glossary of terms and abbreviations 393

immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

ini file. See configuration file.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

installable services. In MQSeries on UNIX systems,
MQSeries for Compaq, MQSeries for OS/2 Warp, and
MQSeries for Windows NT and Windows 2000,
additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name service,
and user identifier service.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Internet Protocol (IP). A protocol used to route data
from its source to its destination in an Internet
environment. This is the base layer, on which other
protocol layers, such as TCP and UDP are built.

IP. Internet Protocol

L

linear logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, the process of keeping restart
data in a sequence of files. New files are added to the
sequence as necessary. The space in which the data is
written is not reused until the queue manager is
restarted. Contrast with circular logging.

listener. In MQSeries distributed queuing, a program
that monitors information about incoming network
connections.

394 MQSeries for Compaq NSK V5.1 System Administration

local definition. An MQSeries object that belongs to a
local queue manager.

local definition of a remote queue. An MQSeries
object that belongs to a local queue manager. This
object defines the attributes of a queue that is owned
by another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log. In MQSeries, records the work done by queue
managers while they receive, transmit, and deliver
messages, to enable them to recover in the event of
failure.

logical unit of work (LUW). See unit of work.

MCA (message channel agent). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue.

MCI (message channel interface). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message. In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved and whether a trigger event is
generated.

message queue. Synonym for queue.

message queue interface (MQI). The programming

interface provided by the MQSeries queue managers.

This programming interface lets application programs
access message queuing services.

message queue management. The Message Queue
Management (MQM) facility in MQSeries for Compaq
NSK V2.2 uses PCF command formats and control
commands. MQM runs as a PATHWAY SCOBOL
requester under the Terminal Control Process (TCP)
and uses an MQM SERVERCLASS server, which
invokes the C language API to perform PCF
commands. There is a separate instance of MQM for
each queue manager configured on a system, since each
queue manager is controlled under its own PATHWAY
configuration. Consequently, an MQM is limited to the
management of the queue manager to which it belongs.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging. See synchronous messaging and asynchronous
messaging.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MOQAI MQSeries Administration Interface.

MQI (message queuing interface). The programming
interface provided by the MQSeries queue managers.
This programming interface lets application programs
access message queuing services.

MQI channel. Connects an MQI client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQOM. Message Queue Management.

MOQI client. Part of an MQSeries product that can be
installed on a system without installing the full queue
manager. The MQI client accepts MQI calls from
applications and communicates with a queue manager
on a server system.

MOQI server. An MQI server is a queue manager that
provides queuing services to one or more clients. All
the MQSeries objects, for example queues, exist only on
the queue manager system, that is, on the MQI server
machine. A server can support normal local MQI
applications as well.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries Administration Interface (MQAI). A
programming interface to MQSeries.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N

namelist. An MQSeries object that contains a list of
names, for example, queue names.

name service interface (NSI). The MQSeries interface
to which customer- or vendor-written programs that
resolve queue-name ownership must conform. A part of
the MQSeries Framework.

NetBIOS. Network Basic Input/Output System. An
operating system interface for application programs
used on IBM personal computers that are attached to
the IBM Token-Ring Network.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

null character. The character that is represented by
X'00'.

O

object. In MQSeries, an object is a queue manager, a
queue, a process definition, a namelist, or a channel.

Object authority manager (OAM). In MQSeries on
UNIX systems, MQSeries for Compaq, and MQSeries
for Windows NT and Windows 2000;, the default
authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

Glossary of terms and abbreviations 395

object descriptor. A data structure that identifies a
particular MQSeries object (MQOD). Included in the
descriptor are the name of the object and the object

type.

object handle. The identifier, or token, by which a
program accesses the MQSeries object with which it is
working.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

P

PCF. Programmable command format.
PCF command. See programmable command format.

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

performance event. A category of event that indicates
a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel is functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF). A type of

MQSeries message that is used by:

¢ User administration applications that put PCF
commands onto the system command input queue of
a specified queue manager.

396 MQSeries for Compaq NSK V5.1 System Administration

* User administration applications, to get the results of
a PCF command from a specified queue manager.

* A queue manager, as a notification that an event has
occurred.

Contrast with MQSC.

program temporary fix (PTF). A solution or by-pass of
a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTE. Program temporary fix.

Q

queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

¢ An error condition has occurred in relation to the
resources used by a queue manager. For example, an
error condition caused by a queue being unavailable.

* A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queue server. NonStop process pair that supports all
messaging operations for local queues.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown.

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R

RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

remote queue. A queue that belongs to a remote
queue manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager is remote if it is not the queue manager to
which the program is connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages.

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason.

repository. A collection of information about the
queue managers that are members of a cluster. This
information includes queue manager names, their
locations, their channels, what queues they host, and so
on.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used for
requesting a reply from another program.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to the MQOPEN call.

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

rollback. Synonym for back out.

rules table. A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S

security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEIL. Security enabling interface.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service
interval.

Glossary of terms and abbreviations 397

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

single-phase back out. A method in which an action
that is in progress must not be allowed to finish, and
all changes that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.
SNA. Systems Network Architecture.

stanza. A group of lines in a configuration file that
assigns a value to a parameter that modifies the
behavior of a queue manager, client, or channel. In
MQSeries on systems, a configuration (ini) file can
contain a number of stanzas.

Status Server. Supports all status information for all
objects other than local queues. The default Status
Server also handles channel status information for the
queue manager.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

symptom string. Diagnostic information displayed in
a structured format designed for searching the IBM
software support database.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

system bag. A type of data bag that is created by the
MOQAL

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

398 MQSeries for Compaq NSK V5.1 System Administration

T

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

TACL. Tandem Advanced Command Language.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TME. Transaction Management Facility.

TMI. Trigger monitor interface.

TM/MP. NonStop Transaction Manager/MP.
tranid. See transaction identifier.

transmission program. See message channel agent.

Transmission Control Protocol (TCP). Part of the
TCP/IP protocol suite. A host-to-host protocol between
hosts in packet-switched communications networks.
TCP provides connection-oriented data stream delivery.
Delivery is reliable and orderly.

Transmission Control Protocol/Internet Protocol
(TCP/IP) . A suite of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering. In MQSeries, a facility that lets a queue
manager start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message that contains information
about the program that a trigger monitor is to start.

trigger monitor. A continuously-running application
that serves one or more initiation queues. When a
trigger message arrives on an initiation queue, the
trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U

UDP. User Datagram Protocol.
undelivered-message queue. See dead-letter queue.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user bag. In the MQAI, a type of data bag that is
created by the user.

