
WebSphere MQ for z/VSE

WebSphere MQ for z/VSE Version 3.0.0
System Management Guide
Version 3 Release 0 Modification 0

GC34-6981-04

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page
1091.

Fifth edition (January 2013)

This edition applies to WebSphere MQ for z/VSE Version 3 Release 0 Modification 0 and to any subsequent releases
and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2008, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

About this book xiii
Who this book is for xiii
What you need to know to understand this book xiii
How to use this book xiii

Summary of changes xv
Changes in this edition (GC34-6981-04) xv
Changes in GC34-6981-03 xv
Changes in GC34-6981-02 xvi
Changes in GC34-6981-01 xvi
Changes in GC34-6981-00 xvii

Chapter 1. Introduction 1
WebSphere MQ and message queuing 1

Time-independent applications 1
Message-driven processing 1
Synchronous applications 1

Messages and queues 1
What messages are 2
What queues are 2

Objects 3
Object names 3
Managing objects 4
WebSphere MQ queue managers 4
WebSphere MQ queues 5
Channels 7
Namelists 9
Listeners 10
Services 10

Clients and servers 10
WebSphere MQ applications in a client-server
environment 10

WebSphere MQ and CICS 11

Chapter 2. Installation 13
Contents of the library tape 13
Prerequisites 15

Program number 15
Hardware requirements 15
Software requirements 15
Features 15
Connectivity 16
Compilers supported for WebSphere MQ for
z/VSE applications 16
Delivery 16

Installing WebSphere MQ for z/VSE - all users . . 16
Installation checkpoint (WebSphere MQ
installation) 18

Procedures for new users 18

Allocate and initialize the required WebSphere
MQ files 18
Installing security 19
Changing the MQER TDQ definition 21
Changing the MQXP TDQ definition 22
Changing the MQIE TDQ definition 23
Changing the MQAC TDQ definition 24
Other considerations for installing security . . . 25
Preparing CICS for WebSphere MQ 25
Modify CICS start-up deck 26
Recovery and restart 26
Uppercase translation 27
Installation checkpoint (CICS) 27

Starting WebSphere MQ 27
WebSphere MQ initialization 28
Checking MQ is active. 31

WebSphere MQ installation verification test . . . 32
Local queue verification test 32
Installation checkpoint (installation verification
test) 36
Remote queue verification test 36
Default object definitions 37

Post installation verification test CICS modifications 38
Migration procedures for existing users 39

Chapter 3. Configuring network
communications 43
WebSphere MQ system definitions required for
ACF/VTAM 43

Definitions in CICS for LU 6.2 connections . . . 43
Connection definition 45
Session definition 46

WebSphere MQ for z/VSE configuration guidelines 46
Queue manager configuration guidelines . . . 47
Channel configuration guidelines 48
Queue configuration guidelines. 51

Permitted number of channels 54
Example configuration. 54
Channel exits 55

Channel security exits 55
Channel send and receive exits 56
Channel message exits. 58
Channel auto-definition exit 59
Configuring channel exits 60
Configuration using WebSphere MQ Explorer . . 66
Writing and compiling channel-exit programs . . 66
Exit programs in CICS. 67
Channel-exit calls and data structures 67
Auto-definition exit and data structures 71
Channel exit sample 72

Adopt MCA 72
Adopt MCA parameters 73

Bullet-proof channels 74
Bullet-proof channel parameters 75

© Copyright IBM Corp. 2008, 2013 iii

Chapter 4. System operation 77
WebSphere MQ master terminal displays 77

General panel layout 78
WebSphere MQ master terminal (MQMT) – main
menu 79
Master Terminal transactions 80
Operator screen action keys 81

Configuration functions 81
Global system definition 82
Queue definitions 96
Channel definitions 112
Code page definitions 120
Listener definitions 124
Service definitions 127
Namelist definitions 131
Global system definition display 133
Queue definition display 134
Channel definition display 134
Code page definition display 134

Operations functions 135
Start/Stop queue 135
Open / Close channel 138
Reset message sequence number 139
Initialization of system 141
Queue maintenance 142

Monitor functions 144
Monitor queues 145
Monitor channel 147

Message monitoring 149
Controlling queue managers for activity
recording 150
Controlling queue managers for trace-route
messaging 151

Browse function 152
Administration using the WebSphere MQ Explorer 154

What you can do with the WebSphere MQ
Explorer 155
Setting up the WebSphere MQ Explorer . . . 157
Using the WebSphere MQ Explorer 160

Administration via a web browser 161
CICS Web Support 161
CWS WebSphere MQ modules 162
Using CWS with WebSphere MQ 163

Communications processes 164
Message persistence 164

MQPER_PERSISTENT 164
MQPER_NOT_PERSISTENT 165
MQPER_PERSISTENCE_AS_Q_DEF 165

Message expiry. 165
Viewing error logs. 167

Chapter 5. Utilities and interfaces. . . 169
System Administration Control Interface 169

Transactional interface (MQCL) 169
Programmable interface (MQPCMD) 170

Batch utilities 173
MQPUTIL program 173
MQPEXCIC program 177

Using the batch interface 178
Batch interface identifier. 179
Batch interface auto-start 180

Starting the batch interface 180
Stopping the batch interface 180
How to use the batch interface 181
Data integrity 181
Verifying the batch interface 182
Restrictions on using the batch interface . . . 182
Batch interface and the client bridge. 182

VSAM file maintenance 183
Delete all function 183
MQPREORG function 184
Multiple queues sharing a VSAM cluster . . . 184
Reorganizing queue files 185

WebSphere MQ-CICS Bridge 186
When to use the CICS bridge 187
System configuration for the CICS bridge . . . 187
Running CICS DPL programs 187
Running CICS 3270 transactions 188
Customizing the CICS bridge 189
Starting the CICS bridge. 190
Shutting down the CICS bridge 192
Restarting the monitor 192
Security considerations for the CICS bridge . . 192
Using and writing WebSphere MQ-CICS bridge
applications 193

Chapter 6. Problem determination . . 195
WebSphere MQ setup and local queue operation 195

Has WebSphere MQ run successfully before? 195
Is local queue operation working? 195

Network problems 196
Investigating SNA problems 196
Investigating TCP/IP problems 197
Investigating SSL problems 198
Does the problem affect specific parts of the
network? 198

Applications. 199
Are there any error messages?. 199
Are there any return codes explaining the
problem? 199
Can you reproduce the problem? 199
Have any changes been made since the last
successful run? 199
Has the application run successfully before? . . 200
Using the WebSphere MQ API monitor 201

Other areas of investigation 204
Have you obtained incorrect output? 204
Does the problem occur at specific times of the
day? 204
Is the problem intermittent? 204
Have you applied any service updates? . . . 205
Does the problem affect only remote queues? 205
Is your application or WebSphere MQ for
z/VSE running slowly? 205

Application design considerations 206
Effect of message length 206
Searching for a particular message 206
Queues that contain messages of different
lengths 206
Use of the MQPUT1 call. 207

Incorrect output 207
Messages that do not appear on the queue . . 207

iv WebSphere MQ for z/VSE System Management Guide

Messages that contain unexpected or corrupted
information 208
Problems with incorrect output when using
distributed queues. 208

System log 209
Dead-letter queue 210
Using WebSphere MQ trace 212
Problem determination with clients 212

Terminating clients 212
Error messages with clients. 213

Problems with SSL enabled channels 213
SSL availability 213
Cipher specification support 214
Client authentication failure 215
General channel failure 215

Chapter 7. Message data conversion 217
Data conversion exit programs 218
Using LE/VSE for conversion 218
Building a conversion exit program 219

Chapter 8. Programmable system
management. 221
Instrumentation events 221

Queue manager events 222
Channel events 224
Performance events 224
Command events 227
Configuration events 229
Enabling and disabling events 230
Event queues 232
Format of event messages 233
Event messages. 234

Programmable command formats 235
Introduction to Programmable Command
Formats (PCFs) 235
Preparing WebSphere MQ for PCF 235
Using PCFs 237
Error codes applicable to all commands . . . 241
Definitions of the PCFs 242
Data responses to commands 381

Accounting and statistics messages 434
Accounting messages. 434
Statistics messages. 438
Accounting and statistics message reference . . 442

Real-time monitoring 482
Attributes that control real-time monitoring . . 483
Displaying queue and channel monitoring data 484

Structures used for commands and responses . . 485
MQCFH - PCF header 486
MQCFIF - PCF integer filter parameter 489
MQCFIN - PCF integer parameter 491
MQCFSF - PCF string filter parameter 492
MQCFST - PCF string parameter 495
MQCFIL - PCF integer list parameter 497
MQCFSL - PCF string list parameter 499
MQCFBS - PCF byte string parameter 501
MQCFIL64 - PCF 64-bit integer list parameter 503

Chapter 9. WebSphere MQ commands 507

Rules for using WebSphere MQ commands . . . 507
Issuing WebSphere MQ commands 508

MQSC utility program 508
MQPMQSC sample JCL 509
WebSphere MQ command prerequisites . . . 510

Descriptions of the WebSphere MQ commands . . 510
WHERE 511
WebSphere MQ channel commands 512
WebSphere MQ channel authentication 532
WebSphere MQ channel listener 539
WebSphere MQ connection commands 544
WebSphere MQ namelist commands. 548
WebSphere MQ queue commands 550
WebSphere MQ queue manager commands . . 577
WebSphere MQ Service 589
WebSphere MQ Subscription 594
WebSphere MQ Topic 606
WebSphere MQ meta commands 619

Chapter 10. WebSphere MQ clients 623
Introduction to WebSphere MQ clients 623

WebSphere MQ client overview 623
Purpose of WebSphere MQ clients 624

Installing WebSphere MQ clients 624
Prerequisites for the WebSphere MQ client . . 624
Installing WebSphere MQ client components 625
Configuring communication links 626
Verifying the installation 627
WebSphere MQ for z/VSE client differences . . 628

System administration for clients 630
WebSphere MQ client security 630
Client and server connection channels 631
WebSphere MQ client environment variables 633

Application programming for clients 634
Using the message queue interface (MQI) . . . 634
Building applications for WebSphere MQ clients 636
The WebSphere MQ client bridge. 637
Running applications on WebSphere MQ clients 638
Solving WebSphere MQ client problems . . . 640

Chapter 11. Secure Sockets Layer
services. 643
Installing the SSL feature 643
Configuring the queue manager for SSL 644

TCP/IP settings 644
SSL parameters 645

Configuring a channel for SSL. 646
SSL channel parameters 647

Activating SSL services 648

Chapter 12. Security 651
Why you need to protect WebSphere MQ resources 651
Implementing WebSphere MQ security 651

Resources you can protect 652
Connection security 652
Queue and message security 653
Namelist security 653
Command security 653
Command resource security 654
Dataset security 654

Contents v

||

||
||

Using security classes and resources 655
Resources 655

Switch resources 656
Protecting WebSphere MQ resources. 657
Resource definitions for connection security . . 657
Resource definitions for queue security 660
Resource definitions for namelist security . . . 665
Resource definitions for command security . . 666
Resource definitions for command resource
security 671
Security implementation checklist 674

Chapter 13. API exits 677
Why you would use API exits 677
Configuring API exits 677
How API exits work 678
How to write an API exit 679

Compiling API exits 681
Linking API exits 681

API Exit reference information 681
General usage notes 682
MQACH - API exit chain header 683
MQAXC - API exit context 685
MQAXP - API exit parameter 689
MQXEP - Register entry point 696
MQ_BACK_EXIT - Back out changes 699
MQ_CLOSE_EXIT - Close object 699
MQ_CMIT_EXIT - Commit changes 700
MQ_CONNX_EXIT - Connect queue manager
(extended) 701
MQ_DISC_EXIT - Disconnect queue manager 702
MQ_GET_EXIT - Get message 703
MQ_INIT_EXIT - Initialize exit environment . . 704
MQ_INQ_EXIT - Inquire object attributes . . . 705
MQ_OPEN_EXIT - Open object 706
MQ_PUT_EXIT - Put message 707
MQ_SET_EXIT - Set object attributes 708
MQ_TERM_EXIT - Terminate exit environment 709

Appendix A. CICS control table
definitions 711
Sample file control table entries 711
Sample destination control table entry 714
Sample JCL file definition for CICS deck 715
Sample JCL to create CICS CSD group 716

Appendix B. Application Programming
Reference 717
Structure data types 717

MQBMHO – Buffer to message handle options 718
MQCHARV – Variable-length string 720
MQCMHO – Create message handle options 723
MQDLH – Dead-letter header 726
MQDH – Distribution Header 730
MQDMHO – Delete message handle options 736
MQDMPO – Delete message properties options 738
MQGMO – Get message options 740
MQIMPO – Inquire message property options 764
MQMD – Message descriptor 774
MQMDE – Message descriptor extension . . . 806

MQMHBO – Message handle to buffer options 810
MQOD – Object descriptor 813
MQOR - Object Record 820
MQPD – Property descriptor 821
MQPMO – Put message options 826
MQPMR – Put message record 843
MQRFH2 - Rules and formatting header 2. . . 843
MQRR – Response record 851
MQSD – Subscription descriptor 852
MQSMPO – Set message property options. . . 859
MQSRO - Subscription request options 862
MQTM – Trigger message 863
MQXQH – Transmission-queue header 866

MQI calls. 870
MQBACK - Back out changes 871
MQBUFMH - Convert buffer into message
handle. 872
MQCLOSE - Close object 875
MQCMIT - Commit changes 878
MQCONN - Connect queue manager 880
MQCRTMH - Create message handle 881
MQDISC - Disconnect queue manager 883
MQDLTMH - Delete message handle 885
MQDLTMP - Delete message property. . . . 886
MQGET - Get message 888
MQINQ - Inquire about object attributes . . . 893
MQINQMP - Inquire message property . . . 905
MQMHBUF - Convert message handle into
buffer 910
MQOPEN - Open object 914
MQPUT - Put message 918
MQPUT1 - Put one message 921
MQSET - Set object attributes 925
MQSETMP - Set message property 931
MQSUB - Register subscription 934
MQSUBRQ - Subscription request 937

Attributes of WebSphere MQ objects 939
Reason codes 940

Appendix C. Application Programming
Guidance 941
Application environment overview 941
Sample source code overview 942

Compiling your application program 942
Developing applications in the C and PL/I
programming languages. 942

Application design guidelines 943
Application syncpoint 943
Application rollback 945
Triggering 945
Queue depth 948

Distribution lists 948
Opening distribution lists 949
Putting messages to a distribution list 952
Closing distribution lists. 953
Object configuration 953

Dynamic queues 955
Properties of temporary dynamic queues . . . 955
Properties of permanent dynamic queues . . . 955
Uses of dynamic queues. 956
Recommendations for uses of dynamic queues 956

vi WebSphere MQ for z/VSE System Management Guide

||

||

||
||

Creating dynamic queues 956
Closing dynamic queues. 957
Queue definition types 958
Dynamic queue name 959

Message grouping and segmentation 959
Key concepts and definitions 959
Message groups 960
Message segmentation 961
Logical and physical ordering 963
Reports and segmented messages 969

Message properties 971
Message properties and message length . . . 971
Property names. 972
Property name restrictions 973
Message descriptor fields as properties 975
Property data types and values 975

Appendix D. Sample JCL and
programs 977
Sample JCL 977

Sample JCL for MQPUTIL 977
Sample JCL for MQPEXCIC 978
Sample JCL for MQPMQSC 978

Sample programs 979
Sample COBOL MQI program. 979
Sample C MQI program 983
Sample PL/I MQI program. 987

Appendix E. Example configuration -
WebSphere MQ for z/VSE Version
3.0.0 991
Configuration parameters for an LU 6.2 connection 991

Configuration worksheet 991
Explanation of terms 993

Establishing an LU 6.2 connection 994
Defining a connection 994
Defining a session 994
Installing the new group definition 995
What next? 995

Establishing a TCP/IP connection 995
WebSphere MQ for z/VSE configuration 996

Configuring channels. 996
Defining a local queue 999
Defining a remote queue 1001
Defining a SNA LU 6.2 sender channel . . . 1003
Defining a SNA LU 6.2 receiver channel . . . 1005
Defining a TCP/IP sender channel 1006
Defining a TCP/IP receiver channel 1007

Appendix F. WebSphere MQ server 1009
Server MQI support 1009
Security considerations 1010

Queue manager security 1010
Channel exits 1011

Code page conversion 1011
Creating code page conversion tables 1011

Appendix G. System messages . . . 1015
API system messages 1015

WebSphere MQ message definitions 1016
WebSphere MQ messages 1016

WebSphere MQ message codes 1016
Console Messages 1052
Batch Interface Console Messages 1053
Automatic reorganization console messages . . . 1054

Appendix H. Security implementation 1055
Before you install. 1055
External security manager configuration 1057
Basic Security Manager (BSM) configuration. . . 1057
System and application users. 1058
WebSphere MQ datasets 1059
Protecting transactions 1061
Resource ownership 1061
Resource protection 1061
Namelist permissions 1063
Batch user permissions 1063
Client user permissions. 1064
Command permissions 1064
Command resource permissions 1065
Trigger permissions 1067
CICS startup 1067
Starting WebSphere MQ 1067
Stopping WebSphere MQ 1068

Appendix I. WMQZVSE SOAP
transport to z/VSE SOAP server . . . 1071
Create web service from a CICS application . . . 1071

Verifying the WebSphere MQ transport for
SOAP 1073
Running the WebSphere MQ for z/VSE sample
java client using Axis 1073

Appendix J. Publish/Subscribe . . . 1075
Topics 1075

Topic strings 1076
Topic trees 1077
Administrative topic objects 1078
Administrative panels 1079

Post PTF application 1083
Notes 1083
Security 1084

Grant access to a user to publish to a topic 1085
Grant access for subscribe 1085

Appendix K. Channel authentication
records 1087
Blocking IP addresses 1087
Blocking user IDs 1088
Blocking queue manager names 1088
Mapping IP addresses to user IDs to be used . . 1089
Mapping queue manager names to user IDs to be
used 1089
Mapping user IDs asserted by a client to user IDs
to be used 1089
Interaction between channel authentication
records 1089
WebSphere MQ Explorer 1090

Contents vii

|
||
||
|
||
|
||

||
||
||
||
||
||
||
||
||
||
||

|
||
||
||
||
||
|
||
|
||
|
||
||

Notices 1091
Copyright license. 1092
Trademarks 1092

Glossary of terms and abbreviations 1093

Bibliography 1105
WebSphere MQ cross-platform publications . . . 1105

An Introduction to Messaging and Queuing 1105
WebSphere MQ Application Programming
Guide 1105
WebSphere MQ Application Programming
Reference 1105
WebSphere MQ Clients 1106
WebSphere MQ Constants 1106
Monitoring WebSphere MQ 1106
WebSphere MQ Intercommunication 1106
WebSphere MQ Messages 1107
WebSphere MQ Migration Information . . . 1107
WebSphere MQ Programmable Command
Formats and Administration Interface 1107

WebSphere MQ Publish/Subscribe User's
Guide 1108
WebSphere MQ Queue Manager Clusters. . . 1108
WebSphere MQ Script (MQSC) Command
Reference 1108
WebSphere MQ Security 1108
WebSphere MQ System Administration Guide 1109
WebSphere MQ Using C++ 1109
WebSphere MQ Using Java 1109

WebSphere MQ platform-specific publications 1110
WebSphere MQ for AIX 1110
WebSphere MQ for HP-UX 1110
WebSphere MQ for i5/OS 1110
WebSphere MQ for Linux 1111
WebSphere MQ for Solaris 1111
WebSphere MQ for Windows 1112
WebSphere MQ for z/OS 1112

Softcopy books 1114
Product family Web site 1114

Index 1115

viii WebSphere MQ for z/VSE System Management Guide

Figures

1. Sender-receiver channels 8
2. Requester-server channels 8
3. Requester-sender channels 9
4. Server-receiver channels. 9
5. Default global system definition. 29
6. Master terminal main menu 32
7. TTPTST2 screen 33
8. Monitor queues screen 33
9. Browse Queue Records screen - status written 34

10. Browse Queue Records screen - status deleted 35
11. Definitions in CICS using RDO for parallel

session partner LU 44
12. Definitions in CICS for single-session capable

partner LU 44
13. Definitions in CICS singles-session capable LU 45
14. Outline WebSphere MQ channel definition 49
15. Outline WebSphere MQ extended queue

definition 52
16. Channel Definitions screen 60
17. Channel Exit Settings screen 61
18. Channel Send Exit Settings screen 62
19. Channel auto-definition exit screen. 63
20. Communication Setting, Adopt MCA

parameters 73
21. Channel Record, bullet-proof channel

parameter 75
22. Display screen relationships 78
23. General panel layout 79
24. Master terminal main menu 80
25. Configuration Main Menu 82
26. System queue manager information 84
27. Queue manager communications settings 86
28. Queue manager log and trace settings . . . 89
29. Queue Manager event settings 93
30. Queue manager MQ API settings 95
31. Queue main options screen 97
32. Local queue definition 98
33. Local queue extended definition 101
34. Model queue definition 105
35. Model queue extended definition 106
36. Remote queue definition 107
37. Alias queue definition 108
38. Alias queue manager definition 109
39. Alias queue reply definition. 110
40. Object list screen 111
41. Channel record 112
42. Channel list 116
43. Channel SSL parameters 117
44. Channel Exit settings 119
45. Channel chained-exit settings 120
46. Data conversion definitions 121
47. User code page definition 122
48. Code page object list screen 123
49. Namelists Definitions 131

50. Creating a namelist 132
51. Listing namelists 133
52. Global system definition display 134
53. Operations main menu 135
54. Start / Stop queue control screen 136
55. Open / Close Channel 138
56. Reset channel message sequence 140
57. Initialization of system 141
58. Maintain Queue Message Records 143
59. Monitor Main Menu 145
60. Monitor queues 145
61. Monitor Queues - detail 147
62. Monitor channel definitions 148
63. Monitor channel definitions - detail 149
64. Altering recording activity and trace route

option 151
65. Browse Queue Records 152
66. Browse Queue Records - Hex display 153
67. Browse Queue Records - Header display 153
68. Browse Queue Records - MQMD 154
69. MQCL syntax display 170
70. Batch interface identifier 179
71. API monitor 201
72. API monitor - browse 202
73. API monitor - hexadecimal format 202
74. API monitor - monitor information 203
75. Browsing the system log 210
76. Browsing the system log - explain 210
77. Browsing the dead-letter queue 211
78. Browsing the dead-letter queue - MQDLH 212
79. Global System Definition. 222
80. Extended definition 231
81. PCF parameters 236
82. System command and reply queues 509
83. Extract from WebSphere MQ for z/VSE client

trace 641
84. Queue manager communication settings 644
85. SSL parameters for a channel 646
86. API Exits screen 678
87. Queues, messages, and applications 941
88. Channel configuration panel 1007
89. Add MQ SOAP service 1071
90. Add Alias Queue Manager for MQ SOAP 1073
91. Simple publish/subscribe configuration 1075
92. Example of a topic tree 1078
93. Configuration Main Menu 1079
94. Topic Name Definition 1080
95. Topic Name List 1080
96. Maintain Topic Name 1081
97. Subscription Name Definition. 1081
98. Subscription Name List 1082
99. Maintain Subscription General 1082

100. Maintain Subscription Extended 1083

© Copyright IBM Corp. 2008, 2013 ix

||
||
||
||
||
||
||
||
||
||
||
||

x WebSphere MQ for z/VSE System Management Guide

Tables

1. Object Characteristics of Connection 45
2. CEMT I CONN display output. 46
3. CEDA V SESS display parameter settings 46
4. Example queue manager configuration 54
5. Example channel configuration 54
6. Example queue configuration 55
7. Identifying API calls 57
8. MQPUTIL program general syntax 174
9. Action 346

10. Monitoring levels 483
11. MQSC special characters 508
12. Valid actions 536
13. Supported SSL cipher specifications 647
14. SSL Peer Attribute types 648
15. Classes used by WebSphere MQ 655
16. Switch Resources 656
17. Access levels for queue security 660
18. Access levels for close options on permanent

dynamic queues 662
19. Access levels for namelist security 665
20. Command authority for PCF commands 667
21. Command authority for WebSphere MQ

commands 669
22. Command authority for MQMT options 670
23. Authority and profiles for listener and service

objects 671
24. Command resource authority for PCF

commands 672
25. Command resource authority for WebSphere

MQ commands 672
26. Command resource authority for MQMT

options 673
27. Command resource authority for MQMT

options 2.5 and 4.0 673
28. API exit copybooks 680
29. Fields in MQACH 683
30. Fields in MQAXC 685
31. Fields in MQAXP 689
32. Fields in MQBMHO 718
33. Initial values of fields in MQBMHO 719
34. Fields in MQCHARV 720
35. Initial values of fields in MQBCHARV 722
36. Fields in MQCMHO 723
37. Initial values of fields in MQBCCMHO 725
38. Fields in MQDLH 726
39. Fields in MQDH 731
40. Fields in MQDMHO 736
41. Initial values of fields in MQDMHO 737
42. Fields in MQDMPO 738

43. Initial values of fields in MQDMPO 740
44. Fields in MQGMO 741
45. Fields in MQIMPO. 764
46. Data type conversions supported by

MQIMPO 767
47. Initial values of fields in MQIMPO 772
48. Fields in MQMD 774
49. Fields in MQMDE 807
50. Fields in MQMHBO 811
51. Initial values of fields in MQMHBO 812
52. Fields in MQOD 813
53. Fields in MQOR 820
54. Fields in MQPD. 821
55. Initial values of fields in MQPD 825
56. Fields in MQPMO 826
57. Reply message handle transformation 828
58. Report message handle transformation 830
59. Source of user data 831
60. Fields in MQRFH2 844
61. NameValueCCSID (MQLONG) valid values 845
62. Data types of properties 848
63. Data types of properties 848
64. Initial values of fields in MQRFH2 849
65. Fields in MQRR. 851
66. Fields in MQSD. 852
67. Fields in MQSMPO 859
68. Initial values of fields in MQSMPO 861
69. Fields in MQSRO 862
70. Fields in MQTM 863
71. Fields in MQXQH 867
72. The use of Hobj with different subscription

options 936
73. Data types of properties 974
74. Message descriptor field syntax when

identifying a message property 975
75. Sample program files 979
76. Configuration worksheet for z/VSE using

APPC 991
77. Configuration worksheet for WebSphere MQ

for z/VSE. 996
78. PCF commands, profiles, and their access

levels 1084
79. MQSC commands, profiles, and their access

levels 1084
80. Access level required for topic security to

subscribe 1085
81. Access level required to profiles for topic

security for closure of a subscribe operation . 1086

© Copyright IBM Corp. 2008, 2013 xi

||

||

||

||

|
||

|
||
|
||
|
||
|
||

xii WebSphere MQ for z/VSE System Management Guide

About this book

WebSphere® for Version 3.0.0—referred to in this book as WebSphere MQ for
z/VSE® or simply WebSphere MQ, as the context permits—is part of the
WebSphere MQ family of products. These products provide application
programming services that enable application programs to communicate with each
other using message queues. This form of communication is referred to as commercial
messaging. The applications involved can exist on different nodes on a wide variety
of machine and operating system types. They use a common application
programming interface, called the Message Queuing Interface or MQI, so that
programs developed on one platform can be readily transferred to another.

This book describes the system administration aspects of WebSphere MQ for
z/VSE Version 3.0.0 and the services it provides to support commercial messaging
in a z/VSE environment. This includes managing the queues that applications use
to receive their messages, and ensuring that applications have access to the queues
that they require.

Who this book is for
Primarily, this book is for system administrators, and system programmers who
manage the configuration and administration tasks for WebSphere MQ. It is also
useful to application programmers who must have some understanding of
WebSphere MQ administration tasks.

What you need to know to understand this book
To use this book, you should have a good understanding of the z/VSE operating
system, and utilities associated with it. You do not need to have worked with
message queuing products before, but you should have an understanding of the
basic concepts of message queuing.

How to use this book
Read Chapter 1, “Introduction,” on page 1 first for an understanding of WebSphere
MQ for z/VSE.

The body of this book contains:
v Chapter 2, “Installation,” on page 13
v Chapter 3, “Configuring network communications,” on page 43
v Chapter 4, “System operation,” on page 77
v Chapter 5, “Utilities and interfaces,” on page 169
v Chapter 6, “Problem determination,” on page 195
v Chapter 7, “Message data conversion,” on page 217
v Chapter 8, “Programmable system management,” on page 221
v Chapter 9, “WebSphere MQ commands,” on page 507
v Chapter 11, “Secure Sockets Layer services,” on page 643
v Chapter 12, “Security,” on page 651
v Chapter 13, “API exits,” on page 677

At the back of the book there are some appendixes giving information (which will
be incorporated in the appropriate WebSphere MQ books at the next opportunity)
on these topics:

© Copyright IBM Corp. 2008, 2013 xiii

v Appendix A, “CICS control table definitions,” on page 711
v Appendix B, “Application Programming Reference,” on page 717
v Appendix C, “Application Programming Guidance,” on page 941
v Appendix D, “Sample JCL and programs,” on page 977
v Appendix E, “Example configuration - WebSphere MQ for z/VSE Version 3.0.0,”

on page 991
v Appendix F, “WebSphere MQ server,” on page 1009
v Appendix G, “System messages,” on page 1015
v Appendix H, “Security implementation,” on page 1055

xiv WebSphere MQ for z/VSE System Management Guide

Summary of changes

This section describes changes to this edition of the WebSphere MQ for z/VSE System
Management Guide.

Changes since the last edition of the MQSeries for VSE System Management Guide
are marked by vertical lines to the left of the changes.

Changes in this edition (GC34-6981-04)
The changes in this edition of the System Management Guide are updates and
additions to describe the new features and improvements associated with
WebSphere MQ for z/VSE V3.0.0.

In addition to minor changes throughout the manual, the major additions and
modifications to this edition include:
v The WebSphere MQ transport for SOAP provides a JMS transport for SOAP

A SOAP client using Apache Axis 1.4 platform can send a web service request in
a SOAP envelope to a z/VSE SOAP server using WebSphere MQ.
For more information, see Appendix I, “WMQZVSE SOAP transport to z/VSE
SOAP server,” on page 1071.

v Publish/Subscribe
Publish/subscribe messaging allows you to decouple the provider of
information from the consumers of that information. The sending application
and receiving application do not need to know anything about each other for the
information to be sent and received.
Before a point-to-point WebSphere MQ application can send a message to
another application, it needs to know something about that application. For
example, it needs to know the name of the queue to which to send the
information, and might also specify a queue manager name.
For more information see Appendix J, “Publish/Subscribe,” on page 1075.

v Channel Authentication
To exercise more precise control over the access granted to connecting systems at
a channel level, you can use channel authentication records.
For more information see “Inquire Channel Authentication Records” on page
308, “Set Channel Authentication Record” on page 345, “WebSphere MQ channel
authentication” on page 532, and Appendix K, “Channel authentication records,”
on page 1087.

Changes in GC34-6981-03
The changes in this edition of the System Management Guide are updates and
additions to describe the new features and improvements associated with
WebSphere MQ for z/VSE V3.0.0.

In addition to minor changes throughout the manual, the major additions and
modifications to this edition include:
v Message properties

© Copyright IBM Corp. 2008, 2013 xv

Use message properties to allow an application to select messages to process or
to retrieve information about a message without accessing MQMD or MQRFH2
headers. Message properties also facilitate communication between Websphere
MQ and JMS applications.
A message property is data associated with a message, consisting of a textual
name and a value of a particular type. You can use message properties to
include business data or state information without having to store it in the
application data. Applications do not have to access data in the MQ Message
Descriptor (MQMD) or MQRFH2 headers because fields in these data structures
can be accessed as message properties using Message Queue Interface (MQI)
function calls.
The use of message properties in WebSphere MQ mimics the use of properties in
JMS. This means that you can set properties in a JMS application and retrieve
them in a procedural WebSphere MQ application, or the other way around.

Changes in GC34-6981-02
The changes in this edition of the System Management Guide are updates and
additions to describe the new features and improvements associated with
WebSphere MQ for z/VSE V3.0.0.

In addition to minor changes throughout the manual, the major additions and
modifications to this edition include:
v Command, Configuration, and SSL events

Command events are notifications that an MQSC or PCF command has run
successfully.
Configuration events are notifications that are generated when an object is
created, changed, or deleted, and can also be generated by explicit requests.
SSL events are a type of channel event. The only Secure Sockets Layer (SSL or
TLS) event is the Channel SSL Error event. This event is reported when a
channel using SSL or TLS fails to establish an SSL connection.
For more information, see “Instrumentation events” on page 221.

v Listener and Service objects.

For more information, see:
– “WebSphere MQ channel listener” on page 539.
– “WebSphere MQ Service” on page 589.

v New WHERE keyword

The WHERE keyword is provided for the MQSC DISPLAY commands, and
integer filter structure (MQCFIF), string filter structure (MQCFSF) for the PCF
inquire commands. This allows you to filter the information displayed by one
(and only one) of the attributes objects.
For more information, see “WHERE” on page 511.

v Support for message monitoring.

For more information, see “Message monitoring” on page 149.

Changes in GC34-6981-01
The changes in this edition of the System Management Guide are updates and
additions to describe the new features and improvements associated with
WebSphere MQ for z/VSE V3.0.0.

Changes in GC34-6981-03

xvi WebSphere MQ for z/VSE System Management Guide

In addition to minor changes throughout the manual, the major additions and
modifications to this edition include:
v Accounting and statistics message generation

Accounting and statistics messages are generated intermittently by queue
managers to record information about the MQI operations performed by
WebSphere MQ applications, or to record information about the activities
occurring in a WebSphere MQ system. Accounting messages are used to record
information about the MQI operations performed by WebSphere MQ
applications. Statistics messages are used to record information about the
activities occurring in a WebSphere MQ system.
Refer to “Accounting and statistics messages” on page 434 for more information.

v Real-time monitoring

Real-time monitoring is a technique that allows you to determine the current
state of queues and channels within a queue manager. The information returned
is accurate at the moment the command was issued. A number of commands are
available that when issued return real-time information about queues and
channels. Information can be returned for one or more queues or channels and
can vary in quantity. For more information refer to “Real-time monitoring” on
page 482.
For information about real-time monitoring PCF commands refer to “Inquire
Channel Status” on page 315 and “Inquire Queue Status” on page 337.
For information about real-time monitoring MQSC commands refer to “DISPLAY
CHSTATUS” on page 521 and “DISPLAY QSTATUS” on page 572.

v SSL key reset

SSL-enabled channels negotiated a secret key used to encrypt and decrypt data
sent over a channel. For long running channels, this may present a security
exposure as the secret key may be discovered and used to view or modify
encrypted transmissions. For this reason, WebSphere MQ for z/VSE now
supports an SSL key reset feature where by the key can be renegotiated after a
configurable number of bytes have flowed over the channel.
Refer to “SSL reset count” on page 645 for more information.

v Connection commands

WebSphere MQ for z/VSE now supports connection commands. Connection
commands allow you to view information about active connections to the queue
manager, and to stop connections. Support extends to both PCF and MQSC
commands.
For PCF, refer to “Inquire Connection” on page 322 and “Stop Connection” on
page 353.
For MQSC, refer to “WebSphere MQ connection commands” on page 544.

Changes in GC34-6981-00
The changes in this new edition of the System Management Guide are updates and
additions to describe the new features and improvements associated with
WebSphere MQ for z/VSE, including the rebranding of MQSeries® to WebSphere
MQ, and the progression of VSE to z/VSE.

In addition to minor changes throughout the manual, the major additions and
modifications to this edition are:
v API exits: API exits let you write code that changes the behavior of WebSphere

MQ API calls, such as MQPUT and MQGET, and then insert that code
immediately before or immediately after those calls. The insertion is automatic;

Changes in GC34-6981-01

Summary of changes xvii

the queue manager drives the exit code at the registered points. On z/VSE,
WebSphere MQ supports a chain of up to eight API exits. API exits are described
in Chapter 13, “API exits,” on page 677.

v WebSphere MQ Explorer: WebSphere MQ for Windows and WebSphere MQ for
Linux (x86 platform) include an administration interface called the WebSphere
MQ Explorer to perform administration tasks as an alternative to using control
or MQSC commands. The WebSphere MQ Explorer presents information in a
style consistent with that of the Eclipse framework and the other plug-in
applications that Eclipse supports. This interface is enhanced to support remote
administration of both MQSeries for VSE V2.1.2 and WebSphere MQ for z/VSE
V3.0. WebSphere MQ Explorer is described in “Administration using the
WebSphere MQ Explorer” on page 154.

v Server and requester channels: Server and requestor channels are additional
channel types that allow queue managers to request messages from remote
systems, rather than wait for those systems to activate the flow. This means
messages can accumulate on a remote system until they are needed by the
queue manager. For more information about server and requester channels, refer
to “Message channels” on page 7.

v Chained message exits: Channel exit programs are called at defined places in
the processing carried out by Message Channel Agent (MCA) programs. These
are the communications that facilitate remote queuing to other queue managers
and client connectivity. On z/VSE, WebSphere MQ now supports a chain of up
to eight send, receive, and message exits. Refer to “Channel exits” on page 55
for more information.

Changes in GC34-6981-00

xviii WebSphere MQ for z/VSE System Management Guide

Chapter 1. Introduction

This chapter introduces WebSphere MQ for z/VSE from an administrator’s
perspective, and describes the basic concepts of WebSphere MQ and messaging.

WebSphere MQ and message queuing
WebSphere MQ lets z/VSE applications use message queuing to participate in
message-driven processing. Applications can communicate across different
platforms by using the appropriate message queuing software products. For
example, z/VSE and z/OS® applications can communicate through WebSphere MQ
for z/VSE and WebSphere MQ for z/OS respectively. The applications are shielded
from the mechanics of the underlying communications.

WebSphere MQ products implement a common application programming interface
(message queue interface or MQI) whatever platform the applications are run on.
This makes it easier to port applications from one platform to another.

The MQI is described in detail in the WebSphere MQ Application Programming
Reference manual and Appendix B, “Application Programming Reference,” on page
717.

Time-independent applications
With message queuing, the exchange of messages between the sending and
receiving programs is time independent. This means that the sending and receiving
applications are decoupled so that the sender can continue processing without
having to wait for the receiver to acknowledge the receipt of the message. In fact,
the target application does not even have to be running when the message is sent.
It can retrieve the message after it is started.

Message-driven processing
Applications can be automatically started by messages arriving on a queue using a
mechanism known as triggering. If necessary, the applications can be stopped when
the message or messages have been processed.

Synchronous applications
WebSphere MQ also provides for synchronous applications. An application can
wait for a message to arrive on a queue. For example, in a client/server
environment, a client application can place a message on a request queue (one
designated for client requests), and then wait for a response message on a reply
queue (one designated for server replies). The server application can wait for
request messages and send reply messages as requests are processed.

Messages and queues
Messages and queues are the basic components of a message queuing system.

© Copyright IBM Corp. 2008, 2013 1

What messages are
A message is a string of bytes that has meaning to the applications that use it.
Messages are used for transferring information from one application to another (or
to different parts of the same application). The applications can be running on the
same platform, or on different platforms.

WebSphere MQ messages have two parts; the application data and a message
descriptor. The content and structure of the application data is defined by the
application programs that use them. The message descriptor identifies the message
and contains other control information, such as the type of message and the
priority assigned to the message by the sending application.

The format of the message descriptor is defined by WebSphere MQ for z/VSE. For
a complete description of the message descriptor, see the WebSphere MQ Application
Programming Reference manual.

Message lengths
In WebSphere MQ for z/VSE, the maximum message length is 4 MB (where 1 MB
equals 1 048 576 bytes). In practice, the message length may be limited by:
v The maximum message length defined for the receiving queue.
v The maximum message length defined for the queue manager.
v The maximum message length defined by either the sending or receiving

application.
v The amount of storage available for the message.

This parameter is extremely important for WebSphere MQ for z/VSE. The
storage will be used from the CICS® partition in which the queue manager is
active.

It may take several messages to send all the information that an application
requires.

What queues are
A queue is a data structure that stores zero or more messages. The messages may
be put on the queue by applications or by a queue manager as part of its normal
operation.

Each queue belongs to a queue manager, which is responsible for maintaining it. The
queue manager puts the messages it receives on the appropriate queues.

Applications send and receive messages using MQI calls. For example, one
application can put a message on a queue, and another application can retrieve the
message from the same queue. The sending application opens the queue for put
operations by making an MQOPEN call. Then it issues an MQPUT call to put the
message onto that queue. When the receiving application opens the same queue
for gets, it can retrieve the message from the queue by issuing an MQGET call.

For more information about MQI calls, see the WebSphere MQ Application
Programming Reference manual.

WebSphere MQ for z/VSE supports predefined and dynamic queues:
v Predefined queues are those created by an administrator using the appropriate

command set, for example, those defined using the WebSphere MQ Master

What messages are

2 WebSphere MQ for z/VSE System Management Guide

Terminal (MQMT) utility. Predefined queues are permanent; they exist
independently of the applications that use them and survive WebSphere MQ for
z/VSE restarts.

v Dynamic queues are created by applications. An application can create a queue
using the MQOPEN MQI call. Queues created this way can be temporary or
permanent. A temporary dynamic queue is removed from the queue manager
when the application that created it closes the queue or terminates. A permanent
dynamic queue can be closed but not removed, and like predefined queues,
permanent dynamic queues can exist independently of the applications that use
them and survive WebSphere MQ for z/VSE restarts. Alternatively, an
application can choose to remove a permanent dynamic queue from the queue
manager using the MQCLOSE MQI call.

Retrieving messages from queues
In WebSphere MQ for z/VSE, suitably authorized applications can retrieve
messages from a queue according to these retrieval algorithms:
v First-in-first-out (FIFO).
v A program request for a specific message, identified by a message identifier or

correlation identifier.
v A program request for a specific message, identified by a combination of group

name and message sequence number. Getting messages in this way is described
in “Message grouping and segmentation” on page 959.

The MQGET request from the application determines the method used.

Objects
Many of the tasks described in this document involve manipulating WebSphere
MQ objects. In WebSphere MQ for z/VSE, there are six different types of object:
v Queue managers; see “WebSphere MQ queue managers” on page 4.
v Queues; see “WebSphere MQ queues” on page 5.
v Channels; see “Channels” on page 7.
v Namelists; see “Namelists” on page 9.
v Listeners; see “Listeners” on page 10.
v Services; see “Services” on page 10.

Object names
Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any
given message should be sent.

For the other types of object, each object has a name associated with it and can be
referenced in WebSphere MQ for z/VSE by that name. These names must be
unique within one queue manager and object type. For example, you can have a
queue and a channel with the same name, but you cannot have two queues with
the same name.

In WebSphere MQ, names can have a maximum of 48 characters, with the
exception of channel names, which have a maximum of 20 characters. Object names
can contain alphanumeric characters or any of the following special symbols:
% Percent
_ Underscore
. Dot

What queues are

Chapter 1. Introduction 3

/ Slash

Object names should not contain leading or embedded spaces.

Managing objects
WebSphere MQ provides commands for creating, altering, displaying, and deleting
objects through the panel driven WebSphere MQ Master Terminal (MQMT) system
administration transaction; see “WebSphere MQ master terminal (MQMT) – main
menu” on page 79 for further details.

You can perform some limited administration, for example, the starting and
stopping of queues and channels, by using the MQCL transaction. See Chapter 5,
“Utilities and interfaces,” on page 169 for further details.

Local and remote administration
Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through TCP/IP, and carry out administration there. In WebSphere
MQ, you can consider this as local administration because no channels are
involved, that is, the communication is managed by the operating system.

Remote administration of WebSphere MQ for z/VSE is possible using
Programmable Command Format (PCF) messages. These are special binary
messages that can be used to instruct the queue namager to create, modify, or
delete objects owned by the queue manager. An administrative application running
on a remote system can send PCF message to a special queue called the system
command queue for this purpose. Programmable command formats are described
in detail in Chapter 8, “Programmable system management,” on page 221.

Remote administration is also possible using the WebSphere MQ Explorer interface
which is available for Windows and Linux (x86). For more information about
remote administration using the Explorer, refer to “Administration using the
WebSphere MQ Explorer” on page 154.

Object attributes
The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a queue
can accommodate is defined by its MaxMsgLength attribute (see Figure 33 on page
101). You can specify this attribute when you create a queue.

In WebSphere MQ for z/VSE, there are five ways of accessing an attribute:
v Using the MQMT transaction, described in “WebSphere MQ master terminal

(MQMT) – main menu” on page 79.
v Using the MQINQ function call, described in “MQINQ - Inquire about object

attributes” on page 893.
v Using Programmable Command Format (PCF) messages, described in Chapter 8,

“Programmable system management,” on page 221.
v Using WebSphere MQ Commands (MQSC), described in Chapter 9, “WebSphere

MQ commands,” on page 507.
v Using the WebSphere MQ Explorer, described in “Administration using the

WebSphere MQ Explorer” on page 154.

WebSphere MQ queue managers
Queues are defined to WebSphere MQ using the MQMT master terminal
transaction, PCF requests, WebSphere MQ commands, or the WebSphere MQ

Objects

4 WebSphere MQ for z/VSE System Management Guide

Explorer. Each type of queue has the same attributes but its own value for the
attributes. For example, a local queue definition specifies:
v Object attributes are changed according to the commands received.
v Special events such as trigger events are generated when the appropriate

conditions are met.
v Messages are put on the correct queue, as requested by the application making

the MQPUT call. The application is informed if this cannot be done, and an
appropriate reason code is given.

v Messages destined for remote queue managers are sent and message from
remote queue managers are received.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager. The queue manager to which an application is connected is
said to be the local queue manager for that application. For the application, the
queues that belong to its local queue manager are local queues.

A remote queue is simply a queue that belongs to another queue manager. A remote
queue manager is any queue manager other than the local queue manager. A remote
queue manager exists on a remote machine across the network, or in a different
CICS region on the same z/VSE host.

MQI calls
A queue manager object may be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MQINQ.

Note: You cannot put messages on a queue manager object; messages are always
put on queue objects, not on queue manager objects.

WebSphere MQ queues
Queues are defined to WebSphere MQ using the appropriate MQMT transaction,
via PCF requests, or via the WebSphere MQ Explorer. The transaction specifies the
type of queue and its attributes. For example, a local queue object has attributes
that specify what happens when applications reference that queue in MQI calls.
Examples of attributes are:
v Whether applications can retrieve messages from the queue (GET enabled).
v Whether applications can put messages on the queue (PUT enabled).
v Whether access to the queue is exclusive to one application or shared between

applications.
v The maximum number of messages that can be stored on the queue at the same

time (maximum queue depth).
v The maximum length of messages that can be put on the queue.

Using queue objects
In WebSphere MQ for z/VSE, there are four types of queue object. Each type of
object can be manipulated by the product commands and is associated with real
queues in different ways:
1. A local queue object identifies a local queue belonging to the queue manager to

which the application is connected. All queues are local queues in the sense
that each queue belongs to a queue manager and, for that queue manager, the
queue is a local queue.

2. A remote queue object identifies a queue belonging to another queue manager.
This queue must be defined as a local queue to that queue manager. The

Objects

Chapter 1. Introduction 5

information you specify when you define a remote queue object allows the
local queue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager.
You must also define a transmission queue and channels between the queue
managers, before applications can send messages to a queue on another queue
manager. A transmission queue is a special type of local queue.

3. An alias queue object allows applications to access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call, the
name is resolved to the name of either a local or a remote queue at run time.
This allows you to change the queues that applications use without changing
the application in any way—you merely change the alias queue definition to
reflect the name of the new queue to which the alias resolves.
An alias queue is not a queue, but an object that you can use to access another
queue.

4. A model queue object is a template of a queue definition, that you use when
creating a dynamic queue. When an application opens a model queue, the
queue manager dynamically creates a local queue with the attributes of the
model queue. Consequently, a model queue never contains messages, it is only
used as a template to create dynamic queues.

Specific local queues used by WebSphere MQ
WebSphere MQ uses some local queues for specific purposes related to its
operation. You must define them before WebSphere MQ can use them.

Application queues: A queue that is used by an application (through the MQI) is
referred to as an application queue. This can be a local queue on the queue manager
to which an application is linked, or it can be a remote queue that is owned by
another queue manager.

Applications can put messages on local or remote queues. However, they can only
get messages from a local queue.

Transmission queues: A transmission queue temporarily stores messages that are
destined for a remote queue manager. You must define at least one transmission
queue for each remote queue manager to which the local queue manager is to send
messages directly. For information about the use of transmission queues in
distributed queuing, see the WebSphere MQ Intercommunication book.

Dead-letter queue: A dead-letter queue stores messages that cannot be routed to
their correct destinations. This occurs when, for example, the destination queue is
full. The supplied dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.
These queues are also referred to as undelivered-message queues on other
platforms.

For distributed queuing, you should define a dead-letter queue for each queue
manager.

Event queues: In WebSphere MQ, an instrumentation event is a logical
combination of conditions that is detected by a queue manager or channel instance.
Such an event causes the queue manager or channel instance to put a special
message, called an event message, on an event queue. Event queue names are
configurable as part of the queue manager's Global System Definition.

Objects

6 WebSphere MQ for z/VSE System Management Guide

Channels
Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers may exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages, and
another, complementary one, at the queue manager that is to receive them.
Channels can also define a communication path between a remote client and the
local z/VSE queue manager. These are called server-connection channels. A
complimentary client-connection channel must also be defined in the client
environment.

Message channels
Message channels Message channels are the channels that carry messages from one
queue manager to another.

Do not confuse message channels with MQI channels. There are two types of MQI
channel, server-connection and client-connection. These are discussed in
WebSphere MQ Clients.

The definition of each end of a message channel can be one of these types:
v Sender
v Receiver
v Server
v Requester
v Cluster sender
v Cluster receiver

Note that WebSphere MQ for z/VSE does not support cluster-type channels.

A message channel is defined using one of these types defined at one end, and a
compatible type at the other end.

Possible combinations are:
v Sender-receiver
v Requester-server
v Requester-sender (callback)
v Server-receiver
v Cluster sender-cluster receiver

To define a channel refer to “Channel definitions” on page 112.

Sender-receiver channels: A sender in one system starts the channel so that it can
send messages to the other system. The sender requests the receiver at the other
end of the channel to start. The sender sends messages from its transmission queue
to the receiver. The receiver puts the messages on the destination queue. Figure 1
on page 8 illustrates this.

Objects

Chapter 1. Introduction 7

Requester-server channels: A requester in one system starts the channel so that it
can receive messages from the other system. The requester requests the server at
the other end of the channel to start. The server sends messages to the requester
from the transmission queue defined in its channel definition.

A server channel can also initiate the communication and send messages to a
requester, but this applies only to fully qualified servers, that is server channels
that have the connection name of the partner specified in the channel definition. A
fully qualified server can either be started by a requester, or can initiate a
communication with a requester.

Requester-sender channels: The requester starts the channel and the sender
terminates the call. The sender then restarts the communication according to
information in its channel definition (this is known as callback). It sends messages
from the transmission queue to the requester.

Figure 1. Sender-receiver channels

Figure 2. Requester-server channels

Objects

8 WebSphere MQ for z/VSE System Management Guide

Server-receiver channels: This is similar to sender-receiver but applies only to
fully qualified servers, that is server channels that have the connection name of the
partner specified in the channel definition. Channel startup must be initiated at the
server end of the link.

Namelists
A namelist is an WebSphere MQ object that contains a list of names, such as queue
names. You can define and modify namelists using the WebSphere MQ for z/VSE
Master Terminal transactions, that is MQMT, and using PCF or MQSC commands.

Programs can use the MQI to find out which names are included in a namelist.
The organization of the namelists is the responsibility of the application designer
and system administrator.

An advantage of using a namelist is that it is maintained independently of
applications.

Figure 3. Requester-sender channels

Figure 4. Server-receiver channels

Objects

Chapter 1. Introduction 9

Listeners
A listener is a WebSphere MQ object that accepts network requests from other
queue managers, or client applications, and starts associated channels. Listener
processes can be configured using the master terminal transaction (MQMT),
Programmable Command Format (PCF), or MQSeries Command (MQSC) requests.

You can define more than one listener object and select whether the listener is
automatically started when the queue manager is started.

Services
A service is a WebSphere MQ object that identifies a user program that is to be
started when the queue manager is started. Services fall into two categories:

Servers
A server service object is the definition of a program that is executed when
a specified queue manager is started. Only one instance of a server process
can be executed concurrently.

Commands
A command service object is the definition of a program that is executed
when a specified queue manager is started or stopped. Multiple instances
of a command process can be executed concurrently.

Service objects can be created, modified, and deleted using the master terminal
transaction (MQMT), Programmable Command Format (PCF), or MQSeries
Command (MQSC) requests.

Clients and servers
WebSphere MQ for z/VSE supports client-server configurations for WebSphere MQ
applications, and can act as a server to which WebSphere MQ clients can connect.
The WebSphere MQ client environment, however, is not part of WebSphere MQ for
z/VSE product, but can be installed and used independently. See Chapter 10,
“WebSphere MQ clients,” on page 623 for more information.

An WebSphere MQ client is a part of the WebSphere MQ product that is installed on
a machine to accept MQI calls from applications and pass them to an MQI server
machine. There they are processed by a queue manager. Typically, the client and
server reside on different machines but they can also exist on the same machine.

An MQI server is a queue manager that provides queuing services to one or more
clients. For z/VSE, there is one WebSphere MQ process for each client connection.

All the WebSphere MQ objects, for example queues, exist only on the queue
manager machine, that is, on the MQI server machine. A server can support
normal local WebSphere MQ applications as well.

The difference between an MQI server and an ordinary queue manager is that a
server has a dedicated communications link with each client. For more information
about creating channels for clients and servers, see the WebSphere MQ
Intercommunication book.

WebSphere MQ applications in a client-server environment
When connected to a server, client WebSphere MQ applications can issue MQI calls
in the same way as local applications. The client application issues an MQCONN

Objects

10 WebSphere MQ for z/VSE System Management Guide

call to connect to a specified queue manager. Any additional MQI calls that specify
the connection handle returned from the connect request are then processed by this
queue manager. You must link your applications to the appropriate client libraries.
See the WebSphere MQ Application Programming Guide for further information.

WebSphere MQ and CICS
WebSphere MQ for z/VSE runs as a CICS task. Consequently, various features of
the product are controlled by CICS itself.

These features include security and recovery. If you install WebSphere MQ for
z/VSE with the security feature, security will be handled by your External Security
Manager (ESM) or with z/VSE 4.3, the Basic Security Manager (BSM) now has the
MQ classes required to support WebSphere MQ for z/VSE security.

Clients and servers

Chapter 1. Introduction 11

12 WebSphere MQ for z/VSE System Management Guide

Chapter 2. Installation

This chapter describes the procedure for installing WebSphere MQ for z/VSE. It
consists of these sections:
1. “Contents of the library tape”
2. “Prerequisites” on page 15
3. “Installing WebSphere MQ for z/VSE - all users” on page 16
4. “Procedures for new users” on page 18
5. “Starting WebSphere MQ” on page 27
6. “WebSphere MQ installation verification test” on page 32
7. “Post installation verification test CICS modifications” on page 38
8. “Migration procedures for existing users” on page 39

Contents of the library tape
The distribution tape is in standard IBM® MSHP format and may be stacked or
non-stacked format depending on how the product is ordered but should be
handled in the same way by the z/VSE install procedures. The tape will contain a
sublibrary for “PRD2.WMQZVSE”.

This sublibrary contains:
v Copy books, used by your CICS applications whenever you intend to call the

WebSphere MQ Message Queuing Interface (MQI).
v Object decks, called at linkedit time when you are building your own

WebSphere MQ applications (autolink).
v Phases, to provide WebSphere MQ operation in CICS and Batch.
v Samples having member type A or Z. Some of these need to be modified for the

VSE/POWER JECL statements, as follows:
* ** JOB to * $$ JOB
* ** LST to * $$ LST
* ** SLI to * $$ SLI
* ** EOJ to * $$ EOJ

The samples are:

DCHFMT4.Z
Sample data conversion exit program for message data conversion.

MQBICALL.Z
Sample batch interface program that shows how to write an MQI batch
program.

MQBISTOP.Z
Sample program to stop the batch interface from a batch partition.

MQCICDCT.A
Entry definitions for CICS DCT.

MQCICFCT.A
Entry definitions for CICS FCT.

MQDOCU.Z
New documentation that has been instroduced through the service stream,
but not yet available in this manual.

© Copyright IBM Corp. 2008, 2013 13

MQHTML.Z
HTML source file mapping to the WMQ Master Terminal transactions for
use by a remote browser via CICS Web Support.

MQJCONFG.Z
Creation of WebSphere MQ configuration file.

MQJCSD.Z
Define CICS resources into the CICS CSD.

MQJCSD24.Z
Define CICS resources into the CICS CSD for CICS TS customers.

MQJCWS.Z
HTML catalog job for CICS Web Support.

MQJINSG.Z
Sample WebSphere MQ command JCL to create default queues and
channels.

MQJLABEL.Z
Label definitions for the CICS start-up job.

MQJMIGR1.Z
Migration of old configuration file (step 1).

MQJMIGR2.Z
Migration of old configuration file (step 2).

MQJQUEUE.Z
VSAM cluster definitions for WebSphere MQ queues.

MQJREORG.Z
Batch job to reclaim space of deleted records.

MQJSETUP.Z
Creation of the setup file.

MQJUTILY.Z
Various batch functions.

MQPECHO.Z
Sample COBOL MQI program designed to run as a trigger program.

MQPSAXE.Z
Sample COBOL MQ API Exit program.

MQSERIES.Z
WebSphere MQ for z/VSE tape header file. For internal use only.

MQUSERID.Z
Sample assembler to allow a change of user identifier for MCA
communications with remote AS/400® systems.

SYSIN.Z
Master configuration input file used during installation to create the WMQ
for z/VSE configuration file.

TTMTST3.Z
Sample Assembler CICS map program for COBOL sample TTPTST3.

TTPTST1.Z
Sample COBOL MQI program.

TTPTST2.Z
Sample COBOL MQI program.

Tape contents

14 WebSphere MQ for z/VSE System Management Guide

TTPTST3.Z
Sample COBOL test to drive sample TTPTST2

Prerequisites

Program number
v 5655-U97 WebSphere MQ for z/VSE Version 3 Release 0.0.

Hardware requirements
v WebSphere MQ Servers:

IBM System z10™ Enterprise Class
IBM System z10 Business Class
IBM System z9® Enterprise Class
IBM System z9 Business Class
IBM zSeries® 890
IBM zSeries 990
IBM zSeries 800
IBM zSeries 900
S/390® Parallel Enterprise Server—Generation 5 and 6
S/390 Multiprise 3000
Equivalent server

Software requirements
Minimum supported levels are shown. Later levels, if any, will be supported unless
otherwise stated. Note that the latest maintenance for these requirements is
strongly recommended.
v z/VSE 3.1 or later.
v CICS/VSE 2.3 or CICS TS 1.1, or later.
v VTAM® for z/VSE 4.2 or TCP/IP for z/VSE 1.5F (or equivalent), or later.
v Language Environment® for z/VSE 1.4.4 Runtime library, or later.
v WebSphere MQ Clients:

WMQ for VSE supports clients that connect using TCP/IP.

Note: As prerequisite software levels become out-of-service, it is strongly
recommended that you upgrade to supported levels of all prerequisite software.

Features
The features described in this book are provided with the WebSphere MQ for
z/VSE product, with the exception of the WebSphere MQ client which is available
as an IBM SupportPAC. Some features, however, are enhancements to the product,
and are available only after the relevant APAR/PTFs, or associated service levels,
have been applied.

The following list indicates the APAR prerequisites for certain enhancement
features:
v WebSphere MQ Explorer support requires one of:

– WebSphere MQ Explorer V6.0.2.6, or later.
– WebSphere MQ Explorer V7.0.0.1, or later.
– WebSphere MQ Explorer Supportpac MS0T.

Tape contents

Chapter 2. Installation 15

v SSL key reset requires PK84111.
v Accounting and statistics messages requires PK94386.
v Real-time monitoring requires PM01079.
v PCF and MQSC connection commands requires PM03429.
v Command, configuration and SSL events requires PM09189.
v Listener and service object support requires PM16320.
v Command filtering requires PM23573.
v Message monitoring support requires PM29937.
v Message properties support requires PM48873. In addition, if MQ Explorer is

being used, then IC79103 is required.
v Publish/Subscribe support requires PM73453.
v Channel Authentication Record support requires PM78239.

Connectivity
Network protocols supported are SNA LU 6.2 and TCP/IP.
v For SNA connectivity – VTAM for z/VSE, or later.
v For TCP/IP connectivity – TCP/IP for z/VSE V1.5F (or equivalent), or later.

Client connectivity is only available using TCP/IP.

Compilers supported for WebSphere MQ for z/VSE
applications

v Programs can be written using C, COBOL or PL/I.
v C programs can use the C for VSE V1.1 compiler, or later.
v COBOL programs can use the COBOL for VSE compiler V1.1, or later.
v PL/I programs can use the PL/I for VSE compiler V1.1, or later.

Delivery
WebSphere MQ for z/VSE is available on:
v 3590 cartridge
v 3592 cartridge

Installing WebSphere MQ for z/VSE - all users
To install the product, carry out the following procedure:
1. Decide the name of the :

v Target sublibrary
The target sublibrary can be the default supplied, “PRD2.WMQZVSE”, or a
name that you specify.
If you use the supplied default sublibrary, go to step 2 on page 17.
If you specify your own library, you must customize the JCL listed in step
1b.

v VSAM catalog into which the product is to be installed
a. Create a VSAM user catalog.

You are recommended to use the Interactive Interface Dialogs (II) to create
this catalog. In the following examples, the VSAM catalog named
MQMCAT is used, and it is assumed that its label is already defined in the
disk label area.

b. Allocate a z/VSE library.

Prerequisites

16 WebSphere MQ for z/VSE System Management Guide

This step is not required if you restore the product into the PRD2 library.
However, if you want to install WebSphere MQ in another library, you must
create one. You are recommended to use the Interactive Interface dialogs for
creating this library, or run the following sample adapted for your
environment.
If you adapt this sample you must modify the sample provided in section
2.b. to use the same sublibrary name.
v DEFINE S=lib.sublib to the your selected name
* $$ JOB JNM=MQMSUBL,CLASS=O,DISP=D
// JOB MQMSUBL Define the WebSphere MQ installation library
// DLBL mylib,’l.f.i’,yyyy/ddd
// EXTENT ,volume,,,n,m
// EXEC LIBR
DEFINE L=mylib
DEFINE S=mylib.sublib
/*
/&

where:
mylib is the new library name
sublib is the new sublibrary name
l.f.i is your local file id
yyyyyy/ddd

is the file retention year and day
volume is the local disk volume name
n/m is the start track and size required

See the IBM z/VSE System Control Statements documentation for further
information about DLBL, EXTENT and LIBR.

2. Restore the WebSphere MQ sublibrary from the library tape. You can do this by
either:
a. Using the Interactive Interface Dialogs, as follows:

1) From an administrator ICCF signon, select the “Installation” option.
2) Select “Install Programs - V2 format”.
3) Select “Prepare for installation”.

This presents you with a series of panels and options to identify the
tape address and process a job, by scanning the mounted tape and
identifying which stacked products are available for installation.
Monitor the z/VSE console to see when this job has completed. When it
has completed, proceed to the step 2a4.

4) Select “Install Program(s) from Tape”.
You are presented with a list of products available from the install tape
and suggested install sublibraries. You can select either the default
install library, “PRD2.WMQZVSE”, or the name of the customized
library you created in Step 1 on page 16.

5) Select option 1 to proceed with the installation and press function key
five (PF5) to create a job to be submitted.

or
b. Customizing and processing the following JCL, using the library name from

step 1 on page 16.
* $$ JOB JNM=MQMTAPE,CLASS=0,DISP=D
// JOB MQMTAPE Restore WebSphere MQ from tape
// ASSGN SYS006,cuu
// MTC REW,SYS006
// EXEC MSHP,SIZE=1M

Product installation

Chapter 2. Installation 17

INSTALL PRODUCT FROMTAPE ID=’WMQZVSE....3.0.0’ -
PROD INTO=lib.sublib
/*
/&
* $$ EOJ

Where:

cuu Is the tape drive address

lib.sublib
Is the sublibrary into which the product is to be installed, for
example, PRD2.WMQZVSE

Installation checkpoint (WebSphere MQ installation)
You should now have correctly installed the WebSphere MQ sublibrary. This can be
verified using a z/VSE Librarian job to inspect the contents of the library.

The WebSphere MQ phases, objects, and sample jobs are visible.

Note: If the WebSphere MQ product has not installed correctly, check through the
preceding instructions to ensure that they all completed correctly.

If you are a new user, see “Procedures for new users.” If you are migrating to
WebSphere MQ for z/VSE V3.0.0 from an earlier release, see “Migration
procedures for existing users” on page 39.

Procedures for new users
The following steps describe how to
v Allocate and initialize the required WebSphere MQ files.
v Customize your CICS system to utilize the WebSphere MQ facilities.

The samples for the following jobs can be found in the installation library you
selected, or “PRD2.WMQZVSE”.

Allocate and initialize the required WebSphere MQ files
You must now run the jobs to:
v Create the setup file.
v Create the WebSphere MQ configuration file.
v Create cluster definitions for WebSphere MQ queues.

The sample JCL jobs must be modified and customized to refer to your own
volume identifiers and catalog names.

This should be done by your z/VSE systems programmer.
MQJSETUP.Z

Allocate a VSAM ESDS, MQFSSET, which is needed to populate the
WebSphere MQ configuration file with text and help messages at
initialization time.

Note: Review the section “Installing security” on page 19 before running
this sample JCL.

MQJCONFG.Z
Allocates the WebSphere MQ (CICS) subsystem configuration file. For this
VSAM KSDS file, each record is a fixed length of approximately 2 KB.

Product installation

18 WebSphere MQ for z/VSE System Management Guide

To estimate the space you require, allocate one record, consisting of one
cylinder for normal operation, for each WebSphere MQ channel and queue.

MQJQUEUE.Z
Allocates and initializes the WebSphere MQ message queue files. For these
VSAM KSDS files, each record is of varying length, depending upon the
size of the user data area. A message queue file is required for each queue
defined to the WebSphere MQ (CICS) subsystem.

To estimate the space required for each message queue, use the following
guidelines:
v Each message queue file contains one header record for each local

queue.
v One record is written for each user message.
v Each record is of variable length and consists of a header of 736 bytes

plus the actual variable-length user data area.
v This job allocates the following system queue files:

WMQZVSE.MQFERR - Dead letter queue file.
WMQZVSE.MQFLOG - Error log queue file.
WMQZVSE.MQFMON - Monitor queue file.
WMQZVSE.MQFREOR - Automatic VSAM reorganization file.
WMQZVSE.MQFADMN - PCF and MQSC queue file.
WMQZVSE.MQFDEFS - WebSphere MQ Explorer model queue file.
WMQZVSE.MQFACCTS - WebSphere MQ accounting message file.
WMQZVSE.MQFSTATS - WebSphere MQ statistics message file.

and optionally the following files:
WMQZVSE.MQFACMD - Admin command file.
WMQZVSE.MQFARPY - Admin reply file.
WMQZVSE.MQFIEQE - Queue manager events file.
WMQZVSE.MQFIECE - Channel events file.
WMQZVSE.MQFIEPE - Performance events file.
WMQZVSE.MQFIEME - Command events file.
WMQZVSE.MQFIENE - Configuration events file.

The following files are sample definitions for user message queues:
WMQZVSE.MQFI001
WMQZVSE.MQFO001
WMQZVSE.MQFI002
WMQZVSE.MQFO002
WMQZVSE.MQFI003
WMQZVSE.MQFO003

You are strongly recommended to define one local queue in each physical file. If
you intend to use the automatic VSAM reorganization feature with a queue, that
queue must be the only queue in a physical VSAM file.

Installing security
You can protect your WebSphere MQ subsystem from unauthorized access by
activating the WebSphere MQ for z/VSE security feature. For full details on the
security feature, refer to Chapter 12, “Security,” on page 651.

Before installing security, ensure that your environment includes the following
prerequisite systems:
v z/VSE 3.1 or above.
v CICS TS 1.1 or above.
v External Security Manager or Basic Security Manager (see below).

New user procedures

Chapter 2. Installation 19

You must have an External Security Manager (ESM) that supports the SAF
RACROUTE interface. WebSphere MQ for z/VSE is not dependent on any
specific ESM; however, your ESM should recognize and support standard
RACROUTE macro calls. For more information, contact your ESM vendor.
With z/VSE 4.3 or later, the Basic Security Manager (BSM) can now be used to
secure WebSphere MQ for z/VSE.

If you have the correct prerequisites and intend to install WebSphere MQ for
z/VSE security for your queue manager, you must copy and edit the SYSIN.Z
installation file, available in the WebSphere MQ installation library
PRD2.WMQZVSE. You must also change the MQJSETUP.Z sample JCL file that
processes the SYSIN.Z file.

The SYSIN.Z file contains installation and configuration parameters that generally
should not be changed. However, the file also contains switches for security, which
are set off by default and need to be set on to activate security.

To activate the security feature, use the new SYSIN parameter SET to overwrite the
default values for QM-SUBSYSID and QM-STATUS-SECURITY contained in the
SYSIN.Z member in your installation sublibrary.
1. QM-SUBSYSID

The default value for this parameter is MQV1. This parameter, the subsystem
identifier (SSID), is used to build security resource names when performing
security checks. You should set this parameter to a 4-character value that
uniquely identifies your queue manager. If you set the SSID to blanks (spaces),
the queue manager name is used to build resource names rather than the SSID.
This is not recommended as this can lead to resource names that are too long
for some ESMs. An SSID has to be set in order to use the Basic Security
Manager.

2. QM-STATUS-SECURITY

To activate security, set to ENABLED.

For example:
// DLBL LOADFL,’wmqzvse.mqfsset’,,VSAM,CAT=?cat-name?
// EXEC IESVSMLD,SIZE=AUTO
80,E,LOADFL
SET QM-SUBSYSID VSE1
SET QM-STATUS-SECURITY ENABLED
* $$ SLI MEM=SYSIN.Z,S=prd2.wmqzvse
/*

or
// DLBL CONFIG,’wmqzvse.mqfcnfg’,,VSAM,CAT=VSESPUC
// LIBDEF PHASE,SEARCH=(prd2.wmqzvse,prd2.sceebase)
// ASSGN SYS005,SYSLST
// EXEC MQPUTIL,SIZE=MQPUTIL
UPDATE
SET QM-SUBSYSID VSE1
SET QM-STATUS-SECURITY ENABLED
* $$ SLI MEM=SYSIN.Z,S=prd2.wmqzvse
/*

Once you have made these changes, you can run the MQJSETUP.Z sample JCL to
import the contents of any SET parameters and the SYSIN.Z file into a VSAM
ESDS. The ESDS is processed by installation transaction MQSU to build your

New user procedures

20 WebSphere MQ for z/VSE System Management Guide

starting WebSphere MQ subsystem configuration. See “Starting WebSphere MQ”
on page 27. Security installation is not complete until you run the MQSU
transaction.

Changing the MQER TDQ definition
Security installation may also require changes to the MQER transient data queue
(TDQ) definition of WebSphere MQ for z/VSE. The default definition for this TDQ
is shipped in file MQCICDCT.A (see “Preparing CICS for WebSphere MQ” on page
25).

The MQER TDQ definition requires a trigger transaction to be fired every time an
entry is written to the TDQ. The transaction that is started is also called MQER.
With CICS TS, this transaction will run as the CICS default user (DFLTUSER)
unless the DCT definition identifies a USERID.

For security purposes, the user identified with the MQER transaction must have
WebSphere MQ CONNECT authority and UPDATE authority to the SYSTEM.LOG
queue. Therefore, you must decide whether to grant these privileges to the CICS
default user, or to a special user. For security purposes, we recommended that you
identify a special user to run the MQER transaction.

If you intend to grant the appropriate authority to the CICS default user, you do
not need to change the MQCICDCT.A sample file. However, if you intend to
identify a special user to run the MQER transaction, you need to perform the
following:
1. Create a user with your ESM.
2. Grant CONNECT and UPDATE authority to the user. For details on granting

security access to users, refer to Chapter 12, “Security,” on page 651.
3. Copy the MQCICDCT.A file. We recommend that you copy the MQCICDCT.A

file rather than directly edit the base file. The MQCICDCT.A file is a source
fragment that should be included in the DCT source file for your CICS system.

4. Change the MQER TDQ definition in MQCICDCT.A as follows:
Change:

MQER DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQER,
DESTFAC=FILE,
TRANSID=MQER,
TRIGLEV=1

To:
MQER DFHDCT TYPE=INTRA,

RSL=PUBLIC,
DESTID=MQER,
DESTFAC=FILE,
USERID=youruser,
TRANSID=MQER,
TRIGLEV=1

5. Rebuild your DCT phase. Your CICS system programmer can use the
MQCICDCT.A source fragment to do this.

New user procedures

Chapter 2. Installation 21

Changing the MQXP TDQ definition
Similar to changes to the MQER TDQ definition, security installation may also
require changes to the MQXP transient data queue (TDQ). The default definition
for this TDQ is shipped in file MQCICDCT.A (see Preparing CICS for WebSphere
MQ on page 14).

The MQXP TDQ is used by the WebSphere MQ queue manager to expire
messages. To expire messages, the MQXP TDQ defines a trigger transaction that is
started by CICS when an expiry request is written to the TDQ by the queue
manager. The transaction that is started is also called MQXP. With CICS TS, this
transaction will run as the CICS default user (DFLTUSER) unless the DCT
definition identifies a USERID.

For security purposes, the user associated with the MQXP transaction must have
WebSphere MQ CONNECT authority and UPDATE authority to the any ReplyToQ
that might exist in the MQMD data structure of an expiring message. The user
must also have UPDATE authority to any VSAM file that can contain expired
messages. In other words, the MQXP transaction must be run by a user that has
UPDATE authority to most, if not all, local queues.

For this reason, it is not recommended that the MQXP transaction runs with the
authority of the CICS default user. Instead, it is recommended that the definition
for the MQXP TDQ is changed to identify a USERID with the appropriate
authority.

To change the MQXP TDQ definition:
1. Create a user with your ESM.
2. Grant CONNECT and queue UPDATE authority to the user. Also ensure that

the user has UPDATE authority to relevant VSAM files. For more information
about security access to users, refer to Chapter 12, “Security,” on page 651.

3. Copy the MQCICDCT.A file. We recommend that you copy the MQCICDCT.A
file rather than directly edit the base file. The MQCICDCT.A file is a source
fragment that should be included in the DCT source file for your CICS system.

4. Change the MQXP TDQ definition in MQCICDCT.A.
Change:

MQXP DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQXP,
DESTFAC=FILE,
TRANSID=MQXP,
TRIGLEV=1

To:
MQXP DFHDCT TYPE=INTRA,

RSL=PUBLIC,
DESTID=MQXP,
DESTFAC=FILE,
USERID=youruser,
TRANSID=MQXP,
TRIGLEV=1

5. Rebuild your DCT phase. Your CICS system programmer can use the
MQCICDCT.A source fragment to do this.

New user procedures

22 WebSphere MQ for z/VSE System Management Guide

Changing the MQIE TDQ definition
Similar to changes to the MQXP TDQ definition, security installation may also
require changes to the MQIE transient data queue (TDQ). The default definition for
this TDQ is shipped in file MQCICDCT.A (see “Preparing CICS for WebSphere
MQ” on page 25).

The MQIE TDQ is used by the WebSphere MQ queue manager to register
Instrumentation Event (IE) requests. An instrumentation event is a logical
combination of conditions that is detected by a queue manager or channel instance.
Such an event causes the queue manager or channel instance to put a special
message, called an event message, on an event queue. To achieve this, the queue
manager places an IE request on the MQIE transient data queue. Such requests are
processed by the IE processor transaction, also called MQIE.

For security purposes, the user associated with the MQIE transaction must have
WebSphere MQ CONNECT authority and UPDATE authority to the event queues.
The event queues are identified by the queue manager's global system definition.
The user must also have UPDATE authority to the VSAM files that host the event
queues.

Rather than allowing the MQIE transaction to run as the CICS default user, it is
recommended that the definition for the MQIE TDQ is changed to identify a
USERID with the appropriate authority.

To change the MQIE TDQ definition:
1. Create a user with your ESM.
2. Grant CONNECT and queue UPDATE authority for each of the event queues

to the user. Also ensure that the user has UPDATE authority to relevant VSAM
files. For more information about security access to users, refer to Chapter 12,
“Security,” on page 651.

3. Copy the MQCICDCT.A file. It is recommended that you copy the
MQCICDCT.A file rather than directly edit the base file. The MQCICDCT.A file
is a source fragment that should be included in the DCT source file for your
CICS system.

4. Change the MQIE TDQ definition in MQCICDCT.A. Change:

MQIE DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQIE,
DESTFAC=FILE,
TRANSID=MQIE,
TRIGLEV=1

to:

MQIE DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQIE,
DESTFAC=FILE,
USERID=youruser,
TRANSID=MQIE,
TRIGLEV=1

5. Rebuild your DCT phase. Your CICS system programmer can use the
MQCICDCT.A source fragment to do this.

New user procedures

Chapter 2. Installation 23

Changing the MQAC TDQ definition
Similar to changes to the MQIE TDQ definition, security installation may also
require changes to the MQAC transient data queue (TDQ). The default definition
for this TDQ is shipped in file MQCICDCT.A (see “Preparing CICS for WebSphere
MQ” on page 25).

The MQAC TDQ is used by the WebSphere MQ queue manager to store
accounting messages. Accounting messages are used to record information about
the MQI operations performed by WebSphere MQ applications. To achieve this, the
queue manager places an AC request on the MQAC transient data queue. Such
requests are processed by the AC processor transaction, also called MQAC. For
security purposes, the user associated with the MQAC transaction must have
WebSphere MQ CONNECT authority and UPDATE authority to the system
accounting queue. The accounting queue by default is
SYSTEM.ADMIN.ACCOUNTING.QUEUE. The user must also have UPDATE
authority to the VSAM file that hosts the accounting queue.

Rather than allowing the MQAC transaction to run as the CICS default user, it is
recommended that the definition for the MQAC TDQ is changed to identify a
USERID with the appropriate authority.

To change the MQIE TDQ definition:
1. Create a user with your ESM.
2. Grant CONNECT and queue UPDATE authority for the system accounting

queue to the user. Also ensure that the user has UPDATE authority to relevant
VSAM file. For more information about security access to users, refer to
Chapter 12, “Security,” on page 651.

3. Copy the MQCICDCT.A file. It is recommended that you copy the
MQCICDCT.A file rather than directly edit the base file. The MQCICDCT.A file
is a source fragment that should be included in the DCT source file for your
CICS system.

4. Change the MQAC TDQ definition in MQCICDCT.A. Change:
MQAC DFHDCT TYPE=INTRA,

RSL=PUBLIC,
DESTID=MQAC,
DESTFAC=FILE,
TRANSID=MQAC,
TRIGLEV=1

to:
MQAC DFHDCT TYPE=INTRA,

RSL=PUBLIC,
DESTID=MQAC,
DESTFAC=FILE,
USERID=youruser,
TRANSID=MQAC,
TRIGLEV=1

5. Rebuild your DCT phase. Your CICS system programmer can use the
MQCICDCT.A source fragment to do this.

Accounting data records written to the MQAC TDQ can be up to 32K in length.
Consequently, the file associated with the MQAC TDQ defined to your CICS
system must allow records up to this length.

For example, the default definition for the MQAC TDQ is TYPE=INTRA and
DESTFAC=FILE. To accommodate TDQ records up to 32K, the DFHNTRA file
might be defined as follows:

New user procedures

24 WebSphere MQ for z/VSE System Management Guide

DEFINE CLUSTER (NAME(MQM300.CICSXX.DFHNTRA) -
RECSZ(4089 32000) -

...

and your CICS startup JCL will identify this file in the DFHNTRA DLBL. For
example:

// DLBL DFHNTRA,’MQM300.CICSXX.DFHNTRA’,,VSAM,CAT=yourcat

Accounting and statistics messages can be up to 80k bytes in length. Consequently,
when the system queues for these messages are defined you must specify a
MAXMSGL of at least 80000.

Other considerations for installing security
Other installation steps involve:
1. Activation of security classes.
2. Creation of ESM resources.
3. Creation of users.
4. Assignment of resource permissions to users.

Each of these is covered in detail in Chapter 12, “Security,” on page 651.

Preparing CICS for WebSphere MQ
Various CICS tables and definitions must be created and customized for use by the
WebSphere MQ subsystem.

You must define the following:
v CICS resources into the CICS CSD.
v Entry definitions for the CICS Destination Control Table.
v Entry definitions for the CICS File Control Table.

The definitions should be reviewed by your CICS systems programmer.

Use the samples (see Appendix D, “Sample JCL and programs,” on page 977)
provided with the product. See Appendix A, “CICS control table definitions,” on
page 711 for further information.

To help you install the PCT and PPT CICS definitions, the sample MQJCSD.Z is
provided. MQJCSD.Z automatically defines the WebSphere MQ entries required
into the CICS Definition Data Set (without using migrated CICS, DFHPPT and
DFHPCT tables). If you are installing WebSphere MQ for z/VSE in a CICS TS
environment, you should use the MQJCSD24.Z sample rather than the MQJCSD.Z
sample.

You may need to modify this sample to fit your own environment, because all
entries are defined in group “MQM”, which is then added to the VSELIST list.

MQJCSD.Z - Define CICS resources for CICS for z/VSE
Sample code that can be used to create CICS-specific PCT and PPT
definitions, which are required by the WebSphere MQ subsystem.

MQJCSD24.Z - Define CICS resources for CICS TS
Sample JCL that can be used to create PCT, PPT, and FCT definitions
specific to CICS TS that are required by the WebSphere MQ subsystem.

New user procedures

Chapter 2. Installation 25

MQCICFCT.A - File Control Table (FCT)
The sample code provided can be used for creating CICS definitions for
the WebSphere MQ configuration and sample queue files. These definitions
may require changing to your site’s specific requirements.

Note: If you install under CICS TS, you do not need to create your File
Control Table (FCT) definitions with this sample. File definitions are
provided in the MQJCSD24.Z sample JCL file. It should also be noted that
WebSphere MQ files cannot be defined as remote to your CICS system.

MQCICDCT.A - Destination Control Table (DCT)
The WebSphere MQ product requires intrapartition transient data queues
(TDQ) MQER, MQXP and MQIE, for the processing of log, message expiry
and instrumentation events respectively

Note: If you install the security feature, you may need to make special
changes to the MQER, MQXP and MQIE transient data queue definitions.
See “Installing security” on page 19 for more details.

Modify CICS start-up deck
For CICS applications to use the WebSphere MQ facilities, you must inform CICS
of the WebSphere MQ configuration and workfiles, and the location of the
WebSphere MQ for z/VSE phases as follows:
v Add the label definitions for the CICS start-up job (MQJLABEL.Z) to your CICS

start-up deck, or to the standard label procedures. It contains information about
the datasets that WebSphere MQ for z/VSE uses.
This step is not necessary when WebSphere MQ is running in a CICS TS
environment. However, if required, label definitions in the CICS TS startup JCL
can be used to override MQ VSAM file definitions in the CSD.
This file must be modified and customized to refer to the correct volume
identifiers and catalog names.
This should be done by your z/VSE systems programmer.

v Add the WebSphere MQ for z/VSE subsystem install library defined in
“Installing WebSphere MQ for z/VSE - all users” on page 16 (default name
“PRD2.WMQZVSE”) to the LIBDEF control statement in your CICS startup deck.

v If you are using TCP/IP for queue manager to queue manager or client
connections, you must also ensure the PRD1.BASE (TCP/IP base library) is
concatenated ahead of the PRD2.SCEEBASE (LE base library). This will ensure
that the TCP/IP runtime is correctly referenced.
For example:

// LIBDEF *,SEARCH=(PRD2.WMQZVSE, *
PRD2.CONFIG, *
PRD1.BASE, *
PRD2.SCEEBASE, *
...)

Recovery and restart
Although WebSphere MQ uses its own recovery and restart logic, it also uses
standard CICS file management. When WebSphere MQ is running in a CICS for
z/VSE environment, it is important that all MQ VSAM clusters are defined in the
DFHFCT with the LOG parameter set to YES. In addition, the CICS logging facility
should be activated with JCT = xx or YES in the DFHSIT.

New user procedures

26 WebSphere MQ for z/VSE System Management Guide

When WebSphere MQ is running in a CICS TS environment, CSD file definitions
for MQ datasets should be defined with RECOVERY(BACKOUTONLY).

If you do not fulfill the above conditions, unpredictable results can occur, such as
loss of messages or inaccurate values for message sequence numbers.

CICS journal control table
The CICS journal control table (JCT) can be affected by the queue definitions. If a
physical record is larger than the buffer size specified in the JCT, a CICS task
abend of “AFCL” occurs.

The provided sample FCT queue definitions specify a maximum record length of
4089 bytes. If large records are written, you should set the BUFSIZE parameter of
the CICS DFHJCT to a different value; a BUFSIZE value of 4200 is usually
sufficient.

For further information, see the CICS for z/VSE Resource Definition (Macro) manual.

This is reflected in either the WebSphere MQ System Log or the CSMT TD queue
when an MQPUT call is processed trying to perform this function.

Uppercase translation
Queue manager, queue and channel names are case sensitive on WebSphere MQ
systems. If WebSphere MQ for z/VSE sends messages to other WebSphere MQ
systems, you must specify UCTRAN = TRANID or UCTRAN = NO in your CICS
terminal definitions.

If you do not do this, the names you enter into the WebSphere MQ panels are
translated into uppercase, and they may not match the actual names on the target
WebSphere MQ system.

Installation checkpoint (CICS)
You have now set up the CICS system, and it is ready to be restarted to update the
system configuration and utilize the WebSphere MQ subsystem.

Note: If the CICS system has not been updated correctly, check through the
preceding instructions to ensure that they all completed correctly.

Starting WebSphere MQ
The MQ CICS environment requires a cold start. Following the restart, the
WebSphere MQ for z/VSE configuration file must be initialized and populated
before the WebSphere MQ for z/VSE subsystem can be used.

You do this with the MQSU transaction. However, you are strongly recommended to
ensure that all the WebSphere MQ for z/VSE subsystem files are available for
access by CICS before running this job.

You do this by issuing the CICS transaction:
CEMT INQUIRE FILE(MQF*)

All of the WebSphere MQ for z/VSE files defined in “Allocate and initialize the
required WebSphere MQ files” on page 18 should be visible, and you should be
able to open, close, enable, and disable the files.

New user procedures

Chapter 2. Installation 27

If you cannot access these files, refer to your CICS systems programmer and
review the steps in “Preparing CICS for WebSphere MQ” on page 25.

If the files are accessible, issue the transaction MQSU or MQSU UC for uppercase
output from the WebSphere MQ for z/VSE administrator transactions. This
completes with the message “WMQ Install Completed, nnnn input records read”
or “WMQ (UPPERCASE) INSTALL COMPLETED, nnnn INPUT RECORDS READ”, depending
whether uppercase output was selected. The number of input records read may
change depending on the current maintenance level.

Note that you may need to run the MQJSETUP job and the MQSU transaction after
applying maintenance. Please check PTF cover letters.

WebSphere MQ initialization
Before you initialize your WebSphere MQ for z/VSE system, if you decide to
install the security feature, you must carry out a basic security implementation
first. For details of how to implement security, refer to Chapter 12, “Security,” on
page 651.

If you have already implemented security, or you do not wish to install the
security feature, you can now initialize your WebSphere MQ for z/VSE subsystem
as follows:
1. Set up the WebSphere MQ for z/VSE environment.

Run MQSE (Setup Environment).
The response “MQSE:WMQ environment setup completed” is displayed, after a
few seconds.

2. Specify the queue manager name.
There can be only one queue manager on each WebSphere MQ for z/VSE
system and each WebSphere MQ system should have a unique queue manager
name. The name is specified using the MQMT System Administration
transaction, as follows:
a. Enter the transaction code MQMT on a CICS terminal.
b. Select option 1 for the “Configuration” menu.
c. Select option 1 for the “Global System Definition” update screen.

Starting WebSphere MQ

28 WebSphere MQ for z/VSE System Management Guide

d. Change the “Queue Manager” field to the name that you are giving to your
local queue manager.

e. Press function key six (PF6) to update the configuration.
f. Press function key three (PF3) to quit the screen.
You can leave the other fields unchanged.

3. Define system queues
The System Log is a local queue used to record system diagnostic and error
messages. It should be defined before the MQ system is started for the first
time.
The name of the system log queue is specified in the queue manager's global
system definition. The default name for the queue is SYSTEM.LOG, however,
this can be changed using MQMT option 1.1.
To create the system log queue, carry out the following:
a. Type MQMT at the system prompt, or use MQMB and go to Step 3d.
b. Type 1 on the main menu to select Configuration.
c. Type 2 on the Configuration menu to select queue definitions.

The “Queue Main Options” screen is displayed.
d. Complete the following fields:

v Object Type L
v Object Name SYSTEM.LOG

e. Press PF5 (Add) to display the “Local Queue Definition” screen.
f. Press PF5 (Add) to display the “Queue Extended Definition” screen and

change the default values in the following fields:
v Usage to N (Normal)
v File name to MQFLOG
v Max. Q depth to 5000
v Max. msg length to 2048

2013/01/25 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
05:46:06 Global System Definition CIC1
MQWMSYS Queue Manager Information A002
Queue Manager: PTHVSEC
Description Line 1.: ZVSE 4.3 SYSTEM ON PTHVSEC
Description Line 2.: ...

System Values
Maximum Connection Handles.: 00000100 System Wait Interval : 00000030
Maximum Concurrent Queues .: 00000100 Max. Recovery Tasks : 0000
Allow TDQ Write on Errors : Y CSMT Local Code Page . . : 01047
Allow Internal Dump . . . : Y Subsystem id : MQV1

Channel Auth Enabled : Y
Queue Maximum Values

Maximum Q Depth: 00010000 Maximum Global Locks.: 00001000
Maximum Message Size. . . .: 00409600 Maximum Local Locks .: 00001000
Maximum Single Q Access . .: 00000100 Max Properties Length: 00004094

Global QUEUE /File Names
Configuration File. : MQFCNFG
LOG Queue Name. . . : SYSTEM.LOG
Dead Letter Name. . : SYSTEM.DEAD.LETTER.QUEUE
Monitor Queue Name. : SYSTEM.MONITOR
Requested record displayed.
PF2=Return PF3=Quit PF4/ENTER=Refresh PF6=Update

PF9=Communications PF10=Log PF11=Events PF12=Exits

Figure 5. Default global system definition

Starting WebSphere MQ

Chapter 2. Installation 29

g. Press PF5 (Add) to save the changes.
Once the system log queue has been defined to the queue manager the MQ
system can be started. Although it is not immediately necessary, it is
recommended that the system admin command and system admin reply
queues are also defined at this time, repeating steps 3a on page 29 through 3g,
but use file name MQFACMD and MQFARPY respectively to host these
queues, and a maximum message length of 16000. It is also recommended that
the system dead letter and system monitor queues are defined unless you plan
to use the sample object definition job, MQJINSG, which will define these
queues for you. For more details, see “Default object definitions” on page 37.
The names of these queues are configurable using MQMT option 1.1. The
default names for these queues, and their default CICS filenames are:
SYSTEM.DEAD.LETTER.QUEUE MQFERR
SYSTEM.MONITOR MQFMON
SYSTEM.ADMIN.COMMAND.QUEUE MQFACMD
SYSTEM.ADMIN.REPLY.QUEUE MQFARPY

If you are planning to use the WebSphere MQ Explorer to remotely administer
your z/VSE queue manager, you should also define the system default queues.
The default names for these queues, and their default CICS filenames are:
SYSTEM.DEFAULT.ALIAS.QUEUE n/a
SYSTEM.DEFAULT.LOCAL.QUEUE MQFDEFS
SYSTEM.DEFAULT.MODEL.QUEUE MQFDEFS
SYSTEM.DEFAULT.REMOTE.QUEUE n/a
SYSTEM.MQEXPLORER.REPLY.MODEL MQFADMN

Once again, you can use the MQJINSG.Z sample MQSC job to create these
queues, but you must define the system command and reply queues (explained
above) before you can run the job. For more details, see “Default object
definitions” on page 37.
In addition, if instrumentation events are required, it is recommended that the
event queues are defined at this time. The event queues are specified as part of
the queue manager's global system definition (MQMT 1.1, PF11). Sample VSAM
files for the event queues are provided in file MQJQUEUE.Z, and file
definitions for CICS are provided in MQCICFCT for CICS 2.3, and
MQJCSD24.Z for CICS TS. The default names for these queues, and their
default CICS filenames are:
SYSTEM.ADMIN.QMGR.EVENT MQFIEQE
SYSTEM.ADMIN.CHANNEL.EVENT MQFIECE
SYSTEM.ADMIN.PERFM.EVENT MQFIEPE
SYSTEM.ADMIN.COMMAND.EVENT MQFIEME
SYSTEM.ADMIN.CONFIGURATION.EVENT MQFIENE

Lastly, if accounting and statistics messages are required, it is recommended
that the relevant system queues are defined at this time. The names of these
queues are not configurable. Sample VSAM files for the queues are provided in
file MQJQUEUE.Z, and file definitions for CICS are provided in MQCICFCT for
CICS 2.3, and MQJCSD24.Z for CICS TS. The default names for these queues,
and their default CICS filenames are:
SYSTEM.ADMIN.ACCOUNTING.QUEUE MQFACCTS
SYSTEM.ADMIN.STATISTICS.QUEUE MQFSTATS

4. Define a local queue.
You must define some local queues to test the operation of the WebSphere MQ
for z/VSE subsystem. This task is also carried out by using the MQMT
transaction.
The following definitions allow the installation verification program, TST2, to
send messages to ANYQ.

Starting WebSphere MQ

30 WebSphere MQ for z/VSE System Management Guide

Carry out the following procedure:
a. Type MQMT at the system prompt.
b. Type 1 on the main menu to select Configuration.
c. Type 2 on the Configuration menu to select queue definitions. The “Queue

Main Options” screen appears.
d. Complete the following fields:

v Object Type L
v Object Name ANYQ

e. Press PF5 (Add) to display the “Local Queue Definition” screen.
f. Press PF5 (Add) to display the “Queue Extended Definition”screen and

change the default values in the following fields:
v Usage mode N (Normal)
v Physical File Name MQFI001 (file name from FCT)
v Maximum Q Depth 00000100
v Maximum Message Length 00002048

g. Press PF5 (Add) to save the changes.
h. Press PF2 (Options) to return to the Queue Main Options Screen.
i. Press PF9 (List) to display a selection screen.
j. On the selection screen, use the cursor keys to select the queue. Press any

character key followed by the Enter key.
A screen displays the queue parameters that you have entered. Check that
the correct data has been entered.

5. Initialize the WebSphere MQ for z/VSE queue manager. There are two ways of
doing this. Either:
a. Type MQIT on a CICS terminal.

The response “MQIT: No channel definitions. Initialization completed”
is displayed when the process has completed. This is normal if you have
not yet created any channels. Default channel definitions exist if you have
run the MQJINSG.Z sample MQSC job.
or

b. Use the WebSphere MQ for z/VSE System Administration transaction
(MQMT), as follows:
1) Issue MQMT to display the main menu panel of WebSphere MQ

Administration.
2) Select 2 - Operation.
3) Select 4 - Initialization/Shutdown.
4) Type I in the function field and press function key six (PF6).

Note: If you carry out the initialization before you perform system setup,
you receive the message MQ900000:WMQ z/VSE ENVIRONMENT NOT INITIALIZED.

In the future, you can combine Step 1 on page 28 and Step 5 by issuing MQSE with
the parameter I to perform the initialization step, as follows:

MQSE I

The response “MQSE:WMQ environment setup and initialized” is displayed when
the process has completed.

Checking MQ is active
When you have completed the steps listed in “WebSphere MQ initialization” on
page 28, the queue manager is active and you can verify this by typing MQMT on a

Starting WebSphere MQ

Chapter 2. Installation 31

CICS console, to display Figure 6.

Figure 6 shows the MQ Master Terminal main menu. Ensure that the “SYSTEM IS
ACTIVE” message is displayed.

WebSphere MQ installation verification test
The WebSphere MQ subsystem is now ready for the installation verification
procedures.

Stop the WebSphere MQ subsystem, using either the MQST transaction, or the
Operations Shutdown menu – MQMT option 2.4, and then reinitialize the
WebSphere MQ subsystem (see “WebSphere MQ initialization” on page 28).

To carry out the installation verification test you need:
v One local queue.
v The sample transaction TST2.
v The program TTPTST2 provided with the product.
v Access to two terminals.

Local queue verification test
The local queue verification test consists of five steps:
1. Initialize the WebSphere MQ runtime environment.
2. Use the test program TTPTST2 to send a number of messages.
3. Use MQMT to verify that these messages are on the queue.
4. Use the test program TTPTST2 to read the messages.
5. Use MQMT to verify that the messages have been delivered.

Step 1 (initializing the WebSphere MQ runtime environment) is achieved by
running transaction MQSE, and either MQIT or MQMT option 2.4. Steps 2 through
5 are achieved as follows:

12/09/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
14:45:45 *** Master Terminal Main Menu *** CIC1
MQWMTP A001

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option:

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Clear/PF3=Exit Enter=Select

Figure 6. Master terminal main menu

Starting WebSphere MQ

32 WebSphere MQ for z/VSE System Management Guide

1. On one terminal, issue the transaction code TST2. This invokes the WebSphere
MQ for z/VSE test program TTPTST2 and produces the screen in Figure 7.

2. On a second terminal, start MQMT and use option 3.1 to monitor queue
operations. This displays the screen in Figure 8.

3. On the first terminal, issue:
TST2 PUT 10 ANYQ

Note: If you type TST2 without parameters, the HELP screen for using
TTPTST2 is displayed.

TST2 is a test facility for SENDING / RECEIVING messages
The format of command is as follows:
TST2 XXXX NN QQQ

(NOTE: parameters are separated by space(s)).
XXXX 4-character function code, pad with trailing blank

HELP - DISPLAY THIS HELP TEXT
PUT - MQPUT MESSAGES
PUT1 - MQPUT1 MESSAGES
PUTR - MQPUT W/ REPLY MESSAGE
GET - MQGET MESSAGES
GETD - MQGET W/ BROWSE & DELETE
BOTH - MQPUT FOLLOWED BY MQGET
INQ - INQ ABOUT QUEUE (no count NN)

NN 2-digit number with leading zero (01 TO 99)
QQQQ A 48-character field giving the name of a queue.
An additional prompt will ask for the name of the reply queue for PUTR option.

Figure 7. TTPTST2 screen

12/09/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
15:02:45 Monitor Queues CIC1
MQWMMOQ A001

QUEUING SYSTEM IS ACTIVE
S QUEUE FILE T INBOUND OUTBOUND LR QDepth

ANYQ MQFI001 N IDLE IDLE 0 0
SYSTEM.DEAD.LETTER.QUEUE MQFERR N IDLE IDLE 0 0
SYSTEM.LOG MQFLOG N IDLE IDLE 0 4
SYSTEM.MONITOR MQFMON N IDLE IDLE 0 0

Information displayed.
Enter=Refresh PF2=Return PF3=Exit PF7=Back PF8=Forward

PF9=All Select or PF10=Detail

Figure 8. Monitor queues screen

Installation verification test

Chapter 2. Installation 33

4. TTPTST2 sends the specified messages addressed to ANYQ.
You receive the following message on successful completion of the transaction:

FULL CYCLE HAS BEEN PERFORMED SUCCESSFULLY
QUEUE USED - ANYQ
NUMBER OF MESSAGES PROCESSED - 10
TOTAL SECONDS - hh:mm:ss

where:
v 10 is the number of messages you specified (nn).
v hh:mm:ss is the time taken to process nn messages.

5. Return to the terminal running the MQMT Monitor Queue process.
6. Press the Enter key on this terminal.

The QDEPTH column for queue ANYQ now equals 10. This is the value
specified for nn in Step 4.

7. Messages on an WebSphere MQ for z/VSE queue can be displayed at any
time using the MQMT Browse Queue facility (MQMT option 4). Select this
option, enter the queue name in the “Object” field, and press the Enter key.
This displays the screen in Figure 9.

The queue can then be browsed forwards and backwards using function keys
four and five (PF4 and PF5).
Note that in this example, the “Record Status” field is Written. This indicates
that the message has been placed on the queue but not retrieved.

8. Move to the other terminal.
9. At the CICS prompt, type:

TST2 GETD 10 ANYQ

Note: If you type TST2 without parameters, the HELP screen for using
TTPTST2 is displayed.

10. TTPTST2 reads the specified messages from ANYQ.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:05:20 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A001

Object Name: ANYQ
QSN Number : 00000001 LR- 0, LW- 10, DD-MQFI001

Queue Data Record
Record Status : Written. PUT date/time : 20061013093221
Message Size : 00000200 GET date/time :
Offset+....!....+....!....+....!....+....!....+....!....+....!....+....!
00000 THIS IS A MESSAGE TEXT
00070
00140

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF7=Up PF8=Down PF9=Hex PF10=Hdr PF11=MD

Figure 9. Browse Queue Records screen - status written

Installation verification test

34 WebSphere MQ for z/VSE System Management Guide

You receive the following message on successful completion of the transaction:
FULL CYCLE HAS BEEN PERFORMED SUCCESSFULLY

QUEUE USED - ANYQ
NUMBER OF MESSAGES PROCESSED - 10
TOTAL SECONDS - hh:mm:ss

where:
v 10 is the number of messages you specified (nn).
v hh:mm:ss is the time taken to process nn messages.

11. Return to the terminal, running the MQMT Monitor Queue process.
12. Press the Enter key. The Monitor Queue screen still displays ANYQ as the

only defined non-system queue.

Note:

a. The QDEPTH number, representing the number of messages on the queue,
has decreased to zero.

b. The total number of messages read from the queue (LR) has increased by
the number you read using TTPTST2.

13. Use the MQMT Browse facility to view ANYQ. The “Record Status” field has
changed to Deleted, and the “GET date/time” field is now completed.
This indicates that the record has now been retrieved by an application. In this
case the test transaction TST2 was used with parameters “TST2 GETD 5
ANYQ”.

Note that WebSphere MQ for z/VSE differs from many other WebSphere MQ
platforms, in that when a message is retrieved from a queue it is logically
deleted but not physically deleted. The messages are merely flagged as
“Deleted”.
As a consequence of this technique of flagging messages as “written” and
“deleted”, messages can have their logical state changed, and where necessary,
reprocessed.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:05:20 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A001

Object Name: ANYQ
QSN Number : 00000001 LR- 5, LW- 10, DD-MQFI001

Queue Data Record
Record Status : Deleted PUT date/time : 20061013093221
Message Size : 00000200 GET date/time : 20061013094517
Offset+....!....+....!....+....!....+....!....+....!....+....!....+....!
00000 THIS IS A MESSAGE TEXT
00070
00140

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF7=Up PF8=Down PF9=Hex PF10=Hdr PF11=MD

Figure 10. Browse Queue Records screen - status deleted

Installation verification test

Chapter 2. Installation 35

You can do this using MQMT option 2.5. However, you are advised to carry
out this procedure only when you are familiar with the WebSphere MQ for
z/VSE system.

You have now completed a local installation verification test demonstrating that
two applications can send and receive messages through an WebSphere MQ queue.

Installation checkpoint (installation verification test)
You can now:
v Define local queues.
v Start and stop the queue manager.
v Browse queues using MQMT.
v Monitor the status of queues.
v Run simple WebSphere MQ programs that use local queues.

Note: If the installation verification test has not completed, check through the
preceding instructions.

Remote queue verification test
In order to expand this test to include a remote link, you must carry out the
following steps:
1. Using the appropriate manufacturer’s directions, install the prerequisite

hardware and software required to support the selected transport protocol
(SNA LU 6.2 or TCP/IP).

2. Define the WebSphere MQ channels that you require. See “Channel definitions”
on page 112, and coordinate this task with the remote system administrator.
You will need to define a Sender channel to send messages from WebSphere
MQ for z/VSE to a remote MQ system, and a Receiver channel to receiver
message from a remote MQ system.
Sender and receiver channels operate in pairs. They must have the same name,
for example, a Sender channel under WebSphere MQ might be called
VSE1.TO.NT5, and the Receiver channel on the remote NT system would also
be called VSE1.TO.NT5. Sender and Receiver channel pairs must also have
matching channel parameter values, that is, matching maximum messages size,
batch size and wrap sequence.

3. Configure the transmission queues and remote queues required by WebSphere
MQ to communicate over the channel – see “Queue definitions” on page 96.
For the remote queue verification test, you will need to define a remote queue
that identifies a local queue on a remote queue manager, and a transmission
queue used to temporarily store messages while they are transmitted to the
remote queue manager.
To test remote queuing to WebSphere MQ for z/VSE, you will also need a local
queue that can be identified in a remote queue definition on a remote queue
manager.

Use transaction TST2 to place test messages on a remote queue. These messages
will be temporarily stored in the transmission queue identified in the remote queue
definition. The WebSphere MQ for z/VSE queue manager will subsequently
transmit the message to the remote queue manager. Verify that the test messages
arrive successfully on the remote system.

Remote MQ systems will have a utility program similar to the TST2 transaction.
On some systems, this program is called 'amqsput'. Use the utility program on the

Installation verification test

36 WebSphere MQ for z/VSE System Management Guide

remote system to put messages on the remote queue that points to a local queue
on the WebSphere MQ for z/VSE system. Verify that the test messages arrive
successfully on the local queue.

You have now installed and locally verified WebSphere MQ and you can use the
administrative programs and the MQI libraries.

However, before your user applications can effectively use the system for message
transmission, you must fully configure the system with your queue definitions.

This last step is the most important part of the installation. The requirements are
detailed in:
v Chapter 3, “Configuring network communications,” on page 43, which provides

the configuration guidelines.
v Chapter 4, “System operation,” on page 77, which describes the WebSphere MQ

system administration screens used in the configuration.

Default object definitions
The sample file MQJINSG.Z provides sample JCL to create default objects to your
queue manager. This job creates the following objects:

Queues
SYSTEM.ADMIN.ACCOUNTING.QUEUE

System accounting queue
SYSTEM.ADMIN.CHANNEL.EVENT

Channel event queue
SYSTEM.ADMIN.PERFM.EVENT

Performance event queue
SYSTEM.ADMIN.QMGR.EVENT

Queue manager event queue
SYSTEM.ADMIN.STATISTICS.QUEUE

System statistics queue
SYSTEM.CICS.BRIDGE.QUEUE

WMQ-CICS bridge queue
SYSTEM.DEAD.LETTER.QUEUE

Dead letter queue
SYSTEM.DEFAULT.ALIAS.QUEUE

Default alias queue
SYSTEM.DEFAULT.LOCAL.QUEUE

Default local queue
SYSTEM.DEFAULT.MODEL.QUEUE

Default model queue
SYSTEM.DEFAULT.REMOTE.QUEUE

Default remote queue
SYSTEM.MONITOR

MQI monitor queue
SYSTEM.MQEXPLORER.REPLY.MODEL

MQ Explorer model reply queue

Channels
SYSTEM.ADMIN.SVRCONN

MQ Explorer svrconn channel
SYSTEM.AUTO.RECEIVER

Receiver for Channel auto-def
SYSTEM.AUTO.SVRCONN

SvrConn for Channel auto-def

Installation verification test

Chapter 2. Installation 37

SYSTEM.DEF.RECEIVER
Default receiver channel

SYSTEM.DEF.REQUESTER
Default requester channel

SYSTEM.DEF.SENDER
Default sender channel

SYSTEM.DEF.SERVER
Default server channel

SYSTEM.DEF.SVRCONN
Default server connection channel

SYSTEM.AUTO.RECEIVER
Channel auto-definition receiver channel

SYSTEM.AUTO.SVRCONN
Channel auto-definition server connection channel

Namelists
SYSTEM.DEFAULT.NAMELIST

Default namelist object

Listeners
SYSTEM.DEFAULT.LISTENER.TCP

Default TCP/IP listener object

The MQJINSG.Z sample job uses the WebSphere MQ Command (MQSC) utility
which uses the WebSphere MQ for z/VSE Batch Interface. Consequently, to run the
sample job, the VSE queue manager and batch interface must be active. In
addition, the MQSC utility uses the system admin command and system admin
reply queues. These must be defined to the queue manager before the sample can
be run. Like other samples, you must copy and edit the MQJINSG.Z file to
customize the JCL.

Note: You can use the MQJINSG.Z sample as the basis for creating your own jobs
to define, alter, or delete queues and channels.

Post installation verification test CICS modifications
The WebSphere MQ for z/VSE subsystem can be started and stopped
automatically as part of the normal CICS startup and shutdown procedures. You
do this by adding appropriate entries to the CICS Initialization and Shutdown
parameters.

You must not carry out these steps until you have installed WebSphere MQ for
z/VSE.
CICS Program List Table Post Initialization (PLTPI)

The WebSphere MQ subsystem requires initialization before applications
can start using the queue manager. These steps set up the WebSphere MQ
environment and initialize the WebSphere MQ resources.

To start WebSphere MQ automatically, you can add the following programs
to the CICS initialization PLT (PLTPI) list:
MQPSENV

Set up the WebSphere MQ environment.
MQPSTART

Initialize the resources.

For example:
DFHPLT TYPE=ENTRY, PROGRAM=MQPSENV DFHPLT TYPE=ENTRY, PROGRAM=MQPSTART

Installation verification test

38 WebSphere MQ for z/VSE System Management Guide

Other methods are given in “WebSphere MQ initialization” on page 28.
CICS Program List Table Shut Down (PLTSD)

The WebSphere MQ subsystem should be shutdown correctly before
shutting down CICS. This can be done:
v Manually, using transaction MQST.
v Automatically, by placing the WebSphere MQ program MQPSTOP in the

CICS shutdown PLT before the DFHDELIM statement.
For example:
DFHPLT TYPE=ENTRY, PROGRAM=MQPSTOP

This ensures that WebSphere MQ ends during the first phase of CICS
shutdown.

Migration procedures for existing users
Please review the section “Installing WebSphere MQ for z/VSE - all users” on page
16 before proceeding with the instructions in this section.

If you are migrating from MQSeries for VSE V1.4, you must run the sample jobs
MQJMIGR1 and MQJMIGR2 before proceeding with the following steps. This
samples can be found in the WebSphere MQ for z/VSE installation sublibrary.

Conveniently, migration from MQSeries for VSE to WebSphere MQ for z/VSE does
not require the deletion and re-creation of your VSAM datasets. This means your
existing files can be used with their existing data. The only exception to this is the
WMQ configuration file.

To carry out the migration, follow the procedure under “Installing WebSphere MQ
for z/VSE - all users” on page 16 with the following modifications:
1. Do not run sample job MQJCONFG.Z.

Running MCJCONFG.Z deletes and redefines your WMQ configuration file,
which contains, among other things, your application queue definitions.
Instead, the execution of the MQJSETUP.Z job and transaction MQSU ensures
your configuration is upgraded correctly for V3. MQJSETUP.Z and MQSU are
standard steps during installation.

2. Do not run sample job MQJQUEUE.Z.
The MQJQUEUE.Z job deletes and redefines your WMQ VSAM datasets. You
must not run this job if you want to keep your existing queue data.

3. Check SENDER channel definitions.
If you are migrating from V1.4 or V2.1.0 and conversion of message data is not
to be done by the sender MCA, then set the Convert msgs(Y/N) field to N for
all sender channel definitions.

Note: To keep existing V1.4 and V2.1.0 behaviour of the sender channel, you
should set the Convert msgs(Y/N) field to N in all sender channel definitions.

4. When migrating from V1.4 or V2.1.0, you must now relink all your WMQ
applications with LIBDEF pointing to the V3 installation sublib in order to
include the new WMQ for z/VSE application programming interface objects.
Relinking is required for CICS and batch applications.

5. Correct application design in WebSphere MQ for z/VSE requires that the MQI
calls be done by the program issuing the MQCONN or by programs EXEC
CICS LINKed from this program.
For example:

CICS modifications

Chapter 2. Installation 39

PROG1 MQCONN
MQOPEN
MQGET
CICS SYNCPOINT
MQCLOSE
MQDISC
EXEC CICS RETURN

or
PROG1 EXEC CICS LINK PROG2

PROG2 MQCONN
MQOPEN
MQGET
CICS SYNCPOINT
MQCLOSE
MQDISC
EXEC CICS RETURN

or
PROG1 EXEC CICS LINK PROG2

PROG2 MQCONN
EXEC CICS LINK PROG3

PROG 3 MQOPEN
MQGET
CICS SYNCPOINT
MQCLOSE
EXEC CICS RETURN

MQDISC
EXEC CICS RETURN

EXEC CICS RETURN

In MQSeries for VSE, an application could EXEC CICS LINK to a program to
perform an MQCONN and then EXEC CICS RETURN and use the connection
handle to perform other MQI calls in the calling program or perform EXEC
CICS LINKed to other programs.
To allow the same behavior, the installation compatibility mode can be set in
the configuration file by specifying SET QM-COMPAT-MODE ENABLED as the
statement preceding the SYSIN.Z statements when updating the configuration
file.
For example:
// DLBL LOADFL,’wmqzvse.mqfsset’,,VSAM,CAT=?cat-name?
// EXEC IESVSMLD,SIZE=AUTO
80,E,LOADFL
SET QM-COMPAT-MODE ENABLED
* $$ SLI MEM=SYSIN.Z,S=prd2.wmqzvse
/*

or
// DLBL CONFIG,’wmqzvse.mqfcnfg’,,VSAM,CAT=VSESPUC
// LIBDEF PHASE,SEARCH=(prd2.wmqzvse,prd2.sceebase)
// ASSGN SYS005,SYSLST
// EXEC MQPUTIL,SIZE=MQPUTIL
UPDATE
SET QM-COMPAT-MODE ENABLED
* $$ SLI MEM=SYSIN.Z,S=prd2.wmqzvse
/*

When, after completing the full installation process with the above modifications,
you start WMQ for z/VSE 3.0, you should see your existing queues with their
previous data, and your existing channel definitions. This completes the migration
process for V1.4 and V2 systems.

Migration procedures

40 WebSphere MQ for z/VSE System Management Guide

Note: If the migration has not completed correctly, check through the preceding
instructions.

Migration procedures

Chapter 2. Installation 41

Migration procedures

42 WebSphere MQ for z/VSE System Management Guide

Chapter 3. Configuring network communications

This chapter describes the steps you perform to configure WebSphere MQ to run
on the CICS system and communicate with other WebSphere MQ systems. The
chapter assumes that your chosen communications software has been installed and
correctly configured on your system.

For ACF/VTAM, using WebSphere MQ should not require any changes to the:
v VTAM parameters.
v Definition of CICS systems to VTAM.

However, you must define all the LUs that are involved.

For TCP/IP, using WebSphere MQ with the TCP/IP communications protocol
requires the installation of TCP/IP for z/VSE V1.5F (or equivalent) or later.

TCP/IP is shipped as part of the z/VSE base product in library PRD1.BASE, and
simply requires that you install a product key together with your customer
information. For further details refer to the TCP/IP for z/VSE User’s Guide.

WebSphere MQ for z/VSE does not have any special TCP/IP installation or
configuration requirements.

Note: If TCP/IP is to be used as a transport protocol, the TCP/IP phase sublibrary
must be added to the LIBDEF statement in the CICS startup JCL before the
SCEEBASE sublibrary.

This is because SCEEBASE contains a TCP/IP phase stub that handles TCP/IP API
calls when TCP/IP is not installed.

This chapter describes how to define connections and sessions for LU 6.2 channel
connections, and provides guidelines for configuring the queue manager, channels
and queues for effective communications.

WebSphere MQ system definitions required for ACF/VTAM
The local WebSphere MQ for z/VSE system has to be informed about remote
WebSphere MQ systems with which it will communicate. WebSphere MQ has to be
defined to:
v WebSphere MQ on CICS (in the network specific parts of the channel definition)
v CICS itself, in one of these ways:

– In a TERMINAL definition.
– In CONNECTION/SESSION definitions.
– Through the CICS AUTOINSTALL facility.

v VTAM (either predefined, or by VTAM dynamic resource definition), if you are
using SNA LU6.2.

Definitions in CICS for LU 6.2 connections
If the CICS end of an WebSphere MQ channel is to initiate the channel connection
(that is, the CICS channel-endpoint is a sender), CICS performs an EXEC CICS
ALLOCATE. However, this succeeds only if CICS is:

© Copyright IBM Corp. 2008, 2013 43

v A contention winner.
v Already bound.
v Not already allocated.

If CICS has no definition of the resource, CICS is incapable of formulating a
request to VTAM for session establishment. In these circumstances, CICS
AUTOINSTALL is inappropriate - autoinstall is for incoming session establishment
requests, not for outgoing ones.

Therefore, for sender channel-endpoints on z/VSE, a definition of the remote
system is required at the CICS level.

If the remote system, at the network level, is capable of supporting parallel
sessions (for example, it has independent LU 6.2 capability, or it is another CICS
system) and, you intend to configure several channels between the two systems,
you should use CONNECTION and SESSIONS definitions.

Typical definitions, using the CICS Resource Definition Online (RDO) transaction,
CEDA, are shown in Figure 11.

If the remote LU is capable of only one session, then it may be defined to CICS as
either a single-session connection definition or as a terminal definition (Figure 13
on page 45).

DEFINE GROUP(<group name 1>)
CONNECTION(<remote conn>)
NETNAME(<remote luname>)
ACCESSMETHOD(VTAM)
PROTOCOL(APPC)
SINGLESESS(NO)

DEFINE GROUP(<group name 1>)
SESSIONS(<sess name>)
CONN(<remote conn>)
MODE(<logmode 1>)
MAXIMUM(<max sessions>,<max CICS contention winners>)

INSTALL GROUP(<group name 1>)

ADD GROUP(<group name 1>) LIST(<start-up list>) {AFTER(<group name>)}

Figure 11. Definitions in CICS using RDO for parallel session partner LU

DEFINE GROUP(<group name 2>)
CONNECTION(<remote conn>)
NETNAME(<remote luname>)
ACCESSMETHOD(VTAM)
PROTOCOL(APPC)
SINGLESESS(YES)

DEFINE GROUP(<group name 2>)
SESSIONS(<sess name>)
CONN(<remote conn>)
MODE(<logmode 2>)
MAXIMUM(1,1)

INSTALL GROUP(<group name 2>)

ADD GROUP(<group name 2>) LIST(<start-up list>) {AFTER(<group name>)}

Figure 12. Definitions in CICS for single-session capable partner LU

WebSphere MQ definitions

44 WebSphere MQ for z/VSE System Management Guide

The CICS supplied typeterm definition, DFHLU62T, provides a suitable terminal
type definition. It exists in group DFHTYPE, which should be installed on your
system.

Sample definitions for CICS tables can be found in the sublibrary
PRD2.WMQZVSE. However, other definitions are specific to your environment and
you have to create them manually using the CEDA transaction, or DEFINE
commands if using the DFHCSDUP batch program.

The definitions consist of a:
v Connection definition - see “Connection definition”
v Session definition - see “Session definition” on page 46

Connection definition
CICS uses the connection name to identify the other systems. For example, if
sessions in VSE1 are to converse with sessions in VSE2 and z/OS, you must define
both z/VSE and z/OS connections in each direction.

You must also define all the sessions and terminals involved if you are using SNA
LU 6.2.

Type CEDA DEF CONN GROUP(MQM) to create connections, and set the fields to the
following values:

Table 1. Object Characteristics of Connection

Category Parameter Desired Value

Connection VSE2

Group MQM

Connection Identifiers Netname vse2lu62

Connection Properties ACcessmethod Vtam

Protocol Appc

Datastream User

RECordformat U

Operational Properties AUtoconnect Yes

INService Yes

Security ATtachsec Local

The settings detailed, together with default values are sufficient for operation. For
other parameters, refer to the CICS for z/VSE 2.3 Resource Definition (Macro) manual.

You can also display the connection status by typing CEMT INQ CONN, to display:

DEFINE GROUP(<group name 3>)
TERMINAL(<remote conn>)
NETNAME(<remote luname>)
TYPETERM(DFHLU62T)
MODENAME(<logmode 2>)

INSTALL GROUP(<group name 3>)

ADD GROUP(<group name 3>) LIST(<start-up list>) {AFTER(<group name>)}

Figure 13. Definitions in CICS singles-session capable LU

WebSphere MQ definitions

Chapter 3. Configuring network communications 45

Table 2. CEMT I CONN display output.

STATUS: RESULTS - OVERTYPE TO MODIFY

Conn(VSE2) Net(xxxxxxxx) Ins Acq

Conn(z/OS) Net(xxxxxxxx) Ins Rel

Session definition
Type CEDA DEF SESSION G(MQM) to create session names. Enter the values shown in
Table 3 to complete the fields.

Table 3. CEDA V SESS display parameter settings

Category Parameter Desired Value

Sessions VSE1VSE2

Group MQM

Session Identifiers Connection VSE2

Session Properties Protocol Appc

Maximum 00006,00003

RECEIVEcount No

SENDCount No

SENDSize 04096

RECEIVESize 04096

Operational Properties Autoconnect Yes

Buildchain Yes

RELreq No

Discreq No

Recovery RECOvoption Sysdefault

The settings detailed, together with default values, are sufficient for operation. For
other parameters, refer to the CICS for z/VSE 2.3 Resource Definition Guide.

Note: The DFHSIT Table must have the parameter ISC = YES to make the
WebSphere MQ system work.

WebSphere MQ for z/VSE configuration guidelines
The following guidelines refer to the WebSphere MQ master terminal (MQMT)
administration dialogs. For information about using MQMT, see “WebSphere MQ
master terminal (MQMT) – main menu” on page 79.

There are three levels of configuration immediately relevant to network
communications:
v The queue manager.
v The channel.
v The queue.

Some fields are the same in all three levels, for example, the Maximum Message
Size.

Note:

WebSphere MQ definitions

46 WebSphere MQ for z/VSE System Management Guide

1. The maximum message size defined in the queue manager configuration must
be the largest of all those defined in the channels for this queue manager.

2. The size defined in the channel configuration must be equal to, or greater than,
the largest message size that is accessing this channel.

3. Each level of maximum message size configuration utilizes different kinds of
resources. Unnecessarily large sizes will consume address space.

Queue manager configuration guidelines
When configuring the queue manager (see “Global system definition” on page 82),
use the following guidelines:

Maximum Connection Handles
The maximum number (integer) of simultaneous connections to the queue
manager. Though there is a slight overhead for each unused reservation,
there is no harm in setting a large number, for example, 200.

Maximum Concurrent Queues
The maximum number of simultaneous open local queues allowed for the
queue manager. You are recommended to set this to a large number, for
example, 200.

System Wait Interval
The maximum polling time (in seconds) for the system monitor program
after the system starts. A value of thirty seconds is usually sufficient.

Note: The system monitor task remains active until the queue manager or
CICS region is shut down, but exists in a wait state until the task is
activated by the expiration of the System Wait Interval or by some specific
application interface tasks.

The system monitor task starts up the trigger program and schedules the
processes that reclaim resources held by applications that have ended
abnormally. If there are too many, the System Wait Interval should be
reduced to schedule this cleanup process more frequently.

Maximum Q Depth
The maximum number of active messages allowed by the queue manager
for each queue. This value serves as the default Maximum Q Depth value
when defining a queue. Any inbound message that causes the queue depth
to exceed this size will be rejected as “Queue Full”.

If this value is smaller than the Maximum Q Depth specified in the queue
definition, it becomes the limiting value for the queue. You should set the
value to double the maximum number of messages expected to be queued
before any application starts to process them.

Maximum Message Size
The maximum number of characters allowed by the queue manager for
each message. This field needs only to be large enough to accommodate
the largest message. Setting a higher value than necessary wastes resource.

For example, if you anticipate the largest message to be 10 KB (10,240
bytes) you should set this field to 10240.

Note: Messages are stored in VSAM clusters and large messages can span
multiple VSAM records. However, you should avoid spanning multiple
records wherever possible, because of performance implications.

Product configuration

Chapter 3. Configuring network communications 47

Where an entire message is stored within a single VSAM record, a message
header of 736 bytes, for identification and description, is prefixed to the
message.

Where a message is split across multiple records, each subsequent record
uses a 56-byte header as a prefix to the data.

Maximum Single Q Access
This field defines the maximum number of MQOPEN calls against any
queue handled by this queue manager. A value of 100 calls is an acceptable
value, if the maximum number of opens for each queue in the system is
100.

Maximum Global Locks
The maximum number of entries that the queue manager can use to
maintain uncommitted MQPUT or MQGET calls, for each queue in the
system, for recovery. A value of 500 is normally used.

Maximum Local Locks
The maximum number of entries that the queue manager can use to
maintain uncommitted MQPUT or MQGET calls for each queue and task
for recovery. Since an entry of a local lock is deleted once an application
issues an explicit SYNCPOINT CICS command to commit updates, the
more often an application takes the checkpoint, the fewer the maximum
number of local locks needed. You should specify a value greater than the
largest message batch size for all the channel records. A value of 200 is
usually sufficient.

Channel configuration guidelines
Defining the remote WebSphere MQ system to the local queue manager is
described in “Channel definitions” on page 112. However, from the point of view
of showing where fields in the various definitions have to correspond, an outline
WebSphere MQ channel definition is shown in Figure 14 on page 49.

Product configuration

48 WebSphere MQ for z/VSE System Management Guide

When configuring the channel, use the following guidelines:

Protocol
The required transport options for this channel. The options are:
v L - LU 6.2 (SNA)
v T - TCP/IP

Remote TCP/IP port
The port number; relevant for TCP/IP defined channels only.

This field is relevant for sender, server and requester channels. Receiver
channels are started by the WebSphere MQ listener program which uses
the port number configured in the global system definition.

This field is ignored if the port number is specified as part of the
connection name.

Type Channel type of (S)ender, (R)eceiver, ser(V)er, re(Q)uester, or svr(C)onn.

Connection
The channel partner name. This is the CICS connection ID for LU 6.2
channels, or the remote hostname or IP address for TCP/IP channels.

For TCP/IP this field is relevant for sender, server and requester channels.
Sender channels identify a specific host for communications, whereas
receiver channels can accept communications from any host.

Note that for TCP/IP channels, the connection name does not include a
port number as it may do on other MQ platforms. The port number is
configured as a separate channel parameter.

For TCP/IP sender channels, the remote port number can be appended (in
parentheses) to the connection name. For example:
my.remote.host(1414)

2011/10/10 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:10:50 Channel Record DISPLAY CIC1
MQWMCHN A001
Channel : MY.SDR
Desc. . :
Protocol: T (L/T) Type : S (S=Snd/R=Rcv/V=Srv/Q=Req/C=svrConn) Enabled : Y

Sender/Server
Remote TCP/IP port : 00000 Short/Long retry count . : 000000000
Get retry number : 00000000 Short retry interval . . : 000000000
Get retry delay (secs) . . : 00000000 Long retry interval . . . : 000000000
Convert msgs(Y/N). : N Batch interval : 000000000
Property control : C
Transmission queue name. . : MY.XMITQ
TP name. . :
Sender/Receiver/Server/Requester
Connection : 1.1.1.1(1414)
Max Messages per Batch . . : 000010 Message Sequence Wrap . . : 999999999
Max Message Size : 0004096 Dead letter store(Y/N) . : N
Max Transmission Size . . : 065535 Split Msg(Y/N) : Y
Max TCP/IP Wait : 000300 Channel statistics . . . : Q

Channel monitoring . . . : Q
Channel record displayed.
F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

Figure 14. Outline WebSphere MQ channel definition

Product configuration

Chapter 3. Configuring network communications 49

If the port number is not appended to the connection name, the queue
manager will use the value specified by the Remote TCP/IP port
parameter.

Short/Long retry count
The retry count field represents the number of times an allocation is retried
when the conversation has not been established. You should set the retry
count at less than 10. If this value is exceeded, the system can be placed
under stress.

For receiver channels, this value should be set to zero.

Short retry interval
The time interval, in seconds, that an allocation of conversation is retried
for the first cycle of retries. A value of one to five seconds is sufficient for
this field, with the longer time being used for a slow environment, for
example, a dial-up SDLC.

For receiver channels, this value should be set to zero.

Long retry interval
The time interval, in seconds, that an allocation of conversation is retried
for the next cycle of retries, should the first cycle of retries fail. A value
between three and 10 seconds is sufficient for this field, with the longer
time being used for a slow environment.

For receiver channels, this value should be set to zero.

Get retry number
The number of retries for the MQGET call when the queue is depleted. If a
transmission queue is empty, the queue manager retries at the Delay-Time
interval before disconnecting the channel or making a request to disconnect
the channel.

For receiver channels, this value should be set to zero.

Get retry delay
The time interval, in seconds, between retries. The value of this field may
depend on the size of message and the platforms where the LU resides.
The optimum value can vary from 1 to 20 seconds. Sender channels
process messages as they arrive, that is, the channel does not wait the full
delay interval if messages have arrived and are ready for transmission.

The longer the delay time specified, the less frequently a channel is
reopened. For time-consuming dial-up connections, you are recommended
to use a value of 20 seconds.

For receiver channels, this value should be set to zero.

Note: By using a value of zero for the Number of Retries, and a value of
“n” seconds for the Delay Time it is possible for you to set a simple
disconnection interval similar to that provided on other WebSphere MQ
platforms.

Max Messages per Batch
The maximum number of messages in the batch.

Message Sequence Wrap
The message sequence number (MSN) wrap count represents the highest
MSN value used on this channel, after which the MSN reverts to one. You
are recommended to set this value to 999 999 999.

Product configuration

50 WebSphere MQ for z/VSE System Management Guide

Note: The value of the MSN Wrap count must be the same at both the
sending and receiving ends of the channel.

Max Transmission Size
The mutually accepted maximum number of characters for each
transmission. The minimum value should be equal to the maximum
message size expected on this channel, plus 476 bytes for the transmission
header.

The maximum transmission size for LU6.2 channels is 32000. For TCP/IP
the maximum is 65535.

Max Message Size
The maximum number of bytes for each message that is allowed for this
channel.

Convert Msgs
A field that identifies whether message data is converted before it is sent to
a remote queue manager. To convert message data, set this field to Y.

Split Msg
A field that identifies whether message data can be split across network
transmissions. For example, if the transmission size is 8 KB and message
data lengths are up to 30 KB, then the message data must be split across
transmissions.To split message data in such situations, set this field to Y.

TP Name
The remote task ID, character only, of the receiver on a remote CICS region
or a Transaction Program name on a remote system. This is required by the
sender, and since CICS uses four bytes as the transaction identifier, only
the first four bytes of the remote task ID are meaningful for CICS to CICS
conversation.

This field is not relevant for TCP/IP channels.

Note: z/VSE converts the name to uppercase, therefore, the corresponding
name on the remote system should be defined in uppercase characters.

Max TCP/IP Wait
The maximum number of second that a Message Channel Agent (MCA)
should wait to receive TCP/IP data before terminating the connection with
an error. See “Bullet-proof channels” on page 74 for more information.

Channel statistics
Indicates whether or not channel statistics should be collected for the
channel.

Channel monitoring
Indicates whether or not channel monitoring information should be
collected for the channel.

Queue configuration guidelines
Defining queues to the local queue manager is described in “Queue definitions” on
page 96. Certain parameters in queue definitions are important when configuring
network communications. The queue extended definition, shown in Figure 15 on
page 52, includes these parameters.

Product configuration

Chapter 3. Configuring network communications 51

When configuring the queue (see “Queue definitions” on page 96), use the
following guidelines:

File name
The CICS file name, of up to seven characters, used to store messages for
this queue. It is recommended that files host only one WebSphere MQ
queue. Once a queue has been defined, the file name cannot be changed.
To move a queue to a different file, existing messages should be processed,
the queue deleted, and redefined in with the new file name.

Note: You cannot use the MQFCNFG or the MQFREOR file for queue
definitions. The MQFCNFG file is used by WebSphere MQ to store system
configuration and cannot be used to host queue messages. The MQFREOR
file is used by the automatic VSAM reorganization feature and is deleted
and redefined during reorganization. WebSphere MQ checks this file before
commencing a scheduled reorganization. If queue messages are present
and the file defined to hold these messages does not exist, then the
reorganization cannot take place, effectively disabling the reorganization
feature.

Max. Q depth
The maximum number of records that can remain unread on this queue.
Any inbound message that causes the queue depth to exceed this size is
rejected as “Queue Full”. The minimum value you set should be the
maximum number of messages on the queue before the application starts
to read and process the queue. In practice, you can set this to 9,999,999.

Max. msg length
The maximum number of characters for each message that this queue
allows. If this queue is a transmission queue, the value needs to be
sufficiently large to accommodate all messages using this queue as the
outbound queue.

2011/10/10 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:11:28 Queue Extended Definition CIC1
MQWMQUE A001

Object Name: MY.XMITQ

General Maximums Events
Type . . : Local Max. Q depth . : 00010000 Service int. event: N
File name : MQFI001 Max. msg length: 00040000 Service interval : 00000000
Usage . . : T Max. Q users . : 00000100 Max. depth event : N
Shareable : Y Max. gbl locks : 00000100 High depth event : N
Dist.Lists : N Max. lcl locks : 00000100 High depth limit : 000
PropCtl. . : C Low depth event . : N
Triggering Low depth limit . : 000
Enabled . : Y Transaction id.:
Type . . . : E Program id . . : MQPSEND
Max. starts: 0001 Terminal id . :
Restart . : N Channel name . : MY.SDR
User data :

:

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF10=Queue

Figure 15. Outline WebSphere MQ extended queue definition

Product configuration

52 WebSphere MQ for z/VSE System Management Guide

Max. Q users
The maximum number of MQOPEN calls that can occur on this queue.
You are recommended to set a value of 100 for each queue that is not a
transmission queue. For a transmission queue you should add a value of
100 calls, to the base of 100 calls, for each additional target queue that
receives messages from this transmission queue. Setting a high value can
use too much overhead.

Max. gbl locks
The maximum number of entries that the queue manager uses to maintain
committed MQPUT and MQGET calls for this queue for system recovery. If
the queue is intended for random message retrieval, rather than sequential
processing, then specify a higher value (for example, 1000). For sequential
processing, a lower value (for example, 200) should be sufficient.

Max. lcl locks
The maximum number of entries that the queue manager uses to maintain
uncommitted MQPUT and MQGET calls for this queue for recovery. Since
an entry of a local lock is deleted once an application issues an explicit
SYNCPOINT CICS command to commit updates, the more often an
application takes the checkpoint, the fewer the maximum number of local
locks needed. A value similar to the Max. gbl locks setting is
recommended.

Trigger Type
“F” is used to generate a trigger when an MQPUT call changes the status
of a queue from empty to nonempty. The triggered transaction must have
sufficient logic to empty the queue, including messages that may arrive
during the process, in a single thread. “E” is used to generate a trigger
whenever an MQPUT call occurs and may have as many threads as
specified in Max Trigger Starts.

Max. starts
The maximum number of trigger threads that can be activated
simultaneously. This field applies to Trigger Type “E” only.

Transaction id
The transaction to be started by the trigger. This field is mutually exclusive
with the Program ID. You are recommended to leave this field blank and
use a Program ID, for example MQPSEND, unless you require a user
transaction.

Once the initial maximum trigger starts is reached then WebSphere MQ for
z/VSE only checks that the maximum trigger starts are running at every
system interval and not when each task completes. If it is important to
have a definite number of trigger instances running against a queue, you
should use Program ID to identify your trigger program.

Program id
You should use the MQPSEND call on a transmission queue if you require
triggering.

Terminal id
You should leave this field blank unless you require a terminal for problem
determination purposes.

Channel Name
This field should be left blank except for a transmission queue definition.
For a transmission queue definition, this field must identify a channel
name.

Product configuration

Chapter 3. Configuring network communications 53

User Data
This field is for static data that you want to pass to the trigger instance.
When a trigger instance is activated, it is passed data in the form of the
MQTM structure (see the CMQTML and CMQTMV copybooks). Data in
the User Data field is passed in the MQTM-USERDATA field.

Event The event settings for queues do not affect network communications. For a
full description of the event settings, refer to “Local queue extended
definition screen” on page 100.

Permitted number of channels
The limit on the number of channels depends upon the availability of system
resources. The queue manager can support as many channels and transmission
queues as the resource in the system permits, up to a maximum of 1000 channels
and 1000 queues.

Example configuration
The following tables give a set of values that can be used to set up your system.
See:
v Table 4 for the queue manager.
v Table 5 for a channel.
v Table 6 on page 55 for a queue.