User Datagram Protocol (UDP). Part of the TCP/IP
protocol suite. A packet-level protocol built directly on
the Internet Protocol layer. UDP is a connectionless and
less reliable alternative to TCP. It is used for
application-to-application programs between TCP/IP
host systems.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

Glossary of terms and abbreviations

399

400 MQSeries for Compaq NSK V5.1 System Administration

Index
A

action keywords 149
ADD SERVER, PATHCOM command 30
adding nondefault queue server 55
adding nondefault status server 52
administration
authorizations 139
command sets 27
control commands 27
MQSeries commands (MQSC) 28
programmable command format
commands (PCF) 28
local 83
remote 113
channels 114
objects 111
transmission queues 114
agent processes 24, 47
alias queues
authorizations to 133
description 10
aliases
queue manager 122
reply-to queues 122
AllQueueManagers stanza, MQSINI
file 173
alter queue manager attributes 87
ALTER SERVER
PATHCOM command 31
alternate user authority 133
altmgfls command 95, 230
build data structure at queue server
startup 206
checkpoint non-persistent
messages 207
measure queue depth 207
queue server lock in memory 207
re-locate queue files 205
related commands 233
setting browse threshold 206
altmqusr command 234
related commands 235
APC PATHWAY definition, example 360
application
affects of browsing persistent
messages in queue 206
compiling and binding 328
data 6
design considerations 190
FASTPATH binding 328
FASTPATH-bound
failure recovery 218
guardian 327
managing concurrent
transactions 217
MQI administration support 83
programming errors, examples
of 187
restrictions using FASTPATH 210
running 329
STANDARD binding 328

© Copyright IBM Corp. 1993, 2001

application (continued)
STANDARD-bound
failure recovery 218
time-independent 5
triggered 325
trusted 209
tuning 201
using OpenTMF 216
writing 323
APPLIDAT keyword, rules table 148
APPLNAME keyword, rules table 148
APPLTYPE keyword, rules table 148
attributes of MQSeries objects
ALL attribute 93
changing, local queue 94
default 93
MQSC and PCFs compared 29
queue manager
altering 87
displaying 86

queues 9
audit-trail size, TM/MP 167
authority

alternate user 133

commands 132

context 134

events 371

installable services 132

set/reset command 277
Authority stanza, QMINI file 176
authorization

administration 139

dspmgaut command 132

files 141
lists 130
MQI 136

setmqaut command 132

user groups 128
authorization service 16

interface 377
automatic definition of channels 117
availability

configuring for 224

definition 212

bindings 21
BookManager 389
browsing queues 97
buffer
messages during browsing 206

C

C++ native

supported language 326
C native

supported language 326

C non-native
supported language 326
case sensitivity
control commands 27
MQSC commands 85
CCsID file 123
CCSID parameter 46
CCSIDs
conversion method 47
supported by MQSeries for Compaq
NSK 295
changing queue attributes 94
channel
auto-definition of 117
commands 135
configuration 176
defining 115
defining a TCP/IP receiver

channel 367
defining a TCP/IP sender
channel 367

defining between queue managers
description 13
description of 111
escape command authorizations 139
events 158, 371
exits 341
ICE 366
limiting number of 49
message channels 203
remote administration 114
remote queuing 111
run command 269
run initiator command 268
security 135
security requirements 135
starting 116
channel initiator
configure using PATHCOM
commands 30
failure recovery 218
channel sync file 217
channel synchronization subvolume 58
Channellnitiator stanza, QMINI file 175
Channels menu, MQM 72
Channels stanza, QMINI file 176

checkpoint
non-persistent messages by queue
server 207

cleanrdf command 236
clearing a local queue 96
client channel definitions 217
clients 14, 369
cluster
description of 112
improving network availability 223
of queue managers 8
queue manager
workload exit 15
remote queuing 111
workload management exits 341

401

cluster transmit queue 204
cnvelchl command 238
COBOL native
supported language 326
COBOL non-native
supported language 326
command errors 187
command files 88
command queue 12
command server
configure using PATHCOM
commands 30
display command 252
displaying status 109
end command 260
failure recovery 218
remote administration 109
start command 284
starting a command server 109
stopping a command server 109
command set
administration 27
comparison 303
commands
alter queue file attributes
(altmgfls) 230
comparison of sets 303
control 27
altmgqfls 230
altmqusr 234
cleanrdf 236
cnvclchl 238
crtmqevx 240
crtmqm 242
dltmgm 246
dspmqaut 248
dspmqesv 252
dspmqfls 253
dspmgqtrc 257
dspmqusr 258
endmqcsv 260
endmqm 263
endmgqtrc 266
instmgm 267
runmqchi 268
runmqchl 269
runmqdlq 270
runmgqlsr 271
runmgsc 273
runmqgtrm 276

commands (continued)

display MQSeries formatted trace
(dspmgqtrc) 257
end command server
(endmgqcsv) 260
end MQSeries trace (endmgqtrc) 266
end queue manager (endmgm) 263
install MQSeries for Compaq NSK
(instmqm) 267
MQSC
ALTER QLOCAL 94
ALTER QREMOTE 120
command files 88
DEFINE CHANNEL 115
DEFINE QALIAS 100
DEFINE QLOCAL 94
DEFINE QLOCAL LIKE 94
DEFINE QLOCAL REPLACE 95
DEFINE QMODEL 102
DEFINE QREMOTE 119
DELETE QLOCAL 97
DISPLAY QREMOTE 120
using 28
verifying 90
perform RDF housekeeping
(cleanrdf) 236
programmable command format
(PCF) 28
run channel (runmqchl) 269
run channel initiator (runmqchi) 268
run dead-letter queue handler 270
run DLQ handler (runmqdlq) 145
run listener (runmglsr) 271
runmgsc 85
security commands
dspmqaut 132
setmqgaut 129
set/reset authority (setmqaut) 131,
277
start command server (strmqcsv) 284
start MQSeries trace (strmqtrc) 286
start queue manager (strmqm) 285
start trigger monitor (runmqtrm) 276
upgrade V2.2.0.1 queue manager
(upgmgm) 289

commit and backout 165
communications examples

ICE 363
SNAX 358
TCP/IP 367

setmqaut 277
strmqesv 284
strmgm 285
strmqtrc 286
upgmgm 289

communications setup 351

Compaq NonStop Server for Java 309
Compaq NSK logged-in user ID 133
compiling and binding applications 328
configuration files

convert client channel definitions
(cnvclchl) 238
create queue manager (crtmqm) 242
define a principal corresponding to a
Compaq NSK user ID
(altmqusr) 234
delete queue manager (dltmqm) 246
display authority (dspmqaut) 248
display command server
(dspmqcsv) 252
display information about a specified
principal (dspmqusr) 258

editing 182

MQSeries (MQSINI) 173
backing up 41
contents 173
overview 173
path 91

overview 173

queue manager (QMINI)
backing up 41
contents 174
disabling the object authority

manager 129

402 MQSeries for Compaq NSK V5.1 System Administration

configuration files (continued)

queue manager (QMINI) (continued)

stanzas 175

Configuration stanza, QMINI file 175
configuring for availability 224
configuring for data integrity 224
CONNAME

process attribute 314
contents of

MQSINI 173

QMINI 175
context authority 134
control commands 27

altmgfls 230

altmqusr 234

case sensitive 27

cleanrdf 236

cnvclchl 238

crtmqevx 240

crtmqm 242

dltmgm 246

dspmqaut 248

dspmqesv 252

dspmgqfls 253

dspmqtrc 257

dspmqusr 258

endmgqcsv 260

endmgm 263

endmgqtrc 266

instmgm 267

runmqchi 268

runmqchl 269

runmqdlq 270

runmgqlsr 271

runmgsc 85, 273

runmgtrm 276

setmqaut 277

strmqesv - 284

strmgm 285

strmqtrc 286

upgmgm 289
controlled shutdown 61
copying a channel 81
copying a queue 70
Correlld

performance considerations when

using 191
CPU

configuring for availability 224

high usage 208

queue server 204

tuning 201

workload balance 31
creating

channel definition 75

principals 60

process definitions 104

queue 68

queue manager 41, 59

transmission queue 121
crtmqecvx command 240
crtmgm command 242
CURDEPTH 207
current queue depth 94

D

data conversion 123, 321
converting user-defined message
formats 123
crtmqgecvx command 240
default data conversion 123
EBCDIC 46
data conversion exits 341
data files subvolume, queue manager 56
data integrity
configuring for
definition 212
data types
structure data types 315
database
audited database files 217
consistency 215
external consistency 216
protected by TM/MP 215
dead-letter header, MQDLH 145
dead-letter queue
description 12
handler 270
specifying 41
debugging
common programming errors
preliminary checks 183
secondary checks 187, 190
default
objects 13, 61
queue manager 41
accidental change 62
accidental deletion 243
changing 62, 87
commands processed 85
queue server, name of 54
status server, name of 51
system objects 297
TCP/IP port 49
transmission queue 41, 121
default data conversion 123
DefaultPrefix parameter, crtmqm
command 44
DefaultProcess stanza, QMINI file 175
DefaultQueueManager stanza, MQSINI
file 173
defining queues 68
deleting
channel 79
local queue 72, 97
queue manager 63, 246
DESTQ keyword, rules table 148
DESTQM keyword, rules table 148
directories, queue manager 133
disabling the object authority manager
(0AM) 129
disk volume
partitioning queue files 205
display
authority command 248
channel status 79
command server command 252
MQSeries files command 253
MQSeries formatted trace output
command 257
process definitions 105
queue manager attributes 86

224

187

display (continued)

status of command server 109
DISPLAY CHSTATUS command 313
distributed queuing

dead-letter queue 12

incorrect output 193

undelivered-message queue 12
DLQ handler

invoking 145

rules table 146
dltmgm command 246
dspmqaut command 248

using 129, 132
dspmqcsv command 252
dspmqfls command 253
dspmgqtrc command 257
dspmqusr command 258
dynamic binding 21
dynamic definition of channels
dynamic queues 7

authorizations to 133

description 7

117

E

EBCDIC
data conversion 46
EC
control file 217
failure recovery 218
function 20
EC Boss
failure recovery 218
EC Boss, role of 44
EC processes, number of 44
EC stanza, QMINI file 175
ECBoss
function 20
ECBoss stanza, QMINI file 175
EMS event template, MQSeries
EMS events 159, 197
alternative collector, specifying 163
default collector 163
setting the MOQEMSEVENTS
PARAM 162
writing programs to process
EMSCollectorName 47
enabling
instrumentation events
security 129
end MQSeries trace 266
ending a queue manager 61
ending interactive MQSC commands 86
endmqcsv command 260
endmgm command 61, 263
endmgqtrc command 266
ENSCRIBE files 17, 24
environment variables
error log 195
error occurring before
established 196
example 196
subvolume 57
error messages 86
escape PCFs 29, 108
euro support 295
event-driven processing 5

379

163

158

299

Event Management Service (EMS)

events
event-message format

159
372

event queue 12
events

channel 158

EMS 379

instrumentation
description 157
enabling 158
message 159
types of 157
what they are 157
why use them 157

queues 158

support for in MQSeries for Compaq
NSK 371

trigger 158

types of 157

examples

altmgqfls command 233
altmqusr command 235
cleanrdf command 237
cnvclchl command 238
communications setup 358
crtmqgcvx command 240
crtmgm command 244
dltmgm command 246
dspmqaut command 250
dspmqcsv command 252
dspmgfls command 254
dspmqusr command 258
endmgcsv command 260
endmqm command 264
endmgqtrc command 266
error log 196
programming errors 187
runmgsc command 274
setmqaut command 281
strmqgcsv command 284
strmqm command 285
strmqtrc command 287
upgmqm command 290

exit

channel exit 15

cluster workload exit 15

installing 346
MQ_LOAD_ENTRY_POINT_EXIT 342
name format 342

user exit 15

user exits 341

ExpectedNumECs 44
ExtPoolSize entry

F

QMINI file 51

failure recovery 218
FASTPATH binding 209, 328

enable 210
reducing overload 209
restrictions 210

feedback from MQSC commands 86
FEEDBACK keyword, rules table 148
FFST

examining 199
subvolume 56

403

Index

file
audited database files 217
authorization 141
configuration
in problem determination 198
EC control file 217
ENSCRIBE 24
initialization 22
message overflow 204
changing threshold 206
location 205
namelist 25
namelist definitions 217
non-client channel definitions 217
OAM database 217
object catalog 217
object touch file 217
principal database 217
queue file 204, 217
location 205
queue overflow file 204, 217
location 205
touch
for alias and remote 25
touch file 204, 217
location 205
files
configuration
MQSeries (MQSINI) 173
queue manager (QMINI) 174
fix command 28
forcing a channel to stop (stop
immediate) 79
FORMAT keyword, rules table 148
FREEZE SERVER, PATHCOM
command 30
FWDQ keyword, rules table 149
FWDQM keyword, rules table 150

G

global unit of work
description 16

glossary 391

guadian segment IDs 49

Guardian user identifier 217

H

HARDENBO
process attribute 313
HEADER keyword, rules table 150
home volume of queue manager 44
HomeTerminalName parameter 45
HTML (Hypertext Markup
Language) 388
Hypertext Markup Language
(HTML) 388

ICE communications example 363
ICETP 352

idle agent processes 47

incorrect output 192

inhibit events 371

initiation queue
channel initiator, changing 30
defining 104
description 11
INPUTQ keyword, rules table 146
INPUTQM keyword, rules table 147
installable services
authorization service 377
name service 377
object authority manager (OAM) 126
disabling 129
instmgm command 267
instrumentation events
description 157
enabling 158
messages 159
purpose of 157
supported by MQSeries for Compaq
NSK 371
types of 157
Inter-Process Communication Component
(IPCC) 23
interactive MQSC
ending 86
feedback from 86
using 85
issuing MQSeries commands 84

J

Java
compatible 309
supported language 326
Java Transaction Services 327

L

language
supported 326
libraries
MQI 328
license management 295
LIKE attribute, DEFINE QLOCAL 94
load balancing 44
local administration 83
local events 371
local queue manager agent (LQMA)
failure recovery 218
Local Queue Manager Agent
(LOMA) 209
local queues
attributes 320
clearing 96
command 12
copying definitions 94
dead-letter 12
defining 92
deleting 97
description 9, 10
initiation 11
transmission 11
undelivered-message 12
Local Quuee Manager Agent (LQMA)
function 20
local unit of work
description 16

404 MQSeries for Compaq NSK V5.1 System Administration

lock in cache 207

log, error 195, 196

LQMAgent stanza, QMINI file 175
LQOMAgentPriority 48

LU6.2 listener 22

LU6.2 responder process 352

M

make file
Java 309
managing objects for triggering 103
MaxActiveChannels 49
Maxapplio, value of 363
MaxChannels 48
MAXHANDS
process attribute 313
MaxIdleAgentReuse 48
MaxIdleAgents 48
maximum
number of messages 7
size of queue 7
maximum line length for MQSC
commands 89
maxrcv PARAM 364
MAXUMSGS
process attribute 313
MCAAgentPriority 48
MCACaller stanza, QMINI file 175
MCALU62Responder stanza, QMINI
file 175
MCATCPResponder stanza, QMINI
file 175
measure counter 207
memory buffers 204
message
containing unexpected
information 193
description 6
descriptor 6
for instrumentation events 159
grouping 6
lengths of 6, 191
not appearing on queues 192
operator 196
performance considerations 191
queuing 5
retrieval algorithms 7
searching for particular 191
segment 6
size 204
undelivered 198
variable length 191
message channel 203
message channel agent (MCA)
failure recovery 218
function 21
message-driven processing 5
message length, decreasing 95
message overflow file 204
changing threshold 206
configuring for data integrity 224
re-locate 205
message queue interface (MQI) 5
Message Queue Management (MQM) 63
message queue subvolume 57