Table 4. Example queue manager configuration

Parameter Value Units

Maximum Number of MQCONN 200 integer

Maximum Open Queue 200 integer

System Wait Interval 30 seconds

Maximum Q Depth 9999999 integer

Maximum Message Size 5000 bytes

Maximum Number of Opens 500 integer

Max Number of Global Locks 500 integer

Max Number of Local Locks 500 integer

Table 5. Example channel configuration

Parameter Value Units

Short/Long retry count 4 integer

Short retry interval 1 second

Long retry interval 3 seconds

Get Retries 1 integer

Delay Time 10 seconds

Message Sequence Wrap 999999999 integer

Maximum Transmission Size 3821 bytes

Maximum Message Size 5000 bytes

Product configuration

54 WebSphere MQ for z/VSE System Management Guide

Table 6. Example queue configuration

Parameter Value Units

Maximum Q Depth 999999 integer

Maximum Message Size 5000 bytes

Maximum Number of Opens 100 integer

Max Number of Global Locks 100 integer

Max Number of Local Locks 100 integer

Trigger Type E character

Maximum Trigger Starts 1 integer

Transaction Id <blank> character

Program Id MQPSEND (transmit queue)
user app. (other queues)

character

Channel exits
Channel-exit programs are called at defined places in the processing carried out by
WebSphere MQ Message Channel Agent (MCA) programs.

Some of these user-exit programs work in complementary pairs. For example, if a
user-exit program is called by the sending MCA to encrypt the messages for
transmission, the complementary process must be functioning at the receiving end
to reverse the process.

The different types of channel-exit program include:
Security exit.
Send exit.
Receive exit.
Message exit.
Message retry exit.
Auto-definition exit.
Transport retry exit.

WebSphere MQ for z/VSE does not support message retry or transport retry exits
since these exits involve features of MQ that are not supported by WebSphere MQ
for z/VSE.

Channel security exits
You can use security exit programs to verify that the partner at the other end of a
channel is genuine.

Channel security exit programs are called at the following places in an MCA's
processing cycle:
v At MCA initiation and termination.
v Immediately after the initial data negotiation is finished on channel startup. The

receiver end of the channel may initiate a security message exchange with the
remote end by providing a message to be delivered to the security exit at the
remote end. It may also decline to do so. The exit program is re-invoked to
process any security message received from the remote end.

v Immediately after the initial data negotiation is finished on channel startup. The
sender end of the channel processes a security message received from the remote

Product configuration

Chapter 3. Configuring network communications 55

end, or initiates a security exchange when the remote end cannot. The exit
program is re-invoked to process all subsequent security messages that may be
received.

Channel send and receive exits
You can use the send and receive exits to perform tasks such as data compression
and decompression. In WebSphere MQ for z/VSE you can configure a chain of up
to 8 send and 8 receive exits.

Channel send and receive exit programs are called at the following places in an
MCA's processing cycle:
v The send and receive exit programs are called for initialization at MCA initiation

and for termination at MCA termination.
v The send exit program is invoked at either end of the channel, immediately

before a transmission is sent over the link.
v The receive exit program is invoked at either end of the channel, immediately

after a transmission has been taken from the link.

There may be many transmissions for one message transfer, and there could be
many iterations of the send and receive exit programs before a message reaches the
message exit at the receiving end.

The channel send and receive exit programs are passed an agent buffer containing
the transmission data as sent or received from the communications link. For send
exit programs, the first eight bytes of the buffer are reserved for use by the MCA,
and must not be changed. If the program returns a different buffer, then these first
eight bytes must exist in the new buffer. The format of data presented to the exit
programs is not defined.

A good response code must be returned by send and receive exit programs. Any
other response will cause an MCA abnormal end (abend). Since data traffic can
continue after an abnormal end (so as to communicate the channel failure to the
remote MCA), send and receive exits are automatically suppressed following an
bad response code. However, the exit is still called at termination of the channel.

Send and receive exits usually work in pairs. For example a send exit may
compress the data and a receive exit decompress it, or a send exit may encrypt the
data and a receive exit decrypt it. When you define the appropriate channels, make
sure that compatible exit programs are named for both ends of the channel.

Channel send and receive exits may be called for message segments other than for
application data, for example, status messages. They are not called during the
startup dialog, nor the security check phase.

Although message channels send messages in one direction only, channel-control
data flows in both directions, and these exits are available in both directions, also.
However, some of the initial channel startup data flows are exempt from
processing by any of the exits.

There are circumstances in which send and receive exits could be invoked out of
sequence; for example, if you are running a series of exit programs or if you are
also running security exits. Then, when the receive exit is first called upon to
process data, it may receive data that has not passed through the corresponding

Channel security exits

56 WebSphere MQ for z/VSE System Management Guide

send exit. If the receive exit were just to perform the operation, for example
decompression, without first checking that it was really required, the results would
be unexpected.

You should code your send and receive exits in such a way that the receive exit
can check that the data it is receiving has been processed by the corresponding
send exit. The recommended way to do this is to code your exit programs so that:
v The send exit sets the value of the ninth byte of data to 0 and shifts all the data

along one byte, before performing the operation. (The first eight bytes are
reserved for use by the MCA.)

v If the receive exit receives data that has a 0 in byte 9, it knows that the data has
come from the send exit. It removes the 0, performs the complementary
operation, and shifts the resulting data back by one byte.

v If the receive exit receives data that has something other than 0 in byte 9, it
assumes that the send exit has not run, and sends the data back to the caller
unchanged.

When using security exits, if the channel is ended by the security exit it is possible
that a send exit may be called without the corresponding receive exit. One way to
prevent this from being a problem is to code the security exit to set a flag, in
MQCD.SecurityUserData or MQCD.SendUserData, for example, when the exit
decides to end the channel. Then the send exit should check this field, and process
the data only if the flag is not set. This prevents the send exit from unnecessarily
altering the data, and thus prevents any conversion errors that could occur if the
security exit received altered data.

In the case of MQI channels for clients, byte 10 of the agent buffer identifies the
API call in use when the send or receive exit is called. This is useful for identifying
which channel flows include user data and may require processing such as
encryption or digital signing.

The following table shows the data that appears in byte 10 of the channel flow
when an API call is being processed (note that these are not the only values of this
byte; there are other reserved values):

Table 7. Identifying API calls

API call Value of byte 10

MQCONN request1, 2 X'81'

MQCONN reply1, 2 X'91'

MQDISC request1 X'82'

MQDISC reply1 X'92'

MQOPEN request X'83'

MQOPEN reply X'93'

MQCLOSE request X'84'

MQCLOSE reply X'94'

MQGET request3 X'85'

MQGET reply3 X'95'

MQPUT request3 X'86'

MQPUT reply3 X'96'

MQPUT1 request3 X'87'

Channel send and receive exits

Chapter 3. Configuring network communications 57

Table 7. Identifying API calls (continued)

MQPUT1 reply3 X'97'

MQSET request X'88'

MQSET reply X'98'

MQINQ request X'89'

MQINQ reply X'99'

MQCMIT request X'8A'

MQCMIT reply X'9A'

MQBACK request X'8B'

MQBACK reply X'9B'

Note:

1. The connection between the client and server is initiated by the client application using
MQCONN. Therefore, for this command in particular, there will be several other
network flows. This also applies to MQDISC that terminates the network connection.

2. MQCONNX is treated in the same way as MQCONN for the purposes of the
client-server connection.

3. If the message data exceeds the transmission segment size, there may be a large
number of network flows per single API call.

Channel message exits
You can use the channel message exit for the following:
v Encryption on the link.
v Validation of incoming user IDs.
v Substitution of user IDs according to local policy.
v Message data conversion.
v Journaling.
v Reference message handling.

In WMQ for z/VSE you can configure a chain of up to 8 message exits. Message
exits are ignored for server-connection channels.

Channel message exit programs are called at the following places in an MCA's
processing cycle:
v At MCA initiation and termination.
v Immediately after a sending MCA has issued an MQGET call.
v Before a receiving MCA issues an MQPUT call.

The message exit is passed an agent buffer containing the transmission queue
header, MQXQH, and the application message text as retrieved from the queue.
(The format of MQXQH is given in “MQXQH – Transmission-queue header” on
page 866.) If you use reference messages, that is messages that contain only a
header which points to some other object that is to be sent, the message exit
recognizes the header, MQRMH. It identifies the object, retrieves it in whatever
way is appropriate appends it to the header, and passes it to the MCA for
transmission to the receiving MCA. At the receiving MCA, another message exit
recognizes that this is a reference message, extracts the object, and passes the
header on to the destination queue. See the WebSphere MQ Application
Programming Guide for more information about reference messages and some
sample message exits that handle them.

Channel send and receive exits

58 WebSphere MQ for z/VSE System Management Guide

Message exits can return the following responses:
v Send the message (GET exit). The message may have been changed by the exit.

(This returns MQXCC_OK.)
v Put the message on the queue (PUT exit). The message may have been changed

by the exit. (This returns MQXCC_OK.)
v Do not process the message. The message is placed on the dead-letter queue

(undelivered message queue) by the MCA.
v Close the channel.
v Bad return code, which causes the MCA to abend.

Message exits are called just once for every complete message transferred, even
when the message is split into parts. An exit runs in the same thread as the MCA
itself. It also runs inside the same unit of work (UOW) as the MCA because it uses
the same connection handle. Therefore, any calls made under syncpoint are
committed or backed out by the channel at the end of the batch. For example, one
channel message exit program can send notification messages to another and these
messages will only be committed to the queue when the batch containing the
original message is committed.

Therefore, it is possible to issue syncpoint MQI calls from a channel message exit
program.

Channel auto-definition exit
In WebSphere MQ for z/VSE, when a remote system attempts to connect to the
z/VSE queue manager as a sender or client, if there is no appropriate channel
definition, then a definition is created automatically if the queue manager's channel
auto-definition attribute is enabled.

The definition is created using:
1. The appropriate model channel definition, SYSTEM.AUTO.RECEIVER or

SYSTEM.AUTO.SVRCONN. The model channel definitions for auto-definition
are the same as the system defaults, SYSTEM.DEF.RECEIVER and
SYSTEM.DEF.SVRCONN, except for the description field, which is
"Auto-defined by" followed by 49 blanks. The systems administrator can choose
to change any part of the supplied model channel definitions.

2. Information from the partner system. The partner's values are used for the
channel name and the sequence number wrap value.

3. A channel exit program, which you can use to alter the values created by the
auto-definition, or stop the channel from being defined.

The description is then checked to determine whether it has been altered by an
auto-definition exit or because the model definition has been changed. If the first
44 characters are still "Auto-defined by" followed by 29 blanks, the queue manager
name is added.

Once the definition has been created and stored the channel start proceeds as
though the definition had always existed. The batch size, transmission size, and
message size are negotiated with the partner.

The auto-defined channel persists after the channel is closed.

Channel message exits

Chapter 3. Configuring network communications 59

Configuring channel exits
Channel exits, and their associated exit data, can be configured using:
v Master Terminal transaction (MQMT).
v Programmable Command Formats (PCF).
v WebSphere MQ Commands (MQSC).
v WebSphere MQ Explorer.

Configuration using MQMT
Channel definitions can be created and modified using the master master terminal
transaction, MQMT option 1.3, “Channel Definitions”.

The Channel Definitions screen appears as follows:

From this screen, PF11 activates the Channel Exit Settings screen, which appears as
follows:

2011/10/10 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:12:07 Channel Record DISPLAY CIC1
MQWMCHN A001
Channel : MY.SDR
Desc. . :
Protocol: T (L/T) Type : S (S=Snd/R=Rcv/V=Srv/Q=Req/C=svrConn) Enabled : Y

Sender/Server
Remote TCP/IP port : 00000 Short/Long retry count . : 000000000
Get retry number : 00000000 Short retry interval . . : 000000000
Get retry delay (secs) . . : 00000000 Long retry interval . . . : 000000000
Convert msgs(Y/N). : N Batch interval : 000000000
Property control : C
Transmission queue name. . : MY.XMITQ
TP name. . :
Sender/Receiver/Server/Requester
Connection : 1.1.1.1(1414)
Max Messages per Batch . . : 000010 Message Sequence Wrap . . : 999999999
Max Message Size : 0004096 Dead letter store(Y/N) . : N
Max Transmission Size . . : 065535 Split Msg(Y/N) : Y
Max TCP/IP Wait : 000300 Channel statistics . . . : Q

Channel monitoring . . . : Q
Channel record displayed.
F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

Figure 16. Channel Definitions screen

Configuring channel exits

60 WebSphere MQ for z/VSE System Management Guide

The Channel Exit Settings screen allows channel exit programs, and associated
data, to be set for send, receive, security and message exits. Send, Receive and
Message exits are configurable using function keys PF10, PF11 and PF12
respectively.

Channel exit names can be 1-8 characters, and follow the naming standard for any
program defined in the CICS CSD.

Channel exit data can be 1-32 characters and is optional. Data specified in the
channel definition is passed to exit programs when they are invoked in the
Channel Definition (MQCD) data structure.

Configuration for send, receive and message exits is similar. For example, using
PF10 to configure send exits presents the following screen:

10/22/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
08:54:10 Channel Exit Settings CIC1
MQWMCHN A000

Channel name . . . : VSE9.IP.ZOSX
Channel type . . . : Sender

Security exit name : MQPCHNX
Security exit data :

Channel exit settings displayed.
F2=Return PF3=Quit PF4=Read F6=Update PF10=SndX PF11=RcvX PF12=MsgX

Figure 17. Channel Exit Settings screen

Configuration using MQMT

Chapter 3. Configuring network communications 61

Note that you can configure up to 8 send exits and associate exit data. These exits,
if configured, are called in the sequence listed.

Channel exit names can be 1-8 characters, and follow the naming standard for any
program defined in the CICS CSD.

Configuring auto-definition with MQMT
The channel auto-definition exit is a queue manager attributes and is specified in
the Global System Definition, accessible via MQMT option 1.1, and PF9.

10/22/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
08:59:33 Channel Send Exit Settings CIC1
MQWMCHN A000

Channel name . . . : SYSTEM.DEF.SENDER
Channel type . . . : Sender

Exitname Exit Data
> SNDEXIT1 < > Send exit data 1 <
> SNDEXIT2 < > Send exit data 2 <
> < > <
> < > <
> < > <
> < > <
> < > <
> < > <

Channel exit settings displayed.
F2=Return PF3=Quit PF4=Read F6=Update PF10=SndX PF11=SecX PF12=MsgX

Figure 18. Channel Send Exit Settings screen

Configuration using MQMT

62 WebSphere MQ for z/VSE System Management Guide

The channel auto-definition exit is only called if the Auto-definition attribute is set
to (Y)es. If so, the channel auto-definition exit program is called when a connection
request is received for a channel that does not already exist. At this point, the
channel can change the definition details, or stop the auto-definition from
continuing.

Channel exit names can be 1-8 characters, and follow the naming standard for any
program defined in the CICS CSD.

Configuration using PCF
Channel definitions can be created and modified using the Programmable
Command Formats (PCF).

Channel exits, and their associated data, can be manipulated using the following
PCF commands:
v Create Channel
v Change Channel
v Copy Channel
v Inquire Channel

For each of these commands, the following parameters are supported:

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).
The maximum length of the exit name is restricted to the
MQ_EXIT_NAME_LENGTH constant.

MsgExit (MQCFST)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).
The maximum length of the exit name is restricted to the
MQ_EXIT_NAME_LENGTH constant.

11/17/2009 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
13:14:17 Global System Definition CIC1
MQWMSYS Communications Settings A000

TCP/IP settings Batch Interface settings
TCP/IP listener port : 01460 Batch Int. identifier: MQBISRVA
Licensed clients . . : 00000 Batch Int. auto-start: Y
Adopt MCA : N
Adopt MCA Check . . : N Channel Auto-Definition

Auto-definition . . : N
SSL parameters Auto-definition exit :
Key-ring sublibrary : MQM.SSLKEYS
Key-ring member . . : MQVSED
SSL reset count . . : 001024000

PCF parameters
System command queue : SYSTEM.ADMIN.COMMAND.QUEUE
System reply queue . : SYSTEM.ADMIN.REPLY.QUEUE
Cmd Server auto-start: Y
Cmd Server convert . : Y
Cmd Server DLQ store : N

Requested record displayed.
PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 19. Channel auto-definition exit screen

Configuring auto-definition with MQMT

Chapter 3. Configuring network communications 63

SendExit (MQCFST)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME). The
maximum length of the exit name is restricted to the
MQ_EXIT_NAME_LENGTH constant.

ReceiveExit (MQCFST)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).
The maximum length of the exit name is restricted to the
MQ_EXIT_NAME_LENGTH constant.

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA). The maximum length of the exit user
data is restricted to the MQ_EXIT_DATA_LENGTH constant.

MsgUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA). The maximum length of the exit
user data is restricted to the MQ_EXIT_DATA_LENGTH constant.

SendUserData (MQCFST)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA). The maximum length of the exit
user data is restricted to the MQ_EXIT_DATA_LENGTH constant.

ReceiveUserData (MQCFST)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA). The maximum length of the exit user
data is restricted to the MQ_EXIT_DATA_LENGTH constant.

If you are configuring chained exits, that is more than one send, receive or
message exit, you must use the MQCFSL structure rather than the MQCFST
structure to list the exit values for both the exit name and the exit data.

Configuring auto-definition with PCF
The channel auto-definition exit is a queue manager attributes and can be
manipulated using the following PCF commands:
v Change Queue Manager.
v Inquire Queue Manager.

For each of these commands, the following parameters are supported:

ChannelAutoDef (MQCFIN)
Controls whether automatic channel definition is permitted. This attribute
controls the automatic definition of channels of type MQCHT_RECEIVER
and MQCHT_SVRCONN. The value is one of the following:

MQCHAD_DISABLED
Channel auto-definition disabled.

MQCHAD_ENABLED
Channel auto-definition enabled.

Note that channel auto-definition cannot occur even if this attribute is
enabled if the model channel SYSTEM.AUTO.RECEIVER or
SYSTEM.AUTO.SVRCONN does not exist.

ChannelAutoDefExit (MQCFST)
Name of user exit for automatic channel definition.

Configuration using PCF

64 WebSphere MQ for z/VSE System Management Guide

If this name is nonblank, and ChannelAutoDef has the value
MQCHAD_ENABLED, the exit is called each time that the queue manager
is about to create a channel definition. This applies to channels of type
MQCHT_RECEIVER and MQCHT_SVRCONN. The exit can then do one of
the following:
v Allow the creation of the channel definition to proceed without change.
v Modify the attributes of the channel definition that is created.
v Suppress creation of the channel entirely.

Both the length and the value of this attribute are environment specific. For
WebSphere MQ for z/VSE, an exit name can be up to eight characters.

Configuration using MQSC
Channel definitions can be created and modified using WebSphere MQ Commands
(MQSC).

Channel exits, and their associated data, can be manipulated using the following
MQSC commands:
v DEFINE CHANNEL
v ALTER CHANNEL
v DISPLAY CHANNEL

For each of these commands, the following parameters are supported:

SCYEXIT (string)
Channel security exit name. For WebSphere MQ for z/VSE, exit names are
1-8 characters.

MSGEXIT (string)
Channel message exit name. For WebSphere MQ for z/VSE, exit names are
1-8 characters.

SENDEXIT (string)
Channel send exit name. For WebSphere MQ for z/VSE, exit names are 1-8
characters.

RCVEXIT (string)
Channel receive exit name. For WebSphere MQ for z/VSE, exit names are
1-8 characters.

SCYDATA (string)
Channel security exit user data. For WebSphere MQ for z/VSE, exit user
data can be 0-32 characters.

MSGDATA (string)
Channel message exit user data. For WebSphere MQ for z/VSE, exit user
data can be 0-32 characters.

SENDDATA (string)
Channel send exit user data. For WebSphere MQ for z/VSE, exit user data
can be 0-32 characters.

RCVDATA (string)
Channel receive exit user data. For WebSphere MQ for z/VSE, exit user
data can be 0-32 characters.

If you are configuring chained exits, that is more than one send, receive or
message exit, you can specify a list of values, for example:

Configuring auto-definition with PCF

Chapter 3. Configuring network communications 65

SENDEXIT(name, name, name,...)
SENDDATA(data, data, data,...)

Configuring auto-definition with MQSC
The channel auto-definition exit is a queue manager attribute and can be
manipulated using the following MQSC commands:
v ALTER QMGR
v DISPLAY QMGR

For each of these commands, the following parameters are supported:

CHAD (ENABLE/DISABLE)
Whether receiver and server-connection channels can be defined
automatically:

DISABLED
Auto-definition is not used. This is the queue manager's initial
default value.

ENABLED
Auto-definition is used.

CHADEXIT(string)
Auto-definition exit name.

If this name is nonblank, the exit is called when an inbound request for an
undefined receiver or server-connection channel is received.

The format and maximum length of the name depends on the
environment. On z/VSE, the exit name is eight characters and names a
program defined to CICS.

Configuration using WebSphere MQ Explorer
As an alternative to the master terminal transactions, PCF and MQSC, the z/VSE
queue manager can be configured using the WebSphere MQ Explorer.

The WMQ Explorer, available on Windows and Linux (x86) platforms, uses PCF
internally. Consequently, you must configure and start the PCF command server
before attempting to administer WMQ for z/VSE using the Explorer.

For more information about the PCF and the command server, refer to “Preparing
WebSphere MQ for PCF” on page 235. For more information about the WebSphere
MQ Explorer, refer to “Administration using the WebSphere MQ Explorer” on page
154.

Writing and compiling channel-exit programs
Channel exits must be named in the channel definition. You can do this when you
first define the channels, or you can add the information later using, for example,
the MQSC command ALTER CHANNEL. The format of the exit name must
comply with the naming standards for program entries defined in the CICS CSD.

If the channel definition does not contain a user-exit program name, a user exit is
not called.

User exits and channel-exit programs are able to make use of all MQI calls, except
as noted in the sections that follow. To get the connection handle, an MQCONN
must be issued, even though a warning, MQRC_ALREADY_CONNECTED, is
returned because the channel itself is connected to the queue manager.

Configuration using MQSC

66 WebSphere MQ for z/VSE System Management Guide

Note: You are recommended to avoid issuing the following MQI calls in
channel-exit programs:
v MQCMIT
v MQBACK

An exit runs in the same thread as the MCA itself and uses the same connection
handle. So, it runs inside the same UOW as the MCA and any calls made under
syncpoint are committed or backed out by the channel at the end of the batch.

Therefore, a channel message exit could send notification messages that will only
be committed to that queue when the batch containing the original message is
committed. So, it is possible to issue syncpoint MQI calls from a channel message
exit.

Channel-exit programs should not modify the Channel data structure (MQCD),
except in the case that it is necessary to communicate with Other exit programs via
associated user exit data.

Also, for programs written in C, non-reentrant C library function should not be
used in a channel-exit program.

All exits are called with a channel exit parameter structure (MQCXP), a channel
definition structure (MQCD), a prepared data buffer, data length parameter, and
buffer length parameter. The buffer length must not be exceeded:
v For message exits, you should allow for the largest message required to be sent

across the channel, plus the length of the MQXQH structure.
v For send and receive exits, the largest buffer you should allow for is 64 KB.

Note: Receive exits on sender channels and sender exits on receiver channels use
2 KB buffers for TCP.

v For security exits, the distributed queuing facility allocates a buffer of 1000
bytes.

It is permissible for the exit to return an alternate buffer, together with the relevant
parameters. See “MQ_CHANNEL_EXIT - Channel exit” on page 68.

Exit programs in CICS
An exit program must be written in Language Environment (LE) C, COBOL, or
PL/I. In CICS, the exits are invoked with EXEC CICS LINK with the Parameters
passed by pointers (addresses) in the CICS communication Area (COMMAREA).
The exit programs, named in the channel definitions, reside in a library in the
LIBDEF SEARCH concatenation of the CICS startup JCL. They must be defined in
the CICS system definition file CSD, and must be enabled.

User-exit programs can also make use of CICS API calls, but you should not issue
syncpoints because the results could influence units of work declared by the MCA.

Any non-WebSphere MQ for z/VSE resources updated by an exit are committed,
or backed out, at the next syncpoint issued by the channel program.

Channel-exit calls and data structures
This topic provides reference information about the special WebSphere MQ calls
and data structures used when writing channel exit programs. This is
product-sensitive programming interface information. You can write WebSphere
MQ user exits in LE C, COBOL or PL/I.

Writing and compiling channel-exit programs

Chapter 3. Configuring network communications 67

In a number of cases, parameters are arrays or character strings whose size is not
fixed. For these, a lowercase “n” is used to represent a numeric constant. When the
declaration for that parameter is coded, the “n” must be replaced by the numeric
value required. For further information about the conventions used in these
descriptions, see the WebSphere MQ Application Programming Reference book.

The calls are:

MQ_CHANNEL_EXIT
Channel exit

The data structures are:

MQCD
Channel data structure

MQCXP
Channel exit parameter structure

MQ_CHANNEL_EXIT - Channel exit
This call definition is provided solely to describe the parameters that are passed to
each of the channel exits called by the Message Channel Agent. No entry point
called MQ_CHANNEL_EXIT is actually provided by the queue manager; the name
MQ_CHANNEL_EXIT is of no special significance since the names of the channel
exits are provided in the channel definition MQCD.

WebSphere MQ for z/VSE supports five types of channel exit:
v Channel security exit.
v Channel message exit.
v Channel send exit.
v Channel receive exit.
v Auto-definition exit.

The parameters are similar for each type of exit, and the description given here
applies to all of them, except where specifically noted.

Syntax:
MQ_CHANNEL_EXIT (ChannelExitParms, ChannelDefinition, DataLength,

AgentBufferLength, AgentBuffer, ExitBufferLength,
ExitBufferAddr)

Parameters: The MQ_CHANNEL_EXIT call has the following parameters.

ChannelExitParms (MQCXP) - input/output
Channel exit parameter block. This structure contains additional
information relating to the invocation of the exit. The exit sets information
in this structure to indicate how the MCA should proceed.

ChannelDefinition (MQCD) - input/output
Channel definition. This structure contains parameters set by the
administrator to control the behavior of the channel.

DataLength (MQLONG) - input/output
Length of data. When the exit is invoked, this contains the length of data
in the AgentBuffer parameter. The exit must set this to the length of the
data in either the AgentBuffer or the ExitBufferAddr (as determined by the
ExitResponse2 field in the ChannelExitParms parameter) that is to proceed.

The data depends on the type of exit:

Channel-exit calls and data structures

68 WebSphere MQ for z/VSE System Management Guide

v For a channel security exit, when the exit is invoked this contains the
length of any security message in the AgentBuffer field, if ExitReason is
MQXR_SEC_MSG. It is zero if there is no message. The exit must set this
field to the length of any security message to be sent to its partner if it
sets ExitResponse to MQXCC_SEND_SEC_MSG or
MQXCC_SEND_AND_REQUEST_SEC_MSG. The message data is in
either AgentBuffer or ExitBufferAddr.
The content of security messages is the sole responsibility of the security
exits.

v For a channel message exit, when the exit is invoked this contains the
length of the message (including the transmission queue header). The
exit must set this field to the length of the message in either AgentBuffer
or ExitBufferAddr that is to proceed.

v For a channel send or channel receive exit, when the exit is invoked this
contains the length of the transmission. The exit must set this field to the
length of the transmission in either AgentBuffer or ExitBufferAddr that
is to proceed.
If a security exit sends a message, and there is no security exit at the
other end of the channel, or the other end sets an ExitResponse of
MQXCC_OK, the initiating exit is re-invoked with MQXR_SEC_MSG
and a null response (DataLength=0).

AgentBufferLength (MQLONG) - input
Length of agent buffer. This can be greater than DataLength on invocation.

For channel message, send, and receive exits, any unused space on
invocation can be used by the exit to expand the data in place. If this is
done, the DataLength parameter must be set appropriately by the exit.

AgentBuffer (MQBYTE|AgentBufferLength) - input/output
Agent buffer. The contents of this depend upon the exit type:

For a channel security exit, on invocation of the exit it contains a security
message if ExitReason is MQXR_SEC_MSG. If the exit wishes to send a
security message back, it can either use this buffer or its own buffer
(ExitBufferAddr).

For a channel message exit, on invocation of the exit this contains the
transmission queue header (MQXQH), which includes the message
descriptor (which itself contains the context information for the message),
immediately followed by the message data.

If the message is to proceed, the exit can do one of the following:
v Leave the contents of the buffer untouched.
v Modify the contents in place (returning the new length of the data in

DataLength; this must not be greater than AgentBufferLength).
v Copy the contents to the ExitBufferAddr, making any required changes

Any changes that the exit makes to the transmission queue header are not
checked; however, erroneous modifications may mean that the message
cannot be put at the destination.

For a channel send or receive exit, on invocation of the exit this contains
the transmission data. The exit can do one of the following:
v Leave the contents of the buffer untouched.
v Modify the contents in place (returning the new length of the data in

DataLength; this must not be greater then AgentBufferLength).

MQ_CHANNEL_EXIT - Channel exit

Chapter 3. Configuring network communications 69

v Copy the contents to the ExitBufferAddr, making any required changes.

Note that the first 8 bytes of the data must not be changed by the exit.

ExitBufferLength (MQLONG) - input/output
Length of exit buffer. On the first invocation of the exit, this is set to zero.
Thereafter whatever value is passed back by the exit, on each invocation, is
presented to the exit next time it is invoked.

ExitBufferAddr (MQPTR) - input/output
Address of exit buffer. This is a pointer to the address of a buffer of
storage managed by the exit, where it can choose to return message or
transmission data (depending upon the type of exit) to the agent if the
agent's buffer is or may not be large enough, or if it is more convenient for
the exit to do so.

On the first invocation of the exit, the address passed to the exit is null.
Thereafter whatever address is passed back by the exit, on each invocation,
is presented to the exit the next time it is invoked.

Note that the auto-definition exit only receives the ChannelExitParms and
ChannelDefinition parameters.

Usage notes: The function performed by the channel exit is defined by the
provider of the exit. The exit, however, must conform to the rules defined here and
in the associated control block, the MQCXP.

The ChannelDefinition parameter passed to the channel exit, for WebSphere MQ
for z/VSE, is always MQCD_VERSION_7.

In general, channel exits are allowed to change the length of message data. This
may arise as a result of the exit adding data to the message, or removing data from
the message, or compressing or encrypting the message. However, special
restrictions apply if the message is a segment that contains only part of a logical
message. In particular, there must be no net change in the length of the message as
a result of the actions of complementary sending and receiving exits.

For example, it is permissible for a sending exit to shorten the message by
compressing it, but the complementary receiving exit must restore the original
length of the message by decompressing it, so that there is no net change in the
length of the message.

This restriction arises because changing the length of a segment would cause the
offsets of later segments in the message to be incorrect, and this would inhibit the
queue manager's ability to recognize that the segments formed a complete logical
message.

CICS invocation: The WebSphere MQ MCA uses the CICS command level LINK
call to pass control to the exit program.

The LINK call passes a communication area (COMMAREA) to the exit program
that contains the addresses of the exit parameters as follows:
struct tagEXITPARMS
{

MQCXP *ChannelExitParms;
MQCD *ChannelDefinition;
MQLONG *DataLength;
MQLONG *AgentBufferLength;

MQ_CHANNEL_EXIT - Channel exit

70 WebSphere MQ for z/VSE System Management Guide

VOID *AgentBuffer;
MQLONG *ExitBufferLength;
VOID *ExitBufferAddr;

} EXITPARMS;

MQCD - Channel data structure
The MQCD structure contains the parameters which control execution of a channel.
It is passed to each channel exit that is called from a Message Channel Agent
(MCA). See “MQ_CHANNEL_EXIT - Channel exit” on page 68.

The MQCD data structure is described in the WebSphere MQ Intercommunication
manual.

MQCXP - Channel exit parameter structure
The MQCXP structure is passed to each type of exit called by a Message Channel
Agent (MCA). See “MQ_CHANNEL_EXIT - Channel exit” on page 68.

The exit should not expect that any input fields that it changes in the channel exit
parameter block will be preserved for its next invocation. Changes made to
input/output fields (for example, the ExitUserArea field), are preserved for
invocations of that instance of the exit only. Such changes cannot be used to pass
data between different exits defined on the same channel, or between the same exit
defined on different channels.

The MQCXP data structure is described in the WebSphere MQ Intercommunication
manual.

Auto-definition exit and data structures
The channel auto-definition exit can be called when a request is received to start a
receiver or server-connection channel, but no channel definition exists.

You can use it to modify the supplied default definition for an automatically
defined receiver or server-connection channel, SYSTEM.AUTO.RECEIVER or
SYSTEM.AUTO.SVRCONN.

Similar to other channel exits, the parameter list is:
v MQ_CHANNEL_AUTO_DEF_EXIT (ChannelExitParms, ChannelDefinition)

The ChannelDefinition parameter contains the values that are used in the default
channel definition it they are not altered by the exit.

The channel auto-definition exit returns a response of either MQXCC_OK, or
MQXCC_SUPPRESS_FUNCTION. If neither of these is returned, the MCA
continues processing as thought MQXCC_SUPPRESS_FUNCTION were returned.
That is, the auto-definition is abandoned, no new channel definition is created, and
the channel cannot start.

MQCXP - Channel exit parameter structure
The MQCXP structure is passed to each type of exit called by a Message Channel
Agent (MCA). See “MQ_CHANNEL_EXIT - Channel exit” on page 68.

When an auto-definition exit is called, the MQCXP field, ExitId, contains the
following value:

MQXT_CHANNEL_AUTO_DEF_EXIT
Channel auto-definition exit.

MQ_CHANNEL_EXIT - Channel exit

Chapter 3. Configuring network communications 71

The ExitREason field contains one of the following values:

MQXR_AUTO_RECEIVER
Auto-define receiver channel

MQXR_AUTO_SVRCONN
Auto-define server-connection channel

The function performed by the channel exit is defined by the provider of the exit.
The exit, however, must conform to the rules defined here and in the associated
control block, the MQCXP data structure.

Channel exit sample
WebSphere MQ for z/VSE provides a sample channel exit with the installation
library. The sample exit is a CICS COBOL program provided in sublibrary member
MQPCHNX.Z.

The MQPCHNX sample can be used as a base for your own exit programs. It is
generic in the sense that it includes logic to function as a security, send, receive
and message exit. It achieves this by examining the contents of the ExitId field in
the MQCXP data structure. The ExitId Field indicates which type of exit is being
called. Depending on the exit type, the sample branches to appropriate logic.

Alternatively, the sample can be used as a base for individual exit programs that
handle only one type of exit call, for example, the message exit. To use the sample
in this way, additional logic that examines the ExitId can be removed.

Adopt MCA
The Adopt MCA feature is an integral feature of WebSphere MQ channel
operation. It exists to solve a problem with Message Channel Agent (MCA)
Receiver tasks falling into an indefinite wait state following a transport error.

When such an error occurs the receiver channel is often unaware of this and
remains RUNNING even though the sender is RETRYING.

Once communication is re-established the retrying sender attempts to start a new
receiver instance, but since a prior instance of this receiver still exists (because it
didn't detect the communication failure), WebSphere MQ "believes" that there has
been an invalid attempt to start multiple instances of the same receiver, from the
same location, and accordingly treats this as an error, and fails the request.

This problem continues until either the original receiver instance detects the failure,
or the channel is forcibly stopped.

Typically an WebSphere MQ receiver is waiting for messages from its sending
partner. In the event of a network failure we would hope the receiver (which is
effectively in a communication receive call) would be alerted to this by the
communication subsystem. In some cases this is not possible and the receiver will
continue running indefinitely, even though its partner MCA has ended.

This causes problems when the remote side attempts to re-establish the channel as
WebSphere MQ finds the receiver is already running and prevents a duplicate
instance from starting up. The channel cannot be restarted until either the operator
has manually stopped the orphaned receiver or some communication timeout such
as the TCP/IP keepalive timer causes the receiver to eventually fail.

MQ_CHANNEL_EXIT - Channel exit

72 WebSphere MQ for z/VSE System Management Guide

The Adopt MCA feature allows an administrator to specify that WebSphere MQ
should automatically stop an orphaned instance of a channel where it receives a
new inbound connection request for that channel.

The administrator can specify the level of checking performed before an orphaned
candidate is adopted based on combinations of the channel name (must always
match for adoption), and the machine address. This allows for less rigorous
checking in, for example a DHCP TCP environment where the partner machine's
address may change frequently. Note that the Adopt MCA feature is applicable to
TCP/IP channels only.

Review section “Features” on page 15 for prerequisites for this feature.

Adopt MCA parameters
Adoption can be enabled or disabled, and the level of checking can be set, via the
queue manager's global system definition, MQMT option 1.1, PF9:

The communication setting parameters that affect Adopt MCA feature operation
include:

Adopt MCA
Adopt MCA Check

Adopt MCA
The Adopt MCA parameter specifies whether or not an orphaned instance of a
channel will be automatically restarted. Valid values include:

YES Automatically stop an orphaned MCA instance, if the appropriate Adopt
MCA checks are met.

NO Do not automatically stop an orphaned MCA instance.

The default value is NO.

11/17/2009 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
13:14:17 Global System Definition CIC1
MQWMSYS Communications Settings A000

TCP/IP settings Batch Interface settings
TCP/IP listener port : 01460 Batch Int. identifier: MQBISRVA
Licensed clients . . : 00000 Batch Int. auto-start: Y
Adopt MCA : N
Adopt MCA Check . . : N Channel Auto-Definition

Auto-definition . . : Y
SSL parameters Auto-definition exit : MQ9CHADX
Key-ring sublibrary : MQM.SSLKEYS
Key-ring member . . : MQVSED
SSL reset count . . : 001024000

PCF parameters
System command queue : SYSTEM.ADMIN.COMMAND.QUEUE
System reply queue . : SYSTEM.ADMIN.REPLY.QUEUE
Cmd Server auto-start: Y
Cmd Server convert . : Y
Cmd Server DLQ store : N

Requested record displayed.
PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 20. Communication Setting, Adopt MCA parameters

MQ_CHANNEL_EXIT - Channel exit

Chapter 3. Configuring network communications 73

Activating the Adopt MCA feature by setting this parameter to (Y)es, applies to all
TCP/IP Receiver channels.

Adopt MCA Check
The Adopt MCA Check parameter specifies whether the network address of the
new MCA must be from the same address as the instance already running. Valid
values include:

NO Do not check the new MCA request is from the same network address as
the instance that is already running.

YES Check that the new MCA request is from the same network address as the
instance that is already running.

The default is NO.

If the Adopt MCA Check parameter is set to (Y)es, the channel will only be
adopted if the new MCA request is from the same network address as the instance
that is already running.

Bullet-proof channels
WebSphere MQ channels over TCP/IP are difficult to handle when network
failures occur. If the TCP/IP connection is broken when an WebSphere MQ channel
is active, it is not at all uncommon for the receiving end of the channel to "hang"
indefinitely in a TCP/IP receive call.

When connectivity is restored, the sender channel is generally unable to reconnect
to the hanging receiver. In order to restart the channel, operator intervention is
required to forcibly stop the channel. Once this is done, the sending side can
normally reconnect.

The circumvention for this problem, on some MQ platforms, has been to use the
TCP/IP KeepAlive function by adding a stanza to the qm.ini file (mqs.ini for
clients) reading "TCP: KeepAlive=Yes". With this stanza in place, WebSphere MQ
will enable the SO_KEEPALIVE option on the socket.

This results in TCP/IP itself sending packets across the link from time to time to
verify the connection. If enough packets in a row are lost, the connection is
presumed to be lost.

From an WebSphere MQ perspective, the receiving side of the channel is notified
by TCP/IP that the connection is gone, and thus given a chance to shut down
gracefully. Subsequent reconnection attempts by the sending side of the channel
can then proceed normally without operator intervention.

TCP/IP KeepAlive is an excellent solution to this problem, but it has one
significant drawback, that is, the KeepAlive timeout interval for connections is
generally tunable only on a machine wide basis. In terms of WebSphere MQ
channels, a timeout on the order of a few minutes might be reasonable. However,
there may be other programs which rely on a timeout of one or two hours. If
TCP/IP KeepAlive is the only solution, then WebSphere MQ may not coexist well
with these other programs.

Rather than entering a potentially indefinite TCP/IP receive call, and relying on
KeepAlive (if it has been properly configured and is in use) to wake up the
channel, WebSphere MQ can instead enter a receive call for a finite amount of

Adopt MCA parameters

74 WebSphere MQ for z/VSE System Management Guide

time. At the end of this time, the queue manager has control to decide whether to
receive again or to shut down the channel.

The facility to "wake up" channels waiting on a receive call has been named
"bullet-proof channels".

Although it is the Receiver MCA that is generally waiting for data from the sender,
during normal operation, the Sender MCA can be waiting for data from a receiver.
In this case, following a communication failure, it is the Sender MCA that can
remain in an indefinite wait state. Consequently, the bullet-proof channel feature
applies to both sender and receiver channels.

Review section “Features” on page 15 for prerequisites for this feature.

Bullet-proof channel parameters
The bullet-proof channel feature is configurable on a per channel basis. The
channel parameter that determines whether a channel will "wake up" after a
configurable time is the Max TCP/IP Wait parameter.

The Max TCP/IP Wait parameter is configurable from the Channel Record screen,
MQMT option 1.3.

The Max TCP/IP Wait parameter specifies a period of time (in seconds) for which
the channel will wait to receive data from a remote sender. If no data is received
within the specified period, the channel will terminate with an error.

By setting the Max TCP/IP Wait parameter to 0, the channel will wait indefinitely
to receive data from a remote sender. Effectively, this disables the bullet-proof
feature for the channel.

Care must be taken not to specify Max TCP/IP Wait value that is less than the
disconnection interval for the channel. The disconnection interval is a parameter of

2011/10/10 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:12:29 Channel Record DISPLAY CIC1
MQWMCHN A001
Channel : MY.RCVR
Desc. . :
Protocol: T (L/T) Type : R (S=Snd/R=Rcv/V=Srv/Q=Req/C=svrConn) Enabled : Y

Sender/Server
Remote TCP/IP port : 00000 Short/Long retry count . : 000000000
Get retry number : 00000000 Short retry interval . . : 000000000
Get retry delay (secs) . . : 00000015 Long retry interval . . . : 000000000
Convert msgs(Y/N). : N Batch interval : 000000000
Property control : C
Transmission queue name. . :
TP name. . :
Sender/Receiver/Server/Requester
Connection :
Max Messages per Batch . . : 000050 Message Sequence Wrap . . : 999999999
Max Message Size : 0040960 Dead letter store(Y/N) . : N
Max Transmission Size . . : 065535 Split Msg(Y/N) : Y
Max TCP/IP Wait : 000300 Channel statistics . . . : Q

Channel monitoring . . . : Q
Channel record displayed.
F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

Figure 21. Channel Record, bullet-proof channel parameter

Bullet-proof channels

Chapter 3. Configuring network communications 75

the sender channel definition, and determines how long the sender will keep a
channel open when its transmission queue is empty. If the Max TCP/IP Wait value
is less than the disconnection interval, the channel will always terminate with an
error.

Note: For WebSphere MQ for z/VSE, the disconnection interval is equivalent to
the Get retry number multiplied by the Get retry delay of the sender channel.

Bullet-proof channel parameters

76 WebSphere MQ for z/VSE System Management Guide

Chapter 4. System operation

There are six ways of managing an WebSphere MQ for z/VSE system:
v You can use the CICS transaction MQMT.

MQMT allows you to configure, operate, and monitor an WebSphere MQ for
z/VSE system. MQMT also supports the browsing of message queues and is
described in this chapter.

v You can use the WebSphere MQ Command Line interface (MQCL).
MQCL supports management of queues and channels, and is described in
Chapter 5, “Utilities and interfaces,” on page 169.

v You can use Programmable Command Format (PCF) messages, as described in
Chapter 8, “Programmable system management,” on page 221.

v You can use WebSphere MQ Commands (MQSC), as described in Chapter 9,
“WebSphere MQ commands,” on page 507.

v You can use the WebSphere MQ Explorer interface, which is available on the
Windows and Linux (x86) platforms, as described in “Administration using the
WebSphere MQ Explorer” on page 154.

v You can use a web browser to access the WebSphere MQ master terminal and
associated CICS transactions using the WebSphere MQ for z/VSE CICS Web
Support (CWS) feature. For more information, refer to “Administration via a
web browser” on page 161.

WebSphere MQ master terminal displays
The MQMT menus and display screens are organized in an informal hierarchy as
depicted in the following diagram. The hierarchy is informal in the sense that
non-hierarchical paths between screens can be invoked by using the function keys.
For improved legibility, the chart omits certain exit and return paths available from
lower level screens.

© Copyright IBM Corp. 2008, 2013 77

The main MQMT menu is shown in “WebSphere MQ master terminal (MQMT) –
main menu” on page 79, and the operator functions available through each of the
secondary panels are shown in “Configuration functions” on page 81.

General panel layout
WebSphere MQ panels are either menu panels or data entry panels. In either case,
they show the following fields:

Figure 22. Display screen relationships

Display menus

78 WebSphere MQ for z/VSE System Management Guide

Where:
CICS-Appl

The VTAM application ID for this CICS partition.
Panel-Id

The name of the displayed panel.
Q-Manager

The name of the WebSphere MQ queue manager specified in the global
definitions.

Termid
The ID of the CICS terminal on which this panel is displayed.

WebSphere MQ master terminal (MQMT) – main menu
You can invoke the WebSphere MQ system administrator program, MQMT, from
any 3270 terminal. To access the operator functions, type MQMT at the CICS prompt.
The MQMT transaction cannot be invoked until the WebSphere MQ Setup
Environment (MQSE) transaction has completed successfully.

When MQMT starts, the main menu is displayed.

Date IBM WebSphere MQ for z/VSE Version 3.0.0 CICS-Appl
Time Q-Manager
Panel-Id Termid

Message line

PF key line 1
PF key line 2 (if necessary)

Figure 23. General panel layout

General panel layout

Chapter 4. System operation 79

From the main menu, one of several submenus can be selected. The first three
selections correspond to broad categories that include most WebSphere MQ
operator functions:
v Configuring WebSphere MQ.
v Operating (controlling) WebSphere MQ.
v Monitoring WebSphere MQ.

The fourth function allows you to display the records on a selected queue:
v Browsing WebSphere MQ queues.

Each submenu presents a list of operator functions available from that screen.
When a specific function is selected, the appropriate data entry or data display
screens are presented to the operator.

Master Terminal transactions
The functions of the WebSphere MQ system administrator program can be invoked
directly using the following transaction code table. For those customers using an
External Security Manager, specific functions can be restricted to certain users or
class of users. Alternatively, administration tasks can be restricted by enabling
command and command resource security (for more information refer to “Resource
definitions for command security” on page 666 and “Resource definitions for
command resource security” on page 671).
MQMT Master Terminal Main Menu

|===> MQMC Configuration Main Menu
| |===> MQMS Global System Definition \
| |===> MQMQ Queue Main Options \maintenance
| |===> MQMH Channel Record \mode
| |===> MQMP Code Page Definition \
| |===> MQMN Namelist Definition \
| |===> MQM1 Topic Definitions \
| |===> MQM2 Subscription Definitions \
| |===> MQDS Global System Definition \
| |===> MQDQ Queue Main Options \display

07/06/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 MQBDTS
10:55:25 *** Master Terminal Main Menu *** CIC1
MQMMTP A001

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option:

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.
CLEAR/PF3 = Exit ENTER=Select

Figure 24. Master terminal main menu

WebSphere MQ master terminal

80 WebSphere MQ for z/VSE System Management Guide

|
|

| |===> MQDH Channel Record \mode
| |===> MQDP Code Page Definition \
| +===> MQDN Namelist Definition \
| |===> MQD1 Topic Definitions \
| +===> MQD2 Subscription Definitions \
|
|===> MQMM Monitor Main Menu
| |===> MQQM Monitor Queues
| +===> MQCM Monitor Channels
|
|===> MQMO Operations Main Menu
| |===> MQMA Start / Stop Queue
| |===> MQMB Open / Close Channel
| |===> MQMR Reset Channel Message Sequence
| |===> MQMI Initialization / Shutdown of System
| +===> MQMD Maintain Queue Message Records
|
+===> MQBQ Browse Queue Records

Operator screen action keys
The action keys available on each WebSphere MQ operator screen are displayed at
the bottom of the screen with an explanation of their function. In general, the
following keys are available and associated with the indicated action:
CLEAR

- Exit MQMT
PF2 - Return to previous menu
PF3 - Exit to CICS
PF4 - Select/Read (Same as Return or Enter keys)
PF5 - Add
PF6 - Update
PF7 - Backward
PF8 - Forward
PF9 - Screen-dependent
PF10 - Screen-dependant
PF11 - Screen-dependant
PF12 - Delete/Screen-dependant

Configuration functions
Selecting option 1 (Configuration) from the master terminal main menu (see
Figure 24 on page 80) displays the following screen:

WebSphere MQ master terminal

Chapter 4. System operation 81

|
|

On this screen, selections 1, 2, 3, 4 and 5 allow you to perform maintenance
functions on various WebSphere MQ configuration objects. Selections 6, 7, 8, 9 and
10 allow viewing of the same objects.

Global system definition
Before you can do anything with messages and queues, you must configure a
queue manager. Once the installation process is complete, you use the WebSphere
MQ “Global System Definition” screen to configure the queue manager and start it.

Default objects form the basis of any object definitions that you make. System
objects are required for queue manager operation and you must create these
objects for the queue manager that you created.

Guidelines for configuring queue managers
A queue manager manages the resources associated with it, in particular the
queues that it owns. It provides queuing services to applications for Message
Queuing Interface (MQI) calls and commands to create, modify, display, and delete
WebSphere MQ objects. Some tasks you must consider when customizing a queue
manager are:
v Selecting a unique queue manager name, as described by “Specifying a unique

queue manager name.”
v Creating the dead-letter and system log queues, as described by “Specifying the

dead-letter and system log queues” on page 83.
v Backing up the configuration file, as described by “Backing up the configuration

file after creating the queue manager” on page 96.

The tasks in this list are explained in the sections that follow.

Specifying a unique queue manager name: When you create a queue manager,
you must ensure that no other queue manager has the same name, anywhere in

2012/11/14 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
15:30:25 *** Configuration Main Menu *** CIC1
MQWMCFG A004

SYSTEM IS ACTIVE

Maintenance/Display Options
1 / 8 Global System Definitions
2 / 9 Queue Definitions
3 / 10 Channel Definitions
4 / 11 Code Page Definitions
5 / 12 Namelist Definitions
6 / 13 Topic Definitions
7 / 14 Subscription Definitions

Option:

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Exit

Figure 25. Configuration Main Menu

Configuration functions

82 WebSphere MQ for z/VSE System Management Guide

your network. Queue manager names are not checked at create time, and
non-unique names will prevent you from using channels for distributed queuing.

One method of ensuring uniqueness is to prefix each queue manager name with its
own (unique) node name. For example, if a node is called accounts, you could
name your queue manager accounts.saturn.queue.manager, where saturn
identifies a particular queue manager and queue.manager is an extension you can
give to all queue managers. Alternatively, you can omit this, but note that
accounts.saturn and accounts.saturn.queue.manager are different queue manager
names.

If you are using WebSphere MQ for communicating with other enterprises, you
can also include your own enterprise as a prefix. We do not actually do this in the
examples, because it makes them more difficult to follow.

Specifying the dead-letter and system log queues: It is likely that the system log
queue was created during installation, and the dead-letter queue was created using
the MQJINSG.Z sample object definition job. For more details, see “Default object
definitions” on page 37. If these queues have been created, skip this section.

The dead-letter queue is a local queue where messages are put if they cannot be
routed to their correct destination.

Attention: It is vitally important to have a dead-letter queue on each queue
manager in your network. Failure to do so may mean that errors in application
programs cause channels to be closed or that replies to administration commands
are not received.

You create a dead-letter queue as a local queue; “Creating local queues” on page
97 for details.

For example, if an application attempts to put a message on a queue on another
queue manager, but the wrong queue name is given, the channel is stopped, and
the message remains on the transmission queue. Other applications cannot then
use this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues. The
undelivered message is simply put on the dead-letter queue at the receiving end,
leaving the channel and its transmission queue available.

Therefore, when you create a queue manager you should specify the name of the
dead-letter queue.

Similarly, the system log queue is essential for normal queue manager operation.
The system log is used by the queue manager to report diagnostic and error
messages. Some informational messages are generated when the queue manager is
started, consequently, the system log queue should be defined to the queue
manager before the system is started for the first time.

Like the system dead-letter queue, the system log is an WebSphere MQ queue and
should be defined as a local queue.

Configuring the queue manager
For each installation of the WebSphere MQ system, one (and only one) queue
manager must be defined. This is accomplished through the screen shown in
Figure 26 on page 84. This screen is also used to modify the default or previously

Queue manager guidelines

Chapter 4. System operation 83

defined global parameters.

On this screen, the data entry fields are:
Queue Manager

This is the name of the local queue manager for this WebSphere MQ
system installation. The name may be up to 48 characters and must
conform to the WebSphere MQ naming requirements. For details, see
“Object names” on page 3.

Description Lines 1 & 2
Text fields for operator use only. They may each be up to 32 characters.

Queue System Values:
Maximum Connection Handles

The maximum number of simultaneous connections to the queue manager.
Maximum Concurrent Queues

The maximum number of simultaneously open queues.
Allow TDQ Write on Errors

Y - allow writes to the CICS TDQ ‘CSMT’ if SYSTEM.LOG not available

N - do not allow write to the CICS TDQ

B - write to both SYSTEM.LOG and the CSMT TDQ.
System Wait Interval

The sleep time in seconds for the system monitor program and startup of
trigger programs after system initialization. Thirty seconds is generally
sufficient.

Max. Recovery Tasks
Maximum number of tasks attached by the system monitor when errors
are detected in queues or control blocks attached to queues. A high
number would lead to the use of too many CICS resources and have a
negative impact on the overall CICS performance. The suggested value is
zero.

2013/01/25 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
05:46:06 Global System Definition CIC1
MQWMSYS Queue Manager Information A002
Queue Manager: PTHVSEC
Description Line 1.: ZVSE 4.3 SYSTEM ON PTHVSEC
Description Line 2.: ...

System Values
Maximum Connection Handles.: 00000100 System Wait Interval : 00000030
Maximum Concurrent Queues .: 00000100 Max. Recovery Tasks : 0000
Allow TDQ Write on Errors : Y CSMT Local Code Page . . : 01047
Allow Internal Dump . . . : Y Subsystem id : MQV1

Channel Auth Enabled : Y
Queue Maximum Values

Maximum Q Depth: 00010000 Maximum Global Locks.: 00001000
Maximum Message Size. . . .: 00409600 Maximum Local Locks .: 00001000
Maximum Single Q Access . .: 00000100 Max Properties Length: 00004094

Global QUEUE /File Names
Configuration File. : MQFCNFG
LOG Queue Name. . . : SYSTEM.LOG
Dead Letter Name. . : SYSTEM.DEAD.LETTER.QUEUE
Monitor Queue Name. : SYSTEM.MONITOR
Requested record displayed.
PF2=Return PF3=Quit PF4/ENTER=Refresh PF6=Update

PF9=Communications PF10=Log PF11=Events PF12=Exits

Figure 26. System queue manager information

Queue manager creation

84 WebSphere MQ for z/VSE System Management Guide

Allow Internal Dump
Allow the WebSphere MQ API to process a CICS Task Dump if the internal
areas are corrupted.

Local Code Page
The code page in use on the local system. If you plan to support remote
client connections, you must use a local code page that can be translated
into the code page of the remote client system. Generally, code page 1047 is
a good choice, because many translations for this code page are provided
with LE. Alternatively, you can define your own translation tables (see
Appendix F, “WebSphere MQ server,” on page 1009) and set the local code
page appropriately.

Subsystem id
The queue manager's subsystem identifier. This attributes is only used by
the security feature. It is a read-only attribute and can only be changed by
changing the SYSIN.z installation file, rerunning the MQJSETUP.Z job
followed by the MQSU transaction.

The default value for this attribute is MQV1.

Queue Maximum Values:
Maximum Q Depth

The maximum number of records that will be left unread on a queue.
Maximum Message Size

The maximum size of any message.
Maximum Single Q Access

The maximum number of object handles allowed for a queue.
Maximum Global Locks

The maximum number of entries that the queue manager uses to maintain
destructive PUT or GET locks, per queue, for the system.

Maximum Local Locks
The maximum number of entries that an application can use to maintain
destructive PUT, or GET locks, per queue, for each individual task.

Max Properties Length
The maximum length of property data in bytes that can be associated with
a message.

Global QUEUE /File Names:
Configuration File

The CICS file definition name of the WebSphere MQ configuration file.
LOG Queue Name

The queue name where the WebSphere MQ programs write information
and error messages. This is the system log queue.

Dead Letter Name
The file where channel programs write messages that are received with the
wrong queue manager name or queue name. These messages will have the
dead letter header placed in front of the queue record.

Monitor Queue Name
Diagnostic queue for MQI monitoring. The MQI monitor can be activated
using MQMT option 2.1 (for more details refer to “Queuing System
Request” on page 137.)

Note: Queue maximum value fields restrict the allowed values in the queue
definition field values, while the rest of the fields affect the run-time values when
the System is initialized.

Queue Manager Communications Settings: Press PF9 (Comms) on the Global
System Definition screen to display the Queue Manager Communications Settings

Queue manager creation

Chapter 4. System operation 85

screen:

TCP/IP settings:

Licensed clients
The number of clients for which the WebSphere MQ system is registered.
This represents the maximum number of concurrent remote client
connections that the local system will support at any one time. Use the
number from your WebSphere MQ for z/VSE license documentation.

Adopt MCA
Indicates whether an Message Channel Agent (MCA) should adopt another
MCA process if one is already running. For more information about the
Adopt MCA feature, see “Adopt MCA” on page 72.

Adopt MCA Check
Indicates whether the network address of an existing MCA should be
checked before adopting the MCA process. For more information, see
“Adopt MCA” on page 72.

SSL parameters:

Key-ring sublibrary
The key-ring sublibrary identifies the z/VSE sublibrary name that contains
the private key and certificate intended for use by SSL enabled MQ
channels. This is the SSL product KEYLIB or key ring file name. Queue
managers that require SSL enabled channels, must identify a valid key-ring
sublibrary.

Key-ring member
The key-ring member is the key-ring sublibrary member name of the SSL
private key (.PRVK) and certificate (.CERT) files. Queue managers that
require SSL enabled channels, must identify a valid key-ring member
name.

2011/10/31 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
21:08:43 Global System Definition CIC1
MQWMSYS Communications Settings A000

TCP/IP settings Batch Interface settings
Licensed clients . . : 00000 Batch Int. identifier: MQBSRV39
Adopt MCA : N Batch Int. auto-start: Y
Adopt MCA Check . . : N

Channel Auto-Definition
Auto-definition . . : N

SSL parameters Auto-definition exit :
Key-ring sublibrary :
Key-ring member . . :
SSL reset count . . :

PCF parameters
System command queue : SYSTEM.ADMIN.COMMAND.QUEUE
System reply queue . : SYSTEM.ADMIN.REPLY.QUEUE
Cmd Server auto-start: Y
Cmd Server convert . : Y
Cmd Server DLQ store : Y

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF6=Update PF10=Listeners PF11=Services

Figure 27. Queue manager communications settings

Queue manager creation

86 WebSphere MQ for z/VSE System Management Guide

SSL reset count
Specifies when SSL channel MCAs that initiate communication reset the
secret key used for encryption on the channel. The value of this parameter
represents the total number of unencrypted bytes that are sent and
received on the channel before the secret key is renegotiated. This number
of bytes includes control information sent by the MCA. The secret key is
renegotiated when (whichever occurs first):
v The total number of unencrypted bytes sent and received by the

initiating channel MCA exceeds the specified value, or
v If channel heartbeats are enabled, before data is sent or received

following a channel heartbeat.

Specify a value in the range zero through 999 999 999. A value of zero, the
queue manager's initial default value, signifies that secret keys are never
renegotiated.

For more information regarding SSL features, refer to Chapter 11, “Secure Sockets
Layer services,” on page 643.

PCF parameters:

System command queue
The command queue where local and remote administration applications
can place PCF messages to be processed by the local queue manager. The
default value for this parameter is: SYSTEM.ADMIN.COMMAND.QUEUE.

For more information, refer to Chapter 8, “Programmable system
management,” on page 221.

System reply queue
The command reply queue used by the MQSC batch utility program. For
more information, refer to Chapter 9, “WebSphere MQ commands,” on
page 507.

Cmd Server auto-start
Indicator for the automatic activation of the PCF command server. This
parameter can have the following values:

Y Automatically start the PCF command server when the queue
manager is initialized.

N Do not automatically start the PCF command server when the
queue manager is initialized.

Cmd Server convert
Indicator for the data conversion of PCF messages by the command server.
This parameter can have the following values:

Y Apply data conversion to PCF messages retrieved by the command
server.

N Do not apply data conversion to PCF messages retrieved by the
command server.

Cmd Server DLQ store
Indicator for the storage of undeliverable PCF reply messages to the
system dead letter queue by the command server. This parameter can have
the following values:

Y Command server will attempt to place undeliverable PCF response
messages to the system dead letter queue.

Queue manager creation

Chapter 4. System operation 87

N Command server will not attempt to place undeliverable PCF
response messages to the system dead letter queue.

Batch Interface settings:

Batch Int. identifier
Batch interface identifier. This is a 1-8 character identifier used by batch
MQ applications to connect to a relevant queue manager. The identifier
must be unique within the context of a z/VSE system. The default value
for this parameter is MQBISERV.

For more information refer to “Using the batch interface” on page 178.

Batch Int. auto-start
Indicator for the automatic activation of the batch interface. This parameter
can have the following values:

Y Automatically start the batch interface when the queue manager is
initialized (and stop the batch interface when the queue manager is
stopped).

N Do not automatically start the batch interface when the queue
manager is initialized.

Channel Auto-Definition settings::

Auto-definition
Switch for the channel auto-definition feature. This parameter can have the
following values:

Y Channel auto-definition enabled.

N Channel auto-definition disabled.

Auto-definition exit
Channel auto-definition exit name. This is a 1-8 character program name
that is called by the queue manager if the channel auto-definition feature is
enabled. This field is optional. If used, it must name a user-written
program defined to your CICS system.

Queue Manager Log and Trace Settings: Press PF10 (Log) on the Global System
Definition screen to display the Queue Manager Log and Trace Settings screen:

Queue manager creation

88 WebSphere MQ for z/VSE System Management Guide

Logging, in this sense, refers to the type or severity of messages written to the
SYSTEM.LOG. Tracing refers to entries written to the CICS auxiliary trace.
Configurability is intended to reduce certain processing overhead involved with
logging and tracing under WebSphere MQ for z/VSE. It is expected that many
customers, in a production environment, will reduce logging to error and critical
messages only, and switch tracing off altogether. You can also view log and trace
settings from MQMT option 1.5.

Log Settings: Log settings involve a choice between logging by the severity of
messages and/or the general type of message. For example, it is possible to select
logging for error and critical messages only, along with, for example, general
system messages. This is possible with the following log settings:
Informational

N
Warning

N
Error Y
Critical

Y

and/or
Communication

N
Reorganization

N
System

Y

With this configuration, all general system messages would be written to the
SYSTEM.LOG (including informational and warning messages), otherwise, only
error and warning messages would be written to the log.

12/03/2010 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:42:46 Global System Definition CIC1
MQWMSYS Log and Trace Settings A000

Log Settings Q C Accounting monitoring
Informational . . . : Y N MQI accounting : N
Warning : Y N Queue accounting : N
Error : Y N Acc. Conn override . . . : N
Critical : Y N Accounting interval . . : 001800
Communication . . . : Y N Statistics monitoring
Reorganization . . : Y N MQI statistics : N
System : Y N Queue statistics : N

Channel statistics . . . : N
Trace Settings Statistics interval . . : 001800

MQI calls : Y Online monitoring
Communication : Y Queue monitoring : N
Reorganization . . . : Y Channel monitoring . . . : N
Data conversion . . . : Y Recording
System : Y Activity : M

Trace Route : M

Requested record displayed.
PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 28. Queue manager log and trace settings

Queue manager creation

Chapter 4. System operation 89

Log settings are made under the column labeled "Q" (for Queue). Valid values
include:

N Suppress messages of this severity/type.

Y Send messages of this severity/type to the system log queue.

Diagnostic and error messages can optionally be sent to the z/VSE console. A
message cannot be sent to the console unless it is also sent to the system log
queue. Consequently, for example, it is not possible to suppress informational
messages and also have them sent to the z/VSE console.

Settings for optional logging to console are made under the column labeled "C"
(for Console). Valid values include:

N Do not send messages of this severity to the console.

Y Send messages of this severity to the console.

R Send messages of this severity to the console and prompt for an operator
reply.

Messages sent to the console are prefixed with the generic WebSphere MQ message
identifier MQI0200I, followed by the message identifier and text of the message
written to the system log queue. The MQI0200I message is truncated to a single
console line if necessary.

Messages sent to the console requiring an operator reply are highlighted and
remain on the z/VSE console until an operator reply is registered, or the system
OPERTIM expires. The text “...awaiting reply” is appended to messages sent to the
console that require an operator response.

Care should be taken not to flood the z/VSE console with messages (particularly
messages requiring an operator response). To avoid flooding the console, it is
recommended that a setting of "R" (for Reply) is only used for Critical messages.

Trace settings: Trace settings involve selection by general type. For example, it is
possible to trace communications programs and general system programs, and
exclude tracing for MQI calls, reorganization and data conversion. This example is
possible with the following trace settings:
MQI calls

N
Communication

Y
Reorganization

N
Data conversion

N
System

Y

Normally, tracing is only required when a serious system problem has been
encountered, and IBM service personnel have requested a trace of MQ system
activity. Since tracing involves some system overhead, it is recommended that
during normal operation, tracing is deactivated (that is, set all selections to “N”).

Accounting monitoring: These settings control if and how accounting information is
collected. The following settings are available:

Queue manager creation

90 WebSphere MQ for z/VSE System Management Guide

MQI Accounting
Controls whether accounting information for MQI data is to be collected.
Valid values are:
Y MQI accounting enabled.
N MQI accounting disabled.

Queue accounting
Controls the collection of accounting data for queues. Valid values are:
X Disable queue accounting for all queues.
Y Queue accounting enabled.
N Queue accounting disabled.

Acc. Conn override
Specifies whether applications can override the settings of the Queue
accounting and MQI accounting queue manager parameters. Valid values
are:
Y Override enabled.
N Override disabled.

Accounting interval
The time interval, in seconds, at which intermediate accounting records are
written. Specify a value in the range 1 through 604,000.

Statistics monitoring: These settings control if and how statistics information is
collected. The following settings are available:

MQI statistics
Controls whether statistics information for MQI data is to be collected.
Valid values are:
Y MQI statistics enabled.
N MQI statistics disabled.

Queue statistics
Controls the collection of statistics data for queues. Valid values are:
X Disable queue statistics for all queues.
Y Queue statistics enabled.
N Queue statistics disabled.

Channel statistics
Controls the collection of statistics data for channels. Valid values are:
X Disable channel statistics for all channels.
N Disable channel statistics for those channels that default to the

queue manager's channel statistics setting.
L Collect a low-level of channel statistics information.
M Collect a medium-level of channel statistics information.
H Collect a high-level of channel statistics information.

Statistics interval
The time interval, in seconds, at which intermediate statistics records are
written. Specify a value in the range 1 through 604,000.

Online monitoring: These settings control if and how real-time monitoring
information is collected. The following settings are available:

Queue monitoring
Default setting for online monitoring for queues. Valid values are:
X Disable queue monitoring for all queues.
N Disable queue monitoring for those queues that default to the

queue manager's queue monitoring setting.
L Collect a low-level of queue monitoring information.

Queue manager creation

Chapter 4. System operation 91

M Collect a medium-level of queue monitoring information.
H Collect a high-level of queue monitoring information.

Channel monitoring
Default setting for online monitoring for channels. Valid values are:
X Disable channel monitoring for all channels.
N Disable channel monitoring for those channels that default to the

queue manager's channel monitoring setting.
L Collect a low-level of channel monitoring information.
M Collect a medium-level of channel monitoring information.
H Collect a high-level of channel monitoring information.

Recording Activity
M The queue manager is enabled for activity recording. Any activity

reports generated are delivered to the reply-to queue specified in
the message descriptor of the message. This is the default value.

Q The queue manager is enabled for activity recording. Any activity
reports generated are delivered to the local system queue
SYSTEM.ADMIN.ACTIVITY.QUEUE.

D The queue manager is disabled for activity recording. No activity
reports are generated in this queue manager.

Recording Trace route
M The queue manager is enabled for trace-route messaging.

Applications can write activity information to the trace-route
message.

Q The queue manager is enabled for trace-route messaging.
Applications can write activity information to the trace-route
message delivered to the local system queue
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

D The queue manager is disabled for trace-route messaging. Activity
Information is not accumulated in the the trace-route message,
however the TraceRoute PCF group can be updated.

Queue Manager Event Settings: Press PF11 (Event) on the Global System
Definition screen to display the Queue Manager Event Settings screen:

Queue manager creation

92 WebSphere MQ for z/VSE System Management Guide

Event queues:

Queue manager events, event queues
The queue manager events queue names the target queue for queue
manager event messages. The name specified should be a valid local
queue. The MQJQUEUE.Z files contains sample VSAM definitions for files
to host the event queues. The default name for the queue manager event
queue is SYSTEM.ADMIN.QMGR.EVENT, and the default VSAM file for
this queue is MQFIEQE.

Channel events
The channel events queue names the target queue for channel event
messages. The name specified should be a valid local queue. The
MQJQUEUE.Z files contains sample VSAM definitions for files to host the
event queues. The default name for the channel event queue is
SYSTEM.ADMIN.CHANNEL.EVENT, and the default VSAM file for this
queue is MQFIECE.

Performance events
The performance events queue names the target queue for performance
event messages. The name specified should be a valid local queue. The
MQJQUEUE.Z files contains sample VSAM definitions for files to host the
event queues. The default name for the performance event queue is
SYSTEM.ADMIN.PERFM.EVENT, and the default VSAM file for this queue
is MQFIEPE.

Command events
The command events queue names the target queue for command event
messages. The name specified should be a valid local queue. The
MQJQUEUE.Z files contain sample VSAM definitions for files to host the
event queues. The name for the command event queue is
SYSTEM.ADMIN.COMMAND.EVENT and is not configurable, and the
default VSAM file for this queue is MQFIEME.

Configuration events
The command events queue names the target queue for configuration

12/03/2010 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
08:11:09 Global System Definition CIC1
MQWMSYS Event Settings A000

Event queues
Queue manager events : SYSTEM.ADMIN.QMGR.EVENT
Channel events . . . : SYSTEM.ADMIN.CHANNEL.EVENT
Performance events . : SYSTEM.ADMIN.PERFM.EVENT
Command events . . . : SYSTEM.ADMIN.COMMAND.EVENT
Configuration events : SYSTEM.ADMIN.CONFIG.EVENT

Qmgr events Channel events Performance events
Inhibit . . . : N Started . . . : N Queue depth . . : N
Local : N Stopped . . . : N Service interval : N
Remote : N Conversion err : N
Authority . . : N Auto-define. . : N
Start/Stop . . : Y SSL : N
Command . . . : N
Configuration : N

Requested record displayed.
PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 29. Queue Manager event settings

Queue manager creation

Chapter 4. System operation 93

event messages. The name specified should be a valid local queue. The
MQJQUEUE.Z files contain sample VSAM definitions for files to host the
event queues. The name for the configuration event queue is
SYSTEM.ADMIN.CONFIGURATION.EVENT and is not configurable, and
the default VSAM file for this queue is MQFIENE.

Qmgr events:

Inhibit
Inhibit events indicate that an MQPUT or MQGET operation has been
attempted against a queue, where the queue is inhibited for puts or gets
respectively.

Local
Local events indicate that an application (or the queue manager) has not
been able to access a local queue, or other local object. For example, when
an application attempts to access an object that has not been defined.

Remote
Remote events indicate that an application (or the queue manager) cannot
access a (remote) queue on another queue manager. For example, when the
transmission queue to be used is not correctly defined.

Authority
Authority events indicate that an authorization violation has been detected.
For example, an application attempts to open a queue for which it does not
have the required authority, or a command is issued from a user ID that
does not have the required authority.

Start/Stop
Start and stop events indicate that a queue manager has been started or
has been requested to stop

Command
The Command attribute accepts these values:
N Disabled.
Y Enabled.
X No Display. Command events are generated except for PCF Inquire

and MQSC DISPLAY commands.

Configuration
The Configuration attribute accepts these values:
N Disabled.
Y Enabled.

Channel events:

Started
Channel started events are generated when a Sender or Receiver channel
starts. Channel started events are not generated for Client (SVRCONN)
channels.

Stopped
Channel stopped events are generated when a Sender or Receiver channel
stops. Channel stopped events are not generated for Client (SVRCONN)
channels.

Conversion err
Channel conversion error events are generated by Sender channels when
an MQGET call to the transmission queue fails with a data conversion
error.

Queue manager creation

94 WebSphere MQ for z/VSE System Management Guide

Auto-define
Channel auto-definition events are generated by the Receiver MCA when
the auto-definition feature is enabled and a receiver or server connection
channel is automatically defined.

SSL SSL error events are generated when an SSL-enabled channel encounters
an SSL error.

The SSL attribute accepts these values:
N Disabled.
Y Enabled.

Performance events:

Queue depth
Queue depth events are related to the queue depth, that is, the number of
messages on the queue. The types of queue depth events are: Queue Depth
High, Queue Depth Low and Queue Full.

Service interval
Queue service interval events indicate whether a queue was “serviced”
within a user-defined time interval called the service interval. Depending
on the circumstances, queue service interval events can be used to monitor
whether messages are being taken off queues quickly enough.

Queue Manager API Exit Settings: Press PF12 (Ext) on the Global System
Definition screen to display the Queue Manager MQ API Settings screen:

Local API Exits: You can configure up to 8 MQ API exits and associated exit data.
MQ API exit programs are called in the sequence listed.

Name The name of the MQ API exit is an MQ object name, not the name of the
exit program itself. This can be from 1 to 48 characters and must follow the
naming standards for all WMQ objects. See “Object names” on page 3.

10/22/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:51:25 Global System Definition CIC1
MQWMSYS MQ API Settings A000

Local API Exits
1. Name: MQ_SAMPLE_EXIT

Module: MQPSAXE Data:
2. Name:

Module: Data:
3. Name:

Module: Data:
4. Name:

Module: Data:
5. Name:

Module: Data:
6. Name:

Module: Data:
7. Name:

Module: Data:
8. Name:

Module: Data:
Requested record displayed.
PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 30. Queue manager MQ API settings

Queue manager creation

Chapter 4. System operation 95

Module
The name of the MQ API exit program. MQ API exit names can be 1-8
characters, and must follow the naming standards for all programs defined
in the CICS CSD.

Data The exit data passed to the MQ Exit module on invocation. Exit data can
be from 0 to 32 characters in length.

For more information about MQ API exits, refer to Chapter 13, “API exits,” on
page 677.

Backing up the configuration file after creating the queue
manager
When you create the queue manager, the queue manager configuration file
MQFCNFG is updated. This contains configuration parameters for the queue
manager, and the queue and channel definitions.

You should make a backup of this file. If you have to create another queue
manager, perhaps to replace the existing queue manager if it is causing problems,
you can reinstate the backup when you have removed the source of the problem.

If you restore the configuration file then be aware that you will reset all channel
MSNs to the values they held at the time of the backup. You may need to reset the
channel MSNs using the master terminal transaction or by using batch utility
MQPUTIL. You will also lose all queue and channel definitions made to the queue
manager since the MQFCNFG file was backed up. For this reason, the backup
should be retaken after new definitions have been introduced and deemed stable.

Queue definitions
Selecting 2 on the Configuration menu allows you to maintain (add, modify, or
delete) queue definitions for the local installation of WebSphere MQ.

Note: The same screens are used to accomplish the three functions of adding,
modifying, or deleting a queue definition; the required action being selected
through the function keys. The following sections present the screens that you see
if you are adding a new queue definition.

“Modifying and deleting queue definitions” on page 110 explains how you modify
or delete a queue.

To create a queue definition, multiple screens may be involved. The first screen is
the same for all queues, and allows entry of the queue name and type.

Based on the type you enter, an appropriate second screen is displayed for you to
enter the remainder of the data to complete the definition.

In the case of local queues, a third screen, the Extended Queue Definition Screen
can be displayed.

The first screen displayed is as shown in Figure 31 on page 97.

Queue manager creation

96 WebSphere MQ for z/VSE System Management Guide

On this screen, the data entry fields are:

Object Type
This is a two character field with the acceptable entries listed on the
screen. The type determines the next screen to be displayed.

Object Name
This is the name of the queue (or alias) being defined. The name may be
up to 48 characters, must be unique among all other defined queues for
this installation, and must conform to the WebSphere MQ naming
requirements.

The Object Type you select on this screen is used to determine which of the
definition screens is displayed:
v L selects a local queue definition; see “Creating local queues”
v M selects a model queue definition; see “Create model queue” on page 104
v R selects a remote queue definition; see “Create remote queue” on page 106
v AQ selects an alias queue definition; see “Create alias queue” on page 108
v AM selects an alias manager definition; see “Create alias queue manager” on

page 108
v AR selects an alias reply queue definition; see “Creating alias reply queues” on

page 109

Creating local queues
Selecting “L” on the screen in Figure 31 displays the screen shown in Figure 32 on
page 98.

12/24/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:34:45 Queue Main Options CIC1
MQWMQUE A001

SYSTEM IS ACTIVE

Default Q Manager. : VSE.TS.QM1

Object Type. . . . : L = Local Queue
M = Model Queue
R = Remote Queue
AQ = Alias Queue
AM = Alias Queue Manager
AR = Alias Reply Queue

Object Name. . . . :

PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update
PF9=List PF12=Delete

Figure 31. Queue main options screen

Queue definitions

Chapter 4. System operation 97

On this screen, the data entry fields are:

Object Name
Filled in from the previous screen.

Description lines 1 & 2
Text fields for operator use only. They may each be up to 32 characters.

Put Enabled
A toggle that enables or disables MQPUT operations against this queue.

Get Enabled
A toggle that enables or disables MQGET operations against this queue.

Inbound status
Sets the initial status to active (A) or inactive (I) at run time for the
inbound direction of the queue.

Outbound status
Sets the initial status at run time for the outbound direction of the queue.

Dual Update Queue
When an existing queue name is entered here, dual queuing is activated.
The queue being created becomes the primary queue, and the queue
entered in this field becomes the dual queue. The definition of the dual
queue is updated automatically with the name of the primary queue. The
queue display of the dual queue has a corresponding heading “Dual
Source Queue”.

Dual Source Queue
The name of the primary queue, for which the queue being displayed is
the dual queue. This field appears only when a local queue serves as a
dual update queue.

Note: When an existing queue is defined as the dual to a primary queue,
these two queues both participate in the same logical units of work.

11/17/2009 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:17:42 Queue Definition Record CIC1
MQWMQUE Local Queue Definition A000

Object Name : ANYQ
Description line 1 . . . : Test queue
Description line 2 . . . :

Dual Update Queue . . . :

Put Enabled : Y Inbound status . . : A
Get Enabled : Y Outbound status . : A

Accounting, Statistics & Monitoring
Queue accounting : Q Queue monitoring . : Q
Queue statistics : Q

Automatic Reorganization
Reorganize : N Start Time: 0000 Interval: 0000
VSAM Catalog :

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF10=Queue PF12=Delete

Figure 32. Local queue definition

Creating local queues

98 WebSphere MQ for z/VSE System Management Guide

If, for any reason, it becomes impossible to update the dual queue (for
example, if the queue becomes disabled, the associated file is closed, or an
ISC link is lost), updates continue to be made to the primary queue and
the dual queue goes to a recovery status.

Queue accounting
The collection of queue accounting information is controlled by this
attribute and the queue manager attribute of the same name.

Queue statistics
The collection of queue statistics information is controlled by this attribute
and the queue manager attribute of the same name.

Queue monitoring
The collection of queue monitoring information is controlled by this
attribute and the queue manager attribute of the same name.

Automatic Reorganize
A toggle that enables or disables automatic reorganization of the VSAM file
associated with the selected queue, at specified time intervals.

Note:

1. WebSphere MQ for z/VSE uses VSAM files to store messages. The
indexes of these files can become fragmented, causing the
performance of the system to suffer.
To reorganize these files you must use VSAM utilities, and the
Automatic Reorganize feature automates the process.
If automatic reorganization is not suitable then use the batch
reorganization utility MQPREORG.

2. You are recommended to use the Automatic Reorganize feature only
for queue files with high activity.

3. When you specify a queue file that is to be automatically reorganized,
you should ensure that there is only one WebSphere MQ queue
associated with each VSAM file.

4. The Start Time identifies the time of day when the reorganization
runs. For example, 0230 is 2:30 a.m., and 2345 is 11:45 p.m..

5. The Interval, in minutes, identifies the frequency that the
reorganization runs. For example, 1440 is daily, and 0120 is every two
hours.
If zero is specified, then the reorganization will only be scheduled
once per WebSphere MQ for z/VSE start up. If WebSphere MQ for
z/VSE is run longer than 24 hours, then specify 1440 to start
reorganization every day at specified start time.

6. The VSAM Catalog field is now redundant and any data entered is
treated as a comment. Likewise any data displayed is not to be
regarded as meaningful.

7. The reorganization can take place even when there are messages on
the queue. Message data is retained. However, logically deleted
messages are removed.

8. Be aware that during reorganization, application programs do not
have access to the queue. If there are any active applications, the
reorganization will retry or postpone. Applications that attempt to
access the queue after the reorganization starts will wait. The
processing time for the reorganization varies, depending on the
number of unprocessed messages remaining on the queue.

Creating local queues

Chapter 4. System operation 99

|
|
|

9. If specifying automatic reorganization for a queue then it is required
that the VSAM file containing the queue be defined with cluster data
name with suffix of .DATA and index name with suffix of .INDEX.
This is also required for the MQFREOR file. And again, both the
queue file and MQFREOR must be defined in the same VSAM
catalog.

10. An automatic reorganization is scheduled during WebSphere MQ for
z/VSE initialization for all local queues which have reorganization
enabled. Also, when a local queue is added with reorganization
enabled, or an existing local queue is enabled for reorganization, or is
currently enabled and the start time or interval is modified, the
reorganization is scheduled or rescheduled.

11. When the queue manager is started, or a queue's interval value is
changed, the queue manager schedules the next reorganization. The
queue manager uses the start time and interval values relative to the
current time to determine when a reorganization will be scheduled.
For example, if the queue manager is started at 09:25am:
Start time Internal Scheduled
0100 0000 01.00
0115 0120 11.15
2300 0000 23.15
2315 0720 11.15
0745 0060 09.45

12. Changing the reorganization interval, when reorganization is enabled,
will result in scheduling a reorganization using the new interval.

13. Reorganizations are serialized, as there is only one MQFREOR file. If a
large number of reorganizations are scheduled for the same time, and
a queue reorganization cannot start within 10 minutes, then the
reorganization is rescheduled for the next interval.

Local queue extended definition screen: By pressing function key 10 (PF10), you
can display a second screen to enter the extended definition fields for the queue. In
the case of a request to add a queue, this Extended Definition Screen is presented
automatically. This detailed screen is shown in Figure 33 on page 101:

Creating local queues

100 WebSphere MQ for z/VSE System Management Guide

Note:

1. The PF10 key can be used to toggle between the Local Queue Definition screen
(Figure 32 on page 98) and the Local Queue Extended Definition screen
(Figure 33).

2. Either Trans ID or Program ID is required if triggering is enabled.
3. The internal WebSphere MQ trigger API transaction MQ02 cannot be used as a

trigger transaction ID.
4. Both a trigger transaction and a trigger program can be defined, but only the

trigger transaction is activated and the trigger program name is passed in the
trigger communications area.

5. The queue maximums are restricted by the queue manager's global maximums,
and the maximum limits of the product.

Navigation through the screens is dependent upon the PF keys.

On this screen, the data entry fields are:

Object Name
Filled in from the previous screen. Cannot be modified.

Physical Queue Information:

Usage Normal (N) means that the queue is used by an application to receive
inbound messages. Transmission (T) means that the queue is used by
WebSphere MQ to hold outbound messages destined for another
WebSphere MQ queue manager.

Shareable
Defines a queue as shareable or exclusive on input.

File name
The CICS file name, with a maximum of seven characters, used to store
messages for this queue.

2011/10/10 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
06:55:56 Queue Extended Definition CIC1
MQWMQUE A001

Object Name: MY.LOCALQ

General Maximums Events
Type . . : Local Max. Q depth . : 00010000 Service int. event: N
File name : MQFI001 Max. msg length: 00040960 Service interval : 00000000
Usage . . : N Max. Q users . : 00000100 Max. depth event : N
Shareable : Y Max. gbl locks : 00000100 High depth event : N
Dist.Lists : N Max. lcl locks : 00000100 High depth limit : 000
PropCtl. . : C Low depth event . : N
Triggering Low depth limit . : 000
Enabled . : N Transaction id.:
Type . . . : Program id . . :
Max. starts: 0001 Terminal id . :
Restart . : N Channel name . :
User data :

:

Record updated OK.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF10=Queue

Figure 33. Local queue extended definition

Creating local queues

Chapter 4. System operation 101

Note: The File name cannot be changed while there are active messages in
the queue. A value of MQFREOR or MQFCNFG cannot be used as a file
name.

Maximum Values:

Max. Q depth
The maximum number of messages allowed on this queue. The default
value is the value specified in the global system definition.

Max. msg length
The maximum length of an application message processed on this queue.

Max. Q users
The maximum number of MQOPEN calls that can occur for this queue
simultaneously.

Max. gbl locks
Allocates the locking table for this queue for all committed MQGET calls.

Max. lcl locks
This is used to allocate the locking table for this queue for each task’s
noncommitted MQGET calls.

Trigger Information:

Enabled
If you are defining a transmission queue for use with a sender channel, set
this value to Yes (Y). Otherwise, for use with a server or receiver channel,
set this field to No (N).

Alternatively, for queues with a usage of (N)ormal, set this parameter to
(Y)es to instruct the queue manager to automatically start a trigger process
instance in response to message activity on the queue.

If no trigger process is required, set this parameter to (N)o.

Type

F A trigger is generated when the queue goes from an empty to a
non-empty state.

E A trigger instance is generated every time a message is placed on
the queue. This can be constrained by the “Maximum Trigger
Starts” parameter which sets a maximum number of trigger
instances associated with the queue that can be running at any one
time.

Only one transaction can be active against the queue if the Trigger Type is
set to F.

Max. starts
The maximum number of trigger threads that can be active at once.

Restart
Indicates that the system monitor task (MQSM) should restart a trigger
instance if it detects messages on the queue but no active trigger instance.

Transaction id
The name of the transaction to be started by a trigger, with a length of four
characters. If a transaction ID is specified, this transaction will be started.
For a transmission queue, this field is left blank.

Creating local queues

102 WebSphere MQ for z/VSE System Management Guide

If a transaction identifier is defined, the program identifier should be left
blank.

Once the initial maximum trigger starts is reached then WebSphere MQ for
z/VSE only checks that the maximum trigger starts are running at every
system interval and not when each task completes. If it is important to
have a definite number of trigger instances running against a queue, use
Program ID to identify your trigger program.

Program id
The name of the user program to be invoked, with a length of eight
characters. If you are defining a transmission queue to be used with a
sender channel, MQPSEND must be used. If the field for Trans ID is left
blank and this field contains a program ID, the specified program is linked.

Terminal id
Optional field of four characters used for problem determination. It is
attached to the transaction ID specified in the Trans ID field.

Channel Name
Is the channel name, with a maximum of 20 characters.

This parameter is relevant for transmission queues only, and is used by the
WebSphere MQ Sender MCA (MQPSEND) to identify the appropriate
channel for transmitting messages to a remote WebSphere MQ system.

User Data
A field for static data to be passed to the trigger instance. When a trigger
instance is activated, it is passed data in the form of the MQTM structure
(see the CMQTML and CMQTMV copybooks). Data in the User Data field
is passed in the MQTM-USERDATA field of the MQTM structure. The
trigger instance can use this data for its own internal logic.

Event Information:

Service int. event
Specifies whether service interval events are required for this particular
queue. Queue service interval events indicate whether a queue was
'serviced' within a user-defined time interval called the service interval.
Depending on the circumstances at your installation, you can use queue
service interval events to monitor whether messages are being taken off
queues quickly enough.

There are two types of queue service interval event:
A Queue Service Interval OK event, which indicates that, following an
MQPUT call or an MQGET call that leaves a non-empty queue, an
MQPUT call or an MQGET call was performed within a user-defined
time period, known as the service interval.
A Queue Service Interval High event, which indicates that, following an
MQGET or MQPUT call that leaves a non-empty queue, an MQGET
call was not performed within the user-defined service interval. This
event message can be caused by an MQPUT call or an MQGET call.

To enable both Queue Service Interval OK and Queue Service Interval
High events you need to set the QServiceIntervalEvent control attribute to
High. Queue Service Interval OK events are automatically enabled when a
Queue Service Interval High event is generated. You do not need to enable
Queue Service Interval OK events independently.

Creating local queues

Chapter 4. System operation 103

These events are mutually exclusive, which means that if one is enabled
the other is disabled. However, both events can be simultaneously
disabled.

Valid values for this parameter include:
H - High
O - OK
N - None

Service interval
Specifies the interval used to determine whether the performance events
High and Ok are generated. The value specified represents milliseconds.

Max. depth event
Indicates whether or not queue full events are required. A queue full event
is generated when an attempt to put a message to the queue fails because
the queue has reached its maximum queue depth.

High depth event
Indicates whether or not Queue Depth High events are required. A Queue
Depth High event is generated when a message is put to the queue which
increases the queue depth to the limit specified by the High depth limit
parameter.

High depth limit
Specifies a queue depth as a percentage that is to be used to determine
whether or not a Queue Depth High event should be generated. For
example, a value of 80 for a queue with a maximum queue depth of 1000,
would mean a Queue Depth High is generated when the queue depth
reaches 800 messages.

Low depth event
Indicates whether or not Queue Depth Low events are required. A Queue
Depth Low event is generated when a message is retrieved from the queue
which decreases the queue depth to the limit specified by the Low depth
limit parameter.

Low depth limit
Specifies a queue depth as a percentage that is to be used to determine
whether or not a Queue Depth Low event should be generated. For
example, a value of 20 for a queue with a maximum queue depth of 1000,
would mean a Queue Depth Low is generated when the queue depth
reduces to 200 messages.

Create model queue
Selecting “M” on the screen in Figure 31 on page 97, providing an object name for
the model queue, and pressing PF5 to add a queue, displays the screen shown in
Figure 34 on page 105.

Creating local queues

104 WebSphere MQ for z/VSE System Management Guide

On this screen, the data entry fields are:

Object Name
Filled in from the previous screen.

Description lines 1 and 2
Text fields for operator use only. They may each be up to 32 characters.

Put Enabled
A toggle that enables or disables MQPUT operations against this queue.

Get Enabled
A toggle that enables or disables MQGET operations against this queue.

Queue accounting
The collection of queue accounting information is controlled by this
attribute and the queue manager attribute of the same name.

Queue statistics
The collection of queue statistics information is controlled by this attribute
and the queue manager attribute of the same name.

Queue monitoring
The collection of queue monitoring information is controlled by this
attribute and the queue manager attribute of the same name.

Model queues are not used to store messages. Instead, they are used as a template
when creating a dynamic queue. When an application opens a model queue, the
queue manager dynamically creates a local queue with the attributes of the model
queue.

Model queue extended definition: After setting general attributes for the model
queue, the extended definition can be accessed by pressing PF5 (Add). This
displays the screen shown in Figure 35 on page 106.

11/17/2009 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:25:05 Queue Definition Record CIC1
MQWMQUE Model Queue Definition A000

Object Name. : REPLY.MODEL
Description line 1 :
Description line 2 :

Put Enabled : Y Y=Yes, N=No
Get Enabled : Y Y=Yes, N=No

Accounting, Statistics & Monitoring
Queue accounting : Q Queue monitoring . : Q
Queue statistics : Q

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF10=Queue PF12=Delete

Figure 34. Model queue definition

Creating model queues

Chapter 4. System operation 105

The attributes on this screen are the same as those for local queues, and are
described in “Local queue extended definition screen” on page 100, with the
exception of the following attribute:

Def. type
Indicates whether a temporary dynamic or a permanent dynamic queue is
created when this model queue is used to create a dynamic queue.

Valid values are:
T Temporary dynamic
P Permanent dynamic

When a dynamic queue is created (when an application uses the MQOPEN call to
open a model queue), the dynamic queue inherits all the attributes of the model
queue.

Note: Like local queues, the model queue extended definition specifies a CICS file
name. The model queue, itself, does not use this file to store messages. Dynamic
queues created using the model queue as a template use the file to store messages.
Since a single model queue might be used to create numerous dynamic queues,
each of these dynamic queues will use the same file to store its messages.

Create remote queue
Selecting “R” on the screen in Figure 31 on page 97 displays the screen shown in
Figure 36 on page 107.

2011/10/10 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:13:30 Queue Extended Definition CIC1
MQWMQUE A001

Object Name: A.MODEL.PERM

General Maximums Events
Type . . : Model Max. Q depth . : 00100000 Service int. event: N
File name : MQFI001 Max. msg length: 04000000 Service interval : 00000000
Usage . . : N Max. Q users . : 00000100 Max. depth event : N
Shareable : Y Max. gbl locks : 00000100 High depth event : N
Def. type : P Max. lcl locks : 00000100 High depth limit : 000
PropCtl. . : C Low depth event . : N
Triggering Low depth limit . : 000
Enabled . : N Transaction id.:
Type . . . : Program id . . :
Max. starts: 0000 Terminal id . :
Restart . : N Channel name . :
User data :

:

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF10=Queue

Figure 35. Model queue extended definition

Creating model queues

106 WebSphere MQ for z/VSE System Management Guide

On this screen, the data entry fields are:

Object Name
Filled in from the previous screen.

Description lines 1 & 2
Text fields for operator use only. They may each be up to 32 characters.

Put Enabled
A toggle that enables or disables MQPUT operations against this queue.

Get Enabled
A toggle that enables or disables MQGET operations against this queue.
For remote queue definitions, the Get Enabled queue parameter is ignored
because it is not possible to issue an MQGET call against a remote queue.

Remote Queue Name
The queue name on the remote WebSphere MQ system to which the
definition in progress will refer.

Remote Queue Manager Name
The name of the remote WebSphere MQ system queue manager on which
the remote queue is defined as a local queue. This name must be defined
as a local transmission queue unless the Transmission Queue Name field is
used.

Transmission Queue Name
The name of the local transmission queue to be used by WebSphere MQ to
convey messages to this remote queue. If the field is left blank, the remote
queue manager name is required to map to a local transmission queue.

Note: Some other operating systems, with which you could be communicating,
may be case sensitive. You should read the information in “Uppercase translation”
on page 27 before devising a name for a queue, channel or queue manager.

Navigation through the screens is dependent upon the PF keys.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:00:38 Queue Definition Record CIC1
MQWMQUE QM - VSE.TS.QM1 A002

Remote Queue Definition

Object Name. : VSE1.NT1.RQ1
Description line 1 : Remote queue to LQ1 on NT1
Description line 2 :

Put Enabled : Y Y=Yes, N=No
Get Enabled : Y Y=Yes, N=No

Remote Queue Name. : NT1.LQ1
Remote Queue Manager Name. : NT1.QM1
Transmission Queue Name. . : VSE1.XQ1

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF12=Delete

Figure 36. Remote queue definition

Creating remote queues

Chapter 4. System operation 107

Create alias queue
Selecting “AQ” on the screen in Figure 31 on page 97 displays the screen shown in
Figure 37.

On this screen, the data entry fields are:

Object Name
Filled in from the previous screen.

Description lines 1 & 2
Text fields for operator use only. They may each be up to 32 characters.

Put Enabled
A toggle that enables or disables MQPUT operations against this queue.

Get Enabled
A toggle that enables or disables MQGET operations against this queue.

Alias Queue Name
The name of another object already defined in the local configuration. This
must be a local queue name. It cannot identify another alias.

Navigation through the screens is dependent upon the PF keys.

Create alias queue manager
Selecting “AM” on the screen in Figure 31 on page 97 displays the screen shown in
Figure 38 on page 109.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:09:40 Queue Definition Record CIC1
MQWMQUE QM - VSE.TS.QM1 A002

Alias Queue Definition

Object Name. : EMPLOYEE
Description line 1 : Alias for EMPLOYEE.DETAILS queue
Description line 2 : with PUT inhibited.

Put Enabled : N Y=Yes, N=No
Get Enabled : Y Y=Yes, N=No

ALIAS Queue Name : EMPLOYEE.DETAILS

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF12=Delete

Figure 37. Alias queue definition

Creating alias queues

108 WebSphere MQ for z/VSE System Management Guide

On this screen, the definitions cannot be used in an MQCONN call; they may used
for MQOPEN substitution only. The data entry fields are:

Object Name
Filled in from the previous screen.

Description lines 1 & 2
Text fields for operator use only. They may each be up to 32 characters.

Alias Queue Manager Name
The name of a known queue manager. This can be a local transmission
queue name, a remote queue manager name, or the local queue manager
name. It cannot identify another alias.

Transmission Queue Name
The name of the local transmission queue to be used by WebSphere MQ to
convey messages to this remote queue manager. If this field is left blank,
the Alias Queue Manager Name field is required to map to a local
transmission queue or to the local queue manager name.

Navigation through the screens is dependent upon the PF keys.

Creating alias reply queues
Selecting “AR” on the screen in Figure 31 on page 97 displays the screen shown in
Figure 39 on page 110.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:13:10 Queue Definition Record CIC1
MQWMQUE QM - VSE.TS.QM1 A002

Alias Queue Manager Definition

Object Name. : VSE.LOCAL1
Description line 1 : Alias Queue Manager
Description line 2 : for MQV1

Alias Queue Manager Name . : MQV1
Transmission Queue Name. . :

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF12=Delete

Figure 38. Alias queue manager definition

Creating alias queue managers

Chapter 4. System operation 109

On this screen, the definitions cannot be used in the MQOPEN call; they may only
be used for reply queue name substitution with a MQPUT call. The data entry
fields are:

Object Name
Filled in from the previous screen.

Description lines 1 & 2
Text fields for operator use only. They may each be up to 32 characters.

Alias Queue Name
The name of another object already defined in the local configuration. This
can be a local queue name or a remote queue name. It cannot identify
another alias.

Alias Queue Manager Name
The name of a known queue manager. This can be a local transmission
queue name, a remote queue manager name, or the local queue manager
name. It cannot identify another alias.

Navigation through the screens is dependent upon the PF keys.

Modifying and deleting queue definitions
Selecting 2 on the Configuration menu also allows you to modify or delete queue
definitions.

Note: You use the same primary screens for modifying, deleting, or adding a
queue.

Selecting an existing queue definition: To modify or delete an existing queue
definition, you must select the definition on which to work, and display it.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:20:24 Queue Definition Record CIC1
MQWMQUE QM - VSE.TS.QM1 A002

Alias Reply Queue Definition

Object Name. : REPLYQ
Description line 1 : Alias reply definition
Description line 2 :

Alias Queue Name : ANYQ
Alias Queue Manager Name . : VSE.TS.QM1

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF12=Delete

Figure 39. Alias queue reply definition

Creating alias reply queues

110 WebSphere MQ for z/VSE System Management Guide

To do this, select option 2 on the “Configuration Main Menu” screen to display the
“Queue Main Options” screen (see Figure 31 on page 97) and use either the PF4, or
PF9, function key.

PF4 is the Read key, and you use it to bring a specific queue definition to the
screen as follows:
1. Enter the name of the desired queue in the Object Name field.
2. Press PF4 or Enter.
3. WebSphere MQ reads and displays the selected queue definition.

PF9 is the LIST key, and you use it to bring a specific queue definition to the
screen as follows:
1. Press PF9.
2. The WebSphere MQ System displays a list of all defined queues (see Figure 40).
3. Select the desired queue by typing an “S” (or “X”) next to its name, or by

placing the cursor on the appropriate object.
4. Press PF4 or Enter.
5. WebSphere MQ reads and displays the selected queue definition.

Modifying an existing queue definition: When you have displayed the required
queue definition, as described in “Selecting an existing queue definition” on page
110, you can modify any field in the definition. This may involve multiple screens
to include all fields of the queue definition – see “Queue definitions” on page 96.

When you have made the changes you need, update the screen using the PF6
(UPDATE) function key.

07/06/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 MQBDTS
16:24:52 Object List Screen CIC1
MQMMQUE A001

S Object Type
ANYQ Local Queue
EMPLOYEE Alias Queue
REPLYQ Alias Reply
REQUEST.MODEL Model Queue
SYSTEM.LOG Local Queue
VSE.LOCAL1 Alias Manager
VSE1.NT1.RQ1 Remote Queue

Records found - Select one object name.

PF2 = Options PF3 = Quit PF4/Enter = Read
PF7 = Backward PF8 = Forward

Figure 40. Object list screen

Modifying queue definitions

Chapter 4. System operation 111

Deleting an existing queue definition: When you have displayed the required
queue definition, as described in “Selecting an existing queue definition” on page
110, you can delete it using the PF12 (DELETE) function key.

You will be asked to confirm that you want to delete the queue definition. You
must press the PF12 function key again to delete the queue. If there are messages
on the queue, it may take several seconds to delete these records.

Warning: Deleting a queue definition also deletes the queue's message data. If the
message data is important, a queue should be emptied by normal application
processing before it is deleted.

Channel definitions
Selecting 3 on the Configuration menu allows you to maintain (add, modify, or
delete) channel definitions for the local installation of the WebSphere MQ System.

Note: The same screens are used to accomplish the three functions of adding,
modifying, or deleting a channel definition; the required action being selected
through the function keys. The following sections present the screens that you see
if you are adding a new channel definition.

“Modifying and deleting channel definitions” on page 115 explains how you
modify or delete a queue.

The screen shown in Figure 41 is displayed to create a channel definition:

On this screen, the data entry fields are:

2011/10/10 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:01:29 Channel Record DISPLAY CIC1
MQWMCHN A001
Channel : MY.SDR
Desc. . :
Protocol: T (L/T) Type : S (S=Snd/R=Rcv/V=Srv/Q=Req/C=svrConn) Enabled : Y

Sender/Server
Remote TCP/IP port : 00000 Short/Long retry count . : 000000000
Get retry number : 00000000 Short retry interval . . : 000000000
Get retry delay (secs) . . : 00000000 Long retry interval . . . : 000000000
Convert msgs(Y/N). : N Batch interval : 000000000
Property control : C
Transmission queue name. . : MY.XMITQ
TP name. . :
Sender/Receiver/Server/Requester
Connection : 1.1.1.1(1414)
Max Messages per Batch . . : 000010 Message Sequence Wrap . . : 999999999
Max Message Size : 0004096 Dead letter store(Y/N) . : N
Max Transmission Size . . : 065535 Split Msg(Y/N) : Y
Max TCP/IP Wait : 000300 Channel statistics . . . : Q

Channel monitoring . . . : Q
Channel record displayed.
F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

Figure 41. Channel record

Modifying queue definitions

112 WebSphere MQ for z/VSE System Management Guide

General
Channel name

The name of the channel to be defined.

Description
The description of the channel. This field is for documentation purposes
only, and does not affect channel operation.

Protocol
The protocol being used by the selected channel, which can be LU 6.2, or
TCP/IP.

Type S: Sender channel.
R: Receiver channel.
V: Server channel.
Q: Requester channel.
C: Server-connection (SVRCONN) channel.

Enable
Enable the channel for communications at initialization time.

Sender and Server channels
The following parameters are relevant to all sender and server channels.

Remote TCP/IP Port
The port number that WebSphere MQ uses for accepting TCP/IP
connection requests. For the following type of channels the port number is
SENDER

Port number of the remote listener
SERVER

Port number of the remote listener
REQUESTER

Port number of the remote listener
RECEIVER

Not required
SVRCONN

Not required

The number reserved for WebSphere MQ is 1414, although any unreserved
number can be used.

Get retry number
The number of Get retries when queue is empty.

Get retry delay
The time between retries (in seconds).

Convert Msgs
A field that identifies whether message data is converted before it is sent to
a remote queue manager. To convert message data, set this field to Y. Data
is converted to the code page of the remote host only if the code page is
supported.

Property control
Specifies what happens to properties of messages when the message is
about to be sent to a V6 or prior queue manager (a queue manager that
does not understand the concept of a property descriptor).

This parameter is applicable to Sender and Server. Permitted values are:

C (COMPAT) This is the default value.

Channel definitions

Chapter 4. System operation 113

N (NONE) All properties of the message, except those in the message
descriptor or extension, are removed from the message before the
message is sent to the remote queue manager.

A (ALL) All properties of the message are included with the message
when it is sent to the remote queue manager. The properties,
except those in the message descriptor (or extension), are placed in
one or more MQRFH2 headers in the message data.

Transmission Queue Name
The name of the transmission queue. Required for the sender, optional for
the receiver.

TP Name
A 64-character field identifying the remote task ID of the receiver on the
remote CICS region, or a TPNAME on the remote system (for example,
AMQCRS6A). This is required by the sender for LU 6.2 use only. This field
is not recognized for TCP/IP.

Note: Although the TPNAME can be up to 64 bytes in other WebSphere
MQ products, on WebSphere MQ for z/VSE it can have a maximum of 4
bytes only.

Short/Long retry count
Number of attempts to connect when initial connection is unsuccessful.

Short retry interval
Time in seconds between connection retry attempts. When an initial
connection attempt is unsuccessful, the queue manager will retry
Short/Long retry count times, with a Short retry interval attempts between
each retry.

Long retry interval
Time in seconds between connection retry attempts after the short retry
interval attempts have been exhausted. Once the long retry attempts have
been exhausted, the connection is deemed failed.

Batch interval
For sender and server channels, the batch interval (in milliseconds) is used
to ensure a batch of message is not deemed complete until the interval has
expired.

Normally, messages are transmitted in batches of a size specified by the
channel's Batch Size attribute. When the batch is complete, the queue
manager negotiates with the remote system to commit the batch.

In the event that messages arrive slowly on a transmission queue, it is
possible for the queue manager to deem a batch complete when the
transmission queue is empty, even though messages are still arriving. The
end of batch channel processing imposes some processing overhead.

Consequently, the batch interval attribute can be used to make the queue
manager wait a period of time before initiating end of batch processing.

Sender, Server, Receiver and Requester channels
The following parameters are relevant to all channels except server-connection
channels.

Connection
The name of the LU 6.2 connection, or for TCP/IP sender channels, the
remote host name or IP address.

Channel definitions

114 WebSphere MQ for z/VSE System Management Guide

For TCP/IP sender channels, the remote port number can be appended (in
parentheses) to the connection name. For example:
my.remote.host(1414)

If the port number is not appended to the connection name, the queue
manager will use the value specified by the Remote TCP/IP port
parameter.

Max Messages per Batch
The mutually accepted maximum number of messages per batch to be
transmitted.

Message Sequence Wrap
The mutually agreed maximum messages count before the count sequence
starts over.

Dead Letter Store
A field that identifies whether inbound messages are written to the dead
letter queue whenever an inbound message cannot be written to its
intended target queue. The dead letter queue is identified in your Global
System Definition.

Max Transmission Size
The mutually accepted maximum number of bytes per transmission.

The maximum transmission size for LU6.2 channels is 32000. For TCP/IP
the maximum is 65535.

Max Message Size
The mutually accepted maximum number of bytes per message. The
Maximum Message Size must be bigger than the application message size,
plus approximately 1,000 bytes for the WebSphere MQ header.

Split Msg
This must be set to Y if messages longer than the maximum transmission
size for the channel are to be sent across the channel.

Max TCP/IP Wait
The maximum number of second that a Message Channel Agent (MCA)
should wait to receive TCP/IP data before terminating the connection with
an error. See “Bullet-proof channels” on page 74 for more information.

Channel statistics
Indicates whether or not channel statistics should be collected for the
channel.

Channel monitoring
Indicates whether or not channel monitoring information should be
collected for the channel.

Modifying and deleting channel definitions
Selecting 3 on the Configuration menu also allows you to modify or delete channel
definitions.

Note: You use the same primary screens for modifying, deleting, or adding a
channel.

Selecting an existing channel definition
To modify or delete an existing channel definition, you must select the definition
on which to work, and display it.

Channel definitions

Chapter 4. System operation 115

To do this, select option 3 on the “Configuration Main Menu” screen to display the
“Channel Record” screen (see Figure 41 on page 112), and use either the PF4 or
PF9 function key.

PF4 is the Read key, and you use it to bring a specific channel definition to the
screen as follows:
1. Enter the name of the desired channel in the Channel Name field.
2. Press PF4 or Enter.
3. WebSphere MQ reads and displays the selected channel definition.

PF9 is the List key, and you use it to bring a specific channel definition to the
screen as follows:
1. Press PF9.
2. WebSphere MQ displays a list of all defined channels (see Figure 42).
3. Select the desired channel by typing an “S” next to the channel name.
4. Press PF4 or Enter.
5. WebSphere MQ reads and displays the selected channel definition.

On this screen, the display fields are:

Channel Name
The names of all channels.

Type Type is sender (S), receiver (R), server (V), requester (Q), or svrconn (C).

Status Channel may be enabled (ENABLE) or disabled (DISABL).

Last MSN
The last checkpointed message sequence number of the channel.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
11:10:12 Channel List CIC1
MQWMCHN A002
S CHANNEL NAME TYPE STATUS LAST MSN CHECKPOINT

MQTS.TO.MQ23 S ENABLE 2 2002/12/23 10:49:41 TCP
MQ23.TO.MQTS R ENABLE 1 2002/12/23 10:49:41 TCP
MVSA_TO_VSEA R ENABLE 0 2002/12/23 10:49:41

ENTER ’S’ to select Channel
F2=Return PF3=Quit PF4=Read F7=Backward PF8=Forward

Figure 42. Channel list

Modifying channel definitions

116 WebSphere MQ for z/VSE System Management Guide

Checkpoint
The time of the last checkpoint.

Modifying an existing channel definition
When you have displayed the required channel definition, as described in
“Selecting an existing channel definition” on page 115, you can modify any field in
the definition.

When you have made the changes you need, update the screen using the PF6
(Update) function key.

Deleting an existing channel definition
When you have displayed the required channel definition, as described in
“Selecting an existing channel definition” on page 115, you can delete it using the
PF12 (Delete) function key.

You will be asked to confirm that you want to delete the channel definition. You
must press the PF12 function key again to delete the channel.

Setting channel SSL parameters
If a channel requires secure sockets layer (SSL) services, then press PF10 (SSL) to
display the Channel SSL Parameters screen:

On this screen, the data entry fields are:

SSL Cipher Specification
The SSL Cipher Specification identifies a 2-character code for any of the
supported SSL Version 3.0 ciphers. At the time of publication, these
include:

01 for NULL MD5
02 for NULL SHA
08 for DES40 SHA for Export
09 for DES SHA for US

11/22/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:34:00 Channel SSL Parameters CIC1
MQMMCHN A001

Channel Name: VSE1.TCP.AIX2 Type: S

SSL Cipher Specification. : 0A (2 character code)
SSL Client Authentication : O (Required or Optional)

SSL Peer Attributes:
> CN=IBM* <
> <
> <
> <

SSL channel parameters displayed.
PF2 = Return PF3 = Quit PF4 = Read PF6 = Update

Figure 43. Channel SSL parameters

Modifying channel definitions

Chapter 4. System operation 117

0A for Triple DES SHA for US
62 for RSA_EXPORT1024_DESCBC_SHA
2F for RSA_AES128CBC_SHA
35 for RSA_AES256CBC_SHA

It should be noted that the bit-size of an RSA private key can affect the list
of valid cipher specifications. For more information, refer to relevant SSL
product documentation.

It is expected that the list of supported ciphers will expand over time.
Consequently, this field is not validated. Any non-blank value is accepted
as a valid configuration value. However, if an unsupported code is used,
the channel will fail on any attempted use. For this reason, SSL services
documentation relevant to your current environment should be checked
prior to setting this field.

This field, and this field alone, determines whether or not the channel will
apply SSL services. In other words, the other SSL parameters in the
channel configuration are ignored if this field is not set (that is, if it is left
blank). Consequently, this field can be used to activate and deactivate SSL
services on a channel without requiring the other parameters being reset.

SSL Client Authentication
SSL client authentication can be one of:
R Required
O Optional

If required, WebSphere MQ checks that the remote SSL partner (WebSphere
MQ message channel agent or MQ client) provided a X.509 PKI certificate
during SSL initial negotiation. If the remote partner fails to send a
certificate, and one is required, the channel is terminated. If client
authentication is optional, WebSphere MQ ignores whether or not a
certificate was received.

SSL Peer Attributes
SSL peer attributes is a 256-character case-sensitive field that can be used
to ensure a remote partner's certificate contains identifiable attributes. This
requires that the remote partner provided a certificate during SSL initial
negotiation. If the remote partner fails to provide a certificate, then any
check against the SSL Peer Attributes field will fail, and the channel will be
terminated. The SSL Peer Attributes field expects a value (if any) in the
form:
key=value,key=value, etc.

where key is one of the supported keywords (see below), the equal sign (=)
is mandatory, and value is a value relative to the keyword that is expected
to match the remote partner's certificate. Supported keywords include:
CN Common name
C Country
ST State or province
L Locality
O Organization
OU Organization Unit
SERIAL

Serial number

For example:
C=US,O=IBM

Modifying channel definitions

118 WebSphere MQ for z/VSE System Management Guide

In this example, the Country field of the remote partner's X.509 PKI certificate
must be “US”, and the Organization field must be “IBM”. Note that values can
include imbedded blanks and wild cards (*). Values with embedded blanks must
be enclosed in double quotes ("). If used, only one wild card can be used in each
value, and only at the end of that value. For example:
C=US,O="IBM GSA *",CN=www.ibm.*

Following SSL negotiation, WebSphere MQ checks that the remote partner's X.509
PKI certificate matches the SSL peer attributes specified by this field. If they match,
channel activity proceeds with SSL services enabled. If they do not match, the
channel is terminated.

Setting channel exit parameters
If the channel requires exit processing during its operation, Then press PF11 (Ext)
to display the Channel Exit Settings screen:

On this screen, the Channel name and type are display-only fields. The data entry
fields are:
Security exit name

The name of the security exit program that is invoked during the initial
negotiation of the channel.

Security exit data
Optional data that is passed to the security exit program on each
invocation.

The Channel Exit Settings screen allows channel exit programs, and associated
data, to be set for send, receive, security and message exits. Send, Receive and
Message exits are configurable using function keys PF10, PF11 and PF12
respectively.

10/22/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
08:54:10 Channel Exit Settings CIC1
MQWMCHN A000

Channel name . . . : VSE9.IP.SOL7
Channel type . . . : Sender

Security exit name :
Security exit data :

Channel exit settings displayed.
F2=Return PF3=Quit PF4=Read F6=Update PF10=SndX PF11=RcvX PF12=MsgX

Figure 44. Channel Exit settings

Modifying channel definitions

Chapter 4. System operation 119

Configuration for send, receive and message exits is similar. For example, using
PF10 to configure send exits presents the following screen:

Note that you can configure up to 8 send exits and associate exit data. These exits,
if configured, are called in the sequence listed. The same is true for receive and
message exits.

Channel exit names can be 1-8 characters, and follow the naming standard for any
program defined in the CICS CSD.

For more information on channel exits, see “Channel exits” on page 55.

Code page definitions
Selecting 4 on the Configuration menu allows you to define global parameters and
maintain a set of user-defined code pages for data conversion.

Figure 46 on page 121 shows the screen that is displayed when you select 4 from
the Configuration menu.

10/22/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
08:59:33 Channel Send Exit Settings CIC1
MQWMCHN A000

Channel name . . . : VSE9.IP.ZOSX
Channel type . . . : Sender

Exitname Exit Data
> SNDEXIT1 < > Send exit data 1 <
> SNDEXIT2 < > Send exit data 2 <
> < > <
> < > <
> < > <
> < > <
> < > <
> < > <

Channel exit settings displayed.
F2=Return PF3=Quit PF4=Read F6=Update PF10=SndX PF11=SecX PF12=MsgX

Figure 45. Channel chained-exit settings

Modifying channel definitions

120 WebSphere MQ for z/VSE System Management Guide

To change values on this screen, use PF6 (Update). To add user-defined code
pages, use PF5 (Add).

On this screen, the data entry fields are:

Default ASCII code page
Code page used for default conversion when a code page that represents
an ASCII code page fails normal conversion.

The default data conversion process is used if data conversion fails and the
default ASCII code page is valid. Default conversion takes place only if the
conversion is from ASCII to EBCDIC, or EBCDIC to ASCII. Otherwise, data
is passed without conversion.

A value of 0 means no default conversion.

Default EBCDIC code page
Code page used for default conversion when a code page that represents
an EBCDIC code page fails normal conversion.

The default data conversion process is used if data conversion fails and the
default EBCDIC code page is valid. Default conversion takes place only if
the conversion is from ASCII to EBCDIC, or EBCDIC to ASCII. Otherwise,
data is passed without conversion.

A value of 0 means no default conversion.

Convert EBCDIC newline
This value is used only when converting EBCDIC to ASCII. Valid values
are:

L: EBCDIC NL is converted to ASCII LF. This is the default behavior
and how all V5.0 WebSphere MQ products behave.

T: EBCDIC NL is converted to whatever value is specified in the
supplied conversion table.

07/07/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 MQBDTS
09:58:32 Code Page Definition CIC1
MQMMCPG Data Conversion Information A001

Default ASCII code page....: 0850

Default EBCDIC code page...: 1047

Convert EBCDIC newline.....: L L=Ascii NL, T=Table, I=ISO

Record initialized - New record.
PF2 = Return PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 =Update

PF9 = List CodePages

Figure 46. Data conversion definitions

Code page definitions

Chapter 4. System operation 121

I: EBCDIC NL is converted to whatever value is specified inthe
supplied conversion table. If the source is an ISO code page, the
conversion is the same as L (NL to LF).

See the WebSphere MQ Application Programming Reference for more details
regarding conversion of EBCDIC newline characters.

Create a user-defined code page
Selecting option 4 on the Configuration menu also allows you to create
user-defined code pages.

To add a new user-defined code page, select option 4 on the configuration menu to
display the Code Page Definition screen (see Figure 46 on page 121), then press
PF5.

The screen shown in Figure 47 is displayed.

On this screen, the data entry fields are:

Code Page Number
Four digit number that uniquely identifies the user-defined code page. You
cannot redefine a system-defined code page that already exists in LE/VSE.

Description lines 1 & 2
Text fields for operator use only. They may each be up to 32 characters.

Type S: Single Byte Character Set (SBCS)

D: Double Byte Character Set (DBCS)

M: Mixed SBCS/DBCS

Encoding
E: EBCDIC

A: ASCII

I: ISO

U: UCS-2 (Unicode)

07/07/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 MQBDTS
10:42:50 User Code Page Definition CIC1
MQMMCPG A001

Code Page Number : 1234
Description Line 1 : Special ASCII code page
Description Line 2 :

Type : S S=SBCS, D=DBCS, M=MIXED
Encoding : A E=EBCDIC, A=ASCII, I=ISO,

U=UCS2, T=UTF, C=EUC

Record being added - Press ADD key again.

PF2=Data Conv PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update
PF9 = List PF12= Delete

Figure 47. User code page definition

Code page definitions

122 WebSphere MQ for z/VSE System Management Guide

T: UTF-8 (Unicode)

C: EUC

For more information on these types and encodings, see the IBM manual
Character Data Representation Architecture, SC09-1390.

For a user code page to work, the underlying LE/VSE code converter must
exist as a CICS phase. WebSphere MQ for z/VSE uses LE/VSE for
application message data conversion. See Chapter 7, “Message data
conversion,” on page 217 for more details on message data conversion.

Modifying and deleting user-defined code pages
Selecting option 4 on the Configuration menu also allows you to modify or delete
user code page definitions.

Note: You use the same primary screens for both modifying and deleting a user
code page definition.

Additionally, you can use the PF9 function key (List) from either the Code Page
Definition screen, or the User Code Page Definition screen.

PF9 displays the code page Object List screen shown in Figure 48.

Modifying an existing code page definition
From the displayed list, type an S next to the code page number you want to
modify, or position the cursor on the entry, then press Enter.

When the required code page definition is displayed, you can edit modifiable
fields and update the entry using PF6.

Deleting an existing code page definition.
From the displayed list, type an S next to the code page number you want to
delete, or position the cursor on the entry, then press Enter.

07/07/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 MQBTDS
04:14:06 Object List Screen CIC1
MQMMCPG A001

S Object TYPE
1123 SBCS Codepage
1208 Mixed Codepage
1308 SBCS Codepage
3254 SBCS Codepage
3722 SBCS Codepage
4355 Mixed Codepage
4545 SBCS Codepage
4567 SBCS Codepage
5657 SBCS Codepage
6775 SBCS Codepage

...More

Records Found - Select one Object Name

PF2 =Data Conv PF3 = Quit PF4/Enter = Read
PF7 = Backward PF8 = Forward

Figure 48. Code page object list screen

User-defined code pages

Chapter 4. System operation 123

When the required code page definition is displayed, use PF12 to delete the entry.

You are asked to confirm that you want to delete the definition. You must press
the PF12 key again to delete the code page definition.

Listener definitions
Listeners are processes that accept network requests from other queue managers,
or client applications, and start associated channels. Listener processes can be
configured using the master terminal transaction (MQMT), Programmable
Command Format (PCF), or MQSeries Command (MQSC) requests.

Listener objects are WebSphere MQ objects that allow you to manage the starting
and stopping of listener processes from within the scope of a queue manager. By
defining attributes of a listener object, you:
1. Configure the listener process.
2. Specify whether the listener process automatically starts and stops when the

queue manager starts and stops. In WebSphere MQ for z/VSE, all running
listeners are stopped when the queue is stopped regardless of the control mode.

Listener objects can be created, modified and deleted using the master terminal
transaction (MQMT), Programmable Command Format (PCF), or MQSeries
Command (MQSC) requests.

When WebSphere MQ for z/VSE is initialized, if no listener objects are found, a
listener "LISTENER.TCP" is created using the old listener port number that was
used prior to the introduction of listener object support. The "TCP/IP listener port"
field in the communications settings panel below has been removed.

Using the Master terminal transaction (MQMT):
1. Select 1. Configuration from the Master Terminal Main Menu.
2. Select 1. Global System Definition from the Configuration Main Menu.
3. On the Global System Definition panel, press PF9 (Communications) to display

the Communications Settings panel.
4. Press PF10 (Listeners) to display the panel shown here:

User-defined code pages

124 WebSphere MQ for z/VSE System Management Guide

On the Listener Record panel, the fields are:

Listener name
The name of the listener object. The name may be up to 48 characters, it
must be unique, and it must conform to WMQ object naming
requirements.

Description
Optional description of the purpose of the listener. The description can be
up to 64 characters.

Control
Determines whether the listener is started:
M Manually.
Q When the queue manager starts, and stopped when the queue

manager is stopped.
S When the queue manager starts, but not stopped when the queue

manager is stopped

Transmission protocol
Transmission protocol used by the listener. WebSphere MQ for z/VSE only
supports:

T TCP/IP

Port Port number on which the listener listens for connections.

IP address
The name of the computer on which the listener listens for connections.
You can use either of these formats:
v IPv4 dotted decimal.
v Fully-qualified hostname.

If no value is specified, the listener listens on all available IPv4 addresses.

12/11/2010 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:42:13 Listener Record UPDATE CIC1
MQWMSYS A002

Listener name :
Description :

:

Control : (M=Manual, Q=Qmgr start/stop)
Transmission protocol : (T=TCP)
Port :
IP address. :
Backlog :

Listener status . . . :
Alteration date . . . :
Alteration time . . . :

Enter object name.
PF2=Return PF3=Quit PF4=Read PF5=Add PF6=Update PF9=List

PF10=Start PF11=Stop PF12=Delete

Listener definitions

Chapter 4. System operation 125

Backlog
The maximum number of concurrent connection requests that the listener
supports. The default value is 10.

Listener status
Read-only. This attribute shows the current status of the listener. It can be
RUNNING or STOPPED.

Alteration date
Read-only. This attribute shows the date on which the listener's attributes
were last altered.

Alteration time
Read-only. This attribute shows the time at which the listener's attributes
were last altered.

Function keys
The listener screen supports these functions keys:
PF2 Return to previous screen.
PF3 Quit master terminal transactions.
PF4 Display the listener object record.
PF5 Add a new listener object.
PF6 Update the current listener object.
PF9 List all defined listener objects.
PF10 Start the listener object.
PF11 Stop the listener object.
PF12 Delete the current listener object.

Press PF9 to list listeners.

On the Listener List panel, the fields are read-only, except for "S" which allows you
to select a particular object for processing:

S Press Enter, or enter any character next to an object to select it for
processing.

2010/12/11 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:44:56 Listener List CIC1
MQWMSYS A002
S LISTENER NAME CTL XMIT PORT STATUS

LISTENER.TCP Q T 1439 RUNNING

Select object or page up/down list
F2=Return PF3=Quit PF4=Read F7=Backward PF8=Forward PF9=List

Listener definitions

126 WebSphere MQ for z/VSE System Management Guide

LISTENER NAME
The name of the listener object.

CTL Indicates whether the listener is started:
M Manually.
Q When the queue manager starts, and stopped when the queue

manager is stopped.
S When the queue manager starts, but not stopped when the queue

manager is stopped.

XMIT Transmission protocol used by the listener. WebSphere MQ for z/VSE only
supports TCP.

PORT Port number on which the listener listens for connections.

STATUS
Indicates whether the listener is STOPPED or RUNNING.

Selecting a listener object displays the object's details. For example:

Service definitions
Service objects are a way of defining programs to be executed when a queue
manager starts or stops. The programs can be split into these types:

Servers
A server is a service object that has the parameter SERVTYPE specified as
SERVER. A server service object is the definition of a program that is
executed when a specified queue manager is started. Only one instance of
a server process can be executed concurrently. While running, the status of
a server process can be monitored using the MQSC command, DISPLAY
SVSTATUS. The status is RUNNING until a STOP SERVICE is issued.
WebSphere MQ for z/VSE does not attempt to check on the status of the
server task.

2010/12/11 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:50:52 Listener Record DISPLAY CIC1
MQWMSYS A002

Listener name : LISTENER.TCP
Description : AUTO CREATED BY QUEUE MANAGER...

:

Control : Q (M=Manual, Q=Qmgr start/stop)
Transmission protocol : T (T=TCP)
Port : 01439
IP address. :
Backlog : 0010

Listener status . . . : RUNNING
Alteration date . . . : 2010-05-26
Alteration time . . . : 10:38:24

Requested record displayed.
PF2=Return PF3=Quit PF4=Read PF5=Add PF6=Update PF9=List

PF10=Start PF11=Stop PF12=Delete

Listener definitions

Chapter 4. System operation 127

Typically, server service objects are definitions of programs such as dead
letter handlers or trigger monitors. However the programs that can be run
are not limited to those supplied with WebSphere MQ. Additionally, a
server service object can be defined to include a command that is run
when the specified queue manager is shutdown to end the program.

Commands
A command is a service object that has the parameter SERVTYPE specified
as COMMAND. A command service object is the definition of a program
that is executed when a specified queue manager is started or stopped.
Multiple instances of a command process can be executed concurrently.
Command service objects differ from server service objects in that once the
program is executed the queue manager does not monitor the program.
Typically, command service objects are definitions of programs that are
short-lived and perform a specific task such as starting one or more other
tasks.

Service objects can be created, modified, and deleted using the master terminal
transaction (MQMT), Programmable Command Format (PCF), or MQSeries
Command (MQSC) requests.

Using the Master terminal transaction (MQMT):
1. Select 1. Configuration from the Master Terminal Main Menu.
2. Select 1. Global System Definition from the Configuration Main Menu.
3. On the Global System Definition panel, press PF9 (Communications) to display

the Communications Settings panel.
4. Press PF11 (Services) to display the panel shown here:

On the Services screen, the fields are:

2010/12/11 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
08:03:43 Service Record UPDATE CIC1
MQWMSYS A002

Service name. :
Description :

:

Service type : (S=Server, C=Command)
Control : (M=Manual, Q=QMgr start/stop, S=QMgr start)
Start command :
Start args :

:
Stop command :
Stop args :

:

Service status. . . . :
Alteration date . . . :
Alteration time . . . :

Enter object name.
PF2=Return PF3=Quit PF4=Read PF5=Add PF6=Update PF9=List

PF10=Start PF11=Stop PF12=Delete

Service definitions

128 WebSphere MQ for z/VSE System Management Guide

Service name
The name of the service object. The name can be up to 32 characters, it
must be unique and it must conform to WMQ object naming requirements.

Description
Optional description of the purpose of the service. The description can be
up to 64 characters.

Service type
Indicates the type of service:
S Server. To enable only one instance of the service to run at a time.
C Command. To enable multiple instances of the service to run at a

time.

Control
Determines whether the service is started:
M Manually.
Q When the queue manager starts, and stopped when the queue

manager is stopped
S When the queue manager starts, but not stopped when the queue

manager is stopped

Start command
The name of a CICS transaction.

Start args
Data area to be passed to the CICS transaction by means of COMMAREA
when started.

Stop command
The name of a CICS transaction.

Stop args
Data area to be passed to the CICS transaction by means of COMMAREA
when stopped.

Service status
Read-only. This attribute shows the current status of the service. It can be
RUNNING or STOPPED. This only applies to SERVER type service.

Alteration date
Read-only. This attribute shows the date on which the service's attributes
were last altered.

Alteration time
Read-only. This attribute shows the time at which the service's attributes
were last altered.

Function keys
The Services screen supports these functions keys:
PF2 Return to previous screen.
PF3 Quit master terminal transactions.
PF4 Read and display the service object record.
PF5 Add a new service object.
PF6 Update the current service object.
PF9 List all defined service objects.
PF10 Start the current service object.
PF11 Stop the current service object.
PF12 Delete the current service object.

Service definitions

Chapter 4. System operation 129

List all service objects
From the Service screen, PF9 lists all defined service objects:

On the Services List panel, the fields are read-only except for "S", which allows you
to select a particular object for processing:

S Press Enter or enter any character next to an object to select it for
processing.

SERVICE NAME
The name of the service object.

CONTROL
Indicates whether the service is started:
M Manually.
Q When the queue manager starts, and stopped when the queue

manager is stopped.
S When the queue manager starts, but not stopped when the queue

manager is stopped.

TYPE Service type. Value can be:
S Server. Enabled for only one instance of the service to run at a

time.
C Command. Enabled for multiple instances of the service to run at a

time.

STATUS
Indicates whether the service is STOPPED or RUNNING only for service
type of SERVER.

Start service object
From the Services panel, PF10 allows you to start the selected service. The
behaviour of PF10 is dependant on the service type. For a service type of Server, if
the service is not running, the service is started. If the service is running, the start
request is ignored. For a service type of Command, PF10 starts the service.

2010/12/11 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
08:06:10 Services List CIC1
MQWMSYS A002
S SERVICE NAME CONTROL TYPE STATUS

BATCH.INTERFACE QMGR SERVER RUNNING
BATCH.INTERFACE.START MANUAL COMMAND
BATCH.INTERFACE.STOP MANUAL COMMAND

Select object or page up/down list
F2=Return PF3=Quit PF4=Read F7=Backward PF8=Forward PF9=List

Service definitions

130 WebSphere MQ for z/VSE System Management Guide

Stop service object
From the Services screen, PF11 allows you to stop the selected service. The
behavior of PF11 is dependant on the service type. For a service type of Server, if
the service is running, the service is stopped. If the service is not running, the stop
request is ignored. For a service type of Command, PF11 invokes the Command
using the Stop args.

Namelist definitions
Selecting 5 on the Configuration menu allows you to define, modify and delete
namelists.

Figure 49 shows the screen that is displayed when you select 5 from the
Configuration menu.

On this screen, the data entry fields are:

Object name
The name of the namelist object. Namelist names can be 1 to 48 characters,
and must conform to the MQ object naming standards described in section
“Object names” on page 3.

Description
Namelist description. This field is optional, and allows up to a 64-character
description.

Names
Namelist names. WebSphere MQ for z/VSE allows a namelist to specify up
to 256 names. Blank names are ignored. The PF7 and PF8 function keys
allows you to page back and forward, respectively, through the names.

Create a namelist
Selecting option 5 on the Configuration menu also allows you to create namelists.

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:06:59 Namelist Record UPDATE CIC1
MQWMNAM A001

Object name:
Description:

Name: (1..12)
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
...more

Enter Namelist Name.
F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF7=Back PF8=Fwd PF9=List PF12=Del

Figure 49. Namelists Definitions

Service definitions

Chapter 4. System operation 131

To add a new namelist, select option 5 on the Configuration menu to display the
Namelist Definition screen. Enter the new namelist object name, an optional
description, and a list of names, then press PF5 (ADD).

The screen shown in Figure 50is displayed.

Note that if your new namelist has more than 12 names, you must ADD the initial
1 to 12 names first, then modify the namelist to add any additional names.

Displaying existing namelists
From the Namelist definition screen you can use the PF9, List, function key to
display a list of all existing namelist objects.

PF9 displays the following screen:

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:19:10 Namelist Record ADD CIC1
MQWMNAM A001

Object name: MY.NAMELIST
Description: My namelist description

Name: (1..12)
> MY.NAME.1 <
> MY.NAME.2 <
> MY.NAME.3 <
> <
> <
> <
> <
> <
> <
> <
> <
> <
...more

Namelist record added OK
F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF7=Back PF8=Fwd PF9=List PF12=Del

Figure 50. Creating a namelist

namelist definitions

132 WebSphere MQ for z/VSE System Management Guide

On this screen you can scroll through the namelist object names using the PF7 and
PF8 function keys.

The left-hand column allows you to select a particular namelist name. Selecting a
namelist name, and pressing Enter, returns to the Namelist definition screen with
that namelist's details displayed.

Modifying and deleting namelists
You can use the PF9, List, function key to select a particular namelist object, or you
can enter the name of the namelist in the object name field. Pressing Enter displays
the attributes of the namelist specified in the object name field.

To modify a namelist, change the relevant fields and press PF6, UPDATE. You can
page through the namelist names using PF7 and PF8. Erasing or blanking out a
name results in that name being removed from the list.

To delete a namelist, use PF12, DELETE. This prompts for confirmation before
deleting the namelist object. To confirm, press PF12 again.

Global system definition display
Selecting 6 on the main menu allows you to view the attributes defined for the
local queue manager, and all system-wide parameters, through the screen shown in
Figure 52 on page 134, which is display only:

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:28:52 Namelist List CIC1
MQWMNAM A001
S NAMELIST COUNT

MY.NAMELIST 3
NAME.LIST.WITHOUT.NAMES 0
SYSTEM.DEFAULT.NAMELIST 0
TEST.NAME1 4
TEST.NAME2 6
TEST.NAME256 256

ENTER ’S’ to select Namelist
F2=Return PF3=Quit PF4=Read PF7=Backward PF8=Forward

Figure 51. Listing namelists

namelist definitions

Chapter 4. System operation 133

To return to the configuration main menu, press the PF2 key. To show display-only
screens for system-wide communications settings, log and trace settings, event
settings or API exit settings, press PF9 (Com), PF10 (Log), PF11 (Evt), or PF12 (Ext)
respectively.

Queue definition display
Selecting 7 on the main menu allows you to view existing queue definitions.

Note: This function allows you to see the queue definition, not the current queue
status. To see the current queue information, see “Monitor queues” on page 145.

This operation is identical to the modify queue and delete queue operations (as
described in “Modifying and deleting queue definitions” on page 110), except that
the maintenance function keys PF5 (Add), PF6 (Update), and PF12 (Delete), are not
available.

Channel definition display
Selecting 8 on the main menu allows you to view existing channel definitions.

Note: This function allows you to see the channel definition, not the current
channel status. To see the current channel information, see “Monitor channel” on
page 147.

This operation is identical to the modify channel and delete channel operations (as
described in “Modifying and deleting channel definitions” on page 115), except
that the maintenance function keys PF6 (Update) and PF12 (Delete), are not
available.

Code page definition display
Selecting 9 on the Configuration menu allows you to view existing code page
defaults and user-defined code page definitions.

2013/01/25 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
05:46:06 Global System Definition CIC1
MQWMSYS Queue Manager Information A002
Queue Manager: PTHVSEC
Description Line 1.: ZVSE 4.3 SYSTEM ON PTHVSEC
Description Line 2.: ...

System Values
Maximum Connection Handles.: 00000100 System Wait Interval : 00000030
Maximum Concurrent Queues .: 00000100 Max. Recovery Tasks : 0000
Allow TDQ Write on Errors : Y CSMT Local Code Page . . : 01047
Allow Internal Dump . . . : Y Subsystem id : MQV1

Channel Auth Enabled : Y
Queue Maximum Values

Maximum Q Depth: 00010000 Maximum Global Locks.: 00001000
Maximum Message Size. . . .: 00409600 Maximum Local Locks .: 00001000
Maximum Single Q Access . .: 00000100 Max Properties Length: 00004094

Global QUEUE /File Names
Configuration File. : MQFCNFG
LOG Queue Name. . . : SYSTEM.LOG
Dead Letter Name. . : SYSTEM.DEAD.LETTER.QUEUE
Monitor Queue Name. : SYSTEM.MONITOR
Requested record displayed.
PF2=Return PF3=Quit PF4/ENTER=Refresh PF6=Update

PF9=Communications PF10=Log PF11=Events PF12=Exits

Figure 52. Global system definition display

Global system definition display

134 WebSphere MQ for z/VSE System Management Guide

This operation is identical to the modify and delete code page operations, as
available using option 4 of the Configuration menu, except that the maintenance
function keys PF6 (Update) and PF12 (Delete) are not available.

Operations functions
Selecting option 2 (Operations) from the master terminal main menu (see Figure 24
on page 80) displays the following screen:

On this screen, selections correspond to available operator control functions.

Start/Stop queue

Selecting 1 on the operations menu allows you to start or stop processing for a
queue.

This differs from setting the queue’s Get Enabled or Put Enabled option to “No” in
that the Start and Stop functions apply universally to all processes attempting to
access a local queue.

The Get Enabled and Put Enabled functions can be selectively applied to aliases
and remote queue definitions.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:02:40 *** Operations Main Menu *** CIC1
MQWMOPR A002

SYSTEM IS ACTIVE

1. Start / Stop Queue(s)

2. Open / Close Channel(s)

3. Reset Message Sequence Number

4. Initialization / Shutdown of System

5. Maintain Queue Message Records

Option:

5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.
Enter=Select PF2=Return PF3=Quit

Figure 53. Operations main menu

Code page definition display

Chapter 4. System operation 135

On the Start / Stop Queue screen shown in Figure 54, the fields are:

System Information

System Status
Reflects the status of the system. This is normally ACTIVE, unless the
system has not been initialized, or has been shut down. When this occurs,
the field reads SYSTEM IS SHUTDOWN.

Queue Status
Reflects the status of the queuing system. This is normally ACTIVE, unless
the system has not yet been initialized or all the queues have been
stopped. When this occurs, the field reads QUEUING SYSTEM IS
STOPPED.

Channel Status
Reflects the status of the channels. This is normally ACTIVE, unless the
system has not yet been initialized or all the channels have been closed.
When this occurs, the field reads CHANNEL SYSTEM IS CLOSED.

Monitor Status
Reflects the status of the system monitor.

Single Queue Request

Queue Name
The name of a specific queue to start or stop

Function
The function to be performed, as follows:

S is to start:
v A stopped local queue.
v The associated trigger mechanism.
v Receiving messages if the channel is open.

X is to stop a local queue and make it unavailable.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:07:54 Start / Stop Queue CIC1
MQWMSS A002

System Information
System Status : SYSTEM IS ACTIVE
Queue Status : Queuing System is active.
Channel Status : Channel System is active.
Monitor Status : Monitor is not active.

Single Queue Request
Queue Name :
Function : S=Start, X=Stop, R=Refresh from Config
Mode : I=Inbound, O=Outbound, B=Both

INBOUND Status :
OUTBOUND Status :

Queuing System Request
Function : S=Start, X=Stop, or M=Monitor

Please enter a Queue name.
Enter=Display PF2=Return PF3=Exit PF6=Update

Figure 54. Start / Stop queue control screen

Operations functions

136 WebSphere MQ for z/VSE System Management Guide

R is to refresh the run-time information for this queue from the
configuration file, which was updated either by checkpoint requests or
MQMT queue configuration. The configuration file (MQFCNFG) contains
definitions of the queue manager, channels and queues.

Note: WebSphere MQ configuration is dynamic and should not need to be
refreshed during normal operation. If changes have been made to a queue
and these changes do not appear to have been recognized by the queue
manager, use the (R)efresh option to manually refresh the queue's
definition.

Mode The queue process to be operated on, as indicated on screen.

INBOUND Status
Reflects the status of the specified queue. This is normally ACTIVE or
IDLE unless the queue inbound has been stopped. If the queue is stopped,
DISABLED is also displayed.

OUTBOUND Status
Reflects the status of the specified queue. This is normally ACTIVE or
IDLE unless the queue outbound has been stopped. If the queue is
stopped, DISABLED is also displayed.

Queuing System Request

Function
The function to be performed, as follows:

S is to start the system queue manager without affecting system resources.

X is to stop the system queue manager without affecting system resources.

Note: WebSphere MQ configuration is dynamic and should not need to be
refreshed during normal operation. If changes have been made to a queue
and these changes do not appear to have been recognized by the queue
manager, use the (R)efresh option to manually refresh the queue's
definition.

M toggles the monitor flag. This flag is used to log application requests
and their results to the system monitor queue.

Notes:

1. Only local queues can be stopped or started. In order to stop or start a queue
that is not local, the queue definition must be updated in the Put-Enabled or
Get-Enabled fields.

2. When a local queue is started, any associated triggers will also be started, if the
queue depth reflects that messages are present.
This does not happen when a “Queuing System Request” function is
performed. Additionally, any queues that were stopped before the “Queuing
System Request” stop function was performed, remain stopped when the
corresponding start function is performed.
Use the Monitor Queue function to check which local queues are stopped.

3. If the queue definition specifies a trigger and a sender channel, then starting a
queue triggers the sender program to activate the channel and transmit
messages.

Operations functions

Chapter 4. System operation 137

Open / Close channel

Selecting 2 on the operations main menu (see Figure 53 on page 135) allows you to
open or close communications on an existing channel.

Note: Opening or closing a channel is not the same as starting or stopping the
MCA process. See “Communications processes” on page 164 for further
information.

Figure 55 shows the first screen to be displayed:

On this screen, the fields are:

System Information

System Status
Reflects the status of the system. This is normally ACTIVE, unless the
system has not been initialized, or has been shut down. When this occurs,
the field reads SYSTEM IS SHUTDOWN.

Queue Status
Reflects the status of the queuing system. This is normally ACTIVE, unless
the system has not yet been initialized or all the queues have been
stopped. When this occurs, the field reads QUEUING SYSTEM IS
STOPPED.

Channel System
Reflects the status of the channels. This is normally ACTIVE, unless the
system has not yet been initialized or all the channels have been closed.
When this occurs, the field reads CHANNEL SYSTEM IS CLOSED.

Single Channel Request

Channel Name
The name of a specific channel to start or stop

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:21:12 Open / Close Channel CIC1
MQWMSC A002

System Information
System Status : SYSTEM IS ACTIVE
Queue Status : Queuing System is active.
Channel System : Channel System is active.

Single Channel Request
Channel Name :

Function : O=Open , C=Close

Status :

Channel System Request
Function : O=Open , C=Close

Enter required information.
Enter=Refresh PF2=Return PF3=Exit PF6=Update

Figure 55. Open / Close Channel

Operations functions

138 WebSphere MQ for z/VSE System Management Guide

Function
The function to be performed:
v O is to open a closed channel.
v C is to close an open channel.

Status Reflects the status of the specified channel. The status can be one of the
following:

INACTIVE
Channel is enabled and ready for work.

STARTING
A request has been made to start the channel but the channel has
not yet begun processing. A channel is in this state if it is waiting
to become active.

BINDING
Channel is performing channel negotiation and is not yet ready to
transfer messages.

RUNNING
The channel is either transferring messages at this moment, or is
waiting for messages to arrive on the transmission queue so that
they can be transferred.

STOPPING
Channel is stopping or a close request has been received.

STOPPED
The channel is disabled, and inactive. A channel in this state can be
restarted only by issuing the START CHANNEL command, or
using MQMT option 2.2.

Channel System Request

Function
This either opens or closes the channel system.

Note: Opening a channel does not cause a trigger to activate. However, starting
the channel’s transmission queue does activate a trigger; see Note 3 on page 137.

Reset message sequence number

Selecting 3 on the operations main menu (see Figure 53 on page 135) allows you to
reset the message sequence numbers on an existing channel by displaying the
screen shown in Figure 56 on page 140:

Operations functions

Chapter 4. System operation 139

On this screen, the fields are:

System Information

System Status
Reflects the status of the system. This is normally ACTIVE, unless the
system has not been initialized, or has been shut down. When this occurs,
the field reads SYSTEM IS SHUTDOWN.

Queue Status
Reflects the status of the queuing system. This is normally ACTIVE, unless
the system has not yet been initialized or all the queues have been
stopped. When this occurs, the field reads QUEUING SYSTEM IS
STOPPED.

Channel Status
Reflects the status of the channels. This is normally ACTIVE, unless the
system has not yet been initialized or all the channels have been closed.
When this occurs, the field reads CHANNEL SYSTEM IS CLOSED.

Reset Channel Info

Channel Name
The name of a specific channel.

Status Reflects the status of the specified channel. The status can be one of the
following:

INACTIVE
Channel is enabled and ready for work.

STARTING
A request has been made to start the channel but the channel has
not yet begun processing. A channel is in this state if it is waiting
to become active.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:26:47 Reset Channel Message Sequence CIC1
MQWMMSN A002

System Information
System Status : SYSTEM IS ACTIVE
Queue Status : QUEUING SYSTEM IS ACTIVE
Channel Status : CHANNEL SYSTEM IS ACTIVE

Reset Channel Info
Channel Name : MQTS.TO.MQ23

Status : INACTIVE

Current Next-MSN : 000000001
New Next-MSN :

Information displayed.
Enter=Refresh PF2=Return PF3=Exit PF6=Update

Figure 56. Reset channel message sequence

Operations functions

140 WebSphere MQ for z/VSE System Management Guide

BINDING
Channel is performing channel negotiation and is not yet ready to
transfer messages.

RUNNING
The channel is either transferring messages at this moment, or is
waiting for messages to arrive on the transmission queue so that
they can be transferred.

STOPPING
Channel is stopping or a close request has been received.

STOPPED
The channel is disabled, and inactive. A channel in this state can be
restarted only by issuing the START CHANNEL command, or
using MQMT option 2.2.

Current Next-MSN
Displays the message sequence number to be used next.

New Next-MSN
Operator-entered value for message sequence number to be used next.

Note: In order for a channel message sequence number to be reset, the channel
must be stopped.

Initialization of system

Selecting 4 on the operations menu allows you to initialize the queuing system by
displaying the screen shown in Figure 57.

On this screen, the fields are:

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:29:47 Initialization / Shutdown of System CIC1
MQWMSI A002

System Information
System Status : SYSTEM IS ACTIVE
Queue Status : QUEUING SYSTEM IS ACTIVE
Channel Status : CHANNEL SYSTEM IS ACTIVE

Function : I=Initialize, X=Shutdown

Returned Results :

System initialized on 12/23/2008 at 10:49:40

Please enter one of the options listed.

Enter=Refresh PF2=Return PF3=Exit PF6=Update

Figure 57. Initialization of system

Operations functions

Chapter 4. System operation 141

System Information

System Status
Reflects the status of the system. This is normally ACTIVE, unless the
system has not been initialized, or has been shut down. When this occurs,
the field reads SYSTEM IS SHUTDOWN.

Queue Status
Reflects the status of the queuing system. This is normally ACTIVE, unless
the system has not yet been initialized or all the queues have been
stopped. When this occurs, the field reads QUEUING SYSTEM IS
STOPPED.

Channel Status
Reflects the status of the channels. This is normally ACTIVE, unless the
system has not yet been initialized or all the channels have been closed.
When this occurs, the field reads CHANNEL SYSTEM IS CLOSED.

Function
The function to be performed:
v I is to initialize the system. If the system is initialized, the queue

manager is started and all channels and queues opened. Any trigger
associated with queues just initialized is also activated if the queue
depth is nonzero.

v X is to shut down the system. If the system is shut down, the queue
manager is stopped and all the channels closed.

Returned Results
Pressing PF6 with an Initialize function (I) on this screen causes the static
system configuration files to be loaded into the CICS for z/VSE dynamic
storage. Any error messages or progress messages are displayed in this
field.

Note: All outstanding queue maintenance requests must have completed before
you perform an initialize or shutdown operation.

Queue maintenance

Selecting 5 on the operations menu allows you either to reset deleted records or
physically delete records, by displaying the screen shown in Figure 58 on page 143.

Operations functions

142 WebSphere MQ for z/VSE System Management Guide

On this screen, the fields are:

System Information

System Status
Reflects the status of the system. This is normally ACTIVE, unless the
system has not been initialized, or has been shut down. When this occurs,
the field reads SYSTEM IS SHUTDOWN.

Queue Status
Reflects the status of the queuing system. This is normally ACTIVE, unless
the system has not yet been initialized or all the queues have been
stopped. When this occurs, the field reads QUEUING SYSTEM IS
STOPPED.

Channel System
Reflects the status of the channels. This is normally ACTIVE, unless the
system has not yet been initialized or all the channels have been closed.
When this occurs, the field reads CHANNEL SYSTEM IS CLOSED.

Queue Information

Queue Name
The name of the local queue on which the function is to be performed.

Function
The function to be performed:
v D is to delete messages that have been logically deleted up to a specified

“written” exclusive date and time. For example, given the date and time
of 980227230000, specifying “D” deletes all records with a written time
prior to 11:00:00 p.m.

Note: Specifying D does not actually reclaim VSAM space, because
record keys are always created in ascending sequence. You are strongly

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:31:20 Maintain Queue Message Records CIC1
MQWMDEL A002

System Information
System Status : System is active.
Queue Status : Queuing system is active.
Channel System : Channel system is active.

Queue Information
Queue Name :
Function : A=Delete all

D=Delete to date/time exclusive
R=Reset from date/time inclusive

Date (yyyymmdd) :
Time (hhmmss) :

Results of Request
Number Processed :
Number of Bypass :
New Last Read QSN:
Process Time :

Please enter a Queue name.
Enter=Refresh PF2=Return PF3=Exit PF6=Update

PF12=Retry

Figure 58. Maintain Queue Message Records

Operations functions

Chapter 4. System operation 143

recommended to read “VSAM file maintenance” on page 183 for
information regarding the Delete All function in relation to VSAM files.

v A is to delete all records (logically deleted, or written) and reclaim
VSAM space.

v R is to reset all logically deleted records to written status from a
specified “deleted” inclusive date and time. For example, given the date
and time of 980227230000, specifying “R” resets all delivered messages
with delivery time after 10:59:59 p.m.

Date The last date up to which the selected function is to be performed, if
applicable.

Time The last time up to which the selected function is to be performed, if
applicable.

Queue Information

Number Processed
Number of messages processed

Number of Bypass
Number of messages bypassed

New Last Read QSN
Last read queue sequence number

Process Time
Time to process the request

You use the PF6 (Update) function key to activate the requested function. The
function itself is performed by another task, which signals the screen when it is
complete. To display the signal, press the Enter key.

The PF12 (Retry) function key is used only if the delete task has ended before
finishing the current request, and acts as a new PF6 request.

Note:

1. A Delete or Reset Messages by Date and Time performs the requested function
up to the selected date and time, but does not include records with that date
and time.

2. If the queue is examined with the browse function, the put time of the last
message to be reset should be the value for date and time.

3. The Delete All function purges all records, which include both logically deleted
and nondeleted messages.

Once a queue maintenance task is in progress, the task flags the Queue
Information entry and logically prevents any other task from accessing this queue.
Any attempt to open this queue is rejected with the following message:
Queue has xxxx tasks attached. These must be purged.

The only action available at this point is to wait and try again later.

Monitor functions
Selecting option 3 (Monitoring) from the master terminal main menu (see Figure 24
on page 80) displays the screen shown in Figure 59 on page 145.

Operations functions

144 WebSphere MQ for z/VSE System Management Guide

Monitor queues
Selecting 1 on the monitor main menu allows you to monitor the current status of
all existing local queues, using the screen shown in Figure 60.

This screen displays the current status of all local queues. The displayed fields are:

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:34:06 *** Monitor Main Menu *** CIC1
MQWMMON A002

SYSTEM IS ACTIVE

1. Monitor Queue

2. Monitor Channel

Option:

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Enter=Select PF2=Return PF3=Quit

Figure 59. Monitor Main Menu

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:35:57 Monitor Queues CIC1
MQWMMOQ A002

QUEUING SYSTEM IS ACTIVE
S QUEUE FILE T INBOUND OUTBOUND LR QDepth

ANYQ MQFI001 N STOPPED STOPPED 6 10
SYSTEM.ADMIN.COMMAND.QUEUE MQFI003 N IDLE ACTIVE 5 0
SYSTEM.DEAD.LETTER.QUEUE MQFERR N IDLE IDLE 0 0
SYSTEM.LOG MQFLOG N IDLE IDLE 0 134
SYSTEM.MONITOR MQFMON N IDLE IDLE 0 0
VSE1.AIX1.XQ1 MQFO002 N IDLE IDLE 4 20
VSE1.NT1.XQ1 MQFO002 N IDLE IDLE 0 2
WWW.REQ.TYPE7 MQFI003 Y IDLE IDLE 3 0

Information displayed.
Enter=Refresh PF2=Return PF3=Exit PF7=Back PF8=Forward

PF9=All Select or PF10=Detail

Figure 60. Monitor queues

Monitor functions

Chapter 4. System operation 145

Queue
Name of the queue.

File CICS FCT DDNAME of a local queue definition.
T Queue type.

N Normal local queue.
Y Transmission local queue.

When PF9 (All) option is selected, additional type values may be
displayed. They are:
M Model queue.
Q Manager alias.
A Queue alias.
X Remote queue definition.

Inbound
Status of the inbound process.
ACTIVE

One or more users have the queue open for MQPUT operations.
IDLE No user has the queue open for MQPUT operations.
STOPPED

Queue has been stopped.
MAX At maximum QDepth.
FULL No space.
RECOVERY

For dual queuing.
Outbound

Status of the outbound process.
ACTIVE

One or more users have the queue open for MQGET operations.
IDLE No user has the queue open for MQGET operations.
STOPPED

Queue has been stopped.
RECOVERY

For dual queuing.
LR Last Read: relative record number of the last record on the queue that has

been read and processed.

Note: WebSphere MQ messages are logically, rather than physically,
deleted from the queue file. LR tells you which physical record is prior to
the first active record.

QDepth
Estimated queue depth. The approximate number of messages currently on
the queue, remaining to be processed.

The QDepth shows the current number of unread messages on a queue,
including uncommitted messages being put to the queue. It does not show
uncommitted messages currently being retrieved from the queue.

This situation exists because WebSphere MQ for z/VSE updates its internal
counters when it detects that an application has syncpointed work. This is
only possible on a subsequent MQI call following a SYNCPOINT call.
Consequently, there is a brief window when work is actually committed
but WebSphere MQ internal counters are not yet updated. This also means
that the accuracy of the QDepth is dependant on application design. For
more information, see “Syncpoint considerations” on page 943.

Remember also that a QDepth of 0 does not necessarily mean the VSAM
file that hosts the queue is empty. Messages that have been retrieved from

Monitor functions

146 WebSphere MQ for z/VSE System Management Guide

the queue using MQGET are actually retained in the queue with a logically
deleted status. Such processed messages can only be removed with one of
the various reorganization processes.

Note:

1. Pressing the PF9 (All) function key displays an entire list of all queues (local,
model, remote, and alias) together with their associated reference.
If you press this key again, the display lists local queues only.

2. Pressing the PF10 (Detail) function key displays detailed information for this
local queue entry.

Monitor queues - detail
An individual queue can be monitored in more detail by placing the cursor
anywhere on the line displaying the queue name and pressing PF10, or by placing
any character (other than '/') in the S(election) field at the beginning of the line
and pressing the Enter key. Either approach activates the Monitor Queues Detail
screen as shown in Figure 61.

Monitor channel
Selecting 2 on the monitor main menu (shown in Figure 59 on page 145) allows
you to monitor the current status of existing local communications channels, using
the screen shown in Figure 62 on page 148.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:41:05 Monitor Queues CIC1
MQWMMOQ A002

QUEUING SYSTEM IS ACTIVE
DETAIL QUEUE INFORMATION

VSE1.AIX1.XQ1
INBOUND: STATUS I ENABLED Y OPEN Q 0

OUTBOUND: STATUS I ENABLED Y OPEN Q 0

BOTH: FIQ 5 LIQ 24 GETS 0 QDEPTH 20
TRIGGER: MAX 1 USED 0 TRAN PROG. MQPSEND

CID VSE1.TO.AIX1

Information displayed.
Enter=Refresh PF2=Return PF3=Exit PF10=List

Figure 61. Monitor Queues - detail

Monitor functions

Chapter 4. System operation 147

This screen displays the current status of local channels.

Channel
Name of the channel.

Type Sender (SEND), Server (SERV), Receiver (RECV), Requester (RQST), or
Sevrconn (CLNT)

MSN Last channel message sequence number received or sent.

QSN Queue message sequence number, of the queue name displayed in the
Queue field.

STATUS
Reflects the status of the specified channel. The status can be one of the
following:

INACTIVE
Channel is enabled and ready for work.

STARTING
A request has been made to start the channel but the channel has
not yet begun processing. A channel is in this state if it is waiting
to become active.

BINDING
Channel is performing channel negotiation and is not yet ready to
transfer messages.

RUNNING
The channel is either transferring messages at this moment, or is
waiting for messages to arrive on the transmission queue so that
they can be transferred.

STOPPING
Channel is stopping or a close request has been received.

01/13/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
13:42:57 Monitor Channels CIC1
MQWMMOC A000

CHANNEL SYSTEM IS ACTIVE
S CHANNEL TYPE MSN QSN STATUS

TEST.MQPUTIL CLNT 0 0 STOPPED
VSE7.TO.VSE8 RECV 43 48 INACTIVE
VSE8.TO.VSE7 SEND 139 145 INACTIVE
VSE8.TO.WIN1 SEND 12 15 INACTIVE
WIN1.CLI.VSE8 CLNT 0 0 INACTIVE
WIN1.TO.VSE7 RECV 0 0 INACTIVE
WIN1.TO.VSE8 RECV 9 467 INACTIVE

Information displayed.
Enter=Refresh PF2=Return PF3=Exit
PF7=Scroll Back PF8=Scroll Forward Select or PF10=Detail

Figure 62. Monitor channel definitions

Monitor functions

148 WebSphere MQ for z/VSE System Management Guide

STOPPED
The channel is disabled, and inactive. A channel in this state can be
restarted only by issuing the START CHANNEL command, or
using MQMT option 2.2.

Client (or SVRCONN) channels are a special case. A client channel can
have one of the following states:

INACTIVE
Channel is enabled and ready for work.

RUNNING
The channel is currently in use by one or more clients.

STOPPED
The channel is not in use, and is disabled.

Monitor channel - detail
Pressing PF10 (Detail) displays detailed information for a specific channel shown
in Figure 63.

This screen displays the channel name, the channel type, and the name of the
queue it accesses. The MSN, QSN and time stamp of the last commitment for the
BEFORE and AFTER COMMIT fields are also shown.

Message monitoring
For details of message monitoring refer to the WebSphere MQ Monitoring
WebSphere MQ manual.

Use is made of the WebSphere MQ display route application, dspmqrte, that can
be used to configure, generate and put a trace-route message into a queue manager
network. Dspmqrte cannot be issued on queue managers before WebSphere MQ

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:48:59 Monitor Channels CIC1
MQWMMOC A002

CHANNEL SYSTEM IS ACTIVE
DETAIL CHANNEL INFORMATION

MQTS.TO.MQ23
COMMIT MSN QSN DATE/TIME

Sender BEFORE 0 0 20021126182613

AFTER 2 3 20021126182613
MQTS.MQ23.XQ1

Information displayed.
Enter=Refresh PF2=Return PF3=Exit

PF10=List

Figure 63. Monitor channel definitions - detail

Monitor functions

Chapter 4. System operation 149

Version 6.0 or on WebSphere MQ for z/VSE. If the first queue manager that the
trace route record is put is WebSphere MQ for z/VSE then the the client option -c
of dspmqrte has to be used.

Note:

1. If a trace route message is received on MQSeries for VSE or WebSphere MQ for
z/VSE 3.0.0 without the PTF for PM29937, then the put of the message to the
queue is rejected because the MQRO_REPORT report option is not supported.

2. The WebSphere MQ for z/VSE sender channel used to send the activity
messages to the required queue manager should be defined with a "Get retry
delay (secs)" of 10.

Example:

Say you have a network with these 3 queue managers:
v QM1 (WebSphere MQ for z/VSE)
v QM2 (WebSphere MQ for Windows)
v QM3 (WebSphere MQ for z/OS)

To put a trace-route message to QM1, you must perform these steps:
1. Start a command prompt window in the PC running WebSphere MQ for

Windows.
2. Set the MQSERVER environment variable with a Server-connection channel

defined on the WebSphere MQ for z/VSE server, the constant "TCP", the IPV4
address of the z/VSE system, and the server's listener port number:
SET MQSERVER=SYSTEM.AUTO.SVRCONN/TCP/1.2.3.4(1414)

3. Set the MQCCSID environment variable:
SET MQCCSID=819

4. Issue the dspmqrte command. For example:
dspmqrte -c -m QM1 -q Q.ON.QM3.VIA.QM2 -xs 10 -rq Q.ON.QM2
-rqm QM2 -d yes -v outline -w 10

In the example shown, these options are specified:
-c Request use of client connection to the channel specified in

MQSERVER.
-m Specifies the queue manager to which the client connects.
-q Specifies the queue where the trace-route message is to be put. This is a

remote queue, so the message is forwarded to another queue manager.
-xs Trace route message expiry. Set to 10 seconds to give time for message

to proceed through the network.
-rq Reply queue where the activity messages are to be put.
-rqm Queue manager where reply queue resides.
-d Trace message delivery option.
-v Display output option. outline displays the application name, type of

each operation, and operation-specific parameters.
-w Wait 10 seconds for activity messages to arrive on reply queue.

Controlling queue managers for activity recording
To control whether queue managers are enabled or disabled for activity recording,
use the queue manager attribute, ACTIVREC. You can change this by using:
v The MQSC command, ALTER QMGR, specifying the parameter ACTIVREC to

change the value of the queue manager attribute.
v The PCF Change Queue Manager (MQCMD_CHANGE_Q_MGR) command with

the parameter identifier, MQIA_ACTIVITY_RECORDING.

Message monitoring

150 WebSphere MQ for z/VSE System Management Guide

v The administrator panel Global System Definition Log and Trace Settings. See
Figure 64.

Controlling queue managers for trace-route messaging
To control whether queue managers are enabled or disabled for trace-route
messaging, use the queue manager attribute, ROUTEREC. You can change this by
using:
v The MQSC command, ALTER QMGR, specifying the parameter ROUTEREC to

change the value of the queue manager attribute.
v The PCF Change Queue Manager (MQCMD_CHANGE_Q_MGR) command with

the parameter identifier, MQIA_TRACE_ROUTE_RECORDING.
v The administrator panel Global System Definition Log and Trace Settings. See

Figure 64.

Valid values for recording settings are:

Activity

M Activity reports are generated and sent to the reply queue specified
by the originator in the message causing the report. This is the
queue manager's initial default value.

Q Activity reports are generated and sent to the local
SYSTEM.ADMIN.ACTIVITY.QUEUE.

D Activity reports are not generated.

Trace Route

M Trace-route information is recorded and sent to the destination
specified by the originator of the message causing the trace route
record. This is the queue manager's initial default value.

Q Trace-route information is recorded and sent to
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

2011/01/17 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
05:11:48 Global System Definition CIC1
MQWMSYS Log and Trace Settings A004

Log Settings Q C Accounting monitoring
Informational . . . : Y N MQI accounting : N
Warning : Y N Queue accounting : N
Error : Y N Acc. Conn override . . . : N
Critical : Y N Accounting interval . . : 001800
Communication . . . : Y N Statistics monitoring
Reorganization . . : Y N MQI statistics : N
System : Y N Queue statistics : N

Channel statistics . . . : N
Trace Settings Statistics interval . . : 001800

MQI calls : Y Online monitoring
Communication : Y Queue monitoring : N
Reorganization . . . : Y Channel monitoring . . . : N
Data conversion . . . : Y Recording
System : Y Activity : M

Trace Route : M

Requested record displayed.
PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 64. Altering recording activity and trace route option

Message monitoring

Chapter 4. System operation 151

D Trace-route information is not recorded.

Browse function
Selecting option 4 (Browse Queue Records) from the master terminal main menu
(see Figure 24 on page 80) displays the screen shown in Figure 65.

This screen shows the content of the message for the specified queue sequence
number (QSN) of the chosen object name (queue name). Record status is shown as
Written or Deleted along with the associated time stamps.

To browse the queue records, enter the local object name and the QSN of the
message of interest. The message on the queue appears in the blank area of the
screen, and the message can be manipulated using the function (PF) keys. If the
word "ASCII" appears to the right above the scale line, this means the message
was ASCII but has been converted to EBCDIC for display purposes. The browse
function can only do this if the message's descriptor format is string (MQSTR).

Pressing the PF9 (Hex/Char) key displays the message in hexadecimal or EBCDIC
text code.

12/27/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:05:20 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A001

Object Name: ANYQ
QSN Number : 00000001 LR- 6, LW- 16, DD-MQFI001

Queue Data Record
Record Status : Deleted PUT date/time : 20061013093221
Message Size : 00000200 GET date/time : 20061013094517
Offset+....!....+....!....+....!....+....!....+....!....+....!....+....!
00000 THIS IS A MESSAGE TEXT
00070
00140

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF7=Up PF8=Down PF9=Hex PF10=Hdr PF11=MD

Figure 65. Browse Queue Records

Message monitoring

152 WebSphere MQ for z/VSE System Management Guide

The PF10 (Txt/Head) key presents detailed WebSphere MQ information for the
selected record, and includes channel information if the queue is a transmission
queue.

Note: The "Receiver" and "MSN" details are only displayed if the message was
written to the queue by the MQ Receiver MCA process. The CICS task is the task
that last updated the VSAM record. Consequently, if the message status is

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:58:52 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A000

Object Name: Q6.REORG
QSN Number : 00000001 LR- 0, LW- 4, DD-MQFI003

Queue Data Record
Record Status : Written. PUT date/time : 20061208124213
Message Size : 00000200 GET date/time : ASCII
Offset+....|....+....|....+....|....+....|....+....|....+....|....+....|
00000 TEST MSG WITH MQMD VERSION 1 (with ASCII codepage)

5455245425454245442545544423227676245444266667666222222222222222222222
45340D37079480D1D4065239FE0108794801339903F450175900000000000000000000

00070
22
00

00140 <END>
22234443
000C5E4E

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF7=Up PF8=Down PF9=Char PF10=Hdr PF11=MD

Figure 66. Browse Queue Records - Hex display

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
11:04:50 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A000

Object Name: Q6.REORG
QSN Number : 00000001 LR- 0, LW- 4, DD-MQFI003

Internal Header Information
Original Q - MY.ALIAS.Q6.REORG
Resolved Q - Q6.REORG
Resolved QM- TS212.QM.PTHVSEA
Reply Q -

CICS task - 1256

Receiver - PC.TO.VSEA.212
MSN - 1 Date/Time - 2006/12/08 12:42:13

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF9=Hex PF10=Queue PF11=MD

Figure 67. Browse Queue Records - Header display

Browse function

Chapter 4. System operation 153

"Written" then this will be the task that put the message and if the status is
"deleted", this will be the task that got the message.

PF11 provides information about the message's descriptor (MQMD) data structure.

Note: The GroupId, MsgSeqNo, Offset and MSGFlags are only displayed if the
message's descriptor is a version 2 data structure (MQMD2).

If you browse the System Log file, the PF12 (Help) key appears and can be used to
display user action and system action for this message, provided that the system is
active.

Note:

1. If the file you are browsing is in the process of being updated by any other
WebSphere MQ tasks, this function waits until the completion of those tasks.
There can be a delay in the response of the browse function.

2. The Browse utility also has the ability to browse from a queue when the queue
manager is not active.

3. Messages can span multiple VSAM records if the message length is greater
than the maximum VSAM record length of the file that hosts the queue. The
Browse Queue Records function only displays the first VSAM record of the
message. In such a case, the browse function displays a warning as follows:
nnn bytes of first VSAM record of message displayed

where nnn is the number of bytes of the message in the first VSAM record.

Administration using the WebSphere MQ Explorer
This information applies to WebSphere MQ for Windows, and WebSphere MQ for
Linux (x86 platform).

2011/01/25 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
05:50:18 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A002

Object Name: ANYQ
QSN Number : 00000001 LR- 0, LW- 1, DD-MQFI001

Message Descriptor
StructID: "MD " Version : "00000001" Report :X"00000000"
MsgType : "00000008" Expiry : "-0000001" Feedback: "00000000"
Encoding: "00000785" CCSetId : "00001047" Format : "MQSTR "
Priority: "00000005" Persist.: "00000001" PutApplT: "00000010"
MsgId :X"C3E2D840D7E3C8E5E2C5C24040404040C73AEDE239D59440"
Correlid:X"00"
PUTAppl : "TSMQ300 TST4 "
PUTTime : "21500890" PUTDate : "20110124" USERid : "SIL4 "
Reply Q : " "
Reply QM: " "

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF9=Hex PF10=Hdr PF11=Queue

Figure 68. Browse Queue Records - MQMD

Browse function

154 WebSphere MQ for z/VSE System Management Guide

WebSphere MQ for Windows and WebSphere MQ for Linux (x86 platform) provide
an administration interface called the WebSphere MQ Explorer to perform
administration tasks as an alternative to using PCF or MQSC commands. You
should refer to WebSphere MQ Explorer information on what you can do with the
Explorer interface.

The WebSphere MQ Explorer allows you to perform local or remote administration
of your network from a computer running Windows, or Linux (x86 platform), by
pointing the WebSphere MQ Explorer at the queue managers and clusters you are
interested in.

It allows you to perform tasks, typically associated with setting up and fine tuning
the working environment for WebSphere MQ, either locally or remotely within a
Windows or Linux (x86 platform) system domain. It monitors the operation of
WebSphere MQ servers and provides extensive error detection and recovery
functions.

This chapter describes:
v “What you can do with the WebSphere MQ Explorer”
v “Setting up the WebSphere MQ Explorer” on page 157
v “Using the WebSphere MQ Explorer” on page 160

What you can do with the WebSphere MQ Explorer
With the WebSphere MQ Explorer, you can:
v Create and delete a queue manager (on your local machine only).
v Start and stop a queue manager (on your local machine only).
v Define, display, and alter the definitions of WebSphere MQ objects such as

queues and channels.
v Browse the messages on a queue.
v Start and stop a channel.
v View status information about a channel, listener, queue, or service objects.
v View queue managers in a cluster.
v Check to see which applications, users, or channels have a particular queue

open.
v Create a new queue manager cluster using the Create New Cluster wizard.
v Add a queue manager to a cluster using the Add Queue Manager to Cluster

wizard.
v Manage the authentication information object, used with Secure Sockets Layer

(SSL) channel security.
v Create and delete channel initiators, trigger monitors, and listeners.
v Start or stop the command servers, channel initiators, trigger monitors, and

listeners.
v Set specific services to start up automatically when a queue manager is started.
v Modify the properties of queue managers.
v Change the local default queue manager.
v Invoke the ikeyman GUI to manage secure sockets layer (SSL) certificates,

associate certificates with queue managers, and configure and setup certificate
stores (on your local machine only).

v Modify the parameters for any service, such as the TCP port number for a
listener, or a channel initiator queue name.

Administration using the WebSphere MQ Explorer

Chapter 4. System operation 155

v Start or stop the service trace.

Note that not all of these operations are available when using Explorer with a
z/VSE queue manager. Operations are enabled where the underlying feature is
available with the WebSphere MQ for z/VSE product.

The WebSphere MQ Explorer presents information in a style consistent with that of
the WebSphere MQ Eclipse platform.

You perform administration tasks using a series of Content Views and Property
dialogs.

Content View
A Content View is a panel that can display:
v Attributes, and administrative options relating to WebSphere MQ itself.
v Attributes, and administrative options relating to one or more related

objects.
v Attributes, and administrative options for a cluster.

Property dialogs
A property dialog is a panel that displays attributes relating to an object in
a series of fields, some of which you can edit.

You navigate through the WebSphere MQ Explorer using the Navigator view. The
Navigator allows you to select the Content View you require.

Remote queue managers
From a Windows or Linux (x86 platform) system, the WebSphere MQ Explorer can
connect to all supported queue managers, with these exceptions:
v WebSphere MQ for z/OS queue managers prior to Version 6.0.
v Currently supported MQSeries V2 queue managers except MQSeries for VSE

V2.1.2.

The WebSphere MQ Explorer handles the differences in the capabilities between
the different command levels and platforms. However, if it encounters an attribute
that it does not recognize, the attribute will not be visible.

Deciding whether to use the WebSphere MQ Explorer
When deciding whether to use the WebSphere MQ Explorer at your installation,
bear these points in mind:

Object names
If you use lowercase names for queue managers and other objects with the
WebSphere MQ Explorer, when you work with the objects using MQSC
commands, you must enclose the object names in single quotes, or
WebSphere MQ will not recognize them.

Large queue managers
The WebSphere MQ Explorer works best with small queue managers. If
you have a large number of objects on a single queue manager, you might
experience delays while the WebSphere MQ Explorer extracts the required
information to present in a view.

Clusters
WebSphere MQ clusters can potentially contain hundreds or thousands of
queue managers. Because the WebSphere MQ Explorer presents the queue
managers in a cluster using a tree structure. The physical size of a cluster

What you can do with the WebSphere MQ Explorer

156 WebSphere MQ for z/VSE System Management Guide

does not affect the speed of the WebSphere MQ Explorer dramatically
because the explorer does not connect to the queue managers in the cluster
until you select them.

Setting up the WebSphere MQ Explorer
This section outlines the steps you need to take to set up the WebSphere MQ
Explorer.

Prerequisite software
Before you can use the WebSphere MQ Explorer, you must have these items
installed on your computer:
v The WebSphere MQ Eclipse platform (installed as part of WebSphere MQ for

Windows or WebSphere MQ for Linux (x86 platform))
v Current service fixes. For WebSphere MQ Explorer to function with a z/VSE

queue manager, you must have specific service applied. See “Features” on page
15.

The WebSphere MQ Explorer can connect to remote queue managers using the
TCP/IP communication protocol only.

Required definitions for administration
Ensure that you have satisfied the following requirements before trying to use the
WebSphere MQ Explorer. Check that:
1. A command server is running on every remotely administered queue manager.
2. A suitable TCP/IP listener object must be running on every remote queue

manager. This can be the WebSphere MQ listener or, on UNIX systems, the
inetd daemon.

3. A server-connection channel, by default named SYSTEM.ADMIN.SVRCONN,
exists on all remote queue managers. You can create the channel using this
MQSC command:
DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN)

This command creates a basic channel definition. If you want a more
sophisticated definition (to set up security, for example), you need additional
parameters.

4. The system queue, SYSTEM.MQEXPLORER.REPLY.MODEL, must exist.

Cluster membership
If a queue manager is a member a cluster, then the cluster tree node will be
populated automatically.

If queue managers become members of clusters while the WebSphere MQ Explorer
is running, then you must maintain the WebSphere MQ Explorer with up-to-date
administration data about clusters so that it can communicate effectively with them
and display correct cluster information when requested. In order to do this, the
WebSphere MQ Explorer needs this information:
v The name of a repository queue manager.
v The connection name of the repository queue manager if it is on a remote queue

manager.

With this information, the WebSphere MQ Explorer can:
v Use the repository queue manager to obtain a list of queue managers in the

cluster.

Deciding whether to use the WebSphere MQ Explorer

Chapter 4. System operation 157

v Administer the queue managers that are members of the cluster and are on
supported platforms and command levels.

Administration is not possible if:
v The chosen repository becomes unavailable. The WebSphere MQ Explorer does

not automatically switch to an alternative repository.
v The chosen repository cannot be contacted over TCP/IP.
v The chosen repository is running on a queue manager that is running on a

platform and command level not supported by the WebSphere MQ Explorer.

The cluster members that can be administered can be local, or they can be remote
if they can be contacted using TCP/IP. The WebSphere MQ Explorer connects to
local queue managers that are members of a cluster directly, without using a client
connection.

Security
If you are using WebSphere MQ in an environment where it is important for you
to control user access to particular objects, you might need to consider the security
aspects of using the WebSphere MQ Explorer.

Authorization to use the WebSphere MQ Explorer: Any user can use the
WebSphere MQ Explorer, however certain authorities are required to connect,
access, and manage queue managers.

To perform local administrative tasks using the WebSphere MQ Explorer, a user is
required to have the necessary authority to perform the administrative tasks. If the
user is a member of the mqm group, the user has authority to perform all local
administrative tasks.

To connect to a remote queue manager and perform remote administrative tasks
using the WebSphere MQ Explorer, the user executing the WebSphere MQ Explorer
is required to have:
v CONNECT authority on the target queue manager object.
v INQUIRE authority on the target queue manager object.
v OUTPUT authority on the queue, SYSTEM.ADMIN.COMMAND.QUEUE.
v DISPLAY and INPUT authority on the queue,

SYSTEM.MQEXPLORER.REPLY.MODEL
v Authority to perform the action selected.

If a user attempts to perform an operation that they are not authorized to perform,
then the target queue manager invokes authorization failure procedures, and the
operation fails.

The default filter in the WebSphere MQ Explorer is to display all WebSphere MQ
objects. If there are any WebSphere MQ objects that a user does not have DISPLAY
authority to, then authorization failures are generated. If authority events are being
recorded, then it is recommended that the user restrict the range of objects that are
displayed to those that they have DISPLAY authority to.

Security for connecting to remote queue managers: The WebSphere MQ Explorer
connects to remote queue managers as an MQI client application. This means that
each remote queue manager must have a definition of a server-connection channel
and a suitable TCP/IP listener. If you do not specify a nonblank value for the
MCAUSER attribute of the channel, or use a security exit, it is possible for a

Cluster membership

158 WebSphere MQ for z/VSE System Management Guide

malicious application to connect to the same server connection channel and gain
access to the queue manager objects with unlimited authority.

The default value of the MCAUSER attribute is the local userId. If you specify a
nonblank user name as the MCAUSER attribute of the server connection channel,
all programs connecting to the queue manager using this channel run with the
identity of the named user and have the same level of authority.

WebSphere MQ for z/VSE does not support the MCAUSER attribute.
Consequently, the Explorer connection runs with the authority of the WMQ z/VSE
startup user. For this reason it is advised that client connections are secured with a
security exit and possibly an SSL-enabled channel.

Using a security exit: A more flexible approach is to install a security exit on the
server-connection channel, typically named SYSTEM.ADMIN.SVRCONN on each
queue manager that is to be administered remotely. For information on the
supplied security exit, including detailed instructions on setting up and using it,
see the WebSphere MQ for Windows Quick Beginnings.

Using SSL security: The WebSphere MQ Explorer connects to remote queue
managers using an MQI channel. If you want to secure the MQI channel using SSL
security, you must establish the channel using a client channel definition table. For
information how to establish an MQI channel using a client channel definition
table, see the WebSphere MQ Clients book.

Connecting via another queue manager: The WebSphere MQ Explorer allows
users to connect to a queue manager via an intermediate queue manager to which
the WebSphere MQ Explorer is already connected. In this case, the WebSphere MQ
Explorer puts PCF command messages to the intermediate queue manager,
specifying:
v The ObjectQMgrName parameter in the object descriptor (MQOD) as the name

of the target queue manager. For more information on queue name resolution,
see the WebSphere MQ Application Programming Guide.

v The UserIdentifier parameter in the message descriptor (MQMD) as the local
userId.

If the connection is then used to connect to the target queue manager via an
intermediate queue manager, the userId is flowed in the UserIdentifier parameter
of the message descriptor (MQMD) again. In order for the MCA listener on the
target queue manager to accept this message, either the MCAUSER attribute must
be set, or the userId must already exist with put authority.

The command server on the target queue manager puts messages to the
transmission queue specifying the userId in the UserIdentifier parameter in the
message descriptor (MQMD). For this put to succeed the userId must already exist
on the target queue manager with put authority.

On WebSphere MQ for z/VSE, the authority of the startup user is used to put and
get Explorer PCF messages, not the userid specified in the MQMD.

Data conversion
The WebSphere MQ Explorer works by default in CCSID 1208 (UTF-8). This
enables the WebSphere MQ Explorer to display the data from remote queue
managers correctly. Whether connecting to a queue manager directly, or via an
intermediate queue manager, the WebSphere MQ Explorer requires all incoming
messages to be converted to CCSID 1208 (UTF-8).

Security for connecting to remote queue managers

Chapter 4. System operation 159

An error message is issued if you try to establish a connection between the
WebSphere MQ Explorer and a queue manager with a CCSID that the WebSphere
MQ Explorer does not recognize.

Supported conversions are described in the WebSphere MQ Application
Programming Reference manual.

In the Global System Definition Communications Settings panel, to ensure that MQ
Explorer can connect to WebSphere MQ for z/VSE, you must specify:

Cmd Server convert . : Y

Using the WebSphere MQ Explorer
This section explains how to use the WebSphere MQ Explorer to:
v Show or hide queue managers.
v Use the WebSphere MQ Taskbar application (Windows only).
v Use the WebSphere MQ alert monitor application (Windows only).

Showing and hiding queue managers and clusters
The WebSphere MQ Explorer can display more than one queue manager at a time.
The Show/Hide Queue Manager panel (selectable from the context menu for the
Queue Managers tree node) allows you to choose whether you display information
on another (remote) machine. Local queue managers are detected automatically.

To show a remote queue manager:
1. Right-click the Queue Managers tree node, then select Show/Hide Queue

Managers....
2. Click Add.... The Show/Hide Queue Managers panel is displayed.
3. Fill in the name of the remote queue manager and the host name or IP address

in the fields provided. The host name or IP address is used to establish a client
connection to the remote queue manager using either its default server
connection channel, SYSTEM.ADMIN.SVRCONN, or a user defined server
connection channel.

4. Click Finish.

The Show/Hide Queue Managers panel also displays a list of all visible queue
managers, and allows you to hide queue managers from the navigation view.

If the WebSphere MQ Explorer displays a queue manager that is a member of a
cluster, the cluster is detected, and displayed automatically.

Using the WebSphere MQ Taskbar application (Windows only)
On Windows, the WebSphere MQ icon is in the system tray on the server and is
overlaid with a color-coded status symbol, which can have one of these meanings:

Green Healthy; no alerts at present

Blue Indeterminate; WebSphere MQ is starting up or shutting down

Yellow
Alert; one or more services are failing or have already failed

When you click on the icon with your right mouse button, a context menu is
displayed. From this menu, select the WebSphere MQ Explorer option to bring up
the WebSphere MQ Explorer.

Data conversion

160 WebSphere MQ for z/VSE System Management Guide

Using the WebSphere MQ alert monitor application (Windows only): The
WebSphere MQ alert monitor is an error detection tool that identifies and records
problems with WebSphere MQ on a local machine. The alert monitor displays
information about the current status of the local installation of a WebSphere MQ
server.

From the WebSphere MQ alert monitor, you can:
v Access the WebSphere MQ Explorer directly.
v View information relating to all outstanding alerts.
v Shut down the WebSphere MQ service on the local machine.
v Route alert messages over the network to a configurable user account, or to a

Windows workstation or server.

Administration via a web browser
Although WebSphere MQ for VSE and its administration programs run in a CICS
environment, administration of WebSphere MQ objects can be performed via a web
browser.

Administering WebSphere MQ in this way takes advantage of the CICS Web
Support (CWS) feature of CICS Transaction Server for z/VSE 1.1.1.

This section provides an overview of the CWS feature, describes the WebSphere
MQ modules that facilitate administration from a web browser, and explains how
to use CWS with WebSphere MQ.

CICS Web Support
CWS is a 2-tier connector solution based on HTTP/HTML. It facilitates
connectivity between a web browser and z/VSE CICS TS applications. For
WebSphere MQ for z/VSE, this means connectivity between a web browser and
the WebSphere MQ administration programs.

The WebSphere MQ administration programs are 3270-based CICS applications.
CWS provides a 3270 bridge solution which allows access to 3270-based CICS
applications without 3270 terminals. Administering WebSphere MQ from a web
browser exploits the 3270 bridge feature of CWS.

The operating environment and minimum prerequisites for CWS are:
v z/VSE 3.1 or later.
v CICS Transaction Server 1.1.1 or later.
v TCP/IP for z/VSE 1.5F (or equivalent) or later.
v Language environment for z/VSE 1.4.4 or later.

In addition, to administer WebSphere MQ from a web browser, CWS must be
correctly implemented, and the CICS/TS region hosting WebSphere MQ must be
properly configured for CWS use. To this end, you should refer to the following
manuals:
v CICS Transaction Server for z/VSE Enhancement Guide (SC34-5763).
v CICS Transaction Server for z/VSE Internet Guide (SC34-5765).
v CICS Transaction Server for z/VSE CICS Web Support (SG24-5997-00).

Using the WebSphere MQ alert monitor application (Windows only)

Chapter 4. System operation 161

Note that these manuals pertain to CICS Transaction Server for z/VSE V1.1.1.
WebSphere MQ administration via a web browser is not possible with CICS for
z/VSE or CICS/TS releases prior to V1.1.1.

CWS WebSphere MQ modules
WebSphere MQ for VSE provides HTML source that corresponds to each of its
administration screens. The source is provided in the WebSphere MQ installation
library in member MQHTML.Z.

In addition, WebSphere MQ for z/VSE provides a 3270/HTML converter program
called MQPCWS.

Each of these modules is described below.

HTML source file
The MQHTML.Z file contains HTML source generated by an assembly of the
WebSphere MQ MAP programs using the TYPE=TEMPLATE parameter of the
DFHMSD macro. This is the standard method for generating HTML source from
CICS Basic Mapping Support (BMS) programs.

The MQHTML.Z file contains a series of LIBRARIAN CATALOG statements
followed by HTML source relevant to a particular administration screen. It is
intended to be used as input to the Librarian utility program (LIBR) to create
individual HTML source members for each WebSphere MQ administration screen.

The following JCL provides an example of how the MQHTML.Z file might be
loaded into a sublibrary for CWS use:
* $$ JOB MQCWSLD,CLASS=0
* $$ LST CLASS=A,DISP=H
// JOB
// EXEC LIBR
ACC S=library.dfhdoc
* $$ SLI MEM=MQHTML.Z,S=PRD2.WMQZVSE
/*
/&
* $$ EOJ

where library.dfhdoc should be replaced with a sublibrary name intended for
CWS use. If WebSphere MQ is installed in a sublibrary other than
PRD2.WMQZVSE, the * $$ SLI card should also be changed.

File MQJCWS.Z contains this same JCL, and is available in the WebSphere MQ for
z/VSE installation library.

Once the HTML source has been loaded into an appropriate documents sublibrary
(that is, a library configured for CWS), the HTML source is ready for use.

CWS converter program
Converter programs are optional programs used to support the operation of CWS.
Essentially, a converter is an exit program called before and after the 3270/HTML
data flow to and from a CICS TS program.

A converter must provide two functions:
v Decode is used before the CICS TS program is called. It can:

– Use the data from the Web browser to build the communication area in the
format expected by the CICS TS program.

CICS Web Support

162 WebSphere MQ for z/VSE System Management Guide

– Supply the lengths of the input and output data in the CICS TS program
communication area.

– Perform administrative tasks related to the response.
v Encode is used after the CICS TS program has been called. It can:

– Use the data from the CICS TS program to build the HTTP response and
HTTP response headers.

– Perform administrative tasks related to the response.

On some browsers the web page layout generated from the provided HTML source
may require improvement. For this reason, WebSphere MQ for z/VSE provides a
sample 3270/HTML converter program (MQPCWS) which is intended to improve
the overall appearance of the WebSphere MQ administration screens in a web
browser.

The converter program, MQPCWS, is provided as a sample only, and is available
in the WebSphere MQ installation sublibrary as both an executable and a COBOL
source file.

Using CWS with WebSphere MQ
Once the CWS environment has been implemented and the WebSphere MQ HTML
files have been loaded into an appropriate CWS documents sublibrary, WebSphere
MQ can be administered from a web browser.

WebSphere MQ does not need to be active to administer WebSphere MQ from a
browser since the activation of the system is itself an administration function that
can be performed from the administration screens. However, to administer
WebSphere MQ from a browser, TCP/IP services and the CICS TS region hosting
WebSphere MQ must be active.

WebSphere MQ administration transactions are started from a browser by
requesting an appropriate Universal Resource Locator (URL). For example:
http://n.n.n.n:pppp/cics/cwba/dfhwbtta/TTTT

where n.n.n.n is the IP address of z/VSE system running the CICS TS system that
hosts WebSphere MQ, pppp is the CICS listener port number for CWS, and TTTT
is the WebSphere MQ administration transaction identifier (for example MQMT).

Valid WebSphere MQ transaction identifiers are listed in section “Master Terminal
transactions” on page 80.

As already suggested, the appearance of the administration screens may be
improved using the supplied CWS converter program, MQPCWS. A converter
program can be introduced by changing the URL path. For example:
http://n.n.n.n:pppp/mqpcws/cwba/dfhwbtta/TTTT

Activating an WebSphere MQ administration transaction this way will ensure that
the MQPCWS converter program is called to encode and decode the 3270/HTML
data flow.

CWS converter program

Chapter 4. System operation 163

Communications processes
WebSphere MQ uses the Message Channel Agent (MCA) programs and TCP/IP
Listener program for its communications.

The MCA process:
v Runs as a separate CICS task connected to the remote WebSphere MQ using

APPC or TCP/IP protocol.
v Starts automatically in response to other system activity, or when a message is

placed on a transmission queue.
v Starts the WebSphere MQ server when initial client requests are received.
v Can be stopped from the operations main menu.
v When processing a channel, ensures SSL services are activated if required.

Select 2 from the operations main menu to control the channels. See “Open / Close
channel” on page 138 for further information.

The WebSphere MQ listener process:
v Establishes itself as a TCP/IP “listener” process by binding itself to a port

number configured in the global system definition.
v Runs as a separate CICS task waiting for remote TCP/IP connection requests.
v Starts the receiver MCA when connection requests are received.
v Ends when WebSphere MQ is shut down.

Message persistence
Message persistence is a field of the MQMD data structure, that accompanies all
MQ messages.

Message persistence indicates whether the message survives system failures and
restarts of the queue manager. For the MQPUT and MQPUT1 calls, the value must
be one of the following:

MQPER_PERSISTENT
MQPER_NOT_PERSISTENT
MQPER_PERSISTENCE_AS_Q_DEF

MQPER_PERSISTENT
Message is persistent. This means that the message survives system failures and
restarts of the queue manager. Once the message has been put, and the putter's
unit of work committed (if the message is put as part of a unit of work), the
message is preserved on auxiliary storage. It remains there until the message is
removed from the queue, and the getter's unit of work committed (if the message
is retrieved as part of a unit of work).

When a persistent message is sent to a remote queue, a store-and-forward
mechanism is used to hold the message at each queue manager along the route to
the destination, until the message is known to have arrived at the next queue
manager.

Persistent messages cannot be placed on temporary dynamic queues.

Persistent messages can be placed on permanent dynamic queues, and predefined
queues.

Communications process

164 WebSphere MQ for z/VSE System Management Guide

MQPER_NOT_PERSISTENT
Message is not persistent. This means that the message does not normally survive
system failures or restarts of the queue manager. This applies even if an intact
copy of the message is found on auxiliary storage during restart of the queue
manager.

Non-persistent messages can be placed on temporary dynamic, permanent
dynamic and predefined queues.

MQPER_PERSISTENCE_AS_Q_DEF
Message has default persistence.

On z/VSE, default persistence cannot be specified as part of the queue definition.
Instead, predefined and permanent dynamic queues have a default persistence of
PERSISTENT. Temporary dynamic queues have a default persistence of
NOT_PERSISTENT.

When a message is placed on a queue with MQPER_PERSISTENCE_AS_Q_DEF,
the relevant persistence is defaulted accordingly for the message.

Message expiry
By default, messages placed on a queue have an unlimited 'lifetime'. This is the
amount of time a message will stay on a queue before it is discarded by the queue
manager, assuming it is not retrieved by an application.

Optionally, messages can be placed on a queue with a limited 'lifetime'. The
amount of time a message will remain on a queue before it is discarded by the
queue manager is called the message 'expiry'. A message's expiry is specified in the
message descriptor (MQMD) data structure when the message is placed on a
queue.

The message expiry is period of time expressed in tenths of a second, set by the
application that puts the message. The message becomes eligible to be discarded if
it has not been removed from the destination queue before this period of time
elapses.

The value is decremented to reflect the time the message spends on the destination
queue, and also on any intermediate transmission queues if the put is to a remote
queue. It may also be decremented by message channel agents to reflect
transmission times, if these are significant. Likewise, an application forwarding this
message to another queue might decrement the value if necessary, if it has retained
the message for a significant time. However, the expiration time is treated as
approximate, and the value need not be decremented to reflect small time
intervals.

When the message is retrieved by an application using the MQGET call, the Expiry
field represents the amount of the original expiry time that still remains.

A message that has expired is never returned to an application (either by a browse
or a non-browse MQGET call), so the value in the Expiry field of the message
descriptor after a successful MQGET call is either greater than zero, or the special
value MQEI_UNLIMITED.

MQPER_NOT_PERSISTENT

Chapter 4. System operation 165

If a message is put on a remote queue, the message may expire (and be discarded)
whilst it is on an intermediate transmission queue, before the message reaches the
destination queue.

A report is generated when an expired message is discarded, if the message
specified one of the MQRO_EXPIRATION_* report options. If none of these
options is specified, no such report is generated; the message is assumed to be no
longer relevant after this time period (perhaps because a later message has
superseded it).

Any other program that discards messages based on expiry time must also send an
appropriate report message if one was requested.

Report messages are treated in the same way as ordinary messages; if the report
message cannot be delivered to its destination queue (usually the queue specified
by the ReplyToQ field in the message descriptor of the original message), the
report message is placed on the dead-letter (undelivered-message) queue.

Note:

1. If a message is put with an Expiry time of zero, the MQPUT or MQPUT1 call
fails with reason code MQRC_EXPIRY_ERROR; no report message is generated
in this case.

2. Since a message whose expiry time has elapsed may not actually be discarded
until later, there may be messages on a queue that have passed their expiry
time, and which are not therefore eligible for retrieval. These messages
nevertheless count towards the number of messages on the queue for all
purposes, including depth triggering.

3. An expiration report is generated, if requested, when the message is actually
discarded, not when it becomes eligible for discarding.

4. Discarding of an expired message, and the generation of an expiration report if
requested, are never part of the application's unit of work, even if the message
was scheduled for discarding as a result of an MQGET call operating within a
unit of work.

5. If a nearly-expired message is retrieved by an MQGET call within a unit of
work, and the unit of work is subsequently backed out, the message may
become eligible to be discarded before it can be retrieved again.

6. If a nearly-expired message is locked by an MQGET call with MQGMO_LOCK,
the message may become eligible to be discarded before it can be retrieved by
an MQGET call with MQGMO_MSG_UNDER_CURSOR; reason code
MQRC_NO_MSG_UNDER_CURSOR is returned on this subsequent MQGET
call if that happens.

7. When a request message with an expiry time greater than zero is retrieved, the
application can take one of the following actions when it sends the reply
message:
v Copy the remaining expiry time from the request message to the reply

message.
v Set the expiry time in the reply message to an explicit value greater than

zero.
v Set the expiry time in the reply message to MQEI_UNLIMITED.

The action to take depends on the design of the application suite. However, the
default action for putting messages to a dead-letter (undelivered-message)
queue should be to preserve the remaining expiry time of the message, and to
continue to decrement it.

Message expiry

166 WebSphere MQ for z/VSE System Management Guide

8. Expiry report messages are always generated with MQEI_UNLIMITED.
9. A message (normally on a transmission queue) which has a Format name of

MQFMT_XMIT_Q_HEADER has a second message descriptor within the
MQXQH. It therefore has two Expiry fields associated with it. The following
additional points should be noted in this case:
v When an application puts a message on a remote queue, the queue manager

places the message initially on a local transmission queue, and prefixes the
application message data with an MQXQH structure. The queue manager
sets the values of the two Expiry fields to be the same as that specified by
the application.

v If an application puts a message directly on a local transmission queue, the
message data must already begin with an MQXQH structure, and the format
name must be MQFMT_XMIT_Q_HEADER (but the queue manager does not
enforce this). In this case the application need not set the values of these two
Expiry fields to be the same. (The queue manager does not check that the
Expiry field within the MQXQH contains a valid value, or even that the
message data is long enough to include it.)

v When a message with a Format name of MQFMT_XMIT_Q_HEADER is
retrieved from a queue (whether this is a normal or a transmission queue),
the queue manager decrements both these Expiry fields with the time spent
waiting on the queue. No error is raised if the message data is not long
enough to include the Expiry field in the MQXQH.

v The queue manager uses the Expiry field in the separate message descriptor
(that is, not the one in the message descriptor embedded within the MQXQH
structure) to test whether the message is eligible for discarding.

v If the initial values of the two Expiry fields were different, it is therefore
possible for the Expiry time in the separate message descriptor when the
message is retrieved to be greater than zero (so the message is not eligible for
discarding), while the time according to the Expiry field in the MQXQH has
elapsed. In this case the Expiry field in the MQXQH is set to zero.

Viewing error logs
WebSphere MQ error messages, and other system messages, are placed on the
following queues:

SYSTEM.LOG
All WebSphere MQ generated error messages are written to this queue. If
SYSTEM.LOG is not defined, or if WebSphere MQ cannot successfully
write to it, the error messages are logged to CSMT and may be viewed
using standard system utilities. The CSMT redirection parameter is an
active toggle, and can be set in the global system definition.

SYSTEM.DEAD.LETTER.QUEUE
Is the WebSphere MQ dead letter queue. Messages that cannot be queued
to their specified destination are queued here.

SYSTEM.MONITOR
API monitor queue used to log all application requests and their results.
This is primarily for problem determination purposes.

Note:

1. The names listed for these queues are the default names, but you can redefine
the actual queue names through the global system definition screen.

Message expiry

Chapter 4. System operation 167

2. You can view the messages written to these queues using the WebSphere MQ
browse queue function (see “Browse function” on page 152).

3. The messages included in the SYSTEM.LOG can be controlled using the 'Log
and Trace Settings' screen. Refer to “Queue Manager Log and Trace Settings”
on page 88.

Error logs

168 WebSphere MQ for z/VSE System Management Guide

Chapter 5. Utilities and interfaces

WebSphere MQ for z/VSE is supplied with various utility functions, which are:
v The WebSphere MQ System Administration Control Interface - see “System

Administration Control Interface”
v Batch utilities - see “Batch utilities” on page 173
v The batch interface - see “Using the batch interface” on page 178
v Utilities for reclaiming VSAM file space - see “VSAM file maintenance” on page

183
v The WebSphere MQ-CICS bridge - see “WebSphere MQ-CICS Bridge” on page

186

System Administration Control Interface
The WebSphere MQ System Administration Control Interface allows a limited
number of system administration functions to be performed using programs.

The System Administration Control Interface has:
v A transactional interface (MQCL).
v A programmable interface (MQPCMD).

Transactional interface (MQCL)
MQCL is the command-line interface to the MQPCMD program. It allows you
selectively to:
v Stop, start, or query Inbound and Outbound queues.
v Open, close, or query a channel.

The command may be entered on cleared CICS terminal or on the VSE console as
a command to the CICS partition.

Running the MQCL transaction without parameters generates the following
display:

© Copyright IBM Corp. 2008, 2013 169

To query a channel, use FF value of QS, QR, Qv, QQ or QC. For example, if you
want to query a sender channel called VSE9.IP.SOL7, use the following command:

MQCL QS VSE9.IP.SOL7

If successful, this command will generate a display similar to the following:
MQM001000 CHANNEL STATUS: INACTIVE (SDR) VSE9.IP.SOL7

When stopping channels using MQCL, you can request that the channel is stopped
and placed in INACTIVE state by using function codes from the Inact column. To
stop a channel and place it in STOPPED state, use one of the function codes in the
Stop column.

A message is sent to the activated terminal for every activation of this transaction.
The original command is redisplayed if entered in a CICS session, eg
MQCL QB IBM.REPLY.QUEUE

MQM001000 QUEUE STATUS: IN=IDLE ,OUT=IDLE IBM.REPLY.QUEUE

This message has a message code of MQM001000 for completed messages, or an
error code of MQM001090 for any that did not complete properly. The text that
follows explains the exact results.

Programmable interface (MQPCMD)
The programmable interface uses an EXEC CICS LINK PROGRAM (MQPCMD).
MQPCMD accepts a fixed format COMMAREA which specifies the type of request
and a status response area.

The supplied copybook MQICMD.C describes this area.
--
* - BEGIN - *** COPYBOOK: MQICMD *** - BEGIN - *
--
--
* COMMAND LINE COPYBOOK *
--

MQCL
MQCL is a command line interface which allows queues and
channels to be selectively opened and closed. It has the
flexibility to open and close in inbound, outbound or both
directions. The syntax format is:

MQCL FF NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

where NN...NN = Queue or Channel name
FF = one of following function codes

CHANNEL - Type Start Inact Stop Query
SENDER SS IS PS QS
RECEIVER SR IR PR QR
SERVER SV IV PV QV
REQUESTER SQ IQ PQ QQ
SVRCONN SC IC PC QC

QUEUE - Direction Start Stop Query
INBOUND SI XI QI
OUTBOUND SO XO QO
BOTH SB XB QB

QUEUE Depth QD
MQM001090 Command Line Program invalid syntax.

Figure 69. MQCL syntax display

Administration interface

170 WebSphere MQ for z/VSE System Management Guide

01 MQI-COMMAND-LINE.
02 MQI-CMD-PASSED-AREA.

05 MQI-CMD-TRANS-ID PIC X(4) VALUE ’MQCL’.
05 FILLER PIC X VALUE SPACE.
05 MQI-CMD-FUNCTION PIC XX VALUE SPACE.

88 MQI-CMD-FUNCTION-OK VALUE ’CR’, ’OR’, ’QR’,
’SR’, ’IR’, ’PR’,
’CS’, ’OS’, ’QS’,
’SS’, ’IS’, ’PS’,

’QV’, ’SV’, ’IV’, ’PV’,
’QQ’, ’SQ’, ’IQ’, ’PQ’,

’CC’, ’OC’, ’QC’,
’SC’, ’IC’, ’PC’,
’QB’, ’QI’, ’QO’,
’QD’,
’XB’, ’XI’, ’XO’,
’SB’, ’SI’, ’SO’.

88 MQI-CMD-FUNC-CHANNEL VALUE ’CR’, ’OR’, ’QR’,
’SR’, ’IR’, ’PR’,
’CS’, ’OS’, ’QS’,
’SS’, ’IS’, ’PS’,

’QV’, ’SV’, ’IV’, ’PV’,
’QQ’, ’SQ’, ’IQ’, ’PQ’,

’CC’, ’OC’, ’QC’,
’SC’, ’IC’, ’PC’.

88 MQI-CMD-CLOSE-CHANNEL VALUE ’CR’, ’CS’, ’CC’,
’IR’, ’IS’, ’IC’,
’IV’, ’IQ’,
’PR’, ’PS’, ’PC’,
’PV’, ’PQ’.

88 MQI-CMD-OPEN-CHANNEL VALUE ’OR’, ’OS’, ’OC’,
’SR’, ’SS’, ’SC’,
’SV’, ’SQ’.

88 MQI-CMD-QUERY-CHANNEL VALUE ’QR’, ’QS’, ’QC’,
’QV’, ’QQ’.

88 MQI-CMD-CHANNEL-SEND VALUE ’CS’, ’OS’, ’QS’,
’SS’, ’IS’, ’PS’.

88 MQI-CMD-CHANNEL-RECVR VALUE ’CR’, ’OR’, ’QR’,
’SR’, ’IR’, ’PR’.

88 MQI-CMD-CHANNEL-CLIENT VALUE ’CC’, ’OC’, ’QC’,
’SC’, ’IC’, ’PC’.

88 MQI-CMD-CHANNEL-SVR VALUE ’SV’, ’IV’, ’PV’,
’QV’.

88 MQI-CMD-CHANNEL-RQSTR VALUE ’SQ’, ’IQ’, ’PQ’,
’QQ’.

88 MQI-CMD-INACTIVE-STOP VALUE ’IS’, ’IR’, ’IC’,
’IV’, ’IQ’.

88 MQI-CMD-FUNC-QUEUE VALUE ’XB’, ’XI’, ’XO’,
’SB’, ’SI’, ’SO’,
’QB’, ’QI’, ’QO’,
’QD’.

88 MQI-CMD-STOP-QUEUE VALUE ’XB’, ’XI’, ’XO’.
88 MQI-CMD-STOP-Q-INBOUND VALUE ’XI’.
88 MQI-CMD-STOP-Q-OUTBOUND VALUE ’XO’.
88 MQI-CMD-STOP-Q-BOTH VALUE ’XB’.
88 MQI-CMD-START-QUEUE VALUE ’SB’, ’SI’, ’SO’.
88 MQI-CMD-START-Q-INBOUND VALUE ’SI’.
88 MQI-CMD-START-Q-OUTBOUND VALUE ’SO’.
88 MQI-CMD-START-Q-BOTH VALUE ’SB’.
88 MQI-CMD-QUERY VALUE ’QB’, ’QI’, ’QO’,

’QS’, ’QR’, ’QC’,
’QV’, ’QQ’, ’QD’.

88 MQI-CMD-QUERY-QUEUE VALUE ’QB’, ’QI’, ’QO’,
’QD’.

88 MQI-CMD-QUERY-Q-INBOUND VALUE ’QI’.

Administration interface

Chapter 5. Utilities and interfaces 171

88 MQI-CMD-QUERY-Q-OUTBOUND VALUE ’QO’.
88 MQI-CMD-QUERY-Q-BOTH VALUE ’QB’.
88 MQI-CMD-QUERY-Q-DEPTH VALUE ’QD’.

88 MQI-CMD-Q-IN VALUE ’SI’, ’XI’.
88 MQI-CMD-Q-OUT VALUE ’SO’, ’XO’.
88 MQI-CMD-Q-BOTH VALUE ’SB’, ’XB’.

05 FILLER PIC X VALUE SPACE.
05 MQI-CMD-QUEUE-NAME PIC X(48) VALUE SPACES.
05 MQI-CMD-CHANNEL-NAME REDEFINES

MQI-CMD-QUEUE-NAME PIC X(48).

*-------values returned when LINKed
02 MQI-CMD-RETURNED-AREA.

05 MQI-CMD-RC PIC S9(4) COMP VALUE ZERO.
88 MQI-CMD-RC-OK VALUE ZERO.
88 MQI-CMD-RC-DUPLICATE-FUNC VALUE +4.
88 MQI-CMD-RC-NAME-INVALID VALUE +10.
88 MQI-CMD-RC-SYS-NOT-ACTIVE VALUE +80.
88 MQI-CMD-RC-ERRORS VALUE +90.
88 MQI-CMD-RC-HELP VALUE +99.

05 MQI-CMD-ERROR-LINE.
10 MQI-CMD-ERROR-PREFIX PIC XXX VALUE ’MQM’.
10 MQI-CMD-ERROR-CODE PIC X(6) VALUE SPACES.
10 FILLER PIC X VALUE SPACE.
10 MQI-CMD-ERROR-TEXT PIC X(40) VALUE SPACES.
10 FILLER PIC X VALUE SPACE.
10 MQI-CMD-ERROR-NAME PIC X(48) VALUE SPACES.

05 MQI-CMD-QUERY-STATES.
10 MQI-CMD-QUERY-RC-INBOUND PIC X(8) VALUE SPACES.

88 MQI-CMD-QUERY-RC-IN-MAX VALUE ’MAX ’.
88 MQI-CMD-QUERY-RC-IN-FULL VALUE ’FULL ’.
88 MQI-CMD-QUERY-RC-IN-ERRORED VALUE ’ERRORED ’.
88 MQI-CMD-QUERY-RC-IN-IDLE VALUE ’IDLE ’.
88 MQI-CMD-QUERY-RC-IN-ACTIVE VALUE ’ACTIVE ’.
88 MQI-CMD-QUERY-RC-IN-INHIBIT VALUE ’INHIBIT ’.
88 MQI-CMD-QUERY-RC-IN-RECOVER VALUE ’RECOVER ’.
88 MQI-CMD-QUERY-RC-IN-STOPPED VALUE ’STOPPED ’.

10 MQI-CMD-QUERY-RC-CHANNEL
REDEFINES MQI-CMD-QUERY-RC-INBOUND PIC X(8).
88 MQI-CMD-QUERY-RC-INACTIVE VALUE ’INACTIVE’.
88 MQI-CMD-QUERY-RC-BINDING VALUE ’BINDING ’.
88 MQI-CMD-QUERY-RC-STARTING VALUE ’STARTING’.
88 MQI-CMD-QUERY-RC-RUNNING VALUE ’RUNNING ’.
88 MQI-CMD-QUERY-RC-STOPPING VALUE ’STOPPING’.
88 MQI-CMD-QUERY-RC-STOPPED VALUE ’STOPPED ’.
88 MQI-CMD-QUERY-RC-RETRYING VALUE ’RETRYING’.
88 MQI-CMD-QUERY-RC-UNKNOWN VALUE ’UNKNOWN ’.

10 FILLER REDEFINES
MQI-CMD-QUERY-RC-INBOUND.
15 MQI-CMD-QUERY-RC-DEPTH PIC S9(8) COMP.
15 FILLER PIC X(4).

10 MQI-CMD-QUERY-RC-OUTBOUND PIC X(8) VALUE SPACES.
88 MQI-CMD-QUERY-RC-OUT-ERRORED VALUE ’ERRORED ’.
88 MQI-CMD-QUERY-RC-OUT-IDLE VALUE ’IDLE ’.
88 MQI-CMD-QUERY-RC-OUT-ACTIVE VALUE ’ACTIVE ’.
88 MQI-CMD-QUERY-RC-OUT-INHIBIT VALUE ’INHIBIT ’.
88 MQI-CMD-QUERY-RC-OUT-RECOVER VALUE ’RECOVER ’.
88 MQI-CMD-QUERY-RC-OUT-STOPPED VALUE ’STOPPED ’.

--
* - END - *** COPYBOOK: MQICMD *** - END - *
--

Administration interface

172 WebSphere MQ for z/VSE System Management Guide

The following sample program is an example of how to use MQICMD.C in a CICS
application program:

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTCMD.
AUTHOR. IBM.
DATE-COMPILED.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WS-QCLOSED PIC X(20) VALUE ’Queue closed OK.’.
01 WS-QNCLOSED PIC X(20) VALUE ’Queue not closed.’.

COPY MQICMD.

PROCEDURE DIVISION.

0000-MAIN-LINE.
MOVE ’ANYQ’ TO MQI-CMD-QUEUE-NAME.
SET MQI-CMD-STOP-Q-BOTH TO TRUE.
EXEC CICS LINK

PROGRAM(’MQPCMD’)
COMMAREA(MQI-COMMAND-LINE)
LENGTH(LENGTH OF MQI-COMMAND-LINE)

END-EXEC.
EVALUATE TRUE

WHEN MQI-CMD-RC-OK
EXEC CICS WRITE OPERATOR

TEXT(WS-QCLOSED)
TEXTLENGTH(LENGTH OF WS-QCLOSED)

END-EXEC
WHEN OTHER

EXEC CICS WRITE OPERATOR
TEXT(WS-QNCLOSED)
TEXTLENGTH(LENGTH OF WS-QNCLOSED)

END-EXEC
END-EVALUATE.

0000-RETURN.
EXEC CICS RETURN
END-EXEC.

GOBACK.

Batch utilities
WebSphere MQ for z/VSE provides several batch utility programs. These are
programs that can be run from a batch partition to manipulate or report on
WebSphere MQ resources.

Batch utilities include:
v MQPUTIL
v MQPEXCIC

MQPUTIL program
The PRD2.WMQZVSE library contains all the sample code and JCL, including the
MQJUTILY.Z example background batch job.

MQJUTILY.Z contains the MQPUTIL program, which performs the following
functions:
v Prints the system, queue, and channel definitions from a configuration file.

Administration interface

Chapter 5. Utilities and interfaces 173

v Prints the SYSTEM.LOG file in a formatted report.
v Prints the SYSTEM.MONITOR queue in a formatted report.
v Updates all channels with a new starting MSN.
v Updates a configuration file for dual queues. It makes all dual queues into a

primary queue.
v Prints new Help Facility error information.
v Prints code pages recognized by WebSphere MQ for z/VSE.
v Updates system configuration constants.

The MQPUTIL program uses the DLBL filename CONFIG for the WebSphere MQ
configuration file, and the PRINT LOG commands require the DLBL filename
INLOG for the VSAM file containing the system log queue. MQPUTIL uses logical
unit SYSIPT to read requests and writes output to SYS005, which should be
assigned to a PRINTER device. The MQPUTIL program uses the following general
syntax:

Table 8. MQPUTIL program general syntax

Column Content

1 to 5 Command name

6 Space

7 to 18 Subcommand

19 Space

20... Arguments

The supplied MQPUTIL program has four commands, which are:
v “PRINT”
v “RESET” on page 175
v “DUALQ” on page 175
v “UPDATE” on page 176

Note: You must run the MQPUTIL program once for each command that you
require.

PRINT
PRINT has seven options:
CONFIG

Prints the full WebSphere MQ configuration specified by the CONFIG
DLBL.

LOG Prints the system log in a formatted report specified by the INLOG DLBL.
LOG FROMQ system.log

Prints active messages only from the system log in a formatted report. The
LOG FROMQ option removes messages from the system log as it generates
its report. It does not include processed messages, those already logically
deleted, in the report.

Since the system log name is configurable, the name of the system log
queue must be provided as an parameter to the LOG FROMQ option.

The LOG FROMQ option uses the WebSphere MQ for z/VSE Batch
Interface (see “Using the batch interface” on page 178). This means the
z/VSE queue manager, and the batch interface must be active when this
option is used. If the Batch Interface uses an identifier other than

Batch utilities

174 WebSphere MQ for z/VSE System Management Guide

MQBISERV, the JCL to run MQPUTIL will also require a // SETPARM
MQBISRV card to identify the name of the appropriate batch interface.

In the PRINT LOG reports, each formatted message starts with a line of
hyphens (-) for informational or warning messages, pluses (+) for error
messages, and asterisks (*) for critical messages. This is to aid readability.

MESSAGES
Prints a Help Facility resolution report using the configuration file
specified by the CONFIG DLBL.

MONITOR
Prints all messages in the monitor queue in a formatted report using the
INLOG DLBL which contains the fileid of the VSAM file specified for the
monitor queue.

MONITOR FROMQ monitor.queue
Prints active messages only from the monitor queue in a formatted report.
The MONITOR FROMQ option removes messages from the monitor queue
as it generates its report. It does not include processed messages, those
already logically deleted, in the report. Since the monitor queue name is
configurable, the name of the monitor queue must be provided as a
parameter to the MONITOR FROMQ option.

The MONITOR FROMQ option uses the WebSphere MQ for z/VSE Batch
Interface. This means the z/VSE queue manager, and the batch interface
must be active when this option is used. If the Batch Interface uses an
identifier other than MQBISERV, the JCL to run MQPUTIL will also require
a // SETPARM MQBISRV card to identify the name of the appropriate
batch interface.

CCSID
For WebSphere MQ for z/VSE data conversion, the source and target code
page numbers are first checked against an internal list of valid code pages.
If the code page does not exist in this list, it is then checked against any
user code page defined by the administrator Code Page Definitions panels.
If the code page has not been defined as a user code page, then the data
conversion will be rejected. The PRINT CCSID option will allow you to
check if a code page will be accepted for data conversion.

Note: The fact that the code page is valid does not mean that the data
conversion will work. WebSphere MQ for z/VSE uses Language
Environment/VSE services to do the conversion. Please refer to “Code
page conversion” on page 1011 for requirements.

RESET
MSN nnnnnnnn

Resets all channel numbers to nnnnnnnn and checkpoint values to zero.

DUALQ
DUALQ has the following option:
TAKEOVER dual_queue_name

Allows the dual queue specified to become the primary queue, using the
following process:
1. The configuration file points to the cluster hosting the dual queue

instead of to the cluster hosting the primary queue.
2. All message headers in the dual queue are modified to contain the

name of the primary queue instead of the name of the dual queue.

This command may be used when a local queue becomes unavailable, for example,
when input or output errors occur, and a dual queue has been defined.

Batch utilities

Chapter 5. Utilities and interfaces 175

Note: You are recommended to backup the configuration file, using the VSAM
REPRO command, before using this command, because the file will be changed.
The configuration file can be restored when you have repaired the failure.

Refer to the sample JCL stream in Appendix D, “Sample JCL and programs,” on
page 977.

UPDATE
The MQPUTIL utility provides a means to perform an upgrade of the queue
manager's configuration constants. This upgrade is usually handled by the MQSU
transaction during installation or following the application of product maintenance.
See “Starting WebSphere MQ” on page 1067 for more information about the MQSU
transaction.

In regard to maintenance, whenever an WebSphere MQ for z/VSE panel or
message text is changed, an updated SYSIN.Z file is included in the relevant PTF.
This requires the batch job MQJSETUP to be run and then the CICS transaction
MQSU to be run before restarting WebSphere MQ for z/VSE. For convenience, so
that these maintenance steps can be managed exclusively from batch, you can use
the UPDATE command.

UPDATE has four options:

UPDATE
Updates the file CONFIG with data read from SYSIPT that follows this
command.

UPDATE UPPERCASE
Updates the file CONFIG with data read from SYSIPT that follows this
command. The UPPERCASE keyword forces all panel and message text to
be folded to uppercase.

UPDATE FROM MQFSSET
Updates the file CONFIG with data read from file MQFSSET that has been
loaded with the SYSIN.Z data. Refer to MQJSETUP.Z

UPDATE FROM MQFSSET UPPERCASE
Updates the file CONFIG with data read from file MQFSSET that has been
loaded with the SYSIN.Z data. Refer to MQJSETUP.Z. The UPPERCASE
keyword forces all panel and message text to be folded to uppercase.

These parameters contained in SYSIN.Z can be changed without having to edit the
SYSIN.Z by adding SET statements following the UPDATE command:

DATE The format of the data that appears in the administrator panels and in the
SYSTEM.LOG messages.

For example:
SET DATE nn

where nn has one of these values:

01 for MM/DD/YYYY
02 for YYYY/MM/DD
03 for YYYY/DD/MM
04 for YYYY/DDD
05 for DD/MM/YYYY

Batch utilities

176 WebSphere MQ for z/VSE System Management Guide

QM-SUBSYSID
The 4-character subsystem ID that can be used in building the resource
name used for WebSphere MQ for z/VSE security.

For example:
SET QM-SUBSYSID VSE1

QM-STATUS-SECURITY
Used to ENABLE WebSphere MQ for z/VSE security.

For example:
SET QM-STATUS-SECURITY ENABLED

QM-AUDIT-SECURITY
This is not currently used by WebSphere MQ for z/VSE security.

QM-COMPAT-MODE
Can be set to ENABLED or DISABLED.

For example, if you plan to use POWER® SLI to include SYSIN.Z data to be read
from SYSIPT:
// DLBL CONFIG,’WMQZVSE.mqfcnfg’,,VSAM,CAT=VSESPUC
// LIBDEF PHASE,SEARCH=(PRD2.WMQZVSE,prd2.sceebase)
// ASSGN SYS005,SYSLST
// EXEC MQPUTIL,SIZE=MQPUTIL
UPDATE
* $$ SLI MEM=SYSIN.Z,S=PRD2.WMQZVSE
/*

Alternatively, if you plan to use MQFSSET to provide input from MQFSSET file
(that has already been loaded by the MQJSETUP.Z batch job):
// DLBL CONFIG,’WMQZVSE.mqfcnfg’,,VSAM,CAT=?cat-name?
// DLBL MQFSSET,’WMQZVSE.mqfsset’,,VSAM,CAT=?cat-name?
// LIBDEF PHASE,SEARCH=(PRD2.WMQZVSE,prd2.sceebase)
// ASSGN SYS005,SYSLST
// EXEC MQPUTIL,SIZE=MQPUTIL
UPDATE FROM MQFSSET
/*

Note: The UPDATE command must have exclusive update access to the
configuration file (MQFCNFG). The WebSphere MQ for z/VSE system using the
configuration file cannot be active and the file cannot be open in CICS).

MQPEXCIC program
The MQPEXCIC utility can be used to alter VSE-specific MQ object attributes that
cannot be altered using Programmable Command Formats (PCF) or WebSphere
MQ commands (MQSC).

Specifically, the MQPEXCIC utility can be used to alter:
v Channel enabled flag.
v Channel dead-letter store flag.

The MQPEXCIC utility program uses the CICS Transaction Server EXCI facility
and so is only available when WebSphere MQ for z/VSE runs in a CICS TS
system. In addition, the utility requires:
v CICS TS GROUP DFH$EXCI to be installed.
v CICS TS IRC specified in the CICS startup JCL. IRC must be open in CICS.
v If CICS TS is running with SEC=YES, then the batch job must specify a // ID

statement with a valid user ID and password.

Batch utilities

Chapter 5. Utilities and interfaces 177

MQPEXCIC accepts input from SYSIPT. The syntax for this input is:
CHANNEL(channel-name) optional-parameters

where channel-name should match the name of a channel defined to the queue
manager, and optional-parameters must include one or more of the following:

DLQSTORE (Y/N)
Dead Letter Store flag

ENABLE (Y/N)
Enable flag

The following example shows how the MQPEXCIC utility can be run as a batch
job:
// JOB MQJEXCIC
// ID USER=userid,PWD=userpwd
// LIBDEF *,SEARCH=(PRD2.WMQZVSE,prd2.sceebase)
// ASSGN SYS005,SYSLST
// EXEC MQPEXCIC,PARM=’vtam-applid’,OS390
CHANNEL(my.channel) DLQSTORE(Y) ENABLE(Y)
/*
/&

In this example, vtam-applid is the VTAM APPLID of the CICS/TS system running
the WebSphere MQ for z/VSE queue manager. An optional keyword ",TRACE"
may be added to the vtam-applid parameter to include diagnosis information in the
batch output log.

Note: The MQPEXCIC utility requires OS390 emulation.

Using the batch interface
Unlike WebSphere MQ for other platforms, WebSphere MQ for z/VSE is
implemented as a CICS subsystem. This means that access to WebSphere MQ
objects using the message queue interface (MQI) is restricted to CICS applications.
To avoid this limitation, WebSphere MQ for z/VSE provides an interface for batch
programs.

The batch interface is designed to standardize the programming style of CICS and
batch programs. From a programming point of view, batch programs use calls
exactly the same way as CICS programs, that is, WebSphere MQ batch programs
issue calls such as MQCONN, MQOPEN, and MQPUT to access WebSphere MQ
objects.

Because WebSphere MQ objects are ultimately under the control of the CICS
subsystem, calls issued by batch programs are passed to the CICS partition for
processing. This is achieved using cross partition communication calls (XPCC).
Batch programs are not concerned with XPCC, because all relevant logic is built
into MQI calls.

WebSphere MQ for z/VSE provides a special CICS transaction, MQBI, that must be
running to process MQI calls issued by batch programs. This transaction must be
running for the batch interface to be available. MQBI waits for MQCONN calls
issued by batch programs. When these are received, MQBI starts a second
transaction, MQBX, which issues all MQI calls on behalf of the batch program.
There is one MQBX instance for each active batch connection.

Batch utilities

178 WebSphere MQ for z/VSE System Management Guide

The MQBX transaction runs for the duration of the logical WebSphere MQ
connection, that is, it runs until the batch program issues an MQDISC. If a batch
program issues a second MQCONN call, the batch interface starts a second MQBX
transaction for the duration of that WebSphere MQ connection. This design allows
batch programs to create logical units of work. It also means that multiple batch
programs (including multiple z/VSE subtasks) can establish concurrent
connections to the WebSphere MQ queue manager.

Note: Using the batch interface adds a performance overhead, because MQI calls
issued from batch programs are transferred to mirror CICS transactions.

Each WebSphere MQ queue manager running on a z/VSE system can activate a
single batch interface. Each interface is identified by a unique batch identifier
name. Batch identifiers must be unique within the context of the z/VSE system
(that is, remote z/VSE systems can use the same identifier names, but queue
managers running on the same z/VSE system must be configured with unique
identifiers).

The queue manager's batch identifier is configured in the global system definition
as a communications parameter (press PF9 from MQMT option 1.1):

The batch interface settings, as part of the communication parameters of the queue
manager's global system definition, include the batch interface identifier and the
batch interface auto-start parameters.

Batch interface identifier
The batch interface identifier is an 8-character alphanumeric name that uniquely
identifies the queue manager to batch MQI programs.

Batch programs identify which queue manager to connect to by including a //
SETPARM card in their JCL. The SETPARM parameter required to identify a queue
manager is MQBISRV. For example:

2011/10/31 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
21:29:46 Global System Definition CIC1
MQWMSYS Communications Settings A000

TCP/IP settings Batch Interface settings
Licensed clients . . : 00000 Batch Int. identifier: MQBSRV39
Adopt MCA : N Batch Int. auto-start: Y
Adopt MCA Check . . : N

Channel Auto-Definition
Auto-definition . . : N

SSL parameters Auto-definition exit :
Key-ring sublibrary :
Key-ring member . . :
SSL reset count . . :

PCF parameters
System command queue : SYSTEM.ADMIN.COMMAND.QUEUE
System reply queue . : SYSTEM.ADMIN.REPLY.QUEUE
Cmd Server auto-start: Y
Cmd Server convert . : Y
Cmd Server DLQ store : Y

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF6=Update PF10=Listeners PF11=Services

Figure 70. Batch interface identifier

Batch interface

Chapter 5. Utilities and interfaces 179

// SETPARM MQBISRV=’MQBISRV2’

Since batch JCL can only specify one SETPARM for the MQBISRV symbol, batch
programs can only connect to one queue manager per submission, even if there are
multiple queue managers running on the z/VSE system.

The default value for the batch interface identifier is MQBISERV. This is also the
default for batch programs that do not supply a //SETPARM card in their JCL.

If two queue manager's running on the same z/VSE system rely on the identifier
default, or are configured with the same identifier name, the queue manager that
services batch programs is unpredictable.

Batch interface auto-start
The batch interface auto-start parameter indicates whether or not the queue
manager should automatically start the batch interface (transaction MQBI) during
system initialization.

The auto-start parameter can be set as follows:

Y Start the batch interface during queue manager initialization.

N Do not start the batch interface during queue manager initialization.

By choosing to start the batch interface during queue manager initialization, the
batch interface will also be stopped automatically during queue manager
shutdown.

Starting the batch interface
The batch interface is started by running the MQBI transaction. This can be done
in native CICS, or by configuring CICS to run the batch interface start program
(MQPSTBI) during post initialization. MQBI is a long-running CICS transaction
that coordinates multiple simultaneous batch connections to the WebSphere MQ
queue manager.

Alternatively, the batch interface can be started automatically during queue
manager initialization by switching on the batch interface auto-start parameter in
the communications settings of the global system definition.

Stopping the batch interface
The batch interface can be stopped normally in one of three ways:
v In native CICS.
v From a batch program.
v During CICS system shutdown.

The batch interface can be stopped abnormally by shutting down CICS with the
immediate option, or by purging or forcing the MQBI transaction. The MQBISTOP
sample program provides an example of stopping the interface from a batch
program.

The batch interface can be stopped during CICS system shutdown by configuring
the CICS PLTSD to run program MQPSPBI. If so configured, the PLT macro for
MQPSPBI should precede the MQ shutdown program MQPSTOP. For example:

DFHPLT TYPE=ENTRY,PROGRAM=MQPSPBI
DFHPLT TYPE=ENTRY,PROGRAM=MQPSTOP

Batch interface

180 WebSphere MQ for z/VSE System Management Guide

The batch interface is stopped automatically if the batch interface auto-start
parameter is set on in the communications settings of the global system definition.

How to use the batch interface
1. Issue WebSphere MQ functions in your batch program, just as you do in CICS

programs. For example:
CALL ’MQCONN’ USING

QM-NAME-AREA
HCONN-ADDR-AREA
CCODE-ADDR-AREA
RCODE-ADDR-AREA.

2. Link-edit your program by including module MQBIBTCH. For example:
// JOB MQBATBLD
// OPTION CATAL
PHASE MYPROG,*
// EXEC IGYCRCTL,....

your program here
/*
INCLUDE MQBIBTCH
// EXEC LNKEDT
/&

3. Start the CICS interface, using the transaction MQBI.
4. Run your batch program.

The following JCL might be used to run a WebSphere MQ batch application
called MYPROG:

// JOB MQBATRUN
// SETPARM MQBISRV=’MQBISRV2’
// LIBDEF *,SEARCH=(PRD2.WMQZVSE,PRD2.SCEEBASE)
// EXEC MYPROG
/*
/&

Note that the SETPARM card identifies the queue manager the batch program
will connect to, and the LIBDEF SEARCH path must include the WebSphere
MQ installation library. If you omit the SETPARM for the MQBISRV symbol,
the batch program will attempt to communicate with a queue manager
configured with the batch identifier name MQBISERV.

Data integrity
To test for data integrity the following functions are used:
v MQCMIT commits all changes. This forces a CICS SYNCPOINT to be issued by

the mirror transaction.
v MQBACK rolls back all changes. The CICS mirror transaction issues EXEC CICS

SYNCPOINT ROLLBACK.

For both functions the syntax is as follows:
CALL ’funct’ USING

HCONN-ADDR-AREA
CCODE-ADDR-AREA
RCODE-ADDR-AREA.

Note:

1. None of the passed parameters is actually tested or used.
2. Under CICS, updates are not automatically committed. However, if a batch

program issues the MQDISC call while there are uncommitted requests, an
implicit syncpoint occurs.

Batch interface

Chapter 5. Utilities and interfaces 181

Verifying the batch interface
The batch program MQBICALL has been provided for this purpose. You can use
the following job as a test:

// JOB CALLER
// SETPARM MQBISRV=’batchid’
// LIBDEF *,SEARCH=(PRD2.WMQZVSE,PRD2.SCEEBASE)
* Put 5 messages into queue: ANYQ
// EXEC MQBICALL
PUT 05 ANYQ
/*
/&

The MQBICALL utility is provided with the WebSphere MQ installation library as
both an executable and a COBOL source file. It can be used as a basis for your
own WebSphere MQ batch applications.

Note that the SETPARM for symbol MQBISRV should be changed to identify an
appropriate queue manager batch interface identifier.

Restrictions on using the batch interface
1. Message lengths are restricted to 250k.
2. The MQINQ and MQSET MQI calls are limited as follows:

v A maximum of 10 selectors.
v A maximum of 10 integer attributes.
v 500 characters for character attribute buffer.

3. When the batch interface is started, a GETVIS for approx 260K of above the line
storage is issued. This GETVIS storage is used to support the next batch job to
connect to this batch interface. When a batch job starts, the batch interface will
start an interface task (MQBX) and pass it this previously acquired storage. The
MQBX task will use this storage for passing data to and from the batch job. The
batch interface will then acquire another work area (a GETVIS of 260K of above
the line storage) which will be used by the next batch job to connect to the
batch interface.
If this storage is not available then an MQBI0110W console message will be
issued to warn that any batch job attempting to connect will fail with CC=0
RC=2059. Only when a currently executing batch job finishes will the batch
interface be able to receive a connection from another batch job.
The batch interface will terminate with MQBI0101E console message if it is
unable to obtain the initial 260K of above the line storage.

Batch interface and the client bridge
The WebSphere MQ for z/VSE Batch Interface works co-operatively with the
WebSphere MQ client for z/VSE bridge. Batch applications, link-edited with the
Batch Interface MQI will run client connections if they identify a client bridge by
means of the // SETPARM MQBISRV.

Similarly, client applications, link-edited with the client bridge MQI will run batch
connections if they identify a Batch Interface via the // SETPARM MQBISRV.

The client bridge is described in “The WebSphere MQ client bridge” on page 637.

Batch interface

182 WebSphere MQ for z/VSE System Management Guide

VSAM file maintenance
All files used by WebSphere MQ are VSAM clusters. Most of these contain queues
and need to be reorganized from time to time.

A queue is an ordered suite of VSAM records in a KSDS organization. Each record
key is 56 bytes long, 48 being for the queue name, and eight for the Queue
Sequence Number (QSN) and other information. This QSN is assigned sequentially,
resulting in all keys being created in ascending order.

Even when a queue record is physically deleted from a queue, the space it
occupies is not reclaimed due to the way VSAM works. Therefore, unless you
reclaim the space used by these records, there is the possibility that you will obtain
a VSAM “space full” condition.

The queue dump facility allows you to rebuild an WebSphere MQ VSAM queue
file. This eliminates processed messages and fully regains VSAM freespace.

There are three ways to reclaim the space of deleted messages :
1. Use the MQPREORG utility.
2. Perform a VSAM DELETE and DEFINE to recreate the VSAM dataset. Only do

this if your queue is empty. If you have multiple queues in a single VSAM file
(not recommended), all queues should be empty.

3. Use the automatic reorganization feature available with your queue definition.
Automatic reorganization is available only for single queues defined in a single
VSAM file.

Delete all function
On the Maintain Queue Records screen (see “Queue maintenance” on page 142),
there is a function called “Delete All”. This function physically deletes all
messages, and resets the QSN to one, in order to reclaim freed space.

This is a useful tool to maintain the system log file for WebSphere MQ. The
advantage of this function is that it is an online function requiring no other manual
operation.

Attention: Note that this function deletes all messages and should not be used on
queue files that contain undelivered messages. It is not recommended that the
DELETE ALL option be used to maintain production queues as this can leave
VSAM indexes fragmented and lead to poor performance. Instead, the automatic
reorganization feature or the batch MQPREORG utility should be considered.

Operation
1. On the Start/Stop Queue Control screen, stop the desired queue; see Figure 54

on page 136.
2. If the desired queue is a transmission queue, stop only the inbound direction

first. When the queue depth reaches zero, stop the outbound direction and
close the associated sender channel.

3. If the desired queue is a destination queue with trigger capability, close the
associated receiver channel.

4. On the Maintain Queue Records screen enter the queue name, together with a
function of A, and press the PF6 (Update) function key; see Figure 58 on page
143.

5. Press the Enter key to display the result.

VSAM file maintenance

Chapter 5. Utilities and interfaces 183

6. After “Queue Processing Finished” is displayed, start the reorganized queue on
the Start/Stop Queue control screen.

MQPREORG function
WebSphere MQ includes a batch program utility called MQPREORG, and sample
JCL to run MQPREORG.

This utility can be used as a nightly, or weekly, queue maintenance facility on any
number of queue files. You can also specify a date and time to carry out the
procedure. The utility accepts the queue name from SYSIPT and the name of the
VSAM file from DLBL.

All messages are ignored, except those marked as “Written” (to be delivered after a
specified date and time) on the specified queue. The retained messages are
resequenced and placed in a workfile.

After the VSAM cluster is deleted and redefined, the retained and resequenced
messages are copied back into it. If none of the written messages is to be retained,
you can use a “delete-and-define” IDCAMS JCL to do the job.

Multiple queues sharing a VSAM cluster
Attention: Although it is possible for WebSphere MQ for z/VSE queues to share
the same VSAM file cluster, this is not advised. To give maximum independence to
data, each queue should be assigned a unique VSAM file cluster.

This is particularly important if the queue is defined for automatic reorganization.
See “Creating local queues” on page 97.

If there is more than one queue defined in a VSAM cluster, all queues have to be
processed before deleting and recreating this cluster. Otherwise, records from
unprocessed queues will be lost.

To help you reorganize all queues, you may use the “ALL” option instead of the
queue name, as follows:

// EXEC MQPREORG
ALL
/*

To reorganize a specific queue, enter one of the following commands:
// EXEC MQPREORG
LQ.INVOICE
/*

or
// EXEC MQPREORG
LQ.INVOICE YYYYNNDDHHMMSS
/*

where:
YYYY Is the year
NN Is the month
DD Is the day
HH Is the hour
MM Is the minute
SS Is the second

VSAM file maintenance

184 WebSphere MQ for z/VSE System Management Guide

Reorganizing queue files
This procedure is to be used only when the queue manager is not running.
1. If CICS is running, use CEMT to shut down and close the VSAM files you are

going to process.
2. Modify the sample JCL to include your system parameters and reorganization

requirements.
3. Process the job to run the batch program utility, MQPREORG, to reorganize the

VSAM files and reclaim all freed space.
4. If you performed step 1, use CEMT to open and enable the processed VSAM

files.

Sample JCL to run MQPREORG

* ** JOB JNM=MQJREORG,DISP=D,CLASS=0
* ** LST DISP=H,CLASS=Q,PRI=3
// JOB MQJREORG - Re-Organize WebSphere MQ for z/VSE queues.
* --*
* I M P O R T A N T I M P O R T A N T I M P O R T A N T *
* *
* Please change : *
* "* ** JOB" to "* $$ JOB" *
* "* ** LST" to "* $$ LST" *
* "* ** EOJ" to "* $$ EOJ" *
* *
* Fields filled with ?volid? have also to be modified to suit the *
* user specifications. *
* *
* --*
* *
* This job deletes delivered messages from an WebSphere MQ queue *
* in order to reclaim the DASD freed space. *
* *
* INPUT to MQPREORG : *
* (only one statement is allowed, delimited by one or more spaces)*
* *
* 1. Any QUEUE name delimited by one or more spaces *
* (In this JCL, only queue OS2_LOCAL is to be processed) *
* If there are any other queues in the same cluster, *
* they will be echoed into OUTPUTQ. *
* 2. If you want to process EVERY queue in a cluster, *
* please key in "ALL ". *
* *
* This sample assumes we want to reorganize queues defined to the *
* VSAM cluster MQFI002. Changes must be made for other clusters. *
* --*
* Licensed Materials - Property of IBM *
* *
* 5655-U97 *
* Copyright IBM Corp. 2008 *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
* --*
// DLBL INPUTQ,’WMQZVSE.MQFI002’,,VSAM,CAT=MQMCAT
// DLBL OUTPUTQ,’WMQZVSE.WORK.QUEUE’,,VSAM,CAT=MQMCAT
// EXEC IDCAMS,SIZE=AUTO
/* */
/* VERIFY VSAM FILE */
/* */

VERIFY FILE(INPUTQ)
IF MAXCC > 0 THEN CANCEL /* This means Cluster in use */

DELETE (WMQZVSE.WORK.QUEUE) -

VSAM file maintenance

Chapter 5. Utilities and interfaces 185

CL ERASE PURGE CAT(?CAT?)
SET MAXCC = 0
DEFINE CLUSTER -

(NAME (WMQZVSE.WORK.QUEUE) -
CYLINDERS (10 10) -
VOLUMES (?volid?) -
NONINDEXED) -

DATA -
(NAME (WMQZVSE.WORK.QUEUE.DATA) -
RECORDSIZE (57 32703) -
CISZ (8096)) -
CAT (?CAT?)

/*
// IF $MRC GT 0 THEN
// GOTO WRAPUP
// LIBDEF PHASE,SEARCH=(PRD2.WMQZVSE,PRD2.SCEEBASE)
// EXEC MQPREORG,SIZE=AUTO
OS2_LOCAL
/*
// IF $MRC GT 0 THEN
// GOTO WRAPUP
// EXEC IDCAMS,SIZE=AUTO

DELETE (WMQZVSE.MQFI002) -
CLUSTER NOERASE PURGE CATALOG (?CAT?)

SET MAXCC = 0
/* */

DEF CLUSTER(NAME(WMQZVSE.MQFI002) -
FILE(MQFI002) -
VOL(?volid?) -
RECORDS (3000 100) -
RECORDSIZE (200 4089) -
INDEXED -
KEYS(56 0) -
SHR(2)) -
DATA (NAME (WMQZVSE.MQFI002.DATA) CISZ(4096)) -
INDEX (NAME (WMQZVSE.MQFI002.INDEX) CISZ(1024)) -
CATALOG(?CAT?)

IF LASTCC > 0 THEN CANCEL
/* */
/* Execute REPRO only of the define was OK. */
/* */

REPRO INFILE(OUTPUTQ) OUTFILE(INPUTQ)
IF LASTCC > 0 THEN CANCEL

/* */
/* Delete only if REPRO was OK. */
/* */

DELETE (WMQZVSE.WORK.QUEUE) -
CL ERASE PURGE CAT(?CAT?)

/*
/. WRAPUP
/&
* ** EOJ

WebSphere MQ-CICS Bridge
The WebSphere MQ-CICS bridge enables an application, not running in a CICS
environment, to run a program or transaction on CICS and get a response back.
This non-CICS application can be run from any environment that has access to an
WebSphere MQ network that encompasses WebSphere MQ for z/VSE.

A program is a CICS program that can be invoked using the EXEC CICS LINK
command. It must conform to the DPL subset of the CICS API. That is, it must not
use CICS terminal or syncpoint facilities.

VSAM file maintenance

186 WebSphere MQ for z/VSE System Management Guide

A transaction is a CICS transaction designed to run on a 3270 terminal. The
transaction can use BMS or TC commands. It can be conversational or part of a
pseudoconversation. It is permitted to issue syncpoints. For further details about
the transactions that can be run, see Part 5 of the CICS Internet and External
Interfaces Guide (“Bridging to 3270 transactions”).

When to use the CICS bridge
The CICS bridge allows an application to run a single CICS program or a “set” of
CICS programs (often referred to as a unit of work). It caters for the application
that waits for a response to come back before it runs the next CICS program
(synchronous processing), and for the application that requests one or more CICS
programs to run but does not wait for a response (asynchronous processing).

The CICS bridge also allows an application to run a 3270-based CICS transaction,
without knowledge of the 3270 data stream.

The CICS bridge uses standard CICS and WebSphere MQ security features and can
be configured to authenticate, trust, or ignore the requestor's user ID.

Given this flexibility, there are any many instances where the CICS bridge can be
used. For example, when you want to:
v Write a new WebSphere MQ application that needs access to logic or data (or

both) that reside on your CICS server.
v Be able to run CICS programs from a Lotus® application.
v Be able to access your CICS applications from:

– Your WebSphere MQ Classes for Java client application.
– A web browser using the WebSphere MQ Internet gateway.

For information about how to write an WebSphere MQ-CICS bridge application,
see the WebSphere MQ Application Programming Guide, or the Using WebSphere MQ
for z/VSE redbooks publication, SG24-5647-01.

System configuration for the CICS bridge
When you are setting your system up, you should ensure that:
v Both WebSphere MQ and CICS are running in the same z/VSE system.
v The WebSphere MQ request queue is local to the CICS bridge. The response

queue, however, can be local or remote.
v The CICS bridge tasks run in the same CICS as the bridge monitor. The user

programs can be in the same or a different CICS system.

Running CICS DPL programs
Data necessary to run the program is provided in the WebSphere MQ message.
The bridge builds a COMMAREA from this data, and runs the program using
EXEC CICS LINK.

The following takes place when running CICS DPL programs over the MQ CICS
Bridge:
1. A message, with a request to run a CICS program, is put on the request queue.
2. The CICS bridge monitor task, which is constantly browsing the queue,

recognizes that a “start unit of work” message is waiting
(CorrelId=MQCI_NEW_SESSION).

WebSphere MQ-CICS Bridge

Chapter 5. Utilities and interfaces 187

3. Relevant authentication checks are made, and a CICS DPL bridge task is started
with the appropriate authority (see “Security considerations for the CICS
bridge” on page 192).

4. The CICS DPL bridge task removes the message from the request queue.
5. The CICS DPL bridge task builds a COMMAREA from the data in the message

and issues an EXEC CICS LINK for the program requested in the message.
6. The program returns the response in the COMMAREA used by the request.
7. The CICS DPL bridge task reads the COMMAREA, creates a message, and puts

it on the reply-to queue specified in the request message. All response messages
(normal and error, requests and replies) are put to the reply-to queue with
default context.

8. The CICS DPL bridge task ends.

A unit of work can be just a single user program, or it can be multiple user
programs. There is no limit to the number of messages you can send to make up a
unit of work.

In this scenario, a unit of work made up of many messages works in the same
way, with the exception that the CICS bridge task waits for the next request
message in the final step unless it is the last message in the unit of work.

Running CICS 3270 transactions
Data necessary to run the transaction is provided in the WebSphere MQ message.
The CICS transaction runs as if it has a real 3270 terminal, but instead uses one or
more MQ messages to communicate between the CICS transaction and the
WebSphere MQ application.

Unlike traditional 3270 emulators, the bridge does not work by replacing the
VTAM flows with WebSphere MQ messages. Instead, the message consists of a
number of parts called vectors, each of which corresponds to an EXEC CICS
request. The application is therefore talking directly to the CICS transaction, rather
than by means of an emulator, using the actual data used by the transaction
(known as application data structures or ADSs).

The following takes place when running CICS 3270 transactions over the MQ CICS
Bridge:
1. A message, with a request to run a CICS transaction, is put on the request

queue.
2. The CICS bridge monitor task, which is constantly browsing the queue,

recognizes that a “start unit of work” message is waiting
(CorrelId=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS 3270 bridge task is started
with the appropriate authority (see “Security considerations for the CICS
bridge” on page 192).

4. The MQ-CICS bridge exit removes the message from the queue and changes
task to run a user transaction.

5. Vectors in the message provide data to answer all terminal-related input EXEC
CICS requests in the transaction.

6. Terminal-related output EXEC CICS requests result in output vectors being
built.

7. The MQ-CICS bridge exit builds all the output vectors into a single message
and puts this on the reply-to queue.

WebSphere MQ-CICS Bridge

188 WebSphere MQ for z/VSE System Management Guide

8. The CICS 3270 bridge task ends.

Note: The CICS bridge exit is an WebSphere MQ-supplied CICS exit associated
with the bridge transaction.

A traditional CICS application usually consists of one or more transactions linked
together as a pseudoconversation. In general, each transaction is started by the
3270 terminal user entering data onto the screen and pressing an AID key. This
model of application can be emulated by an WebSphere MQ application. A
message is built for the first transaction, containing information about the
transaction, and input vectors. This is put on the queue. The reply message
consists of the output vectors, the name of the next transaction to be run, and a
token that is used to represent the pseudoconversation. The WebSphere MQ
application builds a new input message, with the transaction name set to the next
transaction and the facility token set to the value returned on the previous
message. Vectors for this second transaction are added to the message and the
message put on the queue. This process is continued until the application ends.

An alternative approach to writing CICS applications is the conversational model.
In this model, the original message might not contain all the data to run the
transaction. If the transaction issues a request that cannot be answered by any of
the vectors in the message, a message is put onto the reply-to queue requesting
more data. The WebSphere MQ application receives this message and puts a new
message back to the queue with a vector to satisfy the request.

For more information, see the CICS Internet and External Interfaces Guide.

Customizing the CICS bridge
Before you can run the bridge, you must ensure that your VSE system has both the
CICS and WebSphere MQ components in place:
1. On your CICS system:

Run the resource definition utility DFHCSDUP, using the sample MQJCSD24.Z
as input, to define the bridge transactions and programs. Note that this sample
contains definitions for all WebSphere MQ for z/VSE CICS objects. The
MQJCSD24.Z JCL sample is normally run when WebSphere MQ is installed,
and may not need to be rerun.
MQ Bridge-related definitions include:

CKBR Bridge monitor transaction

CKBP Bridge ProgramLink transaction

CSQCBR00
Bridge monitor program

CSQCBP00
Bridge ProgramLink program

CSQCBP10
Bridge ProgramLink abend handler program

CSQCBE30
3270 bridge exit for WebSphere MQ

CSQCBDCI
Bridge data conversion program for requests

CSQCBDCO
Bridge data conversion program for replies

WebSphere MQ-CICS Bridge

Chapter 5. Utilities and interfaces 189

Note:

a. The bridge requires CICS Transaction Server for z/VSE Version 1 Release
1.1, or later.

b. The bridge uses CICS temporary storage IDs with the prefix CKB. You
should make sure these are not recoverable.

c. By default, your CICS DPL programs run under transaction code CKBP. You
need to change the TASKDATALOC attribute to “BELOW” if you are going
to run 24-bit programs, otherwise you will get a CICS abend AEZC. If you
want to run your programs under different transaction codes, you need to
install copies of the definition of CKBP, changing the transaction names to
ones of your choice. DPL bridge transactions must not be routed to a remote
system.

d. Support for the MQ CICS Bridge was introduced to WebSphere MQ for
z/VSE with APAR PQ93406.

2. On your WebSphere MQ system:
a. Define a local queue for the request messages.

The default MQ CICS Bridge request queue is
SYSTEM.CICS.BRIDGE.QUEUE. You must define a queue specifically for
bridge request messages. You can use the default name, or choose a
different name. The request queue must have the following attribute:

SHARE
Allows both the monitor and the bridge tasks to read the queue.

Note: The WebSphere MQ queue defined to hold requests for the CICS
bridge must not be used by any other application (other than those putting
requests to the queue). Each CICS bridge monitor task started requires its
own WebSphere MQ queue to hold requests.

b. Define one or more queues to hold the responses, as required. If your
response queue is remote, you must define a transmission queue to hold the
responses before they are forwarded to the response queue, and a remote
queue that points to the transmission queue.
If the bridge is to be accessed remotely from WebSphere MQ for z/VSE,
you need channel and transmission queue definitions, and a remote queue
definition for the request queue. For more information about using remote
queues, see the WebSphere MQ Intercommunication manual.

3. Security
You might need to add ESM definitions, depending on the authentication
option you choose when starting the MQ CICS Bridge monitor. For more
information about WebSphere MQ for z/VSE security and ESM definitions, see
Chapter 12, “Security,” on page 651.

Starting the CICS bridge
To start the bridge, you need to run the CKBR transaction with up to three
parameters:

Q=queue_name
Where queue_name is the name of the queue holding requests.

If you do not specify a name, the default is:
SYSTEM.CICS.BRIDGE.QUEUE

Remember that names of objects within WebSphere MQ are case-sensitive.

WebSphere MQ-CICS Bridge

190 WebSphere MQ for z/VSE System Management Guide

AUTH=sec_option
Where sec_option is the security option. Valid security options include:

LOCAL
Bridge runs under CICS DFLTUSER. No userid or password
checking is performed. This is the default.

IDENTIFY
Bridge runs under MQMD userid. Userid is trusted, no password
checking is performed.

VERIFY_UOW
Bridge runs under MQMD userid if password in MQCIH of start
UOW is valid.

VERIFY_ALL
As for VERIFY_UOW, password required and checked for all
subsequent messages in UOW.

WAIT=secs
Where secs is the number of seconds that you want the bridge task to wait
for second and subsequent requests before timing out when processing a
unit of work that runs many user programs.

The default wait time is unlimited.

It is preferable to specify a wait time. If you do not specify a wait time, the
CICS bridge might inhibit CICS or WebSphere MQ shut down.

DISCINT=secs
Where secs is the number of seconds that you want the bridge task to wait
for a CICS bridge request message before terminating.

This option should be used when the bridge is started as a trigger, rather
than as a long running transaction. If the bridge (transaction CKBR) is to
be started as a trigger, the startup parameters are specified in the queue's
USERDATA field, and it is recommended to use trigger type EVERY and
MAX STARTS=1.

Start the CKBR task running by using one of the following methods:
v Input a single line from a terminal (3270 or other). Note that the terminal is not

freed until the monitor ends. The format is:
CKBR Q=queue_name,AUTH=sec_option,WAIT=secs

For example:
CKBR Q=MyQueue,AUTH=IDENTIFY,WAIT=30

v Issue an EXEC CICS START for the CKBR program with the parameters as data.
v Issue an EXEC CICS LINK to the program CSQCBR00 with the parameters as

data in the commarea.
v In the local CICS bridge request queue specify TRIGTRAN('CKBR'),

TRIGTYPE(EVERY) and MAXSTART(1), with any parameters for the AUTH,
WAIT and DISCINT options in USERDATA.

If a high volume of requests is expected, you could consider starting a second or
subsequent monitor task. To do this, you must create another request queue for the
sole use of this monitor (and the bridge tasks it starts).

WebSphere MQ-CICS Bridge

Chapter 5. Utilities and interfaces 191

Shutting down the CICS bridge
You can shut down the CICS bridge by:
v Shutting CICS down.
v Shutting WebSphere MQ down.
v Using DISCINT when starting the Bridge. If no CICS bridge request message

arrives on the request queue within the DISCINT number of seconds, then the
bridge task will finish.

Whichever method you choose, it attempts to allow all the requests in progress to
complete first. However, if this is not possible, the problems encountered are
reported on the MQ system log.

Restarting the monitor
The monitor requires exclusive use of the request queue during its initialization.
Consequently, the monitor cannot be restarted until all bridge tasks for the queue
have terminated.

Security considerations for the CICS bridge
When you run the CICS bridge, you can specify the level of authentication you
want to take place. If requested, the bridge checks the user ID and password
extracted from the WebSphere MQ request message before running the CICS
program named in the request message.

Note:

1. To fully exploit security in WebSphere MQ for z/VSE, you must have an
External Security Manager (ESM) installed and enabled, and the MQ security
feature also enabled.

2. If you have not specified a user ID or password in a message, the bridge task
runs with the LOCAL level of authentication, even if you started the bridge
monitor with a different authentication option.

3. The options that include password (or passticket) validation require a CICS
bridge header (MQCIH) to be provided. For more information about the
MQCIH header, see the WebSphere MQ Application Programming Reference.

The level of authentication you can use is:

LOCAL
This is the default. CICS programs run by the bridge task are started with
the CICS DFLTUSER user ID and therefore run with the authority
associated with this user ID. There is no checking of user IDs or
passwords. If a CICS program is run that tries to access protected
resources, it will probably fail.

IDENTIFY
When you start the monitor task with the IDENTIFY authentication option,
the bridge task is started with the user ID specified in the message
(MQMD). CICS programs run by the bridge run with the user ID extracted
from the MQMD. There is no password checking and the user ID is treated
as trusted.

VERIFY_UOW
When you start the monitor task with the VERIFY_UOW authentication
option, the monitor task checks the user ID and password by issuing the
EXEC CICS VERIFY PASSWORD command before starting the bridge task.

WebSphere MQ-CICS Bridge

192 WebSphere MQ for z/VSE System Management Guide

CICS programs run by the bridge run with the user ID extracted from the
MQMD. If the user ID or password is invalid, the request fails with return
code MQCRC_SECURITY_ERROR.

VERIFY_ALL
This is the same as VERIFY_UOW except that the bridge task checks the
user ID and password in every message. This is not applicable for 3270
transactions.

If you have not specified a user ID in a message, or you have not provided a
password, the CICS program started by the CICS bridge runs with the user ID set
to the CICS DFLTUSER, regardless of the option requested. If you want more than
one level of authentication checking performed, run a monitor task for each level
you need.

Using and writing WebSphere MQ-CICS bridge applications
The WebSphere MQ-CICS bridge was originally available for WebSphere MQ for
OS/390® only.

Extensive information regarding the bridge and, in particular, how to use and
write bridge applications, can be found in the WebSphere MQ Application
Programming Guide and the WebSphere MQ Application Programming Reference.

In addition, information about the CICS Bridge in general can be found in the
CICS Transaction Server for z/VSE Version 1 Release 1.1 and the CICS External
Interfaces Guide.

WebSphere MQ-CICS Bridge

Chapter 5. Utilities and interfaces 193

194 WebSphere MQ for z/VSE System Management Guide

Chapter 6. Problem determination

This chapter suggests reasons for some of the problems you may have using
WebSphere MQ for z/VSE. The process of problem determination is that you start
with the symptoms and trace them back to their cause.

Not all problems can be solved immediately, for example, performance problems
caused by the limitations of your hardware. Also, if you think that the cause of the
problem is in the WebSphere MQ code, contact your IBM Support Center.

The cause of your problem could be in:
v WebSphere MQ setup and local queue operation.
v The network.
v The application.
v Other areas of investigation.

The sections that follow raise some fundamental questions that you need to
consider. Work through the questions, making a note of anything that might be
relevant to the problem.

WebSphere MQ setup and local queue operation
You should ensure that WebSphere MQ for z/VSE is installed correctly and
working with local queues before you investigate any other problems.

Has WebSphere MQ run successfully before?
If WebSphere MQ has not run successfully before, it is likely that you have not yet
set it up correctly. See “WebSphere MQ installation verification test” on page 32 to
check that you have carried out all the steps correctly, and set up a SYSTEM.LOG
queue as follows:
1. Define a queue name as SYSTEM.LOG using:

a. A physical file name MQFLOG using the file name from the file control
table.

b. A maximum queue depth of 5 000.
See step 4d on page 31 and step 4f on page 31 in “WebSphere MQ installation
verification test” on page 32 for information about defining a queue.

2. Ensure the system log queue name, usually SYSTEM.LOG, is named in the
queue manager's global system definition (accessible using MQMT option 1.1).

You can browse the log queue by selecting 4, Browse Queue Records, on the
Master Terminal Main Menu, as described in “Browse function” on page 152.

See “Global system definition” on page 82 for more information.

Is local queue operation working?
This may require the creation of a local queue definition as described in
“WebSphere MQ initialization” on page 28. In addition, check that the VSAM files
referenced in the queue definition are open and correctly enabled.

Use:

© Copyright IBM Corp. 2008, 2013 195

CEMT INQUIRE FILE (filename)

to ensure that the VSAM file associated with the queue is accessible.

Use the instructions described in “Local queue verification test” on page 32 to test
a local queue. Ensure that you can:
v Put and get messages to the local queue, using the supplied test transaction

TST2.
v Browse the queue correctly using the MQMT System Administration Browse

function.

Network problems
Before WebSphere MQ for z/VSE can use an inbound or outbound channel
connection to an SNA-connected WebSphere MQ platform, a connection must
already be established between CICS for z/VSE and the remote platform.

The person responsible for the VTAM and CICS definitions in your enterprise
should perform the following investigations.

Investigating SNA problems
If an attempt to start a channel fails, it may be the result of a session failure. If it is
not possible to establish a session between CICS and the LU for the remote
channel endpoint, either before or during the channel attempting to start, the
connection fails.

Enter the following command if you suspect that a session failure is causing the
problem:

D NET,ID=<remote lu name>,E

This gives details of the LU which should be in session with CICS, and also lists
any sessions it currently has.

Note:

1. Look at the session limit for the LU. If it is shown as one for an independent
LU, there is a problem with the SNA definitions.

2. See if <minor node name> is listed amongst the sessions. If it is, there is a
session between the LU and CICS. This indicates that the problem may not be
at the network level, or that there are insufficient sessions between the two LUs
to support a new channel request.
Enter the command again, to see whether for this session, the send and receive
counts have changed, indicating the session is in use.

If the command returns “PARAMETER VALUE INVALID”, this means that VTAM
does not know the <remote lu name>. Either you entered the name incorrectly, or
VTAM cannot locate it. Try defining the name again and attempt to start the
channel.

If VTAM is able to display <remote lu name>, try the following command in CICS:
CEMT I CONN(<remote conn>)

This shows the status of the connection from CICS to the remote system. Next to
the entry is an indication showing it to be INService or OUTservice and ACQuired
or RELeased. The status needs to be Inservice and Acquired.

WebSphere MQ setup

196 WebSphere MQ for z/VSE System Management Guide

CEMT I MODE CONN(<remote conn>)

This command displays the status of the mode names associated with the
connection. For connections supporting parallel sessions, there will be at least two
mode names, SNASVCMG and <logmode 1>, showing the number of active
sessions for each.

If the SNASVCMG group has no sessions active, the connection is in a RELeased
state, rather than an ACQuired state.

These sessions are SNA services manager sessions, and not used by WebSphere
MQ channels. However, at least one of the two needs to be active for the
connection to be usable.

If the remote LU has been incorrectly defined, so that it has a session limit of one,
it is possible that one SNASVSMG session is active, but that no other sessions can
be established, including those required by the WebSphere MQ channel.

The <logmode 1> sessions may be used by WebSphere MQ channels.

For single session connections, one mode name, <logmode 2>, is shown with just
one session in the group.

The WebSphere MQ channel must have been set up to use the logon mode
<logmode 1>, or <logmode 2>, as appropriate.

Investigating TCP/IP problems
Is TCP/IP able dynamically to establish a session between nodes in the network?
Use the following instruction to test a connection to a remote TCP/IP node:

[ping hostname]

If you are unable to “ping” the remote TCP/IP node successfully, inform your
z/VSE systems programmer who installed TCP/IP.

Under z/VSE, the ping command can be entered from the console. For example:
msg f7
AR 0015 1I40I READY
F7-0111 IPN300I Enter TCP/IP Command
111 ping 127.0.0.1
F7 0109 TCP910I Client manager connected. Generated on 10/28/01 at 23.57
F7 0109 TCP915I PING
F7 0109 TCP910I PING Ready:
F7 0109 TCP915I SET HOST= 127.0.0.1
F7 0109 TCP910I 127.000.000.001
F7 0109 TCP910I PING Ready:
F7 0109 TCP915I PING
F7 0109 TCP910I PING 1 was successful, milliseconds: 00011.
F7 0109 TCP910I PING 2 was successful, milliseconds: 00000.
F7 0109 TCP910I PING 3 was successful, milliseconds: 00000.
F7 0109 TCP910I PING 4 was successful, milliseconds: 00000.
F7 0109 TCP910I PING 5 was successful, milliseconds: 00003.
F7 0109 TCP910I PING Ready:
F7 0109 TCP915I QUIT
F7 0111 IPN300I Enter TCP/IP Command

Note that the IP address or hostname used should match the IP address or
hostname used in a sender channel definition. For example, if messages are to be

Network

Chapter 6. Problem determination 197

sent from z/VSE to a remote system, a sender channel will be defined that
identifies that remote system by either IP address or hostname.

It should also be noted that some systems can deactivate or restrict ping requests.
If this is the case, the TCP/IP administrator of the remote system should provide
an alternative method to test connectivity between remote systems.

When messages are to be sent to z/VSE, the remote system should be able to ping
the z/VSE system. Once again, if ping activity is restricted or disabled, the TCP/IP
administrator should provide an alternative method to test connectivity between
the two systems.

Investigating SSL problems
If secure sockets layer (SSL) services are configured for a sender, receiver or
server-connection channel, that channel may terminate prematurely if an SSL error
occurs. Such failures generally involve error messages written to the SYSTEM.LOG.
Assuming logging is active for error and critical messages, the SYSTEM.LOG
should always be checked in the event of a channel failure. Note that the severity
of messages logged to the system log can be set from MQMT option 1.1.

A channel is SSL enabled if the SSL Cipher Specification parameter is specified in
the channel definition. All other SSL parameters are ignored if this parameter is not
set (that is, it is left blank).

SSL enabled channels require SSL services installed and active on both the local
and remote systems. In addition, the SSL configuration parameters associated with
the local channel definition, generally, must match the parameters associated with
the remote channel definition. These should be checked in the event of an SSL
failure. Generally, SSL channels may fail due to one of the following situations:
v The key-ring sublibrary name defined in the Global System Definition

communications parameters does not identify a valid SSL key-ring sublibrary.
v The key-ring member name defined in the Global System Definition

communications parameters does not identify a valid member set in the key-ring
sublibrary for .PRVK and .CERT files.

v The SSL cipher specification of the channel definition is invalid or not supported
by both the local and remote SSL subsystems.

v SSL client authentication of the channel definition is required, but the remote
system did not provide an X.509 PKI certificate during SSL initial negotiation.

v The SSL peer attributes of the channel definition identify specific features
expected of the remote system's certificate that do not match.

v The local and remote SSL subsystems are incompatible or running different
version levels.

Does the problem affect specific parts of the network?
You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the
intercommunication component of WebSphere MQ has been started.

Check that messages are reaching the transmission queue, and check the local
queue definition of the transmission queue and any remote queues.

Network

198 WebSphere MQ for z/VSE System Management Guide

Have you made any network-related changes, or changed any WebSphere MQ
definitions, that might account for the problem?

Applications
The errors in the following list illustrate the most common causes of problems
encountered while running WebSphere MQ programs. You should consider the
possibility that the problem with your WebSphere MQ system could be caused by
one or more of these errors:
v Assuming that queues can be shared, when they are in fact exclusive.
v Passing incorrect parameters in an MQI call.
v Passing insufficient parameters in an MQI call. This may mean that MQI cannot

set up completion and reason codes for your application to process.
v Failing to check return codes from MQI requests.
v Passing variables with incorrect lengths specified.
v Passing parameters in the wrong order.
v Failing to initialize MsgId and CorrelId correctly.

Are there any error messages?
WebSphere MQ uses the system log to capture messages concerning the operation
of WebSphere MQ itself, the queue manager, and error data coming from the
channels that are in use. Check the system log to see if any messages have been
recorded that are associated with your problem.

See “System log” on page 209 for information about the contents of the system log.

Are there any return codes explaining the problem?
If your application gets a return code indicating that a Message Queue Interface
(MQI) call has failed, refer to the WebSphere MQ Application Programming Reference
manual for a description of that return code.

Can you reproduce the problem?
If you can reproduce the problem, consider the conditions under which it is
reproduced:
v Is it caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped.

v Is it caused by a program? Does it fail on all WebSphere MQ systems and all
queue managers, or only on some?

v Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application to see if it is in error.

Have any changes been made since the last successful run?
When you are considering changes that might recently have been made, think
about the WebSphere MQ system, and also about the other programs it interfaces
with, the hardware, and any new applications. Consider also the possibility that a
new application that you are not aware of might have been run on the system.
v Have you changed, added, or deleted any queue definitions?

Network

Chapter 6. Problem determination 199

v Have you changed or added any channel definitions? Changes may have been
made to either WebSphere MQ channel definitions or any underlying
communications definitions required by your application.

v Do your applications deal with return codes that they might get as a result of
any changes you have made?

Has the application run successfully before?
If the problem appears to involve one particular application, consider whether the
application has run successfully before.

Before you answer Yes to this question, consider the following:
v Have any changes been made to the application since it last ran successfully?

If so, it is likely that the error lies somewhere in the new or modified part of the
application. Take a look at the changes and see if you can find an obvious
reason for the problem. Is it possible to retry using a back level of the
application?

v Have all the functions of the application been fully exercised before?
Could it be that the problem occurred when part of the application that had
never been invoked before was used for the first time? If so, it is likely that the
error lies in that part of the application. Try to find out what the application was
doing when it failed, and check the source code in that part of the program for
errors.
If a program has been run successfully on many previous occasions, check the
current queue status, and the files that were being processed when the error
occurred. It is possible that they contain some unusual data value that causes a
rarely used path in the program to be invoked.

v Does the application check all return codes?
Has your WebSphere MQ system been changed, perhaps in a minor way, such
that your application does not check the return codes it receives as a result of
the change. For example, does your application assume that the queues it
accesses can be shared? If a queue has been redefined as exclusive, can your
application deal with return codes indicating that it can no longer access that
queue?

v Does the application run on other WebSphere MQ systems?
Could it be that there is something different about the way that this WebSphere
MQ system is set up which is causing the problem? For example, have the
queues been defined with the same message length or priority?

If the application has not run successfully before
If your application has not yet run successfully, you need to examine it carefully to
see if you can find any errors.

Before you look at the code, and depending upon which programming language
the code is written in, examine the output from the translator, or the compiler and
linker, if applicable, to see if any errors have been reported.

If your application fails to translate, compile, or link, it will also fail to run if you
attempt to invoke it.

If the documentation shows that each of these steps was accomplished without
error, you should consider the coding logic of the application. Do the symptoms of
the problem indicate the function that is failing and, therefore, the piece of code in

Applications

200 WebSphere MQ for z/VSE System Management Guide

error? See “Applications” on page 199 for some examples of common errors that
cause problems with WebSphere MQ applications.

Using the WebSphere MQ API monitor
By selectively using the WebSphere MQ API monitor, you can:
v Track precisely which WebSphere MQ API issues an application.
v Establish which return codes are passed.

The WebSphere MQ API monitor is started and stopped using the MQMT system
administration transaction option 2.1, which is used to toggle the API monitor on
and off.

Once the API monitor is started, the application to be tested can be processed, and
the API monitor stopped.

Note: The API monitor should be started for limited periods only. It traces the
processing of all running applications, and consequently makes heavy usage of
system resources.

After the API monitor is toggled off, the SYSTEM.MONITOR queue can be
browsed using the MQMT system administration browse facility. Each message in
the queue represents the result of an WebSphere MQ API call.

12/31/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
12:03:36 Start / Stop Queue CIC1
MQWMSS A003

System Information
System Status : SYSTEM IS ACTIVE
Queue Status : Queuing System is active.
Channel Status : Channel System is active.
Monitor Status : Monitor is not active.

Single Queue Request
Queue Name :
Function : S=Start, X=Stop, R=Refresh from Config
Mode : I=Inbound, O=Outbound, B=Both

INBOUND Status :
OUTBOUND Status :

Queuing System Request
Function : M S=Start, X=Stop, or M=Monitor

Please enter a Queue name.
Enter=Display PF2=Return PF3=Exit PF6=Update

Figure 71. API monitor

Applications

Chapter 6. Problem determination 201

An MQCONN request is displayed in Figure 72. However, for more information,
display the text in hexadecimal format, as shown in Figure 73.

The layout of the displayed message is as follows:
01 MQ-MONITOR-RECORD.

05 MQ-MON-TRAN-ID PIC X(4) VALUE SPACES.
05 MQ-MON-TERM-ID PIC X(4) VALUE SPACES.
05 MQ-MON-CICS-TASKN PIC S9(8) COMP VALUE ZERO.
05 FILLER PIC X(12) VALUE SPACES.

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:40:22 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A000

Object Name: SYSTEM.MONITOR
QSN Number : 00000001 LR- 0, LW- 12, DD-MQFMON

Queue Data Record
Record Status : Written. PUT date/time : 20061120084101
Message Size : 00000428 GET date/time :
Offset+....|....+....|....+....|....+....|....+....|....+....|....+....|
00000 MQER........ 01 CONN/......./........
00070 ..
00140
00210
00280
00350
00420

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF9=Hex PF11=MD PF12=Monitor

Figure 72. API monitor - browse

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:41:09 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A000

Object Name: SYSTEM.MONITOR
QSN Number : 00000001 LR- 0, LW- 12, DD-MQFMON

Queue Data Record
Record Status : Written. PUT date/time : 20061120084101
Message Size : 00000428 GET date/time :
Offset+....|....+....|....+....|....+....|....+....|....+....|....+....|
00000 MQER........ 01 CONN/......./........

DDCD00000003444444444444FF44444444444444CDDD44440370060003700600000000
4859000000020000000000000100000000000000365500000330814C0330815C000000

00070 ..
0044
00

00140
44
00

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF7=Up PF8=Down PF9=Char PF11=MD PF12=Monitor

Figure 73. API monitor - hexadecimal format

Applications

202 WebSphere MQ for z/VSE System Management Guide

05 MQ-MON-SYSTEM-NUM PIC 99 VALUE 01.
05 FILLER PIC X(14) VALUE SPACES.
05 MQ-MON-FUNCTION PIC X(4) VALUE SPACES.

88 MQ-MON-CONNECT VALUE ’CONN’, ’CONI’
’MCCO’.

88 MQ-MON-CONNECT-VIA-APPL VALUE ’CONN’, ’CONI’.
88 MQ-MON-CONNECT-VIA-INTERFACE VALUE ’CONI’.
88 MQ-MON-MCP-CONNECT VALUE ’MCCO’.
88 MQ-MON-OPEN VALUE ’OPEN’.
88 MQ-MON-PUT VALUE ’PUT ’.
88 MQ-MON-INQ VALUE ’INQ ’.
88 MQ-MON-GET VALUE ’GET ’.
88 MQ-MON-CLOSE VALUE ’CLOS’.
88 MQ-MON-DISCONNECT VALUE ’DISC’.

05 FILLER PIC X(4) VALUE SPACE.
05 MQ-MON-START-ABSTIME PIC S9(15) COMP-3 VALUE ZERO.
05 MQ-MON-END-ABSTIME PIC S9(15) COMP-3 VALUE ZERO.
05 MQ-MON-RESULTS.

10 MQ-MON-CCODE PIC S9(8) COMP VALUE ZERO.
10 MQ-MON-RCODE PIC S9(8) COMP VALUE ZERO.

05 FILLER PIC X(12) VALUE SPACES.
05 MQ-MON-FUNCTION-DEP-INFO VALUE SPACES.

10 MQ-MON-QM-NAME PIC X(48).
10 MQ-MON-Q-NAME PIC X(48).
10 MQ-MON-RESOLVED-Q PIC X(48).
10 FILLER PIC X(200).

PF12 activates a special monitor information screen as follows:

It is possible to follow the flow of WebSphere MQ API calls using a specific
application. The application is identified by its CICS transaction code, terminal
identifier, and CICS task number.