messages
non-persistent 202
persistent 202
MinldleLQMAgents 47
MinldleMCACallers 47
MinldleMCALU62Responders 47
MinldleMCATCPResponders 47
model queues
attributes 320
defining 102
description 10
working with 102
modifying
CCSID 46
channel 74
queue 71
monitoring
TMF status 167
monitoring a channel 78
monitoring a queue 72
monitoring queue managers 157
MQ_LOAD_ENTRY_POINT_EXIT 342
MQAI
description of 108, 331
MQCFH, PCF header 374
MQCFIL, PCF integer list parameter 375
MQCEFIN, PCF integer 375
MQCFSL, PCF string list 375
MQCEFST, PCF string parameter 374
MQCNO 316
MQCNO_FASTPATH_BINDING 210
MQCONN 209
MQCONNECTTYPE 210
MQCONNX 210
MQDATACONVEXIT 321
MQDEFAULTPREFIX 299
MQDISC 319
MQDLH, dead-letter header 145
MQEMSEVENTS 299
MQEMSEVENTS, environment
variable 162
MQGMO 316
MQGMO_BROWSE_* 325
MQGMO_SET_SIGNAL option 316
MQI
authorizations 136
calls 318
description 5
libraries 328
local administration support 83
queue manager calls 9
TAL programming language
MQCLOSE 319
MQDISC 319
MQINQ 319
MQSET 319
MQINQ 319
MQIServer stanza, QMINI file 175
MQLISTENPORTNUM 299
MQM
user group 125
user ID 125, 133
MQM (Message Queue Management)
interface 63
MQMACHINIFILE 299
MQMACHINIFILE, environment
variable 173

MQMC facility 63
MQMD 317
MQMREFRESHINT
PATHWAY parameter 33
MQOPEN authorizations 136
MQPMO 317
MQPUT and MQPUT]1, performance
considerations 191
MQPUT authorizations 136
MQQSHKEEPINT 301
MQQSMAXBATCHEXPIRE 301
MQQSMAXMSGSEXPIRE 301
MQQSSIGTIMEOUT 301
MQRC_Q_SPACE_NOT_AVAILABLE
return code 93
MQRDF 299
MQRDFFUPPROCESSNAME = 299
MQRDFFUPPROGNAME 299
MQS-CHANINIT00
TS/MP server class 30
MQS-CMDSERV00
TS/MP server class 30
MQS-EC00
TS/MP server class 31
MQS-STATUSOO server class 32
MQS-TCPLIS00
TS/MP server class 30
MQS-TCPLISnn
reconfigure 50
MQS-TRIGMONO00
TS/MP server class 31
MQSC 29
command files
output reports 89
running 90
ending interactive input 86
how to issue commands 84
issuing commands interactively 85
issuing remotely 117
maximum line length 89
problems
local 91
remote 118
redirecting input and output 87
security requirements on
channels 135
supported by MQSeries for Compaq
NSK 311
timed out command responses 117
using commands 87
verifying commands 90
MQSC commands
ALTER QLOCAL 94
ALTER QREMOTE 120
case sensitivity 85
DEFINE CHANNEL 115
DEFINE QALIAS 100
DEFINE QLOCAL 94
DEFINE QLOCAL LIKE 94
DEFINE QLOCAL REPLACE 95
DEFINE QMODEL 102
DEFINE QREMOTE 119
DELETE QLOCAL 97
DISPLAY QREMOTE 120
maximum line length 89
using 28

MQSeries for Compaq NSK
architecture 19
building applications 323
client support 369
components 23
EMS event template used by 379
files 24
MQSC supported by 311
performance 201
running applications 323
scalability 201
subvolumes 24
summary 293
super user, MOM 125
TM/MP (TMF) support 165
user exits 341
volume structure 56
MQSeries publications 387
MQSET 319
MQSINI, configuration file
editing 182
example 174
overview 173
path to 91
MQSNOAUT 299
MQSNOAUT, environment variable 129
MQSS server 22
MQTRANSACTIONLIFE
refresh TM/MP transaction 323
MQZAOQO constants and authority 137
Msgld
performance considerations when
using 191
MSGTYPE keyword, rules table 149
multiple points of failure 211
MVS/ESA queue manager 118

N

name of default queue server 54
name of default status server 51
name service 16
name service interface 377
name transformation, object 58
namelist definitions 217
names

objects 8

valid for objects 227
naming convention

queue server classes 55

status server classes 53
naming conventions

national language support 227
native binding 21
NOHARDENBO

process attribute 313
non-client channel definitions 217
non-native binding 21
non-persistent messages

availability 215

checkpoint 207

configuring for data integrity 224

difference from persistent 6

storage 204

synchronized logging 203

tuning 202

Index 405

nondefault queue server, adding and

removing 55

nondefault status server, adding and

removing 52
nondefault TCP/IP process 50
nonpersistent data 213
NonStop Java
supported language 326
NonStop process pair 22
NonStop queue server 202
NonStop TM/MP (Transaction
Manager) 165
NonStop Tuxedo
transaction environment with
T™M/MP 217
notification of events 158

NPMSPEED channel attribute 203

NSKSegidRange 49
NumECs parameter, crtmqm
command 44

o)

OAM (object authority manager)
disabling 129
dspmqaut command 132
groups 127
how it works 127
introduction to 16
replacing 377
sensitive operations 133
setmqaut command 129, 131
OAM database 217
OAM principal 217
object catalog 217
object name transformation 58
object touch file 217
objects
access to 125
default
attributes 93
restoring 61
for triggering 103
names 84
naming conventions 227
process definition 12
queue 10
queue manager
MQI calls 9
remote administration 111
system
default 13, 297
restoring 61
types of 8
OpenTMF 216
operator commands, no response
from 188
operator messages 196

overview of MQSeries for Compaq

NSK 293

P

panels
MQOM 63

parameters
altmgfls command 231
altmqusr command 234
cleanrdf command 236
cnvclchl command 238
crtmqevx command 240
crtmgm command 242
dltmgm command 246
dspmgaut command 248
dspmqcsv command 252
dspmqfls command 253
dspmgqtrc command 257
dspmqusr command 258
endmgqcsv command 260
endmqgm command 263
endmgqtrc command 266
instmqm command 267
runmqchi command 268
runmqchl command 269
runmqdlq command 270
runmglsr command 271
runmgsc command 274
runmqtrm command 276
setmqaut command 279
strmqcsv command 284
strmgm command 285
strmgtrc command 286
upgmgm command 290
PARAMSs (environment variables) 299
partitioning
queue files 205
PATHCOM commands
ADD SERVER 30
ALTER SERVER 31
FREEZE SERVER 30
START SERVER 30
STATUS SERVER 30
STOP SERVER 30
THAW SERVER 30
PathmonProcName 45
PATHWAY
configuration example 33
configuring for availability 224
errors 186
server class 39
server class for queue server 204
pattern-matching keywords, rules
table 148
PCF command responses 377
PCF commands
attributes in MQSC and PCF 108
automating administrative tasks using
PCF 107
escape PCFs 108
MQALI using to simplify use of 108
PCFs (programmable command
formats) 373
header MQCFH) 374
integer (MQCFIN) 375
integer list parameter (MQCFIL) 375
introduction to 28
message descriptor 373
MQCFH (header) 374
MQCFIL (integer list parameter) 375
MQCEFIN (integer) 375
MQCEFSL (string list) 375
MQCEFST (string parameter) 374