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:42:27 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A000

Object Name: SYSTEM.MONITOR
QSN Number : 00000001 LR- 0, LW- 12, DD-MQFMON

Queue Data Record
Record Status : Written. PUT date/time : 20061120084101
Message Size : 00000428 GET date/time :
Queue line.
Transaction ID. . . MQER
Terminal ID
CICS Task 50
Function. CONN
Start Date/Time . . 2006/11/20 08:41:01
End Date/Time . . 2006/11/20 08:41:01 0.01
Result (CC RC) . . 0000 0000
QM.
Q
Resolved Q.
Information displayed.

5655-U97 Copyright IBM Corp. 2008. All rights reserved.
Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior

PF9=Hex PF11=MD PF12=Queue

Figure 74. API monitor - monitor information

Applications

Chapter 6. Problem determination 203

The specific WebSphere MQ API calls are identified, together with the queue
manager name, queue name, and condition and return codes.

Ensure that you toggle the WebSphere MQ API monitor off after use.

Other areas of investigation
Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of other books in
the WebSphere MQ library (see “Bibliography” on page 1105) and in the libraries
of other licensed programs.

If you have not yet found the cause, you must start to look at the problem in
greater detail.

The purpose of this section is to help you identify the cause of your problem if the
preliminary checks have not enabled you to find it.

When you have established that no changes have been made to your system, and
that there are no problems with your application programs, choose the option that
best describes the symptoms of your problem.

If none of these symptoms describe your problem, consider whether it might have
been caused by another component of your system.

Have you obtained incorrect output?
In this book, “incorrect output” refers to your application:
v Not receiving a message that it was expecting.
v Receiving a message containing unexpected or corrupted information.
v Receiving a message that it was not expecting, for example, one that was

destined for a different application.

In all cases, check that any queue or queue manager aliases that your applications
are using are correctly specified and accommodate any changes that have been
made to your network.

If an WebSphere MQ error message is generated, all of which are prefixed with the
letters “MQI”, you should look in the system log. See “System log” on page 209
for further information.

Does the problem occur at specific times of the day?
If the problem occurs at specific times of day, it could be that it is dependent on
system loading. Typically, peak system loading is at mid-morning and
mid-afternoon, so these are the times when load-dependent problems are most
likely to occur. (If your WebSphere MQ network extends across more than one time
zone, peak system loading might seem to occur at some other time of day.)

Is the problem intermittent?
An intermittent problem could be caused by failing to take into account the fact
that processes can run independently of each other. For example, a program may
issue an MQGET call, without specifying a wait option, before an earlier process
has completed. An intermittent problem may also be seen if your application tries
to get a message from a queue while the call that put the message is in-doubt (that
is, before it has been committed or backed out).

Applications

204 WebSphere MQ for z/VSE System Management Guide

Have you applied any service updates?
If a service update has been applied to WebSphere MQ, check that the update
action completed successfully and that no error message was produced.
v Did the update have any special instructions?
v Was any test run to verify that the update had been applied correctly and

completely?
v Does the problem still exist if WebSphere MQ is restored to the previous service

level?
v If the installation was successful, check with the IBM Support Center for any

patch error.
v If a patch has been applied to any other program, consider the effect it might

have on the way WebSphere MQ interfaces with it.

Does the problem affect only remote queues?
If the problem affects only remote queues, check the following:
v Check that required channels have been started and are triggerable.
v Check that the programs that should be putting messages to the remote queues

have not reported problems.
v If you use triggering to start the distributed queuing process, check that the

transmission queue has triggering set on.
v Check the system log and z/VSE console for messages indicating channel errors

or problems.

See the WebSphere MQ Intercommunication book for information about how to
define channels.

Is your application or WebSphere MQ for z/VSE running
slowly?

WebSphere MQ for z/VSE runs as a subsystem, with a CICS partition, on the
z/VSE operating system. The z/VSE operating system itself may be a second-level
client on a VM machine. This complexity means that a performance problem can
exist in any of these components.

WebSphere MQ for z/VSE is sensitive to the CICS environment and availability of
CICS resources. CICS performance problems are a specialized area requiring
detailed analysis. Investigate these problems with the assistance of your CICS
systems programmer.

WebSphere MQ for z/VSE utilizes VSAM files under z/VSE. After prolonged use
these files tend to fragment into several VSAM extents. This can be viewed with
the VSE ICCF File and Catalog Management facility. Any files that show multiple
extents should be reallocated with IDCAMS as soon as it is convenient to do so.

If your application is running slowly, this could indicate that it is in a loop, or
waiting for a resource that is not available.

This could also be caused by a performance problem. Perhaps it is because your
system is operating near the limits of its capacity.

Operating system performance problems, for both z/VSE and VM, are a
specialized area requiring detailed analysis. Investigate these problems with the
assistance of your z/VSE or VM systems programmer.

Other areas

Chapter 6. Problem determination 205

A performance problem may be caused by a limitation of your hardware.

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly designed
application program is probably to blame. This could manifest itself as a problem
that occurs only when specific queues are accessed.

The following symptoms might indicate that WebSphere MQ is running slowly:
v Your system is slow to respond to WebSphere MQ commands.
v Repeated displays of the queue depth indicate that the queue is being processed

slowly for an application with which you would expect a large amount of queue
activity.

If the performance of your system is still degraded after reviewing the above
possible causes, the problem may lie with WebSphere MQ for z/VSE itself. If you
suspect this, you need to contact your IBM Support Center for assistance.

Application design considerations
There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well,
while impacting the performance of other tasks. Several problems specific to
programs making WebSphere MQ calls are discussed in the following sections.

For more information about application design, see the WebSphere MQ Application
Programming Guide.

Effect of message length
Although WebSphere MQ allows messages to hold up to 4 MB of data, the amount
of data in a message affects the performance of the application that processes the
message. To achieve the best performance from your application, you should send
only the essential data in a message; for example, in a request to debit a bank
account, the only information that may need to be passed from the client to the
server application is the account number and the amount of the debit.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the
message, correlation, and group identifiers (MsgId, CorrelId, and GroupId) in the
message descriptor to specify a particular message, the queue manager has to
search the queue until it finds that message. Using the MQGET call in this way
affects the performance of your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a
message, your application could use the MQGET call with the BufferLength field
set to zero so that, even though the call fails, it returns the size of the message
data. The application could then repeat the call, specifying the identifier of the
message it measured in its first call and a buffer of the correct size. However, if
there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends
time searching for a message that another application has retrieved in the time
between your two calls.

Other areas

206 WebSphere MQ for z/VSE System Management Guide

If your application cannot use messages of a fixed length, another solution to this
problem is to use the MQINQ call to find the maximum size of messages that the
queue can accept, then use this value in your MQGET call. The maximum size of
messages for a queue is stored in the MaxMsgLength attribute of the queue. This
method could use large amounts of storage, however, because the value of this
queue attribute could be as high as 4 MB, the maximum allowed by WebSphere
MQ for z/VSE.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

Incorrect output
The term “incorrect output” can be interpreted in many different ways. For the
purpose of problem determination within this book, the meaning is explained in
“Have you obtained incorrect output?” on page 204.

Two types of incorrect output are discussed in this section:
v Messages that do not appear when you are expecting them.
v Messages that contain the wrong information, or information that has been

corrupted.

Additional problems that you might find if your application includes the use of
distributed queues are also discussed.

Messages that do not appear on the queue
If messages do not appear when you are expecting them, check for the following:
v Has the message been put on the queue successfully?

– Has the queue been defined correctly. For example, are the queue and
maximum message length sufficiently large?

– Is the queue enabled for putting?
– Is the queue already full? This could mean that an application was unable to

put the required message on the queue.
v Are you able to get any messages from the queue?

– Do you need to take a syncpoint?
If messages are being put or retrieved within syncpoint, they are not available
to other tasks until the unit of recovery has been committed.

– Is your wait interval long enough?
You can set the wait interval as an option for the MQGET call. You should
ensure that you are waiting long enough for a response.

– Are you waiting for a specific message that is identified by a message,
correlation, or group identifier (MsgId, CorrelId, or GroupId)?
Check that you are waiting for a message with the correct MsgId, CorrelId, or
GroupId. A successful MQGET call sets both these values to that of the
message retrieved, so you may need to reset these values in order to get
another message successfully.
Also, check whether you can get other messages from the queue.

– Can other applications get messages from the queue?
– Has another application got exclusive access to the queue?

Application design considerations

Chapter 6. Problem determination 207

If you are unable to find anything wrong with the queue, and WebSphere MQ is
running, make the following checks on the process that you expected to put the
message on to the queue:
v Did the application get started?

If it should have been triggered, check that the correct trigger options were
specified.

v Did the application stop?
v Did the application complete correctly?

Look for evidence of an abnormal end on the system log and z/VSE console.
v Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another.
For example, suppose one transaction issues an MQGET call with a buffer length
of zero to find out the length of the message, and then issues a specific MQGET
call specifying the MsgId of that message. However, in the meantime, another
transaction issues a successful MQGET call for that message, so the first
application receives a reason code of MQRC_NO_MSG_AVAILABLE. Applications
that are expected to run in a multi-server environment must be designed to cope
with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages that contain unexpected or corrupted information.”

Messages that contain unexpected or corrupted information
If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following points:
v Has your application, or the application that put the message onto the queue,

changed?
Ensure that all changes are simultaneously reflected on all systems that need to
be aware of the change.
For example, the format of the message data may have been changed, in which
case both applications must be recompiled to pick up the changes. If one
application has not been recompiled, the data will appear corrupt to the other.

v Is an application sending messages to the wrong queue?
Check that the messages your application is receiving are not really intended for
an application servicing a different queue.
If your application has used an alias queue, check that the alias points to the
correct queue.

v Has the trigger information been specified correctly for this queue?
Check that your application should have been started; or should a different
application have been started?

If these checks do not enable you to solve the problem, you should check your
application logic, both for the program sending the message, and for the program
receiving it.

Problems with incorrect output when using distributed queues
If your application uses distributed queues, you should also consider the following
points:

Incorrect output

208 WebSphere MQ for z/VSE System Management Guide

v Has WebSphere MQ been correctly installed on both the sending and receiving
systems, and correctly configured for distributed queuing?

v Are the links available between the two systems?
Check that both systems are available, and connected to WebSphere MQ. Check
that the connection between the two systems, and the channels between the two
queue managers, are active.

v Is triggering set on in the sending system?
v Is the message you are waiting for a reply message from a remote system?

Check that triggering is activated in the remote system.
v Is the queue already full?

This could mean that an application was unable to put the required message
onto the queue. If this is so, check if the message has been put onto the
dead-letter queue.
The dead-letter queue header contains a reason or feedback code explaining why
the message could not be put onto the target queue. See the WebSphere MQ
Application Programming Reference manual for information about the dead-letter
queue header structure.

v Is there a mismatch between the sending and receiving queue managers?
For example, the message length could be longer than the receiving queue
manager can handle.

v Are the channel definitions of the sending and receiving channels compatible?
For example, a mismatch in sequence number wrap stops the distributed
queuing component. See the WebSphere MQ Intercommunication book for more
information about distributed queuing.

System log
WebSphere MQ uses the SYSTEM.LOG queue defined in the global system
definition as its primary message log and additional informational messages are
output to the z/VSE console. Typically, these detail starting, stopping, and
initializing WebSphere MQ for z/VSE

If the SYSTEM.LOG queue is unavailable, the messages are directed to the CICS
CSMT log. These messages should always be reviewed carefully for any error
messages. The type of messages included in the SYSTEM.LOG queue can now be
controlled by using the 'Log and Trace Settings'. Refer to “Queue Manager Log and
Trace Settings” on page 88 for details.

You can view the contents of the system log using the Master Terminal transaction
(MQMT) option 4 (Browse Queue Records).

Incorrect output

Chapter 6. Problem determination 209

PF12 provides an explanation of messages written to the system log.

Dead-letter queue
Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by using the
MQMT transaction. If the queue contains messages, you can use the browse facility
to browse messages on the queue using the MQGET call.

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:33:55 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A000

Object Name: SYSTEM.LOG
QSN Number : 00000001 LR- 0, LW- 249, DD-MQFLOG

Queue Data Record
Record Status : Written. PUT date/time : 20061120084057
Message Size : 00000711 GET date/time :

MQI000000I PRG:MQPINIT1 TRN:MQSE TRM:A000 TSK:00043 11/20/2006 08:40:57
Queue manager started

EIBFN: 1A04 EIBRCODE: 000000000000 EXEC LINE: 000000
EIBRESP: 00000000 EIBRESP2: 00000000 EIBRSRCE: ABCODE:

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF11=MD PF12=Explain

Figure 75. Browsing the system log

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:38:44 Resolution Information CIC1
MQWDISP SYSTEM IS ACTIVE A000

Object Name: SYSTEM.LOG
QSN Number : 00000001 LR- 0, LW- 249, DD-MQFLOG

Message Code 000000I Extended LOG Description Page 1
Queue manager started
Reason : The local queue manager has been started.
User Action : -- none --
System Action: The queue manager is available for queuing

services.

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF7=Up PF8=Down PF11=MD PF12=Queue

Figure 76. Browsing the system log - explain

System log

210 WebSphere MQ for z/VSE System Management Guide

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems may occur if you do not have a dead-letter queue on each queue
manager you are using.

You can view the contents of the dead-letter queue using the Master Terminal
transaction (MQMT) option 4 (Browse Queue Records).

Note: The message size includes the 172 bytes for the dead-letter header
(MQDLH) data structure. The "ASCII" above the scale line indicates that the
message data has been converted to EBCDIC for display purposes. This is only
done when the dead-letter message is ASCII and the message format is MQSTR.

PF10 displays the dead-letter header of the message.

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:44:01 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A000

Object Name: SYSTEM.DEAD.LETTER.QUEUE
QSN Number : 00000001 LR- 0, LW- 2, DD-MQFERR

Queue Data Record
Record Status : Written. PUT date/time : 20061208125454
Message Size : 00000372 GET date/time : ASCII
Offset+....|....+....|....+....|....+....|....+....|....+....|....+....|
00000 TEST MSG WITH MQMD VERSION 1 (with ASCII codepage)
00070
00140 <END>

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF7=Up PF8=Down PF9=Hex PF10=DLH PF11=MD

Figure 77. Browsing the dead-letter queue

Dead-letter queue

Chapter 6. Problem determination 211

Using WebSphere MQ trace
WebSphere MQ for z/VSE relies on the CICS auxiliary trace for problem
determination. To reduce overhead in a production environment, the trace points
are not issued unless specified using the 'Log and Trace Settings' screen. Tracing
should only be used when requested by IBM service personnel. Refer to “Queue
Manager Log and Trace Settings” on page 88 for details.

Problem determination with clients
An MQI client application receives MQRC_* reason codes in the same way as
non-client MQI applications. However, there are now additional reason codes for
error conditions associated with clients. For example:
v Remote machine not responding.
v Communications line error.
v Invalid machine address.

The most common time for errors to occur is when an application issues an
MQCONN and receives the response MQRC_Q_MQR_NOT_AVAILABLE. An error
message, written to the client log file, explains the cause of the error. Messages
may also be logged at the server depending on the nature of the failure.

Terminating clients
Even though a client has terminated it is still possible for the process at the server
to be holding its queues open. Normally, this will only be for a short time until the
communications layer detects that the partner has gone.

12/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:50:11 Browse Queue Records CIC1
MQWDISP SYSTEM IS ACTIVE A000

Object Name: SYSTEM.DEAD.LETTER.QUEUE
QSN Number : 00000001 LR- 0, LW- 2, DD-MQFERR

Dead-letter header
Reason 2085 MQRC_UNKNOWN_OBJECT_NAME
Destination Q . . . BAD.QUEUE.FORCE.TO.DLQ
Destination QM. . . TS212.QM.PTHVSEA
Original Encoding . 546
Original CCSID. . . 850
Original Format . . MQSTR
Put appl type . . . WebSphere MQ for z/VSE
Put appl name . . . TSMQ300 MQ01
Put date. 2006/12/08
Put time. 12:54:54

Information displayed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Quit PF4=Next PF5=Prior
PF9=Hex PF10=Queue PF11=MD

Figure 78. Browsing the dead-letter queue - MQDLH

Using WebSphere MQ trace

212 WebSphere MQ for z/VSE System Management Guide

Error messages with clients
When an error occurs with a client system, error messages are put into the error
files associated with the server, if possible. If an error cannot be placed there, the
client code attempts to place the error message in an error log in the root directory
of the client machine.

OS/2 and UNIX systems clients
Error messages for OS/2 and UNIX systems clients are placed in the error logs on
their respective WebSphere MQ server systems. Typically, these files appear in the
QMGRS\@SYSTEM\ERRORS directory.

DOS and Windows clients
The location of the log file AMQERR01.LOG is set by the MQDATA environment
variable. The default location, if not overridden by MQDATA, is:
C:\

Working in the DOS environment involves the environment variable MQDATA.

This is the default library used by the client code to store trace and error
information; it also holds the directory name in which the qm.ini file is stored.
(needed for NetBIOS setup). If not specified, it defaults to the C drive.

The names of the default files held in this library are:

AMQERR01.LOG
For error messages.

AMQERR01.FDC
For First Failure Data Capture messages.

Problems with SSL enabled channels
SSL enabled channels can fail for a number of reasons. Sometimes a channel will
fail because it is meant to fail. That is, the remote system provided an X.509
certificate that did not match expected identifiers. Specifically, the partner
certificate failed to match the SSL Peer Attributes parameter of the local channel.

In this case, a message is logged to the SYSTEM.LOG and the channel is
terminated. This is the correct behavior in such a situation, as the channel should
not continue when the remote system does not identify itself as expected.

SSL enabled channels can also fail due to problems with the WebSphere MQ,
z/VSE, or the remote system environment. Specifically, an SSL enabled channel can
fail due to:
v SSL availability.
v Cipher specification support.
v Client authentication failure.
v General channel failure.

SSL availability
It is essential for SSL enabled channels that the SSL feature is installed and
available on both the local and remote systems participating in an SSL secured
conversation.

WebSphere MQ for z/VSE initializes the SSL environment at system startup, if the
an SSL key-ring sublibrary name is specified in the queue manager's

Client problem determination

Chapter 6. Problem determination 213

communication settings. At startup, WebSphere MQ will create an initialization
instance for use by channels during normal system operation. The initialization
instance is a data structure provided by the SSL service, and is associated with the
SSL key-ring sublibrary.

The SSL initialization instance is anchored to an WebSphere MQ control block and
is used each time an SSL enabled channel is activated. If the instance is invalid, all
SSL enabled channels will fail during initialization, with the following error
message:
006100E TCP/IP SSL INITIALIZATION FAILED

This particular error can also occur if the SSL key-ring member name does not
identify valid private key and certificate files in the SSL key-ring sublibrary.

In addition, and in regard to the remote system, this error can occur if the remote
system does not have the SSL feature installed and available, or the cipher
specification required by the SSL client is not supported by the SSL server (that is,
the receiver MCA).

If this message is encountered, the following should be checked:
v The SSL feature is installed and available.
v The SSL key-ring sublibrary name specified in the queue manager

'Communication Settings' identifies the correct sublibrary name.
v The SSL key-ring member name, also specified in the queue manager

'Communication Settings' identifies the member name of valid private key and
certificate files.

v The remote system has SSL installed and available.
v The remote system supports the cipher specification identified by Sender

channel.
v The remote system is configured to provide an X.509 certificate during SSL

initial negotiation.

Following these checks, if the channel continues to fail, problem determination
relating to channels in general should be pursued.

Cipher specification support
AN SSL enabled channel can fail if the SSL Cipher Specification identified by the
Sender channel is not supported by the remote system, or if the SSL negotiations
complete for a specification that is not identified by the Receiver channel.

Both of these cases produce the following error message:
006101E TCP/IP SSL CIPHER SPECIFICATION ERROR

For Sender channels, it is important that the cipher specification identified in the
channel definition is supported by the remote system. The TCP/IP Administrator
of the remote system should be able to provide a list of supported ciphers. For
WebSphere MQ for z/VSE, the cipher is identified by a two-character code, (for
example, 08, 09, 0A, 62). SSL for z/VSE documentation should be reviewed to
determine what ciphers these codes identify and whether or not the remote system
can support them.

For Receiver channels, it is essential that the cipher identified in the channel
definition matches the cipher stipulated by the matching Sender channel definition.
For example, if the Sender channel specifies a cipher code of '0A', then the
Receiver channel must also specify '0A'. For Receiver channels, WebSphere MQ

Client problem determination

214 WebSphere MQ for z/VSE System Management Guide

completes the SSL negotiation and then checks that the agreed cipher matches the
channel definition. If not, the channel is terminated.

Client authentication failure
The SSL client authentication parameter, specified on a channel definition, instructs
WebSphere MQ to check that the remote partner exchanged an X.509 certificate
during SSL negotiation. SSL negotiation occurs when the channel is initialized.

If a channel is configured to require a certificate from the remote system and one is
not received, then a client authentication error will occur. Since the server, or
WebSphere MQ receiver MCA, always provides a certificate during SSL
negotiation, this error pertains to Sender channels only.

A client authentication failure produces the following error message:
006103E TCP/IP SSL CLIENT AUTHENTICATION ERROR

However, a client authentication error cannot occur with the current SSL for z/VSE
service, because WebSphere MQ for z/VSE always requires a certificate from the
client during SSL negotiation. If a certificate is not exchanged, WebSphere MQ will
terminate the channel with an SSL initialization error, not a client authentication
error.

General channel failure
It is possible for an SSL enabled channel to successfully establish an active SSL
connection with a remote system and subsequently fail. In such a case, the channel
has probably failed for any of the reasons applicable to channels in general.

When a TCP/IP connection between two systems (or between the queue manager
and a remote client program) is established, WebSphere MQ will attempt to secure
the connection using SSL services if the Sender (or client) channel is SSL enabled.
This process may be successful, but subsequent channel negotiations over the
secure connection fail. This is not an SSL channel failure.

If a channel fails due to reasons applicable to channels in general, problem
determination relevant to general channel failure should be pursued.

Client problem determination

Chapter 6. Problem determination 215

216 WebSphere MQ for z/VSE System Management Guide

Chapter 7. Message data conversion

Application data is converted within an application program when the
MQGMO-CONVERT option is specified in the Options field of the MQGMO
structure passed to an MQGET call, and all of the following are true:
v The code page or encoding fields set in the MQMD structure associated with the

message on the queue differ from the code page or encoding fields set in the
MQMD structure specified on the MQGET call.

v The format field in the MQMD structure associated with the message is not
MQFMT-NONE.

v The buffer length specified on the MQGET call is not zero.
v The message data length is not zero.
v The queue manager supports conversion between the code page and encoding

fields specified in the MQMD structures associated with the message and the
MQGET call. LE/VSE is used for application data conversion and must have the
appropriate code converters available. See “Using LE/VSE for conversion” on
page 218 for more information.

The queue manager supports conversion of a number of data formats. If the format
field of the MQMD structure associated with the message is one of the built-in
formats, the queue manager can convert the message. If the format is not one of
the built-in formats, you must write a data conversion exit program to convert the
message.

When you move messages between systems, sometimes it is necessary to convert
the application data into the character set and encoding required by the receiving
system. Conversion can be done either from within application programs on the
receiving system, or by the Message Channel Agents (MCAs) on the sending
system. If data conversion is supported on the receiving system, we recommend
that you use application programs to convert the application data, rather than
depending on the data already being converted at the sending system.

If the sending MCA is to convert the data, the 'Convert Msgs' field must be set to
Y on the definition of each sender channel for which conversion is required. If
conversion fails on the sender channel, the message remains on the transmission
queue and the channel is shut down, with a GET error shown on the system log.

The following built-in formats are converted by WebSphere MQ for z/VSE:
MQFMT_STRING
MQFMT_DEAD_LETTER_HEADER
MQFMT_TRIGGER
MQFMT_ADMIN
MQFMT_EVENT
MQFMT_PCF
MQFMT_EMBEDDED_PCF
MQFMT_REF_MSG_HEADER
MQFMT_IMS
MQFMT_IMS_VAR_STRING
MQFMT_COMMAND_1
MQFMT_COMMAND_2
MQFMT_SAP
MQFMT_RF_HEADER

© Copyright IBM Corp. 2008, 2013 217

MQFMT_RF_HEADER_2
MQFMT_CICS
MQFMT_DIST_HEADER

See the WebSphere MQ Application Programming Reference manual for more details
regarding data conversion.

Data conversion exit programs
For application defined formats that do not conform to the built-in formats,
conversion can be performed by an exit program.

The name of the exit program must be the same as your data format name. For
example, if a message has the format (FMT_TEST), the exit program must be called
FMT_TEST. WebSphere MQ checks that the format is not one of the built-in
formats, then, if it is not, calls the exit program.

To build a user exit program for your own format:
1. Start with the supplied source skeleton DCHFMT4.
2. Follow the instructions in the prolog of DCHFMT4, ensuring that the correct

macros are called to convert your structure.
3. Rename the program to your data format name.
4. CICS translate, compile, prelink and link-edit your program.
5. Place your exit program in a CICS application program library. Define the

program to CICS in the usual way.

See the WebSphere MQ Application Programming Guide for more details regarding
data conversion exit programs.

Using LE/VSE for conversion
For application message code page conversion, WebSphere MQ for z/VSE uses the
Language Environment (LE) code set conversion facilities in a similar manner to
the WebSphere MQ server. LE/VSE provides a number of supplied code
converters, and facilities to build code converters that are not provided.

If you need code conversion for pages that are not provided by LE/VSE, you can
edit the appropriate source code modules and build the converters. You also need
to inform WebSphere MQ for z/VSE of the type number and the encoding of the
user-defined code page.

Selecting 4 on the Configuration menu allows you to add user-defined code pages,
and their type and encoding.

As well as the MQServer SBCS conversion, support is provided for:
v DBCS code pages.
v Mixed code pages.
v EUC code pages.
v ISO code page.
v Unicode (UCS-2 and UTF-8) code pages.

See “Code page conversion” on page 1011 for more details on LE/VSE code pages.
The same LE code set conversion facilities are used for application data conversion.

Message data conversion

218 WebSphere MQ for z/VSE System Management Guide

We also strongly recommended that you read the section on code page conversion
in the C Run-time Programming Guide.

Note: The following LE code pages have the equivalent numerics on WebSphere
MQ for z/VSE.

ISO8859-1 - 819
IOS8859-7 - 813
ISO8859-9 - 920
IBM-eucJP - 33722

Building a conversion exit program
WebSphere MQ for z/VSE is shipped with a sample exit program (DCHFMT4).
This sample provides conversion for standard data types recognized by supplied
conversion macros. The following data structure encapsulates these supported data
types:

struct testall
{

MQBYTE byte2[2];
short short2;
MQLONG long4;
MQCHAR char5[5];
MQCHAR charV;

};

This contains all the types of data (char, variable char, byte, long and short) that
can be converted.

The following code in DCHFMT4 converts the structure shown earlier.
ConvertByte(2); /* 3 byte binary data */

AlignShort();
ConvertShort(1); /* 2 byte integer */

AlignLong();
ConvertLong(1); /* 4 byte integer */

ConvertChar(5); /* 5 byte character data */

ConvertVarChar(); /* Variable length character data */

Note the use of AlignShort/Long before ConvertShort/Long. In z/VSE, there is no
CRTMQCVX utility to create this code fragment for you.

These functions are defined using the following include files (see the DCHFMT4
source for a full listing):

#include <cmqc.h> /* For MQI data types
#include <cmqxc.h> /* For MQI exit-related definitions
#include <mqidatcv.h> /* For sample macro definitions

The following linkage parameters are required to build a conversion exit program:
PHASE DCHFMT4,*
INCLUDE DCHFMT4
INCLUDE MQPDATCU
INCLUDE MQPDATCV
INCLUDE DFHELII

Using LE/VSE for conversion

Chapter 7. Message data conversion 219

Because the exit program runs under CICS, a PPT entry is required in CICS for the
program. For example:

DEFINE PROGRAM(DCHFMT4) GROUP(MQM) LANGUAGE(C)

Note: The user exit program must be contained in the same CICS region as
WebSphere MQ — it cannot be placed in a separate region for dynamic routing.

Building a conversion exit program

220 WebSphere MQ for z/VSE System Management Guide

Chapter 8. Programmable system management

This chapter describes Instrumentation Events and WebSphere MQ PCFs
(Programmable Command Formats) and their relationship to other parts of the
WebSphere MQ products.

Instrumentation events
In WebSphere MQ, an instrumentation event is a logical combination of conditions
that is detected by a queue manager or channel instance. Such an event causes the
queue manager or channel instance to put a special message, called an event
message, on an event queue.

WebSphere MQ instrumentation events provide information about errors,
warnings, and other significant occurrences in a queue manager. You can,
therefore, use these events to monitor the operation of queue managers.

When an event occurs the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:

Gets the message from the queue.
Processes the message to extract the event data.

WebSphere MQ instrumentation events may be categorized as follows:
Queue manager events.
Channel events.
Performance events.
Command events.
Configuration events.

Queue manager events are related to the definitions of resources within queue
managers. For example, an application attempts to put a message to a queue that
does not exist.

Performance events are notifications that a threshold condition has been reached
by a resource. For example, a queue depth limit has been reached.

Channel events are reported by channels as a result of conditions detected during
their operation. For example, when a channel instance is stopped.

Command events are notifications that an MQSC or PCF command has run
successfully.

Configuration events are notifications that are generated when an object is created,
changed, or deleted, and can also be generated by explicit requests.

SSL events are a type of channel event. The only Secure Sockets Layer (SSL or TLS)
event is the Channel SSL Error event. This event is reported when a channel using
SSL or TLS fails to establish an SSL connection.

For each queue manager, each category of event has its own event queue. All
events in that category result in an event message being put onto the same queue.
Event queues are configurable using MQMT option 1.1, PF11. This activates the

© Copyright IBM Corp. 2008, 2013 221

following screen:

The default names for the event queues are as follows:

This event queue: Contains messages from:

SYSTEM.ADMIN.QMGR.EVENT Queue manager events

SYSTEM.ADMIN.CHANNEL.EVENT Channel events

SYSTEM.ADMIN.PERFM.EVENT Performance events

SYSTEM.ADMIN.COMMAND.EVENT Command events1

SYSTEM.ADMIN.CONFIG.EVENT Configuration events1

Note:

1. Event queue name is not configurable.

By incorporating these events into your own system management application, you
can monitor the activities across many queue managers, across many different
nodes, for multiple WebSphere MQ applications. In particular, you can monitor all
the nodes in your system from a single node (for those nodes that support
WebSphere MQ events).

Instrumentation events can be reported through a user-written reporting
mechanism to an administration application that supports the presentation of the
events to an operator.

Review section “Features” on page 15 for prerequisites for this feature.

Queue manager events
These events are related to the definitions of resources within queue managers. For
example, an application attempts to put a message to a queue that does not exist.

11/23/2010 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:24:13 Global System Definition CIC1
MQWMSYS Event Settings A000

Event queues
Queue manager events : SYSTEM.ADMIN.QMGR.EVENT
Channel events . . . : SYSTEM.ADMIN.CHANNEL.EVENT
Performance events . : SYSTEM.ADMIN.PERFM.EVENT
Command events . . . : SYSTEM.ADMIN.COMMAND.EVENT
Configuration events : SYSTEM.ADMIN.CONFIG.EVENT

Qmgr events Channel events Performance events
Inhibit . . . : N Started . . . : Y Queue depth . . : N
Local : N Stopped . . . : Y Service interval : N
Remote : N Conversion err : N
Authority . . : N Auto-define. . : N
Start/Stop . . : Y SSL : N
Command . . . : Y
Configuration : N

Requested record displayed.
PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 79. Global System Definition

Instrumentation events

222 WebSphere MQ for z/VSE System Management Guide

The event messages for queue manager events are put on the
SYSTEM.ADMIN.QMGR.EVENT queue. The following queue manager event types
are supported:

Inhibit
Local
Remote
Authority
Start/Stop

For each event type in this list, there is a queue manager attribute that enables or
disables the event type. The conditions that give rise to the event (when enabled)
include:
v An application issues an MQI call that fails. The reason code from the call is the

same as the reason code in the event message.
Note that a similar condition may occur during the internal operation of a queue
manager, for example, when generating a report message. The reason code in an
event message may match an MQI reason code, even though it is not associated
with any application. Therefore you should not assume that, because an event
message reason code looks like an MQI reason code, the event was necessarily
caused by an unsuccessful MQI call from an application.

v A command is issued to a queue manager and the processing of this command
causes an event. For example: A queue manager is stopped or started. A
command is issued where the associated user ID is not authorized for that
command.

Inhibit events
Inhibit events indicate that an MQPUT or MQGET operation has been
attempted against a queue, where the queue is inhibited for puts or gets
respectively.

There are two types of Inhibit event:
Get Inhibited
Put Inhibited

Local events
Local events indicate that an application (or the queue manager) has not
been able to access a local queue, or other local object. For example, when
an application attempts to access an object that has not been defined.

There are three types of Local event:
Alias Base Queue Type Error.
Unknown Alias Base Queue.
Unknown Object Name.

Remote events
Remote events indicate that an application (or the queue manager) cannot
access a (remote) queue on another queue manager. For example, when the
transmission queue to be used is not correctly defined.

Remote events include the following:
Remote Queue Name Error.
Transmission Queue Type Error.
Transmission Queue Usage Error.
Unknown Default Transmission Queue.
Unknown Remote Queue Manager.
Unknown Transmission Queue.

Authority events
Authority events indicate that an authorization violation has been detected.

Queue manager events

Chapter 8. Programmable system management 223

For example, an application attempts to open a queue for which it does not
have the required authority, or a command is issued from a user ID that
does not have the required authority.

There are four types of Authority event supported by WebSphere MQ: for
VSE:

Not Authorized (type 1) - Connection failures.
Not Authorized (type 2) - Open failures.
Not Authorized (type 3) - Close failures.
Not Authorized (type 4) - Command failures.

Start and stop events
Start and stop events indicate that a queue manager has been started or
has been requested to stop.

Start and Stop events include the following:
Queue Manager Active.
Queue Manager Not Active.

Channel events
These events are reported by channels as a result of conditions detected during
their operation. For example, when a channel instance is stopped. Channel events
are generated:
v By a command to stop a channel.
v When a channel instance starts or stops. Note that client connections do not

cause Channel Started or Channel Stop events.
v When a channel receives a conversion error warning when getting a message.
v When a channel auto-definition event occurs. An auto-definition event occurs if

the channel auto-definition feature is enabled and a connection request is
received for a receiver or server connection channel that does not exist.

v When the only Secure Sockets Layer (SSL or TLS) event is the Channel SSL Error
event. This event is reported when a channel using SSL or TLS fails to establish
an SSL connection.

Channel event messages are put onto the SYSTEM.ADMIN.CHANNEL.EVENT
queue, if it is available, and the queue manager is configured to generate channel
events. Otherwise, they are ignored.

Channel events include the following:
Channel Started.
Channel Stopped.
Channel Conversion Error.
Channel auto-definition.
Channel SSL Error event.

Performance events
These events are notifications that a threshold condition has been reached by a
resource. For example, a queue depth limit has been reached.

Performance events are related to conditions that can affect the performance of
applications that use a specified queue.

The event type is returned in the command identifier field in the message data.

Queue manager events

224 WebSphere MQ for z/VSE System Management Guide

Performance events are not generated for the event queues themselves. If a queue
manager attempts to put a queue manager or a performance even message on an
event queue and an error that would normally create an event is detected, another
event is not created and no action is taken.

MQGET calls and MQPUT calls within a unit of work can cause performance
related events to occur regardless of whether the unit of work is committed or
backed out.

There are two types of performance event:
v Queue depth events, which include:

Queue Depth High
Queue Depth Low
Queue Full

v Queue service interval events, which include:
Queue Service Interval High
Queue Service Interval OK

WebSphere MQ for z/VSE supports queue depth and service internal events for
local queues, including transmissions queues.

As already stated, performance events are related to conditions that can affect the
performance of applications that use a specified queue.

The scope of performance events is the queue, so that MQPUT calls and MQGET
calls on one queue do not affect the generation of performance events on another
queue.

Note: A message must be either put on, or removed from, a queue for any
performance event to be generated.

The event data contains a reason code that identifies the cause of the event, a set of
performance event statistics, and other data.

The event data in the event message contains information about the event for
system management programs. For all performance events, the event data contains
the names of the queue manager and the queue associated with the event. Also,
the event data contains statistics related to the event.

You can use these statistics to analyze the behavior of a specified queue. The
following table summarizes the event statistics. All the statistics refer to what has
happened since the last time the statistics were reset.

Parameter Description

TimeSinceReset The elapsed time since last reset.

HighQDepth Maximum queue depth since last reset.

MsgEnqCount Messages put since last reset.

MsgDeqCount Messages got since last reset.

Performance event statistics are reset when any of the following occur:
A performance event occurs.
A queue manager stops and restarts.

Performance events

Chapter 8. Programmable system management 225

Queue depth events
In WebSphere MQ applications, queues must not become full. If they do,
applications can no longer put messages on the queue that they specify.

Although the message is not lost if this occurs, it can be a considerable
inconvenience. The number of messages can build up on a queue if the
messages are being put onto the queue faster than the applications that
process them can take them off.

The solution to this problem depends on the particular circumstances, but
may involve:

Diverting some messages to another queue.
Starting new applications to take more messages off the queue.
Stopping nonessential message traffic.
Increasing the queue depth to overcome a transient maximum.

Clearly, having advanced warning that problems may be on their way
makes it easier to take preventive action. For this purpose, queue depth
event are provided.

Queue depth events are related to the queue depth, that is, the number of
messages on the queue. The types of queue depth events are:
v Queue Depth High events, which indicate that the queue depth has

increased to a predefined threshold called the Queue Depth High limit.
v Queue Depth Low events, which indicate that the queue depth has

decrease to a predefined threshold called the Queue Depth Low limit.
v Queue Full events, which indicate that the queue has reached its

maximum depth, that is, the queue is full.
A Queue Full Event is generated when an application attempts to put a
message on a queue that has reached its maximum depth. Queue Depth
High events give advance warning that a queue is filling up. This means
that having received this event, the system administrator should take
some preventive action. If this action is successful and the queue depth
drop to a “safe” level, the queue manager can be configured to generate
a Queue Depth Low event indicating an 'all clear' state.

Queue service interval events
Queue service interval events indicate whether a queue was “serviced”
within a user-defined time interval called the service interval. Depending
on the circumstances at your installation, you can use queue service
interval events to monitor whether messages are being taken off queues
quickly enough.

There are two types of queue service interval event:
v A Queue Service Interval OK event, which indicates that, following an

MQPUT call or an MQGET call that leaves a non-empty queue, an
MQGET call was performed within a user-defined time period, known
as the service interval.

v A Queue Service Interval High event, which indicates that, following an
MQGET or MQPUT call that leaves a non-empty queue, an MQPUT or
an MQGET call was not performed within the user-defined service
interval.

To enable both Queue Service Interval OK and Queue Service Interval
High events you need to set the QServiceIntervalEvent control attribute to
High. Queue Service Interval OK events are automatically enabled when a
Queue Service Interval High event is generated. You do not need to enable
Queue Service Interval OK events independently.

Performance events

226 WebSphere MQ for z/VSE System Management Guide

These events are mutually exclusive, which means that if one is enabled
the other is disabled. However, both events can be simultaneously
disabled.

In terms of queue service interval events, these are the possible outcomes:
v If the elapsed time between the put and get is less than or equal to the

service interval:
A Queue Service Interval OK event is generated, if queue service
interval events are enabled.

v If the elapsed time between the put and get is greater than the service
interval:
A Queue Service Interval High event is generated, if queue service
interval events are enabled

Service interval timer
Queue service interval events use an internal timer, called the service timer,
which is controlled by the queue manager. The service timer is used only if
one or other of the queue service interval events is enabled.

The service timer measures the elapsed time between an MQPUT call to an
empty queue or an MQGET call and the next put or get, provided the
queue depth is nonzero between these two operations.

The service timer is always active (running), if the queue has messages on
it (depth is nonzero) and a queue service interval event is enabled. If the
queue becomes empty (queue depth zero), the timer is put into an OFF
state, to be restarted on the next put.

The service timer is always reset after an MQGET call. It is also reset by an
MQPUT call to an empty queue. However, it is not necessarily reset on a
queue service interval event.

Following an MQGET call or an MQPUT call, the queue manager
compares the elapsed time as measured by the service timer, with the
user-defined service interval. The result of this comparison is that:
v An OK event is generated if the operation is an MQGET call and the

elapsed time is less than or equal to the service interval, AND this event
is enabled.

v A high event is generated if the elapsed time is greater than the service
interval, AND this event is enabled.

Command events
Command events are notifications that an MQSC or PCF command has run
successfully.

The event data contains this information:

Origin information
Comprises the queue manager from where the command was issued, the
ID of the user that issued the command, and how the command was
issued; for example, by using the administrator panels.

Context information
A replica of the context information in the message data from the
command message. If a command is not entered using a message, context
information is omitted. Context information is included in the event data
only when the command was entered as a message on the system
command queue.

Performance events

Chapter 8. Programmable system management 227

Command information
The type of command that was issued.

Command data
For PCF commands, a replica of the command data for MQSC commands,
the command text

The command data format does not necessarily match the format of the
original command. For example, on distributed platforms the command
data format is always in PCF format, even if the original request was an
MQSC command. If using the administrator panel, the equivalent MQSC
command is generated.

Every command event message that is generated is placed on the command event
queue, SYSTEM.ADMIN.COMMAND.EVENT.

Command event generation
A command event message is generated in these situations:
v When the CMDEV queue manager attribute is specified as ENABLED and an

MQSC or PCF command (or administrator panel) runs successfully.
v When the CMDEV queue manager attribute is specified as NODISPLAY and any

command runs successfully, with the exception of DISPLAY commands (MQSC),
and Inquire commands (PCF).

v When you run the MQSC command, ALTER QMGR, or the PCF command,
Change Queue Manager, and the CMDEV queue manager attribute meets either
of these conditions:
– CMDEV is not specified as DISABLED after the change.
– CMDEV was not specified as DISABLED before the change.

If a command runs against the command event queue,
SYSTEM.ADMIN.COMMAND.EVENT, a command event is generated if the queue
still exists and it is not put-inhibited.

When command events are not generated: A command event message is not
generated in these circumstances:
v When a command fails.
v When a queue manager encounters an error trying to put a command event on

the event queue, in which case the command runs regardless, but no event
message is generated.

v When the queue manager is not active, no command event messages are
generated since the queue manager is required to be active to put event
messages to the event queues.

Command event usage
Use command events to generate an audit trail of the commands that have run.
For example, if an object is changed unexpectedly, information regarding who
made the alteration and when it was done can be stored. This can be particularly
useful when configuration events are also enabled. If an MQSC or PCF command
causes a command event and a configuration event to be generated, both event
messages share the same correlation identifier in their message descriptor.

If a command event message is generated, but cannot be put on the command
event queue, for example if the command event queue has not been defined, the
command for which the command event was generated still runs regardless.

Command events

228 WebSphere MQ for z/VSE System Management Guide

Configuration events
Configuration events are notifications that are generated when an object is created,
changed, or deleted, and can also be generated by explicit requests.

Configuration events notify you about changes to the attributes of an object. There
are three types of configuration events:
v Create object events.
v Change object events.
v Delete object events.

The event data contains this information:

Origin information
Comprises the queue manager from where the change was made, the ID of
the user that made the change, and how the change came about; for
example, by a console command.

Context information
A replica of the context information in the message data from the
command message. Context information is included in the event data only
when the command was entered as a message on the system command
queue.

Object identity
Comprises the name, type and disposition of the object.

Object attributes
Comprises the values of all the attributes in the object.

In the case of change object events, two messages are generated, one with the
information before the change, the other with the information after the change.

Every configuration event message that is generated is placed on the queue,
SYSTEM.ADMIN.CONFIG.EVENT.

The WebSphere MQ for z/VSE administrator panels can update configuration of
objects without the queue manager being active. When CONFIGEV=Y, the user is
not allowed to do any updates. An error message is displayed.

Configuration event generation
A configuration event message is put to the configuration event queue when the
CONFIGEV queue manager attribute is ENABLED and any of these are true:
v Any of these commands, or their PCF equivalent, are issued:

DELETE CHANNEL
DELETE NAMELIST
DELETE QMODEL/QALIAS/QREMOTE

v Any of these commands, or their PCF equivalent, are issued even if there is no
change to the object:

DEFINE/ALTER CHANNEL
DEFINE/ALTER NAMELIST
DEFINE/ALTER QMODEL/QALIAS/QREMOTE
ALTER QMGR, unless the CONFIGEV attribute is DISABLED and is not
changed to ENABLED

v Any of these commands, or their PCF equivalent, are issued for a local queue
that is not temporary dynamic, even if there is no change to the queue:

DELETE QLOCAL
DEFINE/ALTER QLOCAL

Configuration events

Chapter 8. Programmable system management 229

v An MQSET call is issued, other than for a temporary dynamic queue, even if
there is no change to the object.

When configuration events are not generated: Configuration events messages are
not generated in these circumstances:
v When a command or an MQSET call fails.
v When a queue manager encounters an error trying to put a configuration event

on the event queue, in which case the command or MQSET call completes, but
no event message is generated.

v For a temporary dynamic queue.
v For the configuration event queue SYSTEM.ADMIN.CONFIG.EVENT.

Configuration event usage
Use configuration events to obtain information about your system, and to
understand the factors that can affect your use of configuration events.

You can use configuration events to:
v Produce and maintain a central configuration repository, from which reports can

be produced and information about the structure of the system can be generated.
v Generate an audit trail. For example, if an object is changed unexpectedly,

information regarding who made the alteration and when it was done can be
stored.

This can be particularly useful when command events are also enabled. If an
MQSC or PCF command causes a configuration event and a command event to be
generated, both event messages share the same correlation identifier in their
message descriptor.

For an MQSET call, or for any of these commands:
v DEFINE object
v ALTER object
v DELETE object

if the queue manager attribute CONFIGEV is enabled, but the configuration event
message cannot be put on the configuration event queue (for example, the event
queue has not been defined), the command or MQSET call is executed regardless.

Enabling and disabling events
All instrumentation events must be enabled before they can be generated. You can
enable and disable events by specifying the appropriate values for queue manager
or queue attributes (or both) depending on the type of event. You do this using:
v PCF commands.
v MQSC (WebSphere MQ) commands.
v MQMT Master Terminal transactions.

Enabling queue manager events
Queue manager events can be enabled or disabled by changing queue
manage attributes. This is possible using the master terminal transaction,
MQMT option 1.1, PF11. This option displays the queue manager's event
settings, where each event type can be enabled or disabled.

Alternatively, the queue manager attributes can be set using PCF (see
“Programmable command formats” on page 235) or WebSphere MQ
commands (see Chapter 9, “WebSphere MQ commands,” on page 507).

Enabling channel events
Channel events are enabled via the queue manager event settings,

Configuration events

230 WebSphere MQ for z/VSE System Management Guide

however, channel events can be suppressed by not defining the channel
events queue, or by making it put-inhibited. Note that this could cause a
queue to fill up if remote event queues point to a put-inhibited channel
events queue.

If a queue manager does not have a SYSTEM.ADMIN.CHANNEL.EVENT
queue, or if this queue is put inhibited, all channel event messages are
discarded unless they are being put by an MCA across a link to a remote
queue. In this case they are put on the dead-letter queue.

Enabling performance events
Performance events as a whole must be enabled on the queue manager,
otherwise no performance events can occur. You can then enable the
specific performance events by setting the appropriate queue attribute. You
also have to specify the conditions that give rise to the event.

Queue specific event settings are available via the local queue extended
definition, available via MQMT option 1.2.

Enabling queue depth events
By default, all queue depth events are disabled. To configure a queue for
any of the queue depth events you must:

Enable performance events on the queue manager.
Enable the event on the required queue.
Set the limits, if required, to the appropriate levels, expressed as a
percentage of the maximum queue depth.

Enabling queue service interval events
To configure a queue for queue service interval events you must:

Enable performance events on the queue manager, for example, using
the queue manager attribute PerformanceEvent (PERFMEV in MQSC).
Set the control attribute, QServiceIntervalEvent, for a Queue Service
Interval High or OK event on the queue, as required (QSVCIEV in
MQSC).

2011/10/10 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
08:21:54 Queue Extended Definition CIC1
MQWMQUE A001

Object Name: MY.XMITQ

General Maximums Events
Type . . : Local Max. Q depth . : 00010000 Service int. event: N
File name : MQFI001 Max. msg length: 00040000 Service interval : 00000000
Usage . . : T Max. Q users . : 00000100 Max. depth event : N
Shareable : Y Max. gbl locks : 00000100 High depth event : N
Dist.Lists : N Max. lcl locks : 00000100 High depth limit : 000
PropCtl. . : C Low depth event . : N
Triggering Low depth limit . : 000
Enabled . : Y Transaction id.:
Type . . . : E Program id . . : MQPSEND
Max. starts: 0001 Terminal id . :
Restart . : N Channel name . : MY.SDR
User data :

:

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF10=Queue

Figure 80. Extended definition

Enabling and disabling events

Chapter 8. Programmable system management 231

Specify the service interval time by setting the QServiceInterval
attribute for the queue to the appropriate length of time (QSVCINT in
MQSC).

For example, to enable Queue Service Interval High events with a service
interval time of 10 seconds (10 000 milliseconds) use the following MQSC
commands:

ALTER QMGR +
PERFMEV(ENABLED)

ALTER QLOCAL('MYQUEUE') +
QSVCINT(10000) +
QSVCIEV(HIGH)

Note: When enabled, a queue service interval event can only be generated
on an MQPUT call or an MQGET call. The event is not generated when the
elapsed time becomes equal to the service interval time.

Automatic enabling of queue service interval events
The high and OK events are mutually exclusive; that is, when one is
enabled, the other is automatically disabled.

When a high event is generated on a queue, the queue manager
automatically disables high events and enables OK events for that queue.

Similarly, when an OK event is generated on a queue, the queue manager
automatically disables OK events and enables high events for that queue.

Event queues
You can define event queues either as local queues, alias queues, or as local
definitions of remote queues. If you define all your event queues as local
definitions of the same remote queue on one queue manager, you can centralize
your monitoring activities.

You must not define event queues as transmission queues because event messages
have formats that are incompatible with the format of messages required for
transmission queues.

Note: Attributes related to events for queues can be modified using the MQSET
MQI call, commands, or the master terminal transactions.

If an event occurs when the event queue is not available, the event message is lost.
For example, if you do not define an event queue for a category of event, all event
messages for that category will be lost. The event messages are not, for example,
saved on the dead-letter (undelivered-message) queue.

However, the event queue may be defined as a remote queue. Then, if there is a
problem on the remote system putting messages to the resolved queue the event
message will appear on the remote system's dead-letter queue.

An event queue might be unavailable for many different reasons including:
v The queue has not been defined.
v The queue has been deleted.
v The queue is full.
v The queue has been put-inhibited.

Enabling and disabling events

232 WebSphere MQ for z/VSE System Management Guide

The absence of an event queue does not prevent the event from occurring. For
example, after a performance event, the queue manager changes the queue
attributes and resets the queue statistics. This happens whether the event message
is put on the performance event queue or not.

You can set up the event queues with triggers so that when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, certain events may require that an operator be
informed, other events may start off an application that performs some
administration tasks automatically.

Format of event messages
Event messages contain information about the event and its origin. Typically, these
messages are processed by a system management application program tailored to
meet the requirements of the enterprise at which it runs. As with all WebSphere
MQ messages, an event message has two parts:
v A message descriptor.
v The message data.

The message descriptor is based on the MQMD structure, which is defined in the
WebSphere MQ Application Programming Reference manual. The message data is
also made up of an event header and the event data. The event header contains the
reason code that identifies the event type. The putting of the event message and
any subsequent actions arising do not affect the reason code returned by the MQI
call that caused the event. The event data provides further information about the
event.

Message descriptor (MQMD) in event messages
The format of the message descriptor is defined by the WebSphere MQ
MQMD dat structure, which is found in all WebSphere MQ messages and
is described in the WebSphere MQ Application Programming Reference
manual. The message descriptor contains information that can be used by a
user-written system monitoring application. For example:
v The message type.
v The format type.
v The date and time that the message was put on the event queue.

In particular, the information in the descriptor informs a system
management application that the message type is MQMT_DATAGRAM,
and the message format is MQFMT_EVENT.

In an event message, many of these fields contain fixed data, which is
supplied by the queue manager that generated the message. The MQMD
also specifies the name of the queue manager (truncated to 28 characters)
that put the message, and the date and time when the event message was
put on the event queue.

Message data in event messages
The event message data is based on the programmable command format
(PCF) which is used in PCF command inquiries and responses. The event
message consists of two parts: the event header and the event data.

Event header
The MQCFH structure is the header structure used for event messages and
for PCF messages. When the structure is used for event messages, the
message descriptor Format field is MQFMT_EVENT. The data type of the

Event queues

Chapter 8. Programmable system management 233

following parameters (MQLONG) is described in the WebSphere MQ
Application Programming Reference manual.

Event data
The event message data contains information specific to the event that was
generated. This data includes the name of the queue manager and, where
appropriate, the name of the queue.

The data structures returned depend on which particular event was
generated. In addition, for some events, certain parameters of the
structures are optional, and are returned only if they contain information
that is relevant to the circumstances giving rise to the event. The values in
the data structures depend on the circumstances that caused the event to
be generated.

Note: The PCF structures in the message data are not returned in a
defined order. They must be identified from the parameter identifiers
shown in the description.

Event messages
WebSphere MQ for z/VSE supports the following event messages:
v Alias Base Queue Type Error
v Channel auto-define
v Channel Conversion Error
v Channel SSL error
v Channel Started
v Channel Stopped
v Channel Stopped By User
v Command
v Configuration
v Get Inhibited
v Not Authorized (type 1)
v Not Authorized (type 2)
v Not Authorized (type 3)
v Not Authorized (type 4)
v Put Inhibited
v Queue Depth High
v Queue Depth Low
v Queue Full
v Queue Manager Active
v Queue Manager Not Active
v Queue Service Interval High
v Queue Service Interval OK
v Remote Queue Name Error
v Transmission Queue Type Error
v Transmission Queue Usage Error
v Unknown Alias Base Queue
v Unknown Object Name
v Unknown Remote Queue Manager
v Unknown Transmission Queue

For more information about events, see the chapter "Event monitoring" in
WebSphere MQ Monitoring WebSphere MQ.

Format of event messages

234 WebSphere MQ for z/VSE System Management Guide

Programmable command formats
This section describes Programmable Command Format (PCF) messages in terms
of their use, prerequisites, definitions, and binary structure.

Introduction to Programmable Command Formats (PCFs)

The problem PCF commands solve
The administration of distributed networks can become very complex. The
problems of administration will continue to grow as networks increase in size and
complexity.

Examples of administration specific to messaging and queuing include:
v Resource management.

For example, queue creation and deletion.
v Performance monitoring.

For example, maximum queue depth or message rate.
v Control.

For example, tuning queue parameters such as maximum queue depth,
maximum message length, and enabling and disabling queues.

v Message routing.
Definition of alternative routes through a network.

WebSphere MQ PCF commands can be used to simplify queue manager
administration and other network administration. PCF commands allow you to use
a single application to perform network administration from a single queue
manager within the network.

What PCFs are
PCFs define command and reply messages that can be exchanged between a
program and any queue manager (that supports PCFs) in a network. You can use
PCF commands in a systems management application program for administration
of WebSphere MQ objects: queue managers, process definitions, queues, and
channels. The application can operate from a single point in the network to
communicate command and reply information with any queue manager, local or
remote, via the local queue manager.

Each queue manager has an administration queue with a standard queue name
and your application can send PCF command messages to that queue. Each queue
manager also has a command server to service the command messages from the
administration queue. PCF command messages can therefore be processed by any
queue manager in the network and the reply data can be returned to your
application, using your specified reply queue. PCF commands and reply messages
are sent and received using the normal Message Queue interface (MQI).

Preparing WebSphere MQ for PCF
WebSphere MQ for z/VSE requires several resources to be active and available
before it can support PCFs. Specifically, WebSphere MQ requires:
v System command queue is defined and available.
v PCF command server is active in CICS.

Programmable command formats

Chapter 8. Programmable system management 235

System command queue
The system command queue (usually SYSTEM.ADMIN.COMMAND.QUEUE) is
specified in the queue manager's global system definition, as a communication
parameter.

The global system definition can be accessed using the MQMT transaction, option
1.1 (the system command queue is one of the queue manager's “Communication
Settings” and is accessible using PF9):

PCF messages, to be processed by the z/VSE queue manager, should be placed on
the queue identified by the system command queue parameter (the system reply
queue parameter is used by the MQSC batch utility, and is not relevant in the
current context).

PCF messages placed on the system command queue are processed by the PCF
command server, transaction MQCS.

PCF command server
The PCF command server must be active in CICS before PCF messages can be
processed by WebSphere MQ for z/VSE. The PCF command server (transaction
MQCS) can be activated in two ways:
v Manually in native CICS.
v Automatically by the queue manager.

Starting the command server manually: The PCF command server can be
manually started in native CICS by running the MQCS transaction. If successful,
starting the command server this way will display the following message:
PCF Command Server started.

The following message will also be written to the WebSphere MQ system log
(assuming the queue manager is configured to log informational messages, see
“Queue Manager Log and Trace Settings” on page 88.

2011/10/31 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
21:29:46 Global System Definition CIC1
MQWMSYS Communications Settings A000

TCP/IP settings Batch Interface settings
Licensed clients . . : 00000 Batch Int. identifier: MQBSRV39
Adopt MCA : N Batch Int. auto-start: Y
Adopt MCA Check . . : N

Channel Auto-Definition
Auto-definition . . : N

SSL parameters Auto-definition exit :
Key-ring sublibrary :
Key-ring member . . :
SSL reset count . . :

PCF parameters
System command queue : SYSTEM.ADMIN.COMMAND.QUEUE
System reply queue . : SYSTEM.ADMIN.REPLY.QUEUE
Cmd Server auto-start: Y
Cmd Server convert . : Y
Cmd Server DLQ store : Y

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF6=Update PF10=Listeners PF11=Services

Figure 81. PCF parameters

System command queue

236 WebSphere MQ for z/VSE System Management Guide

MQI007000I PCF command server started

If the command server fails to start, review the system log for associated error
messages.

Stopping the command server manually: The PCF command server can be
manually stopped in native CICS by running the MQCS transaction with the
terminate ("X") parameter. For example:
MQCS X

The terminate parameter places a special stop request message on the system
command queue. The command server, when it retrieves the stop request from the
command queue, finishes processing and terminates. If successful, running MQCS
with the terminate parameter will display the following message:
PCF Command Server termination requested.

If the stop request is successful, the command server stops and the following
message is written to the system log:
MQI007017I PCF command server stopped

If the stop request fails, or the command server fails to stop, review the system log
for associated error messages.

Starting the command server automatically: The PCF command server can be
started automatically in CICS by configuring the queue manager to start the server
when the queue manager is initialized. This is achieved by setting the command
server auto-start option on.

The command server auto-start parameter is configurable as part of the queue
manager's global system definition (MQMT option 1.1) and the communication
settings (PF9). See Figure 81 on page 236.

The command server auto-start parameter can be set to (Y)es or (N)o. To activate
the command server automatically when the queue manager is initialized, set the
auto-start parameter to (Y)es.

The command server runs as transaction MQCS. The auto-activation of the
command server can be verified by inquiring on the active tasks in CICS. If the
command server is active, the MQCS transaction will be listed as an active task.

If the command server fails to start automatically, check the system log for
associated error messages.

Stopping the command server automatically: The command server can be
stopped automatically by stopping the queue manager (by running the MQST
transaction).

The command server can be stopped automatically this way regardless of how the
server was started. For example, if the command server was started manually in
native CICS, it can still be stopped automatically by stopping the queue manager.

Using PCFs
This section describes how to use the PCFs in a systems management application
program for WebSphere MQ remote administration. The topic includes:
v PCF command messages.

PCF command server

Chapter 8. Programmable system management 237

v Responses.
v Authority checking for PCF commands.

PCF command messages
Each command and its parameters are sent as a separate command message
containing a PCF header followed by a number of parameter structures (see
“MQCFH - PCF header” on page 486). The PCF header identifies the command
and the number of parameter structures that follow in the same message. Each
parameter structure provides a parameter to the command.

Replies to the commands, generated by the command server, have a similar
structure. There is a PCF header, followed by a number of parameter structures.
Replies can consist of more than one message but commands always consist of one
message only.

The queue to which the PCF commands are sent is often called the
SYSTEM.ADMIN.COMMAND.QUEUE. The command server servicing this queue
sends the replies to the queue defined by the ReplyToQ and ReplyToQMgr fields
in the message descriptor of the command message.

How to issue PCF command messages: Use the normal Message Queue Interface
(MQI) calls, MQPUT, MQGET and so on, to put and retrieve PCF command and
response messages to and from their respective queues.

PCF commands should be placed on the system command queue (specified in the
queue manager's global system definition). PCF response messages are place on the
ReplyToQ specified in the message descriptor of the originating PCF command.

Message descriptor for a PCF command: The WebSphere MQ message descriptor
is fully documented in the WebSphere MQ Application Programming Reference
manual.

A PCF command message contains these fields in the message descriptor:

Report
Any valid value, as required.

MsgType
This must be MQMT_REQUEST to indicate a message requiring a
response.

Expiry Any valid value, as required.

Feedback
Set to MQFB_NONE

Encoding
If you are sending to AS/400, OS/2, Windows NT, or UNIX systems, set
this field to the encoding used for the message data; conversion will be
performed if necessary.

CodedCharSetId
If you are sending to AS/400, OS/2, Windows NT, or UNIX systems, set
this field to the coded character-set identifier used for the message data;
conversion will be performed if necessary.

Format
Set to MQFMT_ADMIN.

Using PCFs

238 WebSphere MQ for z/VSE System Management Guide

Priority
Any valid value, as required.

Persistence
Any valid value, as required.

MsgId The sending application may specify any value, or MQMI_NONE can be
specified to request the queue manager to generate a unique message
identifier.

CorrelId
The sending application may specify any value, or MQCI_NONE can be
specified to indicate no correlation identifier.

ReplyToQ
The name of the queue to receive the response.

ReplyToQMgr
The name of the queue manager for the response (or blank).

Message context fields
These can be set to any valid values, as required. Normally the Put
message option MQPMO_DEFAULT_CONTEXT is used to set the message
context fields to the default values.

If you are using a version-2 MQMD structure, you must set these
additional fields:

GroupId
Set to MQGI_NONE

MsgSeqNumber
Set to 1

Offset Set to 0

MsgFlags
Set to MQMF_NONE

OriginalLength
Set to MQOL_UNDEFINED

Sending user data: WebSphere MQ for z/VSE does not support user-defined PCF
formats. Unlike some MQ platforms that support PCF messages with an MQMD
format of MQFMT_PCF, the WebSphere MQ for z/VSE command server will reject
any PCF message that does not have an MQMD Format of MQFMT_ADMIN.

Responses
In response to each command, the command server generates one or more
response messages. A response message has a similar format to a command
message; the PCF header has the same command identifier value as the command
to which it is a response (see “MQCFH - PCF header” on page 486 for details). The
message identifier and correlation identifier are set according to the report options
of the request.

If a single command specifies a generic object name, a separate response is
returned in its own message for each matching object. For the purpose of response
generation, a single command with a generic name is treated as multiple
individual commands (except for the control field MQCFC_LAST or
MQCFC_NOT_LAST). Otherwise, one command message generates one response
message.

PCF command messages

Chapter 8. Programmable system management 239

There are three types of response, described below:
v OK response
v Error response
v Data response

OK response: This consists of a message starting with a command format header,
with a CompCode field of MQCC_OK or MQCC_WARNING.

For MQCC_OK, the Reason is MQRC_NONE.

For MQCC_WARNING, the Reason identifies the nature of the warning. In this
case the command format header may be followed by one or more warning
parameter structures appropriate to this reason code.

In either case, for an inquire command further parameter structures may follow.

Error response: If the command has an error, one or more error response
messages are sent (more than one may be sent even for a command which would
normally only have a single response message). These error response messages
have MQCFC_LAST or MQCFC_NOT_LAST set as appropriate.

Each such message starts with a response format header, with a CompCode value
of MQCC_FAILED and a Reason field which identifies the particular error. In
general each message describes a different error. In addition, each message has
either zero or one (never more than one) error parameter structures following the
header. This parameter structure, if there is one, is an MQCFIN structure, with a
Parameter field containing one of:

MQIACF_PARAMETER_ID
The Value field in the structure is the parameter identifier of the parameter
that was in error (for example, MQCA_Q_NAME).

MQIACF_ERROR_ID
This is used with a Reason value (in the command format header) of
MQRC_UNEXPECTED_ERROR. The Value field in the MQCFIN structure
is the unexpected reason code received by the command server.

MQIACF_SELECTOR
This occurs if a list structure (MQCFIL) sent with the command contains
an invalid or duplicate selector. The Reason field in the command format
header identifies the error, and the Value field in the MQCFIN structure is
the parameter value in the MQCFIL structure of the command that was in
error.

MQIA_CODED_CHAR_SET_ID
This occurs when the coded character-set identifier in the message
descriptor of the incoming PCF command message does not match that of
the target queue manager. The Value field in the structure is the coded
character-set identifier of the queue manager.

The last (or only) error response message is a summary response, with a
CompCode field of MQCC_FAILED, and a Reason field of
MQRCCF_COMMAND_FAILED. This message has no parameter structure
following the header.

Responses

240 WebSphere MQ for z/VSE System Management Guide

Data response: This consists of an OK response (as described above) to an inquire
command. The OK response is followed by additional structures containing the
requested data.

Applications should not depend upon these additional parameter structures being
returned in any particular order.

For specific information about data response messages, refer to “Data responses to
commands” on page 381.

Message descriptor for a response: A response message (obtained using the
Get-message option MQGMO_CONVERT) has the following fields in the message
descriptor, defined by the putter of the message. The actual values in the fields are
generated by the queue manager:

MsgType
This is MQMT_REPLY.

MsgId This is generated by the queue manager.

CorrelId
This is generated according to the report options of the command message.

Format
This is MQFMT_ADMIN.

Encoding
Set to MQENC_NATIVE.

CodedCharSetId
Set to MQCCSI_Q_MGR.

Persistence
The same as in the command message.

Priority
The same as in the command message.

The response is generated with MQPMO_PASS_IDENTITY_CONTEXT.

Authority checking for PCF commands
When a PCF command is processed, the UserIdentifier from the message
descriptor in the command message is used for the required WebSphere MQ object
authority checks. The checks are performed on the system on which the command
is being processed, therefore this user ID must exist on the target system and have
the required authorities to process the command.

If the message has come from a remote system, one way of achieving this is to
have a matching user ID on both the local and remote systems.

Authority checking is implemented differently on each platform. For more
information about PCF command, and command resource authority checking, refer
to Chapter 12, “Security,” on page 651.

Error codes applicable to all commands
In addition to those listed under each command format, any command may return
the following in the response format header (descriptions of the MQRC_* error
codes are given in the WebSphere MQ Application Programming Reference
manual):

Responses

Chapter 8. Programmable system management 241

Reason (MQLONG)

The value can be:

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE') Message length greater than maximum for queue.

MQRC_NONE
(0, X'000') No reason to report.

MQRCCF_COMMAND_FAILED
Command failed.

MQRCCF_CFH_COMMAND_ERROR
Command identifier not valid.

MQRCCF_CFH_CONTROL_ERROR
Control option not valid.

MQRCCF_CFH_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFH_MSG_SEQ_NUMBER_ERR
Message sequence number not valid.

MQRCCF_CFH_PARM_COUNT_ERROR
Parameter count not valid.

MQRCCF_CFH_TYPE_ERROR
Type not valid.

MQRCCF_CFH_VERSION_ERROR
Structure version number is not valid.

MQRCCF_ENCODING_ERROR
Encoding error.

MQRCCF_MD_FORMAT_ERROR
Format not valid.

MQRCCF_MSG_TRUNCATED
Message truncated.

MQRCCF_MSG_LENGTH_ERROR
Message length not valid.

MQRCCF_MSG_SEQ_NUMBER_ERROR
Message sequence number not valid.

Definitions of the PCFs
This section contains reference material for the PCFs of commands and responses
sent between an WebSphere MQ systems management application program and an
WebSphere MQ queue manager.

WebSphere MQ for z/VSE supports these PCF commands:

Error codes applicable to all commands

242 WebSphere MQ for z/VSE System Management Guide

v Change Channel
v Change Channel Listener
v Change Namelist
v Change Queue
v Change Queue Manager
v Change Service
v Copy Channel
v Copy Channel Listener
v Copy Namelist
v Copy Queue
v Copy Service
v Create Channel
v Create Channel Listener
v Create Namelist
v Create Queue
v Create Service
v Delete Channel
v Delete Channel Listener
v Delete Namelist
v Delete Queue
v Delete Service
v Escape
v Inquire Channel
v Inquire Channel Authentication Records
v Inquire Channel Names
v Inquire Channel Status
v Inquire Connection
v Inquire Channel Listener
v Inquire Channel Listener Status
v Inquire Namelist
v Inquire Namelist Names
v Inquire Queue
v Inquire Queue Manager
v Inquire Queue Names
v Inquire Queue Status
v Inquire Service
v Inquire Service Status
v Ping Queue Manager
v Reset Channel
v Set Channel Authentication Record
v Start Channel
v Start Service
v Start Channel Listener
v Start Channel Listener
v Stop Channel
v Stop Connection
v Stop Channel Listener
v Stop Service
v Change Subscription
v Copy Subscription
v Create Subscription
v Delete Subscription
v Inquire Subscription
v Inquire Subscription Status
v Change Topic
v Copy Topic

Definitions of the PCFs

Chapter 8. Programmable system management 243

|

|

|
|
|
|
|
|
|
|

v Create Topic
v Clear Topic String
v Delete Topic
v Inquire Topic
v Inquire Topic Names
v Inquire Topic Status

Programmable constants and data structures for these commands and their
parameters are available in copybooks and header files provided with WebSphere
MQ for z/VSE as follows:

COBOL:
v CMQV.C
v CMQXV.C
v CMQCFBSL.C
v CMQCFBSV.C
v CMQCFV.C
v CMQCFHL.C
v CMQCFHV.C
v CMQCFILL.C
v CMQCFILV.C
v CMQCFINL.C
v CMQCFINV.C
v CMQCFSLL.C
v CMQCFSLV.C
v CMQCFSTL.C
v CMQCFSTV.C
v CMQCFXLL.C
v CMQCFXLV.C

C:
v CMQC.H
v CMQXC.H
v CMQCFC.H

PL/I:
v CMQP.P
v CMQXP.P
v CMQCFP.P

Note that the command descriptions in the following sections pertain to
WebSphere MQ for z/VSE. When considering PCF messages intended for other
platforms, you should also refer to WebSphere MQ Programmable System
Management (SC33-1482-08).

Inquire commands can now specify an optional integer filter structure (MQCFIF)
or string filter structure (MQCFSF). This allows you to filter the information
displayed by one (and only one) of the attributes of objects.

Change Channel

The Change Channel (MQCMD_CHANGE_CHANNEL) command changes the
specified attributes in a channel definition.

This PCF is supported on all platforms.

For any optional parameters that are omitted, the value does not change.

Definitions of the PCFs

244 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|

Required parameters:

ChannelName, ChannelType

Optional parameters:

BatchInterval, BatchSize, ChannelDesc, ChannelMonitoring, ChannelStatistics,
ConnectionName, DataConversion, DiscInterval, DiscRetryCount,
LongRetryCount, LongRetryInterval, MaxMsgLength, MaxWait, MsgExit,
MsgUserData, PortNumber, PropertyControl, ReceiveExit, ReceiveUserData,
SecurityExit, SecurityUserData, SendExit, SendUserData, SeqNumberWrap,
ShortRetryCount, ShortRetryInterval, SSLCipherSpec, SSLClientAuth,
SSLPeerName, TpName, TransportType, XmitQName, XmitSize

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Specifies the name of the channel definition to be changed.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of channel being changed. The value may be:

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_SVRCONN
Client.

Optional parameters

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

This is the approximate time in milliseconds that a channel will keep a
batch open, if fewer than BatchSize messages have been transmitted in the
current batch.

If BatchInterval is greater than zero, the batch is terminated by whatever
occurs first:
v BatchSize messages have been sent.
v BatchInterval milliseconds have elapsed since the start of the batch.

If BatchInterval is zero, the batch is terminated by whatever first:
v BatchSize messages have been sent.
v the transmission queue becomes empty.

BatchInterval must be in the range zero through 999 999 999.

Change Channel

Chapter 8. Programmable system management 245

This parameter applies only to channels with a ChannelType of:
MQCHT_SENDER, or MQCHT_SERVER.

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

The maximum number of messages that should be sent down a channel
before a checkpoint is taken.

The batch size which is actually used is the lowest of:
v The BatchSize of the sending channel.
v The BatchSize of the receiving channel.

Specify a value in the range 1 through 999 999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN.

ChannelStatistics (MQCFIN)
Statistics data collection (parameter identifier:
MQIA_STATISTICS_CHANNEL)

Specifies whether statistics data is to be collected and, if so, the rate at
which the data is collected.

The value can be:
MQMON_OFF

Statistics data collection is turned off for this channel.
MQMON_Q_MGR

The value of the queue manager's ChannelStatistics parameter is
inherited by the channel.

MQMON_LOW
If the value of the queue manager's ChannelStatistics parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a low rate of data collection, for this channel.

MQMON_MEDIUM
If the value of the queue manager's ChannelStatistics parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a moderate rate of data collection, for this channel.

MQMON_HIGH
If the value of the queue manager's ChannelStatistics parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a high rate of data collection, for this channel.

ChannelMonitoring (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_MONITORING_CHANNEL).

Specifies whether online monitoring data is to be collected and, if so, the
rate at which the data is collected.

The value can be:
MQMON_OFF

Online monitoring data collection is turned off for this channel.
MQMON_Q_MGR

The value of the queue manager's ChannelMonitoring parameter is
inherited by the channel. This is the default value.

MQMON_LOW
If the value of the queue manager's ChannelMonitoring parameter
is not MQMON_NONE, online monitoring data collection is turned
on, with a low rate of data collection, for this channel.

Change Channel

246 WebSphere MQ for z/VSE System Management Guide

MQMON_MEDIUM
If the value of the queue manager's ChannelMonitoring parameter
is not MQMON_NONE, online monitoring data collection is turned
on, with a moderate rate of data collection, for this channel. e of

MQMON_HIGH
If the value of the queue manager's ChannelMonitoring parameter
is not MQMON_NONE, online monitoring data collection is turned
on, with a high rate of data collection, for this channel.

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

Use characters from the character set, identified by the coded character set
identifier (CCSID) for the message queue manager on which the command
is executing, to ensure that the text is translated correctly.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

Specify the name of the machine as required for the stated TransportType:
v For MQXPT_LU62, specify the fully-qualified name of the partner LU.
v For MQXPT_TCP specify either the host name or the network address of

the remote machine.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER and MQCHT_REQUESTER.

DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

This parameter is valid only for ChannelType values of MQCHT_SENDER
and MQCHT_SERVER.

The value can be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

This defines the maximum number of seconds that the channel waits for
messages to be put on a transmission queue before terminating the
channel. A value of zero causes the message channel agent to wait
indefinitely.

Specify a value in the range 0 through 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
and MQCHT_SERVER.

DiscRetryCount (MQCFIN)
Disconnection retry count (parameter identifier: MQIACH_DISC_RETRY).

Change Channel

Chapter 8. Programmable system management 247

Specifies the maximum number of retries that the channel waits for
messages to be put on a transmission queue before terminating the
channel. The retries occur at a frequency specified by the DiscInterval
parameter.

Specify a value in the range 0 through 99 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
and MQCHT_SERVER.

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

When a sender or server channel is attempting to connect to the remote
machine, and the count specified by ShortRetryCount has been exhausted,
this specifies the maximum number of further attempts that are made to
connect to the remote machine, at intervals specified by LongRetryInterval.

If this count is also exhausted without success, an error is logged to the
operator, and the channel is stopped. The channel must subsequently be
restarted with a command (it is not started automatically by the queue
manager).

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

Specifies the long retry wait interval for a sender or server channel that is
started automatically by the queue manager. It defines the interval in
seconds between attempts to establish a connection to the remote machine,
after the count specified by ShortRetryCount has been exhausted.

The time is approximate; zero means that another connection attempt is
made as soon as possible.

Specify a value in the range 0 through 999 999. Values exceeding this are
treated as 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

Specifies the maximum message length that can be transmitted on the
channel. This is compared with the value for the remote channel and the
actual maximum is the lowest of the two values.

The value zero means the maximum message length for the queue
manager.

The lower limit for this parameter is 0. The upper limit depends on the
environment. For WebSphere MQ for z/VSEthe upper limit is 4 MB.

MaxWait (MQCFIN)
Maximum TCP/IP wait (parameter identifier:
MQIA_RECEIVE_TIMEOUT).

Specifies the maximum number of seconds to wait for a remote response
on an active TCP/IP channel (sender or receiver).

Change Channel

248 WebSphere MQ for z/VSE System Management Guide

Specify a value in the range 0 through 999999. The value zero means the
channel waits indefinitely for data.

MsgExit (MQCFSL)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately after a
message has been retrieved from the transmission queue. The exit is given
the entire application message and message descriptor for modification.

For channels with a channel type (ChannelType) of MQCHT_SVRCONN,
this parameter is accepted but ignored, since message exits are not invoked
for such channels.

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

WebSphere MQ for v/VSE supports a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure.
v The exits are invoked in the order specified in the list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v An individual string must not exceed MQ_EXIT_NAME_LENGTH.
v On z/VSE, you can specify the names of up to 8 exit programs.

MsgUserData (MQCFSL)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

Specifies user data that is passed to the message exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

For channels with a channel type (ChannelType) of MQCHT_SVRCONN or
MQCHT_CLNTCONN, this parameter is accepted but ignored, since
message exits are not invoked for such channels.

WebSphere MQ for z/VSE supports a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure.
v Each exit user data string is passed to the exit at the same ordinal

position in the MsgExit list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v The total length of all of the exit user data in the list (excluding
v An individual string must not exceed MQ_EXIT_DATA_LENGTH.
v On z/VSE, you can specify up to 8 strings.

PortNumber (MQCFIN)
TCP/IP port number (parameter identifier: MQIACH_PORT_NUMBER).

Change Channel

Chapter 8. Programmable system management 249

For TCP/IP channels only, specifies the port number (for example, 1414)
corresponding to an MQ Listener process running on the host specified by
the ConnectionName parameter.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER and MQCHT_REQUESTER.

PropertyControl (MQCFIN)
Property control attribute (parameter identifier
MQIA_PROPERTY_CONTROL).

Specifies what happens to properties of messages when the message is
about to be sent to a queue manager that does not understand the concept
of a property descriptor. This parameter is applicable to Sender and Server
channels. The value can be:

MQPROP_COMPATIBILITY
If the message contains a property with a prefix of mcd., jms., usr.,
or mqext., all message properties are delivered to the application in
an MQRFH2 header. Otherwise all properties of the message,
except those contained in the message descriptor (or extension), are
discarded and are no longer accessible to the application. This is
the default value; it allows applications which expect JMS related
properties to be in an MQRFH2 header in the message data to
continue to work unmodified.

MQPROP_NONE
All properties of the message, except those in the message
descriptor (or extension), are removed from the message before the
message is sent to the remote queue manager.

MQPROP_ALL
All properties of the message are included with the message when
it is sent to the remote queue manager. The properties, except those
in the message descriptor (or extension), are placed in one or more
MQRFH2 headers in the message data.

ReceiveExit (MQCFSL)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

If a nonblank name is defined, the exit is invoked before data received
from the network is processed. The complete transmission buffer is passed
to the exit and the contents of the buffer can be modified as required.

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

WebSphere MQ for z/VSE supports a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure.
v The exits are invoked in the order specified in the list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v An individual string must not exceed MQ_EXIT_NAME_LENGTH.

Change Channel

250 WebSphere MQ for z/VSE System Management Guide

v On z/VSE, you can specify the names of up to 8 exit programs.

ReceiveUserData (MQCFSL)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

Specifies user data that is passed to the receive exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

WebSphere MQ for z/VSE supports a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure.
v Each exit user data string is passed to the exit at the same ordinal

position in the ReceiveExit list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v An individual string must not exceed MQ_EXIT_DATA_LENGTH.
v On z/VSE, you can specify up to 8 strings.

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

If a non-blank name is defined, the security exit is invoked at the following
times:
v Immediately after establishing a channel.
v Before any messages are transferred, the exit is given the opportunity to

instigate security flows to validate connection authorization.
v Upon receipt of a response to a security message flow. Any security

message flows received from the remote processor on the remote
machine are passed to the exit.

The format of the string is a 1-8 character CICS program name. The exit
name must identify a program defined to the CICS region.

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

SecurityUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

Specifies user data that is passed to the security exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

SendExit (MQCFSL)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately before data
is sent out on the network. The exit is given the complete transmission
buffer before it is transmitted; the contents of the buffer can be modified as
required.

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

Change Channel

Chapter 8. Programmable system management 251

WebSphere MQ for z/VSE supports a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure.
v The exits are invoked in the order specified in the list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure. v You cannot specify both a list (MQCFSL) and a
single entry (MQCFST) structure for the same channel attribute.

v An individual string must not exceed MQ_EXIT_NAME_LENGTH.
v On z/VSE you can specify the names of up to 8 exit programs.

SendUserData (MQCFSL)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

Specifies user data that is passed to the send exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

WebSphere MQ for z/VSE supports a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure.
v Each exit user data string is passed to the exit at the same ordinal

position in the SendExit list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v An individual string must not exceed MQ_EXIT_DATA_LENGTH.
v On z/VSE, you can specify up to 8 strings.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

Specifies the maximum message sequence number. When the maximum is
reached, sequence numbers wrap to start again at 1.

The maximum message sequence number is not negotiable; the local and
remote channels must wrap at the same number.

Specify a value in the range 100 through 999 999 999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN.

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

The maximum number of attempts that are made by a sender or server
channel to establish a connection to the remote machine, at intervals
specified by ShortRetryInterval before the (normally longer)
LongRetryCount and LongRetryInterval are used.

Specify a value in the range 0 through 999 999 999.

This parameter applies only to channels with a ChannelType of:
MQCHT_SENDER, or MQCHT_SERVER.

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

Change Channel

252 WebSphere MQ for z/VSE System Management Guide

Specifies the short retry wait interval for a sender or server channel that is
started automatically by the queue manager. It defines the interval in
seconds between attempts to establish a connection to the remote machine.

The time is approximate; zero means that another connection attempt is
made as soon as possible.

Specify a value in the range 0 through 999 999. Values exceeding this are
treated as 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

SSLCipherSpec (MQCFST)
SSL cipher specification (parameter identifier:
MQCACH_SSL_CIPHER_SPEC).

Specifies the SSL cipher specification to use when establishing an SSL
enabled channel. Unlike other MQ platforms that expect a 32-character
specification name, WebSphere MQ for z/VSEexpects a 2-character
specification code.

For a list of valid cipher specification codes, refer to SSL product
documentation.

The maximum length of the string is MQ_SSL_CIPHER_SPEC_LENGTH.

SSLClientAuth (MQCFIN)
SSL client authentication (parameter identifier:
MQIACH_SSL_CLIENT_AUTH).

Specifies whether or not a PKI certificate is required when establishing an
SSL enabled channel.

The value can be:

MQSCA_REQUIRED
PKI certificate is required.

MQSCA_OPTIONAL
PKI certificate is optional.

SSLPeerName (MQCFST)
SSL peer name (parameter identifier: MQCACH_SSL_PEER_NAME)

Identifies certain characteristics that are expected to match the contents of a
PKI certificate received when establishing an SSL enabled channel.

The maximum length of the string is
MQ_DISTINGUISHED_NAME_LENGTH.

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

This is the LU 6.2 transaction program name.

The maximum length of the string is MQ_TP_NAME_LENGTH.

This parameter is valid only for channels with a TransportType of
MQXPT_LU62. It is not valid for receiver channels.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

Change Channel

Chapter 8. Programmable system management 253

No check is made that the correct transport type has been specified if the
channel is initiated from the other end. The value can be:

MQXPT_LU62
LU 6.2.

MQXPT_TCP
TCP/IP.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

A transmission queue name is required (either previously defined or
specified here) if ChannelType is MQCHT_SENDER or MQCHT_SERVER.
It is not valid for other channel types.

XmitSize (MQCFIN)
Maximum transmission size (parameter identifier:
MQIACH_MAX_XMIT_SIZE).

Specifies the maximum number of bytes that may be sent in a single
protocol transmission.

For LU6.2 channels, specify a value between 476 and 32000.

For TCP/IP channels, specify a value between 476 and 65535.

Note that the optional parameters described in this section are also applicable to
the following PCF commands:
v “Copy Channel” on page 285
v “Create Channel” on page 292

Error codes

In addition to the values for any command shown in “Error codes applicable to all
commands” on page 241, for this command the following may be returned in the
response format header:

Reason (MQLONG)

The value can be:

MQRCCF_BATCH_SIZE_ERROR
Batch size not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFSL_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFSL_TOTAL_LENGTH_ERROR
Total string length error.

Change Channel

254 WebSphere MQ for z/VSE System Management Guide

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_DISC_INT_ERROR
Disconnection interval not valid.

MQRCCF_DISC_INT_WRONG_TYPE
Disconnection interval not allowed for this channel type.

MQRCCF_LONG_RETRY_ERROR
Long retry value is not valid.

MQRCCF_LONG_TIMER_ERROR
Long retry interval is not valid.

MQRCCF_MAX_MSG_LENGTH_ERROR
Maximum message length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_SEQ_NUMBER_WRAP_ERROR
Sequence wrap number not valid.

MQRCCF_SHORT_RETRY_ERROR
Short retry value is not valid.

MQRCCF_SHORT_TIMER_ERROR
Short retry interval is not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_XMIT_PROTOCOL_TYPE_ERR
Transmission protocol type not valid.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

MQRCCF_XMIT_Q_NAME_WRONG_TYPE
Transmission queue name not allowed for this channel type.

Change Channel

Chapter 8. Programmable system management 255

Change Channel Listener

The Change Channel Listener (MQCMD_CHANGE_LISTENER) command changes
the specified attributes of an existing WebSphere MQ listener definition.

For any optional parameters that are omitted, the value does not change.

Required parameters:

ListenerName, TransportType

Optional parameters:

Backlog, IPAddress, ListenerDesc, Port, StartMode

Required parameters

For details of the required parameters for Change Channel Listener, see “Create
Channel Listener” on page 295.

Optional parameters

For details of the optional parameters for Change Channel Listener, see “Create
Channel Listener” on page 295.

Change Namelist

The Change Namelist (MQCMD_CHANGE_NAMELIST) command changes the
specified attributes of an existing WebSphere MQ namelist.

For any optional parameters that are omitted, the value does not change.

Required parameters:

NamelistName

Optional parameters:

NamelistDesc, Names

Required parameters

NamelistName (MQCFST)
Namelist name (parameter identifier: MQCA_NAMELIST_NAME). The
name of the namelist to be changed.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Optional parameters

NamelistDesc (MQCFST)
Description of namelist definition (parameter identifier:
MQCA_NAMELIST_DESC).

This is a plain-text comment that provides descriptive information about
the namelist definition. It should contain only displayable characters.

If characters are used that are not in the coded character set identifier
(CCSID) for the queue manager on which the command is executing, they
might be translated incorrectly.

The maximum length of the string is MQ_NAMELIST_DESC_LENGT.

Change Channel

256 WebSphere MQ for z/VSE System Management Guide

Names (MQCFSL)
The names to be placed in the namelist (parameter identifier:
MQCA_NAMES).

The number of names in the list is given by the Count field in the
MQCFSL structure. The length of each name is given by the StringLength
field in the that structure. The maximum length of a name is
MQ_OBJECT_NAME_LENGTH.

Change Queue

The Change Queue (MQCMD_CHANGE_Q) command changes the specified
attributes of an existing WebSphere MQ queue.

This PCF is supported on all platforms.

For any optional parameters that are omitted, the value does not change.

Required parameters:

QName, QType

Optional parameters:

BaseQName, CICSFileName, DefinitionType, InhibitGet, InhibitPut,
MaxGlobalLocks, MaxLocalLocks, MaxMsgLength, MaxQDepth, MaxQTriggers,
MaxQUsers, PropertyControl, QDepthHighEvent, QDepthHighLimit,
QDepthLowEvent, QDepthLowLimit, QDepthMaxEvent, QDesc,
QServiceInterval, QServiceIntervalEvent, QueueAccounting, QueueMonitoring,
QueueStatistics, RemoteQMgrName, RemoteQName, Reorganization,
ReorgStartTime, ReorgInterval, ReorgCatalog, Shareability,
TriggerChannelName, TriggerControl, TriggerData, TriggerProgramName,
TriggerRestart, TriggerTerminalId, TriggerTransactionId, TriggerType, Usage,
XmitQName

Required parameters

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The name of the queue to be changed. The maximum length of the string
is MQ_Q_NAME_LENGTH.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value specified must match the type of the queue being changed.

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_MODEL
Model queue definition.

MQQT_REMOTE
Local definition of a remote queue.

Change Channel

Chapter 8. Programmable system management 257

Optional parameters

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

This is the name of a local or remote queue that is defined to the local
queue manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

CICSFileName (MQCFST)
CSD file name for queue messages (parameter identifier:
MQCA_CICS_FILE_NAME).

This is the name of a VSAM file defined to CICS that is to be associated
with a queue definition for storing queue messages.

The maximum length of the string is MQ_CICS_FILE_NAME_LENGTH.

Note: CICSFileName must be specified with the Create Queue command,
but it cannot be specified with the Change Queue command, that is, you
cannot change the VSAM file that hosts a queue after it has been defined.
To change the VSAM file, the queue must be deleted and redefined. The
CICSFileName parameter is optional for the Copy Queue command.

DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).

This attribute is valid for model queues only. For all other queue types the
default is MQQDT_PREDEFINED.

For a model queue, The value can be:

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value can be:

MQQA_GET_ALLOWED
Get operations are allowed.

MQQA_GET_INHIBITED
Get operations are inhibited.

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

Specifies whether messages can be put on the queue.

The value can be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

Change Queue

258 WebSphere MQ for z/VSE System Management Guide

MaxGlobalLocks (MQCFIN)
Buffer size for queue manager to manage concurrent queue access
(parameter identifier: MQIA_MAX_GLOBAL_LOCKS).

The maximum number of entries that the queue manager can use to
maintain uncommitted MQPUT or MQGET calls, for each queue in the
system, for recovery.

A value of 500 is normally sufficient.

The maximum value is 1000.

MaxLocalLocks (MQCFIN)
Buffer size for applications to manage concurrent queue access (parameter
identifier: MQIA_MAX_LOCAL_LOCKS).

The maximum number of entries that the queue manager can use to
maintain uncommitted MQPUT or MQGET calls for each queue and task
for recovery.

A value of 500 is normally sufficient.

The maximum value is 1000.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

Specifies the maximum length for messages on the queue. Because
applications may use the value of this attribute to determine the size of
buffer they need to retrieve messages from the queue, the value should be
changed only if it is known that this will not cause an application to
operate incorrectly.

You cannot set a value that is greater than the queue manager's
MaxMsgLength attribute.

The lower limit for this parameter is 0. The upper limit depends on the
environment. For WebSphere MQ for z/VSE, the maximum is 4 MB.

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

The maximum number of messages allowed on the queue. Note that other
factors may cause the queue to be treated as full; for example, it will
appear to be full if there is no storage available for a message.

You cannot set a value that is greater than the queue manager's
MaxQDepth attribute.

Specify a value in the range 0 through 640 000.

MaxQTriggers (MQCFIN)
Maximum number of concurrent trigger instances for a particular queue
(parameter identifier: MQIA_MAX_Q_TRIGGERS).

The maximum number of trigger threads that can be activated
simultaneously. This parameter applies to queues with a TriggerType of
MQTT_EVERY.

Specify a value in the range 1 through 9999.

MaxQUsers (MQCFIN)
Maximum number of active opens to any particular queue (parameter
identifier: MQIA_Q_USERS).

Change Queue

Chapter 8. Programmable system management 259

The maximum number of active opens requests against a queue.

You cannot set a value that is greater than the queue manager's
MaxQUsers attribute.

Specify a value in the range 1 through 32000.

PropertyControl (MQCFIN)
Property control attribute (parameter identifier
MQIA_PROPERTY_CONTROL).

Specifies how message properties are handled when messages are retrieved
from queues using the MQGET call with the
MQGMO_PROPERTIES_AS_Q_DEF option. This parameter is applicable to
Local and Model queues.

The value can be:

MQPROP_COMPATIBILITY
If the message contains a property with a prefix of mcd., jms., usr.,
or mqext., all message properties are delivered to the application in
an MQRFH2 header. Otherwise all properties of the message,
except those contained in the message descriptor (or extension), are
discarded and are no longer accessible to the application.

This is the default value; it allows applications which expect JMS
related properties to be in an MQRFH2 header in the message data
to continue to work unmodified.

MQPROP_NONE
All properties of the message, except those in the message
descriptor (or extension), are removed from the message before the
message is sent to the remote queue manager.

MQPROP_ALL
All properties of the message are included with the message when
it is sent to the remote queue manager. The properties, except those
in the message descriptor (or extension), are placed in one or more
MQRFH2 headers in the message data.

MQPROP_FORCE_MQRFH2
Properties are always returned in the message data in an MQRFH2
header regardless of whether the application specifies a message
handle. A valid message handle supplied in the MsgHandle field
of the MQGMO structure on the MQGET call is ignored. Properties
of the message are not accessible by means of the message handle.

QDepthHighEvent (MQCFIN)
Controls whether Queue Depth High events are generated (parameter
identifier: MQIA_Q_DEPTH_HIGH_EVENT).

A Queue Depth High event indicates that an application has put a message
on a queue, and this has caused the number of messages on the queue to
become greater than or equal to the queue depth high threshold. See the
QDepthHighLimit parameter.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

Change Queue

260 WebSphere MQ for z/VSE System Management Guide

QDepthHighLimit (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

The threshold against which the queue depth is compared to generate a
Queue Depth High event.

This event indicates that an application has put a message to a queue, and
this has caused the number of messages on the queue to become greater
than or equal to the queue depth high threshold. See the
QDepthHighEvent parameter.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and must be greater than or equal to zero and less
than or equal to 100.

QDepthLowEvent (MQCFIN)
Controls whether Queue Depth Low events are generated (parameter
identifier: MQIA_Q_DEPTH_LOW_EVENT).

A Queue Depth Low event indicates that an application has retrieved a
message from a queue, and this has caused the number of messages on the
queue to become less than or equal to the queue depth low threshold. See
the QDepthLowLimit parameter.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

The threshold against which the queue depth is compared to generate a
Queue Depth Low event.

This event indicates that an application has retrieved a message from a
queue, and this has caused the number of messages on the queue to
become less than or equal to the queue depth low threshold. See the
QDepthLowEvent parameter.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and must be greater than or equal to zero and less
than or equal to 100.

QDepthMaxEvent (MQCFIN)
Controls whether Queue Full events are generated (parameter identifier:
MQIA_Q_DEPTH_MAX_EVENT).

A Queue Full event indicates that an MQPUT call to a queue has been
rejected because the queue is full, that is, the queue depth has already
reached its maximum value.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

Change Queue

Chapter 8. Programmable system management 261

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

Text that briefly describes the object.

The maximum length of the string is MQ_Q_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the message queue manager on which the command
is executing to ensure that the text is translated correctly if it is sent to
another queue manager.

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

The service interval used for comparison to generate Queue Service
Interval High and Queue Service Interval OK events. See the
QServiceIntervalEvent parameter.

The value is in units of milliseconds, and must be greater than or equal to
zero, and less than or equal to 99 999 999.

QServiceIntervalEvent (MQCFIN)
Controls whether Service Interval High or Service Interval OK events are
generated (parameter identifier: MQIA_Q_SERVICE_INTERVAL_EVENT).

A Queue Service Interval High event is generated when a check indicates
that no messages have been retrieved from or put to the queue for at least
the time indicated by the QServiceInterval attribute.

A Queue Service Interval OK event is generated when a check indicates
that a message has been retrieved from the queue within the time
indicated by the QServiceInterval attribute.

Note: The value of this attribute can change implicitly. See “Performance
events” on page 95.

The value can be:
v MQQSIE_HIGH Queue Service Interval High events enabled.

– Queue Service Interval High events are enabled, and
– Queue Service Interval OK events are disabled.

v MQQSIE_OK Queue Service Interval OK events enabled.
– Queue Service Interval High events are disabled, and
– Queue Service Interval OK events are enabled.

v MQQSIE_NONE No queue service interval events enabled.
– Queue Service Interval High events are disabled, and
– Queue Service Interval OK events are also disabled.

QueueAccounting (MQCFIN)
Controls the collection of accounting data (parameter identifier:
MQIA_ACCOUNTING_Q).

The value can be:
MQMON_Q_MGR

The collection of accounting data for the queue is performed based
upon the setting of the QueueAccounting parameter on the queue
manager.

MQMON_OFF
Accounting data collection is disabled for the queue.

Change Queue

262 WebSphere MQ for z/VSE System Management Guide

MQMON_ON
If the value of the queue manager's QueueAccounting parameter is
not MQMON_NONE, accounting data collection is enabled for the
queue.

QueueStatistics (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_STATISTICS_Q). Specifies whether statistics data collection is
enabled.

The value can be:
MQMON_Q_MGR

The value of the queue manager's QueueStatistics parameter is
inherited by the queue.

MQMON_OFF
Statistics data collection is disabled

MQMON_ON
If the value of the queue manager's QueueMonitoring parameter is
not MQMON_NONE, statistics data collection is enabled.

QueueMonitoring (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_MONITORING_Q).

Specifies whether online monitoring data is to be collected and, if so, the
rate at which the data is collected.

The value can be:
MQMON_OFF

Online monitoring data collection is turned off for this queue.
MQMON_Q_MGR

The value of the queue manager's QueueMonitoring parameter is
inherited by the queue. This is the default value.

MQMON_LOW
If the value of the queue manager's QueueMonitoring parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a low rate of data collection, for this queue.

MQMON_MEDIUM
If the value of the queue manager's QueueMonitoring parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a moderate rate of data collection, for this queue.

MQMON_HIGH
If the value of the queue manager's QueueMonitoring parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a high rate of data collection, for this queue.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

If this definition is used for a local definition of a remote queue,
RemoteQName must not be blank when the open occurs.

If this definition is used for a queue-manager alias definition,
RemoteQName must be blank when the open occurs.

If this definition is used for a reply-to alias, this name is the name of the
queue that is to be the reply-to queue.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Change Queue

Chapter 8. Programmable system management 263

RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

If an application opens the local definition of a remote queue,
RemoteQMgrName must not be blank or the name of the connected queue
manager. If XmitQName is blank there must be a local queue of this name,
which is to be used as the transmission queue.

If this definition is used for a queue-manager alias, RemoteQMgrName is
the name of the queue manager, which can be the name of the connected
queue manager. Otherwise, if XmitQName is blank, when the queue is
opened there must be a local queue of this name, which is to be used as
the transmission queue.

If this definition is used for a reply-to alias, this name is the name of the
queue manager that is to be the reply-to queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Reorganization (MQCFIN)
Automatic VSAM reorganization (parameter identifier:
MQIA_AUTO_REORGANIZATION).

Indicates whether the VSAM file hosting a queue should be scheduled for
automatic VSAM reorganization.

The value can be:

MQREORG_ENABLED
Automatic reorganization enabled.

MQREORG_DISABLED
Automatic reorganization disabled.

ReorgStartTime (MQCFST)
Automatic VSAM reorganization start time (parameter identifier:
MQCA_AUTO_REORG_START_TIME).

Indicates the time of day, in HHMM format, for the automatic VSAM
reorganization to occur following a system restart.

The maximum length of the string is MQ_AUTO_REORG_TIME_LENGTH.

ReorgInterval (MQCFIN)
Automatic VSAM reorganization interval (parameter identifier:
MQIA_AUTO_REORG_INTERVAL).

Indicates the frequency, in minutes, for the automatic VSAM reorganization
to occur, after its initial activation.

Specify a value between 0 and 1440.

ReorgCatalog (MQCFST)
Automatic VSAM reorganization catalog (parameter identifier:
MQCA_AUTO_REORG_CATALOG).

The maximum length of the string is
MQ_AUTO_REORG_CATALOG_LENGTH.

The contents of this field are now treated as comments and may not reflect
the actual VSAM catalog containing the reorganization file. For the
reorganization process, the VSAM catalog where the reorganization file is
defined is now extracted from the system and so no longer needs to be
specified in the queue definition.

Change Queue

264 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|

Shareability (MQCFIN)
Whether queue can be shared (parameter identifier:
MQIA_SHAREABILITY).

Specifies whether multiple instances of applications, can open this queue
for input.

The value can be:

MQQA_SHAREABLE
Queue is shareable.

MQQA_NOT_SHAREABLE
Queue is not shareable.

TriggerChannelName (MQCFST)
Channel name for MCA trigger process (parameter identifier:
MQCA_TRIGGER_CHANNEL_NAME).

This parameter is only valid for queues with Usage of
MQUS_TRANSMISSION.

For a transmission queue definition, this parameter must identify a channel
name.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

Specifies whether message activity on a queue will cause a trigger
transaction or program to be started.

The value can be:

MQTC_OFF
Trigger activation not required.

MQTC_ON
Trigger activation required.

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

Specifies user data that the queue manager includes in the trigger data
structure that is passed to a triggered transaction or program.

The maximum length of the string is
MQ_PROCESS_USER_DATA_LENGTH.

TriggerProgramName (MQCFST)
Program name for trigger process (parameter identifier:
MQCA_TRIGGER_PROGRAM_NAME).

Specifies the program name that is to be started when a trigger event
occurs on the queue.

The maximum length of the string is
MQ_TRIGGER_PROGRAM_NAME_LENGTH.

TriggerRestart (MQCFIN)
Indicator for the reactivation of a trigger process (parameter identifier:
MQIA_TRIGGER_RESTART).

Change Queue

Chapter 8. Programmable system management 265

Specifies whether or not a trigger instance can be restarted when it is
detected that there are messages on a queue, but no trigger instance
already running.

The value can be:

MQTRIGGER_RESTART_NO
Trigger reactivation not required.

MQTRIGGER_RESTART_YES
Trigger reactivation required.

TriggerTerminalId (MQCFST)
Terminal identifier for trigger process (parameter identifier:
MQCA_TRIGGER_TERM_ID).

Specifies a CICS terminal identifier to be associated with a trigger
transaction or program instance.

The maximum length of the string is MQ_TRIGGER_TERM_ID_LENGTH.

TriggerTransactionId (MQCFST)
Transaction identifier for trigger process (parameter identifier:
MQCA_TRIGGER_TRANS_ID).

Specifies a transaction identifier is to be started when a trigger event
occurs on the queue.

The maximum length of the string is MQ_TRIGGER_TRANS_ID_LENGTH.

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

Specifies the condition that initiates a trigger event. When the condition is
true, a trigger transaction or program is started.

The value can be:

MQTT_NONE
No trigger activation.

MQTT_EVERY
Trigger activation for every message.

MQTT_FIRST
Trigger activation when queue depth goes from 0 to 1.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

Specifies whether the queue is for normal usage or for transmitting
messages to a remote message queue manager.

The value can be:

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

Specifies the local name of the transmission queue to be used for messages
destined for either a remote queue or for a queue-manager alias definition.

Change Queue

266 WebSphere MQ for z/VSE System Management Guide

If XmitQName is blank, a queue with the same name as
RemoteQMgrName is used as the transmission queue.

This attribute is ignored if the definition is being used as a queue-manager
alias and RemoteQMgrName is the name of the connected queue manager.

It is also ignored if the definition is used as a reply-to queue alias
definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Note that the optional parameters described in this section are also applicable to
these PCF commands:
v “Copy Queue” on page 290
v “Create Queue” on page 297

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

Change Queue

Chapter 8. Programmable system management 267

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Change Queue Manager

The Change Queue Manager (MQCMD_CHANGE_Q_MGR) command changes the
specified attributes of the queue manager.

This PCF is supported on all platforms.

For any optional parameters that are omitted, the value does not change.

Required parameters:

None

Optional parameters:

AccountingConnOverride, AccountingInterval, AdoptMCA, AdoptMCACheck,
AuthorityEvent, BatchInterfaceAutoStart, BatchInterfaceId,
ChannelAuthenticationRecords, ChannelAutoDef, ChannelAutoDefEvent,
ChannelAutoDefExit, ChannelEvent, ChannelMonitoring, ChannelStatistics,
CodedCharSetId, CommandEvent, CommandInputQName,
CommandReplyQName, CommandServerAutoStart,
CommandServerDataConversion, CommandServerDeadLetterQ,
ConfigurationEvent, ConsCommsMsgs, ConsCritMsgs, ConsErrMsgs,
ConsInfoMsgs, ConsReorgMsgs, ConsSystemMsgs, ConsWarnMsgs, CSMTError,
DeadLetterQName, InhibitEvent, InternalDump, ListenerPortNumber,
LocalEvent, LogCommsMsgs, LogCritMsgs, LogErrMsgs, LogInfoMsgs,
LogReorgMsgs, LogSystemMsgs, LogWarnMsgs, MaxClients, MaxGlobalLocks,
MaxHandles, MaxLocalLocks, MaxMsgLength, MaxOpenQ,
MaxPropertiesLength, MaxQDepth, MaxQUsers, MonitorInterval,
MonitorQName, MQIAccounting, MQIStatistics, PerformanceEvent, QMgrDesc,
QueueAccounting, QueueMonitoring, QueueStatistics, RecoveryTasks,
RemoteEvent, SSLEvent, SSLKeyLibraryMember, SSLKeyLibraryName,
SSLKeyResetCount, StartStopEvent, StatisticsInterval, SystemLogQName,
TraceComms, TraceConversion, TraceMQICalls, TraceReorg, TraceSystem

Optional parameters

AccountingConnOverride (MQCFIN)
Specifies whether applications can override the settings of the
QueueAccounting and MQIAccounting queue manager parameters
(parameter identifier: MQIA_ACCOUNTING_CONN_OVERRIDE).

The value can be:

MQMON_DISABLED
Applications cannot override the settings of the QueueAccounting
and MQIAccounting parameters. This is the queue manager's
initial default value.

MQMON_ENABLED
Applications can override the settings of the QueueAccounting and

Change Queue

268 WebSphere MQ for z/VSE System Management Guide

|

MQIAccounting parameters by using the options field of the
MQCNO structure of the MQCONNX API call.

AccountingInterval (MQCFIN)
The time interval, in seconds, at which intermediate accounting records are
written (parameter identifier: MQIA_ACCOUNTING_INTERVAL).

Specify a value in the range 1 through 604 000.

AdoptMCA (MQCFIN)
Adopt MCA (parameter identifier: MQIA_ADOPTNEWMCA_TYPE).

Controls whether the channel Adopt MCA feature is active for the queue
manager.

The value can be:

MQADOPT_TYPE_NO
Adopt MCA feature is disabled.

MQADOPT_TYPE_RCVR
Adopt MCA feature is enabled for receiver channels.

AdoptMCACheck (MQCFIN)
Adopt MCA check (parameter identifier:
MQIA_ADOPTNEWMCA_CHECK).

Controls whether the Adopt MCA feature checks the partner net address
when adopting an MCA instance.

The value can be:

MQADOPT_CHECK_NONE
The net address is not checked when an MCA instance is adopted.

MQADOPT_CHECK_NET_ADDR
The net address is checked when an MCA instance is adopted.

AuthorityEvent (MQCFIN)
Controls whether authorization (Not Authorized) events are generated
(parameter identifier: MQIA_AUTHORITY_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

BatchInterfaceAutoStart (MQCFIN)
Indicator for the automatic activation of the batch interface (parameter
identifier: MQIA_BATCH_INTERFACE_AUTO).

Specifies whether the WebSphere MQ for z/VSE batch interface is
automatically started when the local queue manager is started.

The value can be:

MQAUTO_START_NO
Do not auto-start the batch interface.

MQAUTO_START_YES
Auto-start the batch interface.

Change Queue Manager

Chapter 8. Programmable system management 269

BatchInterfaceId (MQCFST)
Batch interface identifier (parameter identifier:
MQCA_BATCH_INTERFACE_ID).

Specifies a unique batch interface identifier. Batch programs should specify
a SETPARM card in their JCL that identifies the appropriate batch interface
identifier. For z/VSE systems running multiple queue managers, the
identifier must be unique.

The maximum length of the string is
MQ_BATCH_INTERFACE_ID_LENGTH.

ChannelAuthenticationRecords(MQCFIN)
Controls whether channel authentication records are used. Channel
attribute (parameter identifier: MQIA_CHLAUTH_RECORDS).

The value can be:
MQCHLA_DISABLED

Channel authentication records are not checked.
MQCHLA_ENABLED

Channel authentication records are checked.

ChannelAutoDef (MQCFIN)
Controls whether receiver and server-connection channels can be
auto-defined (parameter identifier: MQIA_CHANNEL_AUTO_DEF).

The value can be:

MCCHAD_DISABLED
Channel auto-definition disabled

MQCHAD_ENABLED
Channel auto-definition enabled.

ChannelAutoDefEvent
Controls whether channel auto-definition events are generated (parameter
identifier: MQIA_CHANNEL_AUTO_DEF_EVENT), when a receiver or
server-connection channel is auto-defined.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

ChannelAutoDefExit (MQCFST)
Channel auto-definition exit name (parameter identifier:
QCA_CHANNEL_AUTO_DEF_EXIT).

This exit is invoked when an inbound request for an undefined channel is
received. The channel auto-definition is enabled (see ChannelAutoDef).

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

ChannelEvent (MQCFIN)
Channel event (parameter identifier: MQIA_CHANNEL_EVENT).

Controls whether channel-related events are generated.

Change Queue Manager

270 WebSphere MQ for z/VSE System Management Guide

|
|
|

|
|
|
|
|

The value can be:

MQEVR_ENABLED
Channel events enabled.

MQEVR_DISABLED
Channel events disabled.

Note: Enabling channel events enables all channel event types. Disabling
channel events disables all channel events. Individual channel events can
be set using the WebSphere MQ for z/VSE master terminal transactions.

ChannelMonitoring (MQCFIN)
Default setting for online monitoring for channels (parameter identifier:
MQIA_MONITORING_CHANNEL).

The value can be:

MQMON_NONE
Online monitoring data collection is turned off for channels
regardless of the setting of their ChannelMonitoring parameter.

MQMON_OFF
Online monitoring data collection is turned off for channels
specifying a value of MQMON_Q_MGR in their
ChannelMonitoring parameter. This is the queue manager's initial
default value.

MQMON_LOW
Online monitoring data collection is turned on, with a low ratio of
data collection, for channels specifying a value of
MQMON_Q_MGR in their ChannelMonitoring parameter.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate
ratio of data collection, for channels specifying a value of
MQMON_Q_MGR in their ChannelMonitoring parameter.

MQMON_HIGH
Online monitoring data collection is turned on, with a high ratio of
data collection, for channels specifying a value of
MQMON_Q_MGR in their ChannelMonitoring parameter.

ChannelStatistics (MQCFIN)
Controls whether statistics data is to be collected for channels (parameter
identifier: MQIA_STATISTICS_CHANNEL).

The value can be:
MQMON_NONE

Statistics data collection is turned off for channels regardless of the
setting of their ChannelStatistics parameter. This is the queue
manager's initial default value.

MQMON_OFF
Statistics data collection is turned off for channels specifying a
value of MQMON_Q_MGR in their ChannelStatistics parameter.

MQMON_LOW
Statistics data collection is turned on, with a low ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

Change Queue Manager

Chapter 8. Programmable system management 271

MQMON_MEDIUM
Statistics data collection is turned on, with a moderate ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

MQMON_HIGH
Statistics data collection is turned on, with a high ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

CodedCharSetId (MQCFIN)
Queue manager coded character set identifier (parameter identifier:
MQIA_CODED_CHAR_SET_ID).

The coded character set identifier (CCSID) for the queue manager. The
CCSID is the identifier used with all character string fields defined by the
application programming interface (API). It does not apply to application
data carried in the text of a message unless the CCSID in the message
descriptor, when the message is put with an MQPUT or MQPUT1, is set to
the value MQCCSI_Q_MGR.

Specify a value in the range 1 through 65 535.

The CCSID must specify a value that is defined for use on the platform
and use an appropriate character set. For a list of supported CCSIDs for
WebSphere MQ for z/VSE, review your LE/VSE configuration.

CommandEvent (MQCFIN)
Controls whether command events are generated (parameter identifier:
MQIA_COMMAND_EVENT). The value can be:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.
MQEVR_NO_DISPLAY

Event reporting enabled for all successful commands except
Inquire commands.

CommandInputQName (MQCFST)
PCF command input queue (parameter identifier:
MQCA_COMMAND_INPUT_Q_NAME).

Specifies the name of the PCF command input queue. The PCF command
input queue expects PCF messages from local or remote administration
applications, and is monitored by the WebSphere MQ Command Server. If
this parameter is changed, you are advised to stop and restart the
command server so that a new queue name is recognized.

The maximum length of the string is MQ_Q_NAME_LENGTH.

CommandReplyQName (MQCFST)
WebSphere MQ command reply queue (parameter identifier:
MQCA_COMMAND_REPLY_Q_NAME).

Specifies the name of the WebSphere MQ command reply queue. The
WebSphere MQ command reply queue is used by the WebSphere MQ
command utility for responses to WebSphere MQ commands issued from a
batch partition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Change Queue Manager

272 WebSphere MQ for z/VSE System Management Guide

CommandServerAutoStart (MQCFIN)
Indicator for the automatic activation of the PCF command server
(parameter identifier: MQIA_CMD_SERVER_AUTO).

Specifies whether the WebSphere MQ for z/VSE PCF command server is
automatically started when the local queue manager is started.

The value can be:

MQAUTO_START_NO
Do not auto-start the PCF command server.

MQAUTO_START_YES
Auto-start the PCF command server.

CommandServerDataConversion (MQCFIN)
Indicator for the data conversion of PCF messages (parameter identifier:
MQIA_CMD_SERVER_CONVERT_MSG).

Specifies whether the WebSphere MQ for z/VSE PCF command server is to
apply data conversion to PCF messages read from the PCF command input
queue.

The value can be:

MQCSRV_CONVERT_NO
Do not convert PCF messages.

MQCSRV_CONVERT_YES
Convert PCF messages.

CommandServerDeadLetterQ (MQCFST)
Indicator for the storage of undeliverable PCF reply messages to the
system dead letter queue(parameter identifier:
MQIA_CMD_SERVER_DLQ_MSG).

Specifies whether the WebSphere MQ for z/VSE PCF command server is to
place undeliverable PCF command responses to the system dead letter
queue.

The value can be:

MQCSRV_DLQ_NO
Do not put undeliverable PCF responses to the system dead letter
queue.

MQCSRV_DLQ_YES
Put undeliverable PCF responses to the system dead letter queue.

ConfigurationEvent (MQCFIN)
Controls whether configuration events are generated (parameter identifier:
MQIA_CONFIGURATION_EVENT). The value can be:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

ConsCommsMsgs (MQCFIN)
Log communications messages to console (parameter identifier:
MQIA_QMOPT_CONS_COMMS_MSGS).

Indicates whether the queue manager sends messages generated by the
communications subsystem to the console.

The value can be:

Change Queue Manager

Chapter 8. Programmable system management 273

MQQMOPT_ENABLED
Communications messages sent to the console.

MQQMOPT_DISABLED
Communications messages not sent to the console.

MQQMOPT_REPLY
Communications messages sent to the console, and the operator
prompted to reply.

ConsCritMsgs (MQCFIN)
Log critical messages to console (parameter identifier:
MQIA_QMOPT_CONS_CRITICAL_MSGS).

Indicates whether the queue manager sends messages of critical severity to
the console.

The value can be:

MQQMOPT_ENABLED
Critical messages sent to the console.

MQQMOPT_DISABLED
Critical messages not sent to the console.

MQQMOPT_REPLY
Critical messages sent to the console, and the operator prompted to
reply.

ConsErrMsgs (MQCFIN)
Log error messages to console (parameter identifier:
MQIA_QMOPT_CONS_ERROR_MSGS).

Indicates whether the queue manager sends messages of error severity to
the console.

The value can be:

MQQMOPT_ENABLED
Error messages sent to the console.

MQQMOPT_DISABLED
Error messages not sent to the console.

MQQMOPT_REPLY
Error messages sent to the console, and the operator prompted to
reply.

ConsInfoMsgs (MQCFIN)
Log informational messages to console (parameter identifier:
MQIA_QMOPT_CONS_INFO_MSGS).

Indicates whether the queue manager sends messages of informational
severity to the console.

The value can be:

MQQMOPT_ENABLED
Informational messages sent to the console.

MQQMOPT_DISABLED
Informational messages not sent to the console.

ConsReorgMsgs (MQCFIN)
Log reorganization messages to console (parameter identifier:
MQIA_QMOPT_CONS_REORG_MSGS).

Change Queue Manager

274 WebSphere MQ for z/VSE System Management Guide

Indicates whether the queue manager sends messages generated by the
reorganization subsystem to the console.

The value can be:

MQQMOPT_ENABLED
Reorganization messages sent to the console.

MQQMOPT_DISABLED
Reorganization messages not sent to the console.

MQQMOPT_REPLY
Reorganization messages sent to the console, and the operator
prompted to reply.

ConsSystemMsgs (MQCFIN)
Log system messages to console (parameter identifier:
MQIA_QMOPT_CONS_SYSTEM_MSGS).

Indicates whether the queue manager sends general operational messages
to the console.

The value can be:

MQQMOPT_ENABLED
System messages sent to the console.

MQQMOPT_DISABLED
System messages not sent to the console.

MQQMOPT_REPLY
System messages sent to the console, and the operator prompted to
reply.

ConsWarnMsgs (MQCFIN)
Log warning messages to console (parameter identifier:
MQIA_QMOPT_CONS_WARNING_MSGS).

Indicates whether the queue manager sends messages of warning severity
to the console.

The value can be:

MQQMOPT_ENABLED
Warning messages sent to the console.

MQQMOPT_DISABLED
Warning messages not sent to the console.

CSMTError (MQCFIN)
Allow TDQ Write on Error (parameter identifier:
MQIA_QMOPT_CSMT_ON_ERROR).

Indicates whether operational messages are sent to the CICS CSMT when
the system log queue is unavailable.

The value can be:

MQQMOPT_ENABLED
Operational messages sent to the CSMT TDQ when the system log
queue is unavailable.

MQQMOPT_DISABLED
Operational messages not sent to the CSMT TDQ when the system
log queue is unavailable.

Change Queue Manager

Chapter 8. Programmable system management 275

DeadLetterQName (MQCFST)
Dead letter (undelivered message) queue name (parameter identifier:
MQCA_DEAD_LETTER_Q_NAME).

Specifies the name of the local queue that is to be used for undelivered
messages. Messages are put on this queue if they cannot be routed to their
correct destination.

The maximum length of the string is MQ_Q_NAME_LENGTH.

InhibitEvent (MQCFIN)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated
(parameter identifier: MQIA_INHIBIT_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

InternalDump (MQCFIN)
Allow internal CICS dump (parameter identifier:
MQIA_QMOPT_INTERNAL_DUMP).

Indicates whether the queue manager generates a CICS dump when an
MQI application generates an unrecoverable error.

The value can be:

MQQMOPT_ENABLED
Application internal dump enabled.

MQQMOPT_DISABLED
Application internal dump disabled.

ListenerPortNumber (MQCFIN)
Port number for TCP/IP Listener process (parameter identifier:
MQIA_LISTENER_PORT_NUMBER).

Specifies the TCP/IP port number that WebSphere MQ uses for accepting
TCP/IP connection requests from remote queue managers and MQ clients.
The default port value is 1414, however any unreserved port number can
be used.

LocalEvent (MQCFIN)
Controls whether local error events are generated (parameter identifier:
MQIA_LOCAL_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

LogCommsMsgs (MQCFIN)
Log communications messages to the system log queue (parameter
identifier: MQIA_QMOPT_LOG_COMMS_MSGS).

Indicates whether the queue manager sends messages generated by the
communications subsystem to the system log.

The value can be:

Change Queue Manager

276 WebSphere MQ for z/VSE System Management Guide

MQQMOPT_ENABLED
Communications messages sent to the system log.

MQQMOPT_DISABLED
Communications messages not sent to the system log.

LogCritMsgs (MQCFIN)
Log critical messages to the system log queue (parameter identifier:
MQIA_QMOPT_LOG_CRITICAL_MSGS).

Indicates whether the queue manager sends messages of critical severity to
the system log queue.

The value can be:

MQQMOPT_ENABLED
Critical messages sent to the system log.

MQQMOPT_DISABLED
Critical messages not sent to the system log.

LogErrMsgs (MQCFIN)
Log error messages to the system log queue (parameter identifier:
MQIA_QMOPT_LOG_ERROR_MSGS).

Indicates whether the queue manager sends messages of error severity to
the system log queue.

The value can be:

MQQMOPT_ENABLED
Error messages sent to the system log.

MQQMOPT_DISABLED
Error messages not sent to the system log.

LogInfoMsgs (MQCFIN)
Log informational messages to the system log queue (parameter identifier:
MQIA_QMOPT_LOG_INFO_MSGS).

Indicates whether the queue manager sends messages of informational
severity to the system log queue.

The value can be:

MQQMOPT_ENABLED
Informational messages sent to the system log.

MQQMOPT_DISABLED
Informational messages not sent to the system log.

LogReorgMsgs (MQCFIN)
Log reorganization messages to the system log queue (parameter identifier:
MQIA_QMOPT_LOG_REORG_MSGS).

Indicates whether the queue manager sends messages generated by the
reorganization subsystem to the system log.

The value can be:

MQQMOPT_ENABLED
Reorganization messages sent to the system log.

MQQMOPT_DISABLED
Reorganization messages not sent to the system log.

Change Queue Manager

Chapter 8. Programmable system management 277

LogSystemMsgs (MQCFIN)
Log system messages to the system log queue (parameter identifier:
MQIA_QMOPT_LOG_SYSTEM_MSGS).

Indicates whether the queue manager sends general operational messages
to the system log.

The value can be:

MQQMOPT_ENABLED
System messages sent to the system log.

MQQMOPT_DISABLED
System messages not sent to the system log.

LogWarnMsgs (MQCFIN)
Log warning messages to the system log queue (parameter identifier:
MQIA_QMOPT_LOG_WARNING_MSGS).

Indicates whether the queue manager sends messages of warning severity
to the system log queue.

The value can be:

MQQMOPT_ENABLED
Warning messages sent to the system log.

MQQMOPT_DISABLED
Warning messages not sent to the system log.

MaxClients (MQCFIN)
Number of licensed clients (parameter identifier: MQIA_MAX_CLIENTS).

Specifies the maximum number of licensed clients that can establish a
server connection at any one time.

Specify a value between 0 and 99999.

MaxGlobalLocks (MQCFIN)
Buffer size for queue manager to manage concurrent queue access
(parameter identifier: MQIA_MAX_GLOBAL_LOCKS).

The maximum number of entries that the queue manager can use to
maintain uncommitted MQPUT or MQGET calls, for each queue in the
system, for recovery.

A value of 500 is normally sufficient.

The maximum value is 1000.

MaxHandles (MQCFIN)
Maximum number of handles (parameter identifier:
MQIA_MAX_HANDLES).

The maximum number of connection handles that the queue manager will
manage at any one time.

Specify a value in the range 1 through 1000.

MaxLocalLocks (MQCFIN)
Buffer size for applications to manage concurrent queue access (parameter
identifier: MQIA_MAX_LOCAL_LOCKS).

The maximum number of entries that the queue manager can use to
maintain uncommitted MQPUT or MQGET calls for each queue and task
for recovery.

Change Queue Manager

278 WebSphere MQ for z/VSE System Management Guide

A value of 500 is normally sufficient.

The maximum value is 1000.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

Specifies the maximum length of messages allowed on queues on the
queue manager. Changing this parameter does not affect existing queue
definitions.

If you reduce the maximum message length for the queue manager, you
should verify that existing queues do not already exceed the new
MaxMsgLength value.

The lower limit for this parameter is 0. The upper limit for WebSphere MQ
for z/VSE is 4 MB.

MaxPropertiesLength (MQCFIN)
Maximum property length (parameter identifier:
MQIA_MAX_PROPERTIES_LENGTH).

Specifies the maximum length of the properties, including both the
property name in bytes and the size of the property value in bytes.

Specify a value in the range 0 through 4 MB (4194304 bytes), or the special
value, MQPROP_UNRESTRICTED_LENGTH:

MQPROP_UNRESTRICTED_LENGTH
The size of the properties is restricted only by the upper limit.

MaxQOpen (MQCFIN)
Maximum number of concurrently open queues (parameter identifier:
MQIA_MAX_OPEN_Q).

Specifies the maximum number of queues any single task can have open at
any one time.

Specify a value in the range 1 through 1000.

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

The maximum number of messages allowed on a queue. Note that other
factors may cause the queue to be treated as full; for example, it will
appear to be full if there is no storage available for a message.

If you reduce the maximum queue depth for the queue manager, you
should verify that existing queues do not already exceed the new
MaxQDepth value.

Specify a value in the range 0 through 640 000.

MaxQUsers (MQCFIN)
Maximum number of active opens to any particular queue (parameter
identifier: MQIA_Q_USERS).

The maximum number of open requests that the queue manager will
manage for a single queue.

Specify a value in the range 1 through 32000.

MonitorInterval (MQCFIN)
Queue manager housekeeping process interval (parameter identifier:
MQIA_MONITOR_INTERVAL).

Change Queue Manager

Chapter 8. Programmable system management 279

Specifies the interval (in seconds) that the queue manager housekeeping
task suspends during process iterations.

A value of 30 seconds is usually sufficient.

MonitorQName (MQCFST)
MQI monitor queue name (parameter identifier:
MQCA_MONITOR_Q_NAME).

Specifies the name of the local queue that is to be used for MQI diagnostic
messages. The MQI Monitor when active, places diagnostic messages to the
monitor queue.

The maximum length of the string is MQ_Q_NAME_LENGTH.

MQIAccounting (MQCFIN)
Controls whether accounting information for MQI data is to be collected
(parameter identifier: MQIA_ACCOUNTING_MQI).

The value can be:
MQMON_OFF

MQI accounting data collection is disabled. This is the queue
manager's initial default value.

MQMON_ON
MQI accounting data collection is enabled.

MQIStatistics (MQCFIN)
Controls whether statistics monitoring data is to be collected for the queue
manager (parameter identifier: MQIA_STATISTICS_MQI).

The value can be:
MQMON_OFF

Data collection for MQI statistics is disabled. This is the queue
manager's initial default value.

MQMON_ON
Data collection for MQI statistics is enabled.

PerformanceEvent (MQCFIN))
Controls whether performance-related events are generated (parameter
identifier: MQIA_PERFORMANCE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QMgrDesc (MQCFST)
Queue manager description (parameter identifier: MQCA_Q_MGR_DESC).

This is text that briefly describes the object.

The maximum length of the string is MQ_Q_MGR_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the queue manager on which the command is
executing, to ensure that the text is translated correctly.

QueueAccounting (MQCFIN)
Controls the collection of accounting (thread-level and queue-level
accounting) data for queues (parameter identifier:
MQIA_ACCOUNTING_Q).

Change Queue Manager

280 WebSphere MQ for z/VSE System Management Guide

The value can be:
MQMON_NONE

Accounting data collection for queues is disabled. This may not be
overridden by the value of the QueueAccounting parameter on the
queue.

MQMON_OFF
Accounting data collection is disabled for queues specifying a
value of MQMON_Q_MGR in the QueueAccounting parameter.

MQMON_ON
Accounting data collection is enabled for queues specifying a value
of MQMON_Q_MGR in the QueueAccounting parameter.

QueueMonitoring (MQCFIN)
Default setting for online monitoring for queues (parameter identifier:
MQIA_MONITORING_Q).

If the QueueMonitoring queue attribute is set to MQMON_Q_MGR, this
attribute specifies the value which is assumed by the channel. The value
can be:

MQMON_OFF
Online monitoring data collection is turned off. This is the queue
manager's initial default value.

MQMON_NONE
Online monitoring data collection is turned off for queues
regardless of the setting of their QueueMonitoring attribute.

MQMON_LOW
Online monitoring data collection is turned on, with a low ratio of
data collection.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate
ratio of data collection.

MQMON_HIGH
Online monitoring data collection is turned on, with a high ratio of
data collection.

QueueStatistics (MQCFIN)
Controls whether statistics data is to be collected for queues (parameter
identifier: MQIA_STATISTICS_Q).

The value can be:
MQMON_NONE

Statistics data collection is turned off for queues regardless of the
setting of their QueueStatistics parameter. This is the queue
manager's initial default value.

MQMON_OFF
Statistics data collection is turned off for queues specifying a value
of MQMON_Q_MGR in their QueueStatistics parameter.

MQMON_ON
Statistics data collection is turned on for queues specifying a value
of MQMON_Q_MGR in their QueueStatistics parameter.

RecoveryTasks (MQCFIN)
Maximum recovery tasks (parameter identifier:
MQIA_MAX_RECOVERY_TASKS).

Change Queue Manager

Chapter 8. Programmable system management 281

Indicates the maximum number of CICS tasks that the queue manager will
start to resolve discrepancies in dual queues.

Specify a value between 0 and 9999.

RemoteEvent (MQCFIN)
Controls whether remote error events are generated (parameter identifier:
MQIA_REMOTE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

SSLEvent (MQCFIN)
Controls whether SSL events are generated (parameter identifier:
MQIA_SSL_EVENT). The value can be:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

SSLKeyLibraryMember (MQCFST)
SSL key library name (parameter identifier: MQCA_SSL_KEY_LIBRARY).

Specifies the SSL key-ring sublibrary. The key-ring sublibrary contains
private key and X.509 certificate files.

Specify a valid z/VSE sublibrary name.

The maximum length of the string is MQ_SSL_KEY_LIBRARY_LENGTH.

SSLKeyLibraryName (MQCFST)
SSL key member name (parameter identifier: MQCA_SSL_KEY_MEMBER).

Specifies the SSL key-ring member name of the private key and certificate
files that will be used by WebSphere MQ enabled channels.

This must be a valid z/VSE sublibrary member name.

It should be noted that WebSphere MQ for z/VSE uses the same private
key and certificate for all SSL enabled channels. It is not possible to
identify a different certificate on a per channel basis. Consequently, the
key-ring member name should identify a private key and certificate files
appropriate for all SSL enabled channels.

The maximum length of the string is MQ_SSL_KEY_MEMBER_LENGTH.

SSLKeyResetCount (MQCFIN)
SSL key reset count (parameter identifier: MQIA_SSL_RESET_COUNT).

Specifies when SSL channel MCAs that initiate communication reset the
secret key used for encryption on the channel. The value of this parameter
represents the total number of unencrypted bytes that are sent and
received on the channel before the secret key is renegotiated. This number
of bytes includes control information sent by the MCA. The secret key is
renegotiated when (whichever occurs first):
v The total number of unencrypted bytes sent and received by the

initiating channel MCA exceeds the specified value, or
v If channel heartbeats are enabled, before data is sent or received

following a channel heartbeat.

Change Queue Manager

282 WebSphere MQ for z/VSE System Management Guide

Specify a value in the range zero through 999 999 999. A value of zero, the
queue manager's initial default value, signifies that secret keys are never
renegotiated.

StartStopEvent (MQCFIN)
Controls whether start and stop events are generated (parameter identifier:
MQIA_START_STOP_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

StatisticsInterval (MQCFIN)
The time interval, in seconds, at which statistics monitoring data is written
to the monitoring queue (parameter identifier:
MQIA_STATISTICS_INTERVAL).

Specify a value in the range 1 through 604 000.

SystemLogQName (MQCFST)
System log queue name (parameter identifier:
MQCA_SYSTEM_LOG_Q_NAME).

Specifies the name of the system log queue that is used by WebSphere MQ
for z/VSE to store operational diagnostic and error messages.

The maximum length of the string is MQ_Q_NAME_LENGTH.

TraceComms (MQCFIN)
Trace communication events (parameter identifier:
MQIA_QMOPT_TRACE_COMMS).

Indicates whether the queue manager traces communication diagnostics to
the CICS auxiliary trace.

The value can be:

MQQMOPT_ENABLED
Tracing of communication events enabled.

MQQMOPT_DISABLED
Tracing of communication events disabled.

TraceConversion (MQCFIN)
Trace data conversion events (parameter identifier:
MQIA_QMOPT_TRACE_CONVERSION).

Indicates whether the queue manager traces data conversion diagnostics to
the CICS auxiliary trace.

The value can be:

MQQMOPT_ENABLED
Tracing of data conversion events enabled.

MQQMOPT_DISABLED
Tracing of data conversion events disabled.

TraceMQICalls (MQCFIN)
Trace MQI call events (parameter identifier:
MQIA_QMOPT_TRACE_MQI_CALLS).

Change Queue Manager

Chapter 8. Programmable system management 283

Indicates whether the queue manager traces MQI call diagnostics to the
CICS auxiliary trace.

The value can be:

MQQMOPT_ENABLED
Tracing of MQI calls enabled.

MQQMOPT_DISABLED
Tracing of MQI calls disabled.

TraceReorg (MQCFIN)
Trace reorganization events (parameter identifier:
MQIA_QMOPT_TRACE_REORG).

Indicates whether the queue manager traces reorganization diagnostics to
the CICS auxiliary trace.

The value can be:

MQQMOPT_ENABLED
Tracing of reorganization events enabled.

MQQMOPT_DISABLED
Tracing of reorganization events disabled.

TraceSystem (MQCFIN)
Trace system events (parameter identifier:
MQIA_QMOPT_TRACE_SYSTEM).

Indicates whether the queue manager traces general system diagnostics to
the CICS auxiliary trace.

The value can be:

MQQMOPT_ENABLED
Tracing of system events enabled.

MQQMOPT_DISABLED
Tracing of system events disabled.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

Change Queue Manager

284 WebSphere MQ for z/VSE System Management Guide

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_Q_MGR_CCSID_ERROR
Coded character set value not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_UNKNOWN_Q_MGR
Queue manager not known.

Change Service

The Change Service (MQCMD_CHANGE_SERVICE) command changes the
specified attributes of an existing WebSphere MQ service definition.

For any optional parameters that are omitted, the value does not change.

Required parameters:

ServiceName

Optional parameters:

ServiceDesc, ServiceType, StartArguments, StartCommand, StartMode,
StopArguments, StopCommand

Required parameters

For details of the required parameters for Change Service, see “Create Service” on
page 299.

Optional parameters

For details of the optional parameters for Change Service, see “Create Service” on
page 299.

Copy Channel

The Copy Channel (MQCMD_COPY_CHANNEL) command creates a new channel
definition using, for attributes not specified in the command, the attribute values
of an existing channel definition.

Change Queue Manager

Chapter 8. Programmable system management 285

This PCF is supported on all platforms.

Required parameters:

FromChannelName, ToChannelName, ChannelType

Optional parameters:

BatchInterval, BatchSize, ChannelDesc, ChannelStatistics, ChannelMonitoring,
ConnectionName, DataConversion, DiscInterval, DiscRetryCount,
LongRetryCount, LongRetryInterval, MaxMsgLength, MsgExit, MsgUserData,
PortNumber, PropertyControl, ReceiveExit, ReceiveUserData, SecurityExit,
SecurityUserData, SendExit, SendUserData, SeqNumberWrap, ShortRetryCount,
ShortRetryInterval, SSLCipherSpec, SSLClientAuth, SSLPeerName, TpName,
TransportType, XmitQName

Required parameters

FromChannelName (MQCFST)
From channel name (parameter identifier:
MQCACF_FROM_CHANNEL_NAME).

The name of the existing channel definition that contains values for the
attributes that are not specified in this command.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ToChannelName (MQCFST)
To channel name (parameter identifier: MQCACF_TO_CHANNEL_NAME).

The name of the new channel definition.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Channel names must be unique; if a channel definition with this name
already exists, the command will fail.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel being copied. The value can be:

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_SVRCONN
Server-connection (for use by clients).

Optional parameters

For a complete list and description of the optional parameters available with the
Copy Channel command, refer to “Change Channel” on page 244.

Copy Channel

286 WebSphere MQ for z/VSE System Management Guide

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRCCF_BATCH_SIZE_ERROR
Batch size not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFSL_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFSL_TOTAL_LENGTH_ERROR
Total string length error.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_ALREADY_EXISTS
Channel already exists.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_CONN_NAME_ERROR
Error in connection name parameter.

MQRCCF_DISC_INT_ERROR
Disconnection interval not valid.