406 MQSeries for Compaq NSK V5.1 System Administration

PCFs (programmable command
formats) 373 (continued)
string list (MQCFSL) 375
string parameter (MQCFST) 374
supported by MQSeries for Compaq
NSK 376
PDF (Portable Document Format) 388
performance 201
considerations of application
design 190
considerations when using trace 198
performance events 157, 371
permanent queues 7
PERSIST keyword, rules table 149
persistent data 213
persistent messages
availability 213
difference from non-persistent 6
override default maximum
number 301
storage 204
tuning 202
PMSEARCH 299
Portable Document Format (PDF) 388
PostScript format 389
predefined queues 7
preemptive queue manager
shutdown 62
PRIDB, principals database 141
principal database 217
principals
creating 60, 130
database, PRIDB 141
naming of 127
purpose of 16
priority of queue manager processes 48
problem determination
configuration files 198
further checks 187, 190
incorrect output 193
no response from commands 188
programming errors 187
things to check first 183
process definitions
creating 104
description 12
displaying 105
processing, event-driven 5
programmable command formats
(PCFs) 28,373
programming errors, examples of 187
programs, samples supplied 333
protected resources 127
PUTAUT keyword, rules table 150

Q

QMDefaultVolume 44
QMINI, configuration file
configuring to support TCP/IP
listeners 368
editing 182
example 177
overview 174
queue depth 94
queue file 204, 217
partition 205

queue file 204, 217 (continued)
re-locate 205
queue manager
alias, remote queue 122
attribute 320
authorizations 133
availability 212
channel synchronization
subvolume 58
command server 109
components 22
configurable properties of 44
configuration file
backing up 41
contents of 174

creating
crtmgm command 242
default 59

guidelines for 41
data files subvolume 56
default 41
accidental change 62
accidental deletion 243
changing 62
deleting 63, 246
description 9
directories 133
endmgm command 263
error log subvolume 57
events 157
failure recovery 218
FFST subvolume 56
home volume 44
immediate shutdown 61
local administration 83
message queue subvolume 57
monitoring 157
numbers of 41
object authority manager
description 126
disabling 129
objects
MQI calls 9
on MVS/ESA 118
preemptive shutdown 61, 62
processes 19
remote administration 111
removing, manually 307
restart 62
shutdown
controlled 61
quiesce 61
specifying on runmgsc 87
starting 60
stopping 61
manually 307
unique name 41
Queue Manager Menu, MOM 64
queue manager server
failure recovery 218
queue overflow file 204, 217
re-locate 205
queue server
adding and removing nondefault 55
build data structure at queue server
startup 206

queue server (continued)

checkpoint non-persistent
messages 207

CPU distribution 204

description 22

distributing queues among 204

failure recovery 218

lock data structure and chains in
memory 207

maintain measure counter for
queue 207

managing non-persistent data 215

name of default 54

PARAMS 300
processes
adding 32

recovery and restart 170
removing 56
storing messages in memory 206
tuning 203
queued mode, of runmqgsc 117
QueueManager stanza, MQSINI file 174
queues
alias 10
aliases, working with 100
application, defining for
triggering 103
attributes 9, 320
attributes, changing 94
authorizations to 133
browsing 97
cluster transmit queue 204
command 12
dead-letter 12, 41
defining 9
description 7
distributed, incorrect output
from 193
dynamic 7
event 12, 158
for MQI applications 83
initiation
defining 104
trigger messages 11

local 9, 10
clearing 96
copying 94

defining 92
deleting 97
measure depth 207

model 10

defining 102

working with 102
objects

alias 10

local 10

model 10

remote 10
physical size of 93
predefined 7
remote 9, 10

creating 119

queue manager alias 122

working with 122
reply-to 12, 122
size of 93
temporary 7

queues (continued)
transmission 11
creating 121
default 41, 121
defining 115
remote administration 114
undelivered-message 12, 41
working with 92
Queues menu, MQM 67
quiesce shutdown 61

R

railroad diagrams, how to read 228
RDF (Remote Database Duplication
Facility)
cleanrdf command 60, 236
disaster recovery using 171
reason code 9
REASON keyword, rules table 149
receiver channel, automatic definition
of 117
redirecting input and output, on MQSC
commands 87
related publications 389
remote
events 371
issuing of MQSC commands 117
object administration 111
queue definition, creating 119
queue object, working with 122
queues
as queue manager aliases 122
as reply-to queue aliases 122
authorizations to 133
queuing
recommendations 118
security considerations 135
remote administration
command server 109
initial problems 118
remote queues 111
description 9, 10
removing nondefault queue server 55
removing nondefault status server 52
removing queue manager manually 307
removing queue server 56
removing status server 53
REPLACE attribute, DEFINE
commands 89
reply-to queue 12
reply-to queue aliases 122
REPLYQ keyword, rules table 149
REPLYQM keyword, rules table 149
repository cache manager
failure recovery 218
repository manager
failure recovery 218
process 20
requirements
hardware 293
software 293
resetting a message sequence number
(MSN) 80
resolving a channel 81
resources, protecting 125
restart queue manager 62

407

Index

restoring
default objects 61
system objects 61
restrictions
access to MQM objects 125
object names 227
retrieval algorithms for messages 7
RETRY keyword, rules table 150
RETRYINT keyword, rules table 147
return codes 183
altmqfls command 233
altmqusr command 234
cleanrdf command 236
crtmqevx command 240
crtmgm command 244
dltmgm command 246
dspmqaut command 250
dspmgqesv command 252
dspmgqfls command 253
dspmqusr command 258
endmqcsv command 260
endmgm command 263
endmgqtrc command 266
runmqchi command 268
runmqchl command 269
runmgqlsr command 272
runmgsc command 274
runmqtrm command 276
setmqaut command 281
strmqcsv command 284
strmqm command 285
strmqtrc command 287
rollback 165
rules table, DLQ handler 146
control data entry
INPUTQ keyword 146
INPUTQM keyword 147
RETRYINT keyword 147
WAIT keyword 147
example 153
patterns and actions (rules)
ACTION keyword 149
APPLIDAT keyword 148
APPLNAME keyword 148
APPLTYPE keyword 148
DESTQ keyword 148
DESTQM keyword 148
FEEDBACK keyword 148
FORMAT keyword 148
FWDQ keyword 149
FWDQM keyword 150
HEADER keyword 150
MSGTYPE keyword 149
PERSIST keyword 149
PUTAUT keyword 150
REASON keyword 149
REPLYQ keyword 149
REPLYQM keyword 149
RETRY keyword 150
USERID keyword 149
processing of 152
syntax 151
run listener (runmglsr command) 271
runmqchi command 268
runmqchl command 269
runmqdlq command 145, 270
runmglsr command 271

runmgsc
command 273
ending 86
feedback 86
issuing MQSC commands 84
problems 91
queued mode 117
redirecting input and output 87
specifying a queue manager 87
using 87
using interactively 85
verifying 90

runmqtrm command 276

S

SAFEGUARD 16, 128, 293
sample programs
building C++ versions 335
building C versions 334
building COBOL versions 336
building TAL versions 338
building versions on OSS 339
supplied with MQSeries for Compaq
NSK 333
sample trace data 199
SAVE-ENVIRONMENT ON 299
scalability 201
SCF configuration file, example 358
security 125
enabling 129
OAM (object authority manager) 16
principals, creating 60
remote 135
using the commands 129, 132
segment IDs 49
server class
MQS-TCPLIShn 50
naming convention
queue server 55
status servers 53
user-defined 40
server-connection channel, automatic
definition of 117
service component 16
Service stanza, QMINI file 176
ServiceComponent stanza, QMINI
file 176
setmqaut command 277
installable services 132
related commands 283
using 129, 131
shared memory segments 22
shared resource library 21
shutdown, queue manager 61
signal option 316
single-phase commit 165
single point of failure 211
SNA
consuming CPU 208
SNA listener 194
SNA protocol 351
SNAX communications examples 358
softcopy books 388
specified operating environment 293
STANDARD binding 328

408 MQSeries for Compaq NSK V5.1 System Administration

stanzas
MQSINI 173
QMINI 175
start and stop events 371
Start Channel Initiator 377
Start Channel Listener 377
start MQSeries trace command 286
start queue manager command 285
START SERVER, PATHCOM
command 30
starting
a queue manager 60
channels 79, 116
trace 67
status server
adding and removing nondefault 52
failure recovery 218
name of default 51
processes
adding 32
recovery and restart 170
removing 53
server class MQS-STATUS00 32
STATUS SERVER, PATHCOM
command 30
stdin, on runmgsc 87
stdout, on runmgsc 87
STOP SERVER, PATHCOM
command 30
stopping
channels 79
queue manager 263, 307
trace 67
strmqcsv command 284
related commands 284
strmqm command 285
related commands 285
strmqtrc command 286
related commands 288
structure data types 315
subvolume 24
super user (MQSeries)
MQM 125
SupportPac 389
swap space allocation 51
synchpoint 216
syncpoint
limits 166
syncpoint, performance
considerations 191
syntax diagrams, how to read 228
syntax error, in MQSC commands 86
system.cluster.transmit.queue 204
system default objects 13
system defaults 297
system objects
restoring 61

-

TACL environment variables 299
TAL non-native
supported language 326
TCP/IP
channels 357
remote administration 14
TCP/IP communications example 367

TCP/IP listeners
configuring 30
failure recovery 218
start 30
stop 30
TCP/IP process 50
TCP/IP protocol 351
TCPConfig stanza
configuring TCP/IP 367
TCPConfig stanza, QMINI file 176
TCPListener stanza, QMINI file 175
TCPListenerPort 49
TCPNumlListenerPorts 49
TCPPort 49
templates, EMS event 159
temporary queues 7
terminology used in this book 391
THAW SERVER, PATHCOM
command 30
threads
in applications 327
time-independent applications 5
timed out responses from MQSC
commands 117
™/MP 17
audit files 202
auditing database files 215
coordinating with external
databases 216
TM/MP (TMF) support 165, 324
touch file 204, 217
re-locate 205
trace
data sample 199
performance considerations 198
tracing MQSeries objects 66
transaction
managing mulitple 217
Transaction Manager (NonStop
TM/MP) 165
transactional support 165
transmission queue
creating 121
default 41, 121
defining 115
defining between queue managers 10
description 11
remote administration 114
trigger
events 158
messages on initiation queue 11
monitor
configure using PATHCOM
commands 31
description 11
start command 276
triggered applications 325
passing USERDATA to 314
triggering
defining application queue for 103
definition 5
managing objects for 103
troubleshooting 168
TS/MP administration 29
TS/MP server classes
MQS-CHANINIT00 30
MQS-CMDSERV00 30

TS/MP server classes (continued) Z
MQS-EC00 31
MQS-TCPLIS00 30
MQS-TRIGMONO00 31

tuning MQSeries for Compaq NSK 201

TuningParameters stanza, QMINI

file 176

Tuxedo, NonStop

transaction environment with
™/MP 217

two-phase commit 165

types of event 157

types of object 8

file 159

U

unauthorized access, protecting
from 125

unit of work

description 16
unit of work management 324
upgmqm command 289
user-defined message formats 123
user-defined server classes 40
user exit

channel exit 15

cluster workload 15

data conversion exit 15

description 15
user exits 341
user group

for authorization 128

MQM 125
user ID

authority 125

authorization 133

Compaq NSK logged-in user 133
USERDATA

process attribute 314
USERID keyword, rules table 149
users

belonging to more than one user

group 127
groups 127

\'

verifying MQSC commands 90
volume

structure 56
volume, changing 95

w

WAIT keyword, rules table 147
Windows Help 389
workload balancing 201

using clusters 8

X

XA-compliant databases 17
XA interface 325

ZMQSTMPL, EMS event template

Index

409

410 MQSeries for Compaq NSK V5.1 System Administration

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
* By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

S0O21 2JN
United Kingdom

¢ By fax:
— From outside the U.K,, after your international access code use
44-1962-816151
— From within the U.K., use 01962-816151
¢ Electronically, use the appropriate network ID:
— IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink ": HURSLEY(IDRCF)

— Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

* The publication title and order number

* The topic to which your comment applies

* Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1993, 2001 411

412 MQSeries for Compaq NSK V5.1 System Administration

) Printed in the United States of America
&) on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5886-00

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Information about MQSeries on the Internet

	What's new in MQSeries for Compaq NSK V5.1
	Performance enhancements
	Upgraded MQSeries functionality
	Intercommunications
	Compaq NSK-specific ease-of-use

	Part 1. Guidance
	Chapter 1. Introduction
	MQSeries and message queuing
	Time-independent applications
	Message-driven processing

	Messages and queues
	What is a message?
	Message lengths

	What is a queue?
	How do applications send and receive messages?
	Predefined and dynamic queues
	Retrieving messages from queues

	Objects
	Object names
	Managing objects
	Object attributes

	MQSeries queue managers
	MQI calls

	MQSeries queues
	Using queue objects
	Local queues used by MQSeries

	Process definitions
	Channels
	Clusters
	Namelists

	System default objects
	Administration
	Local and remote administration

	Clients and servers
	MQI applications in a client-server environment

	Extending queue manager facilities
	User exits
	Installable services

	Security
	Object Authority Manager (OAM) facility

	Transactional support
	Performance tuning, reliability, scalability and sizing

	Chapter 2. MQSeries for Compaq NSK V5.1 architecture
	Queue manager process overview
	Product packaging
	Executables
	Comparing Version 5.1 with Version 2.2.0.1 architecture
	Queue manager — functional view
	Queue manager process model
	MQSeries files and subvolumes

	Chapter 3. Using the MQSeries command sets
	Performing administration using control commands
	Using control commands

	Performing administration using MQSC commands
	Running MQSC commands
	Using Compaq NSK Fix Command

	Performing administration using PCF commands
	Attributes in MQSC and PCFs
	Escape PCFs

	TS/MP (PATHWAY) administration
	Specifying and controlling TCP/IP listeners
	Controlling the command server
	Specifying and controlling channel initiators
	Changing the default initiation queue for the channel initiator

	Specifying and controlling trigger monitors
	Specifying the distribution of processes across CPUs
	Addition of new status server processes
	Addition of new queue server processes
	Specifying the refresh frequency of MQM monitor panels
	PATHWAY configuration for a queue manager
	Changing the parameters of PATHWAY server classes
	Adding user-defined server classes to an MQSeries PATHWAY

	Chapter 4. Managing queue managers
	Getting started
	Guidelines for creating a queue manager
	Backing up configuration files after creating a queue manager

	Modifying queue manager properties
	Home volume of the queue manager
	Number of EC processes per queue manager
	System load balancing

	Home terminal of the queue manager
	The PATHMON process name for the queue manager
	The CCSID of the queue manager
	Controlling EBCDIC data conversion
	The EMS Collector for the queue manager
	The pool of agents kept ready by each EC in the queuemanager
	Maximum idle agents and process reuse
	Process priority of queue manager processes
	Maximum number of channels for the queue manager
	Maximum number of active channels for the queue manager
	Guardian segment IDs used by MQSeries
	Default TCP/IP port
	TCP/IP ports listened on by the queue manager
	TCP/IP process used by the queue manager
	Reconfiguring the MQS-TCPLISnn server class for anondefault TCP/IP process and port
	Swap space allocation
	Default status server name
	Adding and removing nondefault status servers