MQRCCF_LONG_RETRY_ERROR
Long retry value is not valid.

MQRCCF_LONG_TIMER_ERROR
Long retry interval is not valid.

MQRCCF_MAX_MSG_LENGTH_ERROR
Maximum message length not valid.

Copy Channel

Chapter 8. Programmable system management 287

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_SEQ_NUMBER_WRAP_ERROR
Sequence wrap number not valid.

MQRCCF_SHORT_RETRY_ERROR
Short retry value is not valid.

MQRCCF_SHORT_TIMER_ERROR
Short retry interval is not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_XMIT_PROTOCOL_TYPE_ERR
Transmission protocol type not valid.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

MQRCCF_XMIT_Q_NAME_WRONG_TYPE
Transmission queue name not allowed for this channel type.

Copy Channel Listener

The Copy Channel Listener (MQCMD_COPY_LISTENER) command creates a new
WebSphere MQ listener definition, using, for attributes not specified in the
command, the attribute values of an existing listener definition.

Required parameters:

FromListenerName, ToListenerName

Optional parameters:

Backlog, IPAddress, ListenerDesc, Port, StartMode, TransportType

Required parameters

FromListenerName (MQCFST)
The name of the listener definition to be copied from (parameter identifier:
MQCACF_FROM_LISTENER_NAME).

This specifies the name of the existing listener definition that contains
values for the attributes not specified in this command.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

ToListenerName (MQCFST)
To listener name (parameter identifier: MQCACF_TO_LISTENER_NAME).

This specifies the name of the new listener definition.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Copy Channel

288 WebSphere MQ for z/VSE System Management Guide

Optional parameters

For details of the optional parameters for Copy Channel Listener, see “Create
Channel Listener” on page 295.

Copy Namelist

The Copy Namelist (MQCMD_COPY_NAMELIST) command copies an existing
namelist definition and uses it to create a new namelist.

For any optional parameters that are omitted, the value of the existing namelist
definition is used.

Required parameters

FromNamelistName, To NamelistName

Optional parameters

NamelistDesc, Names

Required parameters

FromNamelistName (MQCFST)
The name of the namelist definition to be copied from (parameter
identifier: MQCACF_FROM_NAMELIST_NAME).

This specifies the name of the existing namelist definition that contains
values for the attributes not specified in this command.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

ToNamelistName (MQCFST)
To namelist name (parameter identifier:
MQCACF_TO_NAMELIST_NAME).

This specifies tha name of the new namelist definition.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Optional parameters

NamelistDesc (MQCFST)
Description of namelist definition (parameter identifier:
MQCA_NAMELIST_DESC).

This is a plain-text comment that provides descriptive information about
the namelist definition. It should contain only displayable characters.

If characters are used that are not in the coded character set identifier
(CCSID) for the queue manager on which the command is executing, they
might be translated incorrectly.

The maximum length of the string is MQ_NAMELIST_DESC_LENGTH.

Names (MQCFSL)
The names to be placed in the namelist (parameter identifier:
MQCA_NAMES).

Copy Channel

Chapter 8. Programmable system management 289

The number of names in the list is given by the Count field in the
MQCFSL structure. The length of each name is given by the StringLength
field in that structure. The maximum length of a name is
MQ_OBJECT_NAME_LENGTH.

Copy Queue

The Copy Queue (MQCMD_COPY_Q) command creates a new queue definition, of
the same type, using, for attributes not specified in the command, the attribute
values of an existing queue definition.

This PCF is supported on all platforms.

Required parameters:

FromQName, ToQName, QType

Optional parameters:

BaseQName, CICSFileName, DefinitionType, InhibitGet, InhibitPut,
MaxGlobalLocks, MaxLocalLocks, MaxMsgLength, MaxQDepth, MaxQTriggers,
MaxQUsers, PropertyControl, QDepthHighEvent, QDepthHighLimit,
QDepthLowEvent, QDepthLowLimit, QDepthMaxEvent, QDesc,
QServiceInterval, QServiceIntervalEvent, QueueAccounting, QueueStatistics,
QueueMonitoring, RemoteQMgrName, RemoteQName, Shareability,
TriggerChannelName, TriggerControl, TriggerData, TriggerProgramName,
TriggerRestart, TriggerTerminalId, TriggerTransactionId, TriggerType, Usage,
XmitQName

Required parameters

FromQName (MQCFST)
From queue name (parameter identifier: MQCACF_FROM_Q_NAME).

Specifies the name of the existing queue definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

ToQName (MQCFST)
To queue name (parameter identifier: MQCACF_TO_Q_NAME).

Specifies the name of the new queue definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Queue names must be unique; if a queue definition exists with the same
name as the new queue, the command will fail.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value specified must match the type of the queue being copied.

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_MODEL
Model queue definition.

Copy Channel

290 WebSphere MQ for z/VSE System Management Guide

MQQT_REMOTE
Local definition of a remote queue.

Optional parameters

For a complete list and description of the optional parameters available with the
Copy Queue command, refer to “Change Queue” on page 257.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_LIKE_OBJECT_WRONG_TYPE
New and existing objects have different type.

MQRCCF_OBJECT_ALREADY_EXISTS
Object already exists.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_OBJECT_WRONG_TYPE
Object has wrong type.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

Copy Queue

Chapter 8. Programmable system management 291

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Copy Service

The Copy Service (MQCMD_COPY_SERVICE) command creates a new WebSphere
MQ service definition, using, for attributes not specified in the command, the
attribute values of an existing service definition.

Required parameters:

FromServiceName, ToServiceName

Optional parameters:

ServiceDesc, ServiceType, StartArguments, StartCommand, StartMode,
StopArguments, StopCommand

Required parameters

FromServiceName (MQCFST)
The name of the service definition to be copied from (parameter identifier:
MQCACF_FROM_SERVICE_NAME).

This specifies the name of the existing service definition that contains
values for the attributes not specified in this command.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

ToServiceName (MQCFST)
To service name (parameter identifier: MQCACF_TO_SERVICE_NAME).

This specifies the name of the new service definition.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Optional parameters

For details of the optional parameters for Copy Service, see “Create Service” on
page 299.

Create Channel

The Create Channel (MQCMD_CREATE_CHANNEL) command creates an
WebSphere MQ channel definition. Any attributes that are not defined explicitly
are set to the default values on the destination queue manager.

This PCF is supported on all platforms.

Required parameters:

ChannelName, ChannelType

Optional parameters:

BatchInterval, BatchSize, ChannelDesc, ChannelStatistics, ChannelMonitoring,
ConnectionName, DataConversion, DiscInterval, DiscRetryCount,

Copy Queue

292 WebSphere MQ for z/VSE System Management Guide

LongRetryCount, LongRetryInterval, MaxMsgLength, MsgExit, MsgUserData,
PortNumber, PropertyControl, ReceiveExit, ReceiveUserData, SecurityExit,
SecurityUserData, SendExit, SendUserData, SeqNumberWrap, ShortRetryCount,
ShortRetryInterval, SSLCipherSpec, SSLClientAuth, SSLPeerName, TpName,
TransportType, XmitQName

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the new channel definition. The maximum length of the string
is MQ_CHANNEL_NAME_LENGTH.

Channel names must be unique; if a channel definition with this name
already exists, the command will fail.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel being defined. The value can be:

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_SVRCONN
Server-connection (for use by clients).

Optional parameters

For a complete list and description of the optional parameters available with the
Copy Channel command, refer to “Change Channel” on page 244.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRCCF_BATCH_SIZE_ERROR
Batch size not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

Create Channel

Chapter 8. Programmable system management 293

MQRCCF_CFSL_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFSL_TOTAL_LENGTH_ERROR
Total string length error.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_ALREADY_EXISTS
Channel already exists.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_CONN_NAME_ERROR
Error in connection name parameter.

MQRCCF_DISC_INT_ERROR
Disconnection interval not valid.

MQRCCF_LONG_RETRY_ERROR
Long retry value is not valid.

MQRCCF_LONG_TIMER_ERROR
Long retry interval is not valid.

MQRCCF_MAX_MSG_LENGTH_ERROR
Maximum message length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_SEQ_NUMBER_WRAP_ERROR
Sequence wrap number not valid.

MQRCCF_SHORT_RETRY_ERROR
Short retry value is not valid.

MQRCCF_SHORT_TIMER_ERROR
Short retry interval is not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Create Channel

294 WebSphere MQ for z/VSE System Management Guide

MQRCCF_XMIT_PROTOCOL_TYPE_ERR
Transmission protocol type not valid.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

Create Channel Listener

The Create Channel Listener (MQCMD_CREATE_LISTENER) command creates a
new WebSphere MQ listener definition. Any attributes that are not defined
explicitly are set to the default values on the destination queue manager.

Required parameters:

ListenerName, TransportType

Optional parameters:

Backlog, IPAddress, ListenerDesc, Port, StartMode

Required parameters

ListenerName (MQCFST)
The name of the listener definition to be changed or created (parameter
identifier: MQCACH_LISTENER_NAME).

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

TransportType (MQCFIN)
Transmission protocol (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value can be: MQXPT_TCP TCP

Optional parameters

Backlog (MQCFIN)
Backlog (parameter identifier: MQIACH_BACKLOG).

The number of concurrent connection requests that the listener supports.

IPAddress (MQCFST)
IP address (parameter identifier: MQCACH_IP_ADDRESS).

IP address for the listener specified in IPv4 dotted decimal or
alphanumeric host name form. If you do not specify a value for this
parameter, the listener listens on all configured Ipv4 stacks.

The maximum length of the string is MQ_CONN_ADDRESS_LENGTH.

ListenerDesc (MQCFST)
Description of listener definition (parameter identifier:
MQCACH_LISTENER_DESC).

This is a plain-text comment that provides descriptive information about
the listener definition. It should contain only displayable characters. If
characters are used that are not in the coded character set identifier
(CCSID) for the queue manager on which the command is executing, they
might be translated incorrectly.

The maximum length of the string is MQ_LISTENER_DESC_LENGTH.

Port (MQCFIN)
Port number (parameter identifier: MQIACH_PORT). The port number for
TCP/IP.

Create Channel

Chapter 8. Programmable system management 295

StartMode (MQCFIN)
Service mode (parameter identifier: MQIACH_LISTENER_CONTROL).

Specifies how the listener is to be started and stopped. The value can be:

MQSVC_CONTROL_MANUAL
The listener is not to be started automatically or stopped
automatically. It is to be controlled by user command. This is the
default value.

MQSVC_CONTROL_Q_MGR
The listener being defined is to be started and stopped at the same
time as the queue manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The listener is to be started at the same time as the queue manager
is started, but is not requested to stop when the queue manager is
stopped.

Create Namelist

The Create Namelist (MQCMD_CREATE_NAMELIST) command creates a namelist
object using the specified values.

Required parameters

NamelistName

Optional parameters

NamelistDesc, Names

Required parameters

NamelistName (MQCFST)
Namelist name (parameter identifier: MQCA_NAMELIST_NAME). The
name of the namelist to be created.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Optional Parameters

NamelistDesc (MQCFST)
Description of namelist definition (parameter identifier:
MQCA_NAMELIST_DESC).

This is a plain-text comment that provides descriptive information about
the namelist definition. It should contain only displayable characters

If characters are used that are not in the coded character set identifier
(CCSID) for the queue manager on which the command is executing, they
might be translated incorrectly.

The maximum length of the string is MQ_NAMELIST_DESC_LENGTH.

Names (MQCFSL)
The names to be placed in the namelist (parameter identifier:
MQCA_NAMES).

Create Channel

296 WebSphere MQ for z/VSE System Management Guide

The number of names in the list is given by the Count field in the
MQCFSL structure. The length of each name is given by the StringLength
field in that structure. The maximum length of a name is
MQ_OBJECT_NAME_LENGTH.

Create Queue

The Create Queue (MQCMD_CREATE_Q) command creates a queue definition
with the specified attributes. All attributes that are not specified are set to the
default value for the type of queue that is created.

This PCF is supported on all platforms.

Required parameters:

QName, QType, CICSFileName

Optional parameters:

BaseQName, DefinitionType, InhibitGet, InhibitPut, MaxGlobalLocks,
MaxLocalLocks, MaxMsgLength, MaxQDepth, MaxQTriggers, MaxQUsers,
PropertyControl, QDepthHighEvent, QDepthHighLimit, QDepthLowEvent,
QDepthLowLimit, QDepthMaxEvent, QDesc, QServiceInterval,
QServiceIntervalEvent, QueueAccounting, QueueStatistics, QueueMonitoring,
RemoteQMgrName, RemoteQName, Shareability, TriggerChannelName,
TriggerControl, TriggerData, TriggerProgramName, TriggerRestart,
TriggerTerminalId, TriggerTransactionId, TriggerType, Usage, XmitQName

Required parameters

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The name of the queue to be created. The maximum length of the string is
MQ_Q_NAME_LENGTH.

Queue names must be unique; if a queue definition already exists with the
same name as of the new queue, the command will fail.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_MODEL
Model queue definition.

MQQT_REMOTE
Local definition of a remote queue.

CICSFileName (MQCFST)
CICS file name for queue messages.

The name of a filename defined to the CICS region. The maximum length
of the string is MQ_CICS_FILE_NAME_LENGTH.

Create Channel

Chapter 8. Programmable system management 297

Optional parameters

For a complete list and description of the optional parameters available with the
Create Queue command, refer to “Change Queue” on page 257.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_OBJECT_ALREADY_EXISTS
Object already exists.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_OBJECT_WRONG_TYPE
Object has wrong type.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

Create Queue

298 WebSphere MQ for z/VSE System Management Guide

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Create Service

The Create Service (MQCMD_CREATE_SERVICE) command creates a new
WebSphere MQ service definition. Any attributes that are not defined explicitly are
set to the default values on the destination queue manager.

Required parameters:

ServiceName

Optional parameters:

ServiceDesc, ServiceType, StartArguments, StartCommand, StartMode,
StopArguments, StopCommand

Required parameters

ServiceName (MQCFST)
The name of the service definition to be created (parameter identifier:
MQCA_SERVICE_NAME).

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Optional parameters

ServiceDesc (MQCFST)
Description of service definition (parameter identifier:
MQCA_SERVICE_DESC).

This is a plain-text comment that provides descriptive information about
the service definition. It should contain only displayable characters. If
characters are used that are not in the coded character set identifier
(CCSID) for the queue manager on which the command is executing, they
might be translated incorrectly.

The maximum length of the string is MQ_SERVICE_DESC_LENGTH.

ServiceType (MQCFIN)
The mode in which the service is to run (parameter identifier:
MQIA_SERVICE_TYPE). Specify one of these:

MQSVC_TYPE_SERVER
Only one instance of the service can be executed at a time, with the
status of the service made available by the Inquire Service Status
command.

MQSVC_TYPE_COMMAND
Multiple instances of the service can be started.

StartArguments (MQCFST)
Arguments to be passed in CICS COMMAREA when the CICS transaction
is started (parameter identifier: MQCA_SERVICE_START_ARGS).

The maximum length of the string is 100.

StartCommand (MQCFST)
CICS transaction code to start service (parameter identifier:
MQCA_SERVICE_START_COMMAND).

The maximum length of the string is 4.

Create Queue

Chapter 8. Programmable system management 299

StartMode (MQCFIN)
Service mode (parameter identifier: MQIA_SERVICE_CONTROL).

Specifies how the service is to be started and stopped. The value can be:
MQSVC_CONTROL_MANUAL

The service is not to be started automatically or stopped
automatically. It is to be controlled by user command. This is the
default value.

MQSVC_CONTROL_Q_MGR
The service being defined is to be started and stopped at the same
time as the queue manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The service is to be started at the same time as the queue manager
is started, but is not requested to stop when the queue manager is
stopped.

StopArguments (MQCFST)
Specifies the CICS COMMAREA contents when the CICS transaction is
started (parameter identifier: MQCA_SERVICE_STOP_ARGS).

The maximum length of the string is 100.

StopCommand (MQCFST)
CICS transaction code to stop the service (parameter identifier:
MQCA_SERVICE_STOP_COMMAND).

The maximum length of the string is 4.

Delete Channel

The Delete Channel (MQCMD_DELETE_CHANNEL) command deletes the
specified channel definition.

This PCF is supported on all platforms.

Required parameters:

ChannelName

Optional parameters:

None

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel definition to be deleted. The maximum length of
the string is MQ_CHANNEL_NAME_LENGTH.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

Create Queue

300 WebSphere MQ for z/VSE System Management Guide

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Delete Channel Listener

The Delete Channel Listener (MQCMD_DELETE_LISTENER) command deletes an
existing channel listener definition.

Required parameters:

ListenerName

Optional parameters:

None

Required parameters

ListenerName (MQCFST)
Listener name (parameter identifier: MQCACH_LISTENER_NAME). This is
the name of the listener definition to be deleted.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Delete Namelist

The Delete Namelist (MQCMD_DELETE_NAMELIST) command deletes a namelist
object.

Required parameters:

NamelistName

Optional parameters:

None

Required parameters

NamelistName(MQCFST)
NamelistName (parameter identifier: MQCA_NAMELIST_NAME). The
name of the namelist to be deleted.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Delete Channel

Chapter 8. Programmable system management 301

Delete Queue

The Delete Queue (MQCMD_DELETE_Q) command deletes an WebSphere MQ
queue.

This PCF is supported on all platforms.

Required parameters:

QName

Optional parameters:

Purge, QType

Required parameters

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The name of the queue to be deleted.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Optional parameters

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

If this parameter is present, the queue must be of the specified type.

The value may be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_MODEL
Model queue definition.

MQQT_REMOTE
Local definition of a remote queue.

Purge (MQCFIN)
Purge queue (parameter identifier: MQIACF_PURGE).

If there are messages on the queue MQPO_YES must be specified,
otherwise the command will fail. If this parameter is not present the queue
is not purged.

Valid only for queue of type local.

The value can be:

MQPO_YES
Purge the queue.

MQPO_NO
Do not purge the queue.

Delete Queue

302 WebSphere MQ for z/VSE System Management Guide

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRC_Q_NOT_EMPTY
(2055, X'807') Queue contains one or more messages or uncommitted put or
get requests.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PURGE_VALUE_ERROR
Purge value not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Delete Service

The Delete Service (MQCMD_DELETE_SERVICE) command deletes an existing
service definition.

Required parameters:

ServiceName

Optional parameters:

None

Delete Queue

Chapter 8. Programmable system management 303

Required parameters

ServiceName (MQCFST)
Service name (parameter identifier: MQCA_SERVICE_NAME).

This is the name of the service definition to be deleted.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Escape

The Escape (MQCMD_ESCAPE) command conveys any WebSphere MQ command
to a remote queue manager.

The Escape command can also be used to send a command for which no
Programmable Command Format has been defined.

The only type of command that can be carried is one that is identified as an
WebSphere MQ command that is recognized at the receiving queue manager.

Required parameters:

EscapeType, EscapeText

Optional parameters:

None

The Escape command, if successful, generates a data response. For details of the
Escape response, refer to “Data responses to commands” on page 381.

Required parameters

EscapeType (MQCFIN)
Escape type (parameter identifier: MQIACF_ESCAPE_TYPE).

The only value supported is:

MQET_MQSC
WebSphere MQ command.

EscapeText (MQCFST)
Escape text (parameter identifier: MQCACF_ESCAPE_TEXT).

A string to hold a command. The length of the string is limited only by the
size of the message. WebSphere MQ for z/VSE supports PCF message
lengths up to 2 KB.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRCCF_ESCAPE_TYPE_ERROR
Escape type not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

Delete Queue

304 WebSphere MQ for z/VSE System Management Guide

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

Inquire Channel

The Inquire Channel (MQCMD_INQUIRE_CHANNEL) command inquires about
the attributes of WebSphere MQ channel definitions.

This PCF is supported on all platforms.

Required parameters:

ChannelName

Optional parameters:

ChannelAttrs, ChannelType, IntegerFilterCommand, StringFilterCommand

The Inquire Channel command, if successful, generates a data response. For details
of the Inquire Channel response, refer to “Data responses to commands” on page
381.

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Generic channel names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all channels
having names that start with the selected character string. An asterisk on
its own matches all possible names.

The channel name is always returned, regardless of the attributes
requested.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Optional parameters

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

If this parameter is present, the channel specified by ChannelName, must
be of the specified type.

If this parameter is not present (or if MQCHT_ALL is specified), the
channel identified by ChannelName can be of any type.

The value can be:

MQCHT_ALL
All types.

The default value if this parameter is not specified is
MQCHT_ALL. Note: If this parameter is present, it must occur
immediately after the ChannelName parameter. Failure to do this
can result in a MQRCCF_MSG_LENGTH_ERROR error message.

MQCHT_RECEIVER
Receiver.

Escape

Chapter 8. Programmable system management 305

MQCHT_REQUESTER
Requester.

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_SVRCONN
Server-connection (for use by clients).

ChannelAttrs (MQCFIL)
Channel attributes (parameter identifier: MQIACF_CHANNEL_ATTRS).

The attribute list may specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of:

MQCA_ALTERATION_DATE
Date on which the definition was last altered.

MQCA_ALTERATION_TIME
Time at which the definition was last altered.

MQCACH_CHANNEL_NAME
Channel name.

MQCACH_CONNECTION_NAME
Connection name.

MQCACH_DESC
Description.

MQCACH_MSG_EXIT_NAME
Message exit name.

MQCACH_MSG_EXIT_USER_DATA
Message exit user data.

MQCACH_RCV_EXIT_NAME
Receive exit name.

MQCACH_RCV_EXIT_USER_DATA
Receive exit user data.

MQCACH_SEC_EXIT_NAME
Security exit name.

MQCACH_SEC_EXIT_USER_DATA
Security exit user data.

MQCACH_SEND_EXIT_NAME
Send exit name.

MQCACH_SEND_EXIT_USER_DATA
Send exit user data.

MQCACH_SSL_CIPHER_SPEC
SSL cipher specification.

MQCACH_SSL_PEER_NAME
SSL peer name.

Inquire Channel

306 WebSphere MQ for z/VSE System Management Guide

MQCACH_TP_NAME
Transaction program name.

MQCACH_XMIT_Q_NAME
Transmission queue name.

MQIA_MONITORING_CHANNEL
Channel monitoring setting.

MQIA_PROPERTY_CONTROL
Property control attribute.

MQIA_STATISTICS_CHANNEL
Channel statistics setting.

MQIACH_BATCH_INTERVAL
Batch interval.

MQIACH_BATCH_SIZE
Batch size.

MQIACH_CHANNEL_TYPE
Channel type.

MQIACH_DATA_CONVERSION
Whether sender should convert application data.

MQIACH_DISC_INTERVAL
Disconnection interval.

MQIACH_DISC_RETRY
Disconnection retry count.

MQIACH_LONG_RETRY
Long retry count.

MQIACH_LONG_TIMER
Long retry interval.

MQIACH_MAX_MSG_LENGTH
Maximum message length.

MQIACH_PORT_NUMBER
TCP/IP port number.

MQIACH_SEQUENCE_NUMBER_WRAP
Sequence number wrap.

MQIACH_SHORT_RETRY
Short retry count.

MQIACH_SHORT_TIMER
Short retry interval.

MQIACH_SSL_CLIENT_AUTH
SSL client authentication.

MQIACH_XMIT_PROTOCOL_TYPE
Transport (transmission protocol) type.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Inquire Channel

Chapter 8. Programmable system management 307

Reason (MQLONG)

The value can be:

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Inquire Channel Authentication Records

The Inquire Channel Authentication Records
(MQCMD_INQUIRE_CHLAUTH_RECS) command retrieves the allowed partner
details and mappings to MCAUSER for a channel or set of channels.

Required parameters:

Inquire Channel

308 WebSphere MQ for z/VSE System Management Guide

|

|
|
|

|

generic-channel-name

Optional parameters:

Address, ChannelAuthAttrs, ClntUser, IntegerFilterCommand, QMName,
StringFilterCommand, Type

Required parameters

generic-channel-name
The name of the channel or set of channels on which you are inquiring.
You can use the asterisk (*) as a wildcard to specify a set of channels,
unless you set Match to MQMATCH_RUNCHECK. If you set Type to
BLOCKADDR, you must set the generic channel name to a single asterisk,
which matches all channel names.

Optional parameters

Address (MQCFST)
The IP address to be mapped (parameter identifier:
MQCACH_CONNECTION_NAME). This parameter is valid only when
Match is MQMATCH_RUNCHECK and must not be generic.

ChannelAuthAttrs (MQCFIL)
Authority record attributes (parameter identifier:
MQIACF_CHLAUTH_ATTRS). You can specify the following value in the
attribute list on its own. This is the default value if the parameter is not
specified.
MQIACF_ALL

All attributes.

If MQIACF_ALL is not specified, specify a combination of the following
values:
MQCA_ALTERATION_DATE

Alteration Date.
MQCA_ALTERATION_TIME

Alteration Time.
MQCA_CHLAUTH_DESC

Description.
MQCA_REMOTE_Q_MGR_NAME

Remote partner queue manager name.
MQCACH_CHANNEL_NAME

Channel name or pattern.
MQCACH_CLIENT_USER_ID

Client asserted user ID.
MQCACH_CONNECTION_NAME

IP address filter.
MQCACH_CONNECTION_NAME_LIST

A list of IP address patterns.
MQCACH_MCA_USER_ID

MCA User ID mapped on the record.
MQCACH_MCA_USER_ID_LIST

A list of user IDs that are blocked.
MQIACF_CHLAUTH_TYPE

The type of channel authentication record.
MQIACH_MATCH

The type of matching to be applied.
MQIACH_USER_SOURCE

The source of the user ID for this record.

Inquire Channel Authentication Records

Chapter 8. Programmable system management 309

|

|

|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MQIACH_WARNING
Warning mode.

ClntUser (MQCFST)
The client asserted user ID to be matched (parameter identifier:
MQCACH_CLIENT_USER_ID). This parameter is valid only when Match
is MQMATCH_RUNCHECK.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. Use this parameter to restrict the output
from the command by specifying a filter condition.

If you specify an integer filter, you cannot also specify a string filter using
the StringFilterCommand parameter.

Match Indicates the type of matching to be applied (parameter identifier
MQIACH_MATCH).

You can specify any one of the following values:

MQMATCH_RUNCHECK
A specific match is made against the supplied channel name and
optionally supplied Address, QMName, and ClntUser attributes to
find the channel authentication record that is matched by the
channel at runtime if it connects into this queue manager. If the
record discovered has Warn set to MQWARN_YES, a second record
might also be displayed to show the actual record the channel uses
at runtime. The channel name supplied in this case cannot be
generic. This option must be combined with Type MQCAUT_ALL.

MQMATCH_EXACT
Return only those records which exactly match the channel profile
name supplied. If there are no asterisks in the channel profile
name, this option returns the same output as
MQMATCH_GENERIC.

MQMATCH_GENERIC
A trailing asterisks in the channel profile name is treated as a wild
card. If there are no asterisks in the channel profile name, this
returns the same output as MQMATCH_EXACT. For example, a
profile of ABC* could result in records for ABC, ABC*, and ABCD
being returned.

MQMATCH_ALL
Return all possible records that match the channel profile name
supplied. If the channel name is generic in this case, all records
that match the channel name are returned even if more specific
matches exist.

QMName (MQCFST)
The name of the remote partner queue manager to be matched (parameter
identifier: MQCA_REMOTE_Q_MGR_NAME).

This parameter is valid only when Match is MQMATCH_RUNCHECK.
The value cannot be generic.

StringFilterCommand (MQCFSF)
String filter command descriptor. Use this parameter to restrict the output
from the command by specifying a filter condition. If you specify a string
filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Inquire Channel Authentication Records

310 WebSphere MQ for z/VSE System Management Guide

|
|

|
|
|
|

|
|
|

|
|

||
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

Type (MQCFIN)
The type of channel authentication record for which to set allowed partner
details or mappings to MCAUSER (parameter identifier:
MQIACF_CHLAUTH_TYPE). The following values are valid:
MQCAUT_BLOCKUSER

This channel authentication record prevents a specified user or
users from connecting.

MQCAUT_BLOCKADDR
This channel authentication record prevents connections from a
specified IP address or addresses.

MQCAUT_ADDRESSMAP
This channel authentication record maps IP addresses to
MCAUSER values. MQCAUT_USERMAP This channel
authentication record maps asserted user IDs to MCAUSER values.

MQCAUT_QMGRMAP
This channel authentication record maps remote queue manager
names to MCAUSER values.

MQCAUT_ALL
Inquire on all types of record. This is the default value.

Inquire Channel Listener

The Inquire Channel Listener (MQCMD_INQUIRE_LISTENER) command inquires
about the attributes of existing WebSphere MQ listeners.

Required parameters:

ListenerName

Optional parameters:

IntegerFilterCommand, ListenerAttr, StringFilterCommand, TransportType

Required parameters

ListenerName (MQCFST)
Listener name (parameter identifier: MQCACH_LISTENER_NAME).

This is the name of the listener whose attributes are required. Generic
listener names are supported. A generic name is a character string followed
by an asterisk (*); for example, ABC*. It selects all listeners having names
that start with the selected character string. An asterisk on its own matches
all possible names. The listener name is always returned regardless of the
attributes requested.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Optional parameters

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ChannelAttrs except MQIACF_ALL. Use
this to restrict the output from the command by specifying a filter
condition.

ListenerAttrs (MQCFIL)
Listener attributes (parameter identifier: MQIACF_LISTENER_ATTRS).

The attribute list might specify this attribute on its own (this is the default
value if the parameter is not specified):

Inquire Channel Authentication Records

Chapter 8. Programmable system management 311

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

MQIACF_ALL
All attributes.

Or it can be a combination of these attributes:
MQCA_ALTERATION_DATE

Date on which the definition was last altered.
MQCA_ALTERATION_TIME

Time at which the definition was last altered.
MQCACH_IP_ADDRESS

IP address for the listener.
MQCACH_LISTENER_DESC

Description of listener definition.
MQCACH_LISTENER_NAME

Name of listener definition.
MQIACH_BACKLOG

number of concurrent connection requests that the listener
supports.

MQIACH_LISTENER_CONTROL
Specifies when the queue manager should start and stop the
listener.

MQIACH_PORT
Port number.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in ChannelAttrs except
MQCACH_CHANNEL_NAME and MQCACH_MCA_NAME. Use this to
restrict the output from the command by specifying a filter condition.

TransportType (MQCFIN)
Transport protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

If you do not specify this parameter, or if you specify it with a value of
MQXPT_ALL, information about all listeners is returned. The value can be:
MQXPT_ALL

All transport types.
MQXPT_TCP

Transmission Control Protocol/Internet Protocol (TCP/IP).

Inquire Channel Listener Status

The Inquire Channel Listener Status (MQCMD_INQUIRE_LISTENER_STATUS)
command inquires about the status of one or more WebSphere MQ listener
instances. You must specify the name of a listener for which you want to receive
status information. You can specify a listener by using either a specific listener
name or a generic listener name. By using a generic listener name, you can display
either of these:
v Status information for all listener definitions, by using a single asterisk (*).
v Status information for one or more listeners that match the specified name.

Required parameters:

ListenerName

Optional parameters:

IntegerFilterCommand, ListenerStatusAttrs, StringFilterCommand

Inquire Channel Listener

312 WebSphere MQ for z/VSE System Management Guide

Required parameters

ListenerName (MQCFST)
Listener name (parameter identifier: MQCACH_LISTENER_NAME).
Generic listener names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all listeners
having names that start with the selected character string. An asterisk on
its own matches all possible names. The listener name is always returned,
regardless of the attributes requested.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Optional parameters

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ListenerStatusAttrs except
MQIACF_ALL. Use this to restrict the output from the command by
specifying a filter condition.

ListenerStatusAttrs (MQCFIL)
Listener status attributes (parameter identifier:
MQIACF_LISTENER_STATUS_ATTRS).

The attribute list can specify this attribute on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

Or it can be a combination of these attributes:
MQCACH_IP_ADDRESS

Listener's IP address.
MQCACH_LISTENER_DESC

Description of listener definition.
MQCACH_LISTENER_NAME

Name of listener definition.
MQCACH_LISTENER_START_DATE

The date on which the listener was started.
MQCACH_LISTENER_START_TIME

The time at which the listener was started.
MQIACH_BACKLOG

Number of concurrent connection requests that the listener
supports.

MQIACH_LISTENER_CONTROL
How the listener is to be started and stopped.

MQIACH_LISTENER_STATUS
Current status of the listener.

MQIACH_PORT
Port number for TCP/IP.

MQIACH_XMIT_PROTOCOL_TYPE
Transport type.

MQIACF_PROCESS_ID
The listener CICS task number.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in ListenerStatusAttrs except

Inquire Channel Listener Status

Chapter 8. Programmable system management 313

Inquire Channel Names

The Inquire Channel Names (MQCMD_INQUIRE_CHANNEL_NAMES) command
inquires a list of WebSphere MQ channel names that match the generic channel
name, and the optional channel type specified.

This PCF is supported on all platforms.

Required parameters:

ChannelName

Optional parameters:

ChannelType

The Inquire Channel Names command, if successful, generates a data response. For
details of the Inquire Channel Names response, refer to “Data responses to
commands” on page 381.

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Generic channel names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects
having names that start with the selected character string. An asterisk on
its own matches all possible names.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Optional parameters

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

If present, this parameter limits the channel names returned to channels of
the specified type.

The value can be:

MQCHT_SENDER
Sender.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_ALL
All types.

The default value if this parameter is not specified is
MQCHT_ALL, which means that channels of all types are eligible.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any

Inquire Channel Names

314 WebSphere MQ for z/VSE System Management Guide

integer type parameter allowed in ChannelAttrs except MQIACF_ALL. Use
this to restrict the output from the command by specifying a filter
condition.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in ChannelAttrs except
MQCACH_CHANNEL_NAME and MQCACH_MCA_NAME. Use this to
restrict the output from the command by specifying a filter condition.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Inquire Channel Status

The Inquire Channel Status (MQCMD_INQUIRE_CHANNEL_STATUS) command
inquires about the status of one or more channel instances.

You must specify the name of the channel for which you want to inquire status
information. This can be a specific channel name or a generic channel name. By
using a generic channel name, you can inquire either:
v Status information for all channels, or
v Status information for one or more channels that match the specified name.

You must also specify whether you want:
v The current status data (of current channels only), or
v The saved status data of all channels.

Inquire Channel Names

Chapter 8. Programmable system management 315

Status for all channels that meet the selection criteria is given, whether the
channels were defined manually or automatically.

There are two classes of data available for channel status. These are saved and
current. The status fields available for saved data are a subset of the fields
available for current data and are called common status fields. Note that although
the common data fields are the same, the data values might be different for saved
and current status. The rest of the fields available for current data are called
current-only status fields.

Saved data consists of the common status fields. This data is reset at the following
times:

For all channels:

v When the channel enters or leaves STOPPED state.

For a sending channel:
v Before requesting confirmation that a batch of messages has been

received When confirmation has been received
v When confirmation has been received.

For a receiving channel:

v Just before confirming that a batch of messages has been received

For a server connection channel:

v No data is saved.

Therefore, a channel which has never been current will not have any saved status.

Current data consists of the common status fields and current-only status fields.
The data fields are continually updated as messages are sent or received.

This method of operation has the following consequences:
v An inactive channel might not have any saved status if it has never been current

or has not yet reached a point where saved status is reset.
v The "common" data fields might have different values for saved and current

status.
v A current channel always has current status and might have saved status.

Channels can be current or inactive:

Current channels
These are channels that have been started, or on which a client has
connected, and that have not finished or disconnected normally. They may
not yet have reached the point of transferring messages, or data, or even of
establishing contact with the partner. Current channels have current status
and can also have saved status.

The term Active is used to describe the set of current channels which are
not stopped.

Inactive channels
These are channels that have either not been started or on which a client
has not connected, or that have finished or disconnected normally. Inactive
channels have either saved status or no status at all.

There can be more than one instance of a receiver server-connection
channel current at the same time. For channels of other types, there can
only be one instance current at any time.

Inquire Channel Status

316 WebSphere MQ for z/VSE System Management Guide

Required parameters:

ChannelName

Optional parameters:

ChannelInstanceAttrs, ChannelInstanceType, ConnectionName,
IntegerFilterCommand, StringFilterCommand, XmitQName

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Generic channel names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects
having names that start with the selected character string. An asterisk on
its own matches all possible names.

The channel name is always returned, regardless of the instance attributes
requested.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Optional parameters

ChannelInstanceAttrs (MQCFIL)
Channel instance attributes (parameter identifier:
MQIACH_CHANNEL_INSTANCE_ATTRS).

If status information is requested which is not relevant for the particular
channel type, this is not an error. Similarly, it is not an error to request
status information that is applicable only to active channels for saved
channel instances. In both of these cases, no structure is returned in the
response for the information concerned.

For a saved channel instance, the MQCACH_CURRENT_LUWID,
MQIACH_CURRENT_MSGS, and MQIACH_CURRENT_SEQ_NUMBER
attributes have meaningful information only if the channel instance is in
doubt. However, the attribute values are still returned when requested,
even if the channel instance is not in-doubt.

The attribute list might specify the following on its own:
v MQIACF_ALL All attributes.

This is the default value used if the parameter is not specified or it can
specify a combination of the following:

Relevant for common status

The following information applies to all sets of channel status,
whether or not the set is current.
MQCACH_CHANNEL_NAME

Channel name.
MQCACH_CONNECTION_NAME

Connection name.
MQCACH_CURRENT_LUWID

Logical unit of work identifier for current batch.
MQCACH_LAST_LUWID

Logical unit of work identifier for last committed batch.
MQCACH_XMIT_Q_NAME

Transmission queue name.

Inquire Channel Status

Chapter 8. Programmable system management 317

MQIACH_CHANNEL_INSTANCE_TYPE
Channel instance type.

MQIACH_CHANNEL_TYPE
Channel type.

MQIACH_CURRENT_MSGS
Number of messages sent or received in current batch.

MQIACH_CURRENT_SEQ_NUMBER
Sequence number of last message sent or received.

MQIACH_INDOUBT_STATUS
Whether the channel is currently in-doubt.

MQIACH_LAST_SEQ_NUMBER
Sequence number of last message in last committed batch.

MQCACH_CURRENT_LUWID, MQCACH_LAST_LUWID,
MQIACH_CURRENT_MSGS,
MQIACH_CURRENT_SEQ_NUMBER,
MQIACH_INDOUBT_STATUS and
MQIACH_LAST_SEQ_NUMBER do not apply to server-connection
channels, and no values are returned. If specified on the command,
they are ignored.

Relevant for current-only status

The following information applies only to current channel
instances. The information applies to all channel types, except
where stated.
MQCA_Q_MGR_NAME

Name of the queue manager that owns the channel
instance.

MQCA_REMOTE_Q_MGR_NAME
Queue manager name of the remote system. The remote
queue manager name is always returned regardless of the
instance attributes requested.

MQCACH_CHANNEL_START_DATE
Date channel was started.

MQCACH_CHANNEL_START_TIME
Time channel was started.

MQCACH_LAST_MSG_DATE
Date last message was sent, or MQI call was handled.

MQCACH_LAST_MSG_TIME
Time last message was sent, or MQI call was handled.

MQCACH_LOCAL_ADDRESS
Local communications address for the channel.

MQCACH_MCA_USER_ID
The user ID used by the MCA.

MQCACH_SSL_SHORT_PEER_NAME
SSL short peer name.

MQCACH_SSL_CERT_ISSUER_NAME
The full Distinguished Name of the issuer of the remote
certificate.

MQIA_MONITORING_CHANNEL
Current level of monitoring data collection.

MQIACF_MONITORING
All channel status monitoring attributes. These are:
v MQIA_MONITORING_CHANNEL
v MQIACH_BATCH_SIZE_INDICATOR
v MQIACH_EXIT_TIME_INDICATOR

Inquire Channel Status

318 WebSphere MQ for z/VSE System Management Guide

v MQIACH_NETWORK_TIME_INDICATOR
v MQIACH_XMITQ_MSGS_AVAILABLE
v MQIACH_XMITQ_TIME_INDICATOR

MQIACH_BUFFERS_RCVD
Number of buffers received.

MQIACH_BUFFERS_SENT
Number of buffers sent.

MQIACH_BYTES_RCVD
Number of bytes received.

MQIACH_BYTES_SENT
Number of bytes sent.

MQIACH_CHANNEL_SUBSTATE
Current channel substate.

MQIACH_CURRENT_SHARING_CONVS
Requests information on the current number of
conversations on this channel instance. This attribute
applies only to TCP/IP server-connection channels.

MQIACH_EXIT_TIME_INDICATOR
Exit time.

MQIACH_LONG_RETRIES_LEFT
Number of long retry attempts remaining.

MQIACH_MAX_SHARING_CONVS
Requests information on the maximum number of
conversations on this channel instance. This attribute
applies only to TCP/IP server-connection channels.

MQIACH_MCA_STATUS
MCA status.

MQIACH_MSGS
Number of messages sent or received, or number of MQI
calls handled.

MQIACH_NETWORK_TIME_INDICATOR
Network time.

MQIACH_SHORT_RETRIES_LEFT
Number of short retry attempts remaining.

MQIACH_SSL_KEY_RESETS
Number of successful SSL key resets.

MQIACH_SSL_KEY_RESET_DATE
Date of previous successful SSL secret key reset.

MQIACH_SSL_KEY_RESET_TIME
Time of previous successful SSL secret key reset.

MQIACH_STOP_REQUESTED
Whether user stop request has been received.

MQIACH_XMITQ_MSGS_AVAILABLE
Number of messages available to the channel on the
transmission queue.

MQIACH_XMITQ_TIME_INDICATOR
Time on transmission queue.

MQIACH_BATCH_SIZE
Batch size.

You cannot use these attribute parameters to filter on:
MQIACF_MONITORING

All channel status monitoring attributes.

Note: You cannot use MQIACF_MONITORING as a parameter to
filter on.

Inquire Channel Status

Chapter 8. Programmable system management 319

MQIACH_BATCH_SIZE_INDICATOR
Batch size.

MQIACH_EXIT_TIME_INDICATOR
Exit time.

MQIACH_MCA_STATUS
MCA status.

MQIACH_NETWORK_TIME_INDICATOR
Network time.

MQIACH_XMITQ_TIME_INDICATOR
Time on transmission queue.

The following attributes do not apply to server-connection channels, and
no values are returned. If specified on the command they are ignored:
v MQIACH_BATCH_SIZE_INDICATOR
v MQIACH_BATCH_SIZE
v MQIACH_BATCHES
v MQIACH_LONG_RETRIES_LEFT
v MQIACH_NETWORK_TIME
v MQIACH_NPM_SPEED
v MQCA_REMOTE_Q_MGR_NAME
v MQIACH_SHORT_RETRIES_LEFT
v MQIACH_XMITQ_MSGS_AVAILABLE
v MQIACH_XMITQ_TIME_INDICATOR

The following attributes apply only to server-connection channels. If
specified on the command for other types of channel the attribute is
ignored and no value is returned:
v MQIACH_CURRENT_SHARING_CONVS
v MQIACH_MAX_SHARING_CONVS

ChannelInstanceType (MQCFIN)
Channel instance type (parameter identifier:
MQIACH_CHANNEL_INSTANCE_TYPE).

It is always returned regardless of the channel instance attributes
requested.

You cannot use MQIACH_CHANNEL_INSTANCE_TYPE as a parameter to
filter on.

The value can be:

MQOT_CURRENT_CHANNEL
Current channel status.

This is the default, and indicates that only current status
information for active channels is to be returned.

Both common status information and active-only status
information can be requested for current channels.

MQOT_SAVED_CHANNEL
Saved channel status.

Specify this to cause saved status information for both active and
inactive channels to be returned.

Only common status information can be returned. Active-only
status information is not returned for active channels if this
keyword is specified.

Inquire Channel Status

320 WebSphere MQ for z/VSE System Management Guide

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME). If this parameter is present, eligible
channel instances are limited to those using this connection name. If it is
not specified, eligible channel instances are not limited in this way.

The connection name is always returned, regardless of the instance
attributes requested.

The value returned for ConnectionName might not be the same as in the
channel definition, and might differ between the current channel status
and the saved channel status. (Using ConnectionName for limiting the
number of sets of status is therefore not recommended.)

For example, when using TCP, if ConnectionName in the channel
definition:
v Is blank or is in "host name" format, the channel status value has the

resolved IP address.
v Includes the port number, the current channel status value includes the

port number, but the saved channel status value does not.

The maximum length of the string is MQ_CONN_NAME_LENGTH.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ChannelInstanceAttrs except
MQIACF_ALL and others as noted. Use this to restrict the output from the
command by specifying a filter condition.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in ChannelInstanceAttrs except
MQCACH_CHANNEL_NAME and others as noted. Use this to restrict the
output from the command by specifying a filter condition.

If you specify a string filter for ConnectionName or XmitQName, you
cannot also specify the ConnectionName or XmitQName parameter.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

If this parameter is present, eligible channel instances are limited to those
using this transmission queue. If it is not specified, eligible channel
instances are not limited in this way.

The transmission queue name is always returned, regardless of the instance
attributes requested.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

Inquire Channel Status

Chapter 8. Programmable system management 321

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHL_INST_TYPE_ERROR
Channel instance type is invalid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Inquire Connection

The Inquire connection (MQCMD_INQUIRE_CONNECTION) command inquires
about the applications which are connected to the queue manager, the status of any
transactions that those applications are running, and the objects which the
application has open.

Required parameters

ConnectionId or GenericConnectionId

Optional parameters

ConnectionAttrs, ConnInfoType, IntegerFilterCommand, StringFilterCommand

Required parameters

ConnectionId (MQCFBS)
Connection identifier (parameter identifier: MQBACF_CONNECTION_ID).

This is the unique connection identifier associated with an application that
is connected to the queue manager. Specify either this parameter or
GenericConnectionId.

All connections are assigned a unique identifier by the queue manager
regardless of how the connection is established.

If you need to specify a generic connection identifier, use the
GenericConnectionId parameter instead.

The length of the string is MQ_CONNECTION_ID_LENGTH.

GenericConnectionId (MQCFBS)
Generic specification of a connection identifier (parameter identifier:
MQBACF_GENERIC_CONNECTION_ID).

Specify either this parameter or ConnectionId.

Inquire Channel Status

322 WebSphere MQ for z/VSE System Management Guide

If you specify a byte string of zero length, or one which contains only null
bytes, information about all connection identifiers is returned. This is the
only value permitted for GenericConnectionId.

The length of the string is MQ_CONNECTION_ID_LENGTH.

Optional parameters

ConnectionAttrs (MQCFIL)
Connection attributes (parameter identifier:
MQIACF_CONNECTION_ATTRS). The attribute list can specify the
following on its own (this is the default value if the parameter is not
specified):

MQIACF_ALL
All attributes of the selected ConnInfoType.

or, if you select a value of MQIACF_CONN_INFO_CONN for
ConnInfoType, a combination of the following:
MQBACF_CONNECTION_ID

Connection identifier.
MQCACF_APPL_TAG

Name of an application that is connected to the queue manager.
MQCACF_TASK_NUMBER

A 7-digit CICS task number.
MQCACF_TRANSACTION_ID

A 4-character CICS transaction identifier.
MQCACF_UOW_START_DATE

Date on which the transaction associated with the current
connection was started.

MQCACF_UOW_START_TIME
Time at which the transaction associated with the current
connection was started.

MQCACF_USER_IDENTIFIER
User identifier of the application that is connected to the queue
manager.

MQCACH_CHANNEL_NAME
Name of the channel associated with the connected application.

MQCACH_CONNECTION_NAME
Connection name of the channel associated with the application.

MQIA_APPL_TYPE
Type of the application that is connected to the queue manager.

MQIACF_CONNECT_OPTIONS
Connect options currently in force for this application connection.

MQIACF_UOW_STATE
State of the unit of work.

MQIACF_UOW_TYPE
Type of external unit of recovery identifier as understood by the
queue manager.

or, if you select a value of MQIACF_CONN_INFO_HANDLE for
ConnInfoType, a combination of the following:
MQCACF_OBJECT_NAME

Name of each object that the connection has open.
MQCACH_CONNECTION_NAME

Connection name of the channel associated with the application.
MQIACF_HANDLE_STATE

Whether an API call is in progress.

Inquire Channel Status

Chapter 8. Programmable system management 323

MQIACF_OBJECT_TYPE
Type of each object that the connection has open.

MQIACF_OPEN_OPTIONS
Options used by the connection to open each object.

or, if you select a value of MQIACF_CONN_INFO_ALL for ConnInfoType,
any of the above.

ConnInfoType (MQCFIN)
Type of connection information to be returned (parameter identifier:
MQIACF_CONN_INFO_TYPE).

The value can be:
MQIACF_CONN_INFO_CONN

Connection information. This is the default value used if the
parameter is not specified.

MQIACF_CONN_INFO_HANDLE
Information pertaining only to those objects opened by the
specified connection.

MQIACF_CONN_INFO_ALL
Connection information and information about those objects that
the connection has open.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ConnectionAttrs except as noted and
MQIACF_ALL. Use this to restrict the output from the command by
specifying a filter condition.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in ConnectionAttrs. Use this to restrict the
output from the command by specifying a filter condition.

Error codes

This command might return the following in the response format header, in
addition to the values applicable to all commands.

Reason (MQLONG)

The value can be:

MQRCCF_CONNECTION_ID_ERROR
Connection identifier not valid.

Inquire Namelist

The Inquire Namelist (MQCMD_INQUIRE_NAMELIST) command inquires about
the attributes of namelist objects.

Required parameters

NamelistName

Optional parameters

IntegerFilterCommand, NamelistAttrs, StringFilterCommand

Inquire Channel Status

324 WebSphere MQ for z/VSE System Management Guide

The Inquire Namelist command, if successful, generates a data response. For
details of the Inquire Namelist response, refer to “Data responses to commands”
on page 381.

Required parameters

NamelistName (MQCFST)
Namelist name (parameter identifier: MQCA_NAMELIST_NAME).

Generic namelist names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all namelists
having names that start with the selected character string.

An asterisk on its own matches all possible names.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Optional parameters

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in NamelistAttrs except MQIACF_ALL.
Use this to restrict the output from the command by specifying a filter
condition.

NamelistAttrs (MQCFIL)
Namelist attributes (parameter identifier: MQIACF_NAMELIST_ATTRS).

The attribute list may specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of:

MQCA_ALTERATION_DATE
The date on which the information was last altered, in the form
yyyy-mm-dd.

MQCA_ALTERATION_TIME
The time at which the information was last altered, in the form
hh.mm.ss.

MQCA_NAMELIST_DESC
The namelist description.

MQCA_NAMES
The namelist names.

MQIA_NAME_COUNT
The number of namelist names.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in NamelistAttrs except
MQCA_NAMELIST_NAME. Use this to restrict the output from the
command by specifying a filter condition.

Error codes:

Inquire Namelist

Chapter 8. Programmable system management 325

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRC_SELECTOR_ERROR (2067, X'813')
Attribute selector not valid.

MQRC_UNKNOWN_OBJECT_NAME (2085, X'825')
Unknown object name.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Inquire Namelist Names

The Inquire Namelist Names (MQCMD_INQUIRE_NAMELIST_NAMES) command
inquires a list of WebSphere MQ namelists objects that match the generic namelist
name

Required parameters

NamelistName

Inquire Namelist

326 WebSphere MQ for z/VSE System Management Guide

Optional parameters

None.

The Inquire Namelist Names command, if successful, generates a data response.
For details of the Inquire Namelist Names response, refer to “Data responses to
commands” on page 381.

Required parameters

NamelistName (MQCFST)
Namelist name (parameter identifier: MQCA_NAMELIST_NAME).

Generic namelist names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects
having names that start with the selected character string.

An asterisk on its own matches all possible names.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Error codes:

In addition to the values for any command shown in “Error codes applicable to all
commands” on page 241for this command the following may be returned in the
response format header:

Reason (MQLONG)

The value may be

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Inquire Queue

The Inquire Queue (MQCMD_INQUIRE_Q) command inquires about the attributes
of WebSphere MQ queues.

This PCF is supported on all platforms.

Required parameters:

QName

Inquire Namelist Names

Chapter 8. Programmable system management 327

Optional parameters:

IntegerFilterCommand, QAttrs, Qtype, StringFilterCommand

The Inquire Queue command, if successful, generates a data response. For details
of the Inquire Queue response, refer to “Data responses to commands” on page
381.

Required parameters

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

Generic queue names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all queues
having names that start with the selected character string. An asterisk on
its own matches all possible names.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Optional parameters

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in QAttrs except MQIACF_ALL. Use this
to restrict the output from the command by specifying a filter condition. If
you specify an integer filter for Qtype, you cannot also specify the Qtype
parameter.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

If this parameter is present, the queue identified by QName must be of the
specified type.

If this parameter is not present (or if MQQT_ALL is specified), the queue
identified by QName can be of any type.

The value can be:

MQQT_ALL
All queue types.

MQQT_LOCAL
Local queue.

MQQT_MODEL
Model queue definition.

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

QAttrs (MQCFIL)
Queue attributes (parameter identifier: MQIACF_Q_ATTRS).

The attribute list may specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of:

Inquire Queue

328 WebSphere MQ for z/VSE System Management Guide

MQCA_ALTERATION_DATE
The date on which the information was last altered, in the form
yyyy-mm-dd.

MQCA_ALTERATION_TIME
The time at which the information was last altered, in the form
hh.mm.ss.

MQCA_BASE_Q_NAME
Name of queue that alias resolves to.

MQCA_CICS_FILE_NAME
CSD file name for queue messages.

MQCA_CREATION_DATE
Queue creation date.

MQCA_CREATION_TIME
Queue creation time.

MQIA_ACCOUNTING_Q
Queue accounting setting.

MQIA_DEFINITION_TYPE
Queue definition type.

MQIA_DEF_PERSISTENCE
Default persistence.

MQIA_INHIBIT_GET
Whether get operations are allowed.

MQIA_INHIBIT_PUT
Whether put operations are allowed.

MQIA_MAX_GLOBAL_LOCKS
Buffer size for queue manager to manage concurrent queue access.

MQIA_MAX_LOCAL_LOCKS
Buffer size for applications to manage concurrent queue access.

MQIA_MAX_MSG_LENGTH
Maximum message length.

MQIA_MAX_Q_DEPTH
Maximum number of messages allowed on queue.

MQIA_MAX_Q_TRIGGERS
Maximum number of concurrent trigger instances for a particular
queue.

MQIA_MONITORING_Q
Queue monitoring setting.

MQIA_PROPERTY_CONTROL
Property control attribute.

MQIA_Q_DEPTH_HIGH_EVENT
Control attribute for queue depth high events.

MQIA_Q_DEPTH_HIGH_LIMIT
High limit for queue depth.

MQIA_Q_DEPTH_LOW_EVENT
Control attribute for queue depth low events.

Inquire Queue

Chapter 8. Programmable system management 329

MQIA_Q_DEPTH_LOW_LIMIT
Low limit for queue depth.

MQIA_Q_DEPTH_MAX_EVENT
Control attribute for queue depth max events.

MQCA_Q_NAME
Queue name.

MQIA_Q_SERVICE_INTERVAL
Limit for queue service interval.

MQIA_Q_SERVICE_INTERVAL_EVENT
Control attribute for queue service interval events.

MQIA_Q_TYPE
Queue type.

MQCA_Q_DESC
Queue description.

MQIA_Q_USERS
Maximum number of active opens to any particular queue.

MQCA_REMOTE_Q_NAME
Name of remote queue as known locally on the remote queue
manager.

MQCA_REMOTE_Q_MGR_NAME
Name of remote queue manager.

MQIA_SHAREABILITY
Whether queue can be shared.

MQIA_STATISTICS_Q
Queue statistics setting.

MQCA_TRIGGER_CHANNEL_NAME
Channel name for MCA trigger process.

MQIA_TRIGGER_CONTROL
Trigger control.

MQCA_TRIGGER_DATA
Trigger data.

MQCA_TRIGGER_PROGRAM_NAME
Program name for trigger process.

MQIA_TRIGGER_RESTART
Indicator for the reactivation of a trigger process.

MQCA_TRIGGER_TERM_ID
Terminal identifier for trigger process.

MQCA_TRIGGER_TRANS_ID
Transaction identifier for trigger process.

MQIA_TRIGGER_TYPE
Trigger type.

MQIA_USAGE
Usage.

MQCA_XMIT_Q_NAME
Transmission queue name.

Inquire Queue

330 WebSphere MQ for z/VSE System Management Guide

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in QAttrs except MQCA_Q_NAME. Use this
to restrict the output from the command by specifying a filter condition.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Inquire Queue

Chapter 8. Programmable system management 331

Inquire Queue Manager

The Inquire Queue Manager (MQCMD_INQUIRE_Q_MGR) command inquires
about the attributes of a queue manager.

This PCF is supported on all platforms.

Required parameters:

None

Optional parameters:

QMgrAttrs

The Inquire Queue Manager command, if successful, generates a data response.
For details of the Inquire Queue Manager response, refer to “Data responses to
commands” on page 381.

Optional parameters

QMgrAttrs (MQCFIL)
Queue manager attributes (parameter identifier:
MQIACF_Q_MGR_ATTRS).

The attribute list may specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of:

MQIA_ACCOUNTING_CONN_OVERRIDE
Accounting connection override setting.

MQIA_ACCOUNTING_INTERVAL
Accounting message interval.

MQIA_ACCOUNTING_MQI
MQI Accounting setting.

MQIA_ACCOUNTING_Q
Default queue accounting setting.

MQCA_ALTERATION_DATE
Date at which the definition was last altered.

MQCA_ALTERATION_TIME
Time at which the definition was last altered.

MQCA_Q_MGR_IDENTIFIER
Internally generated unique queue manager name.

MQIA_AUTHORITY_EVENT
Control attribute for authority events.

MQIA_BATCH_INTERFACE_AUTO
Indicator for the automatic activation of the batch interface.

MQCA_BATCH_INTERFACE_ID
Batch interface identifier.

Inquire Queue Manager

332 WebSphere MQ for z/VSE System Management Guide

MQIA_CHANNEL_AUTO_DEF
Controls whether receiver and server-connection channels can be
auto-defined.

MQIA_CHANNEL_AUTO_DEF_EVENT
Controls whether channel auto-definition events are generated.

MQIA_COMMAND_EVENT
Controls attribute for command events.

MQIA_CONFIGURATION_EVENT
Controls attribute for configuration events.

MQIA_MAX_PROPERTIES_LENGTH
Maximum properties length.

MQIA_MONITORING_CHANNEL
Default channel monitoring setting.

MQIA_MONITORING_Q
Default queue monitoring setting.

MQIA_SSL_EVENT
Controls attribute for SSL events.

MQIA_SSL_RESET_COUNT
SSL key reset count.

MQIA_STATISTICS_CHANNEL
Default channel statistics setting.

MQIA_STATISTICS_INTERVAL
Statistics message interval.

MQIA_STATISTICS_MQI
MQI Statistics setting.

MQIA_STATISTICS_Q
Default queue statistics setting.

MQCA_CHANNEL_AUTO_DEF_EXIT
Channel auto-definition exit name.

MQIA_CODED_CHAR_SET_ID
Coded character set identifier.

MQCA_COMMAND_INPUT_Q_NAME
System command input queue name.

MQCA_COMMAND_REPLY_Q_NAME
WebSphere MQ command reply queue.

MQIA_CMD_SERVER_AUTO
Indicator for the automatic activation of the PCF command server.

MQIA_CMD_SERVER_CONVERT_MSG
Indicator for the data conversion of PCF messages.

MQIA_CMD_SERVER_DLQ_MSG
Indicator for the storage of undeliverable PCF reply messages to
the system dead letter queue.

MQIA_COMMAND_LEVEL
Command level supported by queue manager.

Inquire Queue Manager

Chapter 8. Programmable system management 333

MQCA_DEAD_LETTER_Q_NAME
Name of dead-letter queue.

MQIA_DIST_LISTS
Distribution list support.

MQIA_INHIBIT_EVENT
Control attribute for inhibit events.

MQIA_LISTENER_PORT_NUMBER
Port number for TCP/IP Listener process.

MQIA_LOCAL_EVENT
Control attribute for local events.

MQIA_MAX_GLOBAL_LOCKS
Buffer size for queue manager to manage concurrent queue access.

MQIA_MAX_HANDLES
Maximum number of handles.

MQIA_MAX_LOCAL_LOCKS
Buffer size for applications to manage concurrent queue access.

MQIA_MAX_MSG_LENGTH
Maximum message length.

MQIA_MAX_OPEN_Q
Maximum number of concurrently open queues

MQIA_MAX_Q_DEPTH
Maximum queue depth.

MQIA_PLATFORM
Platform on which the queue manager resides.

MQCA_Q_MGR_DESC
Queue manager description.

MQCA_Q_MGR_NAME
Name of local queue manager.

MQIA_Q_USERS
Maximum number of active opens to any particular queue.

MQIA_REMOTE_EVENT
Control attribute for remote events.

MQIA_START_STOP_EVENT
Control attribute for start stop events.

MQIA_PERFORMANCE_EVENT
Control attribute for performance events.

MQIA_MONITOR_INTERVAL
Queue manager housekeeping process interval.

MQCA_MONITOR_Q_NAME
MQI monitor queue name.

MQCA_SSL_KEY_LIBRARY
SSL key library name.

MQCA_SSL_KEY_MEMBER
SSL key member name.

Inquire Queue Manager

334 WebSphere MQ for z/VSE System Management Guide

MQIA_SYNCPOINT
Syncpoint availability.

MQCA_SYSTEM_LOG_Q_NAME
System log queue name.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Inquire Queue Names

The Inquire Queue Names (MQCMD_INQUIRE_Q_NAMES) command inquires a
list of queue names that match the generic queue name, and the optional queue
type specified.

This PCF is supported on all platforms.

Required parameters:

QName

Optional parameters:

QType

The Inquire Queue Names command, if successful, generates a data response. For
details of the Inquire Queue Names response, refer to “Data responses to
commands” on page 381.

Inquire Queue Manager

Chapter 8. Programmable system management 335

Required parameters

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

Generic queue names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects
having names that start with the selected character string. An asterisk on
its own matches all possible names.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Optional parameters

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

If present, this parameter limits the queue names returned to queues of the
specified type. If this parameter is not present, queues of all types are
eligible. The value may be:

MQQT_ALL
All queue types.

MQQT_LOCAL
Local queue.

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

Inquire Queue Names

336 WebSphere MQ for z/VSE System Management Guide

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Inquire Queue Status

The Inquire Queue Status (MQCMD_INQUIRE_Q_STATUS) command inquires
about the status of a local WebSphere MQ queue. You must specify the name of a
local queue for which you want to receive status information.

Required parameters:

QName

Optional parameters:

IntegerFilterCommand, OpenType, QstatusAttrs, StatusType,
StringFilterCommand,

Required parameters

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

Generic queue names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all queues
having names that start with the selected character string. An asterisk on
its own matches all possible names.

The queue name is always returned, regardless of the attributes requested.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Optional parameters

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in QStatusAttrs except MQIACF_ALL,
MQIACF_MONITORING, and MQIACF_Q_TIME_INDICATOR. Use this to
restrict the output from the command by specifying a filter condition.

OpenType (MQCFIN)
Queue status open type (parameter identifier: MQIACF_OPEN_TYPE). It is
always returned, regardless of the queue instance attributes requested.

The value can be:

MQQSOT_ALL
Selects status for queues that are open with any type of access.

MQQSOT_INPUT
Selects status for queues that are open for input.

MQQSOT_OUTPUT
Selects status for queues that are open for output.

The default value if this parameter if not specified is MQQSOT_ALL.

Inquire Queue Names

Chapter 8. Programmable system management 337

QStatusAttrs (MQCFIL)
Queue status attributes (parameter identifier:
MQIACF_Q_STATUS_ATTRS). The attribute list can specify the following
on its own (this is the default value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:
v Where StatusType is MQIACF_Q_STATUS:

MQCA_Q_NAME
Queue name.

MQCACF_LAST_GET_DATE
Date of the last message successfully destructively read from the
queue.

MQCACF_LAST_GET_TIME
Time of the last message successfully destructively read from the
queue.

MQCACF_LAST_PUT_DATE
Date of the last message successfully put to the queue.

MQCACF_LAST_PUT_TIME
Time of the last message successfully put to the queue.

MQIA_CURRENT_Q_DEPTH
The current number of messages on the queue.

MQIA_MONITORING_Q
Current level of monitoring data collection.

MQIA_OPEN_INPUT_COUNT
The number of handles that are currently open for input for the
queueThis does not include handles that are open for browse.

MQIA_OPEN_OUTPUT_COUNT
The number of handles that are currently open for output for the
queue.

MQIACF_HANDLE_STATE
Whether an API call is in progress.

MQIACF_MONITORING
All of the queue status monitoring attributes. These are:
– MQCACF_LAST_GET_DATE
– MQCACF_LAST_GET_TIME
– MQCACF_LAST_PUT_DATE
– MQCACF_LAST_PUT_TIME
– MQIA_MONITORING_Q
– MQIACF_OLDEST_MSG_AGE
– MQIACF_Q_TIME_INDICATOR

MQIACF_OLDEST_MSG_AGE
Age of oldest message on the queue.

MQIACF_Q_TIME_INDICATOR
Indicator of the time that messages remain on the queue.

MQIACF_UNCOMMITTED_MSGS
Whether there are uncommitted messages on the queue.

Inquire Queue Names

338 WebSphere MQ for z/VSE System Management Guide

v Where StatusType is MQIACF_Q_HANDLE:

MQCA_Q_NAME
Queue name.

MQCACF_APPL_TAG
This is a string containing the tag of the application connected to
the queue manager.

MQCACF_TASK_NUMBER
CICS task number.

MQCACF_TRANSACTION_ID
CICS transaction identifier.

MQCACF_USER_IDENTIFIER
The username of the application that has opened the specified
queue.

MQCACH_CHANNEL_NAME
The name of the channel that has the queue open, if any.

MQCACH_CONNECTION_NAME
The connection name of the channel that has the queue open, if
any.

MQIA_APPL_TYPE
The type of application that has the queue open.

MQIACF_OPEN_BROWSE
Open browse.

MQIACF_OPEN_INPUT_TYPE
Open input type.

MQIACF_OPEN_INQUIRE
Open inquire.

MQIACF_OPEN_OPTIONS
The options used to open the queue.

If this parameter is requested, the following parameter structures
are also returned:
– OpenBrowse
– OpenInputType
– OpenInquire
– OpenOutput
– OpenSet

MQIACF_OPEN_OUTPUT
Open output.

MQIACF_OPEN_SET
Open set.

MQIACF_UOW_TYPE
Type of external unit of recovery identifier as seen by the queue
manager.

StatusType (MQCFIN)
Queue status type (parameter identifier: MQIACF_Q_STATUS_TYPE).

Specifies the type of status information required. The value can be:

Inquire Queue Names

Chapter 8. Programmable system management 339

MQIACF_Q_STATUS
Selects status information relating to queues.

MQIACF_Q_HANDLE
Selects status information relating to the handles that are accessing
the queues.

The default value, if this parameter is not specified, is
MQIACF_Q_STATUS.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in QStatusAttrs except MQCA_Q_NAME.
Use this to restrict the output from the command by specifying a filter
condition.

Error codes

In addition to the values for any command shown in “Error codes applicable to all
commands” on page 241, for this command the following may be returned in the
response format header:
v Reason (MQLONG)

The value can be:
MQRCCF_CFIL_COUNT_ERROR

Count of parameter values not valid.
MQRCCF_CFIL_DUPLICATE_VALUE

Duplicate parameter.
MQRCCF_CFIL_LENGTH_ERROR

Structure length not valid.
MQRCCF_CFIL_PARM_ID_ERROR

Parameter identifier is not valid.
MQRCCF_CFIN_DUPLICATE_PARM

Duplicate parameter.
MQRCCF_CFIN_LENGTH_ERROR

Structure length not valid.
MQRCCF_CFIN_PARM_ID_ERROR

Parameter identifier is not valid.
MQRCCF_CFST_DUPLICATE_PARM

Duplicate parameter.
MQRCCF_CFST_LENGTH_ERROR

Structure length not valid.
MQRCCF_CFST_PARM_ID_ERROR

Parameter identifier is not valid.
MQRCCF_CFST_STRING_LENGTH_ERR

String length not valid.
MQRCCF_PARM_COUNT_TOO_BIG

Parameter count too big.
MQRCCF_PARM_COUNT_TOO_SMALL

Parameter count too small.
MQRCCF_Q_STATUS_NOT_FOUND

No status available for specified queue.
MQRCCF_Q_TYPE_ERROR

Queue type not valid.
MQRC_SELECTOR_ERROR

Attribute selector not valid.

Inquire Queue Names

340 WebSphere MQ for z/VSE System Management Guide

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRC_UNKNOWN_OBJECT_NAME
Unknown object name.

MQRC_UNKNOWN_Q_NAME
Unknown queue name.

Inquire Service

The Inquire Service (MQCMD_INQUIRE_SERVICE) command inquires about the
attributes of existing WebSphere MQ services.

Required parameters:

ServiceName

Optional parameters:

IntegerFilterCommand, ServiceAttrs, StringFilterCommand

Required parameters

ServiceName (MQCFST)
Service name (parameter identifier: MQCA_SERVICE_NAME).

This is the name of the service whose attributes are required. Generic
service names are supported. A generic name is a character string followed
by an asterisk (*), for example ABC*, and it selects all services having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The service name is always returned regardless of the attributes requested.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Optional parameters

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ServiceAttrs except MQIACF_ALL. Use
this to restrict the output from the command by specifying a filter
condition.

ServiceAttrs (MQCFIL)
Service attributes (parameter identifier: MQIACF_SERVICE_ATTRS).

The attribute list might specify this attribute on its own (this is the default
value if the parameter is not specified):

MQIACF_ALL
All attributes.

Or it can specify one or more of these attributes:
MQCA_ALTERATION_DATE

Date on which the definition was last altered.
MQCA_ALTERATION_TIME

Time at which the definition was last altered.
MQCA_SERVICE_DESC

Description of service definition.
MQCA_SERVICE_NAME

Name of service definition.

Inquire Queue Names

Chapter 8. Programmable system management 341

MQCA_SERVICE_START_ARGS
Arguments to be passed to the service program.

MQCA_SERVICE_START_COMMAND
CICS transaction to start the service.

MQCA_SERVICE_STOP_ARGS
Arguments to be passed to the service program.

MQIA_SERVICE_CONTROL
When the queue manager should start the service.

MQIA_SERVICE_TYPE
Mode in which the service is to run.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in ServiceAttrs except
MQCA_SERVICE_NAME. Use this to restrict the output from the
command by specifying a filter condition.

Inquire Service Status

The Inquire Service Status (MQCMD_INQUIRE_SERVICE_STATUS) command
inquires about the status of one or more WebSphere MQ service instances.

Required parameters:

ServiceName

Optional parameters:

IntegerFilterCommand, ServiceStatusAttrs, StringFilterCommand

Required parameters

ServiceName (MQCFST)
Service name (parameter identifier: MQCACH_SERVICE_NAME).

Generic service names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all services
having names that start with the selected character string. An asterisk on
its own matches all possible names.

The service name is always returned, regardless of the attributes requested.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Optional parameters

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ServiceStatusAttrs except
MQIACF_ALL. Use this to restrict the output from the command by
specifying a filter condition.

ServiceStatusAttrs (MQCFIL)
Service status attributes (parameter identifier:
MQIACF_SERVICE_STATUS_ATTRS).

The attribute list can specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

Or it can specify one or more of these attributes:

Inquire Service

342 WebSphere MQ for z/VSE System Management Guide

MQCA_SERVICE_DESC
Description of service definition.

MQCA_SERVICE_NAME
Name of service definition.

MQCA_SERVICE_START_ARGS
The arguments to pass to the service program.

MQCA_SERVICE_START_COMMAND
CICS transaction code to start the service.

MQCA_SERVICE_STOP_ARGS
The arguments to pass to the stop command to stop the service.

MQCA_SERVICE_STOP_COMMAND
The name of the program to run to stop the service.

MQCACF_SERVICE_START_DATE
The date on which the service was started.

MQCACF_SERVICE_START_TIME
The time at which the service was started.

MQIA_SERVICE_CONTROL
How the service is to be started and stopped.

MQIA_SERVICE_TYPE
The mode in which the service is to run.

MQIACF_PROCESS_ID
The CICS task number under which this service is executing.
WebSphere MQ for z/VSE always returns 0 for service process ID.

MQIACF_SERVICE_STATUS
Current status of the service provided service type is SERVER.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any
string type parameter allowed in ServiceStatusAttrs except
MQCA_SERVICE_NAME. Use this to restrict the output from the
command by specifying a filter condition.

Ping Queue Manager

The Ping Queue Manager (MQCMD_PING_Q_MGR) command tests whether the
queue manager and its command server is responsive to commands. If the queue
manager is responding a positive reply is returned.

This PCF is supported on all platforms.

Required parameters:

None

Optional parameters:

None

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

Inquire Service Status

Chapter 8. Programmable system management 343

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

Reset Channel

The Reset Channel (MQCMD_RESET_CHANNEL) command resets the message
sequence number for an WebSphere MQ channel with, optionally, a specified
sequence number to be used the next time that the channel is started.

This command can be issued to a channel of type MQCHT_SENDER or
MQCHT_RECEIVER. However, if it is issued to a sender (MQCHT_SENDER)
channel, the value at both ends (issuing end and receiver end), is reset when the
channel is next initiated or resynchronized. The value at both ends is reset to be
equal.

If the command is issued to a receiver (MQCHT_RECEIVER) channel, the value at
the Sender end is not reset as well; this must be done separately if necessary.

This PCF is supported on all platforms.

Required parameters:

ChannelName

Optional parameters:

MsgSeqNumber

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be reset. The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

Optional parameters

MsgSeqNumber (MQCFIN)
Message sequence number (parameter identifier:
MQIACH_MSG_SEQUENCE_NUMBER).

Specifies the new message sequence number.

The value may be in the range 1-999 999 999. The default value is one.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241', for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

Ping Queue Manager

344 WebSphere MQ for z/VSE System Management Guide

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_MSG_SEQ_NUMBER_ERROR
Message sequence number not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Set Channel Authentication Record

The Set Channel Authentication Record (MQCMD_SET_CHLAUTH_REC)
command sets the allowed partner details and mappings to MCAUSER for a
channel or set of channels.

Required parameters:

ProfileName

Optional parameters:

Action, Address, AddrList, ClntUser, Description, MCAUser, QMName, Type,
UserList, UserSrc, Warn

Required parameters

ProfileName (MQCFST)
The name of the channel or set of channels for which you are setting
channel authentication configuration (parameter identifier:
MQCACH_CHANNEL_NAME). You can use a trailing asterisk (*) as a
wildcard to specify a set of channels. If you set Type to
MQCAUT_BLOCKADDR, you must set the generic channel name to a
single asterisk, which matches all channel names.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Reset Channel

Chapter 8. Programmable system management 345

|

|
|
|

|

|

|

|
|

|

|
|
|
|
|
|
|

|

Optional parameters

This table shows which parameters are valid for each value of Action:

Table 9. Action

Parameter MQACT_ADD MQACT_REMOVE MQACT_REMOVEALL

ProfileName Y Y Y

Type Y Y Y

Action Y Y Y

Address Y Y

Addrlist Y Y

ClntUser Y Y

MCAUser Y

QMName Y Y

UserList Y Y

UserSrc Y

Warn Y

Description Y

Action (MQCFIN)
The action to perform on the channel authentication record (parameter
identifier: MQIACF_ACTION). The following values are valid:
MQACT_ADD

Add the specified configuration to a channel authentication record.
This is the default value. For types MQCAUT_ADDRESSMAP,
MQCAUT_USERMAP and MQCAUT_QMGRMAP, if the specified
configuration exists, the command fails. For types
MQCAUT_BLOCKUSER and MQCAUT_BLOCKADDR, the
configuration is added to the list.

MQACT_REPLACE
Replace the current configuration of a channel authentication
record. For types MQCAUT_ADDRESSMAP, MQCAUT_USERMAP
and MQCAUT_QMGRMAP, if the specified configuration exists, it
is replaced with the new configuration. If it does not exist it is
added. For types MQCAUT_BLOCKUSER and
MQCAUT_BLOCKADDR, the configuration specified replaces the
current list, even if the current list is empty. If you replace the
current list with an empty list, this acts like
MQACT_REMOVEALL.

MQACT_REMOVE
Remove the specified configuration from the channel
authentication records. If the configuration does not exist the
command fails. If you remove the last entry from a list, this acts
like MQACT_REMOVEALL.

MQACT_REMOVEALL
Remove all members of the list and thus the whole record (for
MQCAUT_BLOCKADDR and MQCAUT_BLOCKUSER) or all
previously defined mappings (for MQCAUT_ADDRESSMAP,
MQCAUT_QMGRMAP and MQCAUT_USERMAP) from the
channel authentication records. This option cannot be combined
with specific values supplied in AddrList, UserList, Address,

Set Channel Authentication Record

346 WebSphere MQ for z/VSE System Management Guide

|

|

||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QMName or ClntUser. If the specified type has no current
configuration the command still succeeds.

Address (MQCFST)
The filter to be used to compare with the IP address of the partner queue
manager or client at the other end of the channel (parameter identifier:
MQCACH_CONNECTION_NAME). This parameter is mandatory when
Type is MQCAUT_ADDESSMAP and is also valid when Type is
MQCAUT_USERMAP, or MQCAUT_QMGRMAP and Action is
MQACT_ADD, MQACT_REPLACE, or MQACT_REMOVE. You can define
more than one channel authentication object with the same main identity,
for example the same queue manager name, with different addresses. The
maximum length of the string is MQ_CONN_NAME_LENGTH.

AddrList (MQCFSL)
A list of up to 56 generic IP addresses which are banned from accessing
this queue manager on any channel (parameter identifier:
MQCACH_CONNECTION_NAME_LIST).

This parameter is only valid when Type is MQCAUT_BLOCKADDR. The
maximum length of each address is MQ_CONN_NAME_LENGTH.

ClntUser (MQCFST)
The client asserted user ID to be mapped to a new user ID or blocked
(parameter identifier: MQCACH_CLIENT_USER_ID).

This parameter is valid only when Type is MQCAUT_BLOCKADDR.

The maximum length of the string is MQ_MCA_USER_ID_LENGTH.

Description (MQCFST)
Provides descriptive information about the channel authentication record,
which is displayed when you issue the Inquire Channel Authentication
Records command (parameter identifier: MQCA_CHLAUTH_DESC).

This parameter must contain only displayable characters. In a DBCS
installation, it can contain DBCS characters. The maximum length of the
string is MQ_CHLAUTH_DESC_LENGTH.

Use characters from the coded character set identifier (CCSID) for this
queue manager. Other characters might be translated incorrectly if the
information is sent to another queue manager.

MCAUser (MQCFST)
The user identifier to be used when the inbound connection matches the IP
address, client asserted user ID or remote queue manager name supplied
(parameter identifier: MQCACH_MCA_USER_ID). This parameter is
mandatory when UserSrc is MQUSRC_MAP and is valid when Type is
MQCAUT_ADDRESSMAP, MQCAUT_USERMAP, or
MQCAUT_QMGRMAP. This parameter is valid only when Action is
MQACT_ADD or MQACT_REPLACE. The maximum length of the string
is MQ_MCA_USER_ID_LENGTH.

QMName (MQCFST)
The name of the remote partner queue manager, or pattern that matches a
set of queue manager names, to be mapped to a user ID or blocked
(parameter identifier: MQCA_REMOTE_Q_MGR_NAME). This parameter
is valid only when Type is MQCAUT_QMGRMAP The maximum length of
the string is MQ_Q_MGR_NAME_LENGTH.

Type (MQCFIN)
The type of channel authentication record for which to set allowed partner

Set Channel Authentication Record

Chapter 8. Programmable system management 347

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

details or mappings to MCAUSER (parameter identifier:
MQIACF_CHLAUTH_TYPE). The following values are valid:

MQCAUT_BLOCKUSER
This channel authentication record prevents a specified user or
users from connecting. The MQCAUT_BLOCKUSER parameter
must be accompanied by a UserList.

MQCAUT_BLOCKADDR
This channel authentication record prevents connections from a
specified IP address or addresses. The MQCAUT_BLOCKADDR
parameter must be accompanied by an AddrList.

MQCAUT_ADDRESSMAP
This channel authentication record maps IP addresses to
MCAUSER values. The MQCAUT_ADDRESSMAP parameter must
be accompanied by an Address.

MQCAUT_USERMAP
This channel authentication record maps asserted user IDs to
MCAUSER values. The MQCAUT_USERMAP parameter must be
accompanied by a ClntUser.

MQCAUT_QMGRMAP
This channel authentication record maps remote queue manager
names to MCAUSER values. The MQCAUT_QMGRMAP
parameter must be accompanied by a QMName.

UserList (MQCFSL)
A list of up to 100 user IDs which are banned from using this channel or
set of channels (parameter identifier: MQCACH_MCA_USER_ID_LIST).

This parameter is only valid when TYPE is MQCAUT_BLOCKUSER. The
maximum length of each user ID is MQ_MCA_USER_ID_LENGTH .

UserSrc (MQCFIN)
The source of the user ID to be used for MCAUSER at run time (parameter
identifier: MQIACH_USER_SOURCE). The following values are valid:

MQUSRC_MAP
Inbound connections that match this mapping use the user ID
specified in the MCAUser attribute.

MQUSRC_NOACCESS
Inbound connections that match this mapping have no access to
the queue manager and the channel ends immediately.

MQUSRC_CHANNEL
Inbound connections that match this mapping use the flowed user
ID or any user defined on the channel object in the MCAUSER
field. Note that Warn and MQUSRC_CHANNEL, or
MQUSRC_MAP are incompatible. This is because channel access is
never blocked in these cases, so there is never a reason to generate
a warning.

Warn (MQCFIN)
Indicates whether this record operates in warning mode (parameter
identifier: MQIACH_WARNING).

Set Channel Authentication Record

348 WebSphere MQ for z/VSE System Management Guide

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

MQWARN_NO
This record does not operate in warning mode. Any inbound
connection that matches this record is blocked. This is the default
value.

MQWARN_YES
This record operates in warning mode. Any inbound connection
that matches this record and would therefore be blocked is allowed
access. An error message is written and, if events are configured,
an event message is created showing the details of what would
have been blocked. The connection is allowed to continue. An
attempt is made to find another record that is set to WARN(NO) to
set the credentials for the inbound channel.

Error codes

This command might return the following error codes in the response format
header:

Reason (MQLONG)

The value can be:
MQRCCF_CHLAUTH_TYPE_ERROR

Channel authentication record type not valid.
MQRCCF_CHLAUTH_ACTION_ERROR

Channel authentication record action not valid.
MQRCCF_CHLAUTH_USERSRC_ERROR

Channel authentication record user source not valid.
MQRCCF_WRONG_CHLAUTH_TYPE

Parameter not allowed for this channel authentication record type.
MQRCCF_CHLAUTH_ALREADY_EXISTS

Channel authentication record already exists

Start Channel

The Start Channel (MQCMD_START_CHANNEL) command starts an WebSphere
MQ channel.

This command can be issued to a channel of type MQCHT_SENDER or
MQCHT_RECEIVER. Under WebSphere MQ for z/VSE, starting a channel this
way makes it available for use.

This PCF is supported on all platforms.

Required parameters:

ChannelName

Optional parameters:

None

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be started. The maximum length of the string
is MQ_CHANNEL_NAME_LENGTH.

Set Channel Authentication Record

Chapter 8. Programmable system management 349

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_IN_USE
Channel in use.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Start Channel Listener

The Start Channel Listener (MQCMD_START_CHANNEL_LISTENER) command
starts a WebSphere MQ listener provided the current status is STOPPED.

Required parameters:

ListenerName

Optional parameters:

None

Required parameters

ListenerName (MQCFST)
Listener name (parameter identifier: MQCACH_LISTENER_NAME).

The name of the listener definition to be started.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Start Channel

350 WebSphere MQ for z/VSE System Management Guide

Start Service

The Start Service (MQCMD_START_SERVICE) command starts an existing
WebSphere MQ service definition.

Required parameters:

ServiceName

Optional parameters:

None

Required parameters

ServiceName (MQCFST)
Service name (parameter identifier: MQCA_SERVICE_NAME).

This is the name of the service definition to be started.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Stop Channel

The Stop Channel (MQCMD_STOP_CHANNEL) command stops an WebSphere
MQ channel.

This command can be issued to a channel of any type supported by WebSphere
MQ for z/VSE.

This PCF is supported on all platforms.

Required parameters:

ChannelName

Optional parameters:

ChannelStatus, Quiesce

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be stopped. The maximum length of the string
is MQ_CHANNEL_NAME_LENGTH.

Optional parameters

ChannelStatus (MQCFIN)
The new state of the channel after the command is executed (parameter
identifier: MQIACH_CHANNEL_STATUS).

The value can be:

MQCHS_INACTIVE
Channel is inactive.

MQCHS_STOPPED
Channel is stopped. This is the default if nothing is specified.

Quiesce (MQCFIN)
Quiesce channel (parameter identifier: MQIACF_QUIESCE).

Start Service

Chapter 8. Programmable system management 351

Specifies whether the channel should be quiesced or stopped immediately.
If this parameter is not present the channel is quiesced. The value can be:

MQQO_YES
Quiesce the channel.

MQQO_NO
Do not quiesce the channel.

Under WebSphere MQ for z/VSE, the Quiesce parameter is
ignored.

Error codes

In addition to the values for any command shown in section “Error codes
applicable to all commands” on page 241, for this command the following may be
returned in the response format header:

Reason (MQLONG)

The value can be:

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_DISABLED
Channel disabled.

MQRCCF_CHANNEL_NOT_ACTIVE
Channel not active.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_QUIESCE_VALUE_ERROR
Quiesce value not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

Stop Channel

352 WebSphere MQ for z/VSE System Management Guide

Stop Channel Listener

The Stop Channel Listener (MQCMD_STOP_CHANNEL_LISTENER) command
stops a WebSphere MQ listener provided the current status is RUNNING.

Required parameters:

ListenerName

Optional parameters:

None

Required parameters

ListenerName (MQCFST)
Listener name (parameter identifier: MQCACH_LISTENER_NAME).

The name of the listener definition to be stopped.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Stop Connection

The Stop Connection (MQCMD_STOP_CONNECTION) command attempts to
break a connection between an application and the queue manager. There may be
circumstances in which the queue manager cannot implement this command.

Required parameters

ConnectionId

Optional parameters

None.

Required parameters

ConnectionId (MQCFBS)
Connection identifier (parameter identifier: MQBACF_CONNECTION_ID).

This is the unique connection identifier associated with an application that
is connected to the queue manager.

The length of the byte string is MQ_CONNECTION_ID_LENGTH.

Error codes

This command might return the following in the response format header, in
addition to the values applicable to all commands.

Reason (MQLONG)

The value can be:

MQRCCF_CONNECTION_ID_ERROR
Connection identifier not valid.

Stop Channel Listener

Chapter 8. Programmable system management 353

Stop Service

The Stop Service (MQCMD_STOP_SERVICE) command stops an existing
WebSphere MQ service definition of type SERVER that is running or service
definition of type COMMAND.

Required parameters:

ServiceName

Optional parameters:

None

Required parameters

ServiceName (MQCFST)
Service name (parameter identifier: MQCA_SERVICE_NAME).

This is the name of the service definition to be stopped.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Change Subscription

The Change Subscription (MQCMD_CHANGE_SUBSCRIPTION) command
changes the specified attributes of an existing WebSphere MQ subscription. For any
optional parameters that are omitted, the value does not change.

Required parameters:

SubName or SubId

Optional parameters:

TopicString, TopicObject

Required parameters

One of:

SubName (MQCFST)
The name of the subscription definition to be changed (parameter
identifier: MQCACF_SUB_NAME). The maximum length of the string is
MQ_SUB_NAME_LENGTH.

SubId (MQCFBS)
The unique identifier of the subscription definition to be changed
(parameter identifier: MQBACF_SUB_ID). The maximum length of the
string is MQ_CORREL_ID_LENGTH.

Optional parameters

Destination (MQCFST)
Destination (parameter identifier: MQCACF_DESTINATION).

Specifies the name of the alias, local, remote, or cluster queue to which
messages for this subscription are put.

DestinationClass (MQCFIN)
Destination class (parameter identifier: MQIACF_DESTINATION_CLASS).

Stop Service

354 WebSphere MQ for z/VSE System Management Guide

|

|
|
|

|

|

|

|

|

|

|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

Whether the destination is managed.

Specify either:
MQDC_MANAGED

The destination is managed.
MQDC_PROVIDED

The destination queue is as specified in the Destination field.

DestinationCorrelId (MQCFBS)
Destination correlation identifier (parameter identifier:
MQBACF_DESTINATION_CORREL_ID).

Provides a correlation identifier that is placed in the CorrelId field of the
message descriptor for all the messages sent to this subscription. The
maximum length is MQ_CORREL_ID_LENGTH.

DestinationQueueManager (MQCFST)
Destination queue manager (parameter identifier:
MQCACF_DESTINATION_Q_MGR). If specified it is the name of the local
queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Expiry (MQCFIN)
The time, in tenths of a second, at which a subscription expires after its
creation date and time (parameter identifier: MQIACF_EXPIRY).

The default value of unlimited means that the subscription never expires.

After a subscription has expired it becomes eligible to be discarded by the
queue manager and receives no further publications.

PublishedAccountingToken (MQCFBS)
Value of the accounting token used in the AccountingToken field of the
message descriptor (parameter identifier:
MQBACF_ACCOUNTING_TOKEN). The maximum length of the string is
MQ_ACCOUNTING_TOKEN_LENGTH.

PublishedApplicationidentifier (MQCFST)
Value of the application identity data used in the ApplIdentityData field of
the message descriptor (parameter identifier:
MQCACF_APPL_IDENTITY_DATA. The maximum length of the string is
MQ_APPL_IDENTITY_DATA_LENGTH.

PublishPriority (MQCFIN)
The priority of the message sent to this subscription (parameter identifier:
MQIACF_PUB_PRIORITY). The value can be:

MQPRI_PRIORITY_AS_PUBLISHED
Priority of messages sent to this subscription is taken from that
supplied to the published message.

This is the supplied default value.

MQPRI_PRIORITY_AS_QDEF
Priority of messages sent to this subscription is determined by the
default priority of the queue defined as a destination.

0-9 An integer value providing an explicit priority for messages sent to
this subscription.

Value ignored in z/VSE (0 always returned on inquiry).

Change Subscription

Chapter 8. Programmable system management 355

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

||
|

|

PublishSubscribeProperties (MQCFIN)
Specifies how publish/suscribe related message properties are added to
messages sent to this subscription (parameter identifier:
MQIACF_PUBSUB_PROPERTIES).

The value can be:

MQPSPROP_MSGPROP
Publish subscribe properties are added as message properties.

MQPSPROP_NONE
Do not add publish/suscribe properties to the messages. This is the
supplied default value.

Requestonly (MQCFIN)
Indicates whether the subscriber polls for updates using the MQSUBRQ
API call, or whether all publications are delivered to this subscription
(parameter identifier: MQIACF_REQUEST_ONLY). The value can be:
MQRU_PUBLISH_ALL

All publications on the topic are delivered to this subscription.
MQRU_PUBLISH_ON_REQUEST

Publications are only delivered to this subscription in response to
an MQSUBRQ API call.

SubscriptionScope (MQCFIN)
Determines whether this subscription is passed to other queue managers in
the network (parameter identifier: MQIACF_SUBSCRIPTION_SCOPE). The
value can be:
MQTSCOPE_ALL

The subscription is forwarded to all queue managers directly
connected through a publish/subscribe collective or hierarchy.

MQTSCOPE_QMGR
The subscription only forwards messages published on the topic
within this queue manager.

In WebSphere MQ for z/VSE, although MQTSCOPE_ALL is accepted it is
treated as MQTSCOPE_QMGR. Only local queue manager is supported.
On inquiry MQTSCOPE_QMGR is always returned.

SubscriptionUser (MQCFST)
The userid that 'owns' this subscription. This is either the userid associated
with the creator of the subscription, or, if subscription takeover is
permitted, the userid which last tookover the subscription. (parameter
identifier: MQCACF_SUB_USER_ID). The maximum length of the string is
MQ_USER_ID_LENGTH.

TopicString (MQCFST)
The resolved topic string (parameter identifier:
MQCACF_TOPIC_STRING). The maximum length of the string is
MQ_TOPIC_STR_LENGTH.

VariableUser (MQCFIN)
Specifies whether a user other than the one who created the subscription,
that is, the user shown in SubscriptionUser can take over the ownership of
the subscription (parameter identifier: MQIACF_VARIABLE_USER_ID).

The value can be:
MQVU_ANY_USER

Any user can take over the ownership. This is the supplied default
value.

Change Subscription

356 WebSphere MQ for z/VSE System Management Guide

|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

MQVU_FIXED_USER
No other user can take over the ownership.

Copy Subscription

The Copy Subscription (MQCMD_COPY_SUBSCRIPTION) command creates a new
WebSphere MQ subscription, using, for attributes not specified in the command,
the attribute values of an existing subscription.

Required parameters:

FromSubscriptionName, ToSubscriptionName, SubName or SubId

Optional parameters:

CommandScope, Destination, DestinationClass, DestinationCorrelId,
DestinationQueueManager, Expiry, PublishedAccountingToken,
PublishedApplicationIdentifier, VariableUser

Required parameters

FromSubscriptionName (MQCFST)
The name of the subscription definition to be copied from (parameter
identifier: MQCACF_FROM_SUB_NAME).

The maximum length of the string is
MQ_SUBSCRIPTION_NAME_LENGTH.

ToSubscriptionName (MQCFST)
The name of the subscription to copy to (parameter identifier:
MQCACF_TO_SUBSCRIPTION_NAME). The maximum length of the
string is MQ_SUBSCRIPTION_NAME_LENGTH.

You require at least one of SubName or SubId.

SubName (MQCFST)
The name of the subscription definition to be changed (parameter
identifier: MQCACF_SUB_NAME). The maximum length of the string is
MQ_SUB_NAME_LENGTH.

SubId (MQCFBS)
The unique identifier of the subscription definition to be changed
(parameter identifier: MQBACF_SUB_ID). The maximum length of the
string is MQ_CORREL_ID_LENGTH.

Optional parameters

Destination (MQCFST)
Destination (parameter identifier: MQCACF_DESTINATION).

Specifies the name of the alias, local, remote, or cluster queue to which
messages for this subscription are put.

DestinationClass (MQCFIN)
Destination class (parameter identifier: MQIACF_DESTINATION_CLASS).

Whether the destination is managed.

Specify either:
MQDC_MANAGED

The destination is managed.

Change Subscription

Chapter 8. Programmable system management 357

|
|

|

|
|
|

|

|

|

|
|
|

|

|
|
|

|
|

|
|
|
|

|

|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|

|
|
|

MQDC_PROVIDED
The destination queue is as specified in the Destination field.

DestinationCorrelId (MQCFBS)
Destination correlation identifier (parameter identifier:
MQBACF_DESTINATION_CORREL_ID).

Provides a correlation identifier that is placed in the CorrelId field of the
message descriptor for all the messages sent to this subscription. The
maximum length is MQ_CORREL_ID_LENGTH.

DestinationQueueManager (MQCFST)
Destination queue manager (parameter identifier:
MQCACF_DESTINATION_Q_MGR). If specified it is the name of the local
queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Expiry (MQCFIN)
The time, in tenths of a second, at which a subscription expires after its
creation date and time (parameter identifier: MQIACF_EXPIRY).

The default value of unlimited means that the subscription never expires.

After a subscription has expired it becomes eligible to be discarded by the
queue manager and receives no further publications.

PublishedAccountingToken (MQCFBS)
Value of the accounting token used in the AccountingToken field of the
message descriptor (parameter identifier:
MQBACF_ACCOUNTING_TOKEN). The maximum length of the string is
MQ_ACCOUNTING_TOKEN_LENGTH.

PublishedApplicationidentifier (MQCFST)
Value of the application identity data used in the ApplIdentityData field of
the message descriptor (parameter identifier:
MQCACF_APPL_IDENTITY_DATA. The maximum length of the string is
MQ_APPL_IDENTITY_DATA_LENGTH.

PublishPriority (MQCFIN)
The priority of the message sent to this subscription (parameter identifier:
MQIACF_PUB_PRIORITY). The value can be:

MQPRI_PRIORITY_AS_PUBLISHED
Priority of messages sent to this subscription is taken from that
supplied to the published message.

This is the supplied default value.

MQPRI_PRIORITY_AS_QDEF
Priority of messages sent to this subscription is determined by the
default priority of the queue defined as a destination.

0-9 An integer value providing an explicit priority for messages sent to
this subscription.

Value ignored in z/VSE (0 always returned on inquiry).

PublishSubscribeProperties (MQCFIN)
Specifies how publish/suscribe related message properties are added to
messages sent to this subscription (parameter identifier:
MQIACF_PUBSUB_PROPERTIES).

The value can be:

Copy Subscription

358 WebSphere MQ for z/VSE System Management Guide

|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

||
|

|

|
|
|
|

|

MQPSPROP_MSGPROP
Publish subscribe properties are added as message properties.

MQPSPROP_NONE
Do not add publish/suscribe properties to the messages. This is the
supplied default value.

Requestonly (MQCFIN)
Indicates whether the subscriber polls for updates using the MQSUBRQ
API call, or whether all publications are delivered to this subscription
(parameter identifier: MQIACF_REQUEST_ONLY). The value can be:
MQRU_PUBLISH_ALL

All publications on the topic are delivered to this subscription.
MQRU_PUBLISH_ON_REQUEST

Publications are only delivered to this subscription in response to
an MQSUBRQ API call.

SubscriptionScope (MQCFIN)
Determines whether this subscription is passed to other queue managers in
the network (parameter identifier: MQIACF_SUBSCRIPTION_SCOPE). The
value can be:
MQTSCOPE_ALL

The subscription is forwarded to all queue managers directly
connected through a publish/subscribe collective or hierarchy.

MQTSCOPE_QMGR
The subscription only forwards messages published on the topic
within this queue manager.

In WebSphere MQ for z/VSE, although MQTSCOPE_ALL is accepted it is
treated as MQTSCOPE_QMGR. Only local queue manager is supported.
On inquiry MQTSCOPE_QMGR is always returned.

SubscriptionUser (MQCFST)
The userid that 'owns' this subscription. This is either the userid associated
with the creator of the subscription, or, if subscription takeover is
permitted, the userid which last tookover the subscription (parameter
identifier: MQCACF_SUB_USER_ID). The maximum length of the string is
MQ_USER_ID_LENGTH.

TopicString (MQCFST)
The resolved topic string (parameter identifier:
MQCACF_TOPIC_STRING). The maximum length of the string is
MQ_TOPIC_STR_LENGTH.

VariableUser (MQCFIN)
Specifies whether a user other than the one who created the subscription,
that is, the user shown in SubscriptionUser can take over the ownership of
the subscription (parameter identifier: MQIACF_VARIABLE_USER_ID).

The value can be:
MQVU_ANY_USER

Any user can take over the ownership. This is the supplied default
value.

MQVU_FIXED_USER
No other user can take over the ownership.

Copy Subscription

Chapter 8. Programmable system management 359

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

Create Subscription

The Create Subscription (MQCMD_CREATE_SUBSCRIPTION) command creates a
new WebSphere MQ administrative subscription so that existing applications can
participate in publish/suscribe application.

Required parameters:

SubName or SubId, TopicString or TopicObject

Optional parameters:

CommandScope, Destination, DestinationClass, DestinationCorrelId,
DestinationQueueManager, Expiry, PublishedAccountingToken,
PublishedApplicationIdentifier, VariableUser

Required parameters

You must provide the SubName.

SubName (MQCFST)
The name of the subscription definition to be changed (parameter
identifier: MQCACF_SUB_NAME). The maximum length of the string is
MQ_SUB_NAME_LENGTH.

You require at least one of TopicObject or TopicString.

TopicObject (MQCFST)
The name of a previously defined topic object from which is obtained the
topic name for the subscription (parameter identifier: MQCACF_TOPIC).
The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

TopicString (MQCFST)
The resolved topic string (parameter identifier: MQCA_TOPIC_STRING).
The maximum length of the string is MQ_TOPIC_STR_LENGTH (in z/VSE
is 256.)

Optional parameters

Destination (MQCFST)
Destination (parameter identifier: MQCACF_DESTINATION).

Specifies the name of the alias, local, remote, or cluster queue to which
messages for this subscription are put.

DestinationClass (MQCFIN)
Destination class (parameter identifier: MQIACF_DESTINATION_CLASS).

Whether the destination is managed.

Specify either:
MQDC_MANAGED

The destination is managed.
MQDC_PROVIDED

The destination queue is as specified in the Destination field.

DestinationCorrelId (MQCFBS)
Destination correlation identifier (parameter identifier:
MQBACF_DESTINATION_CORREL_ID).

Create Subscription

360 WebSphere MQ for z/VSE System Management Guide

|

|
|
|

|

|

|

|
|
|

|

|

|
|
|
|

|

|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|

Provides a correlation identifier that is placed in the CorrelId field of the
message descriptor for all the messages sent to this subscription. The
maximum length is MQ_CORREL_ID_LENGTH.

DestinationQueueManager (MQCFST)
Destination queue manager (parameter identifier:
MQCACF_DESTINATION_Q_MGR). If specified it is the name of the local
queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Expiry (MQCFIN)
The time, in tenths of a second, at which a subscription expires after its
creation date and time (parameter identifier: MQIACF_EXPIRY).

The default value of unlimited means that the subscription never expires.

After a subscription has expired it becomes eligible to be discarded by the
queue manager and receives no further publications.

PublishedAccountingToken (MQCFBS)
Value of the accounting token used in the AccountingToken field of the
message descriptor (parameter identifier:
MQBACF_ACCOUNTING_TOKEN). The maximum length of the string is
MQ_ACCOUNTING_TOKEN_LENGTH.

PublishedApplicationidentifier (MQCFST)
Value of the application identity data used in the ApplIdentityData field of
the message descriptor (parameter identifier:
MQCACF_APPL_IDENTITY_DATA. The maximum length of the string is
MQ_APPL_IDENTITY_DATA_LENGTH.

PublishPriority (MQCFIN)
The priority of the message sent to this subscription (parameter identifier:
MQIACF_PUB_PRIORITY). The value can be:

MQPRI_PRIORITY_AS_PUBLISHED
Priority of messages sent to this subscription is taken from that
supplied to the published message.

This is the supplied default value.

MQPRI_PRIORITY_AS_QDEF
Priority of messages sent to this subscription is determined by the
default priority of the queue defined as a destination.

0-9 An integer value providing an explicit priority for messages sent to
this subscription.

Value ignored in z/VSE (0 always returned on inquiry).

PublishSubscribeProperties (MQCFIN)
Specifies how publish/suscribe related message properties are added to
messages sent to this subscription (parameter identifier:
MQIACF_PUBSUB_PROPERTIES).

The value can be:

MQPSPROP_MSGPROP
Publish subscribe properties are added as message properties.

MQPSPROP_NONE
Do not add publish/suscribe properties to the messages. This is the
supplied default value.

Create Subscription

Chapter 8. Programmable system management 361

|
|
|

|
|
|
|

|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

||
|

|

|
|
|
|

|

|
|

|
|
|

Requestonly (MQCFIN)
Indicates whether the subscriber polls for updates using the MQSUBRQ
API call, or whether all publications are delivered to this subscription
(parameter identifier: MQIACF_REQUEST_ONLY). The value can be:
MQRU_PUBLISH_ALL

All publications on the topic are delivered to this subscription.
MQRU_PUBLISH_ON_REQUEST

Publications are only delivered to this subscription in response to
an MQSUBRQ API call.

SubscriptionScope (MQCFIN)
Determines whether this subscription is passed to other queue managers in
the network (parameter identifier: MQIACF_SUBSCRIPTION_SCOPE). The
value can be:
MQTSCOPE_ALL

The subscription is forwarded to all queue managers directly
connected through a publish/subscribe collective or hierarchy.

MQTSCOPE_QMGR
The subscription only forwards messages published on the topic
within this queue manager.

In WebSphere MQ for z/VSE, although MQTSCOPE_ALL is accepted it is
treated as MQTSCOPE_QMGR. Only local queue manager is supported.
On inquiry MQTSCOPE_QMGR is always returned.

SubscriptionUser (MQCFST)
The userid that 'owns' this subscription. This is either the userid associated
with the creator of the subscription, or, if subscription takeover is
permitted, the userid which last tookover the subscription (parameter
identifier: MQCACF_SUB_USER_ID). The maximum length of the string is
MQ_USER_ID_LENGTH.

TopicString (MQCFST)
The resolved topic string (parameter identifier:
MQCACF_TOPIC_STRING). The maximum length of the string is
MQ_TOPIC_STR_LENGTH.

VariableUser (MQCFIN)
Specifies whether a user other than the one who created the subscription,
that is, the user shown in SubscriptionUser can take over the ownership of
the subscription (parameter identifier: MQIACF_VARIABLE_USER_ID).

The value can be:
MQVU_ANY_USER

Any user can take over the ownership. This is the supplied default
value.

MQVU_FIXED_USER
No other user can take over the ownership.

Delete Subscription

The Delete Subscription (MQCMD_DELETE_SUBSCRIPTION) command deletes a
subscription.

Required parameters:

SubName or SubId

Optional parameters:

Create Subscription

362 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

|

None

Required parameters

One of:

SubName (MQCFST)
Subscription name (parameter identifier: MQCACF_SUB_NAME). Specifies
the unique subscription name. The subscription name, if provided, must be
fully specified; a wildcard is not acceptable. The subscription name must
refer to a durable subscription.

If SubName is not provided, SubId must be specified to identify the
subscription to be deleted. The maximum length of the string is
MQ_SUB_NAME_LENGTH.

SubId (MQCFBS)
Subscription identifier (parameter identifier: MQBACF_SUB_ID).

Specifies the unique internal subscription identifier.

You must supply a value for SubId if you have not supplied a value for SubName.

Inquire Subscription

The Inquire Subscription (MQCMD_INQUIRE_SUBSCRIPTION) command inquires
about the attributes of a subscription.

Required parameters:

SubId or SubName

Optional parameters:

Durable, SubAttrs, SubType

Required parameters

One of:

SubId (MQCFBS)
Subscription identifier (parameter identifier: MQBACF_SUB_ID). Specifies
the unique internal subscription identifier. If the queue manager is
generating the CorrelId for a subscription, then the SubId is used as the
DestinationCorrelId. The maximum length of the string is
MQ_CORREL_ID_LENGTH.

SubName (MQCFST)
The application's unique identifier for a subscription (parameter identifier:
MQCACF_SUB_NAME). The maximum length of the string is
MQ_SUB_NAME_LENGTH.

Optional parameters

Durable (MQCFIN)
Specify this attribute to restrict the type of subscriptions which are
displayed (parameter identifier: MQIACF_DURABLE_SUBSCRIPTION).
MQSUB_DURABLE_YES

Information about durable subscriptions only is displayed.

Delete Subscription

Chapter 8. Programmable system management 363

|

|

|

|
|
|
|
|

|
|
|

|
|

|

|

|

|
|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

MQSUB_DURABLE_NO
Information about nondurable subscriptions only is displayed.

MQSUB_DURABLE_ALL
Information about all subscriptions is displayed.

SubscriptionAttrs (MQCFIL)
Subscription attributes (parameter identifier: MQIACF_SUB_ATTRS).

To select the attributes you want to display you can specify;
v ALL to display all attributes.
v SUMMARY to display a subset of the attributes (see

MQIACF_SUMMARY for a list).
v Any of the following parameters individually or in combination.
MQIACF_ALL

All attributes.
MQIACF_SUMMARY

Use this parameter to display:

MQBACF_DESTINATION_CORREL_ID
MQBACF_SUB_ID
MQCACF_DESTINATION
MQCACF_DESTINATION_Q_QMGR
MQCACF_SUB_NAME
MQCACF_TOPIC_STRING
MQIACF_SUB_TYPE

MQBACF_ACCOUNTING_TOKEN
The accounting token passed by the subscriber for propagation into
messages sent to this subscription in the AccountingToken field of
the MQMD.

MQBACF_CONNECTION_ID
The currently active ConnectionId (CONNID) that has opened this
subscription. Used to detect local publications.

MQBACF_DESTINATION_CORREL_ID
The CorrelId used for messages sent to this subscription.

MQBACF_SUB_ID
The internal unique key identifying a subscription.

MQCA_ALTERATION_DATE
The date of the most recent MQSUB with MQSO_ALTER or ALTER
SUB command.

MQCA_ALTERATION_TIME
The time of the most recent MQSUB with MQSO_ALTER or
ALTER SUB command.

MQCA_CREATION_DATE
The date of the first MQSUB command that caused this
subscription to be created.

MQCA_CREATION_TIME
The time of the first MQSUB that caused this subscription to be
created.

MQCA_RESUME_DATE
The date of the most recent MQSUB which connected to this
subscription.

MQCA_RESUME_TIME
The time of most recent MQSUB which connected to this
subscription.

MQCA_TOPICSTRING
The resolved topic string the subscription is for.

Inquire Subscription

364 WebSphere MQ for z/VSE System Management Guide

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MQCACF_APPL_IDENTITY_DATA
The identity data passed by the subscriber for propagation into
messages sent to this subscription in the ApplIdentity field of the
MQMD.

MQCACF_DESTINATION
The destination for messages published to this subscription.

MQCACF_DESTINATION_Q_MGR
The destination queue manager for messages published to this
subscription.

MQCACF_LAST_MSG_TIME
The time at which a message was last sent to the destination
specified by this subscription.

MQCACF_LAST_MSG_DATE
The date on which a message was last sent to the destination
specified by this subscription.

MQCACF_SUB_NAME
The application's unique identifier for a subscription.

MQCACF_SUB_USER_ID
The userid that owns the subscription. This is either the userid
associated with the creator of the subscription, or, if subscription
takeover is permitted, the userid which last tookover the
subscription.

MQCACF_TOPIC
The name of the topic object that identifies a position in the topic
hierarchy to which the topic string is concatenated.

MQIACF_DESTINATION_CLASS
Indicated whether this is a managed subscription.

MQIACF_DURABLE_SUBSCRIPTION
Whether the subscription is durable, persisting over queue
manager restart.

z/VSE only has persistent messages.
MQIACF_EXPIRY

The time to live from creation date and time.
MQIACF_MESSAGE_COUNT

The number of messages put to the destination specified by this
subscription.

MQIACF_PUB_PRIORITY
The priority of the messages sent to this subscription.

z/VSE always returns 0.
MQIACF_PUBSUB_PROPERTIES

The manner in which publish/subscribe related message properties
are added to messages sent to this subscription.

MQIACF_REQUEST_ONLY
Indicates whether the subscriber polls for updates via MQSUBRQ
API, or whether all publications are delivered to this subscription.

MQIACF_SUB_TYPE
The type of subscription - how it was created.

MQIACF_SUBSCRIPTION_SCOPE
Whether the subscription forwards messages to all other queue
managers directly connected via a pub/sub collective or hierarchy,
or the subscription forwards messages on this topic within this
queue manager only.

z/VSE always returns MQTSCOPE_QMGR.

Inquire Subscription

Chapter 8. Programmable system management 365

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

MQIACF_VARIABLE_USER_ID
Users other than the creator of this subscription that can connect to
it (subject to topic and destination authority checks).

SubscriptionType (MQCFIN)
Specify this attribute to restrict the type of subscriptions which are
displayed (parameter identifier: MQIACF_SUB_TYPE).

MQSUBTYPE_ADMIN
Subscriptions which have been created by an admin interface or
modified by an admin interface are selected.

MQSUBTYPE_ALL
All subscription types are displayed.

MQSUBTYPE_API
Subscriptions created by applications via an MQ API are displayed.

MQSUBTYPE_USER
USER subscriptions (those with SUBTYPE of either ADMIN or
API) are displayed. This is the default value.

Inquire Subscription Status

The Inquire Subscription Status (MQCMD_INQUIRE_SBSTATUS) command
inquires about the status of a subscription.

Required parameters:

SubName or SubId

Optional parameters:

ActiveConnection, Durable, LastPublishDate, LastPublishTime, NumberMsgs,
ResumeDate, ResumeTime, SubID, SubType, SubscriptionUser

Required parameters

One of:
SubName (MQCFST)

The unique identifier of an application for a subscription (parameter
identifier: MQCACF_SUB_NAME). If SubName is not provided, SubId
must be specified to identify the subscription to be inquired. The
maximum length of the string is MQ_SUB_NAME_LENGTH.

SubId (MQCFBS)
Subscription identifier (parameter identifier: MQBACF_SUB_ID). Specifies
the unique internal subscription identifier. If the queue manager is
generating the CorrelId for a subscription, then the SubId is used as the
DestinationCorrelId. You must supply a value for SubId if you have not
supplied a value for SubName. The maximum length of the string is
MQ_CORREL_ID_LENGTH.

Optional parameters

Durable (MQCFIN)
Specify this attribute to restrict the type of subscriptions which are
displayed (parameter identifier: MQIACF_DURABLE_SUBSCRIPTION).

Inquire Subscription

366 WebSphere MQ for z/VSE System Management Guide

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|

|
|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

MQSUB_DURABLE_YES
Information about durable subscriptions only is displayed. This is
the default.

MQSUB_DURABLE_NO
Information about non-durable subscriptions only is displayed.

SubId (MQCFBS)
Use this attribute to specify the subscription identifier (parameter
identifier: MQBACF_SUB_ID) of the subscription you want to display.

SubscriptionType (MQCFIN)
Specify this attribute to restrict the type of subscriptions which are
displayed (parameter identifier: MQIACF_SUB_TYPE).
MQSUBTYPE_ADMIN

Subscriptions which have been created by an admin interface or
modified by an admin interface are selected.

MQSUBTYPE_ALL
All subscription types are displayed.

MQSUBTYPE_API
Subscriptions created by applications through a WebSphere MQ
API call are displayed.

MQSUBTYPE_USER
USER subscriptions (those with SUBTYPE of either ADMIN or
API) are displayed. This is the default value.

StatusAttrs (MQCFIL)
Subscription status attributes (parameter identifier:
MQIACF_SDSTATUS_ATTRS).

To select the attributes you want to display you can specify:
v ALL to display all attributes.
v Any of the following parameters individually or in combination.
MQIACF_ALL

All attributes.
MQBACF_CONNECTION_ID

The currently active ConnectionID that has opened the
subscription.

MQCACF_DURABLE
A durable subscription is not deleted when the creating application
closes its subscription handle (parameter identifier:
MQIACF_DURABLE_SUBSCRIPTION).
MQSUB_DURABLE_NO

The subscription is removed when the application that
created it is closed or disconnected from the queue
manager.

MQSUB_DURABLE_YES
The subscription persists even when the creating
application is no longer running or has been disconnected.
The subscription is reinstated when the queue manager
restarts.

MQCACF_LAST_PUB_DATE
The date that a message was last sent to the destination specified
by the subscription.

MQCACF_LAST_PUB_TIME
The time when a message was last sent to the destination specified
by the subscription.

Inquire Subscription Status

Chapter 8. Programmable system management 367

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MQIACF_MESSAGE_COUNT
The number of messages put to the destination specified by the
subscription.

MQCACF_RESUME_DATE
The date of the most recent MQSUB command that connected to
the subscription.

MQCACF_RESUME_TIME
The time of the most recent MQSUB command that connected to
the subscription.

MQIACF_SUB_TYPE
The type of subscription - how it was created.
MQSUBTYPE_ADMIN

Created using the DEF SUB MQSC or Create
SubscriptionPCF command. This Subtype also indicates
that a subscription has been modified using an
administrative command.

MQSUBTYPE_API
Created using an MQSUB API call.

MQCACF_SUB_USER_ID
The userid owns the subscription.

Change Topic

The Change Topic (MQCMD_CHANGE_TOPIC) command changes the specified
attributes of an existing WebSphere MQ administrative topic definition. For any
optional parameters that are omitted, the value does not change.

Required parameter:

TopicName

Optional parameters:

DefPersistence, DefPriority, DefPutResponse, DurableModelQName,
DurableSubscriptions, InhibitPublications, InhibitSubscriptions,
NonDurableModelQName, PersistentMsgDelivery, TopicDesc, TopicType

Required parameter

TopicName (MQCFST)
The name of the administrative topic definition to be changed (parameter
identifier: MQCA_TOPIC_NAME). The maximum length of the string is
MQ_TOPIC_NAME_LENGTH.

Optional parameters

DefPersistence (MQCFIN)
Default persistence (parameter identifier:
MQIA_TOPIC_DEF_PERSISTENCE). Specifies the default for
message-persistence of messages published to the topic. Message
persistence determines whether messages are preserved across restarts of
the queue manager.

The value can be:
MQPER_PERSISTENCE_AS_PARENT

The default persistence is based on the setting of the closest parent
administrative topic object in the topic tree.

Inquire Subscription Status

368 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|

|

|
|
|

|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

MQPER_PERSISTENT
Message is persistent.

There are only persistent messages in z/VSE.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY). Specifies
the default priority of messages published to the topic. Values are ignored
in z/VSE.

Specify either:
integer

The default priority to be used, in the range zero through to the
maximum priority value that is supported (9).

MQPRI_PRIORITY_AS_PARENT
The default priority is based on the setting of the closest parent
administrative topic object in the topic tree.

DefPutResponse (MQCFIN)
Default put response (parameter identifier:
MQIA_DEF_PUT_RESPONSE_TYPE). The value can be:
MQPRT_RESPONSE_AS_PARENT

The default put response is based on the setting of the closest
parent administrative topic object in the topic tree.

MQPRT_SYNC_RESPONSE
The put operation is issued synchronously, returning a response.

DurableModelQName (MQCFST)
Name of the model queue to be used for durable subscriptions (parameter
identifier: MQCA_MODEL_DURABLE_Q). The maximum length of the
string is MQ_Q_NAME_LENGTH.

DurableSubscriptions (MQCFIN)
Whether applications are permitted to make durable subscriptions
(parameter identifier: MQIA_DURABLE_SUB). The value can be:
MQSUB_DURABLE_AS_PARENT

Whether durable subscriptions are permitted is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQSUB_DURABLE_ALLOWED
Durable subscriptions are permitted.

MQSUB_DURABLE_INHIBITED
Durable subscriptions are not permitted.

InhibitPublications (MQCFIN)
Whether publications are allowed for this topic (parameter identifier:
MQIA_INHIBIT_PUB). The value can be:
MQTA_PUB_AS_PARENT

Whether messages can be published to this topic is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQTA_PUB_INHIBITED
Publications are inhibited for this topic.

MQTA_PUB_ALLOWED
Publications are allowed for this topic.

InhibitSubscriptions (MQCFIN)
Whether subscriptions are allowed for this topic (parameter identifier:
MQIA_INHIBIT_SUB). The value can be:

Change Topic

Chapter 8. Programmable system management 369

|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

MQTA_SUB_AS_PARENT
Whether applications can subscribe to this topic is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQTA_SUB_INHIBITED
Subscriptions are inhibited for this topic.

MQTA_SUB_ALLOWED
Subscriptions are allowed for this topic.

NonDurableModelQName (MQCFST)
Name of the model queue to be used for non-durable subscriptions
(parameter identifier: MQCA_MODEL_NON_DURABLE_Q). The
maximum length of the string is MQ_Q_NAME_LENGTH.

PersistentMsgDelivery (MQCFIN)
The delivery mechanism for persistent messages published to this topic
(parameter identifier: MQIA_PM_DELIVERY). The value can be:
MQDLV_AS_PARENT

The delivery mechanism used is based on the setting of the first
parent administrative node found in the topic tree relating to this
topic.

MQDLV_ALL
Persistent messages must be delivered to all subscribers,
irrespective of durability for the MQPUT call to report success. If a
delivery failure to any subscriber occurs, no other subscribers
receive the message and the MQPUT fails.

MQDLV_ALL_DUR
Persistent messages must be delivered to all durable subscribers.
Failure to deliver a persistent message to any non-durable
subscribers does not return an error to the MQPUT call. If a
delivery failure to a durable subscriber occurs, no other subscribers
receive the message and the MQPUT fails.

MQDLV_ALL_AVAIL
Persistent messages are delivered to all subscribers that can accept
the message. Failure to deliver the message to any subscriber does
not prevent other subscribers from receiving the message.

TopicDesc (MQCFST)
Topic description (parameter identifier: MQCA_TOPIC_DESC). Text that
briefly describes the object

The maximum length is MQ_TOPIC_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the message queue manager on which the command
is executing to ensure that the text is translated correctly if it is sent to
another queue manager.

TopicType (MQCFIN)
Topic type (parameter identifier: MQIA_TOPIC_TYPE). The value specified
must match the type of the topic being changed. The value can be:

MQTOPT_LOCAL
Local topic object

Copy Topic

The Copy Topic (MQCMD_COPY_TOPIC) command creates a WebSphere MQ
administrative topic definition by using, for attributes not specified in the
command, the attribute values of an existing topic definition.

Change Topic

370 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|

|

|
|
|

Required parameters:

FromTopicName, TopicString, ToTopicName

Optional parameters:

DefPersistence, DefPriority, DefPutResponse, DurableModelQName,
DurableSubscriptions, InhibitPublications, InhibitSubscriptions,
NonDurableModelQName, PersistentMsgDelivery, TopicDesc, TopicType

Required parameters

FromTopicName (MQCFST)
The name of the administrative topic object definition to be copied from
(parameter identifier: MQCACF_FROM_TOPIC_NAME). The maximum
length of the string is MQ_TOPIC_NAME_LENGTH.

TopicString (MQCFST)
The topic string (parameter identifier: MQCA_TOPIC_STRING). This string
uses the forward slash (/) character as a delimiter for elements within the
topic tree. The maximum length of the string is MQ_TOPIC_STR_LENGTH
(256 in z/VSE).

ToTopicName (MQCFST)
The name of the administrative topic definition to copy to (parameter
identifier: MQCACF_TO_TOPIC_NAME). The maximum length of the
string is MQ_TOPIC_NAME_LENGTH.

Optional parameters

DefPersistence (MQCFIN)
Default persistence (parameter identifier:
MQIA_TOPIC_DEF_PERSISTENCE). Specifies the default for
message-persistence of messages published to the topic. Message
persistence determines whether messages are preserved across restarts of
the queue manager.

The value can be:
MQPER_PERSISTENCE_AS_PARENT

The default persistence is based on the setting of the closest parent
administrative topic object in the topic tree.

MQPER_PERSISTENT
Message is persistent.

There are only persistent messages in z/VSE.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY). Specifies
the default priority of messages published to the topic. Values are ignored
in z/VSE.

Specify either:
integer

The default priority to be used, in the range zero through to the
maximum priority value that is supported (9).

MQPRI_PRIORITY_AS_PARENT
The default priority is based on the setting of the closest parent
administrative topic object in the topic tree.

Copy Topic

Chapter 8. Programmable system management 371

|

|

|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

DefPutResponse (MQCFIN)
Default put response (parameter identifier:
MQIA_DEF_PUT_RESPONSE_TYPE). The value can be:
MQPRT_RESPONSE_AS_PARENT

The default put response is based on the setting of the closest
parent administrative topic object in the topic tree.

MQPRT_SYNC_RESPONSE
The put operation is issued synchronously, returning a response.

DurableModelQName (MQCFST)
Name of the model queue to be used for durable subscriptions (parameter
identifier: MQCA_MODEL_DURABLE_Q). The maximum length of the
string is MQ_Q_NAME_LENGTH.

DurableSubscriptions (MQCFIN)
Whether applications are permitted to make durable subscriptions
(parameter identifier: MQIA_DURABLE_SUB). The value can be:
MQSUB_DURABLE_AS_PARENT

Whether durable subscriptions are permitted is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQSUB_DURABLE_ALLOWED
Durable subscriptions are permitted.

MQSUB_DURABLE_INHIBITED
Durable subscriptions are not permitted.

InhibitPublications (MQCFIN)
Whether publications are allowed for this topic (parameter identifier:
MQIA_INHIBIT_PUB). The value can be:
MQTA_PUB_AS_PARENT

Whether messages can be published to this topic is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQTA_PUB_INHIBITED
Publications are inhibited for this topic.

MQTA_PUB_ALLOWED
Publications are allowed for this topic.

InhibitSubscriptions (MQCFIN)
Whether subscriptions are allowed for this topic (parameter identifier:
MQIA_INHIBIT_SUB). The value can be:
MQTA_SUB_AS_PARENT

Whether applications can subscribe to this topic is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQTA_SUB_INHIBITED
Subscriptions are inhibited for this topic.

MQTA_SUB_ALLOWED
Subscriptions are allowed for this topic.

NonDurableModelQName (MQCFST)
Name of the model queue to be used for non-durable subscriptions
(parameter identifier: MQCA_MODEL_NON_DURABLE_Q). The
maximum length of the string is MQ_Q_NAME_LENGTH.

PersistentMsgDelivery (MQCFIN)
The delivery mechanism for persistent messages published to this topic
(parameter identifier: MQIA_PM_DELIVERY). The value can be:

Copy Topic

372 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

MQDLV_AS_PARENT
The delivery mechanism used is based on the setting of the first
parent administrative node found in the topic tree relating to this
topic.

MQDLV_ALL
Persistent messages must be delivered to all subscribers,
irrespective of durability for the MQPUT call to report success. If a
delivery failure to any subscriber occurs, no other subscribers
receive the message and the MQPUT fails.

MQDLV_ALL_DUR
Persistent messages must be delivered to all durable subscribers.
Failure to deliver a persistent message to any non-durable
subscribers does not return an error to the MQPUT call. If a
delivery failure to a durable subscriber occurs, no other subscribers
receive the message and the MQPUT fails.

MQDLV_ALL_AVAIL
Persistent messages are delivered to all subscribers that can accept
the message. Failure to deliver the message to any subscriber does
not prevent other subscribers from receiving the message.

TopicDesc (MQCFST)
Topic description (parameter identifier: MQCA_TOPIC_DESC). Text that
briefly describes the object

The maximum length is MQ_TOPIC_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the message queue manager on which the command
is executing to ensure that the text is translated correctly if it is sent to
another queue manager.

TopicType (MQCFIN)
Topic type (parameter identifier: MQIA_TOPIC_TYPE). The value specified
must match the type of the topic being changed. The value can be:

MQTOPT_LOCAL
Local topic object

Create Topic

The Create Topic (MQCMD_CREATE_TOPIC) command creates a WebSphere MQ
administrative topic definition. Any attributes that are not defined explicitly are set
to the default values on the destination queue manager.

Required parameters:

TopicName, TopicString

Optional parameters:

DefPersistence, DefPriority, DefPutResponse, DurableModelQName,
DurableSubscriptions, InhibitPublications, InhibitSubscriptions,
NonDurableModelQName, PersistentMsgDelivery, TopicDesc, TopicType

Copy Topic

Chapter 8. Programmable system management 373

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|

|

|
|
|

|

|

|

|
|
|

Required parameters

TopicName (MQCFST)
The name of the administrative topic definition to be created (parameter
identifier: MQCA_TOPIC_NAME). The maximum length of the string is
MQ_TOPIC_NAME_LENGTH.

TopicString (MQCFST)
The topic string (parameter identifier: MQCA_TOPIC_STRING). This
parameter is required and cannot contain the empty string. The "/"
character within this string has a special meaning. It delimits the elements
in the topic tree. A topic string can start with the "/" character but is not
required to. A string starting with the "/" character is not the same as a
string that does not start with the "/" character. A topic string cannot end
with the "/" character.

The maximum length of the string is MQ_TOPIC_STR_LENGTH (256 bytes
in z/VSE).

Optional parameters

DefPersistence (MQCFIN)
Default persistence (parameter identifier:
MQIA_TOPIC_DEF_PERSISTENCE). Specifies the default for
message-persistence of messages published to the topic. Message
persistence determines whether messages are preserved across restarts of
the queue manager.

The value can be:
MQPER_PERSISTENCE_AS_PARENT

The default persistence is based on the setting of the closest parent
administrative topic object in the topic tree.

MQPER_PERSISTENT
Message is persistent.

There are only persistent messages in z/VSE.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY). Specifies
the default priority of messages published to the topic. Values are ignored
in z/VSE.

Specify either:
integer

The default priority to be used, in the range zero through to the
maximum priority value that is supported (9).

MQPRI_PRIORITY_AS_PARENT
The default priority is based on the setting of the closest parent
administrative topic object in the topic tree.

DefPutResponse (MQCFIN)
Default put response (parameter identifier:
MQIA_DEF_PUT_RESPONSE_TYPE). The value can be:
MQPRT_RESPONSE_AS_PARENT

The default put response is based on the setting of the closest
parent administrative topic object in the topic tree.

MQPRT_SYNC_RESPONSE
The put operation is issued synchronously, returning a response.

Create Topic

374 WebSphere MQ for z/VSE System Management Guide

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

DurableModelQName (MQCFST)
Name of the model queue to be used for durable subscriptions (parameter
identifier: MQCA_MODEL_DURABLE_Q). The maximum length of the
string is MQ_Q_NAME_LENGTH.

DurableSubscriptions (MQCFIN)
Whether applications are permitted to make durable subscriptions
(parameter identifier: MQIA_DURABLE_SUB). The value can be:
MQSUB_DURABLE_AS_PARENT

Whether durable subscriptions are permitted is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQSUB_DURABLE_ALLOWED
Durable subscriptions are permitted.

MQSUB_DURABLE_INHIBITED
Durable subscriptions are not permitted.

InhibitPublications (MQCFIN)
Whether publications are allowed for this topic (parameter identifier:
MQIA_INHIBIT_PUB). The value can be:
MQTA_PUB_AS_PARENT

Whether messages can be published to this topic is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQTA_PUB_INHIBITED
Publications are inhibited for this topic.

MQTA_PUB_ALLOWED
Publications are allowed for this topic.

InhibitSubscriptions (MQCFIN)
Whether subscriptions are allowed for this topic (parameter identifier:
MQIA_INHIBIT_SUB). The value can be:
MQTA_SUB_AS_PARENT

Whether applications can subscribe to this topic is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQTA_SUB_INHIBITED
Subscriptions are inhibited for this topic.

MQTA_SUB_ALLOWED
Subscriptions are allowed for this topic.

NonDurableModelQName (MQCFST)
Name of the model queue to be used for non-durable subscriptions
(parameter identifier: MQCA_MODEL_NON_DURABLE_Q). The
maximum length of the string is MQ_Q_NAME_LENGTH.

PersistentMsgDelivery (MQCFIN)
The delivery mechanism for persistent messages published to this topic
(parameter identifier: MQIA_PM_DELIVERY). The value can be:
MQDLV_AS_PARENT

The delivery mechanism used is based on the setting of the first
parent administrative node found in the topic tree relating to this
topic.

MQDLV_ALL
Persistent messages must be delivered to all subscribers,
irrespective of durability for the MQPUT call to report success. If a
delivery failure to any subscriber occurs, no other subscribers
receive the message and the MQPUT fails.

Create Topic

Chapter 8. Programmable system management 375

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

MQDLV_ALL_DUR
Persistent messages must be delivered to all durable subscribers.
Failure to deliver a persistent message to any non-durable
subscribers does not return an error to the MQPUT call. If a
delivery failure to a durable subscriber occurs, no other subscribers
receive the message and the MQPUT fails.

MQDLV_ALL_AVAIL
Persistent messages are delivered to all subscribers that can accept
the message. Failure to deliver the message to any subscriber does
not prevent other subscribers from receiving the message.

TopicDesc (MQCFST)
Topic description (parameter identifier: MQCA_TOPIC_DESC). Text that
briefly describes the object

The maximum length is MQ_TOPIC_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the message queue manager on which the command
is executing to ensure that the text is translated correctly if it is sent to
another queue manager.

TopicType (MQCFIN)
Topic type (parameter identifier: MQIA_TOPIC_TYPE). The value specified
must match the type of the topic being changed. The value can be:

MQTOPT_LOCAL
Local topic object

Clear Topic String

The Clear Topic String (MQCMD_CLEAR_TOPIC_STRING) command clears the
retained message which is stored for the specified topic.

Required parameters:

TopicString, ClearType

Optional parameters:

Scope

Required parameters

TopicString (MQCFST)
Topic String (parameter identifier: MQCA_TOPIC_STRING). The topic
string to be cleared The maximum length of the string is
MQ_TOPIC_STR_LENGTH.

ClearType (MQCFIN)
Clear type (parameter identifier: MQIACF_CLEAR_TYPE). Specifies the
type of clear command being issued.

The value must be:

MQCLRT_RETAINED
Remove the retained publication from the specified topic string.

Create Topic

376 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|

|

|
|

|

|

|

|

|

|
|
|
|

|
|
|

|

|
|

Optional parameters

Scope (MQCFIN)
Scope of clearance (parameter identifier: MQIACF_CLEAR_SCOPE).
Whether the topic string is to be cleared locally or globally. The value can
be:

MQCLRS_LOCAL
The retained message is removed from the specified topic string at
the local queue manager only.

Delete Topic

The Delete Topic (MQCMD_DELETE_TOPIC) command deletes the specified
administrative topic object.

Required parameters:

TopicName

Optional parameters:

None

Required parameters

TopicName (MQCFST)
The name of the administrative topic definition to be deleted (parameter
identifier: MQCA_TOPIC_NAME). The maximum length of the string is
MQ_TOPIC_NAME_LENGTH.

Inquire Topic

The Inquire Topic (MQCMD_INQUIRE_TOPIC) command inquires about the
attributes of existing WebSphere MQ administrative topic objects.

Required parameters:

TopicName

Optional parameters:

IntegerFilterCommand, StringFilterCommand, TopicAttrs, TopicType

Required parameters

TopicName (MQCFST)
Administrative topic object name (parameter identifier:
MQCA_TOPIC_NAME).

Specifies the name of the administrative topic object about which
information is to be returned. Generic topic object names are supported. A
generic name is a character string followed by an asterisk (*). For example,
ABC* selects all administrative topic objects having names that start with
the selected character string. An asterisk on its own matches all possible
names.

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

Clear Topic String

Chapter 8. Programmable system management 377

|

|
|
|
|

|
|
|

|

|
|

|

|

|

|

|

|
|
|
|

|

|
|

|

|

|

|

|

|
|
|

|
|
|
|
|
|

|

Optional parameters

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier: must be any
integer type parameter allowed in TopicAttrs except MQIACF_ALL.

Use this parameter to restrict the output from the command by specifying
a filter condition. If you specify an integer filter, you cannot also specify a
string filter using the StringFilterCommand parameter.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier: must be any
string type parameter allowed in TopicAttrs except MQCA_TOPIC_NAME.
Use this parameter to restrict the output from the command by specifying
a filter condition.

If you specify a string filter, you cannot also specify an integer filter using
the IntegerFilterCommand parameter.

TopicAttrs (MQCFIL)
Topic object attributes (parameter identifier: MQIACF_TOPIC_ATTRS). The
attribute list can specify the following value on its own - default value if
the parameter is not specified:

MQIACF_ALL
All attributes.

or a combination of the following:
MQCA_ALTERATION_DATE

The date on which the information was last altered.
MQCA_ALTERATION_TIME

The time at which the information was last altered.
MQCA_MODEL_DURABLE_Q

Name of the model queue for durable managed
subscriptions.

MQCA_MODEL_NON_DURABLE_Q
Name of the model queue for non-durable managed
subscriptions.

MQCA_TOPIC_DESC
Description of the topic object.

MQCA_TOPIC_NAME
Name of the topic object.

MQCA_TOPIC_STRING
The topic string for the topic object.

MQIA_DEF_PRIORITY
Default message priority.

MQIA_DEF_PUT_RESPONSE_TYPE
Default put response.

MQIA_DURABLE_SUB
Whether durable subscriptions are permitted.

MQIA_INHIBIT_PUB
Whether publications are allowed.

MQIA_INHIBIT_SUB
Whether subscriptions are allowed.

MQIA_PM_DELIVERY
The delivery mechanism for persistent messages.

TopicType (MQCFIN)
Cluster information (parameter identifier: MQIA_TOPIC_TYPE).

Inquire Topic

378 WebSphere MQ for z/VSE System Management Guide

|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

If this parameter is present, eligible queues are limited to the specified
type. Any attribute selector that is specified in the TopicAttrs list and that
is valid only for topics of different type is ignored; no error is raised.

If this parameter is not present (or if MQIACF_ALL is specified), queues of
all types are eligible. Each attribute specified must be a valid topic
attribute selector (that is, it must be in the following list), but it need not
be applicable to all or any of the topics returned. Topic attribute selectors
that are valid but not applicable to the queue are ignored; no error
messages occur and no attribute is returned.

The value can be:
MQTOPT_ALL

All topic types are displayed. MQTOPT_ALL is the default value.
MQTOPT_LOCAL

Locally defined topics are displayed.

Inquire Topic Names

The Inquire Topic Names (MQCMD_INQUIRE_TOPIC_NAMES) command returns
a list of administrative topic names that match the generic topic name specified.

Required parameters:

TopicName

Optional parameters:

None

Required parameters

TopicName (MQCFST)
Administrative topic object name (parameter identifier:
MQCA_TOPIC_NAME).

Specifies the name of the administrative topic object that information is to
be returned for.

Generic topic object names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all
objects having names that start with the selected character string. An
asterisk on its own matches all possible names.

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

Inquire Topic Status

The Inquire Topic Status (MQCMD_INQUIRE_TOPIC_STATUS) command inquires
the status of a particular topic, or of a topic and its child topics.

Required parameters:

TopicString

Optional parameters:

StatusType, IntegerFilterCommand, StringFilterCommand, TopicStatusAttrs

Inquire Topic

Chapter 8. Programmable system management 379

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|

|

|

|

|

|

|
|
|

|
|

|
|
|
|

|

|

|
|

|

|

|

|

Required parameters

TopicString (MQCFST)
The topic string (parameter identifier: MQCA_TOPIC_STRING). In
WebSphere MQ for z/VSE, only the trailing wildcard of # is allowed.

The maximum length of the string is 256.

Optional parameters

StatusType (MQCFIN)
The type of status to return (parameter identifier:
MQIACF_TOPIC_STATUS_TYPE).

The value can be:
v MQIACF_TOPIC_STATUS
v MQIACF_TOPIC_SUB
v MQIACF_TOPIC_PUB

This command ignores any attribute selectors specified in the
TopicStatusAttrs list that are not valid for the selected StatusType and the
command raises no error.

The default value if this parameter is not specified is
MQIACF_TOPIC_STATUS.

IntegerFilterCommand(MQCFIF)
Integer filter command descriptor that you use to restrict the output from
the command. The parameter identifier: must be an integer type and must
be one of the values allowed for MQIACF_TOPIC_SUB_STATUS,
MQIACF_TOPIC_PUB_STATUS or MQIACF_TOPIC_STATUS, except
MQIACF_ALL.

If you specify an integer filter, you cannot also specify a string filter with
the StringFilterCommand parameter.

StringFilterCommand(MQCFSF)
String filter command descriptor. The parameter identifier: must be any
string type parameter allowed for MQIACF_TOPIC_SUB_STATUS,
MQIACF_TOPIC_PUB_STATUS or MQIACF_TOPIC_STATUS, except
MQIACF_ALL, or the identifier MQCA_TOPIC_STRING_FILTER to filter
on the topic string.

Use the parameter identifier to restrict the output from the command by
specifying a filter condition. Ensure that the parameter is valid for the type
selected in StatusType. If you specify a string filter, you cannot also specify
an integer filter using the IntegerFilterCommand parameter.

TopicStatusAttrs(MQCFIL)
Topic status attributes (parameter identifier:
MQIACF_TOPIC_STATUS_ATTRS)

The default value used if the parameter is not specified is: MQIACF_ALL

You can specify any of the parameter values listed in the related reference
about Response Data. It is not an error to request status information that is
not relevant for a particular status type, but the response contains no
information for the value concerned.

Inquire Topic Status

380 WebSphere MQ for z/VSE System Management Guide

|

|
|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

Data responses to commands
Escape commands, and commands that request information, if successful, generate
data responses. A data response consists of an OK response (as described in “OK
response” on page 240) followed by additional structures containing the requested
data.

Applications should not depend upon these additional parameter structures being
returned in any particular order.

Data responses are generated for these commands:
v Escape
v Inquire Channel Authentication Records
v Inquire Channel Names
v Inquire Channel Status
v Inquire Channel
v Inquire Namelist Names
v Inquire Namelist
v Inquire Queue Manager
v Inquire Queue Names
v Inquire Queue
v Inquire Subscription Status
v Inquire Subscription
v Inquire Topic
v Inquire Topic Names
v Inquire Topic Status

Escape (Response)
The response to the Escape (MQCMD_ESCAPE) command consists of the response
header followed by two parameter structures, one containing the escape type, and
the other containing the text response. More than one such message may be issued,
depending upon the command contained in the Escape request.

The Command field in the response header MQCFH contains the MQCMD_*
command identifier of the text command contained in the EscapeText parameter in
the original Escape command. For example, if EscapeText in the original Escape
command specified PING QMGR, Command in the response has the value
MQCMD_PING_Q_MGR.

If it is possible to determine the outcome of the command, the CompCode in the
response header identifies whether the command was successful. The success or
otherwise can therefore be determined without the recipient of the response having
to parse the text of the response.

If it is not possible to determine the outcome of the command, CompCode in the
response header has the value MQCC_UNKNOWN, and Reason is MQRC_NONE.

Always returned:

EscapeType
EscapeText

Returned if requested:

Data responses to commands

Chapter 8. Programmable system management 381

|

|

|

|

|

|

|

None

Parameters:

EscapeType (MQCFIN)
Escape type (parameter identifier: MQIACF_ESCAPE_TYPE).

The only value supported is:

MQET_MQSC
WebSphere MQ command.

EscapeText (MQCFST)
Escape text (parameter identifier: MQCACF_ESCAPE_TEXT).

A string holding the response to the original command.

Inquire Channel (Response)

The response to the Inquire Channel (MQCMD_INQUIRE_CHANNEL) command
consists of the response header followed by the ChannelName structure and the
requested combination of attribute parameter structures (where applicable). If a
generic channel name was specified, one such message is generated for each
channel found.

This response is supported on all platforms.

Always returned:

ChannelName

Returned if requested:

AlterationDate, AlterationTime, BatchSize, BatchInterval, ChannelDesc,
ChannelMonitoring, ChannelStatistics, ChannelType, ConnectionName,
DataConversion, DiscInterval, DiscRetryCount, LongRetryCount,
LongRetryInterval, MaxMsgLength, MsgExit, MsgUserData, PortNumber,
PropertyControl, PropertyControl, ReceiveExit, ReceiveUserData, SecurityExit,
SecurityUserData, SendExit, SendUserData, SeqNumberWrap, ShortRetryCount,
ShortRetryInterval, SSLCipherSpec, SSLClientAuth, SSLPeerName, TpName,
TransportType, XmitQName

Response data

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

Data responses to commands

382 WebSphere MQ for z/VSE System Management Guide

ChannelMonitoring (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_MONITORING_CHANNEL).

Specifies whether online monitoring data is to be collected and, if so, the
rate at which the data is collected. The value can be:
MQMON_OFF

Online monitoring data collection is turned off for this channel.
MQMON_Q_MGR

The value of the queue manager's ChannelMonitoring parameter is
inherited by the channel. This is the default value.

MQMON_LOW
If the value of the queue manager's ChannelMonitoring parameter
is not MQMON_NONE, online monitoring data collection is turned
on, with a low rate of data collection, for this channel.

MQMON_MEDIUM
If the value of the queue manager's ChannelMonitoring parameter
is not MQMON_NONE, online monitoring data collection is turned
on, with a moderate rate of data collection, for this channel.

MQMON_HIGH
If the value of the queue manager's ChannelMonitoring parameter
is not MQMON_NONE, online monitoring data collection is turned
on, with a high rate of data collection, for this channel.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ChannelStatistics (MQCFIN)
Statistics data collection (parameter identifier:
MQIA_STATISTICS_CHANNEL). Specifies whether statistics data is to be
collected and, if so, the rate at which the data is collected.

The value can be:
MQMON_OFF

Statistics data collection is turned off for this channel.
MQMON_Q_MGR

The value of the queue manager's ChannelStatistics parameter is
inherited by the channel.

MQMON_LOW
If the value of the queue manager's ChannelStatistics parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a low rate of data collection, for this channel.

MQMON_MEDIUM
If the value of the queue manager's ChannelStatistics parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a moderate rate of data collection, for this channel.

MQMON_HIGH
If the value of the queue manager's ChannelStatistics parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a high rate of data collection, for this channel.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

The value may be:

MQCHT_RECEIVER
Receiver.

Data responses to commands

Chapter 8. Programmable system management 383

MQCHT_REQUESTER
Requester.

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_SVRCONN
Server-connection (for use by clients).

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

The value can be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

DiscRetryCount (MQCFIN)
Disconnection retry count (parameter identifier: MQIACH_DISC_RETRY).

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

MsgExit (MQCFST)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running. If the
channel has a chain of exits, a list of names is returned in an MQCFSL
structure instead of an MQCFST structure.

WebSphere MQ for z/VSE can return up to 8 exit names in the MQCFSL
structure, each with a length of MQ_EXIT_NAME_LENGTH.

MsgUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

The maximum length of the user data depends on the environment in
which the exit is running. MQ_EXIT_DATA_LENGTH gives the maximum
length for the environment in which your application is running. If the

Data responses to commands

384 WebSphere MQ for z/VSE System Management Guide

channel has a chain of exits, a list of data values is returned in an MQCFSL
structure instead of an MQCFST structure.

WebSphere MQ for z/VSE can return up to 8 user data values in the
MQCFSL structure, each with a length of MQ_EXIT_DATA_LENGTH.

PortNumber (MQCFIN)
TCP/IP port number (parameter identifier: MQIACH_PORT_NUMBER).

PropertyControl (MQCFIN)
Message property control. Specifies what happens to properties of
messages when the message is about to be sent to a queue manager that
does not understand the concept of a property descriptor. This parameter
is applicable to Sender and Server channels. The value can be:

MQPROP_COMPATIBILITY
If the message contains a property with a prefix of mcd., jms., usr.
or mqext., all message properties are delivered to the application in
an MQRFH2 header. Otherwise, all properties of the message,
except those contained in the message descriptor (or extension), are
discarded and are no longer accessible to the application. This is
the default value; it allows applications which expect JMS related
properties to be in an MQRFH2 header in the message data to
continue to work unmodified.

MQPROP_NONE
All properties of the message, except those in the message
descriptor (or extension), are removed from the message before the
message is sent to the remote queue manager.

MQPROP_ALL
All properties of the message are included with the message when
it is sent to the remote queue manager. The properties, except those
in the message descriptor (or extension), are placed in one or more
MQRFH2 headers in the message data.

ReceiveExit (MQCFST)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running. If the
channel has a chain of exits, a list of names is returned in an MQCFSL
structure instead of an MQCFST structure.

WebSphere MQ for z/VSE can return up to 8 exit names in the MQCFSL
structure, each with a length of MQ_EXIT_NAME_LENGTH.

ReceiveUserData (MQCFST)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

The maximum length of the user data depends on the environment in
which the exit is running. MQ_EXIT_DATA_LENGTH gives the maximum
length for the environment in which your application is running. If the
channel has a chain of exits, a list of data values is returned in an MQCFSL
structure instead of an MQCFST structure.

WebSphere MQ for z/VSE can return up to 8 user data values in the
MQCFSL structure, each with a length of MQ_EXIT_DATA_LENGTH.

Data responses to commands

Chapter 8. Programmable system management 385

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

SendExit (MQCFST)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running. If the
channel has a chain of exits, a list of names is returned in an MQCFSL
structure instead of an MQCFST structure.

WebSphere MQ for z/VSE can return up to 8 exit names in the MQCFSL
structure, each with a length of MQ_EXIT_NAME_LENGTH.

SendUserData (MQCFST)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

The maximum length of the user data depends on the environment in
which the exit is running. MQ_EXIT_DATA_LENGTH gives the maximum
length for the environment in which your application is running. If the
channel has a chain of exits, a list of data values is returned in an MQCFSL
structure instead of an MQCFST structure.

WebSphere MQ for z/VSE can return up to 8 user data values in the
MQCFSL structure, each with a length of MQ_EXIT_DATA_LENGTH.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

SSLCipherSpec (MQCFIN)
SSL cipher specification (parameter identifier:
MQCACH_SSL_CIPHER_SPEC).

SSLClientAuth (MQCFIN)
SSL client authentication (parameter identifier:
MQIACH_SSL_CLIENT_AUTH).

The value can be:

MQSCA_OPTIONAL
Client authentication is required.

MQSCA_REQUIRED
Client authentication is optional.

SSLPeerName (MQCFST)
SSL peer name (parameter identifier: MQCACH_SSL_PEER_NAME).

The maximum length of the string is
MQ_DISTINGUISHED_NAME_LENGTH.

Data responses to commands

386 WebSphere MQ for z/VSE System Management Guide

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

The maximum length of the string is MQ_TP_NAME_LENGTH.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value can be:

MQXPT_LU62
LU 6.2.

MQXPT_TCP
TCP.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Inquire Channel Listener (Response)

The response to the Inquire Channel Listener (MQCMD_INQUIRE_LISTENER)
command consists of the response header followed by the ListenerName structure
and the requested combination of attribute parameter structures. If a generic
listener name was specified, one such message is generated for each listener found.

Always returned:

ListenerName

Returned if requested:

AlterationDate, AlterationTime, Backlog, IPAddress, ListenerDesc, Port,
StartMode, TransportType

Response data

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date, in the form yyyy-mm-dd, on which the information was last
altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time, in the form hh.mm.ss, at which the information was last altered.

Backlog (MQCFIN)
Backlog (parameter identifier: MQIACH_BACKLOG).

The number of concurrent connection requests that the listener supports.

IPAddress (MQCFST)
IP address (parameter identifier: MQCACH_IP_ADDRESS).

IP address for the listener specified in IPv4 dotted decimal or
alphanumeric host name form.

The maximum length of the string is MQ_CONN_NAME_LENGTH

Data responses to commands

Chapter 8. Programmable system management 387

ListenerDesc (MQCFST)
Description of listener definition (parameter identifier:
MQCACH_LISTENER_DESC).

The maximum length of the string is MQ_LISTENER_DESC_LENGTH.

ListenerName (MQCFST)
Name of listener definition (parameter identifier:
MQCACH_LISTENER_NAME)

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Port (MQCFIN)
Port number (parameter identifier: MQIACH_PORT).

The port number for TCP/IP.

StartMode (MQCFIN)
Service mode (parameter identifier: MQIACH_LISTENER_CONTROL).

Specifies how the listener is to be started and stopped. The value can be:

MQSVC_CONTROL_MANUAL
The listener is not to be started automatically or stopped
automatically. It is to be controlled by user command. This is the
default value.

MQSVC_CONTROL_Q_MGR
The listener being defined is to be started and stopped at the same
time as the queue manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The listener is to be started at the same time as the queue manager
is started, but is not request to stop when the queue manager is
stopped.

TransportType (MQCFIN)
Transmission protocol (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE). The value can be:

MQXPT_TCP TCP

Inquire Channel Listener Status (Response)

The response to the Inquire Channel Listener Status command
(MQCMD_INQUIRE_LISTENER_STATUS) consists of the response header followed
by the ListenerName structure and the requested combination of attribute
parameter structures. If a generic listener name was specified, one such message is
generated for each listener found. Only listeners with status of RUNNING will be
returned a status response.

Always returned:

ListenerName

Returned if requested:

Backlog, IPAddress, ListenerDesc, Port, StartDate, StartMode, StartTime, Status,
TransportType

Response data

Backlog (MQCFIN)
Backlog (parameter identifier: MQIACH_BACKLOG).

Data responses to commands

388 WebSphere MQ for z/VSE System Management Guide

The number of concurrent connection requests that the listener supports.

IPAddress (MQCFST)
IP address (parameter identifier: MQCACH_IP_ADDRESS).

IP address for the listener specified in IPv4 dotted decimal or
alphanumeric host name form.

The maximum length of the string is MQ_CONN_NAME_LENGTH

ListenerDesc (MQCFST)
Description of listener definition (parameter identifier:
MQCACH_LISTENER_DESC).

The maximum length of the string is MQ_LISTENER_DESC_LENGTH.

ListenerName (MQCFST)
Name of listener definition (parameter identifier:
MQCACH_LISTENER_NAME).

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Port (MQCFIN)
Port number (parameter identifier: MQIACH_PORT).

The port number for TCP/IP.

StartDate (MQCFST)
Start date (parameter identifier: MQCACH_LISTENER_START_DATE).

The date, in the form yyyy-mm-dd, on which the listener was started.

The maximum length of the string is MQ_DATE_LENGTH

StartMode (MQCFIN)
Service mode (parameter identifier: MQIACH_LISTENER_CONTROL).

Specifies how the listener is to be started and stopped. The value can be:

MQSVC_CONTROL_MANUAL
The listener is not to be started automatically or stopped
automatically. It is to be controlled by user command. This is the
default value.

MQSVC_CONTROL_Q_MGR
The listener being defined is to be started and stopped at the same
time as the queue manager is started and stopped.

StartTime (MQCFST)
Start time (parameter identifier: MQCACH_LISTENER_START_TIME).

The time, in the form hh.mm.ss, at which the listener was started.

The maximum length of the string is MQ_TIME_LENGTH

Status (MQCFIN)
Listener status (parameter identifier: MQIACH_LISTENER_STATUS).

The current status of the listener. The value can be:
MQSVC_STATUS_RUNNING

The listener is running.
MQSVC_STATUS_STOPPED

The listener is stopped.

TransportType (MQCFIN)
Transmission protocol (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE). The value can be:

Data responses to commands

Chapter 8. Programmable system management 389

MQXPT_TCP TCP

ProcessId (MQCFIN)
The listener CICS task number (parameter identifier:
MQIACF_PROCESS_ID).

Inquire Channel Names (Response)

The response to the Inquire Channel Names
(MQCMD_INQUIRE_CHANNEL_NAMES) command consists of the response
header followed by a single parameter structure giving zero or more names that
match the specified channel name.

This response is supported on all platforms.

Always returned:

ChannelNames

Returned if requested:

None

Response data

ChannelNames (MQCFSL)
Channel names (parameter identifier: MQCACH_CHANNEL_NAMES).

Inquire Channel Status (Response)

The response to the Inquire Channel Status
(MQCMD_INQUIRE_CHANNEL_STATUS) command consists of the response
header followed by:
v The ChannelName structure
v The ChannelInstanceType structure
v The ChannelStatus structure
v The ChannelType structure
v The ConnectionName structure
v The RemoteQMgrName structure
v The StopRequested structure
v The XmitQName structure

which are followed by the requested combination of status attribute parameter
structures. One such message is generated for each channel instance found that
matches the criteria specified on the command.

Always returned:

ChannelInstanceType, ChannelName, ChannelStatus, ChannelType,
ConnectionName, RemoteQMgrName, StopRequested, SubState, XmitQName

Returned if requested:

Batches, BatchSize, BatchSizeIndicator, BuffersReceived, BuffersSent, BytesReceived,
BytesSent, ChannelMonitoring, ChannelStartDate, ChannelStartTime,
CurrentLUWID, CurrentMsgs, CurrentSequenceNumber,
CurrentSharingConversations, ExitTime, InDoubtStatus, LastLUWID, LastMsgDate,
LastMsgTime, LastSequenceNumber, LocalAddress, LongRetriesLeft,
MaxSharingConversations, MCAStatus, MCAUserIdentifier, Msgs, MsgsAvailable,

Data responses to commands

390 WebSphere MQ for z/VSE System Management Guide

NetTime, QMgrName, ShortRetriesLeft, SSLCertRemoteIssuerName,
SSLCertUserId, SSLKeyResetDate, SSLKeyResets, SSLKeyResetTime,
SSLShortPeerName, XQTime

Response data

Batches (MQCFIN)
Number of completed batches (parameter identifier: MQIACH_BATCHES).

BatchSize (MQCFIN)
Negotiated batch size (parameter identifier: MQIACH_BATCH_SIZE).

BatchSizeIndicator (MQCFIL)
Indicator of the number of messages in a batch (parameter identifier:
MQIACH_BATCH_SIZE_INDICATOR). Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value
MQMON_NOT_AVAILABLE is returned.

BuffersReceived (MQCFIN)
Number of buffers received (parameter identifier:
MQIACH_BUFFERS_RCVD).

BuffersSent (MQCFIN)
Number of buffers sent (parameter identifier: MQIACH_BUFFERS_SENT).

BytesReceived (MQCFIN)
Number of bytes received (parameter identifier: MQIACH_BYTES_RCVD).

BytesSent (MQCFIN)
Number of bytes sent (parameter identifier: MQIACH_BYTES_SENT).

ChannelInstanceType (MQCFIN)
Channel instance type (parameter identifier:
MQIACH_CHANNEL_INSTANCE_TYPE).

The value can be:
MQOT_CURRENT_CHANNEL

Current channel status.
MQOT_SAVED_CHANNEL

Saved channel status.

ChannelMonitoring (MQCFIN)
Current level of monitoring data collection for the channel (parameter
identifier: MQIACH_MONITORING_CHANNEL).

The value can be:
MQMON_OFF

Monitoring for the channel is switched off.
MQMON_LOW

Low rate of data collection.
MQMON_MEDIUM

Medium rate of data collection.
MQMON_HIGH

High rate of data collection.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Inquire Channel Status (Response)

Chapter 8. Programmable system management 391

ChannelStartDate (MQCFST)
Date channel started, in the form yyyy-mm-dd (parameter identifier:
MQCACH_CHANNEL_START_DATE).

The maximum length of the string is MQ_CHANNEL_DATE_LENGTH.

ChannelStartTime (MQCFST)
Time channel started, in the form hh.mm.ss (parameter identifier:
MQCACH_CHANNEL_START_TIME).

The maximum length of the string is MQ_CHANNEL_TIME_LENGTH.

ChannelStatus (MQCFIN)
Channel status (parameter identifier: MQIACH_CHANNEL_STATUS). The
value can be:
MQCHS_BINDING

Channel is negotiating with the partner.
MQCHS_STARTING

Channel is waiting to become active.
MQCHS_RUNNING

Channel is transferring or waiting for messages.
MQCHS_PAUSED

Channel is paused.
MQCHS_STOPPING

Channel is in process of stopping.
MQCHS_RETRYING

Channel is reattempting to establish connection.
MQCHS_STOPPED

Channel is stopped.
MQCHS_REQUESTING

Requester channel is requesting connection.
MQCHS_INITIALIZING

Channel is initializing.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE). The
value can be:
MQCHT_SENDER

Sender.
MQCHT_SERVER

Server.
MQCHT_RECEIVER

Receiver.
MQCHT_REQUESTER

Requester.
MQCHT_SVRCONN

Server-connection (for use by clients).

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

CurrentLUWID (MQCFST)
Logical unit of work identifier for in-doubt batch (parameter identifier:
MQCACH_CURRENT_LUWID).

The logical unit of work identifier associated with the current batch, for a
sending or a receiving channel.

Inquire Channel Status (Response)

392 WebSphere MQ for z/VSE System Management Guide

For a sending channel, when the channel is in-doubt it is the LUWID of
the in-doubt batch.

It is updated with the LUWID of the next batch when this is known.

The maximum length is MQ_LUWID_LENGTH.

CurrentMsgs (MQCFIN)
Number of messages in-doubt (parameter identifier:
MQIACH_CURRENT_MSGS). For a sending channel, this is the number of
messages that have been sent in the current batch. It is incremented as
each message is sent, and when the channel becomes in-doubt it is the
number of messages that are in-doubt.

For a receiving channel, it is the number of messages that have been
received in the current batch. It is incremented as each message is received.

The value is reset to zero, for both sending and receiving channels, when
the batch is committed.

CurrentSequenceNumber (MQCFIN)
Sequence number of last message in in-doubt batch (parameter identifier:
MQIACH_CURRENT_SEQ_NUMBER).

For a sending channel, this is the message sequence number of the last
message sent. It is updated as each message is sent, and when the channel
becomes in-doubt it is the message sequence number of the last message in
the in-doubt batch.

For a receiving channel, it is the message sequence number of the last
message that was received. It is updated as each message is received.

CurrentSharingConversations (MQCFIN)
Number of conversations currently active on this channel instance
(parameter identifier: MQIACH_CURRENT_SHARING_CONVS).

This is returned only for TCP/IP server-connection channels.

ExitTime (MQCFIL)
Indicator of the time taken executing user exits per message (parameter
identifier: MQIACH_EXIT_TIME_INDICATOR). Amount of time, in
microseconds, spent processing user exits per message. Where more than
one exit is executed per message, the value is the sum of all the user exit
times for a single message. Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value
MQMON_NOT_AVAILABLE is returned.

InDoubtStatus (MQCFIN)
Whether the channel is currently in doubt (parameter identifier:
MQIACH_INDOUBT_STATUS).

A sending channel is only in doubt while the sending Message Channel
Agent is waiting for an acknowledgement that a batch of messages, which
it has sent, has been successfully received. It is not in doubt at all other
times, including the period during which messages are being sent, but
before an acknowledgement has been requested.

A receiving channel is never in doubt.

The value can be:

Inquire Channel Status (Response)

Chapter 8. Programmable system management 393

MQCHIDS_NOT_INDOUBT
Channel is not in-doubt.

MQCHIDS_INDOUBT
Channel is in-doubt.

LastLUWID (MQCFST)
Logical unit of work identifier for last committed batch (parameter
identifier: MQCACH_LAST_LUWID).

The maximum length is MQ_LUWID_LENGTH.

LastMsgDate (MQCFST)
Date last message was sent, or MQI call was handled, in the form
yyyy-mm-dd (parameter identifier: MQCACH_LAST_MSG_DATE).

The maximum length of the string is MQ_CHANNEL_DATE_LENGTH.

LastMsgTime (MQCFST)
Time last message was sent, or MQI call was handled, in the form
hh.mm.ss (parameter identifier: MQCACH_LAST_MSG_TIME).

The maximum length of the string is MQ_CHANNEL_TIME_LENGTH.

LastSequenceNumber (MQCFIN)
Sequence number of last message in last committed batch (parameter
identifier: MQIACH_LAST_SEQ_NUMBER).

LocalAddress (MQCFST)
Local communications address for the channel (parameter identifier:
MQCACH_LOCAL_ADDRESS).

The maximum length of the string is MQ_LOCAL_ADDRESS_LENGTH.

LongRetriesLeft (MQCFIN)
Number of long retry attempts remaining (parameter identifier:
MQIACH_LONG_RETRIES_LEFT).

MaxSharingConversations (MQCFIN)
Maximum number of conversations permitted on this channel instance.
(parameter identifier: MQIACH_MAX_SHARING_CONVS)

This is returned only for TCP/IP server-connection channels.

MCAStatus (MQCFIN)
MCA status (parameter identifier: MQIACH_MCA_STATUS). The value
can be:
MQMCAS_STOPPED

Message channel agent stopped.
MQMCAS_RUNNING

Message channel agent running.

MCAUserIdentifier (MQCFST)
The user ID used by the MCA (parameter identifier:
MQCACH_MCA_USER_ID). This parameter applies only to
server-connection, receiver, requester, and cluster-receiver channels.

The maximum length of the string is MQ_MCA_USER_ID_LENGTH.

Msgs (MQCFIN)
Number of messages sent or received, or number of MQI calls handled
(parameter identifier: MQIACH_MSGS).

MsgsAvailable (MQCFIN)
Number of messages available (parameter identifier:

Inquire Channel Status (Response)

394 WebSphere MQ for z/VSE System Management Guide

MQIACH_XMITQ_MSGS_AVAILABLE). Number of messages queued on
the transmission queue available to the channel for MQGETs.

Where no measurement is available, the value
MQMON_NOT_AVAILABLE is returned.

NetTime (MQCFIL)
Indicator of the time of a network operation (parameter identifier:
MQIACH_NETWORK_TIME_INDICATOR). Amount of time, in
microseconds, to send a request to the remote end of the channel and
receive a response. Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value
MQMON_NOT_AVAILABLE is returned.

QMgrName (MQCFST)
Name of the queue manager that owns the channel instance (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

RemoteQMgrName (MQCFST)
Name of the remote queue manager, or queue-sharing group (parameter
identifier: MQCA_REMOTE_Q_MGR_NAME).

ShortRetriesLeft (MQCFIN)
Number of short retry attempts remaining (parameter identifier:
MQIACH_SHORT_RETRIES_LEFT).

SSLCertRemoteIssuerName (MQCFST)
The full Distinguished Name of the issuer of the remote certificate. The
issuer is the Certificate Authority that issued the certificate (parameter
identifier: MQCACH_SSL_CERT_ISSUER_NAME).

The maximum length of the string is MQ_SHORT_DNAME_LENGTH.

SSLKeyResetDate (MQCFST)
Date of the previous successful SSL secret key reset, in the form
yyyy-mm-dd (parameter identifier: MQCACH_SSL_KEY_RESET_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

SSLKeyResets (MQCFIN)
SSL secret key resets (parameter identifier: MQIACH_SSL_KEY_RESETS).
The number of successful SSL secret key resets that have occurred for this
channel instance since the channel started. If SSL secret key negotiation is
enabled, the count is incremented whenever a secret key reset is
performed.

SSLKeyResetTime (MQCFST)
Time of the previous successful SSL secret key reset, in the form hh.mm.ss
(parameter identifier: MQCACH_SSL_KEY_RESET_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

SSLShortPeerName (MQCFST)
Distinguished Name of the peer queue manager or client at the other end
of the channel (parameter identifier:
MQCACH_SSL_SHORT_PEER_NAME).

The maximum length is MQ_SHORT_DNAME_LENGTH. This limit might
mean that exceptionally long Distinguished Names are truncated.

Inquire Channel Status (Response)

Chapter 8. Programmable system management 395

StopRequested (MQCFIN)
Whether user stop request is outstanding (parameter identifier:
MQIACH_STOP_REQUESTED).

The value can be:
MQCHSR_STOP_NOT_REQUESTED

User stop request has not been received.
MQCHSR_STOP_REQUESTED

User stop request has been received.

SubState (MQCFIN)
Current action being performed by the channel (parameter identifier:
MQIACH_CHANNEL_SUBSTATE).

The value can be:
MQCHSSTATE_CHADEXIT

Running channel auto-definition exit.
MQCHSSTATE_COMPRESSING

Compressing or decompressing data.
MQCHSSTATE_END_OF_BATCH

End of batch processing.
MQCHSSTATE_HANDSHAKING

SSL handshaking.
MQCHSSTATE_HEARTBEATING

Heartbeating with partner.
MQCHSSTATE_IN_MQGET

Performing MQGET.
MQCHSSTATE_IN_MQI_CALL

Executing an MQ API call, other than an MQPUT or MQGET.
MQCHSSTATE_IN_MQPUT

Performing MQPUT.
MQCHSSTATE_MREXIT

Running retry exit.
MQCHSSTATE_MSGEXIT

Running message exit.
MQCHSSTATE_NAME_SERVER

Nameserver request.
MQCHSSTATE_NET_CONNECTING

Network connect.
MQCHSSTATE_OTHER

Undefined state.
MQCHSSTATE_RCVEXIT

Running receive exit.
MQCHSSTATE_RECEIVING

Network receive.
MQCHSSTATE_RESYNCHING

Resynching with partner.
MQCHSSTATE_SCYEXIT

Running security exit.
MQCHSSTATE_SENDEXIT

Running send exit.
MQCHSSTATE_SENDING

Network send.
MQCHSSTATE_SERIALIZING

Serialized on queue manager access.

Inquire Channel Status (Response)

396 WebSphere MQ for z/VSE System Management Guide

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

XQTime (MQCFIL)
Transmission queue time indicator (parameter identifier:
MQIACH_XMITQ_TIME_INDICATOR). The time, in microseconds, that
messages remained on the transmission queue before being retrieved. The
time is measured from when the message is put onto the transmission
queue until it is retrieved to be sent on the channel and, therefore, includes
any interval caused by a delay in the putting application.

Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value
MQMON_NOT_AVAILABLE is returned.

Inquire Connection (Response)

The response to the Inquire Connection (MQCMD_INQUIRE_CONNECTION)
command consists of the response header followed by the ConnectionId structure
and a set of attribute parameter structures determined by the value of
ConnInfoType in the Inquire command.

If the value of ConnInfoType was MQIACF_CONN_INFO_ALL, there is one
message for each connection found with MQIACF_CONN_INFO_CONN, and n
more messages per connection with MQIACF_CONN_INFO_HANDLE (where n is
the number of objects that the connection has open).

Always returned:

ConnectionId, ConnInfoType

Always returned if ConnInfoType is MQIACF_CONN_INFO_HANDLE:
ObjectName, ObjectType

Returned if requested and ConnInfoType is MQIACF_CONN_INFO_CONN:
ApplTag, ApplType, ChannelName, ConnectionName, ConnectionOptions,
TaskNumber, TransactionId, UOWStartDate, UOWStartTime, UOWState,
UOWType, UserId

Returned if requested and ConnInfoType is MQIACF_CONN_INFO_HANDLE:
HandleState, OpenOptions

Response data

ApplTag (MQCFST)
Application tag (parameter identifier: MQCACF_APPL_TAG).

The maximum length is MQ_APPL_TAG_LENGTH.

ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

The value can be: MQAT_BATCH Application using a batch connection.
MQAT_CICS CICS transaction.

Inquire Channel Status (Response)

Chapter 8. Programmable system management 397

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ConnectionId (MQCFBS)
Connection identifier (parameter identifier: MQBACF_CONNECTION_ID).

The length of the string is MQ_CONNECTION_ID_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

ConnectionOptions (MQCFIL)
Connect options currently in force for the connection (parameter identifier:
MQIACF_CONNECT_OPTIONS).

ConnInfoType (MQCFIN)
Type of information returned (parameter identifier:
MQIACF_CONN_INFO_TYPE).

The value may be:
MQIACF_CONN_INFO_CONN

Generic information for the specified connection.
MQIACF_CONN_INFO_HANDLE

Information pertinent only to those objects opened by the specified
connection.

HandleState (MQCFIN)
State of the handle (parameter identifier: MQIACF_HANDLE_STATE).

The value may be:
MQHSTATE_ACTIVE

An API call from this connection is currently in progress for this
object. If the object is a queue, this condition can arise when an
MQGET WAIT call is in progress.

MQHSTATE_INACTIVE
No API call from this connection is currently in progress for this
object. If the object is a queue, this condition can arise when no
MQGET WAIT call is in progress.

ObjectName (MQCFST)
Object name (parameter identifier: MQCACF_OBJECT_NAME).

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

ObjectType (MQCFIN)
Object type (parameter identifier: MQIACF_OBJECT_TYPE).

The value can be:
MQOT_Q

Queue.
MQOT_NAMELIST

Namelist.
MQOT_Q_MGR

Queue manager.

OpenOptions (MQCFIN)
Open options currently in force for the object for connection (parameter
identifier: MQIACF_OPEN_OPTIONS).

Inquire Channel Status (Response)

398 WebSphere MQ for z/VSE System Management Guide

TaskNumber (MQCFST)
Task number (parameter identifier: MQCACF_TASK_NUMBER).

The CICS task number as a 7-digit string.

The maximum length of the string is MQ_TASK_NUMBER_LENGTH.

TransactionId (MQCFST)
Transaction identifier (parameter identifier:
MQCACF_TRANSACTION_ID).

The 4-character CICS transaction identifier.

The maximum length of the string is MQ_TRANSACTION_ID_LENGTH.

UOWStartDate (MQCFST)
Unit of work creation date (parameter identifier:
MQCACF_UOW_START_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

UOWStartTime (MQCFST)
Unit of work creation time (parameter identifier:
MQCACF_UOW_START_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

UOWState (MQCFIN)
State of the unit of work (parameter identifier: MQIACF_UOW_STATE).

The value can be:
MQUOWST_NONE

There is no unit of work.
MQUOWST_ACTIVE

The unit of work is active.

UOWType (MQCFIN)
Type of external unit of recovery identifier as perceived by the queue
manager (parameter identifier: MQIACF_UOW_TYPE).

The value can be:

MQUOWT_CICS
CICS.

UserId (MQCFST)
User identifier (parameter identifier: MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_MAX_USER_ID_LENGTH.

Inquire Namelist (Response)

The response to the Inquire Namelist (MQCMD_INQUIRE_NAMELIST) command
consists of the response header followed by the NamelistName structure and the
requested combination of attribute parameter structures (where applicable).

If a generic namelist name was specified, one such message is generated for each
namelist found.

This response is supported on all platforms.

Always returned:

NamelistName

Inquire Channel Status (Response)

Chapter 8. Programmable system management 399

Returned if requested:

AlterationDate, AlterationTime, NameCount, NamelistDesc, Names

Response data

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

NameCount (MQCFIN)
Number of Names associated with the namelist (parameter identifier:
MQIA_NAME_COUNT).

NamelistDesc (MQCFST)
Namelist description (parameter identifier: MQCA_NAMELIST_DESC).

The maximum length of the string is MQ_NAMELIST_DESC_LENGTH.

NamelistName (MQCFST)
Namelist name (parameter identifier: MQCA_NAMELIST_NAME).

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Names (MQCFSL)
Namelist names. These are the names associated with the namelist object
(parameter identifier: MQCA_NAMES).

The NameCount attribute indicates how many names are associated with
the namelist object, and the MQCFSL structure StringLength field specifies
the length of each name.

Inquire Namelist Names (Response)

The response to the Inquire Namelist Names
(MQCMD_INQUIRE_NAMELIST_NAMES) command consists of the response
header followed by a single parameter structure giving zero or more names that
match the specified namelist name.

This response is supported on all platforms.

Always returned:

NamelistNames

Returned if requested:

None

Response data
NamelistNames (MQCFSL) Namelist names (parameter identifier:
MQCACF_NAMELIST_NAMES).

Inquire Queue (Response)

The response to the Inquire Queue (MQCMD_INQUIRE_Q) command consists of
the response header followed by the QName structure and the requested

Inquire Namelist (Response)

400 WebSphere MQ for z/VSE System Management Guide

combination of attribute parameter structures. If a generic queue name was
specified, one such message is generated for each queue found.

This PCF is supported on all platforms.

Always returned:

QName

Returned if requested:

AlterationDate, AlterationTime, BaseQName, CICSFileName, CreationDate,
CreationTime, DefinitionType, DefPersistence, InhibitGet, InhibitPut,
MaxGlobalLocks, MaxLocalLocks, MaxMsgLength, MaxQDepth, MaxQTriggers,
MaxQUsers, PropertyControl, QDepthHighEvent, QDepthHighLimit,
QDepthLowEvent, QDepthLowLimit, QDepthMaxEvent, QDesc,
QServiceInterval, QServiceIntervalEvent, QType, QueueAccounting,
QueueMonitoring, QueueStatistics, RemoteQMgrName, RemoteQName,
Shareability, TriggerChannelName, TriggerControl, TriggerData,
TriggerProgramName, TriggerRestart, TriggerTerminalId, TriggerTransactionId,
TriggerType, Usage, XmitQName

Response data

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

This is the name of a queue that is defined to the local queue manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

CICSFileName (MQCFST)
CSD file name for queue messages (parameter identifier:
MQCA_CICS_FILE_NAME).

The maximum length of the string is MQ_CICS_FILE_NAME_LENGTH.

CreationDate (MQCFST)
Queue creation date (parameter identifier: MQCA_CREATION_DATE).

The maximum length of the string is MQ_CREATION_DATE_LENGTH.

CreationTime (MQCFST)
Creation time (parameter identifier: MQCA_CREATION_TIME).

The maximum length of the string is MQ_CREATION_TIME_LENGTH.

DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).
The value can be:

MQQDT_PREDEFINED
Predefined permanent queue.

Inquire Queue (Response)

Chapter 8. Programmable system management 401

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_DEF_PERSISTENCE).
Specifies the default for message-persistence on the queue.

Message persistence determines whether or not messages are preserved
across restarts of the queue manager.

The value can be:

MQPER_PERSISTENT
Default message persistence is persistent.

MQPER_NOT_PERSISTENT
Default message persistence is not persistent.

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value can be:

MQQA_GET_ALLOWED
Get operations are allowed.

MQQA_GET_INHIBITED
Get operations are inhibited.

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

The value can be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

MaxGlobalLocks (MQCFIN)
Buffer size for queue manager to manage concurrent queue access
(parameter identifier: MQIA_MAX_GLOBAL_LOCKS).

MaxLocalLocks (MQCFIN)
Buffer size for applications to manage concurrent queue access (parameter
identifier: MQIA_MAX_LOCAL_LOCKS).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

MaxQTriggers (MQCFIN)
Maximum number of concurrent trigger instances for a particular queue
(parameter identifier: MQIA_MAX_Q_TRIGGERS).

Inquire Queue (Response)

402 WebSphere MQ for z/VSE System Management Guide

MaxQUsers (MQCFIN)
Maximum number of active opens to any particular queue (parameter
identifier: MQIA_Q_USERS).

QDepthHighEvent (MQCFIN)
Controls whether Queue Depth High events are generated (parameter
identifier: MQIA_Q_DEPTH_HIGH_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthHighLimit (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

The threshold against which the queue depth is compared to generate a
Queue Depth High event.

QDepthLowEvent (MQCFIN)
Controls whether Queue Depth Low events are generated (parameter
identifier: MQIA_Q_DEPTH_LOW_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

The threshold against which the queue depth is compared to generate a
Queue Depth Low event.

QDepthMaxEvent (MQCFIN)
Controls whether Queue Full events are generated (parameter identifier:
MQIA_Q_DEPTH_MAX_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

The maximum length of the string is MQ_Q_DESC_LENGTH.

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Inquire Queue (Response)

Chapter 8. Programmable system management 403

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

The service interval used for comparison to generate Queue Service
Interval High and Queue Service Interval OK events.

QServiceIntervalEvent (MQCFIN)
Controls whether Service Interval High or Service Interval OK events are
generated (parameter identifier: MQIA_Q_SERVICE_INTERVAL_EVENT).

The value can be:

MQQSIE_HIGH
Queue Service Interval High events enabled.

MQQSIE_OK
Queue Service Interval OK events enabled.

MQQSIE_NONE
No queue service interval events enabled.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_MODEL
Model queue definition.

MQQT_REMOTE
Local definition of a remote queue.

QueueAccounting (MQCFIN)
Controls the collection of accounting data (parameter identifier:
MQIA_ACCOUNTING_Q).

The value can be:
MQMON_Q_MGR

The collection of accounting data for the queue is performed based
upon the setting of the QueueAccounting parameter on the queue
manager.

MQMON_OFF
Accounting data collection is disabled for the queue.

MQMON_ON
If the value of the queue manager's QueueAccounting parameter is
not MQMON_NONE, accounting data collection is enabled for the
queue.

QueueMonitoring (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_MONITORING_Q).

Specifies whether online monitoring data is to be collected and, if so, the
rate at which the data is collected. The value can be:
MQMON_OFF

Online monitoring data collection is turned offfor this queue.

Inquire Queue (Response)

404 WebSphere MQ for z/VSE System Management Guide

MQMON_Q_MGR
The value of the queue manager's QueueMonitoring parameter is
inherited by the queue. This is the default value.

MQMON_LOW
If the value of the queue manager's QueueMonitoring parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a low rate of data collection, for this queue.

MQMON_MEDIUM
If the value of the queue manager's QueueMonitoring parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a moderate rate of data collection, for this queue.

MQMON_HIGH
If the value of the queue manager's QueueMonitoring parameter is
not MQMON_NONE, online monitoring data collection is turned
on, with a high rate of data collection, for this queue.

QueueStatistics (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_STATISTICS_Q). Specifies whether statistics data collection is
enabled.

The value can be:
MQMON_Q_MGR

The value of the queue manager's QueueStatistics parameter is
inherited by the queue.

MQMON_OFF
Statistics data collection is disabled

MQMON_ON
If the value of the queue manager's QueueMonitoring parameter is
not MQMON_NONE, statistics data collection is enabled.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Shareability (MQCFIN)
Whether queue can be shared (parameter identifier:
MQIA_SHAREABILITY).

The value can be:

MQQA_SHAREABLE
Queue is shareable.

MQQA_NOT_SHAREABLE
Queue is not shareable.

TriggerChannelName (MQCFST)
Channel name for MCA trigger process (parameter identifier:
MQCA_TRIGGER_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Inquire Queue (Response)

Chapter 8. Programmable system management 405

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

The value may be:

MQTC_OFF
Trigger messages not required.

MQTC_ON
Trigger messages required.

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

The maximum length of the string is
MQ_PROCESS_USER_DATA_LENGTH.

TriggerProgramName (MQCFST)
Program name for trigger process (parameter identifier:
MQCA_TRIGGER_PROGRAM_NAME).

The maximum length of the string is
MQ_TRIGGER_PROGRAM_NAME_LENGTH.

TriggerRestart (MQCFIN)
Indicator for the reactivation of a trigger process (parameter identifier:
MQIA_TRIGGER_RESTART).

The value can be:

MQTRIGGER_RESTART_NO
Do not reactivate trigger process.

MQTRIGGER_RESTART_YES
Reactivate trigger process.

TriggerTerminalId (MQCFST)
Terminal identifier for trigger process (parameter identifier:
MQCA_TRIGGER_TERM_ID).

The maximum length of the string is MQ_TRIGGER_TERM_ID_LENGTH.

TriggerTransactionId (MQCFST)
Transaction identifier for trigger process (parameter identifier:
MQCA_TRIGGER_TRANS_ID).

The maximum length of the string is MQ_TRIGGER_TRANS_ID_LENGTH.

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

The value may be:

MQTT_NONE
No trigger messages.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

MQTT_EVERY
Trigger message for every message.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

The value can be:

Inquire Queue (Response)

406 WebSphere MQ for z/VSE System Management Guide

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Inquire Queue Manager (Response)

The response to the Inquire Queue Manager (MQCMD_INQUIRE_Q_MGR)
command consists of the response header followed by the QMgrName structure
and the requested combination of attribute parameter structures.

This response is supported on all platforms.

Always returned:

QMgrName

Returned if requested:

AccountingConnOverride, AccountingInterval, AlterationDate, AlterationTime,
AuthorityEvent, BatchInterfaceAutoStart, BatchInterfaceId,
ChannelAuthenticationRecords, ChannelAutoDef, ChannelAutoDefEvent,
ChannelAutoDefExit, ChannelMonitoring, ChannelStatistics, CodedCharSetId,
CommandInputQName, CommandEvent, CommandLevel,
CommandReplyQName, CommandServerAutoStart,
CommandServerDataConversion, CommandServerDeadLetterQ,
ConfigurationEvent, DeadLetterQName, DistLists, InhibitEvent,
ListenerPortNumber, LocalEvent, MaxGlobalLocks, MaxHandles,
MaxPropertiesLength, MaxLocalLocks, MaxMsgLength, MaxOpenQ,
MaxQDepth, MaxQUsers, MonitorInterval, MonitorQName, MQIAccounting,
MQIStatistics, PerformanceEvent, Platform, QMgrDesc, QueueAccounting,
QueueMonitoring, QueueStatistics, RemoteEvent, SSLEvent,
SSLKeyLibraryMember, SSLKeyLibraryName, SSLResetCount, StartStopEvent,
StatisticsInterval, SyncPoint, SystemLogQName

Response data

AccountingConnOverride (MQCFIN)
Specifies whether applications can override the settings of the
QueueAccounting and MQIAccounting queue manager parameters
(parameter identifier: MQIA_ACCOUNTING_CONN_OVERRIDE).

The value can be:

MQMON_DISABLED
Applications cannot override the settings of the QueueAccounting
and MQIAccounting parameters. This is the queue manager's
initial default value.

MQMON_ENABLED
Applications can override the settings of the QueueAccounting and
MQIAccounting parameters by using the options field of the
MQCNO structure of the MQCONNX API call.

Inquire Queue (Response)

Chapter 8. Programmable system management 407

|

AccountingInterval (MQCFIN)
The time interval, in seconds, at which intermediate accounting records are
written (parameter identifier: MQIA_ACCOUNTING_INTERVAL).

Specify a value in the range 1 through 604 000.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

AuthorityEvent (MQCFIN)
Controls whether authorization (Not Authorized) events are generated
(parameter identifier: MQIA_AUTHORITY_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

BatchInterfaceAutoStart (MQCFIN)
Indicator for the automatic activation of the batch interface (parameter
identifier: MQIA_BATCH_INTERFACE_AUTO).

The value can be:

MQAUTO_START_NO
Do not automatically start the batch interface.

MQAUTO_START_YES
Automatically start the batch interface.

BatchInterfaceId (MQCFST)
Batch interface identifier (parameter identifier:
MQCA_BATCH_INTERFACE_ID).

The maximum length of the string is
MQ_BATCH_INTERFACE_ID_LENGTH.

ChannelAuthenticationRecords (MQCFIN)
Controls whether channel authentication records are checked (parameter
identifier: MQIA_CHLAUTH_RECORDS).

The value can be:
MQCHLA_DISABLED

Channel authentication records are not checked.
MQCHLA_ENABLED

Channel authentication records are checked.

ChannelAutoDef (MQCFIN)
Controls whether receiver and server-connection channels can be
auto-defined (parameter identifier: MQIA_CHANNEL_AUTO_DEF).

The value can be:

MQCHAD_DISABLED
Channel auto-definition disabled

Inquire Queue Manager (Response)

408 WebSphere MQ for z/VSE System Management Guide

|
|
|

|
|
|
|
|

MQCHAD_ENABLED
Channel auto-definition enabled.

ChannelAutoDefEvent (MQCFIN)
Controls whether channel auto-definition events are generated (parameter
identifier: MQIA_CHANNEL_AUTO_DEF_EVENT), when a receiver or
server-connection channel is auto-defined.

The value can be:

MQEVR_DISABLED
Event reporting disabled

MQEVR_ENABLED
Event reporting enabled.

ChannelAutoDefExit (MQCFST)
Channel auto-definition exit name (parameter identifier:
MQCA_CHANNEL_AUTO_DEF_EXIT).

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

ChannelMonitoring (MQCFIN)
Default setting for online monitoring for channels (parameter identifier:
MQIA_MONITORING_CHANNEL).

The value can be:
MQMON_NONE

Online monitoring data collection is turned off for channels
regardless of the setting of their ChannelMonitoring parameter.

MQMON_OFF
Online monitoring data collection is turned off for channels
specifying a value of MQMON_Q_MGR in their
ChannelMonitoring parameter. This is the queue manager's initial
default value.

MQMON_LOW
Online monitoring data collection is turned on, with a low ratio of
data collection, for channels specifying a value of
MQMON_Q_MGR in their ChannelMonitoring parameter.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate
ratio of data collection, for channels specifying a value of
MQMON_Q_MGR in their ChannelMonitoring parameter.

MQMON_HIGH
Online monitoring data collection is turned on, with a high ratio of
data collection, for channels specifying a value of
MQMON_Q_MGR in their ChannelMonitoring parameter.

ChannelStatistics (MQCFIN)
Controls whether statistics data is to be collected for channels (parameter
identifier: MQIA_STATISTICS_CHANNEL).

The value can be:
MQMON_NONE

Statistics data collection is turned off for channels regardless of the
setting of their ChannelStatistics parameter. This is the queue
manager's initial default value.

Inquire Queue Manager (Response)

Chapter 8. Programmable system management 409

MQMON_OFF
Statistics data collection is turned off for channels specifying a
value of MQMON_Q_MGR in their ChannelStatistics parameter.

MQMON_LOW
Statistics data collection is turned on, with a low ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

MQMON_MEDIUM
Statistics data collection is turned on, with a moderate ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

MQMON_HIGH
Statistics data collection is turned on, with a high ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

CodedCharSetId (MQCFIN)
Coded character set identifier (parameter identifier:
MQIA_CODED_CHAR_SET_ID).

CommandEvent (MQCFIN)
Controls whether command events are generated (parameter identifier:
MQIA_COMMAND_EVENT).

The value can be:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.
MQEVR_NO_DISPLAY

Event reporting enabled for all successful commands except
Inquire commands.

CommandInputQName (MQCFST)
Command input queue name (parameter identifier:
MQCA_COMMAND_INPUT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

CommandLevel (MQCFIN)
Command level supported by queue manager (parameter identifier:
MQIA_COMMAND_LEVEL).

For WebSphere MQ for z/VSE, the value is MQCMDL_LEVEL_600.

CommandReplyQName (MQCFST)
MQSC reply queue name (parameter identifier:
MQCA_COMMAND_REPLY_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

CommandServerAutoStart (MQCFIN)
Indicator for the automatic activation of the PCF command server
(parameter identifier: MQIA_CMD_SERVER_AUTO).

The value can be:

MQAUTO_START_NO
Do not automatically start the PCF command server.

MQAUTO_START_YES
Automatically start the PCF command server.

Inquire Queue Manager (Response)

410 WebSphere MQ for z/VSE System Management Guide

CommandServerDataConversion (MQCFIN)
Indicator for the data conversion of PCF messages (parameter identifier
MQIA_CMD_SERVER_CONVERT_MSG).

The value can be:

MQCSRV_CONVERT_NO
Do not convert PCF messages.

MQCSRV_CONVERT_YES
Convert PCF messages.

CommandServerDeadLetterQ (MQCFIN)
Indicator for the storage of undeliverable PCF reply messages (parameter
identifier: MQIA_CMD_SERVER_DLQ_MSG).

The value bay be:

MQCSRV_DLQ_NO
Do not store undeliverable PCF replies to DLQ.

MQCSRV_DLQ_YES
Store undeliverable PCF replies to DLQ.

ConfigurationEvent (MQCFIN)
Controls whether configuration events are generated (parameter identifier:
MQIA_CONFIGURATION_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

DeadLetterQName (MQCFST)
Dead letter (undelivered message) queue name (parameter identifier:
MQCA_DEAD_LETTER_Q_NAME).

Specifies the name of the local queue that is to be used for undelivered
messages. Messages are put on this queue if they cannot be routed to their
correct destination.

The maximum length of the string is MQ_Q_NAME_LENGTH.

DistLists (MQCFIN)
Distribution list support (parameter identifier: MQIA_DIST_LISTS).

For WebSphere MQ for z/VSE, the value is MQDL_NOT_SUPPORTED.

InhibitEvent (MQCFIN)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated
(parameter identifier: MQIA_INHIBIT_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

ListenerPortNumber (MQCFIN)
Port number for TCP/IP Listener process (parameter identifier:
MQIA_LISTENER_PORT_NUMBER).

Inquire Queue Manager (Response)

Chapter 8. Programmable system management 411

LocalEvent (MQCFIN)
Controls whether local error events are generated (parameter identifier:
MQIA_LOCAL_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

MaxGlobalLocks (MQCFIN)
Buffer size for queue manager to manage concurrent queue access
(parameter identifier: MQIA_MAX_GLOBAL_LOCKS).

MaxHandles (MQCFIN)
Maximum number of handles (parameter identifier:
MQIA_MAX_HANDLES).

Specifies the maximum number of MQI connections that will be handled
by the queue manager at any one time.

The value may be in the range 1 through 1000.

MaxLocalLocks (MQCFIN)
Buffer size for applications to manage concurrent queue access (parameter
identifier: MQIA_MAX_LOCAL_LOCKS).

MaxPropertiesLength (MQCFIN)
Maximum priorities length (parameter identifier:
MQIA_MAX_PROPERTIES_LENGTH).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

MaxOpenQ (MQCFIN)
Maximum number of concurrently open queues (parameter identifier:
MQIA_MAX_OPEN_Q).

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

MaxQUsers (MQCFIN)
Maximum number of active opens to any particular queue (parameter
identifier: MQIA_Q_USERS).

MonitorInterval (MQCFIN)
Queue manager housekeeping process interval (parameter identifier:
MQIA_MONITOR_INTERVAL).

MonitorQName (MQCFST)
MQI monitor queue name (parameter identifier:
MQCA_MONITOR_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

MQIAccounting (MQCFIN)
Controls whether accounting information for MQI data is to be collected
(parameter identifier: MQIA_ACCOUNTING_MQI).

The value can be:

Inquire Queue Manager (Response)

412 WebSphere MQ for z/VSE System Management Guide

MQMON_OFF
MQI accounting data collection is disabled. This is the queue
manager's initial default value.

MQMON_ON
MQI accounting data collection is enabled.

MQIStatistics (MQCFIN)
Controls whether statistics monitoring data is to be collected for the queue
manager (parameter identifier: MQIA_STATISTICS_MQI).

The value can be:
MQMON_OFF

Data collection for MQI statistics is disabled. This is the queue
manager's initial default value.

MQMON_ON
Data collection for MQI statistics is enabled.

PerformanceEvent (MQCFIN)
Controls whether performance-related events are generated (parameter
identifier: MQIA_PERFORMANCE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

Platform (MQCFIN)
Platform on which the queue manager resides (parameter identifier:
MQIA_PLATFORM).

For WebSphere MQ for z/VSE, the value is PL_VSE.

QmgrDesc (MQCFST)
Queue manager description (parameter identifier: MQCA_Q_MGR_DESC).

The maximum length of the string is MQ_Q_MGR_DESC_LENGTH.

QMgrName (MQCFST)
Name of local queue manager (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QueueAccounting (MQCFIN)
Controls the collection of accounting (thread-level and queue-level
accounting) data for queues (parameter identifier:
MQIA_ACCOUNTING_Q).

The value can be:
MQMON_NONE

Accounting data collection for queues is disabled. This may not be
overridden by the value of the QueueAccounting parameter on the
queue.

MQMON_OFF
Accounting data collection is disabled for queues specifying a
value of MQMON_Q_MGR in the QueueAccounting parameter.

MQMON_ON
Accounting data collection is enabled for queues specifying a value
of MQMON_Q_MGR in the QueueAccounting parameter.

Inquire Queue Manager (Response)

Chapter 8. Programmable system management 413

QueueMonitoring (MQCFIN)
Default setting for online monitoring for queues (parameter identifier:
MQIA_MONITORING_Q).

If the QueueMonitoring queue attribute is set to MQMON_Q_MGR, this
attribute specifies the value which is assumed by the channel. The value
can be:
MQMON_OFF

Online monitoring data collection is turned off. This is the queue
manager's initial default value.

MQMON_NONE
Online monitoring data collection is turned off for queues
regardless of the setting of their QueueMonitoring attribute.

MQMON_LOW
Online monitoring data collection is turned on, with a low ratio of
data collection.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate
ratio of data collection.

MQMON_HIGH
Online monitoring data collection is turned on, with a high ratio of
data collection.

QueueStatistics (MQCFIN)
Controls whether statistics data is to be collected for queues (parameter
identifier: MQIA_STATISTICS_Q).

The value can be:
MQMON_NONE

Statistics data collection is turned off for queues regardless of the
setting of their QueueStatistics parameter. This is the queue
manager's initial default value.

MQMON_OFF
Statistics data collection is turned off for queues specifying a value
of MQMON_Q_MGR in their QueueStatistics parameter.

MQMON_ON
Statistics data collection is turned on for queues specifying a value
of MQMON_Q_MGR in their QueueStatistics parameter.

RemoteEvent (MQCFIN)
Controls whether remote error events are generated (parameter identifier:
MQIA_REMOTE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

SSLEvent (MQCFIN)
Controls whether SSL events are generated (parameter identifier:
MQIA_SSL_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

Inquire Queue Manager (Response)

414 WebSphere MQ for z/VSE System Management Guide

MQEVR_ENABLED
Event reporting enabled.

SSLKeyLibraryMember (MQCFST)
SSL key library member name (parameter identifier:
MQCA_SSL_KEY_MEMBER).

The maximum length of the string is MQ_SSL_KEY_MEMBER_LENGTH.

SSLKeyLibraryName (MQCFST)
SSL key library name (parameter identifier: MQCA_SSL_KEY_LIBRARY).

The maximum length of the string is MQ_SSL_KEY_LIBRARY_LENGTH.

SSLKeyResetCount (MQCFIN)
SSL key reset count (parameter identifier: MQIA_SSL_RESET_COUNT).

Specifies when SSL channel MCAs that initiate communication reset the
secret key used for encryption on the channel. The value of this parameter
represents the total number of unencrypted bytes that are sent and
received on the channel before the secret key is renegotiated. This number
of bytes includes control information sent by the MCA. The secret key is
renegotiated when (whichever occurs first): The total number of
unencrypted bytes sent and received by the initiating channel MCA
exceeds the specified value, or, If channel heartbeats are enabled, before
data is sent or received following a channel heartbeat.

Specify a value in the range zero through 999 999 999. A value of zero, the
queue manager's initial default value, signifies that secret keys are never
renegotiated.

StartStopEvent (MQCFIN)
Controls whether start and stop events are generated (parameter identifier:
MQIA_START_STOP_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

StatisticsInterval (MQCFIN)
The time interval, in seconds, at which statistics monitoring data is written
to the monitoring queue (parameter identifier:
MQIA_STATISTICS_INTERVAL).

Specify a value in the range 1 through 604 000.

SyncPoint (MQCFIN)
Syncpoint availability (parameter identifier: MQIA_SYNCPOINT).

For WebSphere MQ for z/VSE, the value is MQSP_NOT_AVAILABLE.

SystemLogQName
System log queue name (parameter identifier:
MQCA_SYSTEM_LOG_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Inquire Queue Manager (Response)

Chapter 8. Programmable system management 415

Inquire Queue Names (Response)

The response to the Inquire Queue Names (MQCMD_INQUIRE_Q_NAMES)
command consists of the response header followed by a single parameter structure
giving zero or more names that match the specified queue name.

This response is supported on all platforms.

Always returned:

QNames

Returned if requested:

None

Response data

QNames (MQCFSL)
Queue names (parameter identifier: MQCACF_Q_NAMES).

Inquire Queue Status (Response)
The response to the Inquire Queue Status (MQCMD_INQUIRE_Q_STATUS)
command consists of the response header followed by the QName structure and a
set of attribute parameter structures determined by the value of StatusType in the
Inquire command.

Always returned:

QName, StatusType

Possible values of StatusType are:
MQIACF_Q_STATUS

Returns status information relating to queues.
MQIACF_Q_HANDLE

Returns status information relating to the handles that are accessing the
queues.

Returned if requested and StatusType is MQIACF_Q_STATUS:
CurrentQDepth, LastGetDate, LastGetTime, LastPutDate, LastPutTime,
OldestMsgAge, OnQTime, OpenInputCount, OpenOutputCount,
QueueMonitoring, UncommittedMsgs

Returned if requested and StatusType is MQIACF_Q_HANDLE:
ApplTag, ApplType, ChannelName, ConnectionName, HandleState,
OpenBrowse, OpenInputType, OpenInquire, OpenOptions, OpenSet,
TaskNumber, TransactionId, UOWType, UserIdentifier

Response data for MQIACF_Q_STATUS:

CurrentQDepth (MQCFIN)
Current queue depth (parameter identifier: MQIA_CURRENT_Q_DEPTH).

LastGetDate (MQCFST)
Date on which the last message was destructively read from the queue
(parameter identifier: MQCACF_LAST_GET_DATE).

The date, in the form yyyy-mm-dd, on which the last message was
successfully read from the queue. The date is returned in the time zone in
which the queue manager is running.

Inquire Queue Names (Response)

416 WebSphere MQ for z/VSE System Management Guide

The maximum length of the string is MQ_DATE_LENGTH.

LastGetTime (MQCFST)
Time at which the last message was destructively read from the queue
(parameter identifier: MQCACF_LAST_GET_TIME).

The time, in the form hh.mm.ss, at which the last message was successfully
read from the queue. The time is returned in the time zone in which the
queue manager is running.

The maximum length of the string is MQ_TIME_LENGTH.

LastPutDate (MQCFST)
Date on which the last message was successfully put to the queue
(parameter identifier: MQCACF_LAST_PUT_DATE).

The date, in the form yyyy-mm-dd, on which the last message was
successfully put to the queue. The date is returned in the time zone in
which the queue manager is running.

The maximum length of the string is MQ_DATE_LENGTH.

LastPutTime (MQCFST)
Time at which the last message was successfully put to the queue
(parameter identifier: MQCACF_LAST_PUT_TIME).

The time, in the form hh.mm.ss, at which the last message was successfully
put to the queue. The time is returned in the time zone in which the queue
manager is running.

The maximum length of the string is MQ_TIME_LENGTH.

OldestMsgAge (MQCFIN)
Age of the oldest message (parameter identifier:
MQIACF_OLDEST_MSG_AGE).

Age, in seconds, of the oldest message on the queue.

If the value is unavailable, MQMON_NOT_AVAILABLE is returned. If the
queue is empty, 0 is returned. If the value exceeds 999 999 999, it is
returned as 999 999 999.

OnQTime (MQCFIL)
Indicator of the time that messages remain on the queue (parameter
identifier: MQIACH_Q_TIME_INDICATOR). Amount of time, in
microseconds, that a message spent on the queue. Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value
MQMON_NOT_AVAILABLE is returned. If the value exceeds 999 999 999,
it is returned as 999 999 999.

OpenInputCount (MQCFIN)
Open input count (parameter identifier: MQIA_OPEN_INPUT_COUNT).

OpenOutputCount (MQCFIN)
Open output count (parameter identifier:
MQIA_OPEN_OUTPUT_COUNT).

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Inquire Queue Status (Response)

Chapter 8. Programmable system management 417

QueueMonitoring (MQCFIN)
Current level of monitoring data collection for the queue (parameter
identifier: MQIA_MONITORING_Q). The value can be:
MQMON_OFF

Monitoring for the queue is switched off.
MQMON_LOW

Low rate of data collection.
MQMON_MEDIUM

Medium rate of data collection.
MQMON_HIGH

High rate of data collection.

StatusType (MQCFIN)
Queue status type (parameter identifier: MQIACF_Q_STATUS_TYPE).
Specifies the type of status information.

UncommittedMsgs (MQCFIN)
Whether there are uncommitted messages (parameter identifier:
MQIACF_UNCOMMITTED_MSGS). The value can be:
MQQSUM_YES

There are uncommitted messages.
MQQSUM_NO

There are no uncommitted messages.

Response data for MQIACF_Q_HANDLE:

ApplTag (MQCFST)
Open application tag (parameter identifier: MQCACF_APPL_TAG).

The maximum length of the string is MQ_APPL_TAG_LENGTH.

ApplType (MQCFIN)
Open application type (parameter identifier: MQIA_APPL_TYPE).

The value can be:
MQAT_BATCH

Application using a batch connection.
MQAT_CICS

A CICS transaction.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Conname (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

HandleState (MQCFIN)
State of the handle (parameter identifier: MQIACF_HANDLE_STATE). The
value may be:

MQHSTATE_ACTIVE
An API call from a connection is currently in progress for this
object. For a queue, this condition can arise when an MQGET
WAIT call is in progress.

Inquire Queue Status (Response)

418 WebSphere MQ for z/VSE System Management Guide

MQHSTATE_INACTIVE
No API call from a connection is currently in progress for this
object. For a queue, this condition can arise when no MQGET
WAIT call is in progress.

OpenBrowse (MQCFIN)
Open browse (parameter identifier: MQIACF_OPEN_BROWSE). The value
can be:
MQQSO_YES

The queue is open for browsing.
MQQSO_NO

The queue is not open for browsing.

OpenInputType (MQCFIN)
Open input type (parameter identifier: MQIACF_OPEN_INPUT_TYPE).
The value can be:
MQQSO_NO

The queue is not open for inputing.
MQQSO_SHARED

The queue is open for shared input.
MQQSO_EXCLUSIVE

The queue is open for exclusive input.

OpenInquire (MQCFIN)
Open inquire (parameter identifier: MQIACF_OPEN_INQUIRE). The value
can be:
MQQSO_YES

The queue is open for inquiring.
MQQSO_NO

The queue is not open for inquiring.

OpenOptions (MQCFIN)
Open options currently in force for the queue (parameter identifier:
MQIACF_OPEN_OPTIONS).

OpenOutput (MQCFIN)
Open output (parameter identifier: MQIACF_OPEN_OUTPUT). The value
can be:
MQQSO_YES

The queue is open for outputting.
MQQSO_NO

The queue is not open for outputting.

OpenSet (MQCFIN)
Open set (parameter identifier: MQIACF_OPEN_SET). The value can be:
MQQSO_YES

The queue is open for setting.
MQQSO_NO

The queue is not open for setting.

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

StatusType (MQCFIN)
Queue status type (parameter identifier: MQIACF_Q_STATUS_TYPE).
Specifies the type of status information.

Inquire Queue Status (Response)

Chapter 8. Programmable system management 419

TaskNumber (MQCFST)
CICS task number (parameter identifier: MQCACF_TASK_NUMBER). A
7-digit CICS task number as a 7-digit string with leading zero.

The length of the string is MQ_TASK_NUMBER_LENGTH.

TransactionId (MQCFST)
CICS transaction identifier (parameter identifier:
MQCACF_TRANSACTION_ID). A 4character CICS transaction identifier.

The length of the string is MQ_TRANSACTION_ID_LENGTH.

UOWType (MQCFIN)
Type of external unit of recovery identifier as perceived by the queue
manager (parameter identifier: MQIACF_UOW_TYPE).

The value can be:
v MQUOWT_CICS

UserIdentifier (MQCFST)
Open application username (parameter identifier:
MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_MAX_USER_ID_LENGTH.

Inquire Service (Response)

The response to the Inquire Service (MQCMD_INQUIRE_SERVICE) command
consists of the response header followed by the ServiceName structure and the
requested combination of attribute parameter structures. If a generic service name
was specified, one such message is generated for each service found.

Always returned:

ServiceName

Returned if requested:

AlterationDate, AlterationTime, ServiceDesc, ServiceType, StartArguments,
StartCommand, StartMode, StopArguments, StopCommand

Response data

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date on which the information was last altered in the form
yyyy-mm-dd.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME). The
time at which the information was last altered in the form hh.mm.ss.

ServiceDesc (MQCFST)
Description of service definition (parameter identifier:
MQCA_SERVICE_DESC).

The maximum length of the string is MQ_SERVICE_DESC_LENGTH.

ServiceName (MQCFST)
Name of service definition (parameter identifier:
MQCA_SERVICE_NAME).

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Inquire Queue Status (Response)

420 WebSphere MQ for z/VSE System Management Guide

ServiceType (MQCFIN)
The mode in which the service is to run (parameter identifier:
MQIA_SERVICE_TYPE). The value can be:
MQSVC_TYPE_SERVER

Only one instance of the service can be executed at a time, with the
status of the service made available by the Inquire Service Status
command.

MQSVC_TYPE_COMMAND
Multiple instances of the service can be started.

StartArguments (MQCFST)
Arguments to be passed in CICS COMMAREA when the CICS transaction
is started (parameter identifier: MQCA_SERVICE_START_ARGS).

The maximum length of the string is 100.

StartCommand (MQCFST)
CICS transaction to start the service (parameter identifier:
MQCA_SERVICE_START_COMMAND).

The CICS transaction to start the service.

The maximum length of the string is 4.

StartMode (MQCFIN)
Service mode (parameter identifier: MQIA_SERVICE_CONTROL).

Specifies how the service is to be started and stopped. The value can be:
MQSVC_CONTROL_MANUAL

The service is not to be started automatically or stopped
automatically. It is to be controlled by user command.

MQSVC_CONTROL_Q_MGR
The service is to be started and stopped at the same time as the
queue manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The service is to be started at the same time as the queue manager
is started, but is not requested to stop when the queue manager is
stopped.

StopArguments (MQCFST)
The arguments to be passed to the stop program when instructed to stop
the service (parameter identifier: MQCA_SERVICE_STOP_ARGS).

The maximum length of the string is 100.

StopCommand (MQCFST)
CICS transaction to stop the service (parameter identifier:
MQCA_SERVICE_STOP_COMMAND).

The maximum length of the string is 4.

Inquire Service Status (Response)

The response to the Inquire Service Status (MQCMD_INQUIRE_SERVICE_STATUS)
command consists of the response header followed by the ServiceName structure
and the requested combination of attribute parameter structures. If a generic
service name was specified, one such message is generated for each RUNNING
service found.

Always returned:

ServiceName

Inquire Service (Response)

Chapter 8. Programmable system management 421

Returned if requested:

ProcessId, ServiceDesc, StartArguments, StartCommand, StartDate, StartMode,
StartTime, Status, StopArguments, StopCommand

Response data

ProcessId (MQCFIN)
Process identifier (parameter identifier: MQIACF_PROCESS_ID). The CICS
task number associated with the service.

ServiceDesc (MQCFST)
Description of service definition (parameter identifier:
MQCACH_SERVICE_DESC).

The maximum length of the string is MQ_SERVICE_DESC_LENGTH.

ServiceName (MQCFST)
Name of the service definition (parameter identifier:
MQCA_SERVICE_NAME). The maximum length of the string is
MQ_OBJECT_NAME_LENGTH.

StartArguments (MQCFST)
Arguments to be passed to the program on startup (parameter identifier:
MQCA_SERVICE_START_ARGS). The maximum length of the string is
100.

StartCommand (MQCFST)
CICS transaction code used to start service (parameter identifier:
MQCA_SERVICE_START_COMMAND).

The maximum length of the string is 4.

StartDate (MQCFST)
Start date (parameter identifier: MQCACF_SERVICE_START_DATE). The
date, in the form yyyy-mm-dd, on which the service was started.

The maximum length of the string is MQ_DATE_LENGTH

StartMode (MQCFIN) Service mode (parameter identifier:
MQIACH_SERVICE_CONTROL). How the service is to be started and
stopped. The value can be:
MQSVC_CONTROL_MANUAL

The service is not to be started automatically or stopped
automatically. It is to be controlled by user command.

MQSVC_CONTROL_Q_MGR
The service is to be started and stopped at the same time as the
queue manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The service is to be started at the same time as the queue manager
is started, but is not request to stop when the queue manager is
stopped.

StartTime (MQCFST)
Start date (parameter identifier: MQCACF_SERVICE_START_TIME).

The time, in the form hh.mm.ss, at which the service was started.

The maximum length of the string is MQ_TIME_LENGTH.

Status (MQCFIN)
Service status (parameter identifier: MQIACH_SERVICE_STATUS). The
current status of the service provided. The value can be:

Inquire Service Status (Response)

422 WebSphere MQ for z/VSE System Management Guide

MQSVC_STATUS_RUNNING
The service is running.

StopArguments (MQCFST)
Specifies the arguments to be passed to the stop program when instructed
to stop the service (parameter identifier: MQCA_SERVICE_STOP_ARGS).

The maximum length of the string is MQ_SERVICE_ARGS_LENGTH.

StopCommand (MQCFST)
CICS transaction code to stop service (parameter identifier:
MQCA_SERVICE_STOP_COMMAND).

The maximum length of the string is 4.

Inquire Subscription (Response)

The response to the Inquire Subscription (MQCMD_INQUIRE_SUBSCRIPTION)
command consists of the response header followed by the SubId and SubName
structures, and the requested combination of attribute parameter structures (where
applicable).

Always returned:

SubID, SubName

Returned if requested:

Destination, DestinationClass, DestinationCorrelId, DestinationQueueManager,
PublishedAccountingToken, Expiry, PublishedApplicationIdentifier,
PublishPriority, PublishSuscribeProperties, SubscriptionScope, TopicObject,
TopicString, Userdata, VariableUser

Response data

AlterationDate (MQCFST)
The date of the most recent MQSUB or Change Subscription command that
modified the properties of the subscription: yyyy-mm-dd.

AlterationTime (MQCFST)
The time of the most recent MQSUB or Change Subscription command that
modified the properties of the subscription: hh:mm:ss.

CreationDate (MQCFST)
The creation date of the subscription, in the form yyyy-mm-dd.

CreationTime (MQCFST)
The creation time of the subscription, in the form hh.mm.ss.

Destination (MQCFST)
Destination (parameter identifier: MQCACF_DESTINATION). Specifies the
name of the alias, local, remote, or cluster queue to which messages for
this subscription are put.

DestinationClass (MQCFIN)
Destination class (parameter identifier: MQIACF_DESTINATION_CLASS).
Whether the destination is managed. The value can be:
MQDC_MANAGED

The destination is managed.
MQDC_PROVIDED

The destination queue is as specified in the Destination field.

Inquire Service Status (Response)

Chapter 8. Programmable system management 423

|

|
|
|
|

|

|

|

|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

DestinationCorrelId (MQCFBS)
Destination correlation identifier (parameter identifier:
MQBACF_DESTINATION_CORREL_ID). A correlation identifier that is
placed in the CorrelId field of the message descriptor for all the messages
sent to this subscription. The maximum length is
MQ_CORREL_ID_LENGTH.

DestinationQueueManager (MQCFST)
Destination queue manager (parameter identifier:
MQCACF_DESTINATION_Q_MGR). Specifies the name of the destination
queue manager, either local or remote, to which messages for the
subscription are forwarded. The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Durable (MQCFIN)
Whether this subscription is a durable subscription (parameter identifier:
MQIACF_DURABLE_SUBSCRIPTION).

The value can be:

MQSUB_DURABLE_YES
The subscription persists, even if the creating application
disconnects from the queue manager or issues an MQCLOSE call
for the subscription. The queue manager reinstates the subscription
during restart.

MQSUB_DURABLE_NO
The subscription is non-durable. The queue manager removes the
subscription when the creating application disconnects from the
queue manager or issues an MQCLOSE call for the subscription. If
the subscription has a destination class (DESTCLAS) of
MANAGED, the queue manager removes any messages not yet
consumed when it closes the subscription.

Expiry (MQCFIN)
The time, in tenths of a second, at which a subscription expires after its
creation date and time (parameter identifier: MQIACF_EXPIRY). A value of
unlimited means that the subscription never expires. After a subscription
has expired it becomes eligible to be discarded by the queue manager and
receives no further publications.

PublishedAccountingToken (MQCFBS)
Value of the accounting token used in the AccountingToken field of the
message descriptor (parameter identifier:
MQBACF_ACCOUNTING_TOKEN). The maximum length of the string is
MQ_ACCOUNTING_TOKEN_LENGTH.

PublishedApplicationidentifier (MQCFST)
Value of the application identity data used in the ApplIdentityData field of
the message descriptor (parameter identifier:
MQCACF_APPL_IDENTITY_DATA. The maximum length of the string is
MQ_APPL_IDENTITY_DATA_LENGTH.

PublishPriority (MQCFIN)
The priority of messages sent to this subscription (parameter identifier:
MQIACF_PUB_PRIORITY). The value can be:

MQPRI_PRIORITY_AS_PUBLISHED
The priority of messages sent to this subscription is taken from that
supplied to the published message. This is the supplied default
value.

Inquire Subscription (Response)

424 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

PublishSubscribeProperties (MQCFIN)
Specifies how publish/subscribe related message properties are added to
messages sent to this subscription (parameter identifier:
MQIACF_PUBSUB_PROPERTIES). The value can be:
MQPSPROP_NONE

Publish/suscribe properties are not added to the messages. This is
the supplied default value.

MQPSPROP_MSGPROP
Publish/suscribe properties are added as PCF attributes.

Reqonly(MQCFIN)
Indicates whether the subscriber polls for updates using the MQSUBRQ
API call, or whether all publications are delivered to this subscription
(parameter identifier: MQIACF_REQUEST_ONLY).
MQRU_PUBLISH_ALL

All publications on the topic are delivered to this subscription.
MQRU_PUBLISH_ON_REQUEST

Publications are only delivered to this subscription in response to
an MQSUBRQ API

SubscriptionScope (MQCFST)
The scope of a subscription.

z/VSE always returns MQTSCOPE_QMGR.

SubscriptionType(MQCFIN)
Indicates how the subscription was created.

The value can be:
MQSUBTYPE_ADMIN

Created using DEF SUB MQSC or PCF command. This SUBTYPE
also indicates that a subscription has been modified using an
administrative command.

MQSUBTYPE_API
Created using an MQSUB API request.

SubscriptionUser (MQCFST)
The userid that 'owns' this subscription. This is either the userid associated
with the creator of the subscription, or, if subscription takeover is
permitted, the userid which last took over the subscription (parameter
identifier: MQCACF_SUB_USER_ID). The maximum length of the string is
MQ_USER_ID_LENGTH.

TopicObject (MQCFST)
The name of a previously defined topic object from which is obtained the
topic name for the subscription (parameter identifier: MQCACF_TOPIC).
The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

TopicString (MQCFST)
The resolved topic string (parameter identifier: MQCA_TOPIC_STRING).
The maximum length of the string is MQ_TOPIC_STR_LENGTH 256.

VariableUser (MQCFIN)
Specifies whether a user other than the one who created the subscription,
that is, the user shown in SubscriptionUser can take over the ownership of
the subscription (parameter identifier: MQIACF_VARIABLE_USER_ID).

The value can be:
MQVU_ANY_USER

Any user can take over the ownership. This is the supplied default
value.

Inquire Subscription (Response)

Chapter 8. Programmable system management 425

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

MQVU_FIXED_USER
No other user can take over the ownership.

Inquire Subscription Status (Response)

The response to the Inquire Subscription Status (MQCMD_INQUIRE_SBSTATUS)
command consists of the response header followed by the SubId and SubName
structures, and the requested combination of attribute parameter structures (where
applicable).

Always returned:

None

Returned if requested:

ActiveConnection, Durable, LastPublishDate, LastPublishTime, NumberMsgs,
ResumeDate, ResumeTime, SubID, SubType

Response data

ActiveConnection (MQCFST)
Returns the ConnId of the HConn that currently has this subscription
open.

Durable (MQCFIN)
A durable subscription is not deleted when the creating application closes
its subscription handle.

LastPublishDate (MQCFST)
The date on which a message was last published to the destination
specified by this subscription.

LastPublishTime (MQCFST)
The time on which a message was last published to the destination
specified by this subscription.

NumberMsgs (MQCFIN)
The number of messages put to the destination specified by this
subscription.

ResumeDate (MQCFST)
The date of the most recent MQSUB API call that connected to the
subscription.

ResumeTime (MQCFST)
The time of the most recent MQSUB API call that connected to the
subscription.

SubID (MQCFBS)
The internal, unique key identifying a subscription.

SubType (MQCFIN)
Indicates how the subscription was created (parameter identifier:
MQIA_SUB_TYPE).
MQSUBTYPE_ADMIN

Created using the DEF SUB MQSC or Create SubscriptionPCF
command. This Subtype also indicates that a subscription has been
modified using an administrative command.

MQSUBTYPE_API
Created using an MQSUB API call.

Inquire Subscription (Response)

426 WebSphere MQ for z/VSE System Management Guide

|
|

|

|
|
|
|

|

|

|

|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

Inquire Topic (Response)

The response to the Inquire Topic (MQCMD_INQUIRE_TOPIC) command consists
of the response header followed by the TopicName structure (and on z/OS only,
the QSG Disposition structure), and the requested combination of attribute
parameter structures (where applicable).

Always returned:

TopicName, TopicType

Returned if requested:

AlterationDate, AlterationTime, DefPersistence, DefPriority, DefPutResponse,
DurableModelQName, DurableSubscriptions, InhibitPublications,
InhibitSubscriptions, NonDurableModelQName, NonPersistentMsgDelivery,
PersistentMsgDelivery

Response data

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered, in the form yyyy-mm-dd.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered, in the form hh.mm.ss.

DefPersistence (MQCFIN)
Default persistence (parameter identifier:
MQIA_TOPIC_DEF_PERSISTENCE). The value can be:
MQPER_PERSISTENCE_AS_PARENT

The default persistence is based on the setting of the closest parent
administrative topic object in the topic tree.

MQPER_PERSISTENT
Message is persistent.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY). Always
returns 0 on z/VSE.

DurableModelQName (MQCFST)
Name of the model queue to be used for durable managed subscriptions
(parameter identifier: MQCA_MODEL_DURABLE_Q).

The maximum length of the string is MQ_Q_NAME_LENGTH.

DurableSubscriptions (MQCFIN)
Whether applications are permitted to make durable subscriptions
(parameter identifier: MQIA_DURABLE_SUB). The value can be:
MQSUB_DURABLE_AS_PARENT

Whether durable subscriptions are permitted is based on the
setting of the closest parent administrative topic object in the topic
tree.

MQSUB_DURABLE
Durable subscriptions are permitted.

MQSUB_NON_DURABLE
Durable subscriptions are not permitted.

Inquire Topic (Response)

Chapter 8. Programmable system management 427

|

|
|
|
|

|

|

|

|
|
|
|

|

|
|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

InhibitPublications (MQCFIN)
Whether publications are allowed for this topic (parameter identifier:
MQIA_INHIBIT_PUB). The value can be:
MQTA_PUB_INHIBITED

Publications are inhibited for this topic.
MQTA_PUB_ALLOWED

Publications are allowed for this topic.

InhibitSubscriptions (MQCFIN)
Whether subscriptions are allowed for this topic (parameter identifier:
MQIA_INHIBIT_SUB). The value can be:
MQTA_SUB_INHIBITED

Subscriptions are inhibited for this topic.
MQTA_SUB_ALLOWED

Subscriptions are allowed for this topic.

NonDurableModelQName (MQCFST)
Name of the model queue to be used for non-durable managed
subscriptions (parameter identifier: MQCA_MODEL_NON_DURABLE_Q).
The maximum length of the string is MQ_Q_NAME_LENGTH.

PersistentMsgDelivery (MQCFIN)
The delivery mechanism for persistent messages published to this topic
(parameter identifier: MQIA_PM_DELIVERY). The value can be:
MQDLV_AS_PARENT

The delivery mechanism used is based on the setting of the first
parent administrative node found in the topic tree relating to this
topic.

MQDLV_ALL
Persistent messages must be delivered to all subscribers,
irrespective of durability for the MQPUT call to report success. If a
delivery failure to any subscriber occurs, no other subscribers
receive the message and the MQPUT fails.

MQDLV_ALL_DUR
Persistent messages must be delivered to all durable subscribers.
Failure to deliver a persistent message to any non-durable
subscribers does not return an error to the MQPUT call. If a
delivery failure to a durable subscriber occurs, no other subscribers
receive the message and the MQPUT fails.

MQDLV_ALL_AVAIL
Persistent messages are delivered to all subscribers that can accept
the message. Failure to deliver the message to any subscriber does
not prevent other subscribers from receiving the message.

PublicationScope (MQCFIN)
Whether this queue manager propagates publications to queue managers
as part of a hierarchy or as part of a publish/subscribe cluster (parameter
identifier: MQIA_PUB_SCOPE). The value can be:
MQSCOPE_AS_PARENT

Whether this queue manager propagates publications to queue
managers as part of a hierarchy or as part of a publish/subscribe
cluster is based on the setting of the first parent administrative
node found in the topic tree relating to this topic.
MQSCOPE_AS_PARENT is the default value for this parameter if
no value is specified.

MQSCOPE_QMGR
Publications for this topic are not propagated to other queue
managers.

Inquire Topic (Response)

428 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

You can override this behavior on a publication-by-publication basis, using
MQPMO_SCOPE_QMGR on the Put Message Options.

Note: In z/VSE, publication can only be made to the local queue manager.

QMgrName (MQCFST)
Name of local queue manager (parameter identifier:
MQCA_CLUSTER_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH

SubscriptionScope (MQCFIN)
Whether this queue manager propagates subscriptions to queue managers
as part of a hierarchy or as part of a publish/subscribe cluster (parameter
identifier: MQIA_SUB_SCOPE). The value can be:

MQSCOPE_AS_PARENT
Whether this queue manager propagates subscriptions to queue
managers as part of a hierarchy or as part of a publish/subscribe
cluster is based on the setting of the first parent administrative
node found in the topic tree relating to this topic.
MQSCOPE_AS_PARENT is the default value for this parameter if
no value is specified.

MQSCOPE_QMGR
Subscriptions for this topic are not propagated to other queue
managers.

TopicDesc (MQCFST)
Topic description (parameter identifier: MQCA_TOPIC_DESC).

The maximum length is MQ_TOPIC_DESC_LENGTH.

TopicName (MQCFST)
Topic object name (parameter identifier: MQCA_TOPIC_NAME).

The maximum length of the string is MQ_TOPIC_NAME_LENGTH

TopicString (MQCFST)
The topic string (parameter identifier: MQCA_TOPIC_STRING).

The “/” character within this string has special meaning. It delimits the
elements in the topic tree. A topic string can start with the “/” character
but is not required to. A string starting with the “/” character is not the
same as the string which starts without the “/” character. A topic string
cannot end with the "/" character.

The maximum length of the string is 256.

TopicType (MQCFIN)
Whether this object is a local or cluster topic (parameter identifier:
MQIA_TOPIC_TYPE). The value can be:

MQTOPT_LOCAL
This object is a local topic.

Inquire Topic Names (Response)

The response to the Inquire Topic Names (MQCMD_INQUIRE_TOPIC_NAMES)
command consists of the response header followed by a parameter structure giving
zero or more names that match the specified administrative topic name.

Always returned:

Inquire Topic (Response)

Chapter 8. Programmable system management 429

|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|

|
|

|

|
|

|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

|

TopicNames

Returned if requested:

None

Response data

TopicNames (MQCFSL)
List of topic object names (parameter identifier:
MQCACF_TOPIC_NAMES).

Inquire Topic Status (Response)

The response of the Inquire topic (MQCMD_INQUIRE_TOPIC_STATUS) command
consists of the response header, followed by the TopicString structure, and the
requested combination of attribute parameter structures (where applicable).

Always returned:

TopicString

Returned if requested and StatusType is MQIACF_TOPIC_STATUS:

DefPriority, DefaultPutResponse, DefPersistence, DurableSubscriptions,
InhibitPublications, InhibitSubscriptions, AdminTopicName,
DurableModelQName, NonDurableModelQName,
PersistentMessageDelivery,RetainedPublication, PublishCount,
SubscriptionScope, SubscriptionCount, PublicationScope

Returned if requested and StatusType is MQIACF_TOPIC_SUB:

SubscriptionId, SubscriptionUserId, Durable, SubscriptionType, ResumeDate,
ResumeTime, LastMessageDate, LastMessageTime, NumberOfMessages,
ActiveConnection

Returned if requested and StatusType is MQIACF_TOPIC_PUB:

LastPublishDate, LastPublishTime, NumberOfPublishes, ActiveConnection

Response data (TOPIC_STATUS)

DefPersistence (MQCFIN)
Default persistence (parameter identifier:
MQIA_TOPIC_DEF_PERSISTENCE).

Returned value:

MQPER_PERSISTENT
Message is persistent.

z/VSE messages are always persistent.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

Shows the resolved default priority of messages published to the topic.

DurableSubscriptions (MQCFIN)
Whether applications are permitted to make durable subscriptions
(parameter identifier: MQIA_DURABLE_SUB).

Returned value:

Inquire Topic Names (Response)

430 WebSphere MQ for z/VSE System Management Guide

|

|

|

|

|
|
|

|

|
|
|

|

|

|

|
|
|
|
|

|

|
|
|

|

|

|

|
|
|

|

|
|

|

|
|

|

|
|
|

|

MQSUB_DURABLE_ALLOWED
Durable subscriptions are permitted.

MQSUB_DURABLE_INHIBITED
Durable subscriptions are not permitted.

InhibitPublications (MQCFIN)
Whether publications are allowed for this topic (parameter identifier:
MQIA_INHIBIT_PUB).

Returned value:
MQTA_PUB_INHIBITED

Publications are inhibited for this topic.
MQTA_PUB_ALLOWED

Publications are allowed for this topic.

InhibitSubscriptions (MQCFIN)
Whether subscriptions are allowed for this topic (parameter identifier:
MQIA_INHIBIT_SUB).

Returned value:
MQTA_SUB_INHIBITED

Subscriptions are inhibited for this topic.
MQTA_SUB_ALLOWED

Subscriptions are allowed for this topic.

AdminTopicName (MQCFST)
Topic object name (parameter identifier: MQCA_ADMIN_TOPIC_NAME).

If the topic is an admin-node, the command displays the associated topic
object name containing the node configuration. If the field is not an
admin-node the command displays a blank.

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

DurableModelQName (MQCFST)
The name of the model queue used for managed durable subscriptions
(parameter identifier: MQCA_MODEL_DURABLE_Q).

Shows the resolved value of the name of the model queue to be used for
durable subscriptions that request the queue manager to manage the
destination of publications.

The maximum length of the string is MQ_Q_NAME_LENGTH.

NonDurableModelQName (MQCFST)
The name of the model queue for managed non-durable subscriptions
(parameter identifier: MQCA_MODEL_NON_DURABLE_Q).

The maximum length of the string is MQ_Q_NAME_LENGTH.

PersistentMessageDelivery (MQCFIN)
Delivery mechanism for persistent messages published to this topic
(parameter identifier: MQIA_PM_DELIVERY).

Returned value:
MQDLV_ALL

Persistent messages must be delivered to all subscribers,
irrespective of durability, for the MQPUT call to report success. If a
delivery failure to any subscriber occurs, no other subscribers
receive the message and the MQPUT call fails.

MQDLV_ALL_DUR
Persistent messages must be delivered to all durable subscribers.
Failure to deliver a persistent message to any non-durable

Inquire Topic Status (Response)

Chapter 8. Programmable system management 431

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

subscribers does not return an error to the MQPUT call. If a
delivery failure to a durable subscriber occurs, no subscribers
receive the message and the MQPUT call fails.

MQDLV_ALL_AVAIL
Persistent messages are delivered to all subscribers that can accept
the message. Failure to deliver the message to any subscriber does
not prevent other subscribers from receiving the message.

RetainedPublication (MQCFIN)
Whether there is a retained publication for this topic (parameter identifier:
MQIACF_RETAINED_PUBLICATION).

Returned value:
MQQSO_YES

There is a retained publication for this topic.
MQQSO_NO

There is no retained publication for this topic.

PublishCount (MQCFIN)
Publish count (parameter identifier: MQIA_PUB_COUNT).

The number of applications currently publishing to the topic.

SubscriptionCount (MQCFIN)
Subscription count (parameter identifier: MQIA_SUB_COUNT).

The number of subscribers for this topic string, including durable
subscribers who are not currently connected.

SubscriptionScope (MQCFIN)
Determines whether this queue manager propagates subscriptions for this
topic to queue managers as part of a hierarchy or as part of a
publish/subscribe cluster (parameter identifier: MQIA_SUB_SCOPE).

Returned value:
MQSCOPE_QMGR

The queue manager does not propagate subscriptions for this topic
to other queue managers.

PublicationScope (MQCFIN)
Determines whether this queue manager propagates publications for this
topic to queue managers as part of a hierarchy or as part of a
publish/subscribe cluster (parameter identifier: MQIA_PUB_SCOPE).

Returned value:

MQSCOPE_QMGR
The queue manager does not propagate publications for this topic
to other queue managers.

Response data (TOPIC_STATUS_SUB)

SubscriptionId (MQCFBS)
Subscription identifier (parameter identifier: MQBACF_SUB_ID).

The queue manager assigns SubscriptionId as an all time unique identifier
for this subscription.

The maximum length of the string is MQ_CORREL_ID_LENGTH.

SubscriptionUserId (MQCFST)
The user ID that owns this subscription (parameter identifier:
MQCACF_SUB_USER_ID).

Inquire Topic Status (Response)

432 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|

|
|

|
|

|

|
|
|

The maximum length of the string is MQ_USER_ID_LENGTH.

Durable (MQCFIN)
Whether this subscription is a durable subscription (parameter identifier:
MQIACF_DURABLE_SUBSCRIPTION).
MQSUB_DURABLE_YES

The subscription persists, even if the creating application
disconnects from the queue manager or issues an MQCLOSE call
for the subscription. The queue manager reinstates the subscription
during restart.

MQSUB_DURABLE_NO
The subscription is non-durable. The queue manager removes the
subscription when the creating application disconnects from the
queue manager or issues an MQCLOSE call for the subscription. If
the subscription has a destination class (DESTCLAS) of
MANAGED, the queue manager removes any messages not yet
consumed when it closes the subscription.

SubscriptionType (MQCFIN)
The type of subscription (parameter identifier: MQIACF_SUB_TYPE).

The value can be:
MQSUBTYPE_ADMIN
MQSUBTYPE_API

ResumeDate (MQCFST)
Date of the most recent MQSUB call that connected to this subscription
(parameter identifier: MQCA_RESUME_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

ResumeTime (MQCFST)
Time of the most recent MQSUB call that connected to this subscription
(parameter identifier: MQCA_RESUME_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

LastMessageDate (MQCFST)
Date on which an MQPUT call last sent a message to this subscription. The
queue manager updates the date field after the MQPUT call successfully
puts a message to the destination specified by this subscription (parameter
identifier: MQCACF_LAST_MSG_DATE). The maximum length of the
string is MQ_DATE_LENGTH. Note that an MQSUBRQ call updates this
value.

LastMessageTime (MQCFST)
Time at which an MQPUT call last sent a message to this subscription. The
queue manager updates the time field after the MQPUT call successfully
puts a message to the destination specified by this subscription (parameter
identifier: MQCACF_LAST_MSG_TIME). The maximum length of the
string is MQ_TIME_LENGTH. Note that an MQSUBRQ call updates this
value.

NumberOfMessages (MQCFIN)
Number of messages put to the destination specified by this subscription
(parameter identifier: MQIACF_MESSAGE_COUNT). Note that an
MQSUBRQ call updates this value.

ActiveConnection (MQCFBS)
The currently active ConnectionId (CONNID) that opened this subscription
(parameter identifier: MQBACF_CONNECTION_ID).

Inquire Topic Status (Response)

Chapter 8. Programmable system management 433

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

The maximum length of the string is MQ_CONNECTION_ID_LENGTH.

Response data (TOPIC_STATUS_PUB)

LastPublicationDate (MQCFST)
Date on which this publisher last sent a message (parameter identifier:
MQCACF_LAST_PUB_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

LastPublicationTime(MQCFST)
Time at which this publisher last sent a message (parameter identifier:
MQCACF_LAST_PUB_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

NumberOfPublishes(MQCFIN)
Number of publishes made by this publisher (parameter identifier:
MQIACF_PUBLISH_COUNT).

ActiveConnection (MQCFBS)
The currently active ConnectionId (CONNID) associated with the handle
that has this topic open for publish (parameter identifier:
MQBACF_CONNECTION_ID).

Accounting and statistics messages
Accounting and statistics messages are generated intermittently by queue
managers to record information about the MQI operations performed by
WebSphere MQ applications, or to record information about the activities occurring
in a WebSphere MQ system.

Accounting messages
Accounting messages are used to record information about the MQI
operations performed by WebSphere MQ applications.

Statistics messages
Statistics messages are used to record information about the activities
occurring in a WebSphere MQ system.

Accounting and statistics messages are delivered to two system queues. Users or
user applications can retrieve messages from these system queues and use the
recorded information for various tasks such as resource charging or system
monitoring.

Accounting messages
Accounting messages are used to record information about the MQI operations
performed by WebSphere MQ applications. Every accounting message contains one
or more records. A record is a PCF structure that holds information about a single
activity performed by an application.

An accounting message is a WebSphere MQ message, formatted in PCF. When an
application disconnects from a queue manager, an accounting message is generated
and delivered to the system accounting queue
(SYSTEM.ADMIN.ACCOUNTING.QUEUE). For long running WebSphere MQ
applications, intermediate accounting messages are generated as follows:
v When the time since the connection was established exceeds the configured

interval.

Inquire Topic Status (Response)

434 WebSphere MQ for z/VSE System Management Guide

|

|

|
|
|

|

|
|
|

|

|
|
|

|
|
|
|

|

v When the time since the last intermediate accounting message exceeds the
configured interval.

The information contained within accounting messages can be used for the
following:
v Account for application resource use.
v Record application activity.
v Detect problems in your queue manager network.
v Assist in determining the causes of problems in your queue manager network.
v Improve the efficiency of your queue manager network.
v Familiarize yourself with the running of your queue manager network.
v Confirm your queue manager network is running correctly.

Accounting messages types
There are two categories of accounting message, as follows:

MQI accounting messages
MQI accounting messages contain information relating to the number of
MQI requests executed using a connection to a queue manager.

Queue accounting messages
Queue accounting messages contain information relating to the number of
MQI requests executed using connections to a queue manager, with respect
to specific queues.

Each queue accounting message can contain up to 100 records, with every record
relating to an activity performed by the application with respect to a specific
queue.

Controlling accounting messages
The collection of accounting information is controlled by a set of queue manager,
and queue attributes.

Collecting MQI accounting information
The collection of MQI accounting information is controlled by the queue
manager attribute, ACCTMQI. To change the value of this attribute you
can use the MQSC command, ALTER QMGR, and specify the parameter,
ACCTMQI. This parameter can have the following values:
ON MQI accounting information is collected for every connection to

the queue manager.
OFF MQI accounting information is not collected. This is the default

value.

For example, to enable MQI accounting information collection use the
following MQSC command: ALTER QMGR ACCTMQI(ON)

Collecting queue accounting information
The collection of queue accounting information is controlled by the queue attribute,
ACCTQ, and the queue manager attribute, ACCTQ. To change the value of the
queue attribute, you can use the MQSC command, ALTER QLOCAL and specify
the parameter ACCTQ.

The queue attribute, ACCTQ, can have the following values:
ON Queue accounting information for this queue is collected for every

connection to the queue manager that opens the queue.
OFF Queue accounting information for this queue is not collected.

Accounting messages

Chapter 8. Programmable system management 435

QMGR
The collection of queue accounting information for this queue is controlled
according to the value of the queue manager attribute, ACCTQ. This is the
default value.

To enable accounting information collection for the queue, Q1, use the following
MQSC command:
ALTER QLOCAL(Q1) ACCTQ(ON)

The queue manager attribute, ACCTQ, can have the following values:
ON Queue accounting information is collected for queues that have the queue

attribute ACCTQ set as QMGR.
OFF Queue accounting information is not collected for queues that have the

queue attribute ACCTQ set as QMGR. This is the default value.
NONE

The collection of queue accounting information is disabled for all queues,
regardless of the queue attribute ACCTQ.To enable accounting information
collection for the queue, Q1, use the following MQSC command:
ALTER QLOCAL(Q1) ACCTQ(ON)

To enable accounting information collection for all queues that specify the queue
attribute ACCTQ as QMGR, use the following MQSC command:
ALTER QMGR ACCTQ(ON)

If the queue manager attribute, ACCTQ, is set to NONE, the collection of queue
accounting information is disabled for all queues, regardless of the queue attribute
ACCTQ.

Controlling accounting information collection using MQCONNX
The collection of both MQI and queue accounting information can also be modified
at the connection level by specifying the ConnectOpts parameter on the
MQCONNX call. By altering the value of ConnectOpts, it is possible to override
the effective value of the queue manager attributes ACCTMQI and ACCTQ.

ConnectOpts can have the following values:

MQCNO_ACCOUNTING_MQI_ENABLED
If the value of the queue manager attribute ACCTMQI is specified as OFF,
then MQI accounting is enabled for this connection. This is equivalent of
the queue manager attribute ACCTMQI being specified as ON. If the value
of the queue manager attribute ACCTMQI is not specified as OFF, then
this attribute has no effect.

MQCNO_ACCOUNTING_MQI_DISABLED
If the value of the queue manager attribute ACCTMQI is specified as ON,
then MQI accounting is disabled for this connection. This is equivalent of
the queue manager attribute ACCTMQI being specified as OFF. If the value
of the queue manager attribute ACCTMQI is not specified as ON, then this
attribute has no effect.

MQCNO_ACCOUNTING_Q_ENABLED
If the value of the queue manager attribute ACCTQ is specified as OFF,
then queue accounting is enabled for this connection. All queues with
ACCTQ specified as QMGR, are enabled for queue accounting. This is
equivalent of the queue manager attribute ACCTQ being specified as ON.
If the value of the queue manager attribute ACCTQ is not specified as OFF,
then this attribute has no effect.

Accounting messages

436 WebSphere MQ for z/VSE System Management Guide

MQCNO_ACCOUNTING_Q_DISABLED
If the value of the queue manager attribute ACCTQ is specified as ON,
queue accounting is disabled for this connection. This is equivalent of the
queue manager attribute ACCTQ being specified as OFF. If the value of the
queue manager attribute ACCTQ is not specified as ON, then this attribute
has no effect.

These overrides are disabled by default. To enable them, set the queue
manager attribute ACCTCONO to ENABLED. To enable accounting
overrides per connection use the following MQSC command:
ALTER QMGR ACCTCONO(ENABLED)

Generating accounting messages
Accounting messages are generated upon the disconnection of the application from
the queue manager.

Intermediate accounting messages are also written for long running WebSphere
MQ applications when the interval since the connection was established or since
the last intermediate accounting message that was written exceeds the configured
interval. The queue manager attribute, ACCTINT, specifies the time, in seconds,
after which intermediate accounting messages can be automatically written.
Accounting messages are only generated when the application interacts with the
queue manager, so applications that remain connected to the queue manager for
long periods without executing MQI requests will not generate accounting
messages until the execution of the first MQI request following the completion of
the accounting interval.

The default accounting interval is 1800 seconds (30 minutes). For example, to
change the accounting interval to 900 seconds (15 minutes) use the following
MQSC command:
ALTER QMGR ACCTINT(900)

WebSphere MQ for z/VSE allows a minimum accounting interval of 10 seconds. A
value less than 10 is ignored and 10 seconds is used.

Format of accounting messages
Accounting messages are constructed as a set of PCF fields that consist of the
following:

A message descriptor
An accounting message MQMD (message descriptor).

Accounting message data
v An accounting message MQCFH (PCF header).
v Accounting message data that is always returned.
v Accounting message data that is returned if available.

The accounting message MQCFH (PCF header) contains information about the
application, and the interval for which the accounting data was recorded.

Accounting message data is comprised of PCF parameters that store the accounting
information. The content of accounting messages depends on the message category
as follows:

MQI accounting message
MQI accounting message data consists of a number of PCF parameters, but
no PCF groups.

Accounting messages

Chapter 8. Programmable system management 437

The parameters contained in MQI accounting message data are described
in "MQI accounting message data" below.

Queue accounting message
Queue accounting message data consists of a number of PCF parameters,
and between one and one hundred QAccountingData PCF groups.

There is one QAccountingData PCF group for every queue that had
accounting data collected. If an application accesses more than 100 queues,
multiple accounting messages are generated. Each message has the
SeqNumber in the MQCFH (PCF header) updated accordingly, and the last
message in the sequence has the Control parameter in the MQCFH
specified as MQCFC_LAST.

The parameters contained in queue accounting message data are described
in “Queue accounting message data” on page 453.

Statistics messages
Statistics messages are used to record information about the activities occurring in
a WebSphere MQ system. Statistics messages are WebSphere MQ messages,
formatted in PCF, that are delivered to the system queue
(SYSTEM.ADMIN.STATISTICS.QUEUE) at configured intervals.

The information contained within statistics messages can be used for the following:
v Account for application resource use.
v Record application activity.
v Capacity planning.
v Detect problems in your queue manager network.
v Assist in determining the causes of problems in your queue manager network.
v Improve the efficiency of your queue manager network.
v Familiarize yourself with the running of your queue manager network.
v Confirm your queue manager network is running correctly.

Statistics message types
The various types of statistics message follow:

MQI statistics messages
MQI statistics messages contain information relating to the number of MQI
requests executed during a configured interval. For example, the
information can be the number of MQI commands executed by a queue
manager.

Queue statistics messages
Queue statistics messages contain information relating to the activity of a
queue during a configured interval. The information includes the number
of messages put on, and retrieved from the queue, and the total number of
bytes processed by a queue.

Each queue statistics message can contain up to 100 records, with each
record relating to the activity per queue for which statistics were collected.

Channel statistics messages
Channel statistics messages contain information relating to the activity of a
channel during a configured interval. For example the information could
be the number of messages transferred by the channel, or the number of
bytes transferred by the channel.

Each channel statistics message contains up to 100 records, with each
record relating to the activity per channel for which statistics was collected.

Accounting messages

438 WebSphere MQ for z/VSE System Management Guide

Controlling statistics messaging: The collection of statistics data is controlled by
queue manager, queue, and channel attributes.

Collecting MQI statistics information
The collection of MQI statistics information is controlled by the queue manager
attribute, STATMQI. To change the value of this queue manager attribute, you can
use the MQSC command, ALTER QMGR and specify the parameter STATMQI.
STATMQI can have the following values:
ON MQI statistics information is collected for every connection to the queue

manager.
OFF MQI statistics information is not collected. This is the default value.

For example, to enable MQI statistics, use the following MQSC command:
ALTER QMGR STATMQI(ON)

Collecting queue statistics information
Queue statistics information collection can be enabled or disabled for individual
queues, or for multiple queues. To control individual queues, the queue attribute
STATQ must be set to enable or disable queue statistic information collection. To
control many queues together, queue statistics information collection can be
enabled or disabled at the queue manager level using the queue manager attribute
STATQ. For all queues that have the queue attribute STATQ specified with the
value, QMGR, queue statistics information collection is controlled at the queue
manager level.

To change the value of the queue attribute STATQ, you can use the MQSC
command, ALTER QLOCAL and specify the parameter STATQ. To change the
value of the queue manager attribute STATQ, you can use the MQSC command,
ALTER QMGR and specify the parameter STATQ.

The queue attribute, STATQ, can have the following values:

ON Queue statistics information is collected for every connection to the queue
manager that opens the queue.

OFF Queue statistics information for this queue is not collected.

QMGR
The collection of queue statistics information for this queue is controlled
according to the value of the queue manager attribute, STATQ. This is the
default value.

The queue manager attribute, STATQ, can have the following values:

ON Queue statistics information is collected for queues that have the queue
attribute STATQ set as QMGR

OFF Queue statistics information is not collected for queues that have the queue
attribute STATQ set as QMGR. This is the default value.

NONE
The collection of queue statistics information is disabled for all queues,
regardless of the queue attribute STATQ.

To enable statistics information collection for the queue, Q1, use the following
MQSC command:
ALTER QLOCAL(Q1) STATQ(ON)

Statistics messages

Chapter 8. Programmable system management 439

To enable statistics information collection for all queues that specify the queue
attribute STATQ as QMGR, use the following MQSC command:
ALTER QMGR STATQ(ON)

If the queue manager attribute, STATQ, is set to NONE, the collection of queue
statistics information is disabled for all queues, regardless of the queue attribute
STATQ.

Collecting channel statistics information
Channel statistics information collection can be enabled or disabled for individual
channels, or for multiple channels. To control individual channels, the channel
attribute STATCHL must be set to enable or disable channel statistic information
collection. To control many channels together, channel statistics information
collection can be enabled or disabled at the queue manager level using the queue
manager attribute STATCHL. For all channels that have the channel attribute
STATCHL specified with the value, QMGR, channel statistics information collection
is controlled at the queue manager level.

Channel statistics information collection can be set to one of the three monitoring
levels, low, medium or high. This is set at either object level, or at the queue
manager level. The choice of which level to use is dependant on your system.
Collecting statistics information data may require the execution of some relatively
expensive instructions, so in order to reduce the impact of channel statistics
information collection, the medium and low monitoring options measure a sample
of the data at regular intervals rather than collecting data all the time. The
following table summarizes the levels available with channel statistics information
collection:

Level Description Usage

Low Measure a small sample of the data at
regular intervals.

For channel objects that process a
high volume of messages.

Medium Measure a sample of the data, at regular
intervals.

For most channel objects.

High Measure all data, at regular intervals. For channels that process only a
few messages per second, on
which the most current
information is important.

To change the value of the channel attribute STATCHL, you can use the MQSC
command, ALTER CHANNEL and specify the parameter STATCHL.

To change the value of the queue manager attribute STATCHL, you can use the
MQSC command, ALTER QMGR and specify the parameter STATCHL. The
channel attribute, STATCHL, can have the following values:

LOW Channel statistics information is collected with a low level of detail.

MEDIUM
Channel statistics information is collected with a medium level of detail.

HIGH Channel statistics information is collected with a high level of detail.

OFF Channel statistics information is not collected for this channel. This is the
default value.

Statistics messages

440 WebSphere MQ for z/VSE System Management Guide

QMGR
The channel attribute is set as QMGR. The collection of statistics
information for this channel is controlled by the value of the queue
manager attribute, STATCHL.

The queue manager attribute, STATCHL, can have the following values:

LOW Channel statistics information is collected with a low level of detail, for all
channels that have the channel attribute STATCHL set as QMGR.

MEDIUM
Channel statistics information is collected with a medium level of detail,
for all channels that have the channel attribute STATCHL set as QMGR.

HIGH Channel statistics information is collected with a high level of detail, for all
channels that have the channel attribute STATCHL set as QMGR.

OFF Channel statistics information is not collected for all channels that have the
channel attribute STATCHL set as QMGR. This is the default value.

NONE
The collection of channel statistics information is disabled for all channel,
regardless of the channel attribute STATCHL.

For example, to enable statistics information collection, with a medium level of
detail, for the sender channel QM1.TO.QM2, use the following MQSC command:
ALTER CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) STATCHL(MEDIUM)

To enable statistics information collection, at a medium level of detail, for all
channels that specify the channel attribute STATCHL as QMGR, use the following
MQSC command:
ALTER QMGR STATCHL(MEDIUM)

Generating statistics messages
Statistics messages are generated at configured intervals, and when a queue
manager shuts down in a controlled fashion.

The configured interval is controlled by the STATINT queue manager attribute.
STATINT specifies the interval, in seconds, between the generation of statistics
messages. The default statistics interval is 1800 seconds (30 minutes). To change the
statistics interval you can you the MQSC command ALTER QMGR and specify the
STATINT parameter. For example, to change the statistics interval to 900 seconds
(15 minutes) use the following MQSC command:
ALTER QMGR STATINT(900)

WebSphere MQ for z/VSE allows a minimum statistics interval of 10 seconds. A
value less than 10 is ignored and 10 seconds is used.

Format of statistics messages
Statistics messages are constructed as a set of PCF fields that consist of the
following:

A message descriptor
v A statistics message MQMD (message descriptor).

Accounting message data
v A statistics message MQCFH (PCF header).
v Statistics message data that is always returned.
v Statistics message data that is returned if available.

Statistics messages

Chapter 8. Programmable system management 441

The statistics message MQCFH (PCF header) contains information about the
interval for which the statistics data was recorded.

Statistics message data is comprised of PCF parameters that store the statistics
information. The content of statistics messages depends on the message category as
follows:

MQI statistics message
MQI statistics message data consists of a number of PCF parameters, but
no PCF groups. The parameters contained in MQI statistics message data
are described in “MQI statistics message data” on page 463.

Queue statistics message
Queue statistics message data consists of a number of PCF parameters, and
between one and one hundred QStatisticsData PCF groups.

There is one QStatisticsData PCF group for every queue was active in the
interval. If more than 100 queues were active in the interval, multiple
statistics messages are generated. Each message has the SeqNumber in the
MQCFH (PCF header) updated accordingly, and the last message in the
sequence has the Control parameter in the MQCFH specified as
MQCFC_LAST.

The parameters contained in queue statistics message data are described in
“Queue statistics message data” on page 470.

Channel statistics message
Channel statistics message data consists of a number of PCF parameters,
and between one and one hundred ChlStatisticsData PCF groups.

There is one ChlStatisticsData PCF group for every channel that was active
in the interval. If more than 100 channels were active in the interval,
multiple statistics messages are generated. Each message has the
SeqNumber in the MQCFH (PCF header) updated accordingly, and the last
message in the sequence has the Control parameter in the MQCFH
specified as MQCFC_LAST.

The parameters contained in channel statistics message data are described
in “Channel statistics message data” on page 476.

Accounting and statistics message reference
This section provides an overview of the accounting and statistics message format.
It describes the information returned in accounting messages, and in statistics
messages.

Accounting and statistics message format
Accounting and statistics message messages are standard WebSphere MQ messages
containing a message descriptor and message data. The message data contains
information about the MQI operations performed by WebSphere MQ applications,
or information about the activities occurring in a WebSphere MQ system.

Accounting and statistics messages contain the following:

A message descriptor
v An MQMD structure.

Message data
v A PCF header (MQCFH).
v Accounting or statistics message data that is always returned.
v Accounting or statistics message data that is returned if available.

Statistics messages

442 WebSphere MQ for z/VSE System Management Guide

Accounting and statistics message MQMD (message descriptor)
The parameters and values in the message descriptor of accounting and
statistics message are the same as in the message descriptor of event
messages, with the following exception:

Format
Description

Format name of message data.
Datatype

MQCHAR8.
Value

MQFMT_ADMIN
Admin message.

Description
Format name of message data.

Datatype
MQCHAR8.

Value

MQFMT_ADMIN
Admin message.

Some of the parameters contained in the message descriptor of accounting
and statistics message contain fixed data supplied by the queue manager
that generated the message.

The parameters that make up the MQMD structure of event messages are
described in the System Management Guide. The MQMD also specifies the
name of the queue manager (truncated to 28 characters) that put the
message, and the date and time when the message was put on the
accounting, or statistics, queue.

Message data in accounting and statistics messages
The message data in accounting and statistics messages is based on the
programmable command format (PCF), which is used in PCF command inquiries
and responses.

The message data in accounting and statistics messages consists of two parts:
v A PCF header (MQCFH).
v An accounting or statistics report.

Accounting and statistics message MQCFH (PCF header)
The message header of accounting and statistics messages is an MQCFH
structure. The parameters and values in the message header of accounting
and statistics message are the same as in the message header of event
messages, with the following exceptions:

Command
Description

Command identifier. This identifies the accounting or
statistics message category.

Datatype
MQLONG.

Values:
MQCMD_ACCOUNTING_MQI

MQI accounting message.
MQCMD_ACCOUNTING_Q

Queue accounting message.

Accounting and statistics message reference

Chapter 8. Programmable system management 443

MQCMD_STATISTICS_MQI
MQI statistics message.

MQCMD_STATISTICS_Q
Queue statistics message.

MQCMD_STATISTICS_CHANNEL
Channel statistics message.

Version
Description

Structure version number.
Datatype

MQLONG.
Value:

MQCFH_VERSION_3
Version-3 for accounting and statistics messages.

Accounting and statistics message data
The content of accounting and statistics message data is dependent on the category
of the accounting or statistics message, as follows:

MQI accounting message
MQI accounting message data consists of a number of PCF parameters, but
no PCF groups.

The parameters contained in MQI accounting message data are described
in "MQI accounting message data" below.

Queue accounting message
Queue accounting message data consists of a number of PCF parameters,
and between one and one hundred QAccountingData PCF groups.

The parameters contained in queue accounting message data are described
in "Queue accounting message data" below.

MQI statistics message
MQI statistics message data consists of a number of PCF parameters, but
no PCF groups.

The parameters contained in MQI statistics message data are described in
"MQI statistics message data" below.

Queue statistics message
Queue statistics message data consists of a number of PCF parameters and
between one and one hundred QStatisticsData PCF groups.

The parameters contained in queue statistics message data are described in
"Queue statistics message data" below.

Channel statistics message
Channel statistics message data consists of a number of PCF parameters,
and between one and one hundred ChlStatisticsData PCF groups.

The parameters contained in channel statistics message data are described
below.

MQI accounting message data
Message name

MQI accounting message.
System queue

SYSTEM.ADMIN.ACCOUNTING.QUEUE.

Accounting message data

Accounting and statistics message reference

444 WebSphere MQ for z/VSE System Management Guide

QueueManager
Description

The name of the queue manager.
Identifier

MQCA_Q_MGR_NAME.
Datatype

MQCFST.
Maximum length

MQ_Q_MGR_NAME_LENGTH.
Returned

Always.

IntervalStartDate
Description

The date of the start of the monitoring period.
Identifier

MQCAMO_START_DATE.
Datatype

MQCFST.
Maximum length

MQ_DATE_LENGTH.
Returned

Always.

IntervalStartTime
Description

The time of the start of the monitoring period.
Identifier

MQCAMO_START_TIME.
Datatype

MQCFST.
Maximum length

MQ_TIME_LENGTH.
Returned

Always.

IntervalEndDate
Description

The date of the end of the monitoring period.
Identifier

MQCAMO_END_DATE.
Datatype

MQCFST.
Maximum length

MQ_DATE_LENGTH.
Returned

Always.

IntervalEndTime
Description

The time of the end of the monitoring period.
Identifier

MQCAMO_END_TIME.
Datatype

MQCFST.
Maximum length

MQ_TIME_LENGTH.

Accounting and statistics message reference

Chapter 8. Programmable system management 445

Returned
Always.

CommandLevel
Description

The queue manager command level.
Identifier

MQIA_COMMAND_LEVEL.
Datatype

MQCFIN.
Returned

Always.

ConnectionId
Description

The connection identifier for the WebSphere MQ
connection.

Identifier
MQBACF_CONNECTION_ID.

Datatype
MQCFBS.

Maximum length
MQ_CONNECTION_ID_LENGTH.

Returned
Always.

SeqNumber
Description

The sequence number. This value is incremented for each
subsequent record for long running connections.

Identifier
MQIACF_SEQUENCE_NUMBER.

Datatype
MQCFIN.

Returned
Always.

ApplicationName
Description

The name of the application.
Identifier

MQCACF_APPL_NAME.
Datatype

MQCFST.
Maximum length

MQ_APPL_NAME_LENGTH.
Returned

Always.

ApplicationPid
Description

The operating system process identifier of the application.
Identifier

MQIACF_PROCESS_ID.
Datatype

MQCFIN.
Returned

Always.

Accounting and statistics message reference

446 WebSphere MQ for z/VSE System Management Guide

ApplicationTid
Description

The WebSphere MQ thread identifier of the connection in
the application.

Identifier
MQIACF_THREAD_ID.

Datatype
MQCFIN.

Returned
Always.

UserId
Description

The user identifier context of the application.
Identifier

MQCACF_USER_IDENTIFIER.
Datatype

MQCFST.
Maximum length

MQ_USER_ID_LENGTH.
Returned

Always.

ConnDate
Description

Date of MQCONN operation.
Identifier

MQCAMO_CONN_DATE.
Datatype

MQCFST.
Maximum length

MQ_DATE_LENGTH
Returned

When available.

ConnTime
Description

Time of MQCONN operation.
Identifier

MQCAMO_CONN_TIME.
Datatype

MQCFST.
Maximum length

MQ_TIME_LENGTH.
Returned

When available.

ConnName
Description

Connection name for client connection.
Identifier

MQCAMO_CONNECTION_NAME.
Datatype

MQCFST.
Maximum length

MQ_CONN_NAME_LENGTH.
Returned

When available.

Accounting and statistics message reference

Chapter 8. Programmable system management 447

ChannelName
Description

Channel name for client connection.
Identifier

MQCACH_CHANNEL_NAME.
Datatype

MQCFST.
Maximum length

MQ_CHANNEL_NAME_LENGTH.
Returned

When available.

DiscDate
Description

Date of MQDISC operation.
Identifier

MQCAMO_DISC_DATE.
Datatype

MQCFST.
Maximum length

MQ_DATE_LENGTH.
Returned

When available.

DiscTime
Description

Time of MQDISC operation.
Identifier

MQCAMO_DISC_TIME.
Datatype

MQCFST.
Maximum length

MQ_TIME_LENGTH.
Returned

When available.

DiscType
Description

Type of disconnect.
Identifier

MQIAMO_DISC_TYPE.
Datatype

MQCFIN.
Values

The possible values are:
MQDISCONNECT_TYPE_NORMAL

Requested by application.
MQDISCONNECT_TYPE_IMPLICIT

Abnormal application termination.
MQDISCONNECT_TYPE_QMGR

Connection broken by queue manager
Returned

When available.

OpenCount
Description

The number of objects opened. This parameter is an integer
list indexed by object type, see Note 1.

Accounting and statistics message reference

448 WebSphere MQ for z/VSE System Management Guide

Identifier
MQIAMO_OPENS.

Datatype
MQCFIL.

Returned
When available.

OpenFailCount
Description

The number of unsuccessful attempts to open an object.
This parameter is an integer list indexed by object type, see
Note 1.

Identifier
MQIAMO_OPENS_FAILED.

Datatype
MQCFIL.

Returned
When available.

CloseCount
Description

The number of objects closed. This parameter is an integer
list indexed by object type, see Note 1.

Identifier
MQIAMO_CLOSES.

Datatype
MQCFIL.

Returned
When available.

CloseFailCount
Description

The number of unsuccessful attempts to close an object.
This parameter is an integer list indexed by object type, see
Note 1.

Identifier
MQIAMO_CLOSES_FAILED.

Datatype
MQCFIL.

Returned
When available.

PutCount
Description

The number persistent and nonpersistent messages
successfully put to a queue, with the exception of messages
put using the MQPUT1 call. This parameter is an integer
list indexed by persistent value, see Note 2.

Identifier
MQIAMO_PUTS.

Datatype
MQCFIL.

Returned
When available.

PutFailCount
Description

The number of unsuccessful attempts to put a message.

Accounting and statistics message reference

Chapter 8. Programmable system management 449

Identifier
MQIAMO_PUTS_FAILED.

Datatype
MQCFIN.

Returned
When available.

Put1Count
Description

The number of persistent and nonpersistent messages
successfully put to the queue using MQPUT1 calls. This
parameter is an integer list indexed by persistent value, see
Note 2.

Identifier
MQIAMO_PUT1S.

Datatype
MQCFIL.

Returned
When available.

Put1FailCount
Description

The number of unsuccessful attempts to put a message
using MQPUT1 calls.

Identifier
MQIAMO_PUT1S_FAILED.

Datatype
MQCFIN.

Returned
When available.

PutBytes
Description

The number bytes written using put calls for persistent and
nonpersistent messages. This parameter is an integer list
indexed by persistent value, see Note 2.

Identifier
MQIAMO64_PUT_BYTES.

Datatype
MQCFIL64.

Returned
When available.

GetCount
Description

The number of successful destructive gets for persistent
and nonpersistent messages. This parameter is an integer
list indexed by persistent value, see Note 2.

Identifier
MQIAMO_GETS.

Datatype
MQCFIL.

Returned
When available.

GetFailCount
Description

The number of unsuccessful destructive gets.

Accounting and statistics message reference

450 WebSphere MQ for z/VSE System Management Guide

Identifier
MQIAMO_GETS_FAILED.

Datatype
MQCFIN.

Returned
When available.

GetBytes
Description

Total number of bytes retrieved for persistent and
nonpersistent messages. This parameter is an integer list
indexed by persistent value, see Note 2.

Identifier
MQIAMO64_GET_BYTES.

Datatype
MQCFIL64.

Returned
When available.

BrowseCount
Description

The number of successful non-destructive gets for
persistent and nonpersistent messages. This parameter is
an integer list indexed by persistent value, see Note 2.

Identifier
MQIAMO_BROWSES.

Datatype
MQCFIL.

Returned
When available.

BrowseFailCount
Description

The number of unsuccessful non-destructive gets.
Identifier

MQIAMO_BROWSES_FAILED.
Datatype

MQCFIN.
Returned

When available.

BrowseBytes
Description

Total number of bytes browsed for persistent and
nonpersistent messages. This parameter is an integer list
indexed by persistent value, see Note 2.

Identifier
MQIAMO64_BROWSE_BYTES.

Datatype
MQCFIL64.

Returned
When available.

CommitCount
Description

The number of successful calls to the MQCMIT MQI.
Identifier

MQIAMO_COMMITS.

Accounting and statistics message reference

Chapter 8. Programmable system management 451

Datatype
MQCFIN.

Returned
When available.

CommitFailCount
Description

The number of unsuccessful calls to the MQCMIT MQI.
Identifier

MQIAMO_COMMITS_FAILED.
Datatype

MQCFIN.
Returned

When available.

BackCount
Description

The number of calls to the MQBACK MQI.
Identifier

MQIAMO_BACKOUTS.
Datatype

MQCFIN.
Returned

When available.

InqCount
Description

The number of successful objects inquired upon. This
attribute is an integer list which is indexed by the MQOT
value for each object.

Identifier
MQIAMO_INQS.

Datatype
MQCFIL.

Returned
When available.

InqFailCount
Description

The number of unsuccessful object inquire attempts. This
attribute is an integer list which is indexed by the MQOT
value for each object.

Identifier
MQIAMO_INQS_FAILED.

Datatype
MQCFIL.

Returned
When available.

SetCount
Description

The number of successful MQSET calls. This attribute is an
integer list which is indexed by the MQOT value for each
object.

Identifier
MQIAMO_SETS.

Datatype
MQCFIL.

Accounting and statistics message reference

452 WebSphere MQ for z/VSE System Management Guide

Returned
When available.

SetFailCount
Description

The number of unsuccessful MQSET calls. This attribute is
an integer list which is indexed by the MQOT value for
each object.

Identifier
MQIAMO_SETS_FAILED.

Datatype
MQCFIL.

Returned
When available.

Queue accounting message data
Message name

Queue accounting message.
System queue

SYSTEM.ADMIN.ACCOUNTING.QUEUE.

Accounting message data

QueueManager
Description

The name of the queue manager.
Identifier

MQCA_Q_MGR_NAME.
Datatype

MQCFST.
Max. length

MQ_Q_MGR_NAME_LENGTH.
Returned

Always.

IntervalStartDate
Description

The date of the start of the monitoring period.
Identifier

MQCAMO_START_DATE.
Datatype

MQCFST.
Max. length

MQ_DATE_LENGTH.
Returned

Always.

IntervalStartTime
Description

The time of the start of the monitoring period.
Identifier

MQCAMO_START_TIME.
Datatype

MQCFST.
Max. length

MQ_TIME_LENGTH.
Returned

Always.

Accounting and statistics message reference

Chapter 8. Programmable system management 453

IntervalEndDate
Description

The date of the end of the monitoring period.
Identifier

MQCAMO_END_DATE.
Datatype

MQCFST.
Max. length

MQ_DATE_LENGTH.
Returned

Always.

IntervalEndTime
Description

The time of the end of the monitoring period.
Identifier

MQCAMO_END_TIME.
Datatype

MQCFST.
Max. length

MQ_TIME_LENGTH.
Returned

Always.

CommandLevel
Description

The queue manager command level.
Identifier

MQIA_COMMAND_LEVEL.
Datatype

MQCFIN.
Returned

Always.

ConnectionId
Description

The connection identifier for the WebSphere MQ
connection.

Identifier
MQBACF_CONNECTION_ID.

Datatype
MQCFBS.

Max. length
MQ_CONNECTION_ID_LENGTH.

Returned
Always.

SeqNumber
Description

The sequence number. This value is incremented for each
subsequent record for long running connections.

Identifier
MQIACF_SEQUENCE_NUMBER.

Datatype
MQCFIN.

Returned
Always.

Accounting and statistics message reference

454 WebSphere MQ for z/VSE System Management Guide

ApplicationName
Description

The name of the application.
Identifier

MQCACF_APPL_NAME.
Datatype

MQCFST.
Max. length

MQ_APPL_NAME_LENGTH.
Returned

Always.

ApplicationPid
Description

The operating system process identifier of the application.
Identifier

MQIACF_PROCESS_ID.
Datatype

MQCFIN.
Returned

Always.

ApplicationTid
Description

The WebSphere MQ thread identifier of the connection in
the application.

Identifier
MQIACF_THREAD_ID.

Datatype
MQCFIN.

Returned
Always.

UserId
Description

The user identifier context of the application.
Identifier

MQCACF_USER_IDENTIFIER.
Datatype

MQCFST.
Max. length

MQ_USER_ID_LENGTH.
Returned

Always.

ObjectCount
Description

The number of queues accessed in the interval for which
accounting data has been recorded. This value is set to the
number of QAccountingData PCF groups contained in the
message.

Identifier
MQIAMO_OBJECT_COUNT.

Datatype
MQCFIN.

Returned
Always.

Accounting and statistics message reference

Chapter 8. Programmable system management 455

QAccountingData
Description

Grouped parameters specifying accounting details for a
queue.

Identifier
MQGACF_Q_ACCOUNTING_DATA.

Datatype
MQCFGR.

Parameters in group
QName CreateDate CreateTime QType QDefinitionType
OpenCount OpenDate OpenTime CloseDate CloseTime
PutCount PutFailCount Put1Count Put1FailCount PutBytes
PutMinBytes PutMaxBytes GetCount GetFailCount
GetBytes GetMinBytes GetMaxBytes BrowseCount
BrowseFailCount BrowseBytes BrowseMinBytes
BrowseMaxBytes TimeOnQMin TimeOnQAvg
TimeOnQMax

Returned
Always.

Parameters of the QAccountingData group

Qname
Description

The name of the queue.
Identifier

MQCA_Q_NAME.
Datatype

MQCFST.
Included in PCF group

QAccountingData.
Max. length

MQ_Q_NAME_LENGTH.
Returned

When available.

CreateDate
Description

The date the queue was created.
Identifier

MQCA_CREATION_DATE.
Datatype

MQCFST.
Included in PCF group

QAccountingData
Max. length

MQ_DATE_LENGTH
Returned

When available.

CreateTime
Description

The time the queue was created.
Identifier

MQCA_CREATION_TIME.
Datatype

MQCFST.

Accounting and statistics message reference

456 WebSphere MQ for z/VSE System Management Guide

Included in PCF group
QAccountingData.

Max. length
MQ_TIME_LENGTH.

Returned
When available.

Qtype
Description

The type of the queue.
Identifier

MQIA_Q_TYPE.
Datatype

MQCFIN.
Included in PCF group

QAccountingData.
Value MQQT_LOCAL.
Returned

When available.

QDefinitionType
Description

The queue definition type.
Identifier

MQIA_DEFINITION_TYPE.
Datatype

MQCFIN.
Included in PCF group

QAccountingData.
Values

Possible values are:
v MQQDT_PREDEFINED
v MQQDT_PERMANENT_DYNAMIC
v MQQDT_TEMPORARY_DYNAMIC

Returned
When available.

OpenCount
Description

The number of times this queue was opened by the
application in this interval.

Identifier
MQIAMO_OPENS.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

OpenDate
Description

The date the queue was first opened in this recording
interval. If the queue was already open at the start of this
interval this value will reflect the date the queue was
originally opened.

Identifier
MQCAMO_OPEN_DATE.

Accounting and statistics message reference

Chapter 8. Programmable system management 457

Datatype
MQCFST.

Included in PCF group
QAccountingData.

Returned
When available.

OpenTime
Description

The time the queue was first opened in this recording
interval. If the queue was already open at the start of this
interval this value will reflect the time the queue was
originally opened.

Identifier
MQCAMO_OPEN_TIME.

Datatype
MQCFST.

Included in PCF group
QAccountingData.

Returned
When available.

CloseDate
Description

The date of the final close of the queue in this recording
interval. If the queue is still open then the value will not be
returned.

Identifier
MQCAMO_CLOSE_DATE.

Datatype
MQCFST.

Included in PCF group
QAccountingData.

Returned
When available.

CloseTime
Description

The time of final close of the queue in this recording
interval. If the queue is still open then the value will not be
returned.

Identifier
MQCAMO_CLOSE_TIME.

Datatype
MQCFST.

Included in PCF group
QAccountingData.

Returned
When available.

PutCount
Description

The number of persistent and nonpersistent messages
successfully put to the queue, with the exception of
MQPUT1 calls. This parameter is an integer list indexed by
persistent value, see Note 2.

Identifier
MQIAMO_PUTS.

Accounting and statistics message reference

458 WebSphere MQ for z/VSE System Management Guide

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

PutFailCount
Description

The number of unsuccessful attempts to put a message,
with the exception of MQPUT1 calls.

Identifier
MQIAMO_PUTS_FAILED.

Datatype
MQCFIN.

Included in PCF group
QAccountingData.

Returned
When available.

Put1Count
Description

The number of persistent and nonpersistent messages
successfully put to the queue using MQPUT1 calls. This
parameter is an integer list indexed by persistent value, see
Note 2.

Identifier
MQIAMO_PUT1S.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

Put1FailCount
Description

The number of unsuccessful attempts to put a message
using MQPUT1 calls.

Identifier
MQIAMO_PUT1S_FAILED.

Datatype
MQCFIN.

Included in PCF group
QAccountingData.

Returned
When available.

PutBytes
Description

The total number of bytes put for persistent and
nonpersistent messages. This parameter is an integer list
indexed by persistent value, see Note 2.

Identifier
MQIAMO64_PUT_BYTES.

Datatype
MQCFIL64.

Accounting and statistics message reference

Chapter 8. Programmable system management 459

Included in PCF group
QAccountingData.

Returned
When available.

PutMinBytes
Description

The smallest persistent and nonpersistent message size
placed on the queue. This parameter is an integer list
indexed by persistent value, see Note 2.

Identifier
MQIAMO_PUT_MIN_BYTES.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

PutMaxBytes
Description

The largest persistent and nonpersistent message size
placed on the queue. This parameter is an integer list
indexed by persistent value, see Note 2.

Identifier
MQIAMO_PUT_MAX_BYTES.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

GetCount
Description

The number of successful destructive MQGET calls for
persistent and nonpersistent messages. This parameter is
an integer list indexed by persistent value, see Note 2.

Identifier
MQIAMO_GETS.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

GetFailCount
Description

The number of unsuccessful destructive gets.
Identifier

MQIAMO_GETS_FAILED.
Datatype

MQCFIN.
Included in PCF group

QAccountingData.
Returned

When available.

Accounting and statistics message reference

460 WebSphere MQ for z/VSE System Management Guide

GetBytes
Description

The number of bytes read in destructive MQGET calls for
persistent and nonpersistent messages. This parameter is
an integer list indexed by persistent value, see Note 2.

Identifier
MQIAMO64_GET_BYTES.

Datatype
MQCFIL64.

Included in PCF group
QAccountingData.

Returned
When available.

GetMinBytes
Description

The size of the smallest persistent and nonpersistent
message retrieved from the queue. This parameter is an
integer list indexed by persistent value, see Note 2.

Identifier
MQIAMO_GET_MIN_BYTES.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

GetMaxBytes
Description

The size of the largest persistent and nonpersistent
message retrieved from the queue. This parameter is an
integer list indexed by persistent value, see Note 2.