	Default queue server name
	Adding and removing nondefault queue servers
	Volume structure
	Queue manager FFST subvolume
	Queue manager data files subvolume
	Queue manager error log subvolume
	Queue manager message queue subvolume
	Queue manager channel synchronization subvolume
	Object name transformation

	Working with queue managers
	Creating a default queue manager
	Creating MQSeries principals
	Running cleanrdf for an RDF-enabled queue manager
	Starting a queue manager
	Restoring the default and system objects
	Looking at object files
	Stopping a queue manager
	If you have problems
	Immediate and preemptive queue manager shutdowns

	Restarting a queue manager
	Making an existing queue manager the default
	Deleting a queue manager
	Using the Message Queue Management (MQM) facility
	Using the Queue Manager Menu
	Altering queue manager attributes
	Tracing MQSeries objects

	Using the Queues menu
	Creating a queue
	Copying a queue
	Modifying a queue
	Deleting a queue
	Monitoring a queue

	Using the Channels menu
	Modifying a channel
	Creating a channel definition
	Monitoring a channel
	Deleting a channel
	Displaying channel status
	Starting and stopping a channel
	Resetting a Message Sequence Number (MSN)
	Resolving a channel
	Copying a channel

	Chapter 5. Administering local MQSeries objects
	Supporting application programs that use the MQI
	Performing local administration tasks using MQSC commands
	Before you start
	MQSeries object names
	Case sensitivity on MQSC commands

	Using the MQSC facility interactively
	Feedback from MQSCs
	Ending interactive input to MQSC
	Displaying queue manager attributes
	Using a queue manager that is not the default
	Altering queue manager attributes

	Running MQSC commands from text files
	Using MQSC command files
	Using MQSC reports
	Running the supplied MQSC command file
	Using runmqsc to verify commands

	Resolving problems with MQSC
	Working with local queues
	Defining a local queue
	Changing the physical file size for queues
	Defining a dead-letter queue
	Displaying default object attributes
	Copying a local queue definition
	Changing local queue attributes
	Changing the volume of a local queue
	Changing the options for a local queue
	Reassigning objects to status servers and queue servers
	Clearing a local queue
	Deleting a local queue
	Browsing queues

	Working with alias queues
	Defining an alias queue
	Using other commands with queue aliases

	Working with model queues
	Defining a model queue
	Using other commands with model queues

	Managing objects for triggering
	Defining an application queue for triggering
	Defining an initiation queue
	Creating a process definition
	Displaying your process definition

	Chapter 6. Automating administration tasks
	PCF commands
	Attributes in MQSC and PCFs
	Escape PCFs
	Using the MQAI to simplify the use of PCFs

	Managing the command server for remote administration
	Starting the command server
	Displaying the status of the command server
	Stopping a command server

	Chapter 7. Administering remote MQSeries objects
	Channels, clusters and remote queuing
	Remote administration using clusters

	Administering a remote queue manager
	Preparing queue managers for remote administration
	Preparing channels and transmission queues for remoteadministration
	Defining channels and transmission queues
	Starting the channels
	Automatic definition of channels

	Issuing MQSC commands remotely
	Working with queue managers on MVS/ESA

	Recommendations for remote queuing

	If you have problems using MQSC remotely
	Creating a local definition of a remote queue
	Understanding how local definitions of remote queues work
	Example
	How it works

	An alternative way of putting messages on a remote queue
	Using other commands with remote queues
	Creating a transmission queue
	Default transmission queues

	Using remote queue definitions as aliases
	Queue manager aliases
	Reply-to queue aliases

	Data conversion
	When a queue manager cannot convert messages in built-informats
	File CCSID
	Default data conversion

	Conversion of messages in user-defined formats

	Changing the queue manager CCSID

	Chapter 8. Protecting MQSeries objects
	Why you need to protect MQSeries resources
	Understanding user IDs in the MQM user group
	Getting additional information

	Understanding the Object Authority Manager (OAM)
	How the OAM works
	Managing access through user groups
	When a user belongs to more than one user group
	Group sets and the primary group

	Protecting resources with the OAM
	Using groups for authorizations
	Disabling the Object Authority Manager (OAM)

	Using the Object Authority Manager (OAM) commands
	What to specify when using the OAM commands
	Authorization lists

	Using the altmqusr command
	Using the dspmqusr command
	Using the setmqaut command
	Authority commands and installable services

	Access authorizations
	Display authority command
	Object Authority Manager (OAM) guidelines
	User IDs
	Queue manager volumes
	Queues
	Alternate user authority
	Context authority
	Remote security considerations
	Channel command security
	PCF commands
	MQSC channel commands

	Understanding the authorization specification tables
	MQI authorizations
	Administration authorizations
	Authorizations for MQSC commands in escape PCFs
	Authorizations for PCF commands

	Understanding authorization files
	The principal database
	The OAM Database
	Class authorization records
	All-class authorization record

	Chapter 9. MQSeries dead-letter queue handler
	Invoking the DLQ handler
	DLQ handler rules table
	Control data
	Rules (patterns and actions)
	Pattern-matching keywords
	Action keywords

	Rules table conventions
	How the rules table is processed
	Ensuring that all DLQ messages are processed

	Example DLQ handler rules table

	Chapter 10. Instrumentation and EMS events
	MQSeries instrumentation events
	Types of event
	Event notification through event queues
	Using triggered event queues
	Enabling instrumentation events
	Event messages

	Event Management Service (EMS) events
	EMS template files supplied with MQSeries for Compaq NSK
	Integrating the MQSeries EMS event templates
	Defining the PARAM MQEMSEVENTS
	Using an alternative collector
	Writing programs to process MQSeries EMS events

	Chapter 11. Understanding transactional support andmessaging
	Using the NonStop TM/MP (Transaction Manager)
	Syncpointing limits
	No-syncpoint operations on persistent messages
	Syncpoint operations on non-persistent messages

	Configuration requirements for TM/MP and MQSeries for Compaq NSK
	Monitoring
	Audit-trail size
	Resource manager configuration
	Troubleshooting

	Chapter 12. Recovery and restart
	Fault tolerance and recovery
	Backing up and restoring MQSeries
	Backing up MQSeries
	Restoring MQSeries

	Recovery and restart of status servers and queue servers
	Disaster recovery using RDF

	Chapter 13. Configuration files
	What are configuration files?
	MQSeries configuration file (MQSINI)
	What the MQSeries configuration file contains

	Queue manager configuration file (QMINI)
	What the queue manager configuration file contains
	Example queue manager configuration file

	Editing configuration files
	Implementing changes to configuration files
	Recommendations for configuration files

	Chapter 14. Problem determination
	Making a preliminary check
	Has MQSeries run successfully previously?
	Are there any error messages?
	Are there any return codes explaining the problem?
	Can you reproduce the problem?
	Have any changes been made since the last successful run?
	Has the application run successfully before?
	If the application has not run successfully previously
	Does the problem affect specific parts of the network?
	Does the problem occur at specific times of the day?
	Is the problem intermittent?
	Have you applied any service updates?

	Common programming errors
	Problems with commands

	What to do next
	Have you obtained incorrect output?
	Have you failed to receive a response from a PCF command?
	Are some of your queues failing?
	Does the problem affect only remote queues?
	Is your application or MQSeries for Compaq NSK runningslowly?