Identifier
MQIAMO_GET_MAX_BYTES.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

BrowseCount
Description

The number of successful non-destructive gets for
persistent and nonpersistent messages. This parameter is
an integer list indexed by persistent value, see Note 2.

Identifier
MQIAMO_BROWSES.

Datatype
MQCFIL.

Included in PCF group
QAccountingData,

Returned
When available.

BrowseFailCount

Accounting and statistics message reference

Chapter 8. Programmable system management 461

Description
The number of unsuccessful non-destructive gets.

Identifier
MQIAMO_BROWSES_FAILED.

Datatype
MQCFIN.

Included in PCF group
QAccountingData.

Returned
When available.

BrowseBytes
Description

The number of bytes read in non-destructive gets that
returned persistent messages.

Identifier
MQIAMO64_BROWSE_BYTES.

Datatype
MQCFIL64.

Included in PCF group
QAccountingData.

Returned
When available.

BrowseMinBytes
Description

The size of the smallest persistent and nonpersistent
message browsed from the queue. This parameter is an
integer list indexed by persistent value, see Note 2.

Identifier
MQIAMO_BROWSE_MIN_BYTES.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

BrowseMaxBytes

Description
The size of the largest persistent and nonpersistent
message browsed from the queue. This parameter is an
integer list indexed by persistent value, see Note 2.

Identifier
MQIAMO_BROWSE_MAX_BYTES.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

TimeOnQMin
Description

The shortest time a persistent and nonpersistent message

Accounting and statistics message reference

462 WebSphere MQ for z/VSE System Management Guide

remained on the queue before being retrieved, in
microseconds. This parameter is an integer list indexed by
persistent value, see Note 2 below. Note: For the purpose
of determining the TimeOnQMin value, WebSphere MQ for
z/VSE ignores messages older than one year.

Identifier
MQIAMO_Q_TIME_MIN.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

TimeOnQAvg
Description

The average time a persistent and nonpersistent message
remained on the queue before being retrieved, in
microseconds. This parameter is an integer list indexed by
persistent value, see Note 2. Note: For the purpose of
determining the TimeOnQAvg value, WebSphere MQ for
z/VSE ignores messages older than one year.

Identifier
MQIAMO_Q_TIME_AVG.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

TimeOnQMax
Description

The longest time a persistent and nonpersistent message
remained on the queue before being retrieved, in
microseconds. This parameter is an integer list indexed by
persistent value, see Note 2. Note: For the purpose of
determining the TimeOnQMax value, WebSphere MQ for
z/VSE ignores messages older than one year.

Identifier
MQIAMO_Q_TIME_MAX.

Datatype
MQCFIL.

Included in PCF group
QAccountingData.

Returned
When available.

MQI statistics message data
Message name

MQI statistics message.
System queue

SYSTEM.ADMIN.STATISTICS.QUEUE.

Statistics message data

QueueManager

Accounting and statistics message reference

Chapter 8. Programmable system management 463

Description:
Name of the queue manager.

Identifier:
MQCA_Q_MGR_NAME.

Datatype:
MQCFST.

Max. length:
MQ_Q_MGR_NAME_LENGTH.

Returned:
Always.

IntervalStartDate
Description

The date at the start of the monitoring period.
Identifier

MQCAMO_START_DATE.
Datatype

MQCFST.
Max. length

MQ_DATE_LENGTH
Returned

Always.

IntervalStartTime
Description

The time at the start of the monitoring period.
Identifier

MQCAMO_START_TIME.
Datatype

MQCFST.
Max. length

MQ_TIME_LENGTH
Returned

Always.

IntervalEndDate
Description

The date at the end of the monitoring period.
Identifier

MQCAMO_END_DATE.
Datatype

MQCFST.
Max. length

MQ_DATE_LENGTH
Returned

Always.

IntervalEndTime
Description

The time at the end of the monitoring period.
Identifier

MQCAMO_END_TIME.
Datatype

MQCFST.
Max. length

MQ_TIME_LENGTH
Returned

Always.

Accounting and statistics message reference

464 WebSphere MQ for z/VSE System Management Guide

CommandLevel
Description

The queue manager command level.
Identifier

MQIA_COMMAND_LEVEL.
Datatype

MQCFIN.
Returned

Always.

ConnCount
Description

The number of successful connections to the queue
manager.

Identifier
MQIAMO_CONNS.

Datatype
MQCFIN.

Returned
When available.

ConnFailCount
Description

The number of unsuccessful connection attempts.
Identifier

MQIAMO_CONNS_FAILED.
Datatype

MQCFIN.
Returned

When available.

ConnsMax
Description

The maximum number of concurrent connections in the
recording interval.

Identifier
MQIAMO_CONNS_MAX.

Datatype
MQCFIN.

Returned
When available.

DiscCount
Description

The number of disconnects from the queue manager. This
is an integer array, indexed by the following constants:
MQDISCONNECT_NORMAL
MQDISCONNECT_IMPLICIT MQDISCONNECT_QMGR

Identifier
MQIAMO_DISCS.

Datatype
MQCFIL.

Returned
When available.

OpenCount

Accounting and statistics message reference

Chapter 8. Programmable system management 465

Description
The number of objects successfully opened. This parameter
is an integer list indexed by object type, see Note 1.

Identifier
MQIAMO_OPENS.

Datatype
MQCFIL.

Returned
When available.

OpenFailCount
Description

The number of unsuccessful open object attempts. This
parameter is an integer list indexed by object type, see
Note 1.

Identifier
MQIAMO_OPENS_FAILED.

Datatype
MQCFIL.

Returned
When available.

CloseCount
Description

The number of objects successfully closed. This parameter
is an integer list indexed by object type, see Note 1.

Identifier
MQIAMO_CLOSES.

Datatype
MQCFIL.

Returned
When available.

CloseFailCount
Description

The number of unsuccessful close object attempts. This
parameter is an integer list indexed by object type, see
Note 1.

Identifier
MQIAMO_CLOSES_FAILED.

Datatype
MQCFIL.

Returned
When available.

InqCount
Description

The number of objects successfully inquired upon. This
parameter is an integer list indexed by object type, see
Note 1.

Identifier
MQIAMO_INQS.

Datatype
MQCFIL.

Returned
When available.

InqFailCount

Accounting and statistics message reference

466 WebSphere MQ for z/VSE System Management Guide

Description
The number of unsuccessful object inquire attempts. This
parameter is an integer list indexed by object type, see
Note 1.

Identifier
MQIAMO_INQS_FAILED.

Datatype
MQCFIL.

Returned
When available.

SetCount
Description

The number of objects successfully updated (SET). This
parameter is an integer list indexed by object type, see
Note 1.

Identifier
MQIAMO_SETS.

Datatype
MQCFIL.

Returned
When available.

SetFailCount
Description

The number of unsuccessful SET attempts. This parameter
is an integer list indexed by object type, see Note 1.

Identifier
MQIAMO_SETS_FAILED.

Datatype
MQCFIL.

Returned
When available.

PutCount
Description

The number of persistent and nonpersistent messages
successfully put to a queue, with the exception of MQPUT1
requests. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier
MQIAMO_PUTS.

Datatype
MQCFIL.

Returned
When available.

PutFailCount
Description

The number of unsuccessful put message attempts.
Identifier

MQIAMO_PUTS_FAILED.
Datatype

MQCFIN.
Returned

When available.

Put1Count

Accounting and statistics message reference

Chapter 8. Programmable system management 467

Description
The number of persistent and nonpersistent messages
successfully put to a queue using MQPUT1 requests. This
parameter is an integer list indexed by persistence value,
see Note 2.

Identifier
MQIAMO_PUT1S.

Datatype
MQCFIL.

Returned
When available.

Put1FailCount
Description

The number of unsuccessful attempts to put a persistent
and nonpersistent message to a queue using MQPUT1
requests. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier
MQIAMO_PUT1S_FAILED.

Datatype
MQCFIN.

Returned
When available.

PutBytes
Description

The number bytes for persistent and nonpersistent
messages written in using put requests. This parameter is
an integer list indexed by persistence value, see Note 2.

Identifier
MQIAMO64_PUT_BYTES.

Datatype
MQCFIL64.

Returned
When available.

GetCount
Description

The number of successful destructive get requests for
persistent and nonpersistent messages. This parameter is
an integer list indexed by persistence value, see Note 2.

Identifier
MQIAMO_GETS.

Datatype
MQCFIL.

Returned
When available.

GetFailCount
Description

The number of unsuccessful destructive get requests.
Identifier

MQIAMO_GETS_FAILED.
Datatype

MQCFIN.
Returned

When available.

Accounting and statistics message reference

468 WebSphere MQ for z/VSE System Management Guide

GetBytes
Description

The number of bytes read in destructive gets requests for
persistent and nonpersistent messages. This parameter is
an integer list indexed by persistence value, see Note 2.

Identifier
MQIAMO64_GET_BYTES.

Datatype
MQCFIL64.

Returned
When available.

BrowseCount
Description

The number of successful non-destructive get requests for
persistent and nonpersistent messages. This parameter is
an integer list indexed by persistence value, see Note 2.

Identifier
MQIAMO_BROWSES.

Datatype
MQCFIL.

Returned
When available.

BrowseFailCount
Description

The number of unsuccessful non-destructive get requests.
Identifier

MQIAMO_BROWSES_FAILED.
Datatype

MQCFIN.
Returned

When available.

BrowseBytes
Description

The number of bytes read in non-destructive get requests
for persistent and nonpersistent messages. This parameter
is an integer list indexed by persistence value, see Note 2.

Identifier
MQIAMO64_BROWSE_BYTES.

Datatype
MQCFIL64.

Returned
When available.

CommitCount
Description

The number of successful calls to the MQCMIT MQI.
Identifier

MQIAMO_COMMITS.
Datatype

MQCFIN.
Returned

When available.

CommitFailCount

Accounting and statistics message reference

Chapter 8. Programmable system management 469

Description
The number of unsuccessful calls to the MQCMIT MQI.

Identifier
MQIAMO_COMMITS_FAILED.

Datatype
MQCFIN.

Returned
When available.

BackCount
Description

The number of calls to the MQBACK MQI.
Identifier

MQIAMO_BACKOUTS.
Datatype

MQCFIN.
Returned

When available.

ExpiredMsgCount
Description

The number of persistent and nonpersistent messages that
were discarded because they had expired, before they
could be retrieved. This parameter is an integer list
indexed by persistence value, see Note 2.

Identifier
MQIAMO_MQGS_EXPIRED.

Datatype
MQCFIL.

Returned
When available.

Queue statistics message data
Message name

Queue statistics message.
System queue

SYSTEM.ADMIN.STATISTICS.QUEUE.

Statistics message data

QueueManager
Description

Name of the queue manager.
Identifier

MQCA_Q_MGR_NAME.
Datatype

MQCFST.
Max. length

MQ_Q_MGR_NAME_LENGTH.
Returned

Always.

IntervalStartDate
Description

The date at the start of the monitoring period.
Identifier

MQCAMO_START_DATE.
Datatype

MQCFST.

Accounting and statistics message reference

470 WebSphere MQ for z/VSE System Management Guide

Max. length
MQ_DATE_LENGTH

Returned
Always.

IntervalStartTime
Description

The time at the start of the monitoring period.
Identifier

MQCAMO_START_TIME.
Datatype

MQCFST.
Max. length

MQ_TIME_LENGTH
Returned

Always.

IntervalEndDate
Description

The date at the end of the monitoring period.
Identifier

MQCAMO_END_DATE.
Datatype

MQCFST.
Max. length

MQ_DATE_LENGTH
Returned

Always.

IntervalEndTime
Description

The time at the end of the monitoring period.
Identifier

MQCAMO_END_TIME.
Datatype

MQCFST.
Max. length

MQ_TIME_LENGTH
Returned

Always.

CommandLevel
Description

The queue manager command level.
Identifier

MQIA_COMMAND_LEVEL.
Datatype

MQCFIN.
Returned

Always.

Qname
Description

The name of the queue.
Identifier

MQCA_Q_NAME.
Datatype

MQCFST.

Accounting and statistics message reference

Chapter 8. Programmable system management 471

Max. length
MQ_Q_NAME_LENGTH.

Returned
Always.

CreateDate
Description

The date when the queue was created.
Identifier

MQCA_CREATION_DATE.
Datatype

MQCFST.
Max. length

MQ_DATE_LENGTH.
Returned

Always.

CreateTime
Description

The time when the queue was created.
Identifier

MQCA_CREATION_TIME.
Datatype

MQCFST.
Max. length

MQ_TIME_LENGTH.
Returned

Always.

ObjectCount
Description

The number of queues accessed in the interval for which
statistics data has been recorded. This value is set to the
number of QStatisticsData PCF groups contained in the
message.

Identifier
MQIAMO_OBJECT_COUNT.

Datatype
MQCFIN.

Returned
Always.

QStatisticsData

Description
Grouped parameters specifying statistics details for a
queue.

Identifier
MQGACF_Q_STATISTICS_DATA.

Datatype
MQCFGR.

Parameters in group
QMinDepth QMaxDepth AvgTimeOnQ PutCount
PutFailCount Put1Count Put1FailCount PutBytes GetCount
GetFailCount GetBytes BrowseCount BrowseFailCount
BrowseBytes ExpiredMsgCount NonQueuedMsgCount

Accounting and statistics message reference

472 WebSphere MQ for z/VSE System Management Guide

Returned
Always.

Parameters of the QStatisticsData group

QMinDepth
Description

The minimum queue depth during the monitoring period.
Identifier

MQIAMO_Q_MIN_DEPTH.
Datatype

MQCFIN.
Included in PCF group

QStatisticsData.
Returned

When available.

QMaxDepth
Description

The maximum queue depth during the monitoring period.
Identifier

MQIAMO_Q_MAX_DEPTH.
Datatype

MQCFIN.
Included in PCF group

QStatisticsData.
Returned

When available.

AvgTimeOnQ
Description

The average latency, in microseconds, of messages
retrieved from the queue during the monitoring period.
Note: For the purpose of determining the AvgTimeOnQ
value, WebSphere MQ for z/VSE ignores messages older
than one year.

Identifier
MQIAMO_AVG_Q_TIME.

Datatype
MQCFIN.

Included in PCF group
QStatisticsData.

Returned
When available.

PutCount
Description

The number of persistent and nonpersistent messages
successfully put to the queue, with exception of MQPUT1
requests. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier
MQIAMO_PUTS.

Datatype
MQCFIL.

Included in PCF group
QStatisticsData.

Accounting and statistics message reference

Chapter 8. Programmable system management 473

Returned
When available.

PutFailCount
Description

The number of unsuccessful attempts to put a message to
the queue.

Identifier
MQIAMO_PUTS_FAILED.

Datatype
MQCFIN.

Included in PCF group
QStatisticsData.

Returned
When available.

Put1Count
Description

The number of persistent and nonpersistent messages
successfully put to the queue using MQPUT1 calls. This
parameter is an integer list indexed by persistence value,
see Note 2.

Identifier
MQIAMO_PUT1S.

Datatype
MQCFIL.

Included in PCF group
QStatisticsData.

Returned
When available.

Put1FailCount
Description

The number of unsuccessful attempts to put a message
using MQPUT1 calls.

Identifier
MQIAMO_PUT1S_FAILED.

Datatype
MQCFIN.

Included in PCF group
QStatisticsData.

Returned
When available.

PutBytes
Description

The number of bytes written in put requests to the queue.
Identifier

MQIAMO64_PUT_BYTES.
Datatype

MQCFIL64.
Included in PCF group

QStatisticsData.
Returned

When available.

GetCount

Accounting and statistics message reference

474 WebSphere MQ for z/VSE System Management Guide

Description
The number of successful destructive get requests for
persistent and nonpersistent messages.This parameter is an
integer list indexed by persistence value, see Note 2.

Identifier
MQIAMO_GETS.

Datatype
MQCFIL.

Included in PCF group
QStatisticsData.

Returned
When available.

GetFailCount
Description

The number of unsuccessful destructive get requests.
Identifier

MQIAMO_GETS_FAILED.
Datatype

MQCFIN.
Included in PCF group

QStatisticsData.
Returned

When available.

GetBytes
Description

The number of bytes read in destructive put requests for
persistent and nonpersistent messages. This parameter is
an integer list indexed by persistence value, see Note 2.

Identifier
MQIAMO64_GET_BYTES.

Datatype
MQCFIL64.

Included in PCF group
QStatisticsData.

Returned
When available.

BrowseCount
Description

The number of successful non-destructive get requests for
persistent and nonpersistent messages. This parameter is
an integer list indexed by persistence value, see Note 2.

Identifier
MQIAMO_BROWSES.

Datatype
MQCFIL.

Included in PCF group
QStatisticsData.

Returned
When available.

BrowseFailCount
Description

The number of unsuccessful non-destructive get requests.
Identifier

MQIAMO_BROWSES_FAILED.

Accounting and statistics message reference

Chapter 8. Programmable system management 475

Datatype
MQCFIN.

Included in PCF group
QStatisticsData.

Returned
When available.

BrowseBytes
Description

The number of bytes read in non-destructive get requests
for persistent and nonpersistent messages. This parameter
is an integer list indexed by persistence value, see Note 2.

Identifier
MQIAMO64_BROWSE_BYTES.

Datatype
MQCFIL64.

Included in PCF group
QStatisticsData.

Returned
When available.

ExpiredMsgCount
Description

The number of persistent and nonpersistent messages that
were discarded because they had expired, before they
could be retrieved. This parameter is an integer list
indexed by persistence value, see Note 2.

Identifier
MQIAMO_MSGS_EXPIRED.

Datatype
MQCFIL.

Included in PCF group
QStatisticsData.

Returned
When available.

Channel statistics message data
Message name

Channel statistics message.
System queue

SYSTEM.ADMIN.STATISTICS.QUEUE.

Statistics message data

QueueManager
Description

The name of the queue manager.
Identifier

MQCA_Q_MGR_NAME.
Datatype

MQCFST.
Max. length

MQ_Q_MGR_NAME_LENGTH.
Returned

Always.

IntervalStartDate
Description

The date at the start of the monitoring period.

Accounting and statistics message reference

476 WebSphere MQ for z/VSE System Management Guide

Identifier
MQCAMO_START_DATE.

Datatype
MQCFST.

Max. length
MQ_DATE_LENGTH.

Returned
Always.

IntervalStartTime
Description

The time at the start of the monitoring period.
Identifier

MQCAMO_START_TIME.
Datatype

MQCFST.
Max. length

MQ_TIME_LENGTH.
Returned

Always.

IntervalEndDate
Description

The date at the end of the monitoring period
Identifier

MQCAMO_END_DATE.
Datatype

MQCFST.
Max. length

MQ_DATE_LENGTH.
Returned

Always.

IntervalEndTime
Description

The time at the end of the monitoring period
Identifier

MQCAMO_END_TIME.
Datatype

MQCFST.
Max. length

MQ_TIME_LENGTH
Returned

Always.

CommandLevel
Description

The queue manager command level.
Identifier

MQIA_COMMAND_LEVEL.
Datatype

MQCFIN.
Returned

Always.

ObjectCount
Description

The number of Channel objectsaccessed in the interval for

Accounting and statistics message reference

Chapter 8. Programmable system management 477

which statistics data has been recorded. This value is set to
the number of ChlStatisticsData PCF groups contained in
the message.

Identifier
MQIAMO_OBJECT_COUNT

Data type
MQCFIN.

Returned
Always.

ChlStatisticsData
Description

Grouped parameters specifying statistics details for a
channel.

Identifier
MQGACF_CHL_STATISTICS_DATA.

Data type
MQCFGR.

Parameters in group
ChannelName ChannelType RemoteQmgrName
ConnectionName MsgCount TotalBytes NetTimeMin
NetTimeAvg NetTimeMax ExitTimeMin ExitTimeAvg
ExitTimeMax FullBatchCount IncmplBatchCount
AverageBatchSize

Returned
Always.

ChannelName
Description

The name of the channel.
Identifier

MQCACH_CHANNEL_NAME.
Datatype

MQCFST.
Max. length

MQ_CHANNEL_NAME_LENGTH.
Returned

Always.

ChannelType
Description

The channel type.
Identifier

MQIACH_CHANNEL_TYPE.
Datatype

MQCFIN.
Values

Possible values are:
MQCHT_SENDER

Sender channel.
MQCHT_SERVER

Server channel.
MQCHT_RECEIVER

Receiver channel.
MQCHT_REQUESTER

Requester channel.

Accounting and statistics message reference

478 WebSphere MQ for z/VSE System Management Guide

Returned
Always.

RemoteQmgr
Description

The name of the remote queue manager.
Identifier

MQCACH_REMOTE_Q_MGR_NAME.
Datatype

MQCFST.
Max. length

MQ_Q_MGR_NAME_LENGTH
Included in PCF group

ChlStatisticsData.
Returned

When available.

ConnectionName
Description

Connection name of remote queue manager.
Identifier

MQCACH_CONNECTION_NAME.
Datatype

MQCFST.
Max. length

MQ_CONN_NAME_LENGTH
Included in PCF group

ChlStatisticsData.
Returned

When available.

MsgCount
Description

The number of persistent and nonpersistent messages sent
or received. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier
MQIAMO_MSGS.

Datatype
MQCFIL.

Included in PCF group
ChlStatisticsData.

Returned
When available.

TotalBytes
Description

The number of bytes sent or received for persistent and
nonpersistent messages. This parameter is an integer list
indexed by persistence value, see Note 2 below.

Identifier
MQIAMO64_BYTES.

Datatype
MQCFIL64.

Included in PCF group
ChlStatisticsData.

Returned
When available.

Accounting and statistics message reference

Chapter 8. Programmable system management 479

NetTimeMin
Description

The shortest recorded channel round trip measured in the
recording interval, in microseconds.

Identifier
MQIAMO_NET_TIME_MIN.

Datatype
MQCFIN.

Included in PCF group
ChlStatisticsData.

Returned
When available (STATCHL is MEDIUM or HIGH).

NetTimeAvg
Description

The average recorded channel round trip measured in the
recording interval, in microseconds.

Identifier
MQIAMO_NET_TIME_AVG.

Datatype
MQCFIN.

Included in PCF group
ChlStatisticsData.

Returned
When available (STATCHL is MEDIUM or HIGH).

NetTimeMax
Description

The longest recorded channel round trip measured in the
recording interval, in microseconds.

Identifier
MQIAMO_NET_TIME_MAX.

Datatype
MQCFIN.

Included in PCF group
ChlStatisticsData.

Returned
When available (STATCHL is MEDIUM or HIGH).

ExitTimeMin
Description

The shortest recorded time, in microseconds, spent
executing a user exit in the recording interval.

Identifier
MQIAMO_EXIT_TIME_MIN.

Datatype
MQCFIN.

Included in PCF group
ChlStatisticsData.

Returned
When available (STATCHL is HIGH).

ExitTimeAvg
Description

The average recorded time, in microseconds, spent
executing a user exit in the recording interval.

Identifier
MQIAMO_EXIT_TIME_AVG.

Accounting and statistics message reference

480 WebSphere MQ for z/VSE System Management Guide

Datatype
MQCFIN.

Included in PCF group
ChlStatisticsData.

Returned
When available (STATCHL is HIGH).

ExitTimeMax
Description

The longest recorded time, in microseconds, spent
executing a user exit in the recording interval.

Identifier
MQIAMO_EXIT_TIME_MAX.

Datatype
MQCFIN.

Included in PCF group
ChlStatisticsData.

Returned
When available (STATCHL is HIGH).

FullBatchCount
Description

The number of batches processed by the channel, that were
sent because the value of the channel attribute BATCHSZ
was reached.

Identifier
MQIAMO_FULL_BATCHES.

Datatype
MQCFIN.

Included in PCF group
ChlStatisticsData.

Returned
When available.

IncmplBatchCount
Description

The number of batches processed by the channel, that were
sent without the value of the channel attribute BATCHSZ
being reached.

Identifier
MQIAMO_INCOMPLETE_BATCHES.

Datatype
MQCFIN.

Included in PCF group
ChlStatisticsData.

Returned
When available.

AverageBatchSize
Description

The average batch size of batches processed by the channel.
Identifier

MQIAMO_AVG_BATCHE_SIZE.
Datatype

MQCFIN.
Included in PCF group

ChlStatisticsData.

Accounting and statistics message reference

Chapter 8. Programmable system management 481

Returned
When available.

Notes about the message data structures

Note 1

This parameter relates to WebSphere MQ objects. This parameter is an array of
values (MQCFIL) indexed by the constants below.

Note: The index is relative to zero so if using COBOL you need to add 1 to the
values below, for example, MQOT-Q is the second integer of the array, so a value
of 2 should be used.

Object type Value context

MQOT_Q (1) Contains the value relating to queue objects.

MQOT_NAMELIST (2) Contains the value relating to namelist objects.

MQOT_PROCESS (3) Contains the value relating to process objects.

MQOT_STORAGE_CLASS (4) Contains the value relating to storage class objects.

MQOT_Q_MGR (5) Contains the value relating to queue manager
objects.

Note 2

This parameter relates to WebSphere MQ messages. This parameter is an array of
values (MQCFIL or MQCFIL64) indexed by the constants below.

Note: The index is relative to zero so if using COBOL you need to add 1 to the
values below, for example, MQPER-PERSISTENT is the second integer of the array,
so a value of 2 should be used.

Constant Value

MQPER_NOT_PERSISTENT (0) Contains the value for nonpersistent messages.

MQPER_PERSISTENT (1) Contains the value for persistent messages.

Real-time monitoring
Real-time monitoring is a technique that allows you to determine the current state
of queues and channels within a queue manager. The information returned is
accurate at the moment the command was issued.

A number of commands are available that when issued return real-time
information about queues and channels. Information can be returned for one or
more queues or channels and can vary in quantity. Real-time monitoring can be
used in the following tasks:
v Helping system administrators understand the steady state of their WebSphere

MQ system. This helps with problem diagnosis if a problem occurs in the
system.

v Determining the condition of your queue manager at any moment, even if no
specific event or problem has been detected.

v Assisting with determining the cause of a problem in your system.

Accounting and statistics message reference

482 WebSphere MQ for z/VSE System Management Guide

With real-time monitoring, information can be returned for either queues or
channels. The amount of real-time information returned is controlled by queue
manager, queue, and channel attributes.
v You monitor a queue by issuing commands to ensure that the queue is being

serviced properly. Before you can use some of the queue attributes, you must
enable them for real-time monitoring.

v You monitor a channel by issuing commands to ensure that the channel is
running properly. Before you can use some of the channel attributes, you must
enable them for real-time monitoring.

Real-time monitoring for queues and channels is in addition to, and separate from,
performance and channel event monitoring.

Attributes that control real-time monitoring
Some queue and channel status attributes hold monitoring information, if real-time
monitoring is enabled. If real-time monitoring is not enabled, no monitoring
information is held in these monitoring attributes. Examples demonstrate how you
can use these queue and channel status attributes.

You can enable or disable real-time monitoring for individual queues or channels,
or for multiple queues or channels. To control individual queues or channels, set
the queue attribute MONQ or the channel attribute MONCHL, to enable or disable
real-time monitoring. To control many queues or channels together, enable or
disable real-time monitoring at the queue manager level by using the queue
manager attributes MONQ and MONCHL. For all queue and channel objects
whose monitoring attribute is specified with the default value, QMGR, real-time
monitoring is controlled at the queue manager level.

For real-time monitoring of channels, you can set the MONCHL attribute to one of
the three monitoring levels: low, medium, or high. You can set the monitoring level
either at the object level or at the queue manager The choice of level is dependent
on your system. Collecting monitoring data might require some instructions that
are relatively expensive computationally, such as obtaining system time. To reduce
the impact of real-time monitoring, the medium and low monitoring options
measure a sample of the data at regular intervals rather than collecting data all the
time. Table 10 summarizes the monitoring levels available for real-time monitoring
of channels:

Table 10. Monitoring levels

Level Description Usage

Low Measure a small sample of the data at
regular intervals.

For objects that process a high
volume of messages.

Medium Measure a sample of the data. For most objects.

High Measure all data, at regular intervals. For objects that process only a few
messages per second, on which the
most current information is
important.

For real-time monitoring of queues, you can set the MONQ attribute to one of the
three monitoring levels, low, medium or high. However, there is no distinction
between these values. The values all enable data collection, but do not affect the
size of the sample.

Real-time monitoring

Chapter 8. Programmable system management 483

Examples
The following examples demonstrate how to set the necessary queue, channel, and
queue manager attributes to control the level of monitoring. For all of the
examples, when monitoring is enabled, queue and channel objects have a medium
level of monitoring.

To enable both queue and channel monitoring for all queues and channels at the
queue manager level, use the following commands:

ALTER QMGR MONQ(MEDIUM) MONCHL(MEDIUM)
ALTER QL(Q1) MONQ(QMGR)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(QMGR)

To enable monitoring for all queues and channels, with the exception of local
queue, Q1, and sender channel, QM1.TO.QM2, use the following commands:

ALTER QMGR MONQ(MEDIUM) MONCHL(MEDIUM)
ALTER QL(Q1) MONQ(OFF)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(OFF)

To disable both queue and channel monitoring for all queues and channels, with
the exception of local queue, Q1, and sender channel, QM1.TO.QM2, use the
following commands:

ALTER QMGR MONQ(OFF) MONCHL(OFF)
ALTER QL(Q1) MONQ(MEDIUM)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(MEDIUM)

To disable both queue and channel monitoring for all queues and channels,
regardless of individual object attributes, use the following command:

ALTER QMGR MONQ(NONE) MONCHL(NONE)

Displaying queue and channel monitoring data
To display real-time monitoring information for a queue or channel, use either the
WebSphere MQ Explorer, PCF or the appropriate MQSC command. Some
monitoring fields display a comma-separated pair of indicator values, which help
you to monitor the operation of your queue manager. Examples, below,
demonstrate how you can display monitoring data.

Monitoring fields that display a pair of values separated by a comma provide short
term and long term indicators for the time measured since monitoring was enabled
for the object, or from when the queue manager was started:
v The short term indicator is the first value in the pair and is calculated in a way

such that more recent measurements are given a higher weighting and will have
a greater effect on this value. This gives an indication of recent trend in
measurements taken.

v The long term indicator in the second value in the pair and is calculated in a
way such that more recent measurements are not given such a high weighting.
This gives an indication of the longer term activity on performance of a resource.

These indicator values are most useful to detect changes in the operation of your
queue manager. This requires knowledge of the times these indicators show when
in normal use, in order to detect increases in these times. By collecting and
checking these values regularly you can detect fluctuations in the operation of your
queue manager. This can indicate a change in performance.

Obtain real-time monitoring information as follows:

Attributes that control real-time monitoring

484 WebSphere MQ for z/VSE System Management Guide

1. To display real-time monitoring information for a queue, use either the
WebSphere MQ Explorer, PCF Inquire Queue Status, or the MQSC command
DISPLAY QSTATUS, specifying the optional parameter MONITOR.

2. To display real-time monitoring information for a channel, use either the
WebSphere MQ Explorer, PCF Inquire Channel Status or the MQSC command
DISPLAY CHSTATUS, specifying the optional parameter MONITOR.

Examples
The queue, Q1, has the attribute MONQ set to the default value, QMGR, and the
queue manager that owns the queue has the attribute MONQ set to MEDIUM. To
display the monitoring fields collected for this queue, use the following command:

DISPLAY QSTATUS(Q1) MONITOR

The monitoring fields and monitoring level of queue, Q1 are displayed as follows:
QSTATUS(Q1)
TYPE(QUEUE)
MONQ(MEDIUM)
QTIME(11892157,24052785)
MSGAGE(37)
LPUTDATE(2005-03-02)
LPUTTIME(09.52.13)
LGETDATE(2005-03-02)
LGETTIME(09.51.02)

The sender channel, QM1.TO.QM2, has the attribute MONCHL set to the default
value, QMGR, and the queue manager that owns the queue has the attribute
MONCHL set to MEDIUM. To display the monitoring fields collected for this
sender channel, use the following command:

DISPLAY CHSTATUS(QM1.TO.QM2) MONITOR

The monitoring fields and monitoring level of sender channel, QM1.TO.QM2 are
displayed as follows:
CHSTATUS(QM1.TO.QM2)
XMITQ(Q1)
CONNAME(127.0.0.1)
CURRENT
CHLTYPE(SDR)
STATUS(RUNNING)
SUBSTATE(MQGET)
MONCHL(MEDIUM)
XQTIME(755394737,755199260)
NETTIME(13372,13372)
EXITTIME(0,0)
XBATCHSZ(50,50)
STOPREQ(NO)
RQMNAME(QM2)

Structures used for commands and responses
Commands and responses consist of a PCF header (MQCFH) structure followed by
zero or more parameter structures. Each of these is one of:

PCF byte string parameter (MQCFBS).
PCF integer filter parameter (MQCFIF).
PCF integer parameter (MQCFIN).
PCF string parameter (MQCFST).
PCF integer list parameter (MQCFIL).
PCF string filter parameter (MQCFSF).

Displaying queue and channel monitoring data

Chapter 8. Programmable system management 485

PCF string list parameter (MQCFSL).

This section defines these parameter structures.

MQCFH - PCF header

The MQCFH structure describes the information that is present at the start of the
message data of a command message, or a response to a command message. In
either case, the message descriptor Format field is MQFMT_ADMIN.

Type (MQLONG)
Structure type. This indicates the content of the message. These are valid:

MQCFT_COMMAND
Message is a command.

MQCFT_RESPONSE
Message is a response to a command.

StrucLength (MQLONG)
Structure length. This is the length in bytes of the MQCFH structure. The
value must be:

MQCFH_STRUC_LENGTH
Length of command format header structure.

The initial value of this field is MQCFH_STRUC_LENGTH.

Version (MQLONG)
Structure version number. The value must be:

MQCFH_VERSION_1
Version number for command format header structure.

Command (MQLONG), MQCFH structure
Command identifier. For a command message, this identifies the function
to be performed. For a response message, it identifies the command to
which this is the reply. These are valid:

MQCMD_CHANGE_CHANNEL
Change channel.

MQCMD_CHANGE_Q
Change queue.

MQCMD_CHANGE_Q_MGR
Change queue manager.

MQCMD_COPY_CHANNEL
Copy channel.

MQCMD_COPY_Q
Copy queue.

MQCMD_CREATE_CHANNEL
Create channel.

MQCMD_CREATE_Q
Create queue.

MQCMD_DELETE_CHANNEL
Delete channel.

MQCMD_DELETE_Q
Delete queue.

Structures used for commands and responses

486 WebSphere MQ for z/VSE System Management Guide

MQCMD_ESCAPE
Escape.

MQCMD_INQUIRE_CHANNEL
Inquire channel.

MQCMD_INQUIRE_CHANNEL_NAMES
Inquire channel names.

MQCMD_INQUIRE_CHANNEL_STATUS
Inquire channel status.

MQCMD_INQUIRE_CONNECTION
Inquire connection.

MQCMD_INQUIRE_Q
Inquire queue.

MQCMD_INQUIRE_Q_MGR
Inquire queue manager.

MQCMD_INQUIRE_Q_NAMES
Inquire queue names.

MQCMD_INQUIRE_Q_STATUS
Inquire queue status.

MQCMD_PING_Q_MGR
Ping queue manager.

MQCMD_RESET_CHANNEL
Reset channel.

MQCMD_START_CHANNEL
Start channel.

MQCMD_START_CHANNEL_LISTENER
Start channel listener.

MQCMD_STOP_CHANNEL
Stop channel.

MQCMD_STOP_CONNECTION
Stop connection.

MsgSeqNumber (MQLONG)
Message sequence number. This is the sequence number of the message
within a group of related messages. For a command, this field must have
the value one (because a command is always contained within a single
message). For a response, the field has the value one for the first (or only)
response to a command, and increases by one for each successive response
to that command.

The last (or only) message in a group has the MQCFC_LAST flag set in the
Control field.

The initial value of this field is 1.

Control (MQLONG)
Control options. These are valid:

MQCFC_LAST
Last message in the group.

For a command, this value must always be set.

MQCFH - PCF header

Chapter 8. Programmable system management 487

MQCFC_NOT_LAST
Not the last message in the group.

The initial value of this field is MQCFC_LAST.

CompCode (MQLONG)
Completion code. This field is meaningful only for a response; its value is
not significant for a command. These are possible:

MQCC_OK
Command completed successfully.

MQCC_WARNING
Command completed with warning.

MQCC_FAILED
Command failed.

MQCC_UNKNOWN
Whether command succeeded is not known.

The initial value of this field is MQCC_OK.

Reason (MQLONG)
Reason code qualifying completion code. This field is meaningful only for
a response; its value is not significant for a command.

The possible reason codes that could be returned in response to a
command are listed at the end of each command format described in
“Definitions of the PCFs” on page 242.

The initial value of this field is MQRC_NONE.

ParameterCount (MQLONG)
Count of parameter structures. This is the number of parameter structures
(MQCFIL, MQCFIN, MQCFSL, and MQCFST) that follow the MQCFH
structure. The value of this field is zero or greater.

The initial value of this field is 0.

C language declaration

The C language declaration for the MQCFH data structure is:
typedef struct tagMQCFH {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Version; /* Structure version number */
MQLONG Command; /* Command identifier */
MQLONG MsgSeqNumber; /* Message sequence number */
MQLONG Control; /* Control options */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying completion code */
MQLONG ParameterCount; /* Count of parameter structures */

} MQCFH;

COBOL language declaration

The COBOL language declaration for the MQCFH data structure is:
** MQCFH structure
10 MQCFH.
** Structure type

15 MQCFH-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFH-STRUCLENGTH PIC S9(9) BINARY.

MQCFH - PCF header

488 WebSphere MQ for z/VSE System Management Guide

** Structure version number
15 MQCFH-VERSION PIC S9(9) BINARY.

** Command identifier
15 MQCFH-COMMAND PIC S9(9) BINARY.

** Message sequence number
15 MQCFH-MSGSEQNUMBER PIC S9(9) BINARY.

** Control options
15 MQCFH-CONTROL PIC S9(9) BINARY.

** Completion code
15 MQCFH-COMPCODE PIC S9(9) BINARY.

** Reason code qualifying completion code
15 MQCFH-REASON PIC S9(9) BINARY.

** Count of parameter structures
15 MQCFH-PARAMETERCOUNT PIC S9(9) BINARY.

PL/I language declaration

The PL/I language declaration for the MQCFH data structure is:
dcl
1 MQCFH based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Version fixed bin(31), /* Structure version number */
3 Command fixed bin(31), /* Command identifier */
3 MsgSeqNumber fixed bin(31), /* Message sequence number */
3 Control fixed bin(31), /* Control options */
3 CompCode fixed bin(31), /* Completion code */
3 Reason fixed bin(31), /* Reason code qualifying completion code */
3 ParameterCount fixed bin(31); /* Count of parameter structures */

MQCFIF - PCF integer filter parameter
The MQCFIF structure describes an integer filter parameter. The format name in
the message descriptor is MQFMT_ADMIN.

The MQCFIF structure is used in Inquire commands to provide a filter condition.
This filter condition is used to filter the results of the Inquire command and return
to the user only those objects that satisfy the filter condition.

Fields for MQCFIF:

Type (MQLONG)
Structure type.

This indicates that the structure is a MQCFIF structure describing an
integer filter parameter. The value must be:

MQCFT_INTEGER_FILTER
Structure defining an integer filter.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFIF structure. The value must be:

MQCFIF_STRUC_LENGTH
Length of command format integer-parameter structure.

Parameter (MQLONG)
Parameter identifier.

MQCFH - PCF header

Chapter 8. Programmable system management 489

This identifies the parameter that is to be filtered on. The value of this
identifier depends on the parameter to be filtered on. Any of the
parameters which can be used in the Inquire command can be used in this
field.

The parameter is from the following groups of parameters:
MQCA_*
MQCACF_*
MQCAMO_*
MQCACH_*

Operator (MQLONG)
Operator identifier.

This identifies the operator that is being used to evaluate whether the
parameter satisfies the filter-value.

Possible values are:
MQCFOP_GREATER

Greater than.
MQCFOP_LESS

Less than.
MQCFOP_EQUAL

Equal to.
MQCFOP_NOT_EQUAL

Not equal to.
MQCFOP_NOT_LESS

Greater than or equal to.
MQCFOP_NOT_GREATER

Less than or equal to.
MQCFOP_CONTAINS

Contains a specified value. Use this when filtering on lists of
integers.

MQCFOP_EXCLUDES
Does not contain a specified value. Use this when filtering on lists
of integers.

See the FilterValue description for details telling you which operators may
be used in which circumstances.

FilterValue (MQLONG)
Filter value identifier.

This specifies the filter-value that must be satisfied.

Depending on the parameter, the value and the permitted operators can be:
v An explicit integer value, if the parameter takes a single integer value.

You can only use these operators:
MQCFOP_GREATER
MQCFOP_LESS
MQCFOP_EQUAL
MQCFOP_NOT_EQUAL
MQCFOP_NOT_GREATER
MQCFOP_NOT_LESS

v An MQ constant, if the parameter takes a single value from a possible
set of values (for example, the value MQCHT_SENDER on the
ChannelType parameter). You can only use MQCFOP_EQUAL or
MQCFOP_NOT_EQUAL.

MQCFIF - PCF integer filter parameter

490 WebSphere MQ for z/VSE System Management Guide

v An explicit value or an MQ constant, as the case may be, if the
parameter takes a list of values. You can use either
MQCFOP_CONTAINS or MQCFOP_EXCLUDES.
For example, if the value 6 is specified with the operator
MQCFOP_CONTAINS, all items where one of the parameter values is 6
are listed.
Let's take another example. If you need to filter on queues that are
enabled for put operations in your Inquire Queue command, the
parameter is MQIA_INHIBIT_PUT, and the filter-value is
MQQA_PUT_ALLOWED. The filter value must be a valid value for the
parameter being tested.
For language structure declarations refer to parts in the installation
sublibrary:

C CMQC.H
COBOL CMQCIFL.C or CMQCFIFV.C
PL/I CMQCFP.P

MQCFIN - PCF integer parameter

The MQCFIN structure describes an integer parameter in a message that is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

Type (MQLONG)
Structure type. This indicates that the structure is a MQCFIN structure
describing an integer parameter. The value must be:

MQCFT_INTEGER
Structure defining an integer.

The initial value of this field is MQCFT_INTEGER.

StrucLength (MQLONG)
Structure length. This is the length in bytes of the MQCFIN structure. The
value must be:

MQCFIN_STRUC_LENGTH
Length of command format integer-parameter structure.

The initial value of this field is MQCFIN_STRUC_LENGTH.

Parameter (MQLONG)
Parameter identifier. This identifies the parameter whose value is contained
in the structure. The values that can occur in this field depend on the value
of the Command field in the MQCFH structure; see “MQCFH - PCF
header” on page 486 for details.

The initial value of this field is 0.

Value (MQLONG)
Parameter value. This is the value of the parameter identified by the
Parameter field.

The initial value of this field is 0.

C language declaration

The C language declaration for the MQCFIN data structure is:

MQCFIF - PCF integer filter parameter

Chapter 8. Programmable system management 491

typedef struct tagMQCFIN {
MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Value; /* Parameter value */

} MQCFIN;

COBOL language declaration

The COBOL language declaration for the MQCFIN data structure is:
** MQCFIN structure
10 MQCFIN.
** Structure type

15 MQCFIN-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIN-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIN-PARAMETER PIC S9(9) BINARY.
** Parameter value

15 MQCFIN-VALUE PIC S9(9) BINARY.

PL/I language declaration

The PL/I language declaration for the MQCFIN data structure is:
dcl
1 MQCFIN based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Value fixed bin(31); /* Parameter value */

MQCFSF - PCF string filter parameter
The MQCFSF structure describes a string filter parameter. The format name in the
message descriptor is MQFMT_ADMIN.

The MQCFSF structure is used in Inquire commands to provide a filter condition.
This filter condition is used to filter the results of the Inquire command and return
to the user only those objects that satisfy the filter condition.

Fields for MQCFSF:

Type (MQLONG)
Structure type.

This indicates that the structure is a MQCFSF structure describing a string
filter parameter. The value must be:

MQCFT_STRING_FILTER
Structure defining a string filter.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFSF structure. The value must be:
MQCFSF_STRUC_LENGTH

This is the length, in bytes, of the MQCFSF structure, including the string
at the end of the structure (the FilterValue field). The length must be a
multiple of 4, and must be sufficient to contain the string. Bytes between
the end of the string and the length defined by the StrucLength field are
not significant.

MQCFIN - PCF integer parameter

492 WebSphere MQ for z/VSE System Management Guide

The following constant gives the length of the fixed part of the structure,
that is the length excluding the FilterValue field:

MQCFSF_STRUC_LENGTH_FIXED
Length of fixed part of command format filter string-parameter structure.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter that is to be filtered on. The value of this
identifier depends on the parameter to be filtered on. Any of the
parameters which can be used in the Inquire command can be used in this
field.

The parameter is from the following groups of parameters:
MQCA_*
MQCACF_*
MQCAMO_*
MQCACH_*

Operator (MQLONG)
Operator identifier.

This identifies the operator that is being used to evaluate whether the
parameter satisfies the filter-value.

Possible values are:
MQCFOP_GREATER

Greater than.
MQCFOP_LESS

Less than.
MQCFOP_EQUAL

Equal to.
MQCFOP_NOT_EQUAL

Not equal to.
MQCFOP_NOT_LESS

Greater than or equal to.
MQCFOP_NOT_GREATER

Less than or equal to.
MQCFOP_LIKE

Matches a generic string.
MQCFOP_NOT_LIKE

Does not match a generic string.
MQCFOP_CONTAINS

Contains a specified string. Use this when filtering on lists of
strings.

MQCFOP_EXCLUDES
Does not contain a specified string. Use this when filtering on lists
of strings.

MQCFOP_CONTAINS_GEN
Contains an item which matches a generic string. Use this when
filtering on lists of strings.

MQCFOP_EXCLUDES_GEN
Does not contain any item which matches a generic string. Use this
when filtering on lists of strings.

See the FilterValue description for details telling you which operators may
be used in which circumstances.

MQCFSF - PCF string filter parameter

Chapter 8. Programmable system management 493

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of the data in the
FilterValue field. The following special value can be used:

MQCCSI_DEFAULT
Default character set identifier. The string data is in the character
set defined by the CodedCharSetId field in the MQ header
structure that precedes the MQCFH structure, or by the
CodedCharSetId field in the MQMD if the MQCFH structure is at
the start of the message.

FilterValueLength (MQLONG)
Length of filter-value string.

This is the length, in bytes, of the data in the FilterValue field. This must
be zero or greater, and does not need to be a multiple of 4.

FilterValue (MQCHARxFilterValueLength)
Filter value.

This specifies the filter-value that must be satisfied. Depending on the
parameter, the value and the permitted operators can be:
v An explicit string value. You can only use these operators:

MQCFOP_GREATER MQCFOP_LESS
MQCFOP_EQUAL
MQCFOP_NOT_EQUAL
MQCFOP_NOT_GREATER
MQCFOP_NOT_LESS

v A generic string value.
This is a character string with an asterisk at the end, for example ABC*.
The operator must be either MQCFOP_LIKE or MQCFOP_NOT_LIKE.
The characters must be valid for the attribute you are testing. If the
operator is MQCFOP_LIKE, all items where the attribute value begins
with the string (ABC in the example) are listed. If the operator is
MQCFOP_NOT_LIKE, all items where the attribute value does not begin
with the string are listed. If the parameter takes a list of string values,
the operator can be:

MQCFOP_CONTAINS
MQCFOP_EXCLUDES
MQCFOP_CONTAINS_GEN
MQCFOP_EXCLUDES_GEN

v An item in a list of values.
The value can be explicit or or generic. If it is explicit, use
MQCFOP_CONTAINS or MQCFOP_EXCLUDES as the operator. For
example, if the value DEF is specified with the operator
MQCFOP_CONTAINS, all items where one of the attribute values is
DEF are listed. If it is generic, use MQCFOP_CONTAINS_GEN or
MQCFOP_EXCLUDES_GEN as the operator. If ABC* is specified with
the operator MQCFOP_CONTAINS_GEN, all items where one of the
attribute values begins with ABC are listed.

Note:

MQCFSF - PCF string filter parameter

494 WebSphere MQ for z/VSE System Management Guide

1. If the specified string is shorter than the standard length of the parameter in
MQFMT_ADMIN command messages, the omitted characters are assumed to
be blanks. If the specified string is longer than the standard length, it is an
error.

2. When the queue manager reads an MQCFSF structure in an MQFMT_ADMIN
message from the command input queue, the queue manager processes the
string as though it had been specified on an MQI call. This means that within
the string, the first null and the characters following it (up to the end of the
string) are treated as blanks.

3. The filter value must be a valid value for the parameter being tested.

MQCFST - PCF string parameter

The MQCFST structure describes a string parameter in a message that is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The structure ends with a variable-length character string; see the String field
below for further details.

Type (MQLONG)
Structure type. This indicates that the structure is an MQCFST structure
describing a string parameter. The value must be:

MQCFT_STRING
Structure defining a string.

The initial value of this field is MQCFT_STRING.

StrucLength (MQLONG)
Structure length. This is the length in bytes of the MQCFST structure,
including the String field). The length must be a multiple of four, and must
be sufficient to contain the string; any bytes between the end of the string
and the length defined by the StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure,
that is the length excluding the String field:

MQCFST_STRUC_LENGTH_FIXED
Length of fixed part of command format string-parameter
structure.

The initial value of this field is
MQCFST_STRUC_LENGTH_FIXED.

Parameter (MQLONG)
Parameter identifier. This identifies the parameter whose value is contained
in the structure. The values that can occur in this field depend on the value
of the Command field in the MQCFH structure; see “MQCFH - PCF
header” on page 486 for details.

The initial value of this field is 0.

CodedCharSetId (MQLONG)
Coded character set identifier. This specifies the coded character set
identifier of the data in the String field. This special value can be used:

MQCCSI_DEFAULT
Default coded character set identifier.

MQCFSF - PCF string filter parameter

Chapter 8. Programmable system management 495

Character data is in the character set defined by the
CodedCharSetId field in the message descriptor MQMD.

The initial value of this field is MQCCSI_DEFAULT.

StringLength (MQLONG)
Length of string. This is the length in bytes of the data in the String field;
it must be zero or greater. This length need not be a multiple of four.

The initial value of this field is 0.

String (MQCHAR××StringLength)
String value. This is the value of the parameter identified by the Parameter
field:
v In MQFMT_ADMIN command messages, if the specified string is

shorter than the standard length of the parameter, the omitted characters
are assumed to be blanks. If the specified string is longer than the
standard length, those characters in excess of the standard length must
be blanks.

v In MQFMT_ADMIN response messages, string parameters are returned
padded with blanks to the standard length of the parameter.

The string can contain any characters that are in the character set defined
by CodedCharSetId, and that are valid for the parameter identified by
Parameter.

Note: In the MQCFST structure, a null character in the string is treated as
normal data, and does not act as a delimiter for the string. This means that
when a receiving application reads a MQFMT_ADMIN message, the
receiving application receives all of the data specified by the sending
application. The data may, of course, have been converted between
character sets (for example, by the receiving application specifying the
MQGMO_CONVERT option on the MQGET call).

In contrast, when the queue manager reads an MQFMT_ADMIN message
from the command input queue, the queue manager processes the data as
though it had been specified on an MQI call. This means that within the
string, the first null and the characters following it (up to the end of the
string) are treated as blanks.

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with

one element. Storage for the structure should be allocated dynamically,
and pointers used to address the fields within it.

v For the COBOL and PL/I programming languages, the field is omitted
from the structure declaration. When an instance of the structure is
declared, the user should include MQCFST in a larger structure, and
declare additional field(s) following MQCFST, to represent the String
field as required.

In C, the initial value of this field is the null string.

C language declaration

The C language declaration for the MQCFST data structure is:
typedef struct tagMQCFST {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */

MQCFST - PCF string parameter

496 WebSphere MQ for z/VSE System Management Guide

MQLONG CodedCharSetId; /* Coded character set identifier */
MQLONG StringLength; /* Length of string */
MQCHAR String[1]; /* String value - first character */

} MQCFST;

COBOL language declaration

The COBOL language declaration for the MQCFST data structure is:
** MQCFST structure
10 MQCFST.
** Structure type

15 MQCFST-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFST-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFST-PARAMETER PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFST-CODEDCHARSETID PIC S9(9) BINARY.
** Length of string

15 MQCFST-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration

The PL/I language declaration for the MQCFST data structure is:
dcl
1 MQCFST based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 StringLength fixed bin(31); /* Length of string */

MQCFIL - PCF integer list parameter

The MQCFIL structure describes an integer-list parameter in a message that is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The structure ends with a variable-length array of integers; see the Values field
below for further details.

Type (MQLONG)
Structure type. This indicates that the structure is an MQCFIL structure
describing an integer-list parameter. The value must be:

MQCFT_INTEGER_LIST
Structure defining an integer list.

The initial value of this field is MQCFT_INTEGER_LIST.

StrucLength (MQLONG)
Structure length. This is the length in bytes of the MQCFIL structure,
including the Values field). The length must be a multiple of four, and
must be sufficient to contain the array; any bytes between the end of the
array and the length defined by the StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure,
that is the length excluding the Values field:

MQCFIL_STRUC_LENGTH_FIXED
Length of fixed part of command format integer-list parameter
structure.

MQCFST - PCF string parameter

Chapter 8. Programmable system management 497

The initial value of this field is MQCFIL_STRUC_LENGTH_FIXED.

Parameter (MQLONG)
Parameter identifier. This identifies the parameter whose values are
contained in the structure. The values that can occur in this field depend
on the value of the Command field in the MQCFH structure; see “MQCFH
- PCF header” on page 486 for details.

The initial value of this field is 0.

Count (MQLONG)
Count of parameter values. This is the number of elements in the Values
array; it must be zero or greater.

The initial value of this field is 0.

Values (MQLONG×Count)
Parameter values. This is an array of values for the parameter identified by
the Parameter field. For example, for MQIACF_Q_ATTRS, this is a list of
attribute selectors (MQCA_* and MQIA_* values).

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with

one element. Storage for the structure should be allocated dynamically,
and pointers used to address the fields within it.

v For the COBOL and PL/I programming languages, the field is omitted
from the structure declaration. When an instance of the structure is
declared, the user should include MQCFIN in a larger structure, and
declare additional field(s) following MQCFIN, to represent the Values
field as required.

In C, the initial value of this field is a single 0.

C language declaration

The C language declaration for the MQCFIL data structure is:
typedef struct tagMQCFIL {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Count; /* Count of parameter values */
MQLONG Values[1]; /* Parameter values - first element */

} MQCFIL;

COBOL language declaration

The COBOL language declaration for the MQCFIL data structure is:
** MQCFIL structure
10 MQCFIL.
** Structure type

15 MQCFIL-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIL-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIL-PARAMETER PIC S9(9) BINARY.
** Count of parameter values

15 MQCFIL-COUNT PIC S9(9) BINARY.

PL/I language declaration

The PL/I language declaration for the MQCFIL data structure is:

MQCFIL - PCF integer list parameter

498 WebSphere MQ for z/VSE System Management Guide

dcl
1 MQCFIL based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Count fixed bin(31); /* Count of parameter values */

MQCFSL - PCF string list parameter

The MQCFSL structure describes a string-list parameter in a message which is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The structure ends with a variable-length array of character strings; see the Strings
field below for further details.

Type (MQLONG)
Structure type. This indicates that the structure is an MQCFSL structure
describing a string-list parameter. The value must be:

MQCFT_STRING_LIST
Structure defining a string list.

The initial value of this field is MQCFT_STRING_LIST.

StrucLength (MQLONG)
Structure length. This is the length in bytes of the MQCFSL structure,
including the Strings field). The length must be a multiple of four, and
must be sufficient to contain all of the strings; any bytes between the end
of the strings and the length defined by the StrucLength field are not
significant.

The following constant gives the length of the fixed part of the structure,
that is the length excluding the Strings field:

MQCFSL_STRUC_LENGTH_FIXED
Length of fixed part of command format string-list parameter
structure.

The initial value of this field is
MQCFSL_STRUC_LENGTH_FIXED.

Parameter (MQLONG)
Parameter identifier. This identifies the parameter whose values are
contained in the structure. The values that can occur in this field depend
on the value of the Command field in the MQCFH structure; see “MQCFH
- PCF header” on page 486 for details.

The initial value of this field is 0.

CodedCharSetId (MQLONG)
Coded character set identifier. This specifies the coded character set
identifier of the data in the Strings field. This special value can be used:

MQCCSI_DEFAULT
Default coded character set identifier. Character data is in the
character set defined by the CodedCharSetId field in the message
descriptor MQMD.

The initial value of this field is MQCCSI_DEFAULT.

MQCFIL - PCF integer list parameter

Chapter 8. Programmable system management 499

Count (MQLONG)
Count of parameter values. This is the number of strings present in the
Strings field; it must be zero or greater.

The initial value of this field is 0.

StringLength (MQLONG)
Length of one string. This is the length in bytes of one parameter value,
that is the length of one string in the Strings field; all of the strings are this
length. The length must be zero or greater, and need not be a multiple of
four.

The initial value of this field is 0.

Strings (MQCHAR×StringLength×Count)
String values. This is a set of string values for the parameter identified by
the Parameter field. The number of strings is given by the Count field, and
the length of each string is given by the StringLength field. The strings are
concatenated together, with no bytes skipped between adjacent strings. The
total length of the strings is the length of one string multiplied by the
number of strings present (that is, StringLength×Count).

In MQFMT_ADMIN command messages, if the specified string is shorter
than the standard length of the parameter, the omitted characters are
assumed to be blanks. If the specified string is longer than the standard
length, those characters in excess of the standard length must be blanks.

In MQFMT_ADMIN response messages, string parameters are returned
padded with blanks to the standard length of the parameter.

In all cases, StringLength gives the length of the string actually present in
the message.

The strings can contain any characters that are in the character set defined
by CodedCharSetId, and that are valid for the parameter identified by
Parameter.

Note: In the MQCFSL structure, a null character in a string is treated as
normal data, and does not act as a delimiter for the string. This means that
when a receiving application reads a MQFMT_ADMIN message, the
receiving application receives all of the data specified by the sending
application. The data may, of course, have been converted between
character sets (for example, by the receiving application specifying the
MQGMO_CONVERT option on the MQGET call).

In contrast, when the queue manager reads an MQFMT_ADMIN message
from the command input queue, the queue manager processes the data as
though it had been specified on an MQI call. This means that within each
string, the first null and the characters following it (up to the end of the
string) are treated as blanks.

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with

one element. Storage for the structure should be allocated dynamically,
and pointers used to address the fields within it.

v For the COBOL and PL/I programming languages, the field is omitted
from the structure declaration. When an instance of the structure is
declared, the user should include MQCFSL in a larger structure, and
declare additional field(s) following MQCFSL, to represent the Strings
field as required.

MQCFSL - PCF string list parameter

500 WebSphere MQ for z/VSE System Management Guide

In C, the initial value of this field is the null string.

C language declaration

The C language declaration for the MQCFSL data structure is:
typedef struct tagMQCFSL {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG CodedCharSetId; /* Coded character set identifier */
MQLONG Count; /* Count of parameter values */
MQLONG StringLength; /* Length of one string */
MQCHAR Strings[1]; /* String values - first character */

} MQCFSL;

COBOL language declaration

The COBOL language declaration for the MQCFSL data structure is:
** MQCFSL structure
10 MQCFSL.
** Structure type

15 MQCFSL-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFSL-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFSL-PARAMETER PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFSL-CODEDCHARSETID PIC S9(9) BINARY.
** Count of parameter values

15 MQCFSL-COUNT PIC S9(9) BINARY.
** Length of one string

15 MQCFSL-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration

The PL/I language declaration for the MQCFSL data structure is:
dcl
1 MQCFSL based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 Count fixed bin(31), /* Count of parameter values */
3 StringLength fixed bin(31); /* Length of one string */

MQCFBS - PCF byte string parameter

The MQCFBS structure describes a byte-string parameter in a PCF message. The
format name in the message descriptor is MQFMT_ADMIN.

When an MQCFBS structure is present, the Version field in the MQCFH structure
at the start of the PCF must be MQCFH_VERSION_2 or greater.

In a user PCF message, the Parameter field has no significance, and can be used by
the application for its own purposes.

The structure ends with a variable-length byte string.

MQCFSL - PCF string list parameter

Chapter 8. Programmable system management 501

Fields for MQCFBS

Type (MQLONG)
Structure type.

This indicates that the structure is an MQCFBS structure describing byte
string parameter. The value must be:

MQCFT_BYTE_STRING Structure defining a byte string.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFBS structure, including the
variable-length string at the end of the structure (the String field). The
length must be a multiple of four, and must be sufficient to contain the
string; any bytes between the end of the string and the length defined by
the StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure,
that is the length excluding the String field:

MQCFBS_STRUC_LENGTH_FIXED Length of fixed part of MQCFBS
structure.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter whose value is contained in the structure. The
values that can occur in this field depend on the value of the Command
field in the MQCFH structure; see MQCFH - PCF header for details.

StringLength (MQLONG)
Length of string.

This is the length in bytes of the data in the string field; it must be zero or
greater. This length need not be a multiple of four.

String (MQBYTExStringLength)
String value.

This is the value of the parameter identified by the parameter field. The
string is a byte string, and so is not subject to character-set conversion
when sent between different systems.

Note: A null character in the string is treated as normal data, and does not
act as a delimiter for the string.

For MQFMT_ADMIN messages, if the specified string is shorter than the
standard length of the parameter, the omitted characters are assumed to be
nulls. If the specified string is longer than the standard length, it is an
error.

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with

one element. Storage for the structure must be allocated dynamically,
and pointers used to address the fields within it.

v For other programming languages, the field is omitted from the
structure declaration. When an instance of the structure is declared, you
must include MQCFBS in a larger structure, and declare additional fields
following MQCFBS, to represent the String field as required.

MQCFBS - PCF byte string parameter

502 WebSphere MQ for z/VSE System Management Guide

C language declaration
typedef struct tagMQCFBS {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG StringLength; /* Length of string */
MQBYTE String[1]; /* String value - first byte */

} MQCFBS;

COBOL language declaration
** MQCFBS structure

10 MQCFBS.
** Structure type

15 MQCFBS-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFBS-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFBS-PARAMETER PIC S9(9) BINARY.
** Length of string

15 MQCFBS-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration
dcl
1 MQCFBS based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 StringLength fixed bin(31) /* Length of string */

MQCFIL64 - PCF 64-bit integer list parameter

The MQCFIL64 structure describes an 64-bit integer-list parameter in a message
that is a command or a response to a command. In either case, the format name in
the message descriptor is MQFMT_ADMIN.

The structure ends with a variable-length array of 64-bit integers; see the Values
field below for further details.

Type (MQLONG)
Structure type. This indicates that the structure is an MQCFIL64 structure
describing a 64-bit integer-list parameter. The value must be:

MQCFT_INTEGER64_LIST
Structure defining a 64-bit integer list.

The initial value of this field is MQCFT_INTEGER64_LIST.

StrucLength (MQLONG)
Structure length. This is the length in bytes of the MQCFIL64 structure,
including the Values field). The length must be a multiple of four, and
must be sufficient to contain the array; any bytes between the end of the
array and the length defined by the StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure,
that is the length excluding the Values field:

MQCFIL64_STRUC_LENGTH_FIXED
Length of fixed part of command format 64-bit integer-list
parameter structure.

The initial value of this field is MQCFIL64_STRUC_LENGTH_FIXED.

MQCFBS - PCF byte string parameter

Chapter 8. Programmable system management 503

Parameter (MQLONG)
Parameter identifier. This identifies the parameter whose values are
contained in the structure. The values that can occur in this field depend
on the value of the Command field in the MQCFH structure; see “MQCFH
- PCF header” on page 486 for details.

The initial value of this field is 0.

Count (MQLONG)
Count of parameter values. This is the number of elements in the Values
array; it must be zero or greater.

The initial value of this field is 0.

Values (MQLONGxCount)
Parameter values. This is an array of values for the parameter identified by
the Parameter field.

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with

one element. Storage for the structure should be allocated dynamically,
and pointers used to address the fields within it.

v For the COBOL and PL/I programming languages, the field is omitted
from the structure declaration. When an instance of the structure is
declared, the user should include MQCFIL64 in a larger structure, and
declare additional field(s) following MQCFIL64, to represent the Values
field as required.

In C, the initial value of this field is a single 0.

C language declaration

The C language declaration for the MQCFIL64 data structure is:
typedef struct tagMQCFIL64 {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Count; /* Count of parameter values */
MQINT64 Values[1]; /* Parameter values - first element */

} MQCFIL64;

COBOL language declaration

The COBOL language declaration for the MQCFIL64 data structure is:
** MQCFIL structure

10 MQCFIL64.
** Structure type

15 MQCFIL64-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIL64-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIL64-PARAMETER PIC S9(9) BINARY.
** Count of parameter values

15 MQCFIL64-COUNT PIC S9(9) BINARY.

PL/I language declaration

The PL/I language declaration for the MQCFIL64 data structure is:
dcl
1 MQCFIL64 based,
3 Type fixed bin(31), /* Structure type */

MQCFIL64 - PCF 64-bit integer list parameter

504 WebSphere MQ for z/VSE System Management Guide

3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Count fixed bin(31); /* Count of parameter values */

MQCFIL64 - PCF 64-bit integer list parameter

Chapter 8. Programmable system management 505

MQCFIL64 - PCF 64-bit integer list parameter

506 WebSphere MQ for z/VSE System Management Guide

Chapter 9. WebSphere MQ commands

WebSphere MQ commands (MQSC) provide a uniform method of issuing
human-readable commands on WebSphere MQ platforms.

This chapter describes:
“Rules for using WebSphere MQ commands”
“Issuing WebSphere MQ commands” on page 508
“Descriptions of the WebSphere MQ commands” on page 510

Review section “Features” on page 15 for prerequisites for this feature.

Rules for using WebSphere MQ commands
You should observe the following rules when using WebSphere MQ commands:
v Each command starts with a primary parameter (a verb), and this is followed by

a secondary parameter (a noun). This is then followed by the name of the object
(in parentheses) if there is one, which there is on most commands. Following
that, parameters can usually occur in any order; if a parameter has a
corresponding value, the value must occur directly after the parameter to which
it relates.

v Keywords, parentheses, and values can be separated by any number of blanks.
There must be at least one blank immediately preceding each parameter.

v Any number of blanks can occur at the beginning or end of the command, and
between parameters, punctuation, and values. For example, this command is
valid:
ALTER QLOCAL (’Account’)TRIGDPTH (1)

Blanks within a pair of quotation marks are significant.
v Repeated parameters are not allowed.
v Strings that contain non-alphanumeric characters must be enclosed in single

quotation marks.
v A string containing no characters (that is, two single quotation marks with no

space in between) is not valid.
v A left parenthesis followed by a right parenthesis, with no significant

information in between. For example NAME () is not valid.
v Keywords are not case sensitive — AltER, alter, and ALTER are all acceptable.

Names that are not contained within quotation marks are converted to
uppercase.

v Synonyms are defined for some parameters. For example, DEF is always a
synonym for DEFINE, so DEF QLOCAL is valid. Synonyms are not, however,
just minimum strings; DEFI is not a valid synonym for DEFINE.

Note: There is no synonym for the DELETE parameter. This is to avoid
accidental deletion of objects when using DEF, the synonym for DEFINE.

The following characters have special meaning when you build WebSphere MQ
commands:

© Copyright IBM Corp. 2008, 2013 507

Table 11. MQSC special characters

Character Description

blank Blanks are used as separators. Multiple blanks are equivalent to a single
blank, except in strings that have quotation marks (') round them.

' A single quotation mark indicates the beginning or end of a string.
WebSphere MQ leaves all characters that have quotation marks round them
exactly as they are entered. The containing quotation marks are not included
when calculating the length of the string.

'' Two quotation marks together inside a string are treated by WebSphere MQ
as one quotation mark, and the string is not terminated. The double
quotation marks are treated as one character when calculating the length of
the string.

(An open parenthesis indicates the beginning of a parameter list.

) A close parenthesis indicates the end of a parameter list.

* An asterisk indicates a wild card when used in an object name with
DISPLAY commands for queues and channels. An asterisk is permitted in
column 1 of input cards to indicate a comment.

+ A plus indicates continuation for commands that span more than one input
card.

Issuing WebSphere MQ commands
With WebSphere MQ for z/VSE, WebSphere MQ commands are issued from a
batch job, or via PCF Escape commands. WebSphere MQ for z/VSE provides a
batch utility program (MQPMQSC) which can be used to issue WebSphere MQ
commands from batch.

MQSC utility program
The MQSC utility program (MQPMQSC) uses the WebSphere MQ for z/VSE batch
interface. Consequently, to issue WebSphere MQ commands using the MQPMQSC
program, the batch interface, and the WebSphere MQ queue manager, must be
active in CICS.

The MQPMQSC program reads WebSphere MQ commands from SYSIPT (all 80
columns are parsed), converts them into PCF Escape messages and puts them on
the system command queue. Responses to WebSphere MQ commands issued this
way are sent to the system reply queue. Both the system command queue and the
system reply queue are specified as part of the queue manager's global system
definition.

The system command and reply queues can be displayed and modified using PCF
commands, or the MQMT transaction, option 1.1, followed by PF9:

Rules for using WebSphere MQ commands

508 WebSphere MQ for z/VSE System Management Guide

Since WebSphere MQ commands are issued as PCF Escape messages, the PCF
command server (transaction MQCS) must be active in CICS. The command server
processes the PCF Escape messages as they arrive on the system command queue,
and places PCF Escape responses on the system reply queue. If the command
server is not active, the MQPMQSC command will timeout, and issue an
appropriate error response.

The MQPMQSC program reports the results of the WebSphere MQ commands to
SYSLST.

MQPMQSC sample JCL
The MQPMQSC program is provided with WebSphere MQ for z/VSE and resides
in the installation library (default PRD2.WMQZVSE). The program should be run
in a batch partition.

The following sample JCL illustrates how an WebSphere MQ command (ALTER
QLOCAL) can be issued from a batch job:
// JOB MQSCJOB
// SETPARM MQBISRV=’MQBISRV2’
// LIBDEF *,SEARCH=(PRD2.WMQZVSE,PRD2.SCEEBASE)
// EXEC MQPMQSC,SIZE=AUTO
ALTER QLOCAL(’ANYQ’) GET(DISABLED)
/*
/&

In this sample, the SETPARM identifies the batch interface server by name. This
should match the batch interface identifier specified in the appropriate queue
manager's global system definition.

The MQPMQSC program can process multiple WebSphere MQ commands, for
example:

2011/10/31 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
22:07:18 Global System Definition CIC1
MQWMSYS Communications Settings A000

TCP/IP settings Batch Interface settings
Licensed clients . . : 00000 Batch Int. identifier: MQBSRV39
Adopt MCA : N Batch Int. auto-start: Y
Adopt MCA Check . . : N

Channel Auto-Definition
Auto-definition . . : N

SSL parameters Auto-definition exit :
Key-ring sublibrary :
Key-ring member . . :
SSL reset count . . :

PCF parameters
System command queue : SYSTEM.ADMIN.COMMAND.QUEUE
System reply queue . : SYSTEM.ADMIN.REPLY.QUEUE
Cmd Server auto-start: Y
Cmd Server convert . : Y
Cmd Server DLQ store : Y

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF6=Update PF10=Listeners PF11=Services

Figure 82. System command and reply queues

MQSC utility program

Chapter 9. WebSphere MQ commands 509

// JOB MQSCJOB
// SETPARM MQBISRV=’MQBISRV2’
// LIBDEF *,SEARCH=(PRD2.WMQZVSE,PRD2.SCEEBASE)
// EXEC MQPMQSC,SIZE=AUTO
ALTER QLOCAL(’ANYQ’) GET(DISABLED)
DELETE CHANNEL(’VSE1.TO.NT5’)
DISPLAY QMGR CCSID
/*
/&

In addition, WebSphere MQ commands can be split over multiple SYSIPT lines by
using the plus character (+) to indicate continuation. For example:
// JOB MQSCJOB
// SETPARM MQBISRV=’MQBISRV2’
// LIBDEF *,SEARCH=(PRD2.WMQZVSE,PRD2.SCEEBASE)
// EXEC MQPMQSC,SIZE=AUTO
ALTER CHANNEL(’VSE1.TO.NT5’) +

CHLTYPE(SDR) +
CONVERT(NO)

/*
/&

WebSphere MQ command prerequisites
There are several prerequisites that must be met before WebSphere MQ commands
can be processed by the MQPMQSC utility program. These include:
v WebSphere MQ is installed and active in CICS.

See Chapter 2, “Installation,” on page 13.
v System command queue is defined to the queue manager.

See “Queue Manager Communications Settings” on page 85.
v System reply queue is defined to the queue manager.

See “Queue Manager Communications Settings” on page 85.
v Batch interface is active in CICS.

See “Using the batch interface” on page 178.
v PCF command server is active in CICS.

See “Preparing WebSphere MQ for PCF” on page 235.

Descriptions of the WebSphere MQ commands
This section describes the WebSphere MQ commands supported by WebSphere
MQ for z/VSE.

WebSphere MQ commands can be divided into these categories:
v WebSphere MQ channel commands
v WebSphere MQ channel authentication commands
v WebSphere MQ channel listener commands
v WebSphere MQ connection commands
v WebSphere MQ namelist commands
v WebSphere MQ queue commands
v WebSphere MQ queue manager commands
v WebSphere MQ services commands
v WebSphere MQ subscription commands
v WebSphere MQ topic commands
v WebSphere MQ meta commands

MQPMQSC sample JCL

510 WebSphere MQ for z/VSE System Management Guide

|

|
|

Note: In the following command descriptions, where a parameter requires an
integer value, but a character string is provided, the value is interpreted as zero.

A new keyword, WHERE, is provided for the MQSC DISPLAY commands. This
allows you to filter the information displayed by one (and only one) of the
attributes of objects.

The following describes the WHERE parameter that may be added to DISPLAY
commands to filter the output.

WHERE
The filter condition is in three parts: filter-keyword, operator, and filter-value:

Filter-keyword
Almost any parameter that can be used to display attributes for this
DISPLAY command.

Operator
This is used to determine whether a channel satisfies the filter value on the
given filter keyword. The operators are:
LT Less than.
GT Greater than.
EQ Equal to.
NE Not equal to.
LE Less than or equal to.
GE Greater than or equal to.
LK Matches a generic string that you provide as a filter-value.
NL Does not match a generic string that you provide as a filter-value.
CT Contains a specified item. If the filter-keyword is a list, you can

use this to display objects the attributes of which contain the
specified item.

EX Does not contain a specified item. If the filter-keyword is a list, you
can use this to display objects the attributes of which do not
contain the specified item.

CTG Contains an item which matches a generic string that you provide
as a filter-value. If the filter-keyword is a list, you can use this to
display objects the attributes of which match the generic string.

EXG Does not contain any item which matches a generic string that you
provide as a filter-value. If the filter-keyword is a list, you can use
this to display objects the attributes of which do not match the
generic string.

Filter-value
The value that the attribute value must be tested against using the
operator. Depending on the filter-keyword, this can be:
v An explicit value, that is a valid value for the attribute being tested. You

can use operators LT, GT, EQ, NE, LE or GE only. However, if the
attribute value is one from a possible set of values on a parameter (for
example, the value SDR on the TYPE parameter), you can only use EQ
or NE.

v A generic value. This is a character string (such as the character string
you supply for the DESCR parameter) with an asterisk at the end; for
example, ABC*. The characters must be valid for the attribute you are
testing. If the operator is LK, all items where the attribute value begins
with the string (ABC in the example) are listed. If the operator is NL, all
items where the attribute value does not begin with the string are listed.

Descriptions of the WebSphere MQ commands

Chapter 9. WebSphere MQ commands 511

You cannot use a generic filter-value for parameters with numeric values
or with one of a set of values.

v An item in a list of values. The value can be explicit or, if it is a
character value, it can be explicit or generic. If it is explicit, use CT or EX
as the operator. For example, if the value DEF is specified with the
operator CT, all items where one of the attribute values is DEF are listed.
If it is generic, use CTG or EXG as the operator. If ABC* is specified
with the operator CTG, all items where one of the attribute values
begins with ABC are listed.

WebSphere MQ channel commands
The WebSphere MQ channel commands are:

ALTER CHANNEL
DEFINE CHANNEL
DELETE CHANNEL
DISPLAY CHANNEL
DISPLAY CHSTATUS
RESET CHANNEL
START CHANNEL
STOP CHANNEL

ALTER CHANNEL
Purpose

Use ALTER CHANNEL to alter the parameters of a channel.

Synonym
ALT CHL

Syntax
ALTER CHANNEL(channel-name) CHLTYPE(channel-type) optional-parameters

Parameters

channel-name
Channel name. The channel-name value should match the name of a
channel defined to the queue manager.

channel-type
Channel type. The channel-type value should match the channel type of
the channel identified by channel-name. Valid channel types include:

RCVR Receiver.

RQSTR
Requester.

SDR Sender.

SVR Server.

SVRCONN
Server connection (used by clients).

optional-parameters
Optional parameters for the ALTER CHANNEL command include:

BATCHINT(integer)
Batch interval.

WHERE

512 WebSphere MQ for z/VSE System Management Guide

BATCHSZ(integer)
Batch size.

DESCR(string)
Description.

CONNAME(string)
Connection name.

CONVERT(NO/YES)
Whether sender should convert application data.

DISCINT(integer)
Disconnection interval.

DISCRTY(integer)
Disconnection retry count.

LONGRTY(integer)
Long connection retry count.

LONGTMR(integer)
Long connection retry interval.

MAXMSGL(integer)
Maximum message length.

MAXXMIT(integer)
Maximum transmission size.

MONC(QMGR/OFF/LOW/MEDIUM/HIGH)
Channel monitoring setting.

MSGDATA (string)
Message exit user data.

MSGEXIT (string)
Message exit name.

PORTNUM(integer)
TCP/IP port number.

PROPCTL(COMPAT/ALL/NONE/)
Property control attribute.

Specifies what happens to properties of messages when the
message is about to be sent to a V6 or prior queue manager (a
queue manager that does not understand the concept of a property
descriptor).

This parameter is applicable to Sender and Server channels and is
optional. Permitted values are:

COMPAT
This is the default value.

Message properties Result

The message contains a property with a
prefix of mcd., jms., usr., or mqext.

All optional message properties (where the
Support value is
MQPD_SUPPORT_OPTIONAL), except those
in the message descriptor or extension, are
placed in one or more MQRFH2 headers in
the message data before the message it sent
to the remote queue manager.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 513

Message properties Result

The message does not contain a property
with a prefix of mcd., jms., usr., or mqext.

All message properties, except those in the
message descriptor or extension, are removed
from the message before the message is sent
to the remote queue manager.

The MQRFH2 folder that would contain the
message property needs to be assigned with
the content='properties' attribute

The properties are removed to prevent
MQRFH2 headers with unsupported syntax
flowing to a V6 or prior queue manager.

NONE
All properties of the message, except those in the message
descriptor or extension, are removed from the message
before the message is sent to the remote queue manager.

ALL All properties of the message are included with the
message when it is sent to the remote queue manager. The
properties, except those in the message descriptor (or
extension), are placed in one or more MQRFH2 headers in
the message data.

RCVEXIT (string)
Receive exit name.

RCVDATA (string)
Receive exit user data.

RCVTIME(integer)
Maximum TCP/IP Wait.

SCYEXIT (string)
Security exit name.

SCYDATA (string)
Security exit user data.

SENDEXIT (string)
Send exit name.

SENDDATA (string)
Send exit user data.

SEQWRAP(integer)
Sequence number wrap.

SHORTRTY(integer)
Short connection retry count.

SHORTTMR(integer)
Short connection retry interval.

SSLCIPH(string)
SSL cipher specification.

SSLCAUTH(REQUIRED/OPTIONAL)
SSL client authentication.

SSLPEER(string)
SSL peer name.

STATCHL(QMGR/OFF/LOW/MEDIUM/HIGH)
Channel statistics setting.

WebSphere MQ channel commands

514 WebSphere MQ for z/VSE System Management Guide

TPNAME(string)
Transaction program name.

TRPTYPE(LU62/TCP)
Transport (transmission protocol) type.

XMITQ(string)
Transmission queue name.

DEFINE CHANNEL
Purpose

Use DEFINE CHANNEL to define a new channel to the queue manager.

Synonym
DEF CHL

Syntax
DEFINE CHANNEL(channel-name) CHLTYPE(channel-type)
TRPTYPE(trptype) optional-parameters

Parameters

channel-name
Channel name. The channel-name value should be unique; it should not
match a channel name already defined to the queue manager.

channel-type
Channel type. The channel-type value should be the required channel type
for the new channel. Valid types include:

RCVR Receiver.

RQSTR
Requester.

SDR Sender.

SVR Server.

SVRCONN
Server connection (used by clients).

trptype
Transport (transmission protocol) type.The trptype value should identify
the required transport type for the new channel. Valid types include:

LU62 APPC LU 6.2 protocol.

TCP Transmission Control protocol.

optional-parameters
optional-parameters for the DEFINE CHANNEL command include:

BATCHINT(integer)
Batch interval.

BATCHSZ(integer)
Batch size.

CONNAME(string)
Connection name. The conname value should be the name of an
LU 6.2 connection, or for TCP/IP sender channels, a remote
hostname or IP address.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 515

For TCP/IP sender channels, the remote port number can be
appended (in parentheses) to the CONNAME. For example:
CONNAME(’my.remote.host(1414)’)

If the port number is not appended to the connection name, the
queue manager uses the value specified by the PORTNUM
parameter.

DESCR(string)
Description.

CONVERT(NO/YES)
Whether sender should convert application data.

DISCINT(integer)
Disconnection interval.

DISCRTY(integer)
Disconnection retry count.

LONGRTY(integer)
Long connection retry count.

LONGTMR(integer)
Long connection retry interval.

MAXMSGL(integer)
Maximum message length.

MAXXMIT(integer)
Maximum transmission size.

MONC(QMGR/OFF/LOW/MEDIUM/HIGH)
Channel monitoring setting.

PORTNUM(integer)
TCP/IP port number.

MSGDATA (string)
Message exit user data.

MSGEXIT (string)
Message exit name.

PROPCTL(COMPAT/ALL/NONE/)
Property control attribute.

Specifies what happens to properties of messages when the
message is about to be sent to a V6 or prior queue manager (a
queue manager that does not understand the concept of a property
descriptor).

This parameter is applicable to Sender and Server channels and is
optional. Permitted values are:

COMPAT
This is the default value.

WebSphere MQ channel commands

516 WebSphere MQ for z/VSE System Management Guide

Message properties Result

The message contains a property with a
prefix of mcd., jms., usr., or mqext.

All optional message properties (where the
Support value is
MQPD_SUPPORT_OPTIONAL), except those
in the message descriptor or extension, are
placed in one or more MQRFH2 headers in
the message data before the message it sent
to the remote queue manager.

The message does not contain a property
with a prefix of mcd., jms., usr., or mqext.

All message properties, except those in the
message descriptor or extension, are removed
from the message before the message is sent
to the remote queue manager.

The MQRFH2 folder that would contain the
message property needs to be assigned with
the content='properties' attribute

The properties are removed to prevent
MQRFH2 headers with unsupported syntax
flowing to a V6 or prior queue manager.

NONE
All properties of the message, except those in the message
descriptor or extension, are removed from the message
before the message is sent to the remote queue manager.

ALL All properties of the message are included with the
message when it is sent to the remote queue manager. The
properties, except those in the message descriptor (or
extension), are placed in one or more MQRFH2 headers in
the message data.

RCVEXIT (string)
Receive exit name.

RCVDATA (string)
Receive exit user data.

RCVTIME(integer)
Maximum TCP/IP Wait.

SCYEXIT (string)
Security exit name.

SCYDATA (string)
Security exit user data.

SENDEXIT (string)
Send exit name.

SENDDATA (string)
Send exit user data.

SEQWRAP(integer)
Sequence number wrap.

SHORTRTY(integer)
Short connection retry count.

SHORTTMR(integer)
Short connection retry interval.

SSLCIPH(string)
SSL cipher specification.

SSLCAUTH(REQUIRED/OPTIONAL)
SSL client authentication.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 517

SSLPEER(string)
SSL peer name.

STATCHL(QMGR/OFF/LOW/MEDIUM/HIGH)
Channel statistics setting.

TPNAME(string)
Transaction program name.

XMITQ(string)
Transmission queue name.

DELETE CHANNEL
Purpose

Use DELETE CHANNEL to delete a channel definition.

Synonym
DELETE CHL

Syntax
DELETE CHANNEL(channel-name)

Parameters

channel-name
Channel name. The channel-name value should match an existing channel
defined to the queue manager.

DISPLAY CHANNEL
Purpose

Use DISPLAY CHANNEL to display a channel definition.

Synonym
DIS CHL

Syntax
DISPLAY CHANNEL(channel-name) WHERE (FilterCondition) requested-attributes

Parameters

channel-name
Channel name. The channel-name value should match an existing channel
defined to the queue manager.

The channel-name can be generic. A trailing asterisk (*) matches all
channels with the specified stem followed by zero or more characters. An
asterisk (*) on its own specifies all channels. Characters after the first
asterisk, if present, are ignored.

FilterCondition
Specify a filter condition to display only those channels that satisfy the
selection criterion of the filter condition.

Almost any parameter that can be used to display attributes for this
DISPLAY command. You cannot use CHLTYPE if it is also used to select
channels. Channels of a type for which the filter keyword is not a valid
attribute are not displayed.

WebSphere MQ channel commands

518 WebSphere MQ for z/VSE System Management Guide

Examples:
DIS CHL(ABC*) WHERE(DESCR GE ’REQUESTER channel’)
DIS CHL(ABC*) WHERE(DESCR LK REQ*)
DIS CHL(ABC*) WHERE(ALTDATE LK 2010-08*) ALTTIME
DIS CHL(FILTERS*) WHERE(ALTTIME LT 13.49.57)
DIS CHL(ABC.SDR*) WHERE(XMITQ LK ABC.XQ*)
DIS CHL(LU.SDR*) WHERE(TPNAME GT XYZ)
DIS CHL(ABC*) WHERE(CONNAME LK ’1.2.3.4*’)
DIS CHL(XYZ*) WHERE(SSLPEER NE C=AU)
DIS CHL(XYZ*) WHERE(SSLCIPH LK TRIPLE_DES*)
DIS CHL(ABC*) WHERE(SCYEXIT EQ MYPROG1)
DIS CHL(ABC*) WHERE(SCYDATA NE ’MYPROG2 DATA’)
DIS CHL(ABC.SDR*) WHERE(SENDEXIT CT MYPROG2)
DIS CHL(ABC.RCVR*) WHERE(RCVEXIT CTG MYRECX2*) DESCR ALTDATE
DIS CHL(ABC*) WHERE(MSGEXIT EX EXITCCC) DESCR
DIS CHL(ABC*) WHERE(SENDDATA EX ’EXITABC DATA’)
DIS CHL(ABC*) WHERE(RCVDATA EXG REXITX*) ALTDATE ALTTIME
DIS CHL(FILTERS*) WHERE(MSGDATA CT ’MEXITZZZ DATA’) ALTDATE
DIS CHL(*) WHERE(CHLTYPE EQ RCVR)
DIS CHL(*) WHERE(TRPTYPE NE TCP) ALTDATE ALTTIME
DIS CHL(ABC*) WHERE(MAXMSGL GT 3000) ALTDATE ALTTIME
DIS CHL(ABC*) WHERE(MAXXMIT GE 5000) DESCR
DIS CHL(*) WHERE(RCVTIME NE 300) ALTDATE ALTTIME
DIS CHL(ABC*) WHERE(BATCHSZ GT 50) DESCR ALTDATE ALTTIME
DIS CHL(ABC*) WHERE(BATCHINT LT 20) DESCR ALTDATE ALTTIME
DIS CHL(ABC*) WHERE(DISCRTY LE 2)
DIS CHL(ABC*) WHERE(DISCINT EQ 300)
DIS CHL(*) WHERE(SHORTRTY GT 31) DESCR LONGRTY
DIS CHL(*) WHERE(SHORTTMR NE 32) DESCR LONGTMR
DIS CHL(*) WHERE(LONGRTY EQ 32) ALTDATE ALTTIME
DIS CHL(*) WHERE(LONGTMR EQ 320)
DIS CHL(ABC*) WHERE(SEQWRAP NE 99999999)DESCR
DIS CHL(ABC*) WHERE(CONVERT NE YES) ALTDATE ALTTIME
DIS CHL(ABC*) WHERE(SSLCAUTH EQ REQUIRED)
DIS CHL(ABC*) WHERE(STATCHL EQ MEDIUM)
DIS CHL(ABC*) WHERE(MONCHL EQ HIGH) DESCR

requested-attributes
Attributes of the channel that are to be displayed. This can be:

ALL Displays all channel attributes. If you do not use ALL, you can use
any combination of the other keywords.

ALTDATE
Last modification date.

ALTTIME
Last modification time.

BATCHINT(integer)
Batch interval.

BATCHSZ
Batch size.

DESCR
Channel description.

CHLTYPE
Channel type.

CONNAME
Connection name.

CONVERT
Whether sender should convert application data.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 519

DISCINT
Disconnection interval.

DISCRTY
Disconnection retry count.

LONGRTY(integer)
Long connection retry count.

LONGTMR(integer)
Long connection retry interval.

MAXMSGL
Maximum message length.

MAXXMIT(integer)
Maximum transmission size.

MONC
Channel monitoring setting.

MSGEXIT
Message exit name.

MSGDATA
Message exit user data.

PORTNUM
TCP/IP port number.

PROPCTL
Message property control.

RCVEXIT
Receive exit name.

RCVDATA
Receive exit user data.

RCVTIME(integer)
Maximum TCP/IP Wait.

SCYEXIT
Security exit name.

SCYDATA
Security exit user data.

SENDEXIT
Send exit name.

SENDDATA
Send exit user data.

SEQWRAP
Sequence number wrap.

SHORTRTY(integer)
Short connection retry count.

SHORTTMR(integer)
Short connection retry interval.

SSLCIPH
SSL cipher specification.

WebSphere MQ channel commands

520 WebSphere MQ for z/VSE System Management Guide

SSLCAUTH
SSL client authentication.

SSLPEER
SSL peer name.

STATC
Channel statistics setting.

TPNAME
Transaction program name.

TRPTYPE
Transport (transmission protocol) type.

XMITQ
Transmission queue name.

DISPLAY CHSTATUS
Purpose

Use the MQSC command DISPLAY CHSTATUS to display the status of one or
more channels.

Synonym
DIS CHS

Syntax
DISPLAY CHSTATUS (generic-channel-name)
WHERE (FilterCondition) requested-attributes

Usage

You must specify the name of the channel for which you want to display status
information. This can be a specific channel name or a generic channel name. By
using a generic channel name, you can display either the status information for all
channels, or status information for one or more channels that match the specified
name.

You can also specify whether you want the current status data (of current channels
only), or the saved status data of all channels.

Status for all channels that meet the selection criteria is given, whether the
channels were defined manually or automatically.

There are two classes of data available for channel status. These are saved and
current.

The status fields available for saved data are a subset of the fields available for
current data and are called common status fields. Note that although the common
data fields are the same, the data values might be different for saved and current
status. The rest of the fields available for current data are called current-only status
fields.
v Saved data consists of the common status fields. This data is reset for all

channels when the channel enters or leaves STOPPED or RETRY state. For a
sending channel data is reset before requesting confirmation that a batch of
messages has been received and when confirmation has been received. For a
receiving channel data is reset just before confirming that a batch of messages

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 521

has been received. For a server connection channel no data is saved. Therefore, a
channel that has never been current cannot have any saved status. Note: Because
status is saved at the end of each batch, a channel does not have any saved
status until at least one batch has been transmitted.

v Current data consists of the common status fields and current-only status fields
as noted in the syntax diagram. The data fields are continually updated as
messages are sent/received.

This method of operation has the following consequences:
v An inactive channel might not have any saved status if it has never been current

or has not yet reached a point where saved status is reset.
v The "common" data fields might have different values for saved and current

status.
v A current channel always has current status and might have saved status.

Channels can either be current or inactive:

Current channels
These are channels that have been started, or on which a client has
connected, and that have not finished or disconnected normally. They
might not yet have reached the point of transferring messages, or data, or
even of establishing contact with the partner. Current channels have
current status and might also have saved status.

The term Active is used to describe the set of current channels that are not
stopped.

Inactive channels
These are channels that either:
v Have not been started.
v On which a client has not connected.
v Have finished.
v Have disconnected normally.

Inactive channels have either saved status or no status at all.

There can be more than one instance of the same server-connection channel
current at the same time. For channels of other types, there can only be one
instance current at any time.

Parameters

(generic-channel-name)
The name of the channel definition for which status information is to be
displayed. A trailing asterisk (*) matches all channel definitions with the
specified stem followed by zero or more characters. An asterisk (*) on its
own specifies all channel definitions.

ALL Specify this to display all the status information for each relevant instance.

If SAVED is specified, this causes only common status information to be
displayed, not current-only status information.

If this parameter is specified, any parameters requesting specific status
information that are also specified have no effect; all the information is
displayed.

CONNAME(connection-name)
The connection name for which status information is to be displayed, for
the specified channel or channels.

WebSphere MQ channel commands

522 WebSphere MQ for z/VSE System Management Guide

This parameter can be used to limit the number of sets of status
information that is displayed. If it is not specified, the display is not
limited in this way.

The value returned for CONNAME might not be the same as in the
channel definition, and might differ between the current channel status
and the saved channel status. (Using CONNAME for limiting the number
of sets of status is therefore not recommended.)

For example, when using TCP, if CONNAME in the channel definition:
v Is blank or is in "host name" format, the channel status value has the

resolved IP address.
v Includes the port number, the current channel status value includes the

port number (except on z/OS), but the saved channel status value does
not.

For SAVED status, this value could also be the queue manager name of the
remote system.

CURRENT
This is the default, and indicates that current status information as held by
the channel initiator for current channels only is to be displayed.

Both common and current-only status information can be requested for
current channels.

SAVED
Specify this to display saved status information for both current and
inactive channels.

Only common status information can be displayed. Current-only status
information is not displayed for current channels if this parameter is
specified.

WHERE
Specify a filter condition to display status information for those channels
that satisfy the selection criterion of the filter condition.

The parameter to be used to display attributes for this DISPLAY command.
However, you cannot use the following parameters as filter keywords:
COMPRATE, COMPTIME,CURRENT, EXITTIME, MONITOR, NETTIME,
SAVED, SHORT, XBATCHSZ, or XQTIME.

You cannot use CONNAME or XMITQ as filter keywords if you also use
them to select channel status.

Status information for channels of a type for which the filter keyword is
not valid is not displayed.

Examples:
DISPLAY CHSTATUS(ABC*) SAVED WHERE(CHLTYPE EQ RCVR)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(CONNAME LT ’4.2.3.4(1417)’)
DISPLAY CHSTATUS(*) ALL WHERE(CURLUWID LT 0000000000000000)
DISPLAY CHSTATUS(ABC*) SAVED WHERE(LSTLUWID LK ’00*’)
DISPLAY CHSTATUS(ABC*) SAVED WHERE(XMITQ NL ’ABC.XQ*’)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(CURMSGS EQ 10)
DISPLAY CHSTATUS(*) CURRENT WHERE(CURSEQNO GT 100000)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(INDOUBT EQ NO)
DISPLAY CHSTATUS(*) CURRENT WHERE(LSTSEQNO GE 999999)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(STATUS EQ RUNNING)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(SUBSTATE EQ MQGET)
DISPLAY CHSTATUS(*) CURRENT WHERE(RQMNAME LK TEST*)
DISPLAY CHSTATUS(*) CURRENT WHERE(BATCHES GT 10)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(BATCHSZ GE 10)

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 523

DISPLAY CHSTATUS(ABC*) CURRENT WHERE(BUFSRCVD LE 1000)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(BUFSSEND GT 1000)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(BYTSRCVD LT 10000)
DISPLAY CHSTATUS(*) CURRENT WHERE(BYTSSEND LT 10240)
DISPLAY CHSTATUS(*) CURRENT WHERE(CHSTADA EQ 2010-09-14)
DISPLAY CHSTATUS(*) CURRENT WHERE(CHSTATI NL 05.*)
DISPLAY CHSTATUS(*) CURRENT WHERE(LOCLADDR EQ ’1.2.3.4(4212)’)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(SHORTRTS LE 12)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(LONGRTS GT 21)
DISPLAY CHSTATUS(*) CURRENT WHERE(LSTMSGDA GT 2010-08-18)
DISPLAY CHSTATUS(*) CURRENT WHERE(LSTMSGTI NL 05.*)
DISPLAY CHSTATUS(*) CURRENT WHERE(MCAUSER LK XX*)
DISPLAY CHSTATUS(*) CURRENT WHERE(MONCHL NE HIGH)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(MSGS GE 15)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(SSLCERTI LK ’CN=IBM*’)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(SSLKEYDA GT 2010-08-18)
DISPLAY CHSTATUS(*) CURRENT WHERE(SSLKEYTI GT 09.47.05)
DISPLAY CHSTATUS(*) CURRENT WHERE(SSLPEER LK C=AU*)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(SSLRKEYS LE 10)
DISPLAY CHSTATUS(*) CURRENT WHERE(STOPREQ NE NO)
DISPLAY CHSTATUS(ABC*) CURRENT WHERE(XMSGSA GT 5)

MONITOR
Specify this to return the set of online monitoring parameters. These are
COMPRATE, COMPTIME, EXITTIME, MONCHL, NETTIME, XBATCHSZ,
XQMSGSA, and XQTIME. If you specify this parameter, any of the
monitoring parameters that you request specifically have no effect; all
monitoring parameters are still displayed.

XMITQ(q-name)
The name of the transmission queue for which status information is to be
displayed, for the specified channel or channels. This parameter can be
used to limit the number of sets of status information that is displayed. If
it is not specified, the display is not limited in this way.

The following information is always returned, for each set of status information:
v The channel name.
v The transmission queue name (for sender and server channels).
v The connection name.
v The remote queue-manager name (only for current status, and for all channel

types except server-connection channels).
v The type of status information returned (CURRENT or SAVED).
v STATUS.
v STOPREQ (only for current status).
v SUBSTATE.

If no parameters requesting specific status information are specified (and the ALL
parameter is not specified), no further information is returned.

If status information is requested that is not relevant for the particular channel
type, this is not an error.

Common status

The following information applies to all sets of channel status, whether or not the
set is current. The information applies to all channel types except
server-connection.

CHLTYPE
The channel type. This is one of the following:
SDR A sender channel

WebSphere MQ channel commands

524 WebSphere MQ for z/VSE System Management Guide

SVR A server channel
RCVR A receiver channel
RQSTR

A requester channel
SVRCONN

A server-connection channel

CURLUWID
The logical unit of work identifier associated with the current batch, for a
sending or a receiving channel. For a sending channel, when the channel is
in doubt it is the LUWID of the in-doubt batch. For a saved channel
instance, this parameter has meaningful information only if the channel
instance is in doubt. However, the parameter value is still returned when
requested, even if the channel instance is not in doubt. It is updated with
the LUWID of the next batch when this is known.

CURMSGS
For a sending channel, this is the number of messages that have been sent
in the current batch. It is incremented as each message is sent, and when
the channel becomes in doubt it is the number of messages that are in
doubt. For a saved channel instance, this parameter has meaningful
information only if the channel instance is in doubt. However, the
parameter value is still returned when requested, even if the channel
instance is not in doubt. For a receiving channel, it is the number of
messages that have been received in the current batch. It is incremented as
each message is received. The value is reset to zero, for both sending and
receiving channels, when the batch is committed.

CURSEQNO
For a sending channel, this is the message sequence number of the last
message sent. It is updated as each message is sent, and when the channel
becomes in doubt it is the message sequence number of the last message in
the in-doubt batch. For a saved channel instance, this parameter has
meaningful information only if the channel instance is in doubt. However,
the parameter value is still returned when requested, even if the channel
instance is not in doubt. For a receiving channel, it is the message sequence
number of the last message that was received. It is updated as each
message is received.

INDOUBT
Whether the channel is currently in doubt. This is only YES while the
sending Message Channel Agent is waiting for an acknowledgement that a
batch of messages that it has sent has been successfully received. It is NO
at all other times, including the period during which messages are being
sent, but before an acknowledgement has been requested. For a receiving
channel, the value is always NO.

LSTLUWID
The logical unit of work identifier associated with the last committed batch
of messages transferred.

LSTSEQNO
Message sequence number of the last message in the last committed batch.
This number is not incremented by nonpersistent messages using channels
with a NPMSPEED of FAST.

STATUS
Current status of the channel. This is one of the following:

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 525

STARTING
A request has been made to start the channel but the channel has
not yet begun processing. A channel is in this state if it is waiting
to become active.

BINDING
Channel is performing channel negotiation and is not yet ready to
transfer messages.

INITIALIZING
The channel initiator is attempting to start a channel.

RUNNING
The channel is either transferring messages at this moment, or is
waiting for messages to arrive on the transmission queue so that
they can be transferred.

STOPPING
Channel is stopping or a close request has been received.

RETRYING
A previous attempt to establish a connection has failed. The MCA
will reattempt connection after the specified time interval.

PAUSED
The channel is waiting for the message-retry interval to complete
before retrying an MQPUT operation.

STOPPED
This state can be caused by one of the following:
v Channel manually stopped A user has entered a stop channel

command against this channel.
v Retry limit reached The MCA has reached the limit of retry

attempts at establishing a connection. No further attempt will be
made to establish a connection automatically.

REQUESTING
A local requester channel is requesting services from a remote
MCA.

Note: For an inactive channel, CURMSGS, CURSEQNO, and CURLUWID
have meaningful information only if the channel is INDOUBT. However
they are still displayed and returned if requested.

Current-only status

Parameter descriptions for the current channel instances of the DISPLAY
CHSTATUS command.

The following information applies only to current channel instances. The
information applies to all channel types, except where stated.

BATCHES
Number of completed batches during this session (since the channel was
started).

BATCHSZ
The batch size being used for this session. The batch size being used for
this session. This parameter does not apply to server-connection channels,
and no values are returned; if specified on the command, this is ignored.

WebSphere MQ channel commands

526 WebSphere MQ for z/VSE System Management Guide

BUFSRCVD
Number of transmission buffers received. This includes transmissions to
receive control information only.

BUFSSENT
Number of transmission buffers sent. This includes transmissions to send
control information only.

BYTSRCVD
Number of bytes received during this session (since the channel was
started). This includes control information received by the message channel
agent.

BYTSSENT
Number of bytes sent during this session (since the channel was started).
This includes control information sent by the message channel agent.

CHSTADA
Date when this channel was started (in the form yyyy-mm-dd).

CHSTATI
Time when this channel was started (in the form hh.mm.ss).

CURSHCNV
The CURSHCNV value is blank for all channel types other than
server-connection channels. For each instance of a server-connection
channel, the CURSHCNV output gives a count of the number of
conversations currently running over that channel instance.

EXITTIME
Amount of time, displayed in microseconds, spent processing user exits
per message. Two values are displayed: A value based on recent activity
over a short period of time. A value based on activity over a longer period
of time. These values depend on the configuration and behavior of your
system, as well as the levels of activity within it, and serve as an indicator
that your system is performing normally. A significant variation in these
values may indicate a problem with your system. They are reset every time
the channel is started and are displayed only when the STATUS of the
channel is RUNNING. This parameter is also displayed when you specify
the MONITOR parameter. A value is only displayed for this parameter if
MONCHL is set for this channel.

LOCLADDR
Local communications address for the channel. The value returned
depends on the TRPRYPE of the channel (currently only TCP/IP is
supported).

LONGRTS
Number of long retry wait start attempts left. This applies only to sender
or server channels.

LSTMSGDA
Date when the last message was sent or MQI call was handled, see
LSTMSGTI.

LSTMSGTI
Time when the last message was sent or MQI call was handled. For a
sender or server, this is the time the last message (the last part of it if it
was split) was sent. For a requester or receiver, it is the time the last
message was put to its target queue. For a server-connection channel, it is
the time when the last MQI call completed. In the case of a

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 527

server-connection channel instance on which conversations are being
shared, this is the time when the last MQI call completed on any of the
conversations running on the channel instance.

MAXSHCNV
The MAXSHCNV value is blank for all channel types other than
server-connection channels. For each instance of a server-connection
channel, the MAXSHCNV output gives the negotiated maximum of the
number of conversations that can run over that channel instance.

MCASTAT
Whether the Message Channel Agent is currently running. This is either
"running" or "not running". Note that it is possible for a channel to be in
stopped state, but for the program still to be running.

MCAUSER
The user ID used by the MCA. This can be the user ID set in the channel
definition, the default user ID for MCA channels, a user ID transferred
from a client if this is a server-connection channel, or a user ID specified
by a security exit. This parameter applies only to server-connection,
receiver, requester, and cluster-receiver channels. On server connection
channels that share conversations, the MCAUSER field contains a user ID
if all the conversations have the same MCA user ID value. If the MCA user
ID in use varies across these conversations, the MCAUSER field contains a
value of *. The maximum length is 12 characters on z/OS; on other
platforms, it is 64 characters.

MONCHL
Current level of monitoring data collection for the channel. This parameter
is also displayed when you specify the MONITOR parameter.

MSGS
Number of messages sent or received (or, for server-connection channels,
the number of MQI calls handled) during this session (since the channel
was started). In the case of a server-connection channel instance on which
conversations are being shared, this is the total number of MQI calls
handled on all of the conversations running on the channel instance.

NETTIME
Amount of time, displayed in microseconds, to send a request to the
remote end of the channel and receive a response. Two values are
displayed:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

These values depend on the configuration and behavior of your system, as
well as the levels of activity within it, and serve as an indicator that your
system is performing normally. A significant variation in these values may
indicate a problem with your system. They are reset every time the channel
is started and are displayed only when the STATUS of the channel is
RUNNING. This parameter applies only to sender, server, and
cluster-sender channels. This parameter is also displayed when you specify
the MONITOR parameter. A value is only displayed for this parameter if
MONCHL is set for this channel.

RQMNAME
The queue manager name, or queue-sharing group name, of the remote
system. This parameter does not apply to server-connection channels.

WebSphere MQ channel commands

528 WebSphere MQ for z/VSE System Management Guide

SHORTRTS
Number of short retry wait start attempts left. This applies only to sender
or server channels.

SSLCERTI
The full Distinguished Name of the issuer of the remote certificate. The
issuer is the Certificate Authority that issued the certificate. The maximum
length is 256 characters. This limit might mean that exceptionally long
Distinguished Names are truncated.

SSLKEYDA
Date on which the previous successful SSL secret key reset was issued.

SSLKEYTI
Time at which the previous successful SSL secret key reset was issued.

SSLPEER
Distinguished Name of the peer queue manager or client at the other end
of the channel. The maximum length is 256 characters. This limit might
mean that exceptionally long Distinguished Names are truncated.

SSLRKEYS
Number of successful SSL key resets. The count of SSL secret key resets is
reset when the channel instance ends.

STOPREQ
Whether a user stop request is outstanding. This is either YES or NO.

SUBSTATE
Action being performed by the channel when this command is issued. The
following substates are listed in precedence order, starting with the
substate of the highest precedence:
ENDBATCH

Channel is performing end-of-batch processing.
SEND A request has been made to the underlying communication

subsystem to send some data.
RECEIVE

A request has been made to the underlying communication
subsystem to receive some data.

RESYNCH
Channel is resynchronizing with the partner.

HEARTBEAT
Channel is heartbeating with the partner.

SCYEXIT
Channel is running the security exit.

RCVEXIT
Channel is running one of the receive exits.

SENDEXIT
Channel is running one of the send exits.

MSGEXIT
Channel is running one of the message exits.

MREXIT
Channel is running the message retry exit.

CHADEXIT
Channel is running through the channel auto-definition exit.

NETCONNECT
A request has been made to the underlying communication
subsystem to connect a partner machine.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 529

SSLHANDSHK
Channel is processing an SSL handshake.

NAMESERVER
A request has been made to the name server.

MQPUT
A request has been made to the queue manager to put a message
on the destination queue.

MQGET
A request has been made to the queue manager to get a message
from the transmission queue (if this is an MCA channel) or from
an application queue (if this is an MQI channel).

MQICALL
A MQ API call, other than MQPUT and MQGET, is being executed.

Not all substates are valid for all channel types or channel states. There are
occasions when no substate is valid, at which times a blank value is
returned. For channels running on multiple threads, this parameter
displays the substate of the highest precedence.

XBATCHSZ
Size of the batches transmitted over the channel. Two values are displayed:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

These values depend on the configuration and behavior of your system, as
well as the levels of activity within it, and serve as an indicator that your
system is performing normally. A significant variation in these values may
indicate a problem with your system. They are reset every time the channel
is started and are displayed only when the STATUS of the channel is
RUNNING. This parameter does not apply to server-connection channels.
This parameter is also displayed when you specify the MONITOR
parameter. A value is only displayed for this parameter if MONCHL is set
for this channel.

XQMSGSA
Number of messages queued on the transmission queue available to the
channel for MQGETs. This parameter has a maximum displayable value of
999. If the number of messages available exceeds 999, a value of 999 is
displayed. On z/OS, if the transmission queue is not indexed by CorrelId,
this value is shown as blank. This parameter applies to cluster-sender
channels only. This parameter is also displayed when you specify the
MONITOR parameter. A value is only displayed for this parameter if
MONCHL is set for this channel.

XQTIME
The time, in microseconds, that messages remained on the transmission
queue before being retrieved. The time is measured from when the
message is put onto the transmission queue until it is retrieved to be sent
on the channel and, therefore, includes any interval caused by a delay in
the putting application. Two values are displayed: A value based on recent
activity over a short period of time. A value based on activity over a longer
period of time. These values depend on the configuration and behavior of
your system, as well as the levels of activity within it, and serve as an
indicator that your system is performing normally. A significant variation
in these values may indicate a problem with your system. They are reset
every time the channel is started and are displayed only when the STATUS
of the channel is RUNNING. This parameter applies only to sender, server,
and cluster-sender channels. This parameter is also displayed when you

WebSphere MQ channel commands

530 WebSphere MQ for z/VSE System Management Guide

specify the MONITOR parameter. A value is only displayed for this
parameter if MONCHL is set for this channel.

RESET CHANNEL
Purpose

Use RESET CHANNEL to reset the message sequence number for an WebSphere
MQ channel with, optionally, a specified sequence number to be used the next time
that the channel is started.

Synonym
RESET CHL

Syntax
RESET CHANNEL(channel-name) optional-parameter

Parameters

channel-name
Channel name. The channel-name value should match an existing channel
defined to the queue manager.

optional-parameter
The option parameter for RESET CHANNEL command is as follows:

SEQNUM(integer)
The new message sequence number, which must be greater than or
equal to 1, and less than or equal to 999 999 999. If this parameter
is not specified, the sequence number is reset to 1.

START CHANNEL
Purpose

Use START CHANNEL to start a channel.

Synonym
STA CHL

Syntax
START CHANNEL(channel-name)

Parameters

channel-name
Channel name. The channel-name value should match an existing channel
defined to the queue manager.

STOP CHANNEL
Purpose

Use STOP CHANNEL to stop a channel.

Synonym
STOP CHL

Syntax
STOP CHANNEL(channel-name) optional-parameter

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 531

Parameters

channel-name
Channel name. The channel-name value should match an existing channel
defined to the queue manager.

optional-parameter
The option parameter for STOP CHANNEL command is:

STATUS(INACTIVE/STOPPED)
Indicates whether the channel should be stopped and placed in
INACTIVE or STOPPED state.

WebSphere MQ channel authentication
The WebSphere MQ channel authentication commands are:

DISPLAY CHLAUTH
SET CHLAUTH

DISPLAY CHLAUTH
Purpose

Use the MQSC command DISPLAY CHLAUTH to display the attributes of a
channel authentication record.

Synonym
DIS CHLAUTH

Syntax

��
(1)

DISPLAY CHLAUTH (generic_channel_name)
TYPE(ALL)

TYPE(BLOCKUSER)
TYPE(BLOCKADDR)
TYPE(ADDRESSMAP)
TYPE(USERMAP)
TYPE(QMGRMAP)

�

�
MATCH(GENERIC)

MATCH(ALL)
MATCH(EXACT)

(2)
MATCH(RUNCHECK) Runtime check match block

ALL
�

�
WHERE(FilterCondition) Requested attributes

��

Runtime check match block:

ADDRESS (ip_address) QMNAME(qmgr_name)
CLNTUSER(user)

Requested attributes:

WebSphere MQ channel commands

532 WebSphere MQ for z/VSE System Management Guide

|

|
|
|

|
|

|
|

|

|

|

||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||

|

|

||||||||||||||||||||

|

|

|

�

,

TYPE
ADDRESS
CLNTUSER
QMNAME
ADDRLIST
USERLIST
MCAUSER
ALTDATE
ALTTIME
DESCR
CUSTOM

Notes:

1 Must be * with TYPE(BLOCKADDR) and cannot be generic with
MATCH(RUNCHECK).

2 Must be combined with TYPE(ALL).

Parameters

generic-channel-name
The name of the channel or set of channels to display. You can use the
asterisk (*) as a wildcard to specify a set of channels. When MATCH is
RUNCHECK this parameter must not be generic.

ADDRESS
The IP address to be matched.

This parameter is valid only when MATCH is RUNCHECK and must not
be generic.

ALL Specify this parameter to display all attributes. If this keyword is specified,
any attributes that are requested specifically have no effect; all attributes
are still displayed. This is the default behavior if you do not specify a
generic name and do not request any specific attributes.

CLNTUSER
The client user ID to be matched.

This parameter is valid only when MATCH is RUNCHECK and must not
be generic.

MATCH
Indicates the type of matching to be applied.

RUNCHECK
Returns the record that will be matched by a specific inbound
channel at run time if it connects into this queue manager. The
specific inbound channel is described by providing values that are
not generic for:
v The channel name
v ADDRESS attribute
v QMNAME or CLNTUSER attribute, depending on whether the

inbound channel will be a client or queue manager channel

If the record discovered has WARN set to YES, a second record
might also be displayed to show the actual record the channel will
use at runtime. This parameter must be combined with
TYPE(ALL).

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 533

|||

|

|

||
|

||

|

|
|
|
|

|
|

|
|

||
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

EXACT
Return only those records which exactly match the channel profile
name supplied. If there are no asterisks in the channel profile
name, this option returns the same output as MATCH(GENERIC).

GENERIC
Any asterisks in the channel profile name are treated as wild cards.
If there are no asterisks in the channel profile name, this returns
the same output as MATCH(EXACT). For example, a profile of
ABC* could result in records for ABC, ABC*, and ABCD being
returned.

ALL Return all possible records that match the channel profile name
supplied. If the channel name is generic in this case, all records
that match the channel name are returned even if more specific
matches exist.

QMNAME
The name of the remote partner queue manager to be matched This
parameter is valid only when MATCH is RUNCHECK and must not be
generic.

TYPE The type of Channel Authentication Record for which to display details.
Possible values are:
v ALL
v BLOCKUSER
v BLOCKADDR
v ADDRESSMAP
v USERMAP
v QMGRMAP

WHERE
See “WHERE” on page 511 for information about this parameter.

Requested attributes

Specify one or more parameters that define the data to be displayed. The
parameters can be specified in any order, but do not specify the same parameter
more than once.
TYPE The type of channel authentication record
ADDRESS

The IP address
CLNTUSER

The client asserted user ID
QMNAME

The name of the remote partner queue manager
MCAUSER

The user identifier to be used when the inbound connection matches the IP
address, client asserted user ID or remote queue manager name supplied.

ADDRLIST
A list of IP address patterns which are banned from connecting into this
queue manager on any channel.

USERLIST
A list of user IDs which are banned from use of this channel or set of
channels.

ALTDATE
The date on which the channel authentication record was last altered, in
the format yyyy-mm-dd.

WebSphere MQ channel commands

534 WebSphere MQ for z/VSE System Management Guide

|
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|

||
|
|
|
|
|
|
|

|
|

|

|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ALTTIME
The time on which the channel authentication record was last altered, in
the form hh.mm.ss.

DESCR
Descriptive information about the channel authentication record.

SET CHLAUTH
Purpose

Use the MQSC command SET CHLAUTH to create or modify a channel
authentication record.

Synonym
DIS CHLAUTH

Syntax

�� SET
(1)

CHLAUTH(generic_channel_name)
CUSTOM (custom_values)

�

� Blocking block
Mapping block

ACTION(ADD)

ACTION(REPLACE)
ACTION(REMOVE)
ACTION(REMOVEALL)

DESCR(' ')

DESCR(string)
��

Blocking block:

�

�

,

TYPE(BLOCKUSER) USERLIST(user_name)
,

TYPE(BLOCKADDR) ADDRLIST(generic_ip_address)

WARN(NO)

WARN(YES)

Mapping block:

TYPE(ADDRESSMAP)
TYPE(ADDRESSMAP)
TYPE(USERMAP) CLNTUSER(client_user_name)
TYPE(QMGRMAP) QMNAME(generic_partner_qmgr_name)

�

�
USERSRC(MAP) MCAUSER(user)

WARN(NO)
USERSRC(NOACCESS)

WARN(YES)
USERSRC(CHANNEL)

(2)
ADDRESS(generic_ip_address)

Notes:

1 The generic channel name must be '*' when TYPE is BLOCKADDR.

2 Mandatory when TYPE is ADDRESSMAP.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 535

|
|
|
|
|

|
|

|
|

|

|

|

||||||||||||||||||
|

|
|||

|

|

||

|

|

||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||

|

|

||

||

Usage notes

The following table shows which parameters are valid for each value of ACTION:

Table 12. Valid actions

Parameter ADD or REPLACE REMOVE REMOVEALL

CHLAUTH Y Y Y

TYPE Y Y Y

ACTION Y Y Y

ADDRESS Y Y

ADDRLIST Y Y

CLNTUSER Y Y

MCAUSER Y

QMNAME Y Y

USERLIST Y Y

USERSRC Y

WARN Y

DESCR Y

Parameters
generic-channel-name

The name of the channel or set of channels for which you are setting
channel authentication configuration. You can use a trailing asterisk (*) as a
wildcard to specify a set of channels. If you set TYPE to BLOCKADDR,
you must set the generic channel name to a single asterisk, which matches
all channel names.

ACTION
The action to perform on the channel authentication record. The following
values are valid:
ADD Add the specified configuration to a channel authentication record.

This is the default value. For types ADDRESSMAP, USERMAP and
QMGRMAP, if the specified configuration exists, the command
fails. For types BLOCKUSER and BLOCKADDR, the configuration
is added to the list.

REPLACE
Replace the current configuration of a channel authentication
record. For types ADDRESSMAP, USERMAP and QMGRMAP, if
the specified configuration exists, it is replaced with the new
configuration. If it does not exist it is added. For types
BLOCKUSER and BLOCKADDR, the configuration specified
replaces the current list, even if the current list is empty. If you
replace the current list with an empty list, this acts like
REMOVEALL.

REMOVE
Remove the specified configuration from the channel
authentication records. If the configuration does not exist the
command fails. If you remove the last entry from a list, this acts
like REMOVEALL.

REMOVEALL
Remove all members of the list and thus the whole record (for
BLOCKADDR and BLOCKUSER) or all previously defined

WebSphere MQ channel commands

536 WebSphere MQ for z/VSE System Management Guide

|

|

||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

mappings (for ADDRESSMAP, QMGRMAP and USERMAP) from
the channel authentication records. This option cannot be combined
with specific values supplied in ADDRLIST, USERLIST, ADDRESS,
QMNAME or CLNTUSER. If the specified type has no current
configuration the command still succeeds.

ADDRESS
The filter to be used to compare with the IP address of the partner queue
manager or client at the other end of the channel. This parameter is
mandatory with TYPE(ADDRESSMAP) This parameter is also valid when
TYPE is USERMAP or QMGRMAP and ACTION is ADD, REPLACE, or
REMOVE. You can define more than one channel authentication object
with the same main identity, for example a queue manager map with the
same remote queue manager name, with different addresses. However, you
cannot define channel authentication records with overlapping address
ranges for the same main identity.

ADDRLIST
A list of up to 56 generic IP addresses which are banned from accessing
this queue manager on any channel. This parameter is only valid with
TYPE(BLOCKADDR).

CLNTUSER
The client asserted user ID to be mapped to a new user ID or blocked. This
parameter is valid only with TYPE(USERMAP).

DESCR
Provides descriptive information about the channel authentication record,
which is displayed when you issue the DISPLAY CHLAUTH command. It
must contain only displayable characters. The maximum length is 64
characters. In a DBCS installation, it can contain DBCS characters (subject
to a maximum length of 64 bytes). Note: Use characters from the coded
character set identifier (CCSID) for this queue manager. Other characters
might be translated incorrectly if the information is sent to another queue
manager.

MCAUSER
The user identifier to be used when the inbound connection matches the IP
address, client asserted user ID or remote queue manager name supplied.
This parameter is mandatory with USERSRC(MAP) and is valid when
TYPE is ADDRESSMAP, USERMAP, or QMGRMAP. This parameter can
only be used when ACTION is ADD or REPLACE.

QMNAME
The name of the remote partner queue manager, or pattern that matches a
set of queue manager names, to be mapped to a user ID or blocked. This
parameter is valid only with TYPE(QMGRMAP).

TYPE The type of channel authentication record for which to set allowed partner
details or mappings to MCAUSER. This parameter is required. The
following values can be used:
BLOCKUSER

This channel authentication record prevents a specified user or
users from connecting. The BLOCKUSER parameter must be
accompanied by a USERLIST.

BLOCKADDR
This channel authentication record prevents connections from a
specified IP address or addresses. The BLOCKADDR parameter
must be accompanied by an ADDRLIST. BLOCKADDR operates at
the listener before the channel name is known.

ADDRESSMAP
This channel authentication record maps IP addresses to

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 537

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|

MCAUSER values. The ADDRESSMAP parameter must be
accompanied by an ADDRESS. ADDRESSMAP operates at the
channel.

USERMAP
This channel authentication record maps asserted user IDs to
MCAUSER values. The USERMAP parameter must be
accompanied by a CLNTUSER. QMGRMAP This channel
authentication record maps remote queue manager names to
MCAUSER values. The QMGRMAP parameter must be
accompanied by a QMNAME.

USERLIST
A list of up to 100 user IDs which are banned from use of this channel or
set of channels. This parameter is only valid with TYPE(BLOCKUSER).

USERSRC
The source of the user ID to be used for MCAUSER at run time. The
following values are valid:
MAP Inbound connections that match this mapping use the user ID

specified in the MCAUSER attribute.
NOACCESS

Inbound connections that match this mapping have no access to
the queue manager and the channel ends immediately.

CHANNEL
Inbound connections that match this mapping use the flowed user
ID or any user defined on the channel object in the MCAUSER
field.

Note that WARN and USERSRC(CHANNEL), or USERSRC(MAP) are
incompatible. This is because channel access is never blocked in these
cases, so there is never a reason to generate a warning.

WARN
Indicates whether this record operates in warning mode.
NO This record does not operate in warning mode. Any inbound

connection that matches this record is blocked. This is the default
value.

YES This record operates in warning mode. Any inbound connection
that matches this record and would therefore be blocked is allowed
access. An error message is written and, if channel events are
configured, a channel event message is created showing the details
of what would have been blocked, The connection is allowed to
continue. An attempt is made to find another record that is set to
WARN(NO) to set the credentials for the inbound channel.

Error codes

This command might return the following error codes in the response format
header.

Reason (MQLONG)
The value can be:
MQRCCF_CHLAUTH_TYPE_ERROR

Channel authentication record type not valid.
MQRCCF_CHLAUTH_ACTION_ERROR

Channel authentication record action not valid.
MQRCCF_CHLAUTH_USERSRC_ERROR

Channel authentication record user source not valid.
MQRCCF_WRONG_CHLAUTH_TYPE

Parameter not allowed for this channel authentication record type.

WebSphere MQ channel commands

538 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|

|
|
|
|
|
||
|
|
||
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

MQRCCF_CHLAUTH_ALREADY_EXISTS
Channel authentication record already exists

WebSphere MQ channel listener
Listener objects can be created, modified, deleted and displayed using MQSC
commands. The following MQSC commands are supported:

ALTER LISTENER
DEFINE LISTENER
DELETE LISTENER
DISPLAY LISTENER
DISPLAY LSSTATUS
START LISTENER
STOP LISTENER

ALTER LISTENER
Purpose

Alter the parameters of an existing WebSphere MQ channel listener definition.
Listener must be in STOPPED status in order to modify any attributes.

Synonym
ALT LSTR

Syntax

Parameters

listener-name
Name of the WebSphere MQ channel listener definition to alter.

Optional-parameters
For details of optional parameters for the ALTER LISTENER command, see
“DEFINE LISTENER.”

DEFINE LISTENER
Purpose

Define a new WebSphere MQ channel listener definition, and set its parameters.

Synonym
DEF LSTR

Syntax
DEFINE LISTENER(listener-name) optional-parameters

Parameters

listener-name
Name of the WebSphere MQ channel listener definition to alter.

Optional-parameters
Optional parameters for the DEFINE LISTENER command include:

BACKLOG(integer)
The number of concurrent connection requests that the listener
supports. If you do not specify a value, the default value defined
by the protocol is used.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 539

|
|

|

CONTROL(string)
Specifies how the listener is to be started and stopped:

MANUAL
The listener is not to be started automatically or stopped
automatically. It is to be controlled by use of the START LISTENER
and STOP LISTENER commands. This is the default value.

QMGR
The listener being defined is to be started and stopped at the same
time as the queue manager is started and stopped.

DESCR(string)
Plain-text comment. It provides descriptive information about the
listener when an operator issues the DISPLAY LISTENER
command (see DISPLAY LISTENER). It should contain only
displayable characters.

The maximum length is 64 characters.

Note: If characters are used that are not in the coded character set
identifier (CCSID) for this queue manager, they might be translated
incorrectly if the information is sent to another queue manager.

IPADDR(string)
IP address for the listener specified in IPv4 dotted decimal or
alphanumeric host name form. If you do not specify a value for
this parameter, the listener listens on all configured IPv4 stacks.

PORT(integer)
The port number for TCP/IP.

TRPTYPE(string)
The transmission protocol to be used:

TCP for TCP/IP

DELETE LISTENER
Purpose

Delete a channel listener definition. Listener must be in STOPPED status in order
to delete the definition.

Synonym
DEL LSTR

Syntax
DELETE LISTENER(listener-name)

Parameters

listener-name
Name of the WebSphere MQ channel listener definition to delete.

DISPLAY LISTENER
Purpose

Display information about a channel listener. The values displayed describe the
current definition of the listener. If the listener has been altered since it was started,

WebSphere MQ channel commands

540 WebSphere MQ for z/VSE System Management Guide

the currently running instance of the listener object may not have the same values
as the current definition.

Synonym
DIS LSTR

Syntax
DISPLAY LISTENER(generic-listener-name)
WHERE (FilterCondition) requested-attributes

Parameters

generic-listener-name
The name of the listener definition for which information is to be
displayed. A single asterisk (*) specifies that information for all listener
identifiers is to be displayed. A character string with an asterisk at the end
matches all listeners with the string followed by zero or more characters.

Requested-attributes

TRPTYPE
Transmission protocol. If you do not specify this parameter, a
default of ALL is assumed. Values are:

ALL This is the default value and displays information for all
listeners.

TCP Displays information for all listeners defined with a value
of TCP in their TRPTYPE parameter.

ALL Specify this to display all the listener information for each specified
listener. If this parameter is specified, any parameters that are
requested specifically have no effect; all parameters are still
displayed.

This is the default if you do not specify a generic identifier, and do
not request any specific parameters.

ALTDATE
The date on which the definition was last altered, in the form
yyyy-mm-dd.

ALTTIME
The time at which the definition was last altered, in the form
hh.mm.ss.

BACKLOG
The number of concurrent connection requests that the listener
supports.

CONTROL
How the listener is to be started and stopped:

MANUAL
The listener is not to be started automatically or stopped
automatically. It is to be controlled by use of the START
LISTENER and STOP LISTENER commands.

QMGR
The listener being defined is to be started and stopped at
the same time as the queue manager is started and
stopped.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 541

DESCR
Descriptive comment.

IPADDR
The listener's IP address.

PORT The port number for TCP/IP.

Examples
DISPLAY LISTENER(ABC*) WHERE(ALTDATE GT 2010-08-19)
DISPLAY LISTENER(*) WHERE(ALTTIME LK 08.1*)
DISPLAY LISTENER(*) WHERE(IPADDR LK 9.*)
DIS LSTR(LISTENER(*) WHERE(DESCR LK ’TEST*’) ALTDATE ALTTIME
DISPLAY LISTENER(*) WHERE(BACKLOG GE 5)
DISPLAY LISTENER(ABC*) WHERE(CONTROL EQ QMGR)
DISPLAY LISTENER(*) TRPTYPE(TCP) WHERE(PORT EQ 1414)
DISPLAY LISTENER(*) WHERE(TRPTYPE EQ TCP)

DISPLAY LSSTATUS
Purpose

Display status information for one or more channel listeners. Only listeners with
status of RUNNING are returned.

Synonym
DIS LSSTATUS

Syntax
DISPLAY LSSTATUS (generic-listener-name)
WHERE (FilterCondition) requested attrs

Parameters

generic-listener-name
The name of the listener definition for which information is to be
displayed. A single asterisk (*) specifies that information for all listener
identifiers is to be displayed. A character string with an asterisk at the end
matches all listeners with the string followed by zero or more characters.

Requested-attributes

ALL Specify this to display all the listener information for each specified
listener. If this parameter is specified, any parameters that are
requested specifically have no effect; all parameters are still
displayed.

This is the default if you do not specify a generic identifier, and do
not request any specific parameters.

BACKLOG
The number of concurrent connection requests that the listener
supports.

CONTROL
How the listener is to be started and stopped:

MANUAL
The listener is not to be started automatically or stopped
automatically. It is to be controlled by use of the START
LISTENER and STOP LISTENER commands.

WebSphere MQ channel commands

542 WebSphere MQ for z/VSE System Management Guide

QMGR
The listener being defined is to be started and stopped at
the same time as the queue manager is started and
stopped.

DESCR
Descriptive comment.

IPADDR
The listener's IP address.

PORT The port number for TCP/IP.

STARTDA
The date on which the listener was started.

STARTTI
The time at which the listener was started.

STATUS
The current status of the listener. It can be one of:
RUNNING

The listener is running.
STOPPED

The listener is stopped.

TRPTYPE
Transport type.

PID CICS task number

Examples
DISPLAY LSSTATUS(ABC*) WHERE(DESCR NL ’TEST*’)
DISPLAY LSSTATUS(ABC*) WHERE(IPADDR LK 9.*)
DISPLAY LSSTATUS(ABC*) WHERE(STARTDA NE 2010-09-14)
DISPLAY LSSTATUS(*) WHERE(STARTTI GE 17.09.30)
DISPLAY LSSTATUS(ABC*) WHERE(BACKLOG EQ 5)
DISPLAY LSSTATUS(ABC*) WHERE(CONTROL EQ MANUAL)
DISPLAY LSSTATUS(*) WHERE(PORT NE 1421)
DISPLAY LSSTATUS(ABC*) WHERE(TRPTYPE EQ TCP)
DISPLAY LSSTATUS(*) WHERE(PID EQ 294)
DISPLAY LSSTATUS(ABC*) WHERE(STATUS NE RUNNING)

START LISTENER
Purpose

Start a channel listener.

Synonym
STA LSTR

Syntax
START LISTENER(listener-name)

Parameters

listener-name
Name of the channel listener to be started.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 543

STOP LISTENER
Purpose

Stop a channel listener.

Synonym
STOP LSTR

Syntax
STOP LISTENER(listener-name)

Parameters

listener-name
Name of the channel listener to be stopped.

WebSphere MQ connection commands
The WebSphere MQ connection commands are:

DISPLAY CONN
STOP CONN

DISPLAY CONN
Purpose

Use the MQSC command DISPLAY CONN to display connection information
about the applications connected to the queue manager. This is a useful command
because it enables you to identify applications with long-running units of work.

Synonym
DIS CONN

Syntax
DISPLAY CONN(generic-connid)
WHERE(FilterCondition) EXTCONN(extconn) requested-attributes

Parameters

You must specify a connection for which you want to display information. This can
be a specific connection identifier or a generic connection identifier. A single
asterisk (*) can be used as a generic connection identifier to display information for
all connections.

(generic-connid)
The identifier of the connection definition for which information is to be
displayed. A single asterisk (*) specifies that information for all connection
identifiers is to be displayed.

When an application connects to WebSphere MQ, it is given a unique
24-byte connection identifier (ConnectionId). The value for CONN is
formed by converting the last eight bytes of the ConnectionId to its
16-character hexadecimal equivalent.

ALL Specify this to display all the connection information of the requested type
for each specified connection. This is the default if you do not specify a
generic identifier, and do not request any specific parameters.

WebSphere MQ channel commands

544 WebSphere MQ for z/VSE System Management Guide

EXTCONN
The value for EXTCONN is based on the first 16 bytes of the ConnectionId
converted to its 32-character hexadecimal equivalent.

Connections are identified by a 24-byte connection identifier. The
connection identifier comprises a prefix, which identifies the queue
manager, and a suffix which identifies the connection to that queue
manager. By default, the prefix is for the queue manager currently being
administered, but you can specify a prefix explicitly by using the
EXTCONN parameter. Use the CONN parameter to specify the suffix.

When connection identifiers are obtained from other sources, specify the
fully qualified connection identifier (both EXTCONN and CONN) to avoid
possible problems related to non-unique CONN values.

Do not specify both a generic value for CONN and a non-generic value for
EXTCONN.

TYPE Specifies the type of information to be displayed. Values are:
CONN

Connection information for the specified connection.
HANDLE

Information relating to any objects opened by the specified
connection.

ALL Display all available information relating to the connection.

Connection attributes

If TYPE is set to CONN, the following information is always returned for
each connection that satisfies the selection criteria, except where indicated:
v Connection identifier (CONN parameter)
v Type of information returned (TYPE parameter)

The following parameters can be specified for TYPE(CONN) to request
additional information for each connection. If a parameter is specified that
is not relevant for the connection, operating environment, or type of
information requested, that parameter is ignored.

APPLTAG(string)
A string containing the tag of the application connected to the
queue manager. It is one of the following:
v CICS APPLID

APPLTYPE(integer)
A string indicating the type of the application that is connected to
the queue manager. It is one of the following:
BATCH

Application using a batch connection.
CICS CICS transaction.

CHANNEL(string)
The name of the channel that owns the connection. If there is no
channel associated with the connection, this parameter is blank.

CONNAME(string)
The connection name associated with the channel that owns the
connection. If there is no channel associated with the connection,
this parameter is blank.

CONNOPTS(integer-list)
The connect options currently in force for this application
connection. Possible values are:

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 545

v MQCNO_NONE
v MQCNO_ACCOUNTING_Q_ENABLED
v MQCNO_ACCOUNTING_Q_DISABLED
v MQCNO_ACCOUNTING_MQI_ENABLED
v MQCNO_ACCOUNTING_MQI_DISABLED

TASKNO(string)
A 7-digit CICS task number is returned as a 7-byte string. This
number can be used in the CICS command "CEMT SET
TASK(taskno) PURGE" to end the CICS task.

TRANSID(string)
A 4-character CICS transaction identifier.

UOWSTATE(integer)
The state of the unit of work. It is one of the following:
NONE

There is no unit of work.
ACTIVE

The unit of work is active.

UOWSTDA(string)
The date that the transaction associated with the current
connection was started.

UOWSTTI(string)
The time that the transaction associated with the current
connection was started.

URTYPE(integer)
The type of unit of recovery as seen by the queue manager. It is
one of the following:
v CICS

USERID(string)
The user identifier associated with the connection.

Handle attributes

If TYPE is set to HANDLE, the following information is always returned
for each connection that satisfies the selection criteria, except where
indicated:
v Connection identifier (CONN parameter).
v Type of information returned (TYPE parameter).
v Handle status (HSTATE).
v Object name (OBJNAME parameter).
v Object type (OBJTYPE parameter).

The following parameters can be specified for TYPE(HANDLE) to request
additional information for each queue. If a parameter is specified that is
not relevant for the connection, operating environment, or type of status
information requested, that parameter is ignored.

HSTATE(integer)
The state of the handle. Possible values are:
ACTIVE

An API call from this connection is currently in progress
for this object. If the object is a queue, this condition can
arise when an MQGET WAIT call is in progress.

INACTIVE
No API call from this connection is currently in progress

WebSphere MQ channel commands

546 WebSphere MQ for z/VSE System Management Guide

for this object. If the object is a queue, this condition can
arise when no MQGET WAIT call is in progress.