	Application design considerations
	Effect of message length
	Searching for a particular message
	Queues that contain messages of different lengths
	Frequency of syncpoints
	Use of the MQPUT1 call

	Incorrect output
	Messages that do not appear on the queue
	Messages that contain unexpected or corrupted information
	Problems with incorrect output when using distributed queues

	Error logs
	Log files
	Early errors
	Operator messages
	Deciphering EC numbers in the MQERRLG file

	Example error log
	EMS events

	Dead-letter queues
	Configuration files and problem determination
	Using MQSeries trace
	Trace file names
	Sample trace data

	First Failure Support Technology™ (FFST)
	How to examine the FFSTs

	Chapter 15. Scalability and performance
	Introduction
	Designing new applications for performance and scalability
	Designing to minimize or eliminate the use of sharedresources
	Performance tuning is inherently iterative

	Persistent messages
	Non-persistent messages
	Non-persistent messages and channels

	Queue servers and queue files
	Persistent message storage
	Non-persistent message storage
	Queue server CPU distribution
	Re-assigning queues to queue servers using altmqfls
	Cluster transmit queue: SYSTEM.CLUSTER.TRANSMIT.QUEUE
	Changing queue file placement using altmqfls
	Partitioning queue files
	Message overflow files
	Buffering messages during browsing
	Other queue server options
	Load on Startup
	Lock In Cache
	Checkpoint NPM
	Measure Counter

	CPU assignment
	FASTPATH binding application programs
	Background
	Reducing MQI overhead
	Enabling FASTPATH binding
	Restrictions when using FASTPATH binding

	Chapter 16. Data integrity and availability
	Data integrity
	Availability
	Persistent and non-persistent data
	Persistent messages
	Non-persistent messages

	Database consistency
	Internal database consistency
	External database consistency
	OpenTMF
	NonStop Tuxedo
	Interleaved application transactions
	MQSeries' critical database files

	Critical processes
	Clusters
	Configuration considerations for availability
	Configuration considerations for data integrity

	Part 2. Reference
	Chapter 17. The MQSeries control commands
	Control commands summary
	Using names
	How to read syntax diagrams
	altmqfls (Alter queue file attributes)
	altmqusr (Alter MQSeries user information)
	cleanrdf (Perform RDF housekeeping)
	cnvclchl (Convert client channel definitions)
	crtmqcvx (Data conversion)
	crtmqm (Create queue manager)
	dltmqm (Delete queue manager)
	dspmqaut (Display authority)
	dspmqcsv (Display command server)
	dspmqfls (Display MQSeries file attributes)
	dspmqtrc (Display MQSeries formatted trace output)
	dspmqusr (Display MQSeries user information)
	endmqcsv (End command server)
	endmqm (End queue manager)
	endmqtrc (End MQSeries trace)
	instmqm (Install MQSeries for Compaq NSK)
	runmqchi (Run channel initiator)
	runmqchl (Run channel)
	runmqdlq (Run dead-letter queue handler)
	runmqlsr (Run listener)
	runmqsc (Run MQSeries commands)
	runmqtrm (Start trigger monitor)
	setmqaut (Set/reset authority)
	strmqcsv (Start command server)
	strmqm (Start queue manager)
	strmqtrc (Start MQSeries trace)
	upgmqm (Upgrade V2.2.0.1 queue manager)

	Part 3. Appendixes
	Appendix A. MQSeries for Compaq NSK at a glance
	Program and part number
	Hardware requirements
	Software requirements
	Security
	Maintenance functions
	Compatibility
	Supported compilers

	License management
	Language selection
	Internationalization

	Appendix B. System defaults
	Appendix C. Setting TACL environment variables forMQSeries for Compaq NSK
	Queue server tuning parameters

	Appendix D. Comparing command sets
	Appendix E. Stopping and removing queue managersmanually
	Stopping a queue manager manually
	Removing queue managers manually

	Appendix F. MQSeries and Compaq NonStop Server for Java
	Transactional considerations

	Appendix G. MQSC supported by MQSeries for Compaq NSK
	Attributes of MQSC
	Channel Status information (DISPLAY CHSTATUS)
	MAXUMSGS and MAXHANDS
	HARDENBO and NOHARDENBO
	CONNAME
	USERDATA for triggered programs

	Using exit names as attributes of objects

	Appendix H. Application Programming Reference
	Structure data types
	MQCNO – Connect Options
	MQGMO – Get Message Options
	MQMD – Message Descriptor
	MQPMO – Put Message Options

	MQI calls
	MQCLOSE – Close Object
	MQDISC – Disconnect queue manager
	MQINQ – Inquire about object attributes
	MQOPEN – Open Object
	MQSET– Set Object Attributes

	Attributes of MQSeries objects
	Attributes for all queues
	Attributes of local and model queues
	Attributes of queue managers

	Data conversion

	Appendix I. Building and running applications
	Writing applications
	Using MQGET Wait Interval and Channel DISCINT and HBINT
	Unit of work (transaction) management
	General design considerations
	XA interface
	MQGMO_BROWSE_* with MQGMO_LOCK
	Triggered applications

	Supported languages and environments
	Considerations for creating applications with threads

	Compiling and binding applications
	FASTPATH versus STANDARD bindings
	STANDARD bindings
	FASTPATH bindings

	Running applications

	Appendix J. MQSeries Administration Interface (MQAI)
	Appendix K. MQSeries for Compaq NSK sample programs
	Building C sample programs
	Non-Native (using non-native static library MQMLIB)
	Native (using native static library MQMLIBN)
	Native (using SRL MQSRLLIB)

	Building C++ sample programs
	Native (using native static library MQMLIBN)
	Native (using SRL MQSRLLIB)

	Building COBOL sample programs
	Non-Native (using non-native static libary MQMLIB)
	Native (using native static library MQMLIBN)
	Native (using SRL MQSRLLIB)

	Building TAL sample programs
	Non-Native (using non-native static library MQMLIB)

	Building sample programs on OSS (Native mode only)

	Appendix L. User exits
	Supported user exits
	Exit name format
	MQ_LOAD_ENTRY_POINT_EXIT - Loading User Exits
	MQLXP - MQ_LOAD_ENTRY_POINT_EXIT parameter structure
	Fields
	MQ_LOAD_ENTRY_POINT_EXIT example

	Installing user exits
	Installing an exit in the MQSeries private SRL
	Installing an exit in the MQSeries native static library
	Installing an exit in the MQSeries non-native static library

	Appendix M. Setting up communications
	SNA channels
	LU 6.2 responder processes
	SNAX TP dispatching
	ICE TP dispatching
	Sample SNA environment setup
	Using Insession ICE

	TCP/IP channels
	Communications examples
	SNAX communications example
	SCF SNA line configuration file
	SYSGEN parameters
	SNAX/APC process configuration
	Channel definitions

	ICE communications example
	Configuring the ICE process
	Defining the line and APC information
	Channel definitions for ICE

	TCP/IP communications example
	TCPConfig stanza in QMINI
	Defining a TCP/IP sender channel
	Defining a TCP/IP receiver channel
	Defining a TCP/IP sender channel on the remote system
	Configuring QMINI to support multiple TCP/IP listeners

	Appendix N. MQSeries clients
	Client support
	Security considerations

	Appendix O. Programmable System Management
	Instrumentation events
	Event types supported by MQSeries for Compaq NSK
	Event-message format

	Programmable command formats (PCFs)
	PCF message descriptor
	PCF header (MQCFH)
	PCF string parameter (MQCFST)
	PCF integer list parameter (MQCFIL)
	PCF integer (MQCFIN)
	PCF string list (MQCFSL)
	PCF commands supported by MQSeries for Compaq NSK
	PCF command responses

	Installable services
	Authorization service interface
	Name service interface

	Appendix P. EMS event template used by MQSeries forCompaq NSK
	Appendix Q. Notices
	Trademarks

	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	HTML format
	Portable Document Format (PDF)
	BookManager® format
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet
	Related publications

	Glossary of terms and abbreviations
	Index
	Sending your comments to IBM