OBJNAME(string)
The name of an object that the connection has open.

OBJTYPE(integer)
The type of the object that the connection has open. It is one of the
following:
QUEUE

Queue
QMGR

Queue manager
NAMELIST

Namelist

OPENOPTS(integer)
The open options currently in force for the connection for the
object. Possible values are:
MQOO_INPUT_SHARED

Open queue to get messages with shared access.
MQOO_INPUT_EXCLUSIVE

Open queue to get messages with exclusive access.
MQOO_BROWSE

Open queue to browse messages.
MQOO_OUTPUT

Open queue to put messages.
MQOO_INQUIRE

Open queue to inquire attributes.
MQOO_SET

Open queue to set attributes.
MQOO_FAIL_IF_QUIESCING

Fail if queue manager is quiescing.

Full attributes

If TYPE is set to *, or ALL, both Connection attributes and Handle attributes are
returned for each connection that satisfies the selection criteria.

Examples
DISPLAY CONN(*) WHERE(OPENOPTS CT MQOO_INPUT_SHARED)
DISPLAY CONN(01AC83C6006EE358) TYPE(CONN) +

WHERE(HSTATE EQ INACTIVE)
DISPLAY CONN(*) WHERE(OBJNAME LE FILTERS.QSTATUS.XQ)
DISPLAY CONN(*) TYPE(CONN) WHERE(USERID LK SI*)
DISPLAY CONN(*) WHERE(UOWSTDA GE 2010-09-28)
DISPLAY CONN(*) WHERE(TASKNO GT 0001489)

STOP CONN
Purpose

Use the MQSC command STOP CONN to break a connection between an
application and the queue manager.

There may be circumstances in which the queue manager cannot implement this
command when the success of this command cannot be guaranteed.

WebSphere MQ channel commands

Chapter 9. WebSphere MQ commands 547

Synonym
STOP CONN

Syntax
STOP CONN(connection-identifier) EXTCONN(extconn)

Parameters

connection-identifier, STOP CONN parameter
The identifier of the connection definition for the connection to be broken.

When an application connects to WebSphere MQ, it is given a unique
24-byte connection identifier (ConnectionId). The value of CONN is formed
by converting the last eight bytes of the ConnectionId to its 16-character
hexadecimal equivalent.

EXTCONN
The value of EXTCONN is based on the first 16 bytes of the ConnectionId
converted to its 32-character hexadecimal equivalent.

Connections are identified by a 24-byte connection identifier. The
connection identifier comprises a prefix, which identifies the queue
manager, and a suffix which identifies the connection to that queue
manager. By default, the prefix is for the queue manager currently being
administered, but you can specify a prefix explicitly by using the
EXTCONN parameter. Use the CONN parameter to specify the suffix.

When connection identifiers are obtained from other sources, specify the
fully qualified connection identifier (both EXTCONN and CONN) to avoid
possible problems related to non-unique CONN values.

WebSphere MQ namelist commands
The WebSphere MQ namelist commands are:
v ALTER NAMELIST
v DEFINE NAMELIST
v DELETE NAMELIST
v DISPLAY NAMELIST

ALTER NAMELIST
Purpose

Use ALTER NAMELIST to alter the parameters of a namelist object.

Synonym
ALT NL

Syntax
ALTER NAMELIST (namelist-name) optional parameters

Parameters

namelist-name
Namelist name. The namelist-name value should match the name of a
namelist defined to the queue manager.

optional-parameters
Optional parameters for the ALTER NAMELIST command include:

WebSphere MQ channel commands

548 WebSphere MQ for z/VSE System Management Guide

DESCR(string)
Description.

NAMES(name, ...)
List of names. The names can be of any type, but must conform to
the rules for naming WebSphere MQ objects, with a maximum
length of 48 characters.

An empty list is valid: specify NAMES(). The maximum number of
names in the list is 256.

DEFINE NAMELIST
Purpose

Use DEFINE NAMELIST to define a new namelist to the queue manager.

Synonym
DEF NL

Syntax
DEFINE NAMELIST(namelist-name) optional-parameters

Parameters

namelist-name
Namelist name. The namelist-name value should be unique; it should not
match a namelist name already defined to the queue manager.

optional-parameters
Optional parameters for the DEFINE NAMELIST command include:

DESCR(string)
Description.

NAMES(name, ...)
List of names. The names can be of any type, but must conform to
the rules for naming WebSphere MQ objects, with a maximum
length of 48 characters.

An empty list is valid: specify NAMES(). The maximum number of
names in the list is 256.

DELETE NAMELIST
Purpose

Use DELETE NAMELIST to delete a namelist definition.

Synonym
DELETE NL

Syntax
DELETE NAMELIST(namelist-name)

Parameters

namelist-name
Namelist name. The namelist-name value should match an existing
namelist defined to the queue manager.

WebSphere MQ namelist commands

Chapter 9. WebSphere MQ commands 549

DISPLAY NAMELIST
Purpose

Use DISPLAY NAMELIST to display a namelist definition.

Synonym
DIS NL

Syntax
DISPLAY NAMELIST(namelist-name)
WHERE (FilterCondition) requested-attributes

Parameters

namelist-name
Namelist name. The namelist-name value should match an existing
namelist defined to the queue manager.

The namelist-name can be generic. A trailing asterisk (*) matches all
namelists with the specified stem followed by zero or more characters. An
asterisk (*) on its own specifies all namelists. Characters after the first
asterisk, if present, are ignored.

requested-attributes
Attributes of the namelist that are to be displayed.

This can be:

ALL Displays all namelist attributes. If you do not use ALL, you can
use any combination of the other keywords.

ALTDATE
Last modification date.

ALTTIME
Last modification time.

DESCR
Namelist description.

NAMCOUNT
Number of namelist names.

NAMES
Namelist names.

Examples
DISPLAY NAMELIST(*) WHERE(DESCR LK ’ABC DESCR*’)
DISPLAY NAMELIST(*) WHERE(ALTDATE LK 2010-08*) NAMCOUNT ALTTIME
DISPLAY NAMELIST(*) WHERE(ALTTIME NL ’07.13*’)
DISPLAY NAMELIST(*) WHERE(NAMCOUNT GT 5) +

DESCR ALTDATE ALTTIME NAMCOUNT
DISPLAY NAMELIST(ABC*) WHERE(NAMES EX MY.OBJ.NAME.EXCLUDE)

WebSphere MQ queue commands
The WebSphere MQ queue commands are:
v ALTER QALIAS
v ALTER QLOCAL
v ALTER QMODEL
v ALTER QREMOTE
v DEFINE QALIAS

WebSphere MQ namelist commands

550 WebSphere MQ for z/VSE System Management Guide

v DEFINE QLOCAL
v DEFINE QMODEL
v DEFINE QREMOTE
v DELETE QALIAS
v DELETE QLOCAL
v DELETE QMODEL
v DELETE QREMOTE
v DISPLAY QALIAS
v DISPLAY QLOCAL
v DISPLAY QMODEL
v DISPLAY QREMOTE
v DISPLAY QSTATUS

Note: Commands that alter queue attributes require that the relevant queue is not
currently in use. In addition, since the system command and reply queues are used
by the MQPMQSC utility, these queues are always in use and cannot be altered
using the MQPMQSC program.

ALTER QALIAS
Purpose

Use ALTER QALIAS to alter the parameters of an alias queue.

Synonym
ALT QA

Syntax
ALTER QALIAS(q-name) optional-parameters

Parameters

q-name
Queue name. The q-name value should specify an existing alias queue
name defined to the queue manager.

optional-parameters
optional-parameters for the ALTER QALIAS command include:

DESCR(string)
Alias queue description.

GET(ENABLED/DISABLED)
Get uninhibit and inhibit.

PUT(ENABLED/DISABLED)
Put uninhibit and inhibit.

TARGQ(string)
Target queue of alias.

ALTER QLOCAL
Purpose

Use ALTER QLOCAL to alter the parameters of a local queue.

Synonym
ALT QL

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 551

Syntax
ALTER QLOCAL(q-name) optional-parameters

Parameters

q-name
Queue name. The q-name value should specify an existing local queue
name defined to the queue manager.

optional-parameters
optional-parameters for the ALTER QLOCAL command include:

ACCTQ(QMGR/OFF/ON)
Queue accounting setting.

DESCR(string)
Local queue description.

GET(ENABLED/DISABLED)
Get uninhibit and inhibit.

MAXDEPTH(integer)
Maximum queue depth.

MAXMSGL(integer)
Maximum message length.

MAXQUSER(integer)
Maximum number of active opens.

MAXGLOCK(integer)
Buffer size for queue manager to manage concurrent queue access.

MAXLLOCK(integer)
Buffer size for applications to manage concurrent queue access.

MAXTRIGS(integer)
Maximum number of concurrent trigger instances.

MONQ(QMGR/OFF/LOW/MEDIUM/HIGH)
Queue monitoring setting.

NOSHARE
Non-shareable queue. This parameter is mutually exclusive to the
SHARE parameter.

NOTRIGGER
No trigger on queue. This parameter is mutually exclusive to the
TRIGGER parameter.

NOTRIGREST
No trigger restart allowed. This parameter is mutually exclusive to
the TRIGREST parameter.

PROPCTL(COMPAT/ALL/NONE/FORCE)
Property control attribute.

This parameter is applicable to Local, Alias, and Model queues.

This parameter is optional.

Specifies how message properties are handled when messages are
retrieved from queues using the MQGET call with the
MQGMO_PROPERTIES_AS_Q_DEF option. Permissible values are:
ALL To contain all the properties of the message, except those

WebSphere MQ queue commands

552 WebSphere MQ for z/VSE System Management Guide

contained in the message descriptor (or extension), select
All. The All value enables applications that cannot be
changed to access all the message properties from
MQRFH2 headers.

COMPAT
If the message contains a property with a prefix of mcd.,
jms., usr., or mqext., all message properties are delivered to
the application in an MQRFH2 header. Otherwise, all
properties of the message, except those contained in the
message descriptor (or extension), are discarded and are no
longer accessible to the application.

This is the default value; it allows applications which
expect JMS related properties to be in an MQRFH2 header
in the message data to continue to work unmodified.

FORCE
Properties are always returned in the message data in an
MQRFH2 header regardless of whether the application
specifies a message handle.

A valid message handle supplied in the MsgHandle field
of the MQGMO structure on the MQGET call is ignored.
Properties of the message are not accessible via the
message handle.

NONE
All properties of the message, except those in the message
descriptor (or extension), are removed from the message
before the message is delivered to the application.

PUT(ENABLED/DISABLED)
PUT uninhibit and inhibit.

QDEPTHHI(integer)
The threshold against which the queue depth is compare to
generate a Queue Depth High event.

QDEPTHLO(integer)
The threshold against which the queue depth is compare to
generate a Queue Depth Low event.

QDPHIEV(ENABLED/DISABLED)
Controls whether Queue Depth High events are generated.

QDPLOEV(ENABLED/DISABLED)
Controls whether Queue Depth Low events are generated.

QDPMAXEV(ENABLED/DISABLED)
Controls whether Queue Full events are generated.

QSVCIEV(HIGH/OK/NONE)
Controls whether Service Interval High or Service Interval OK
events are generated.

QSVCINT(integer)
The service interval used for comparison to generate Service
Interval High and Service Interval OK events.

REORG(ENABLED/DISABLED)
Automatic VSAM reorganization.

REORGTI(string)
Automatic VSAM reorganization start time, in HHMM format.

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 553

REORGINT(integer)
Automatic VSAM reorganization interval.

REORGCAT(string)
Automatic VSAM reorganization catalog. No longer used.

For the reorganization process, the VSAM catalog where the
reorganization file is defined is now extracted from the system and
so no longer needs to be specified in the queue definition. If
specified it is treated as a comment.

SHARE
Shareable queue. This parameter is mutually exclusive to the
NOSHARE parameter.

STATQ(QMGR/ON/OFF)
Queue statistics setting.

TRIGCHAN(string)
Channel name for MCA trigger process.

TRIGDATA(string)
User data passed to trigger instance.

TRIGGER
Trigger on queue. This parameter is mutually exclusive to the
NOTRIGGER parameter.

TRIGPROG(string)
Program name for trigger process.

TRIGREST
Trigger restart allowed. This parameter is mutually exclusive to the
NOTRIGREST parameter.

TRIGTERM(string)
Terminal identifier for trigger process.

TRIGTRAN(string)
Transaction identifier for trigger process.

TRIGTYPE(FIRST/EVERY)
Trigger type.

USAGE(NORMAL/XMIT)
Queue usage.

ALTER QMODEL
Purpose

Use ALTER QMODEL to alter the parameters of a model queue.

Synonym
ALT QM

Syntax
ALTER QMODEL(q-name) optional-parameters

Parameters

q-name
Queue name. The q-name value should specify an existing model queue
name defined to the queue manager.

WebSphere MQ queue commands

554 WebSphere MQ for z/VSE System Management Guide

|

|
|
|
|

optional-parameters
optional-parameters for the ALTER QMODEL command include:

ACCTQ(QMGR/OFF/ON)
Queue accounting setting.

DEFTYPE(TEMPDYN/PERMDYN)
Definition type.

DESCR(string)
Local queue description.

GET(ENABLED/DISABLED)
Get uninhibit and inhibit.

MAXDEPTH(integer)
Maximum queue depth.

MAXMSGL(integer)
Maximum message length.

MAXQUSER(integer)
Maximum number of active opens.

MAXGLOCK(integer)
Buffer size for queue manager to manage concurrent queue access.

MAXLLOCK(integer)
Buffer size for applications to manage concurrent queue access.

MAXTRIGS(integer)
Maximum number of concurrent trigger instances.

MONQ(QMGR/OFF/LOW/MEDIUM/HIGH)
Queue monitoring setting.

NOSHARE
Non-shareable queue. This parameter is mutually exclusive to the
SHARE parameter.

NOTRIGGER
No trigger on queue. This parameter is mutually exclusive to the
TRIGGER parameter.

NOTRIGREST
No trigger restart allowed. This parameter is mutually exclusive to
the TRIGREST parameter.

PUT(ENABLED/DISABLED)
PUT uninhibit and inhibit.

QDEPTHHI(integer)
The threshold against which the queue depth is compare to
generate a Queue Depth High event.

QDEPTHLO(integer)
The threshold against which the queue depth is compare to
generate a Queue Depth Low event.

QDPHIEV(ENABLED/DISABLED)
Controls whether Queue Depth High events are generated.

QDPLOEV(ENABLED/DISABLED)
Controls whether Queue Depth Low events are generated.

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 555

QDPMAXEV(ENABLED/DISABLED)
Controls whether Queue Full events are generated.

QSVCIEV(HIGH/OK/NONE)
Controls whether Service Interval High or Service Interval OK
events are generated.

QSVCINT(integer)
The service interval used for comparison to generate Service
Interval High and Service Interval OK events.

SHARE
Shareable queue. This parameter is mutually exclusive to the
NOSHARE parameter.

STATQ(QMGR/ON/OFF)
Queue statistics setting.

TRIGCHAN(string)
Channel name for MCA trigger process.

TRIGDATA(string)
User data passed to trigger instance.

TRIGGER
Trigger on queue. This parameter is mutually exclusive to the
NOTRIGGER parameter.

TRIGPROG(string)
Program name for trigger process.

TRIGREST
Trigger restart allowed. This parameter is mutually exclusive to the
NOTRIGREST parameter.

TRIGTERM(string)
Terminal identifier for trigger process.

TRIGTRAN(string)
Transaction identifier for trigger process.

TRIGTYPE(FIRST/EVERY)
Trigger type.

USAGE(NORMAL/XMIT)
Queue usage.

ALTER QREMOTE
Purpose

Use ALTER QREMOTE to alter the parameters of a remote queue.

Synonym
ALT QR

Syntax
ALTER QREMOTE(q-name) optional-parameters

Parameters

q-name
Queue name. The q-name value should specify an existing remote queue
name defined to the queue manager.

WebSphere MQ queue commands

556 WebSphere MQ for z/VSE System Management Guide

optional-parameters
optional-parameters for the ALTER QREMOTE command include:

PUT(ENABLED/DISABLED)
Put inhibit and uninhibit.

RNAME(string)
Remote queue name.

RQMNAME(string)
Remote queue manager name.

XMITQ(string)
Transmission queue name.

DEFINE QALIAS
Purpose

Use DEFINE QALIAS to define a new alias queue, and set its parameters.

Note: An alias queue provides a level of indirection to another queue. The queue
to which the alias refers must be another local or remote queue, defined at this
queue manager. It cannot be another alias queue.

Synonym
DEF QA

Syntax
DEFINE QALIAS(q-name) optional-parameters

Parameters

q-name
Queue name. The q-name value should specify a unique queue name that
is not already defined to the queue manager.

optional-parameters
optional-parameters for the DEFINE QALIAS command include:

DESCR(string)
Alias queue description.

GET(ENABLED/DISABLED)
Get uninhibit and inhibit.

PUT(ENABLED/DISABLED)
Put uninhibit and inhibit.

TARGQ(string)
Target queue of alias.

To define an ALIAS REPLY QUEUE specify:
DEFINE QALIAS(alias-reply-queue-name) +

DESCR('description') +
RNAME(replyto-q-name) +
RQMNAME(reply-to-qmgr-name)

To define an ALIAS QUEUE MANAGER specify:
DEFINE QALIAS(alias-qmgr-name) +

DESCR('description') +

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 557

RQMNAME(qmgr-name) +
TARGOQ(xmit-q-name)

DEFINE QLOCAL
Purpose

Use DEFINE QLOCAL to define a new local queue, and set its parameters.

Synonym
DEF QL

Syntax
DEFINE QLOCAL(q-name) CICSFILE(f-name) optional-parameters

Parameters

q-name
Queue name. The q-name value should specify a unique queue name that
is not already defined to the queue manager.

f-name
CICS file name for queue messages. The f-name value should specify a
filename defined to the CICS region.

optional-parameters
optional-parameters for the DEFINE QLOCAL command include:

ACCTQ(QMGR/OFF/ON)
Queue accounting setting.

DESCR(string)
Local queue description.

GET(ENABLED/DISABLED)
Get uninhibit and inhibit.

MAXDEPTH(integer)
Maximum queue depth.

MAXMSGL(integer)
Maximum message length.

MAXQUSER(integer)
Maximum number of active opens.

MAXGLOCK(integer)
Buffer size for queue manager to manage concurrent queue access.

MAXLLOCK(integer)
Buffer size for applications to manage concurrent queue access.

MAXTRIGS(integer)
Maximum number of concurrent trigger instances.

MONQ(QMGR/OFF/LOW/MEDIUM/HIGH)
Queue monitoring setting.

NOSHARE
Non-shareable queue. This parameter is mutually exclusive to the
SHARE parameter.

WebSphere MQ queue commands

558 WebSphere MQ for z/VSE System Management Guide

NOTRIGGER
No trigger on queue. This parameter is mutually exclusive to the
TRIGGER parameter.

NOTRIGREST
No trigger restart allowed. This parameter is mutually exclusive to
the TRIGREST parameter.

PROPCTL(COMPAT/ALL/NONE/FORCE)
Property control attribute.

PUT(ENABLED/DISABLED)
Put uninhibit and inhibit.

QDEPTHHI(integer)
The threshold against which the queue depth is compare to
generate a Queue Depth High event.

QDEPTHLO(integer)
The threshold against which the queue depth is compare to
generate a Queue Depth Low event.

QDPHIEV(ENABLED/DISABLED)
Controls whether Queue Depth High events are generated.

QDPLOEV(ENABLED/DISABLED)
Controls whether Queue Depth Low events are generated.

QDPMAXEV(ENABLED/DISABLED)
Controls whether Queue Full events are generated.

QSVCIEV(HIGH/OK/NONE)
Controls whether Service Interval High or Service Interval OK
events are generated.

QSVCINT(integer)
The service interval used for comparison to generate Service
Interval High and Service Interval OK events.

REORG(ENABLED/DISABLED)
Automatic VSAM reorganization.

REORGTI(string)
Automatic VSAM reorganization start time, in HHMM format.

REORGINT(integer)
Automatic VSAM reorganization interval.

REORGCAT(string)
Automatic VSAM reorganization catalog.

The contents of this field are now treated as comments. For the
reorganization process the VSAM catalog where the reorganization
file is defined is now extracted from the system and so no longer
needs to be specified in the queue definition.

SHARE
Shareable queue. This parameter is mutually exclusive to the
NOSHARE parameter.

STATQ(QMGR/ON/OFF)
Queue statistics setting.

TRIGCHAN(string)
Channel name for MCA trigger process.

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 559

|

|
|
|
|

TRIGDATA(string)
User data passed to trigger instance.

TRIGGER
Trigger on queue. This parameter is mutually exclusive to the
NOTRIGGER parameter.

TRIGPROG(string)
Program name for trigger process.

TRIGREST
Trigger restart allowed. This parameter is mutually exclusive to the
NOTRIGREST parameter.

TRIGTERM(string)
Terminal identifier for trigger process.

TRIGTRAN(string)
Transaction identifier for trigger process.

TRIGTYPE(FIRST/EVERY)
Trigger type.

USAGE(NORMAL/XMIT)
Queue usage.

DEFINE QMODEL
Purpose

Use DEFINE QMODEL to define a new model queue, and set its parameters.

Synonym
DEF QM

Syntax
DEFINE QMODEL(q-name) CICSFILE(f-name) optional-parameters

Parameters

q-name
Queue name. The q-name value should specify a unique queue name that
is not already defined to the queue manager.

f-name
CICS file name for queue messages. The f-name value should specify a
filename defined to the CICS region.

optional-parameters
optional-parameters for the DEFINE QMODEL command include:

ACCTQ(QMGR/OFF/ON)
Queue accounting setting.

DEFTYPE(TEMPDYN/PERMDYN)
Definition type.

DESCR(string)
Local queue description.

GET(ENABLED/DISABLED)
Get uninhibit and inhibit.

WebSphere MQ queue commands

560 WebSphere MQ for z/VSE System Management Guide

MAXDEPTH(integer)
Maximum queue depth.

MAXMSGL(integer)
Maximum message length.

MAXQUSER(integer)
Maximum number of active opens.

MAXGLOCK(integer)
Buffer size for queue manager to manage concurrent queue access.

MAXLLOCK(integer)
Buffer size for applications to manage concurrent queue access.

MAXTRIGS(integer)
Maximum number of concurrent trigger instances.

MONQ(QMGR/OFF/LOW/MEDIUM/HIGH)
Queue monitoring setting.

NOSHARE
Non-shareable queue. This parameter is mutually exclusive to the
SHARE parameter.

NOTRIGGER
No trigger on queue. This parameter is mutually exclusive to the
TRIGGER parameter.

NOTRIGREST
No trigger restart allowed. This parameter is mutually exclusive to
the TRIGREST parameter.

PROPCTL(COMPAT/ALL/FORCE/NONE)
Property control attribute.

PUT(ENABLED/DISABLED)
Put uninhibit and inhibit.

QDEPTHHI(integer)
The threshold against which the queue depth is compare to
generate a Queue Depth High event.

QDEPTHLO(integer)
The threshold against which the queue depth is compare to
generate a Queue Depth Low event.

QDPHIEV(ENABLED/DISABLED)
Controls whether Queue Depth High events are generated.

QDPLOEV(ENABLED/DISABLED)
Controls whether Queue Depth Low events are generated.

QDPMAXEV(ENABLED/DISABLED)
Controls whether Queue Full events are generated.

QSVCIEV(HIGH/OK/NONE)
Controls whether Service Interval High or Service Interval OK
events are generated.

QSVCINT(integer)
The service interval used for comparison to generate Service
Interval High and Service Interval OK events.

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 561

SHARE
Shareable queue. This parameter is mutually exclusive to the
NOSHARE parameter.

STATQ(QMGR/ON/OFF)
Queue statistics setting.

TRIGCHAN(string)
Channel name for MCA trigger process.

TRIGDATA(string)
User data passed to trigger instance.

TRIGGER
Trigger on queue. This parameter is mutually exclusive to the
NOTRIGGER parameter.

TRIGPROG(string)
Program name for trigger process.

TRIGREST
Trigger restart allowed. This parameter is mutually exclusive to the
NOTRIGREST parameter.

TRIGTERM(string)
Terminal identifier for trigger process.

TRIGTRAN(string)
Transaction identifier for trigger process.

TRIGTYPE(FIRST/EVERY)
Trigger type.

USAGE(NORMAL/XMIT)
Queue usage.

DEFINE QREMOTE
Purpose

Use DEFINE QREMOTE to define a new remote queue, and set its parameters.

Synonym
DEF QR

Syntax
DEFINE QREMOTE(q-name) optional-parameters

Parameters

q-name
Queue name. The q-name value should specify a unique queue name that
is not already defined to the queue manager.

optional-parameters
optional-parameters for the DEFINE QREMOTE command include:

DESCR(string)
Remote queue description.

PUT(ENABLED/DISABLED)
Put uninhibit and inhibit.

WebSphere MQ queue commands

562 WebSphere MQ for z/VSE System Management Guide

RNAME(string)
Remote queue name.

RQMNAME(string)
Remote queue manager name.

XMITQ(string)
Transmission queue name.

DELETE QALIAS
Purpose

Use DELETE QALIAS to delete an alias queue definition.

Synonym
DELETE QA

Syntax
DELETE QALIAS(q-name)

Parameters

q-name
Queue name. The q-name value should specify an existing alias queue
name defined to the queue manager.

DELETE QLOCAL
Purpose

Use DELETE QLOCAL to delete a local queue definition.

Synonym
DELETE QL

Syntax
DELETE QLOCAL(q-name) optional-parameter

Parameters

q-name
Queue name. The q-name value should specify an existing local queue
name defined to the queue manager.

optional-parameter
The optional-parameters for the DELETE QLOCAL command is:

PURGE
Purge queue messages. If the queue contains messages and the
PURGE parameter is not specified, the command will fail.

DELETE QMODEL
Purpose

Use DELETE QMODEL to delete a model queue definition.

Synonym
DELETE QM

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 563

Syntax
DELETE QMODEL(q-name)

Parameters

q-name
Queue name. The q-name value should specify an existing model queue
name defined to the queue manager.

DELETE QREMOTE
Purpose

Use DELETE QREMOTE to delete a remote queue definition.

Synonym
DELETE QR

Syntax
DELETE QREMOTE(q-name)

Parameters

q-name
Queue name. The q-name value should specify an existing remote queue
name defined to the queue manager.

DISPLAY QALIAS
Purpose

Use DISPLAY QALIAS to display the attributes of an alias queue.

Synonym
DIS QA

Syntax
DISPLAY QALIAS(q-name)
WHERE(FilterCondition) requested-attributes

Parameters

q-name
Queue name. The q-name value should specify an existing alias queue
name defined to the queue manager.

The q-name can be generic. A trailing asterisk (*) matches all queues with
the specified stem followed by zero or more characters. An asterisk (*) on
its own specifies all queues. Characters after the first asterisk, if present,
are ignored.

requested-attributes
Attributes of the alias queue that are to be displayed. This can be:

ALL Displays all alias queue attributes. If you do not use ALL, you can
use any combination of the other keywords.

ALTDATE
Last modification date.

WebSphere MQ queue commands

564 WebSphere MQ for z/VSE System Management Guide

ALTTIME
Last modification time.

DEFTYPE
Definition type.

DESCR
Alias queue description.

GET GET inhibit and uninhibit.

PUT PUT inhibit and uninhibit.

TARGQ(string)
Target queue of alias.

Examples
DISPLAY QALIAS(ABC*) WHERE(DESCR LK TEST*)
DISPLAY QALIAS(ABC*) WHERE(TARGQ GE ANYQ)

DISPLAY QLOCAL
Purpose

Use DISPLAY QLOCAL to display the attributes of a local queue.

Synonym
DIS QL

Syntax
DISPLAY QLOCAL(q-name)
WHERE(FilterCondition) requested-attributes

Parameters

q-name
Queue name. The q-name value should specify an existing local queue
name defined to the queue manager.

The q-name can be generic. A trailing asterisk (*) matches all queues with
the specified stem followed by zero or more characters. An asterisk (*) on
its own specifies all queues. Characters after the first asterisk, if present,
are ignored.

requested-attributes
Attributes of the local queue that are to be displayed. This can be:

ACCTQ(QMGR/OFF/ON)
Queue accounting setting.

ALL Displays all local queue attributes. If you do not use ALL, you can
use any combination of the other keywords.

ALTDATE
Last modification date.

ALTTIME
Last modification time.

CICSFILE
CSD file name for queue messages.

DEFPSIST
Default message persistence.

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 565

DEFTYPE
Definition type.

DESCR
Local queue description.

GET Get inhibit and uninhibit.

MAXDEPTH
Maximum queue depth.

MAXMSGL
Maximum message length.

MAXQUSER
Maximum number of active opens.

MAXGLOCK
Buffer size for queue manager to manage concurrent queue access.

MAXLLOCK
Buffer size for applications to manage concurrent queue access.

MAXTRIGS
Maximum number of concurrent trigger instances.

MONQ(QMGR/OFF/LOW/MEDIUM/HIGH)
Queue monitoring setting.

NOSHARE
Non-shareable queue. This parameter is mutually exclusive to the
SHARE parameter.

NOTRIGGER
No trigger on queue. This parameter is mutually exclusive to the
TRIGGER parameter.

NOTRIGREST
No trigger restart allowed. This parameter is mutually exclusive to
the TRIGREST parameter.

PROPCTL
Property control attribute.

PUT PUT inhibit and uninhibit.

QDEPTHHI
The threshold against which the queue depth is compare to
generate a Queue Depth High event.

QDEPTHLO
The threshold against which the queue depth is compare to
generate a Queue Depth Low event.

QDPHIEV
Controls whether Queue Depth High events are generated.

QDPLOEV
Controls whether Queue Depth Low events are generated.

QDPMAXEV
Controls whether Queue Full events are generated.

QSVCIEV
Controls whether Service Interval High or Service Interval OK
events are generated.

WebSphere MQ queue commands

566 WebSphere MQ for z/VSE System Management Guide

QSVCINT
The service interval used for comparison to generate Service
Interval High and Service Interval OK events.

REORG
Automatic VSAM reorganization.

REORGTI
Automatic VSAM reorganization start time, in HHMM format.

REORGINT
Automatic VSAM reorganization interval.

REORGCAT
Automatic VSAM reorganization catalog.

The contents of this field are now treated as comments and may
not reflect the actual VSAM catalog containing the reorganization
file. For the reorganization process, the VSAM catalog where the
reorganization file is defined is now extracted from the system.

SHARE
Shareable queue. This parameter is mutually exclusive to the
NOSHARE parameter.

STATQ(QMGR/ON/OFF)
Queue statistics setting.

TRIGCHAN
Channel name for MCA trigger process.

TRIGDATA
User data passed to trigger instance.

TRIGGER
Trigger on queue. This parameter is mutually exclusive to the
NOTRIGGER parameter.

TRIGPROG
Program name for trigger process.

TRIGREST
Trigger restart allowed. This parameter is mutually exclusive to the
NOTRIGREST parameter.

TRIGTERM
Terminal identifier for trigger process.

TRIGTRAN
Transaction identifier for trigger process.

TRIGTYPE
Trigger type.

USAGE
Queue usage.

Examples
DISPLAY QLOCAL(ABC*) WHERE(ACCTQ EQ QMGR)
DISPLAY QLOCAL(ABC*) WHERE(ALTDATE GE 2010-08-23)
DISPLAY QLOCAL(ABC*) WHERE(ALTTIME GT 05.00.00)
DISPLAY QLOCAL(ABC*) WHERE(CICSFILE LK ’MQFI*’)
DISPLAY QLOCAL(ABC*) WHERE(DEFPSIST EQ YES)
DISPLAY QLOCAL(ABC*) WHERE(DESCR LK ’QUEUE MODEL*’)
DISPLAY QLOCAL(ABC*) WHERE(DISTL EQ YES)

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 567

|
|
|
|

DISPLAY QLOCAL(*) WHERE(GET EQ DISABLED)
DISPLAY QLOCAL(ABC*) WHERE(MAXDEPTH GE 10000)
DISPLAY QLOCAL(*) WHERE(MAXGLOCK GT 100)
DISPLAY QLOCAL(*) WHERE(MAXLLOCK NE 80)
DISPLAY QLOCAL(ABC*) WHERE(MAXQUSER LT 90)
DISPLAY QLOCAL(ABC*) WHERE(MAXTRIGS EQ 5)
DISPLAY QLOCAL(*) WHERE(MONQ NE OFF)
DISPLAY QLOCAL(ABC*) WHERE(MSGDLVSQ EQ FIFO)
DISPLAY QLOCAL(ABC*) WHERE(QDEPTHHI GE 95)
DISPLAY QLOCAL(ABC*) WHERE(QSVCINT LE 100)
DISPLAY QLOCAL(ABC*) WHERE(REORG EQ DISABLED)
DISPLAY QLOCAL(ABC*) WHERE(REORGINT GT 60)
DISPLAY QLOCAL(ABC*) WHERE(REORGTI LE 0400)
DISPLAY QLOCAL(ABC*) WHERE(SHARE EQ YES)
DISPLAY QLOCAL(ABC*) WHERE(STATQ EQ OFF)
DISPLAY QLOCAL(*) WHERE(TRIGCHAN GT ABC.CHANNEL.NAME)
DISPLAY QLOCAL(*) WHERE(TRIGDATA NE USER_DATA)
DISPLAY QLOCAL(ABC*) WHERE(TRIGGER EQ NO)
DISPLAY QLOCAL(ABC*) WHERE(TRIGPROG EQ MQPSEND)
DISPLAY QLOCAL(ABC*) WHERE(TRIGREST EQ NO)
DISPLAY QLOCAL(ABC*) WHERE(TRIGTERM LK A*)
DISPLAY QLOCAL(ABC*) WHERE(TRIGTRAN EQ TRNX)
DISPLAY QLOCAL(ABC*) WHERE(TRIGTYPE EQ EVERY)
DISPLAY QLOCAL(ABC*) WHERE(USAGE NE XMIT)

DISPLAY QMODEL
Purpose

Use DISPLAY QMODEL to display the attributes of a model queue.

Synonym
DIS QM

Syntax
DISPLAY QMODEL(q-name)
WHERE(FilterCondition) requested-attributes

Parameters

q-name
Queue name. The q-name value should specify an existing model queue
name defined to the queue manager.

The q-name can be generic. A trailing asterisk (*) matches all queues with
the specified stem followed by zero or more characters. An asterisk (*) on
its own specifies all queues. Characters after the first asterisk, if present,
are ignored.

requested-attributes
Attributes of the model queue that are to be displayed. This can be:

ACCTQ(QMGR/OFF/ON)
Queue accounting setting.

ALL Displays all local queue attributes. If you do not use ALL, you can
use any combination of the other keywords.

ALTDATE
Last modification date.

ALTTIME
Last modification time.

WebSphere MQ queue commands

568 WebSphere MQ for z/VSE System Management Guide

|
|

CICSFILE
CSD file name for queue messages.

DEFPSIST
Default message persistence.

DEFTYPE
Definition type.

DESCR
Local queue description.

GET Get inhibit and uninhibit.

MAXDEPTH
Maximum queue depth.

MAXMSGL
Maximum message length.

MAXQUSER
Maximum number of active opens.

MAXGLOCK
Buffer size for queue manager to manage concurrent queue access.

MAXLLOCK
Buffer size for applications to manage concurrent queue access.

MAXTRIGS
Maximum number of concurrent trigger instances.

MONQ(QMGR/OFF/LOW/MEDIUM/HIGH)
Queue monitoring setting.

NOSHARE
Non-shareable queue. This parameter is mutually exclusive to the
SHARE parameter.

NOTRIGGER
No trigger on queue. This parameter is mutually exclusive to the
TRIGGER parameter.

NOTRIGREST
No trigger restart allowed. This parameter is mutually exclusive to
the TRIGREST parameter.

PROPCTL
Property control attribute.

PUT Put inhibit and uninhibit.

QDEPTHHI
The threshold against which the queue depth is compare to
generate a Queue Depth High event.

QDEPTHLO
The threshold against which the queue depth is compare to
generate a Queue Depth Low event.

QDPHIEV
Controls whether Queue Depth High events are generated.

QDPLOEV
Controls whether Queue Depth Low events are generated.

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 569

QDPMAXEV
Controls whether Queue Full events are generated.

QSVCIEV
Controls whether Service Interval High or Service Interval OK
events are generated.

QSVCINT
The service interval used for comparison to generate Service
Interval High and Service Interval OK events.

SHARE
Shareable queue. This parameter is mutually exclusive to the
NOSHARE parameter.

STATQ(QMGR/ON/OFF)
Queue statistics setting.

TRIGCHAN
Channel name for MCA trigger process.

TRIGDATA
User data passed to trigger instance.

TRIGGER
Trigger on queue. This parameter is mutually exclusive to the
NOTRIGGER parameter.

TRIGPROG
Program name for trigger process.

TRIGREST
Trigger restart allowed. This parameter is mutually exclusive to the
NOTRIGREST parameter.

TRIGTERM
Terminal identifier for trigger process.

TRIGTRAN
Transaction identifier for trigger process.

TRIGTYPE
Trigger type.

USAGE
Queue usage.

Examples
DISPLAY QMODEL(ABC*) WHERE(ACCTQ EQ QMGR)
DISPLAY QMODEL(ABC*) WHERE(ALTDATE GE 2010-08-23)
DISPLAY QMODEL(ABC*) WHERE(ALTTIME GT 05.00.00)
DISPLAY QMODEL(ABC*) WHERE(CICSFILE LK ’MQFI*’)
DISPLAY QMODEL(ABC*) WHERE(DEFTYPE EQ PERMDYN)
DISPLAY QMODEL(ABC*) WHERE(DESCR LK ’QUEUE MODEL*’)
DISPLAY QMODEL(*) WHERE(GET EQ DISABLED)
DISPLAY QMODEL(ABC*) WHERE(MAXDEPTH GE 10000)
DISPLAY QMODEL(*) WHERE(MAXGLOCK GT 100)
DISPLAY QMODEL(*) WHERE(MAXLLOCK NE 80)
DISPLAY QMODEL(ABC*) WHERE(MAXQUSER LT 90)
DISPLAY QMODEL(ABC*) WHERE(MAXTRIGS EQ 5)
DISPLAY QMODEL(*) WHERE(MONQ NE OFF)
DISPLAY QMODEL(ABC*) WHERE(MSGDLVSQ EQ FIFO)
DISPLAY QMODEL(ABC*) WHERE(QDEPTHHI GE 95)
DISPLAY QMODEL(ABC*) WHERE(QSVCINT LE 100)
DISPLAY QMODEL(ABC*) WHERE(SHARE EQ YES)

WebSphere MQ queue commands

570 WebSphere MQ for z/VSE System Management Guide

DISPLAY QMODEL(ABC*) WHERE(STATQ EQ OFF)
DISPLAY QMODEL(*) WHERE(TRIGCHAN GT ABC.CHANNEL.NAME)
DISPLAY QMODEL(*) WHERE(TRIGDATA NE USER_DATA)
DISPLAY QMODEL(ABC*) WHERE(TRIGGER EQ NO)
DISPLAY QMODEL(ABC*) WHERE(TRIGPROG EQ MQPSEND)
DISPLAY QMODEL(ABC*) WHERE(TRIGREST EQ NO)
DISPLAY QMODEL(ABC*) WHERE(TRIGTERM LK A*)
DISPLAY QMODEL(ABC*) WHERE(TRIGTRAN EQ TRNX)
DISPLAY QMODEL(ABC*) WHERE(USAGE NE XMIT)

DISPLAY QREMOTE
Purpose

Use DISPLAY QREMOTE to display the attributes of a remote queue.

Synonym
DIS QR

Syntax
DISPLAY QREMOTE(q-name)
WHERE(FilterCondition) requested-attributes

Parameters

q-name
Queue name. The q-name value should specify an existing remote queue
name defined to the queue manager.

The q-name can be generic. A trailing asterisk (*) matches all queues with
the specified stem followed by zero or more characters. An asterisk (*) on
its own specifies all queues. Characters after the first asterisk, if present,
are ignored.

requested-attributes
Attributes of the remote queue that are to be displayed. This can be:

ALL Displays all remote queue attributes. If you do not use ALL, you
can use any combination of the other keywords.

ALTDATE
Last modification date.

ALTTIME
Last modification time.

DESCR
Descriptive comment.

PUT Put inhibit and uninhibit.

RNAME
Remote queue name.

RQMNAME
Remote queue manager name.

XMITQ
Transmission queue name.

Examples
DISPLAY QREMOTE(ABC*) WHERE(ALTDATE GE 2010-08-23)
DISPLAY QREMOTE(ABC*) WHERE(ALTTIME GT 05.42.27)
DISPLAY QREMOTE(ABC*) WHERE(DESCR GT ’QUEUE REMOTE 1’)

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 571

DISPLAY QREMOTE(*) WHERE(PUT EQ DISABLED)
DISPLAY QREMOTE(ABC*) WHERE(RNAME LK ANYQ*)
DISPLAY QREMOTE(ABC*) WHERE(RQMNAME NL ’TEST*’)
DISPLAY QREMOTE(ABC*) WHERE(XMITQ NL ’TEST.XQ*’)

DISPLAY QSTATUS
Purpose

Use the MQSC command DISPLAY QSTATUS to display the status of one or more
queues.

Synonym
DIS QS

Syntax
DISPLAY QSTATUS(generic-qname)
WHERE(FilterCondition) requested-attributes

Usage

You must specify the name of the queue for which you want to display status
information. This can be a specific queue name or a generic queue name. By using
a generic queue name you can display either:
v Status information for all queues, or
v Status information for one or more queues that match the specified name and

other selection criteria.

You must also specify whether you want status information about:
v Queues.
v Handles that are accessing the queues.

Note: You cannot use the DISPLAY QSTATUS command to display the status of an
alias queue or remote queue. If you specify the name of one of these types of
queue, no data is returned. You can, however, specify the name of the local queue
or transmission queue to which the alias queue or remote queue resolves.

Parameters

(generic-qname)
The name of the queue for which status information is to be displayed. A
trailing asterisk (*) matches all queues with the specified stem followed by
zero or more characters. An asterisk (*) on its own matches all queues.

requested-attributes

ALL Display all the status information for each specified queue.

This is the default if you do not specify a generic name, and do
not request any specific parameters.

MONITOR
Specify this to return the set of online monitoring parameters.
These are LGETDATE, LGETTIME, LPUTDATE, LPUTTIME,
MONQ, MSGAGE, and QTIME. If you specify this parameter, any
of the monitoring parameters that you request specifically have no
effect; all monitoring parameters are still displayed.

WebSphere MQ queue commands

572 WebSphere MQ for z/VSE System Management Guide

OPENTYPE
Restricts the queues selected to those that have handles with the
specified type of access:
v ALL Selects queues that are open with any type of access. This is

the default if the OPENTYPE parameter is not specified.
v INPUT Selects queues that are open for input only. This option

does not select queues that are open for browse.
v OUTPUT Selects queues that are open only for output.

TYPE Specifies the type of status information required:
v QUEUE Status information relating to queues is displayed. This

is the default if the TYPE parameter is not specified.
v HANDLE Status information relating to the handles that are

accessing the queues is displayed.

Queue status:
For queue status, the following information is always returned for
each queue that satisfies the selection criteria, except where
indicated:
v Queue name.
v Type of information returned (TYPE parameter).
v Current queue depth (CURDEPTH parameter).

The following parameters can be specified for TYPE(QUEUE) to
request additional information for each queue. If a parameter is
specified that is not relevant for the queue, operating environment,
or type of status information requested, that parameter is ignored.

CURDEPTH The current depth of the queue, that is, the
number of messages on the queue. This includes both committed
messages and uncommitted messages.

IPPROCS The number of handles that are currently open for
input for the queue (either input-shared or input-exclusive). This
does not include handles that are open for browse.

LGETDATE The date on which the last message was retrieved
from the queue since the queue manager started. A message being
browsed does not count as a message being retrieved. When no get
date is available, perhaps because no message has been retrieved
from the queue since the queue manager was started, the value is
shown as a blank.

This parameter is also displayed when you specify the MONITOR
parameter. A value is only displayed for this parameter if MONQ
is set to a value other than OFF for this queue.

LGETTIME
The time at which the last message was retrieved from the queue
since the queue manager started. A message being browsed does
not count as a message being retrieved. When no get time is
available, perhaps because no message has been retrieved from the
queue since the queue manager was started, the value is shown as
a blank.

This parameter is also displayed when you specify the MONITOR
parameter. A value is only displayed for this parameter if MONQ
is set to a value other than OFF for this queue.

LPUTDATE
The date on which the last message was put to the queue since the

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 573

queue manager started. When no put date is available, perhaps
because no message has been put to the queue since the queue
manager was started, the value is shown as a blank.

This parameter is also displayed when you specify the MONITOR
parameter. A value is only displayed for this parameter if MONQ
is set to a value other than OFF for this queue.

LPUTTIME
The time at which the last message was put to the queue since the
queue manager started. When no put time is available, perhaps
because no message has been put to the queue since the queue
manager was started, the value is shown as a blank.

This parameter is also displayed when you specify the MONITOR
parameter. A value is only displayed for this parameter if MONQ
is set to a value other than OFF for this queue.

MONQ
Current level of monitoring data collection for the queue. This
parameter is also displayed when you specify the MONITOR
parameter.

MSGAGE
Age, in seconds, of the oldest message on the queue. The
maximum displayable value is 999 999 999; if the age exceeds this
value, 999 999 999 is displayed.

This parameter is also displayed when you specify the MONITOR
parameter. A value is only displayed for this parameter if MONQ
is set to a value other than OFF for this queue.

OPPROCS
This is the number of handles that are currently open for output
for the queue.

QTIME
Interval, in microseconds, between messages being put on the
queue and then being destructively read. The maximum
displayable value is 999 999 999; if the interval exceeds this value,
999 999 999 is displayed.

The interval is measured from the time that the message is placed
on the queue until it is retrieved by an application and, therefore,
includes any interval caused by a delay in committing by the
putting application.

Two values are displayed:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

These values depend on the configuration and behavior of your
system, as well as the levels of activity within it, and serve as an
indicator that your system is performing normally. A significant
variation in these values may indicate a problem with your system.

This parameter is also displayed when you specify the MONITOR
parameter.

A value is only displayed for this parameter if MONQ is set to a
value other than OFF for this queue.

WebSphere MQ queue commands

574 WebSphere MQ for z/VSE System Management Guide

UNCOM
Indicates whether there are any uncommitted changes (puts and
gets) pending for the queue. The value displayed is one of the
following:
YES There are one or more uncommitted changes pending.
NO There are no uncommitted changes pending.
N An integer value indicating how many uncommitted

changes are pending.

Handle status:
For handle status, the following information is always returned for
each queue that satisfies the selection criteria, except where
indicated:
v Queue name
v Type of information returned (TYPE parameter).
v User identifier (USERID parameter).
v Application tag (APPLTAG parameter).
v Application type (APPLTYPE parameter).
v Whether handle is providing input access (INPUT parameter).
v Whether handle is providing output access (OUTPUT

parameter).
v Whether handle is providing browse access (BROWSE

parameter).
v Whether handle is providing inquire access (INQUIRE

parameter).
v Whether handle is providing set access (SET parameter).

The following parameters can be specified for TYPE(HANDLE) to
request additional information for each queue. If a parameter that
is not relevant is specified for the queue, operating environment, or
type of status information requested, that parameter is ignored.

APPLTAG
A string containing the tag of the application connected to the
queue manager. It is one of the following:
v CICS APPLID

APPLTYPE
A string indicating the type of the application that is connected to
the queue manager. It is one of the following:
BATCH

Application using a batch connection
CICS CICS transaction

BROWSE
Indicates whether the handle is providing browse access to the
queue. The value is one of the following:
YES The handle is providing browse access.
NO The handle is not providing browse access.

CHANNEL
The name of the channel that owns the handle. If there is no
channel associated with the handle, this parameter is blank.

CONNAME
The connection name associated with the channel that owns the
handle. If there is no channel associated with the handle, this
parameter is blank.

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 575

This parameter is returned only when the handle belongs to the
channel initiator.

HSTATE
Whether an API call is in progress. Possible values are:
ACTIVE

An API call from a connection is currently in progress for
this object. For a queue, this condition can arise when an
MQGET WAIT call is in progress.

INACTIVE
No API call from a connection is currently in progress for
this object. For a queue, this condition can arise when no
MQGET WAIT call is in progress.

INPUT
Indicates whether the handle is providing input access to the
queue. The value is one of the following:
SHARED

The handle is providing shared-input access.
EXCL The handle is providing exclusive-input access.
NO The handle is not providing input access.

INQUIRE
Indicates whether the handle is providing inquire access to the
queue. The value is one of the following:
YES The handle is providing inquire access.
NO The handle is not providing inquire access.

OUTPUT
Indicates whether the handle is providing output access to the
queue. The value is one of the following:
YES The handle is providing output access.
NO The handle is not providing output access.

SET Indicates whether the handle is providing set access to the queue.
The value is one of the following:
YES The handle is providing set access.
NO The handle is not providing set access.

TASKNO
A 7-digit CICS task number is returned as a 7-byte string. This
number can be used in the CICS command "CEMT SET
TASK(taskno) PURGE" to end the CICS task.

This parameter is returned only when the APPLTYPE parameter
has the value CICS.

TRANSID
A 4-character CICS transaction identifier. This parameter is
returned only when the APPLTYPE parameter has the value CICS.

URTYPE
The type of unit of recovery as seen by the queue manager. It is
one of the following:
v CICS

USERID
The user identifier associated with the handle. This parameter is
not returned when APPLTYPE has the value SYSTEM.

WebSphere MQ queue commands

576 WebSphere MQ for z/VSE System Management Guide

Examples
DISPLAY QSTATUS(ABC*) TYPE(QUEUE) WHERE(CURDEPTH LT 3)
DISPLAY QSTATUS(*) WHERE(IPPROCS GT 1)
DISPLAY QSTATUS(XY*) WHERE(LGETDATE GE 2010-09-12)
DISPLAY QSTATUS(ABC*) WHERE(LGETTIME LT 17.00.00)
DISPLAY QSTATUS(ABC*) WHERE(LPUTDATE GT 2010-09-12)
DISPLAY QSTATUS(ABC*) WHERE(LPUTTIME LK 17.09*)
DISPLAY QSTATUS(ABC*) WHERE(MONQ EQ OFF)
DISPLAY QSTATUS(ABC*) WHERE(MSGAGE LT 3000)
DISPLAY QSTATUS(ABC*) WHERE(OPPROCS GT 1)
DISPLAY QSTATUS(*) WHERE(UNCOM EQ YES)
DISPLAY QSTATUS(ABC*) TYPE(HANDLE)WHERE(APPLTAG EQ TSMQ300)
DISPLAY QSTATUS(*) TYPE(HANDLE) WHERE(APPLTYPE EQ BATCH)
DISPLAY QSTATUS(*) TYPE(HANDLE) OPENTYPE(ALL) +

WHERE(BROWSE EQ YES)
DISPLAY QSTATUS(ABC*) TYPE(HANDLE) +

WHERE(CHANNEL LK ABC.SENDER*)
DISPLAY QSTATUS(*) TYPE(HANDLE) +

WHERE(CONNAME EQ ’1.123.345.1(1418)’)
DISPLAY QSTATUS(ABC*) TYPE(HANDLE) OPENTYPE(INPUT) +

WHERE(HSTATE EQ ACTIVE)
DISPLAY QSTATUS(*) TYPE(HANDLE) WHERE(INPUT EQ EXCL)
DISPLAY QSTATUS(ABC*) TYPE(HANDLE) WHERE(INQUIRE EQ YES)
DISPLAY QSTATUS(ABC*) TYPE(HANDLE) WHERE(OUTPUT EQ NO)
DISPLAY QSTATUS(ABC*) TYPE(HANDLE) OPENTYPE(OUTPUT)+

WHERE(SET EQ NO)
DISPLAY QSTATUS(ABC*) TYPE(HANDLE) WHERE(TASKNO LT 0002638)
DISPLAY QSTATUS(*) TYPE(HANDLE) WHERE(TRANSID LK QED*)
DISPLAY QSTATUS(*) TYPE(HANDLE) WHERE(URTYPE EQ CICS)
DISPLAY QSTATUS(*) TYPE(HANDLE) WHERE(USERID NL IBM*)

WebSphere MQ queue manager commands
The WebSphere MQ queue manager commands are:
v ALTER QMGR
v DISPLAY QMGR
v PING QMGR
v START LISTENER

ALTER QMGR
Purpose

Use ALTER QMGR to alter the queue manager parameters for the local queue
manager.

Synonym
ALT QMGR

Syntax
ALTER QMGR qmgr-attrs

Parameters

qmgr-attrs
Queue manager attributes for the ALTER QMGR command include the
following:

ACCTCONO(ENABLED/DISABLED)
Specifies whether applications can override the settings of the
ACCTQ and ACCTMQI queue manager parameters:

WebSphere MQ queue commands

Chapter 9. WebSphere MQ commands 577

DISABLED
Applications cannot override the settings of the ACCTQ
and ACCTMQI parameters. This is the queue manager's
initial default value.

ENABLED
Applications can override the settings of the ACCTQ and
ACCTMQI parameters by using the options field of the
MQCNO structure of the MQCONNX API call.

Changes to this parameter are effective for connections to the
queue manager that occur after the change.

ACCTINT(integer)
The time interval, in seconds, at which intermediate accounting
records are written.

Specify a value in the range 1 through 604 800.

The queue manager's initial default value is 1800.

Changes to this parameter are effective for connections to the
queue manager that occur after the change.

ACCTMQI(ON/OFF)
Specifies whether accounting information for MQI data is to be
collected:
OFF MQI accounting data collection is disabled. This is the

queue manager's initial default value.
ON MQI accounting data collection is enabled.If queue

manager attribute ACCTCONO is set to ENABLED, the
value of this parameter can be overridden using the
options field of the MQCNO structure.

Changes to this parameter are effective for connections to the
queue manager that occur after the change.

ACCTQ(ON/OFF/NONE)
Specifies whether accounting data is to be collected for all queues:
OFF Accounting data collection is disabled for all queues which

specify QMGR as the value for their ACCTQ parameter.
This is the queue manager's initial default value.

ON Accounting data collection is enabled for all queues which
specify QMGR as the value of their ACCTQ parameter.

NONE
Accounting data collection for all queues is disabled
regardless of the value of the queue's ACCTQ parameter.

Changes to this parameter are effective only for connections to the
queue manager occurring after the change to the parameter.

ADOPTCHK(NONE/NETADDR)
Adopt MCA check.

ADOPTMCA(NO/RCVR)
Adopt MCA.

AUTHOREV(ENABLED/DISABLED)
Whether authorization (Not Authorized) events are generated.

BATCHID(string)
Batch interface identifier.

WebSphere MQ queue manager commands

578 WebSphere MQ for z/VSE System Management Guide

BIAUTO
Automatic activation of the batch interface. This parameter is
mutually exclusive of the NOBIAUTO parameter.

CCSID(integer)
Coded character set identifier.

CHAD(ENABLED/DISABLED)
Whether receiver and server-connection channels can be defined
automatically.

CHADEV(ENABLED/DISABLED)
Whether channel auto-definition events are generated.

CHADEXIT(string)
Auto-definition exit name. If this name is nonblank, the exit is
called when an inbound request for an undefined receiver or
server-connection channel is received.

CHLEV(ENABLED/DISABLED)
Whether channel events are generated.

CMDEV(string)
Specifies whether command events are generated:

DISABLED
Command events are not generated. This is the queue
manager's initial default value.

ENABLED
Command events are generated for all successful
commands.

NODISPLAY
Command events are generated for all successful
commands other than DISPLAY commands.

COMMANDQ(string)
System command input queue.

CONFIGEV(string)
Whether configuration events are generated:

ENABLED
Configuration events are generated.

DISABLED
Configuration events are not generated. This is the queue
manager's initial default value.

CSAUTO
Automatic activation of the PCF command server. This parameter
is mutually exclusive of the NOCSAUTO parameter.

CSCNVRT
Data conversion by command server of PCF messages. This
parameter is mutually exclusive of the NOCSCNVRT parameter.

CSDLQ
Dead letter queue store by command server of undeliverable PCF
reply messages. This parameter is mutually exclusive of the
NOCSDLQ parameter.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 579

DEADQ(string)
Dead letter queue name.

DESCR(string)
Queue manager description.

INHIBTEV(ENABLED/DISABLED)
Whether inhibit (Inhibit Get and Inhibit Put) events are generated.

LISTPORT(integer)
TCP/IP listener port number.

LOCALEV(ENABLED/DISABLED)
Whether local error events are generated.

LOGQ(string)
System log queue name.

MAXCLNTS(integer)
Maximum number of concurrent client connections.

MAXRTASK(integer)
Maximum number of tasks for dual queue recovery.

MAXDEPTH(integer)
Maximum queue depth for local queues.

MAXGLOCK(integer)
Buffer size for queue manager to manage concurrent queue access.

MAXHANDS(integer)
Maximum number of connections to queue manager.

MAXLLOCK(integer)
Buffer size for applications to manage concurrent queue access.

MAXMSGL(integer)
Maximum length of messages for local queues.

MAXPROPL(integer)
The maximum length of property data in bytes that can be
associated with a message.

MAXQOPEN(integer)
Maximum number of concurrently open queues.

MAXQUSER(integer)
Maximum number of active opens to any particular queue.

MONCHL(NONE/OFF/LOW/MEDIUM/HIGH)
Controls the collection of online monitoring data for channels:
OFF Online monitoring data collection is turned off for channels

specifying a value of QMGR in their MONCHL parameter.
This is the queue manager's initial default value.

NONE
Online monitoring data collection is turned off for channels
regardless of the setting of their MONCHL parameter.

LOW Online monitoring data collection is turned on, with a low
ratio of data collection, for channels specifying a value of
QMGR in their MONCHL parameter.

MEDIUM
Online monitoring data collection is turned on, with a
moderate ratio of data collection, for channels specifying a
value of QMGR in their MONCHL parameter.

WebSphere MQ queue manager commands

580 WebSphere MQ for z/VSE System Management Guide

HIGH Online monitoring data collection is turned on, with a high
ratio of data collection, for channels specifying a value of
QMGR in their MONCHL parameter.

A change to this parameter takes effect only on channels started
after the change occurs. Any channel started before the change to
the parameter continues with the value in force at the time that the
channel started.

MONINTVL(integer)
Queue manager housekeeping process interval.

MONITORQ(string)
MQI diagnostic queue name.

MONQ(NONE/OFF/LOW/MEDIUM/HIGH)
Controls the collection of online monitoring data for queues:
OFF Online monitoring data collection is turned off for queues

specifying a value of QMGR in their MONQ parameter.
This is the queue manager's initial default value.

NONE
Online monitoring data collection is turned off for queues
regardless of the setting of their MONQ parameter.

LOW Online monitoring data collection is turned on for queues
specifying a value of QMGR in their MONQ parameter.

MEDIUM
Online monitoring data collection is turned on for queues
specifying a value of QMGR in their MONQ parameter.

HIGH Online monitoring data collection is turned on for queues
specifying a value of QMGR in their MONQ parameter.

Note that, in contrast to MONCHL, there is no distinction between
the values LOW, MEDIUM and HIGH. These values all turn data
collection on, but do not affect the rate of collection.

Changes to this parameter are effective only for queues opened
after the parameter has been changed.

NOBIAUTO
Non-automatic activation of the batch interface. This parameter is
mutually exclusive of the BIAUTO parameter.

NOCSAUTO
Non-automatic activation of the PCF command server. This
parameter is mutually exclusive of the CSAUTO parameter.

NOCSCNVRT
No data conversion by command server of PCF messages. This
parameter is mutually exclusive of the CSCNVRT parameter.

NOCSDLQ
No dead letter queue store by command server of undeliverable
PCF reply messages. This parameter is mutually exclusive of the
CSDLQ parameter.

OPTCCOMM(ENABLED/DISABLED/REPLY)
Whether communication messages are sent to the console.

OPTCCRIT(ENABLED/DISABLED/REPLY)
Whether critical messages are sent to the console.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 581

OPTCERR(ENABLED/DISABLED/REPLY)
Whether error messages are sent to the console.

OPTCINFO(ENABLED/DISABLED)
Whether information messages are sent to the console.

OPTCORG(ENABLED/DISABLED/REPLY)
Whether reorganization messages are sent to the console.

OPTCSYS(ENABLED/DISABLED/REPLY)
Whether general system messages are sent to the console.

OPTCWARN(ENABLED/DISABLED)
Whether warning messages are sent to the console.

OPTECSMT(ENABLED/DISABLED)
Whether messages are written to the CICS CSMT when then
system log queue is unavailable.

OPTIDUMP(ENABLED/DISABLED)
Whether the queue manager generates an internal dump following
an application abnormal termination.

OPTLCOMM(ENABLED/DISABLED)
Whether communication messages are sent to the system log.

OPTLCRIT(ENABLED/DISABLED)
Whether critical messages are sent to the system log.

OPTLERR(ENABLED/DISABLED)
Whether error messages are sent to the system log.

OPTLINFO(ENABLED/DISABLED)
Whether information messages are sent to the system log.

OPTLORG(ENABLED/DISABLED)
Whether reorganization messages are sent to the system log.

OPTLSYS(ENABLED/DISABLED)
Whether general system messages are sent to the system log.

OPTLWARN(ENABLED/DISABLED)
Whether warning messages are sent to the system log.

OPTTCOMM(ENABLED/DISABLED)
Whether the queue manager traces communication related events.

OPTTCONV(ENABLED/DISABLED)
Whether the queue manager traces data conversion related events.

OPTTMQI(ENABLED/DISABLED)
Whether the queue manager traces MQI call related events.

OPTTORG(ENABLED/DISABLED)
Whether the queue manager traces reorganization related events.

OPTTSYS(ENABLED/DISABLED)
Whether the queue manager traces general system related events.

PERFMEV(ENABLED/DISABLED)
Whether performance-related events are generated.

REMOTEEV(ENABLED/DISABLED)
Whether remote error events are generated.

WebSphere MQ queue manager commands

582 WebSphere MQ for z/VSE System Management Guide

REPLYQ(string)
System command reply queue name for MQSC processing.

SSLEV(string)
Whether SSL events are generated.
DISABLED

SSL events are not generated. This is the queue manager's
initial default value.

ENABLED
All SSL events are generated.

SSLKEYL(string)
SSL key library name.

SSLKEYM(string)
SSL key library member name.

SSLRKEYC(integer)
The number of bytes to be sent and received within an SSL
conversation before the secret key is renegotiated. The number of
bytes includes control information.

This value is used only by SSL channels which initiate
communication from the queue manager (for example, the sender
channel in a sender and receiver channel pairing).

The count of bytes until the next secret key renegotiation is reset
after each successful renegotiation.

Specify a value in the range zero through 999 999 999. A value of
zero (the queue manager's initial default value) means that the
secret key is never renegotiated. If you specify an SSL/TLS secret
key reset count between 1 byte and 32Kb, SSL/TLS channels will
use a secret key reset count of 32Kb. This is to avoid the cost of
excessive key resets which would occur for small SSL/TLS secret
key reset values.

STATCHL(NONE/OFF/LOW/MEDIUM/HIGH)
Whether statistics data is to be collected for channels:
NONE

Statistics data collection is turned off for channels
regardless of the setting of their STATCHL parameter. This
is the queue manager's initial default value.

. OFF Statistics data collection is turned off for channels
specifying a value of QMGR in their STATCHL parameter.

. LOW Statistics data collection is turned on, with a low ratio of
data collection, for channels specifying a value of QMGR in
their STATCHL parameter.

MEDIUM
Statistics data collection is turned on, with a moderate ratio
of data collection, for channels specifying a value of QMGR
in their STATCHL parameter.

. HIGH
Statistics data collection is turned on, with a high ratio of
data collection, for channels specifying a value of QMGR in
their STATCHL parameter.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 583

Note: A change to this parameter takes effect only on channels
started after the change occurs. Any channel started before the
change to the parameter continues with the value in force at the
time that the channel started.

STATINT(integer)
The time interval, in seconds, at which statistics monitoring data is
written to the monitoring queue. Specify a value in the range 1
through 604 800. The queue manager's initial default value is 1800.

Note: Changes to this parameter take immediate effect on the
collection of monitoring and statistics data.

STATMQI(ON/OFF)
Whether statistics monitoring data is to be collected for the queue
manager:
OFF Data collection for MQI statistics is disabled. This is the

queue manager's initial default value.
ON Data collection for MQI statistics is enabled.

Note: Changes to this parameter take immediate effect on the
collection of monitoring and statistics data.

STATQ(NONE/ON/OFF)
Whether statistics data is to be collected for queues:
NONE

Statistics data collection is turned off for queues regardless
of the setting of their STATQ parameter. This is the queue
manager's initial default value.

OFF Statistics data collection is turned off for queues specifying
a value of QMGR in their STATQ parameter.

ON Statistics data collection is turned on for queues specifying
a value of QMGR in their STATQ parameter.

Note: Changes to this parameter take immediate effect on the
collection of statistics data for the affected queues.

STRSTPEV(ENABLED/DISABLED)
Whether start and stop events are generated.

DISPLAY QMGR
Purpose

Use DISPLAY QMGR to display the attributes of the queue manager.

Synonym
DIS QMGR

Syntax
DISPLAY QMGR requested-attributes

Parameters

requested-attributes
Attributes of the queue manager that are to be displayed. This can be:

ACCTCONO
Specifies whether applications can override the settings of the
ACCTQ and ACCTMQI queue manager parameters.

WebSphere MQ queue manager commands

584 WebSphere MQ for z/VSE System Management Guide

ACCTINT
The time interval, in seconds, at which intermediate accounting
records are written.

ACCTMQI
Specifies whether accounting information for MQI data is to be
collected.

ACCTQ
Specifies whether accounting data is to be collected for all queues.

ADOPTCHK
Adopt MCA check.

ADOPTMCA
Adopt MCA.

ALL Displays all queue manager attributes. If you do not use ALL, you
can use any combination of the other keywords.

ALTDATE
Last modification date.

ALTTIME
Last modification time.

AUTHOREV
Whether authorization (Not Authorized) events are generated.

BATCHID
Batch interface identifier.

BIAUTO
Automatic activation of the batch interface. This parameter is
mutually exclusive of the NOBIAUTO parameter.

CCSID
Coded character set identifier.

CHAD
Whether auto-definition of receiver and server-connection channels
is enabled.

CHADEV
Whether auto-definition events are enabled.

CHADEXIT
The name of the channel auto-definition exit.

CHLAUTH
Whether channel authentication records are checked.

CMDEV
Specifies whether command events are generated.

COMMANDQ
System command input queue.

CONFIGEV
Whether configuration events are generated.

CSAUTO
Automatic activation of the PCF command server. This parameter
is mutually exclusive of the NOCSAUTO parameter.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 585

|
|

CSCNVRT
Data conversion by command server of PCF messages. This
parameter is mutually exclusive of the NOCSCNVRT parameter.

CSDLQ
Dead letter queue store by command server of undeliverable PCF
reply messages. This parameter is mutually exclusive of the
NOCSDLQ parameter.

CHLEV
Whether channel events are generated.

DEADQ
Dead letter queue name.

DESCR
Queue manager description.

INHIBTEV
Whether inhibit (Inhibit Get and Inhibit Put) events are generated.

LISTPORT
TCP/IP listener port number.

LOCALEV
Whether local error events are generated.

LOGQ
System log queue name.

MAXCLNTS
Maximum number of concurrent client connections.

MAXDEPTH
Maximum queue depth for local queues.

MAXGLOCK
Buffer size for queue manager to manage concurrent queue access.

MAXHANDS
Maximum number of connections to queue manager.

MAXLLOCK
Buffer size for applications to manage concurrent queue access.

MAXMSGL
Maximum length of messages for local queues.

MAXPROPL(integer)
The maximum length of property data in bytes that can be
associated with a message.

MAXQOPEN
Maximum number of concurrently open queues.

MAXQUSER
Maximum number of active opens to any particular queue.

MAXRTASK
Maximum number of tasks for dual queue recovery.

MONCHL
Controls the collection of online monitoring data for channels.

MONINTVL
Queue manager housekeeping process interval.

WebSphere MQ queue manager commands

586 WebSphere MQ for z/VSE System Management Guide

MONITORQ
MQI diagnostic queue name.

MONQ
Controls the collection of online monitoring data for queues.

NOBIAUTO
Non-automatic activation of the batch interface. This parameter is
mutually exclusive of the BIAUTO parameter.

NOCSAUTO
Non-automatic activation of the PCF command server. This
parameter is mutually exclusive of the CSAUTO parameter.

NOCSCNVRT
No data conversion by command server of PCF messages. This
parameter is mutually exclusive of the CSCNVRT parameter.

NOCSDLQ
No dead letter queue store by command server of undeliverable
PCF reply messages. This parameter is mutually exclusive of the
CSDLQ parameter.

OPTCCOMM
Whether communication messages are sent to the console.

OPTCCRIT
Whether critical messages are sent to the console.

OPTCERR
Whether error messages are sent to the console.

OPTCINFO
Whether information messages are sent to the console.

OPTCORG
Whether reorganization messages are sent to the console.

OPTCSYS
Whether general system messages are sent to the console.

OPTCWARN
Whether warning messages are sent to the console.

OPTECSMT
Whether messages are written to the CICS CSMT when then
system log queue is unavailable.

OPTIDUMP
Whether the queue manager generates an internal dump following
an application abnormal termination.

OPTLCOMM
Whether communication messages are sent to the system log.

OPTLCRIT
Whether critical messages are sent to the system log.

OPTLERR
Whether error messages are sent to the system log.

OPTLINFO
Whether information messages are sent to the system log.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 587

OPTLORG
Whether reorganization messages are sent to the system log.

OPTLSYS
Whether general system messages are sent to the system log.

OPTLWARN
Whether warning messages are sent to the system log.

OPTTCOMM
Whether the queue manager traces communication related events.

OPTTCONV
Whether the queue manager traces data conversion related events.

OPTTMQI
Whether the queue manager traces MQI call related events.

OPTTORG
Whether the queue manager traces reorganization related events.

OPTTSYS
Whether the queue manager traces general system related events.

PERFMEV
Whether performance-related events are generated.

REMOTEEV
Whether remote error events are generated.

REPLYQ
System command reply queue name for MQSC processing.

SSLEV
Whether SSL events are generated.

SSLKEYL
SSL key library name.

SSLKEYM
SSL key library member name.

SSLRKEYC
The number of bytes to be sent and received within an SSL
conversation before the secret key is renegotiated.

STATCHL
Whether statistics data is to be collected for channels.

STATINT
The time interval, in seconds, at which statistics monitoring data is
written to the monitoring queue.

STATQ
Whether statistics data is to be collected for queues.

STRSTPEV
Whether start and stop events are generated.

PING QMGR
Purpose

Use PING QMGR to test whether the queue manager is responsive to commands.

WebSphere MQ queue manager commands

588 WebSphere MQ for z/VSE System Management Guide

Synonym
PING QMGR

Syntax
PING QMGR

WebSphere MQ Service
Service objects can be created, modified, deleted and displayed using MQSC
commands. The following MQSC commands are supported:

ALTER SERVICE
DEFINE SERVICE
DELETE SERVICE
DISPLAY SERVICE
DISPLAY LSSTATUS
START SERVICE
STOP SERVICE

ALTER SERVICE
Purpose

Alter the parameters of an existing WebSphere MQ service definition. The service
must be in STOPPED state.

Synonym
ALT SERVICE

Syntax
ALTER SERVICE(service-name) optional-parameters

Parameters

service-name
Name of the WebSphere MQ service definition to alter.

Optional-parameters
For details of optional parameters for the ALTER SERVICE command, see
“DEFINE SERVICE.”

DEFINE SERVICE
Purpose

Define a new WebSphere MQ service definition, and set its parameters.

Synonym
DEF SERVICE

Syntax
DEFINE SERVICE(service-name) optional-parameters

Parameters

service-name
Name of the WebSphere MQ service definition (see Rules for naming
WebSphere MQ objects). This is required.

The name must not be the same as any other service definition currently
defined on this queue manager.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 589

Optional-parameters
Optional parameters for the DEFINE SERVICE command include:

CONTROL(string)
Specifies how the service is to be started and stopped:

MANUAL
The service is not to be started automatically or stopped
automatically. It is to be controlled by use of the START
SERVICE and STOP SERVICE commands. This is the
default value.

QMGR
The service being defined is to be started and stopped at
the same time as the queue manager is started and
stopped.

STARTONLY
The service is to be started at the same time as the queue
manager is started, but is not requested to stop when the
queue manager is stopped.

DESCR(string)
Plain-text comment. It provides descriptive information about the
service when an operator issues the DISPLAY SERVICE command
(see DISPLAY SERVICE). It should contain only displayable
characters. The maximum length is 64 characters.

Note: If characters are used that are not in the coded character set
identifier (CCSID) for this queue manager, they might be translated
incorrectly if the information is sent to another queue manager.

SERVTYPE
Specifies the mode in which the service is to run:
COMMAND

A command service object. Multiple instances of a
command service object can be executed concurrently. You
cannot monitor the status of command service objects.

SERVER
A server service object. Only one instance of a server
service object can be executed at a time. The status of
server service objects can be monitored using the DISPLAY
SVSTATUS command.

STARTARG(string)
Specifies the data to be passed in COMMAREA when starting the
transaction specified for STARTCMD.

STARTCMD(string)
Specifies the CICS transaction code to be started to start service.

STOPARG(string)
Specifies the data to be passed in COMMAREA when starting the
transaction specified for STOPCMD.

STOPCMD(string)
Specifies the CICS transaction code to be started to stop service.

WebSphere MQ queue manager commands

590 WebSphere MQ for z/VSE System Management Guide

DELETE SERVICE
Purpose

Delete a service definition. The service must be in STOPPED state.

Synonym
DEL SERVICE

Syntax
DELETE SERVICE(service-name)

Parameters

service-name
Name of the WebSphere MQ service definition to delete.

DISPLAY SERVICE
Purpose

Display information about a service. The values displayed describe the current
definition of the service.

Synonym
DIS SERVICE

Syntax
DISPLAY SERVICE(generic-service-name)
WHERE(FilterCondition) requested-attributes

Parameters

generic-service-name
The name of the service definition for which information is to be
displayed. A single asterisk (*) specifies that information for all service
identifiers is to be displayed. A character string with an asterisk at the end
matches all services with the string followed by zero or more characters.

Requested-attributes

ALL Specify this to display all the service information for each specified
service. If this parameter is specified, any parameters that are
requested specifically have no effect; all parameters are still
displayed. This is the default if you do not specify a generic
identifier, and do not request any specific parameters.

ALTDATE
The date on which the definition was last altered, in the form
yyyy-mm-dd.

ALTTIME
The time at which the definition was last altered, in the form
hh.mm.ss.

CONTROL
How the service is to be started and stopped:
MANUAL

The service is not to be started automatically or stopped
automatically. It is to be controlled by use of the START
SERVICE and STOP SERVICE commands.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 591

QMGR
The service is to be started and stopped at the same time
as the queue manager is started and stopped.

STARTONLY
The service is to be started at the same time as the queue
manager is started, but is not requested to stop when the
queue manager is stopped.

DESCR
Descriptive comment.

SERVTYPE
Specifies the mode in which the service is to run:
COMMAND

A command service object. Multiple instances of a
command service object can be executed concurrently. You
cannot monitor the status of command service objects.

SERVER
A server service object. Only one instance of a server
service object can be executed at a time. The status of
server service objects can be monitored using the DISPLAY
SVSTATUS command.

STARTARG
The data to be passed in COMMAREA when starting the
transaction specified for STARTCMD.

STARTCMD
Specifies the CICS transaction code to be started to start the
service.

STOPARG
The data to be passed in COMMAREA when starting the
transaction specified for STOPCMD.

STOPCMD
Specifies the CICS transaction code to be started to stop the
service.

Examples
DISPLAY SERVICE(*) WHERE(DESCR NL ’TEST*’)
DISPLAY SERVICE(ABC*) WHERE(ALTDATE LK 2010-09*)
DISPLAY SERVICE(ABC*) WHERE(ALTTIME EQ 05.36.02)
DISPLAY SERVICE(ABC*) WHERE(STARTCMD NL MQ*)
DISPLAY SERVICE(ABC*) WHERE(STARTARG GT ’ ’)
DISPLAY SERVICE(ABC*) WHERE(STOPCMD EQ MQBI)
DISPLAY SERVICE(ABC*) WHERE(STOPARG EQ ’X’)
DISPLAY SERVICE(ABC*) WHERE(CONTROL EQ QMGR)
DISPLAY SERVICE(ABC*) WHERE(SERVTYPE EQ SERVER)

DISPLAY LSSTATUS
Purpose

Display status information for one or more services. Only service with status of
RUNNING are returned.

Synonym
DIS SVSTATUS

WebSphere MQ queue manager commands

592 WebSphere MQ for z/VSE System Management Guide

Syntax
DISPLAY SVSTATUS(generic-service-name)
WHERE(FilterCondition) requested-attributes

Parameters

generic-service-name
The name of the service definition for which information is to be
displayed. A single asterisk (*) specifies that information for all service
identifiers is to be displayed. A character string with an asterisk at the end
matches all services with the string followed by zero or more characters.

Requested-attributes

ALL Display all the status information for each specified service. This is
the default if you do not specify a generic name, and do not
request any specific parameters.

CONTROL
How the service is to be started and stopped:
MANUAL

The service is not to be started automatically or stopped
automatically. It is to be controlled by use of the START
SERVICE and STOP SERVICE commands.

QMGR
The service is to be started and stopped at the same time
as the queue manager is started and stopped.

STARTONLY
The service is to be started at the same time as the queue
manager is started, but is not requested to stop when the
queue manager is stopped.

DESCR
Descriptive comment.

PID The CICS task number associated with the service.

STARTARG
The data to be passed in COMMAREA when starting the
transaction specified for STARTCMD.

STARTCMD
Specifies the CICS transaction code to be started.

STARTDA
The date on which the service was started.

STARTTI
The time at which the service was started.

STATUS
The current status of the process:
RUNNING

The service is running.
STOPPED

The service is stopping.

STOPARG
The data to be passed in COMMAREA when starting the
transaction specified for STOPCMD.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 593

STOPCMD
Specifies the CICS transaction code to be started when the service
is stopped.

Examples
DISPLAY SVSTATUS(*) WHERE(DESCR LT ’INTERFACE TO BATCH JOBS’)
DISPLAY SVSTATUS(*) WHERE(STARTDA EQ 2010-09-12)
DISPLAY SVSTATUS(*) WHERE(STARTTI GE 17.00.00)
DISPLAY SVSTATUS(*) WHERE(STARTCMD LK MQ*)
DISPLAY SVSTATUS(*) WHERE(STARTARG EQ ’ ’)
DISPLAY SVSTATUS(*) WHERE(STOPCMD GE MQBI)
DISPLAY SVSTATUS(*) WHERE(STOPARG NE X)
DISPLAY SVSTATUS(ABC*) WHERE(CONTROL EQ QMGR)
DISPLAY SVSTATUS(ABC*) WHERE(SERVTYPE EQ COMMAND)
DISPLAY SVSTATUS(*) WHERE(STATUS EQ RUNNING)

START SERVICE
Purpose

Start a service.

Synonym
STA SERVICE

Syntax
START SERVICE(service-name)

Parameters

service-name
Name of the service to be started.

STOP SERVICE
Purpose

Stop a service.

Synonym
STOP SERVICE

Syntax
STOP SERVICE(service-name)

Parameters

service-name
Name of the service to be stopped.

WebSphere MQ Subscription
Subscription objects can be created, modified, deleted and displayed using MQSC
commands. The following MQSC commands are supported:

ALTER SUB
DEFINE SUB
DELETE SUB
DISPLAY SUB
DISPLAY SBSTATUS

WebSphere MQ queue manager commands

594 WebSphere MQ for z/VSE System Management Guide

|

|
|
|
|
|
|
|

ALTER SUB
Purpose

Use the MQSC command ALTER SUB to alter the characteristics of an existing
subscription.

Parameters not specified in the ALTER SUB command result in the existing values
for those parameters being left unchanged.

Synonym
ALT SUB

Syntax

�� ALTER SUB (string)
SUBID(string) DEST(string)

�

�
DESTCLAS(MANAGED)

PROVIDED
DESTCORL(string) DESTQMGR(string)

�

�
EXPIRY(integer)

UNLIMITED
PSPROP(NONE)

MSGPROP
PUBACCT(string)

�

�
PUBAPPID(string) PUBPRTY(ASPUB) REQONLY(NO)

YES

�

�
SUBUSER(string) TOPICOBJ(string) TOPICSTR(string)

�

�
VARUSER(ANY)

FIXED

��

Usage notes

The following are valid forms of the command:
ALT SUB(’xyz’)
ALT SUB SUBID(123)
ALT SUB(XYZ) SUBID(123)

Although permitted on the command, you cannot alter the following fields using
ALTER SUB:
TOPICOBJ
TOPICSTRDESTCLAS

At the time the ALT SUB command processes, no check is performed that the
named DEST or DESTQMGR exists. These names are used at publishing time as
the ObjectName and ObjectQMgrName for an MQOPEN call. These names are
resolved according to the WebSphere MQ name resolution rules.

Parameters

string A mandatory parameter. Specifies the unique name for this subscription,
see SUBNAME property. If you wish to maintain the case of the name then

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 595

|
|

|
|

|
|

|

|

|

|||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||
|

|
||
|

|
|||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||
|

|
|||||||||||||||||||||

|

|

|

|
|
|

|
|

|
|

|
|
|
|

|

||
|

enclose in apostrophes. If you specify SUB(Abc) then the subname is ABC.
You need to specify SUB('Abc') to maintain the lowercase characters.

DEST(string)
The destination for messages published to this subscription; this parameter
is the name of a queue.

DESTCLAS
System managed destination.
PROVIDED

The destination is a queue.
MANAGED

The destination is managed.

DESTCORL(string)
The CorrelId used for messages published to this subscription.

DESTQMGR(string)
The destination queue manager for messages published to this
subscription. You must define the channels to the remote queue manager,
for example, the XMITQ, and a sender channel. If you do not, messages do
not arrive at the destination.

EXPIRY
The time to expiry of the subscription object from the creation date and
time.
integer The time to expiry, in tenths of a second, from the creation date

and time.
UNLIMITED

There is no expiry time.

PSPROP
The manner in which publish subscribe related message properties are
added to messages sent to this subscription.
NONE

Do not add publish subscribe properties to the message.
MSGPROP

Publish subscribe properties are added as message properties.

PUBACCT(string)
Accounting token passed by the subscriber, for propagation into messages
published to this subscription in the AccountingToken field of the MQMD.

PUBAPPID(string)
Identity data passed by the subscriber, for propagation into messages
published to this subscription in the ApplIdentityData field of the MQMD.

PUBPRTY
The priority of the message sent to this subscription.

ASPUB
Priority of the message sent to this subscription is taken from the
priority supplied in the published message.

REQONLY
Indicates whether the subscriber polls for updates using the MQSUBRQ
API call, or whether all publications are delivered to this subscription.
NO All publications on the topic are delivered to this subscription.
YES Publications are only delivered to this subscription in response to

an MQSUBRQ API call.

WebSphere MQ queue manager commands

596 WebSphere MQ for z/VSE System Management Guide

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
||
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
||
||
|

This parameter is equivalent to the subscribe option
MQSO_PUBLICATIONS_ON_REQUEST.

SUBUSER(string)
Specifies the user ID that is used for security checks that are performed to
ensure that publications can be put to the destination queue associated
with the subscription.

TOPICSTR(string)
Specifies a fully qualified topic name, or a topic set using wildcard
character for the subscription.

TOPICOBJ(string)
The name of a topic object used by this subscription.

VARUSER
Specifies whether a user other than the subscription creator can connect to
and take over ownership of the subscription.
ANY Any user can connect to and takeover ownership of the

subscription.
FIXED

Takeover by another USERID is not permitted.

DEFINE SUB
Purpose

Use DEFINE SUB to allow an existing application to participate in a
publish/subscribe application by allowing the administrative creation of a
subscription.

Synonym
DEF SUB

Syntax

�� DEFINE SUB(string) DEST(string)
PROVIDED

DESTCLAS(MANAGED)

�

�
DESTCORL(string) DESTQMGR(string) UNLIMITED

EXPIRY(integer)

�

�
NONE

PSPROP(MSGPROP)
PUBACCT(string) PUBAPPID(string)

�

�
ASPUB

PUBPRTY(ASQDEF)
integer

NO
REQONLY(YES)

SUBSCOPE(QMGR)
�

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 597

|
|

|
|
|
|

|
|
|

|
|

|
|
|
||
|
|
|

|
|

|
|
|

|

|

|

|||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||
|

|
|||
|

||

�
SUBUSER(string)

TOPICOBJ(string)
TOPICSTR(string)
TOPICOBJ(string) TOPICSTR(string)

�

�
ANY

VARUSER(FIXED)

��

Usage notes
1. You must provide the following information when you define a subscription:

The SUBNAME
A destination for messages
The topic to which the subscription applies

2. You can provide the topic name in the following ways:

TOPICSTR
the topic is fully specified as the TOPICSTR attribute.

TOPICOBJ
The topic is obtained from the TOPICSTR attribute of the named topic
object. The named topic object is retained as the TOPICOBJ attribute of
the new subscription. This method is provided to help you enter long
topic strings through an object definition.

TOPICSTR and TOPICOBJ
The topic is obtained by the concatenation of the TOPICSTR attribute of
the named topic object and the value of TOPICSTR (see the MQSUB
API specification for concatenation rules). The named topic object is
retained as the TOPICOBJ attribute of the new subscription.

3. If you specify TOPICOBJ, the parameter must name a WebSphere MQ topic
object. The existence of the named topic object is checked at the time the
command processes.

4. You can explicitly specify the destination for messages through the use of the
DEST and DESTQMGR keywords.
You must provide the DEST keyword for the default option of
DESTCLAS(PROVIDED); if you specify DESTCLAS(MANAGED), a managed
destination is created on the local queue manager, so you cannot specify either
the DEST or DESTQMGR attribute.

5. At the time the DEF SUB command processes, no check is performed that the
named DEST or DESTQMGR exists.

Parameters

The parameter descriptions apply to DEFINE SUB and ALTER SUB commands,
with the following exceptions:

string A mandatory parameter. Specifies the unique name for this subscription,
see SUBNAME property.

DEST(string)
The destination for messages published to this subscription; this parameter
is the name of a queue.

DESTCLAS
System managed destination.

WebSphere MQ queue manager commands

598 WebSphere MQ for z/VSE System Management Guide

||||||||||||||||||||||||
|

|
|||||||||||||||||||||

|

|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|

|
|

||
|

|
|
|

|
|

PROVIDED
The destination is a queue.

MANAGED
The destination is managed.

DESTCORL(string)
The CorrelId used for messages published to this subscription.

DESTQMGR(string)
The destination queue manager for messages published to this
subscription. You must define the channels to the remote queue manager,
for example, the XMITQ, and a sender channel. If you do not, messages do
not arrive at the destination.

EXPIRY
The time to expiry of the subscription object from the creation date and
time.
integer The time to expiry, in tenths of a second, from the creation date

and time.
UNLIMITED

There is no expiry time.

PSPROP
The manner in which publish subscribe related message properties are
added to messages sent to this subscription.
NONE

Do not add publish subscribe properties to the message.
MSGPROP

Publish subscribe properties are added as message properties.

PUBACCT(string)
Accounting token passed by the subscriber, for propagation into messages
published to this subscription in the AccountingToken field of the MQMD.

PUBAPPID(string)
Identity data passed by the subscriber, for propagation into messages
published to this subscription in the ApplIdentityData field of the MQMD.

PUBPRTY
The priority of the message sent to this subscription.
ASPUB

Priority of the message sent to this subscription is taken from the
priority supplied in the published message.

ASQDEF
Priority of the message sent to this subscription is taken from the
default priority of the queue defined as a destination.

integer An integer providing an explicit priority for messages published to
this subscription.

REQONLY
Indicates whether the subscriber polls for updates using the MQSUBRQ
API call, or whether all publications are delivered to this subscription.
NO All publications on the topic are delivered to this subscription.
YES Publications are only delivered to this subscription in response to

an MQSUBRQ API call.

This parameter is equivalent to the subscribe option
MQSO_PUBLICATIONS_ON_REQUEST.

SUBSCOPE
The scope of the subscription.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 599

|
|
|
|

|
|

|
|
|
|
|

|
|
|
||
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
||
|

|
|
|
||
||
|

|
|

|
|

QMGR
The subscription forwards messages published on the topic only
within this queue manager.

QMGR is the only value supported in z/VSE.

SUBUSER(string)
Specifies the user ID that is used for security checks that are performed to
ensure that publications can be put to the destination queue associated
with the subscription.

TOPICSTR(string)
Specifies a fully qualified topic name, or a topic set using wildcard
character for the subscription.

TOPICOBJ(string)
The name of a topic object used by this subscription.

VARUSER
Specifies whether a user other than the subscription creator can connect to
and take over ownership of the subscription.
ANY Any user can connect to and takeover ownership of the

subscription.
FIXED

Takeover by another USERID is not permitted.

Delete Subscription

The Delete Subscription (MQCMD_DELETE_SUBSCRIPTION) command deletes a
subscription.

Required parameters:

SubName or SubId

Optional parameters:

None

Required parameters

One of:

SubName (MQCFST)
Subscription name (parameter identifier: MQCACF_SUB_NAME). Specifies
the unique subscription name. The subscription name, if provided, must be
fully specified; a wildcard is not acceptable. The subscription name must
refer to a durable subscription.

If SubName is not provided, SubId must be specified to identify the
subscription to be deleted. The maximum length of the string is
MQ_SUB_NAME_LENGTH.

SubId (MQCFBS)
Subscription identifier (parameter identifier: MQBACF_SUB_ID).

Specifies the unique internal subscription identifier.

You must supply a value for SubId if you have not supplied a value for SubName.

WebSphere MQ queue manager commands

600 WebSphere MQ for z/VSE System Management Guide

|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|
||
|
|
|

|

|
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|

|
|

|

|

DISPLAY SUB
Purpose

Use the MQSC command DISPLAY SUB to display the attributes associated with a
subscription.

Synonym
DIS SUB

Syntax

�� DISPLAY SUB (generic_name)
SUBID(id) WHERE(FilterCondition)

�

�
DURABLE(ALL)

DURABLE(NO)
YES

SUBTYPE(USER)

SUBTYPE(ADMIN)
API
ALL

Summary attributes
�

�
Standard attributes

��

Summary attributes:

�

,

DEST
DESTCORL
DESTQMGR
DURABLE
SUB
SUBID
SUBTYPE
SUBUSER
TOPICSTR

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 601

|
|

|
|

|

|

|

|||||||||||||||||||||||
|

|
||
|

|
|||||||||||||||

|

|

|||

|

Standard attributes:

�

,

ALTDATE
ALTTIME
CRDATE
CRTIME
DESTCLAS
EXPIRY
PSPROP
PUBACCT
PUBAPPID
PUBPRTY
REQONLY
SUBSCOPE
TOPICOBJ
VARUSER

Usage notes

The TOPICSTR parameter might contain characters that cannot be translated into
printable characters when the command output is displayed.

Parameters

You must specify either the name or the identifier of subscription you want to
display. This can be a specific subscription name, or SUBID, or a generic
subscription name. By using a generic subscription name, you can display either:

All subscription definitions
One or more subscriptions that match the specified name

The following are valid forms:
DIS SUB(XYZ)
DIS SUB SUBID(123)
DIS SUB(’xyz*’)

generic_name
The local name of the subscription definition to be displayed. A trailing
asterisk (*) matches all subscriptions with the specified stem followed by
zero or more characters. An asterisk (*) on its own specifies all
subscriptions.

WHERE
See “WHERE” on page 511 for information about this parameter.

SUMMARY
Specify this to display the set of summary attributes; this is the default
value. This is the default if you do not specify a generic name and do not
request any specific attributes.

ALL Specify this to display all the attributes.

If this parameter is specified, any attributes that are also requested
specifically have no effect; all attributes are still displayed.

ALTDATE(string)
The date of the most recent MQSUB or ALTER SUB command that
modified the properties of the subscription.

WebSphere MQ queue manager commands

602 WebSphere MQ for z/VSE System Management Guide

|

||

|

|

|
|

|

|
|
|

|

|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

||

|
|

|
|
|

ALTTIME(string)
The time of the most recent MQSUB or ALTER SUB command that
modified the properties of the subscription.

CRDATE(string)
The date of the first MQSUB or DEF SUB command that created this
subscription.

CRTIME(string)
The time of the first MQSUB or DEF SUB command that created this
subscription.

DEST(string)
The destination queue for messages published to this subscription.

DESTCLAS
System managed destination.
PROVIDED

The destination is a queue.
MANAGED

The destination is managed.

DESTCORL(string)
The CorrelId used for messages published to this subscription.

DESTQMGR(string)
The destination queue manager for messages published to this
subscription.

DURABLE
A durable subscription is not deleted when the creating application closes
its subscription handle.
ALL Display all subscriptions.
NO The subscription is removed when the application that created it, is

closed or disconnected from the queue manager.
YES The subscription persists even when the creating application is no

longer running or has been disconnected. The subscription is
reinstated when the queue manager restarts.

EXPIRY
The time to expiry of the subscription object from the creation date and
time.
integer The time to expiry, in tenths of a second, from the creation date

and time.
UNLIMITED

There is no expiry time. This is the default option supplied with
the product.

PSPROP
The manner in which publish subscribe related message properties are
added to messages published to this subscription.
NONE

Do not add publish subscribe properties to the message.
MSGPROP

Publish subscribe properties are added as message properties.

PUBACCT(string)
Accounting token passed by subscriber, for propagation into messages
published to this subscription in the AccountingToken field of the MQMD.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 603

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
||
||
|
||
|
|

|
|
|
||
|
|
|
|

|
|
|
|
|
|
|

|
|
|

PUBAPPID(string)
Identity data passed by the subscriber for propagation into messages
published to this subscription in the ApplIdentityData field of the MQMD.

PUBPRTY
The priority of the message published to this subscription. 0 is always
returned.

REQONLY
Indicates whether the subscriber polls for updates using the MQSUBRQ
API call, or whether all publications are delivered to this subscription.
NO All publications on the topic are delivered to this subscription.
YES Publications are only delivered to this subscription in response to

an MQSUBRQ API call.

SUB(string)
The application's unique identifier for a subscription.

SUBID(string)
The internal, unique key identifying a subscription.

SUBTYPE
Indicates how the subscription was created.
USER Displays only API and ADMIN subscriptions.
ADMIN

Created using DEF SUB MQSC or PCF command. This SUBTYPE
also indicates that a subscription has been modified using an
administrative command.

API Created using an MQSUB API request.
ALL All.

SUBUSER(string)
The user ID that owns this subscription, which can be either the user ID
associated with the creator of the subscription or, if subscription takeover
is permitted, the user ID that last took over the subscription.

TOPICOBJ(string)
The name of a topic object used by this subscription.

TOPICSTR(string)
Specifies a fully qualified topic name, or topic set using wildcard character
for the subscription.

VARUSER
Specifies whether a user other than the subscription creator can connect to
and take over ownership of the subscription.
ANY Any user can connect to and takeover ownership of the

subscription.
FIXED

Takeover by another USERID is not permitted.

DISPLAY SBSTATUS
Purpose

Use the MQSC command DISPLAY SBSTATUS to display the status of a
subscription.

Synonym
DIS SBSTATUS

WebSphere MQ queue manager commands

604 WebSphere MQ for z/VSE System Management Guide

|
|
|

|
|
|

|
|
|
||
||
|

|
|

|
|

|
|
||
|
|
|
|
||
||

|
|
|
|

|
|

|
|
|

|
|
|
||
|
|
|

|
|

|
|

|

|

Syntax

�� DISPLAY SBSTATUS (genericname)
SUBID(string) WHERE(FilterCondition) ALL

�

�
ALL

DURABLE(NO)
YES

USER
SUBTYPE(ADMIN)

API
ALL

Status attributes
��

Status attributes:

�

,

ACTCONN
DURABLE
LMSGDATE
LMSGTIME
NUMMSGS
SUBTYPE
RESMDATE
RESMTIME

Parameters

You must specify the name of the subscription definition for which you want to
display status information. This can be a specific subscription name or a generic
subscription name. By using a generic subscription name, you can display either:

All subscription definitions
One or more subscriptions that match the specified name

WHERE
See “WHERE” on page 511 for information about this parameter.

ALL Display all the status information for each specified subscription definition.
This is the default if you do not specify a generic name, and do not request
any specific parameters.

DURABLE
Specify this attribute to restrict the type of subscriptions which are
displayed.
ALL Display all subscriptions.
NO Only information about nondurable subscriptions is displayed.
YES Only information about durable subscriptions is displayed.

SUBTYPE
Specify this attribute to restrict the type of subscriptions which are
displayed.
USER Displays only API and ADMIN subscriptions.
ADMIN

Only subscriptions that have been created by an administration
interface or modified by an administration interface are selected.

API Only subscriptions created by applications using a WebSphere MQ
API call are selected.

ALL All subscription types are displayed (no restriction).

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 605

|

||||||||||||||||||||||||||||||
|

|
||

|

|

||

|

|

|
|
|

|
|

|
|

||
|
|

|
|
|
||
||
||

|
|
|
||
|
|
|
||
|
||

Requested parameters

Specify one or more parameters that define the data to be displayed. The
parameters can be specified in any order, but do not specify the same parameter
more than once.

ACTCONN
Returns the ConnId of the HConn that currently has this subscription
open.

DURABLE
A durable subscription is not deleted when the creating application closes
its subscription handle.
NO The subscription is removed when the application that created it is

closed or disconnected from the queue manager.
YES The subscription persists even when the creating application is no

longer running or has been disconnected. The subscription is
reinstated when the queue manager restarts.

LMSGDATE
The date on which a message was last published to the destination
specified by this subscription.

LMSGTIME
The time on which a message was last published to the destination
specified by this subscription.

NUMMSGS
The number of messages put to the destination specified by this
subscription.

RESMDATE
The date of the most recent MQSUB API call that connected to the
subscription.

RESMTIME
The time of the most recent MQSUB API call that connected to the
subscription.

SUBID(string)
The internal, unique key identifying a subscription.

SUBTYPE
Indicates how the subscription was created.
ADMIN

Created using the DEF SUB MQSC or PCF command. This
SUBTYPE also indicates that a subscription has been modified
using an administrative command.

API Created using an MQSUB API call.

For more details of these parameters, see DEFINE SUB

WebSphere MQ Topic
Topic objects can be created, modified, deleted and displayed using MQSC
commands. The following MQSC commands are supported:

ALTER TOPIC
DEFINE TOPIC
DELETE TOPIC
DISPLAY TOPIC
DISPLAY TPSTATUS
CLEAR TOPICSTR

WebSphere MQ queue manager commands

606 WebSphere MQ for z/VSE System Management Guide

|

|
|
|

|
|
|

|
|
|
||
|
||
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
||

|

|

|
|
|
|
|
|
|
|

ALTER TOPIC
Purpose

Use ALTER TOPIC to alter the parameters of an existing WebSphere MQ topic
object.

Synonym
ALT TOPIC

Syntax

�� ALTER TOPIC(topic_name)
TYPE(LOCAL) DEFPRTY(integer)

ASPARENT

�

�
DEFPSIST(NO)

YES
ASPARENT

DESCR(string) DURSUB(NO)
YES
ASPARENT

�

�
MDURMDL(q_name) MNDURMDL(q_name) NPMSGDLV(ASPARENT)

ALL
ALLAVAIL
ALLDUR

�

�
PMSGDLV(ASPARENT)

ALL
ALLAVAIL
ALLDUR

PUB(ENABLED)
DISABLED
ASPARENT

�

�
SUB(ENABLED)

DISABLED
ASPARENT

��

Parameters

topic_name
Name of the WebSphere MQ topic definition (see Rules for naming
WebSphere MQ objects). The maximum length is 48 characters. This is
required.

The name must not be the same as any other topic definition currently
defined on this queue manager.

DEFPRTY(integer)
The default priority of messages published to the topic.

integer The value must be in 0 in z/VSE.

DEFPSIST
Specifies the message persistence to be used when applications specify the
MQPER_PERSISTENCE_AS_TOPIC_DEF option.

YES Messages on this queue survive a restart of the queue manager.

Only persistent messages are supported in z/VSE.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 607

|
|

|
|

|

|

|

||||||||||||||||||||||||||||||
|

|
||
|

|
|||||||||||||||||||||||||||||||||||||||
|

|
||
|

|
||||||||||||||||||||||||

|

|

|
|
|
|

|
|

|
|

||

|
|
|

||

|

DESCR(string)
Plain-text comment. It provides descriptive information about the object
when an operator issues the DISPLAY TOPIC command.

It must contain only displayable characters. The maximum length is 64
characters. In a DBCS installation, it can contain DBCS characters (subject
to a maximum length of 64 bytes).

If characters are used that are not in the coded character set identifier
(CCSID) for this queue manager, they might be translated incorrectly if the
information is sent to another queue manager.

DURSUB
Specifies whether applications are permitted to make durable subscriptions
on this topic.
ASPARENT

Whether durable subscriptions can be made on this topic is based
on the setting of the closest parent administrative topic object in
the topic tree. This is the default supplied with WebSphere MQ,
but your installation might have changed it.

NO Durable subscriptions cannot be made on this topic.
YES Durable subscriptions can be made on this topic.

MDURMDL(string)
The name of the model queue to be used for durable subscriptions that
request that the queue manager manages the destination of its publications
(see Rules for naming WebSphere MQ objects). The maximum length is 48
characters.

If MDURMDL is blank, it operates in the same way as ASPARENT values
on other attributes. The name of the model queue to be used is based on
the closest parent administrative topic object in the topic tree with a value
set for MDURMDL.

The dynamic queue created from this model has a prefix of
SYSTEM.MANAGED.DURABLE

MNDURMDL(string)
The name of the model queue to be used for non-durable subscriptions
that request that the queue manager manages the destination of its
publications (see Rules for naming WebSphere MQ objects). The maximum
length is 48 characters.

If MNDURMDL is blank, it operates in the same way as ASPARENT
values on other attributes. The name of the model queue to be used is
based on the closest parent administrative topic object in the topic tree
with a value set for MNDURMDL.

The dynamic queue created from this model has a prefix of
SYSTEM.MANAGED.NDURABLE.

PUB Controls whether messages can be published to this topic.
ASPARENT

Whether messages can be published to the topic is based on the
setting of the closest parent administrative topic object in the topic
tree. This is the default supplied with WebSphere MQ, but your
installation might have changed it.

ENABLED
Messages can be published to the topic (by suitably authorized
applications).

WebSphere MQ queue manager commands

608 WebSphere MQ for z/VSE System Management Guide

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
||
||

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

||
|
|
|
|
|
|
|
|

DISABLED
Messages cannot be published to the topic.

SUB Controls whether applications are to be permitted to subscribe to this topic.
ASPARENT

Whether applications can subscribe to the topic is based on the
setting of the closest parent administrative topic object in the topic
tree. This is the default supplied with WebSphere MQ, but your
installation might have changed it.

ENABLED
Subscriptions can be made to the topic (by suitably authorized
applications).

DISABLED
Applications cannot subscribe to the topic.

TYPE(topic-type)
This is optional. If used it must follow immediately after the topic-name
parameter.

LOCAL
A local topic object (only valid value in z/VSE).

DEFINE TOPIC
Purpose

Use DEFINE TOPIC to define a new WebSphere MQ administrative topic node in a
topic tree, and set its parameters.

Synonym
DEF TOPIC

Syntax

�� DEFINE TOPIC(topic_name)
TYPE(LOCAL)

TOPICSTR(string) �

�
Topic attributes

��

Topic attributes:

(1)
DEFPRTY DEFPSIST(YES) DESCR(' ')

DESCR(string)
�

�
DURSUB(NO)

YES

MDURMDL(' ')

MDURMDL(q_name)

MNDURMDL(' ')

MNDURMDL(q_name)
�

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 609

|
|

||
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|

|

|

||||||||||||||||
|

|
|||||||||||||||

|

|

||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||
|

||

�
PMSGDLV(ASPARENT)

PMSGDLV(ALL)
ALLAVAIL
ALLDUR

(2)
PUB(ASPARENT)

PUB(ENABLED)
DISABLED

�

�
SUB(ASPARENT)

SUB(ENABLED)
DISABLED

Notes:

1 See Usage note 1.

2 See Usage note 2.

Usage notes
1. When an attribute has the value ASPARENT, the value is taken from the setting

of the first parent administrative node that is found in the topic tree.
Administered nodes are based on either locally defined topic objects or
remotely defined cluster topics when participating in a publish/subscribe
cluster. If the first parent topic object also has the value ASPARENT, the next
object is looked for. If every object that is found, when looking up the tree, uses
ASPARENT, the values are taken from the SYSTEM.BASE.TOPIC, if it exists. If
SYSTEM.BASE.TOPIC does not exist, the values are the same as the values
supplied with WebSphere MQ in the definitionof the SYSTEM.BASE.TOPIC.

2. When a publication is sent to multiple subscribers, the attributes used from the
topic object are used consistently for all subscribers that receive the publication.
For example, inhibiting publication on a topic is applied for the next
application MQPUT to the topic. A publication that is in progress to multiple
subscribers completes to all subscribers. This publication does not take note of
a change that has happened, part of the way through, to any attribute on the
topic.

Parameters

topic-name
Name of the WebSphere MQ topic definition (see Rules for naming
WebSphere MQ objects). The maximum length is 48 characters. This is
required.

The name must not be the same as any other topic definition currently
defined on this queue manager.

DEFPRTY(integer)
The default priority of messages published to the topic.

integer The value must be in 0 in z/VSE.

DEFPSIST
Specifies the message persistence to be used when applications specify the
MQPER_PERSISTENCE_AS_TOPIC_DEF option.

YES Messages on this queue survive a restart of the queue manager.

Only persistent messages are supported in z/VSE.

WebSphere MQ queue manager commands

610 WebSphere MQ for z/VSE System Management Guide

|||
|

|
||||||||||||||||||||||||

|

|

||

||

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

||

|
|
|

||

|

DESCR(string)
Plain-text comment. It provides descriptive information about the object
when an operator issues the DISPLAY TOPIC command.

It must contain only displayable characters. The maximum length is 64
characters. In a DBCS installation, it can contain DBCS characters (subject
to a maximum length of 64 bytes).

If characters are used that are not in the coded character set identifier
(CCSID) for this queue manager, they might be translated incorrectly if the
information is sent to another queue manager.

DURSUB
Specifies whether applications are permitted to make durable subscriptions
on this topic.
ASPARENT

Whether durable subscriptions can be made on this topic is based
on the setting of the closest parent administrative topic object in
the topic tree. This is the default supplied with WebSphere MQ,
but your installation might have changed it.

NO Durable subscriptions cannot be made on this topic.
YES Durable subscriptions can be made on this topic.

MDURMDL(string)
The name of the model queue to be used for durable subscriptions that
request that the queue manager manages the destination of its publications
(see Rules for naming WebSphere MQ objects). The maximum length is 48
characters.

If MDURMDL is blank, it operates in the same way as ASPARENT values
on other attributes. The name of the model queue to be used is based on
the closest parent administrative topic object in the topic tree with a value
set for MDURMDL.

The dynamic queue created from this model has a prefix of
SYSTEM.MANAGED.DURABLE

MNDURMDL(string)
The name of the model queue to be used for non-durable subscriptions
that request that the queue manager manages the destination of its
publications (see Rules for naming WebSphere MQ objects). The maximum
length is 48 characters.

If MNDURMDL is blank, it operates in the same way as ASPARENT
values on other attributes. The name of the model queue to be used is
based on the closest parent administrative topic object in the topic tree
with a value set for MNDURMDL.

The dynamic queue created from this model has a prefix of
SYSTEM.MANAGED.NDURABLE.

PUB Controls whether messages can be published to this topic.
ASPARENT

Whether messages can be published to the topic is based on the
setting of the closest parent administrative topic object in the topic
tree. This is the default supplied with WebSphere MQ, but your
installation might have changed it.

ENABLED
Messages can be published to the topic (by suitably authorized
applications).

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 611

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
||
||

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

||
|
|
|
|
|
|
|
|

DISABLED
Messages cannot be published to the topic.

SUB Controls whether applications are to be permitted to subscribe to this topic.
ASPARENT

Whether applications can subscribe to the topic is based on the
setting of the closest parent administrative topic object in the topic
tree. This is the default supplied with WebSphere MQ, but your
installation might have changed it.

ENABLED
Subscriptions can be made to the topic (by suitably authorized
applications).

DISABLED
Applications cannot subscribe to the topic.

TOPICSTR(string)
The topic string represented by this topic object definition. This parameter
is required and cannot contain the empty string.

The topic string must not be the same as any other topic string already
represented by a topic object definition.

The maximum length of the string is 256 characters in z/VSE.

TYPE(topic-type)
This is optional. If used it must follow immediately after the topic-name
parameter.

LOCAL
A local topic object (only valid value in z/VSE).

DELETE TOPIC
Purpose

Use DELETE TOPIC to delete a WebSphere MQ administrative topic node.

Synonym
None

Syntax

�� DELETE TOPIC(topic_name) ��

Parameters

topic_name
The name of the administrative topic object to be deleted. This parameter
is required. The name must be that of an existing administrative topic
object.

DISPLAY TOPIC
Purpose

Use the MQSC command DISPLAY TOPIC to display the attributes of one or more
WebSphere MQ topic objects of any type.

Synonym
DIS TOPIC

WebSphere MQ queue manager commands

612 WebSphere MQ for z/VSE System Management Guide

|
|

||
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|
|

|
|

|
|

|

|

|

|

|||||||||
|

|

|
|
|
|

|
|

|
|

|

|

Syntax

�� DISPLAY TOPIC(generic_topic_name)
WHERE(FilterCondition) ALL

�

�
TYPE(ALL)

TYPE(LOCAL) Requested attributes
��

Requested attributes:

�

,

ALTDATE
ALTTIME
DEFPRTY
DEFPSIST
DEFPRESP
DESCR
DURSUB
MDURMDL
MNDURMDL
PMGSDLV
PUB
SUB
TOPICSTR
TYPE

Usage notes

The TOPICSTR parameter might contain characters that cannot be translated into
printable characters when the command output is displayed.

Parameters

You must specify the name of the topic definition you want to display. This can be
a specific topic name or a generic topic name. By using a generic topic name, you
can display either:
v All topic definitions
v One or more topic definitions that match the specified name

generic-topic-name
The name of the administrative topic definition to be displayed (see Rules
for naming WebSphere MQ objects). A trailing asterisk (*) matches all
administrative topic objects with the specified stem followed by zero or
more characters. An asterisk (*) on its own specifies all administrative topic
objects.

WHERE
See “WHERE” on page 511 for information about this parameter.

ALL Specify this to display all the attributes. If this parameter is specified, any
attributes that are requested specifically have no effect; all attributes are
still displayed.

This is the default if you do not specify a generic name, and do not request
any specific attributes.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 613

|

|||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|

|

||

|

|

|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

||
|
|

|
|

TYPE Specifies the type of topics that you want to be displayed. Values are:
ALL Display all topic types (same as LOCAL in z/VSE).
LOCAL

Display locally defined topics.

Requested parameters

Specify one or more parameters that define the data to be displayed. The
parameters can be specified in any order, but do not specify the same parameter
more than once.

ALTDATE
The date on which the definition or information was last altered, in the
form yyyy-mm-dd.

ALTTIME
The time at which the definition or information was last altered, in the
form hh.mm.ss.

DEFPRTY
Default priority of the messages published to this topic.

DEFPSIST
Default persistence of messages published to this topic.

DEFPRESP
Default put response for this topic. This attribute defines the behavior that
should be used by applications when the put response type in the
MQPMO options has been set to MQPMO_RESPONSE_AS_TOPIC_DEF.

DESCR
Description of this administrative topic object.

DURSUB
Whether the topic permits durable subscriptions to be made.

MDURMDL
The name of the model queue for durable managed subscriptions.

MNDURMDL
The name of the model queue for non-durable managed subscriptions.

PMSGDLV
The delivery mechanism for persistent messages.

PUB Whether the topic is enabled for publication.

SUB Whether the topic is enabled for subscription.

TOPICSTR
The topic string.

DISPLAY TPSTATUS
Purpose

Use the MQSC command DISPLAY TPSTATUS to display the status of one or more
topic nodes in a topic tree.

Synonym
DIS TPS

WebSphere MQ queue manager commands

614 WebSphere MQ for z/VSE System Management Guide

||
||
|
|

|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

||

||

|
|

|
|

|
|

|

|

Syntax

�� DISPLAY TPSTATUS(topicstr)
WHERE(FilterCondition) ALL

�

�
TYPE(TOPIC)

TYPE(SUB)
TYPE(PUB)

Topic status Sub status
�

�
Pub status

��

Topic status:

�

,

ADMIN
DEFPRESP
DEFPRTY
DEFPSIST
DURSUB
MDURMDL
MNDURMDL
PMSGDLV
PUB
PUBCOUNT
RETAINED
SUB
SUBCOUNT

Sub status:

�

,

ACTCONN
DURABLE
LMSGDATE
LMSGTIME
NUMMSGS
RESMDATE
RESMTIME
SUBID
SUBTYPE
SUBUSER

Pub status:

�

,

ACTCONN
LPUBDATE
LPUBTIME
NUMPUBS

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 615

|

|||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|

|||

|

|

||

|

|

||||||||||||||||||||||||||||

|

Parameters

The DISPLAY TPSTATUS (DIS TPS) command displays the status of one or more
topic nodes in a topic tree, as specified by the parameters supplied.

The DISPLAY TPSTATUS command requires a topic string value to determine
which topic nodes the command returns.

generic-topic-name
The name of the administrative topic definition to be displayed (see Rules
for naming WebSphere MQ objects). A trailing asterisk (*) matches all
administrative topic objects with the specified stem followed by zero or
more characters. An asterisk (*) on its own specifies all administrative topic
objects.

WHERE
See “WHERE” on page 511 for information about this parameter.

ALL Use this parameter to display all attributes.

If this parameter is specified, any attributes that you request specifically
have no effect; the command displays all attributes.

This is the default parameter if you do not specify a generic name, and do
not request any specific attributes.

TYPE
TOPIC

The command displays status information relating to each topic
node, which is the default if you do not provide a TYPE parameter.

PUB The command displays status information relating to applications
that have topic nodes open for publish.

SUB The command displays status information relating to applications
that subscribe to the topic node or nodes. Note that the subscribers
that the command returns are not necessarily the subscribers that
would receive a message published to this topic node.

Topic status parameters

Topic status parameters define the data that the command displays. You can
specify these parameters in any order but must not specify the same parameter
more than once.

ADMIN
If the topic node is an admin-node, the command displays the associated
topic object name containing the node configuration. If the field is not an
admin-node the command displays a blank.

DEFPRTY
Displays the resolved default priority of messages published to the topic
(always 0 in z/VSE)

DURSUB
Displays the resolved value that shows whether applications can make
durable subscriptions. The value can be YES or NO.

MDURMDL
Displays the resolved value of the name of the model queue to be used for
durable subscriptions.

WebSphere MQ queue manager commands

616 WebSphere MQ for z/VSE System Management Guide

|

|
|

|
|

|
|
|
|
|
|

|
|

||

|
|

|
|

|
|
|
|
||
|
||
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

MNDURMDL
Displays the resolved value of the name of the model queue used for
non-durable subscriptions

PMSGDLV
Displays the resolved value for the delivery mechanism for persistent
messages published to this topic. The value can be ALL, ALLDUR, or
ALLAVAIL, but not ASPARENT.

PUB Displays the resolved value that shows whether publications are allowed
for this topic, if there is no ASPARENT response value. The value can be
ENABLED or DISABLED.

PUBCOUNT
Displays the number of handles that are open for publish on this topic
node.

RETAINED
Displays whether there is a retained publication associated with this topic.
The value can be YES or NO.

SUB Displays the resolved value that shows whether subscriptions are allowed
for this topic, if there is no ASPARENT response value. The values can be
ENABLED or DISABLED.

SUBCOUNT
Displays the number of subscribers to this topic node, including durable
subscribers that are not currently connected.

Sub status parameters

Sub status parameters define the data that the command displays. You can specify
these parameters in any order but must not specify the same parameter more than
once.

ACTCONN
Detects local publications, returning the currently active ConnectionId
(CONNID) that opened this subscription.

DURABLE
Indicates whether a durable subscription is not deleted when the creating
application closes its subscription handle, and persists over queue manager
restart. The value can be YES or NO.

LMSGDATE
The date on which an MQPUT call last sent a message to this subscription.
The MQPUT call updates the date field only when the call successfully
puts a message to the destination specified by this subscription. Note that
an MQSUBRQ call causes an update to this value.

LMSGTIME
The time at which an MQPUT call last sent a message to this subscription.
The MQPUT call updates the time field only when the call successfully
puts a message to the destination specified by this subscription. Note that
an MQSUBRQ call causes an update to this value.

NUMMSGS
Number of messages put to the destination specified by this subscription.
Note that an MQSUBRQ call causes an update to this value.

RESMDATE
Date of the most recent MQSUB call that connected to this subscription.

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 617

|
|
|

|
|
|
|

||
|
|

|
|
|

|
|
|

||
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

RESMTIME
Time of the most recent MQSUB call that connected to this subscription.

SUBID
An all time unique identifier for this subscription, assigned by the queue
manager. The format of SUBID matches that of a CorrelId. For durable
subscriptions, the command returns the SUBID even if the subscriber is not
currently connected to the queue manager.

SUBTYPE
The type of subscription, indicating how it was created. The value can be
ADMIN, or API.

SUBUSER
The user ID that owns this subscription, which can be either the user ID
associated with the creator of the subscription or, if subscription takeover
is permitted, the user ID that last took over the subscription.

Pub status parameters

Pub status parameters define the data that the command displays. You can specify
these parameters in any order but must not specify the same parameter more than
once.

ACTCONN
The currently active ConnectionId (CONNID) associated with the handle
that has this topic node open for publish.

LPUBDATE
The date on which this publisher last sent a message.

LPUBTIME
The time at which this publisher last sent a message.

NUMPUBS
Number of publishes by this publisher. Note that this value records the
actual number of publishes, not the total number of messages published to
all subscribers.

CLEAR TOPICSTR
Purpose

Use the MQSC command CLEAR TOPICSTR to clear the retained message which
is stored for the specified topic string.

Synonym
None

Syntax

�� CLEAR TOPICSTR(topic_string) CLRTYPE(RETAINED)
SCOPE(LOCAL)

��

WebSphere MQ queue manager commands

618 WebSphere MQ for z/VSE System Management Guide

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|

|

|

||||||||||||||||||

|

Usage notes

If the topic string specified has no retained message the command completes
successfully. You can find out whether a topic string has a retained message by
using the DISPLAY TPSTATUS command. The RETAINED field shows whether
there is a retained message.

The topic-string input parameter on this command must match the topic you want
to act on. You are advised to keep the character strings in your topic strings as
characters that can be used from location issuing the command. If you issue
commands using MQSC, there are fewer characters available to you than if you are
using an application submitting PCF messages, such as the WebSphere MQ
Explorer.

Parameters

You must specify which topic string you want to remove the retained publication
from.
topic_string

The topic string to be cleared. This string can represent several topics to be
cleared by using wildcard character #.

In z/VSE only a trailing wildcard is allowed. This selects any child topics.

For example, specifying TOPICSTR(’/a/bb/#’) clears the following topics:
/a/bb
/a/bb/z
/a/bb/c/z
/a/bb/c/y/z

CLRTYPE
This is a mandatory parameter. The value must be:
RETAINED

Remove the retained publication from the specified topic string.
SCOPE

The scope of the deletion of retained messages. The value can be:
LOCAL

The retained message is removed from the specified topic string at
the local queue manager only. This is the default value.

WebSphere MQ meta commands
The MQPMQSC utility program also supports the following meta commands:
v SDEFS
v COMMAND

The SDEFS command
The SDEFS command can be used to produce a set of DEFINE commands for
locally defined objects. If a DLBL with filename MQSDEFS for a sequential file is
specified then the output will be written to it, otherwise the output is directed to
SYSLST.

For example:
// DLBL MQSDEFS,’sam.file’,0,VSAM,CAT=VSEMQUC,RECSIZE=80, X

RECORDS=(250,100),DISP=(NEW,KEEP,DELETE)
// EXEC MQPMQSC,SIZE=MQPMQSC
SDEFS OBJECT(QLOCAL)
/*

WebSphere MQ queue manager commands

Chapter 9. WebSphere MQ commands 619

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

In this example, the SDEFS command, with OBJECT(QLOCAL), generates one
DEFINE statement for each local queue defined to the local queue manager, and
writes the statements to the MQSDEFS file.

Multiple SDEFS in the SYSIPT stream for the MQPMQSC utility results in
generated statements being appended sequentially to the MQSDEFS file.

The SDEFS command can be used to generate define commands for the following
OBJECTs:

OBJECT(QMGR)
OBJECT(QUEUE)
OBJECT(QLOCAL)
OBJECT(QMODEL)
OBJECT(QALIAS)
OBJECT(QREMOTE)
OBJECT(CHANNEL)
OBJECT (NAMELIST)

In the case of OBJECT(QMGR), an ALTER command is generated. The
OBJECT(QUEUE) option generates DEFINE commands for all queue types.

The commands generated by the SDEFS command can be used as input to the
MQPMQSC utility to define the same objects.

Note: DEFINE commands are not generated for any local queues that can be
identified as dynamic.

The COMMAND command
The COMMAND command tells the MQPMQSC utility to read its input (MQSC
commands) from a SAM file whose filename is specified in the DDNAME
parameter.

For example:
// DLBL filenam,’sam.file’,0,VSAM,CAT=VSEMQUC,RECSIZE=80, X

RECORDS=(250,100),DISP=(OLD,KEEP,DELETE)
// EXEC MQPMQSC,SIZE=MQPMQSC
COMMAND DDNAME(filenam)
/*

You can specify multiple COMMAND statements in the SYSIPT stream. In
addition, you can mix MQSC commands and COMMAND statements in the
SYSIPT stream.

For example:
// EXEC MQPMQSC,SIZE=MQPMQSC
ALTER QMGR CCSID(1047)
COMMAND DDNAME(filenm1)
COMMAND DDNAME(filenm2)
DISPLAY QMGR CCSID
/*

The SYSIPT stream is processed sequentially.

Note: DEFINE and ALTER commands for queues may fail if the attribute values
for the queue fall outside the limitations of the queue manager.

WebSphere MQ meta commands

620 WebSphere MQ for z/VSE System Management Guide

You should not specify SDEFS and COMMAND for the same file in the same job
step since the SDEFS file is not closed until end of the job step.

WebSphere MQ meta commands

Chapter 9. WebSphere MQ commands 621

622 WebSphere MQ for z/VSE System Management Guide

Chapter 10. WebSphere MQ clients

This chapter describes the WebSphere MQ for z/VSE client/server environment,
including an overview of the WebSphere MQ client, installation and administration
instructions, and application programming information relevant to client
applications.

Introduction to WebSphere MQ clients
This section provides the following information:
v WebSphere MQ client overview.
v Purpose of WebSphere MQ clients.

WebSphere MQ client overview
An WebSphere MQ client is part of the WebSphere MQ product that can be
installed on its own, on a separate machine from the base product and server.

You can run an WebSphere MQ application on an WebSphere MQ client and it can
interact with one or more WebSphere MQ servers and connect to their queue
managers by means of a communications protocol. The servers to which the client
connects might or might not be part of a cluster.

The WebSphere MQ MQI is available to applications running on the client
platform; the queues and other WebSphere MQ objects are held on a queue
manager that you have installed on a server machine.

An application that you want to run in the WebSphere MQ client environment
must first be linked with the relevant client library. When the application issues an
MQI call, the WebSphere MQ client directs the request to a queue manager, where
it is processed and from where a reply is sent back to the WebSphere MQ client.

The link between the application and the WebSphere MQ client is established
dynamically at runtime.

An application running in the WebSphere MQ client environment runs in
synchronous mode because there must be an active connection between the client
and server machines.

The connection is made by an application issuing an MQCONN or MQCONNX
call. Clients and servers communicate through MQI channels. When the call
succeeds, the MQI channel remains connected until the application issues a
MQDISC call. This is the case for every queue manager that an application needs
to connect to.

You can also run an application in the WebSphere MQ client environment when
your machine also has a queue manager installed. In this situation, you have the
choice of linking to the queue manager libraries or the client libraries, but
remember that if you link to the client libraries, you still need to define the
channel connections. This can be useful during the development phase of an
application. You can test your program on your own machine, with no dependency
on others, and be confident that it will still work when you move it to a full
WebSphere MQ environment.

© Copyright IBM Corp. 2008, 2013 623

The client MQI must be called by an LE-conforming program, i.e. one compiled
with C for z/VSE, COBOL for z/VSE, or PLI for z/VSE. This requirement means
client applications must run in a z/VSE environment that supports Language
Environment for z/VSE.

For applications that do not run in an environment that supports Language
Environment for z/VSE, this WebSphere MQ client for z/VSE includes a client
Bridge facility. The client Bridge includes a long-running CICS transaction that
accepts connections from applications using the Bridge MQI (provided with the
client). Connections to the Bridge are established using the MQCONNX MQI call.
The Bridge transaction co-ordinates "proxy" transactions in CICS that issue client
MQI calls on behalf of the non-LE client application.

Purpose of WebSphere MQ clients
Using WebSphere MQ clients is an efficient way of implementing WebSphere MQ
messaging and queuing. You can have an application that uses the MQI running
on one machine and the queue manager running on a different machine (either
physical or virtual).

The benefits of doing this are:
v There is no need for a full WebSphere MQ implementation on the client

machine.
v Hardware requirements on the client system are reduced.
v System administration requirements are reduced.
v An WebSphere MQ application running on a client can connect to multiple

queue managers on different systems.

Installing WebSphere MQ clients
This section provides the following information:
v Prerequisites for the WebSphere MQ client.
v Installing WebSphere MQ client components.
v Configuring communication links.
v Verifying the installation.
v WebSphere MQ for z/VSE client differences.

Prerequisites for the WebSphere MQ client
The WebSphere MQ client environment is incomplete without at least one
WebSphere MQ server product running on an accessible system. The WebSphere
MQ server can be running on the same system as the client or on a remote system.
The server can run on any MQ platform that supports MQ client connections.

In addition, the WebSphere MQ client for z/VSE has the following software
prerequisite:
v z/VSE 3.1, or later.
v Language Environment for z/VSE 1.4.4 or later with:

– PK05874/UK03996 for 1.4.4
v TCP/IP for VSE 1.5F (or equivalent) or later.

The WebSphere MQ client for z/VSE functions in the z/VSE batch environment as
well as:
v CICS for z/VSE 2.3
v CICS Transaction Server 1.1.1 (or later)

WebSphere MQ client overview

624 WebSphere MQ for z/VSE System Management Guide

Installing WebSphere MQ client components
The WebSphere MQ client for z/VSE is available as an IBM SupportPAC (MQC5),
which can be downloaded from the IBM web site.

The MQC5 SupportPac is provided in a single ZIP file, MQC5.ZIP. Once the
SupportPac has been downloaded, to install the WebSphere MQ client for z/VSE,
carry out the following instructions:
1. Unzip the MQC5.ZIP file to a (new) directory of your choice (which can be

temporary); for example, 'mqc5'.
Unzipping the MQC5.ZIP file should create or replace the following files:

MQICLIB.JCL
MQICINC.JCL
MQICSMP.JCL
MQICBRG.JCL
README.TXT
LICENSES*.TXT

2. Copy the four .JCL files (MQICLIB, MQICINC, MQICSMP and MQICBRG) to
your z/VSE system. These are binary files, so if you are using FTP, for example,
you should specify 'binary' rather than 'ascii' to avoid ASCII to EBCDIC
translation.

3. Modify the JCL files as necessary for your system, for example, add POWER
job cards as relevant. Each JCL file identifies a target VSE sublibrary for
installation via a // SETPARM card. You can modify the SETPARM card to
identify your target installation sublibrary, or specify the SETPARM value at job
run time.

Note: If you already have the WebSphere MQ for z/VSE product installed, you
should not install the MQ Client for z/VSE SupportPac into the same
sublibrary. Choose a different sublibrary. The default installation sublibrary is
PRD2.MQICVSE.

4. Submit the MQICLIB job. This job creates your installation sublibrary if it does
not already exist, so it should be run before you run the other JCL files. It also
catalogs and link-edit WebSphere MQ client for z/VSE object and phase files.
Jobs that run your MQ client applications must include the installation
sublibrary in their LIBDEF SEARCH path. If you are running MQ client
applications in CICS, the LIBDEF SEARCH path of your CICS startup JCL
should include the installation sublibrary.

5. Submit the MQICINC job. This job catalog3 the copybooks and header files
needed to write your own MQ client applications. Copybooks and header files
are available for C for z/VSE, COBOL for z/VSE and PLI for z/VSE.
Jobs that compile your MQ client applications must include the installation
sublibrary in their LIBDEF SEARCH path.

6. Submit the MQICSMP job (optional). This job catalogs sample MQ client source
code programs. Samples are provided for C for z/VSE, COBOL for z/VSE and
PLI for z/VSE, and include the following:

COBOL/VSE Samples
MQICGETC

Get a message from a queue.
MQICPUTC

Put a message on a queue.
MQICINQC

Inquire on a queue's attributes.

Installing WebSphere MQ client components

Chapter 10. WebSphere MQ clients 625

MQICSETC
Set a queue's attributes.

C/VSE Samples
MQICCNXX

Connect to two queue managers simultaneously.
MQICGETX

Get a message from a queue.
MQICPUTX

Put a message on a queue.
MQICINQX

Inquire on a queue's attributes.
MQICSETZ

Set a queue's attributes.

PLI/VSE Samples
MQICGETP

Get a message from a queue.
MQICPUTP

Put a message on a queue.
7. Submit the MQICBRG job (optional). This job creates components of the

WebSphere MQ client for z/VSE bridge in your installation sublibrary. The
client bridge provides a means to run non-LE client applications in the z/VSE
environment. Such applications issue MQI calls like normal client programs,
but the MQI calls are performed by 'partner' transactions in CICS, managed by
the bridge.

To uninstall the WebSphere MQ client for z/VSE, delete the installation sublibrary.

Configuring communication links
The WebSphere MQ client uses a communication link between the client
application and the MQ server. In WebSphere MQ, these communication links are
called channels. The channels used to connect WebSphere MQ clients to servers are
called MQI channels.

You set up channel definitions at each end of your link so that your WebSphere
MQ application on the WebSphere MQ client can communicate with the queue
manager on the server.

The WebSphere MQ client for z/VSE supports TCP/IP channels only.

WebSphere MQ server configuration
The server can run in any environment that supports WebSphere MQ and client
connections, for example, z/VSE, AIX®, Linux, z/OS.

Configuration for the server environment can be specific, so it is necessary to refer
to relevant WebSphere MQ documentation for the specific platform that hosts the
WebSphere MQ server.

Generally, the server environment requires:

An active queue manager
The server queue manager must be active and available for MQI requests.
This is because the server performs the client's MQI requests as a proxy,
and return the results of the client MQI requests to the client application.

Installing WebSphere MQ client components

626 WebSphere MQ for z/VSE System Management Guide

An active TCP/IP subsystem
Since the WebSphere MQ client for z/VSE only supports TCP/IP channels,
a TCP/IP subsystem must be active and available on the server system. If
not, the client is not able to establish a connection with the MQ server.

An active MQ listener task
The MQ listener task waits for and accepts client connection requests. The
connection, and subsequent client conversation, is handled by the MQ
server. The MQ listener is bound to an IP port number (port 1414 by
default). The port number is specified by the client when it attempts to
establish a connection to the MQ server. If an MQ listener task is not
active, the client is not able to establish a connection with the MQ server.

A server-connection channel definition
A server-connection (SVRCONN) channel definition provides information
and parameters that describe and control the client/server connection. A
valid SVRCONN channel must be defined on the server queue manager.
The client application names this channel and, if required, provide a
matching client-connection (CLNTCONN) channel definition when it
attempts to establish a connection with the MQ server.

To define a server-connection channel on WebSphere MQ for z/VSE, refer to
“Channel definitions” on page 112.

WebSphere MQ client configuration
The WebSphere MQ client environment requires:

An active TCP/IP subsystem
Like the server, the WebSphere MQ client for z/VSE requires an active
TCP/IP subsystem. The TCP/IP subsystem must be active and available in
the client environment. If not, the client is not able to establish a
connection with the MQ server.

A client-connection channel definition
A client-connection (CLNTCONN) channel definition provides information
and parameters that describe and control the client/server connection. The
name of the CLNTCONN channel must match the name of the SVRCONN
channel defined on the server queue manager. There are two ways an
WebSphere MQ client can provide the client-connection channel definition:
v Using the MQSERVER environment variable in conjunction with the

MQCONN MQI call.
v Using the MQCNO and MQCD data structures in conjunction with the

MQCONNX MQI call.

Each of these approaches is described in this chapter. Both methods
provide details of the server's IP address and the MQ listener's port
number. This way, the MQCONN or MQCONNX call can establish a client
connection with an intended MQ Server.

Verifying the installation
You can verify your WebSphere MQ client/server environment using the supplied
sample programs. These verify that your installation has been completed
successfully and that the communication link is working.

The WebSphere MQ client environment cannot be verified until the client has been
installed and a server environment has been configured. These tasks are described
in the preceding sections.

WebSphere MQ server configuration

Chapter 10. WebSphere MQ clients 627

To verify the WebSphere MQ client/server environment, it is necessary to perform
these tasks:
1. Build the sample programs

Any of the supplied samples can be used to verifying the WebSphere MQ
client/server environment. A sample that puts a message, and another that gets
a message, verify the core MQI calls: MQCONN, MQOPEN, MQPUT, MQGET,
MQCLOSE and MQDISC. For this reason, the COBOL samples MQICPUTC
and MQICGETC are recommended. Instructions on how to build these samples
are provided later in this chapter.

2. Run the sample programs

Once the sample programs have been built, run the samples as batch jobs to
verify the WebSphere MQ client/server environment. If the samples
MQICPUTC and MQICGETC are used, you can expect the messages put by
MQICPUTC to be retrieved and displayed by MQICGETC. Instructions on how
to run these samples are provided later in this chapter.

WebSphere MQ for z/VSE client differences
WebSphere MQ client function is documented in the WebSphere MQ Clients
manual (GC34-6590). This manual described function for Version 6 MQ clients,
however, the function is generally the same for z/VSE MQ clients, with the
following additional points:
v The WebSphere MQ client for z/VSE does not support channel tables. Instead,

client applications should use the MQSERVER environment variable to identify a
channel name, or use the MQCONNX MQI call and specify client channel
information via the MQCNO and MQCD data structures.

v The WebSphere MQ client for z/VSE does not support SSL enabled channels.
For security, client channels can use security, send and receive exits.

v The WebSphere MQ client for z/VSE supports TCP/IP channels only.
v The WebSphere MQ client for z/VSE uses the MQDATA environment variable to

identify a target for client log messages (e.g. client application error messages).
The MQDATA environment variable, if used in batch, should name a DLBL of a
VSAM managed SAM file, or an ESDS. Messages lengths are variable up to 100
characters. If used in CICS, the MQDATA variable should name a CICS transient
data queue. If the MQDATA variable is not set, client log messages are
discarded.

v The WebSphere MQ client for z/VSE uses the MQTRACE environment variable
to identify a target for diagnostic trace messages.
The MQTRACE environment variable, if used in batch, should name a DLBL of
a VSAM managed SAM file, or an ESDS. Messages lengths are variable up to 80
characters. If used in CICS, the MQTRACE variable should name a CICS
transient data queue. If the MQTRACE variable is not set, diagnostic trace
messages are discarded.
Client tracing can introduce significant processing overhead for client
applications, and should not be used except in conjunction with IBM service for
problem resolution.

v The WebSphere MQ client for z/VSE supports the following environment
variables:

MQCCSID
MQDATA
MQSERVER
MQTRACE
MQ_USER_ID

Verifying the installation

628 WebSphere MQ for z/VSE System Management Guide

MQ_PASSWORD
These can be set using the setenv() C run-time call. The setenv() call is only
available to C language programs. To avoid this limitation, the WebSphere MQ
Client for z/VSE provides two additional calls as follows:
void MQENTRY MQSETENV (PMQCHAR Name, /* Envir var name */

PMQCHAR Value, /* Envir var value */
MQLONG Length, /* Length of var value */
PMQLONG CompCode, /* Completion code */
PMQLONG Reason); /* Reason code */

and
void MQENTRY MQGETENV (PMQCHAR Name, /* Envir var name */

PMQCHAR Value, /* Envir var value */
PMQLONG Length, /* Length of var value */
PMQLONG CompCode, /* Completion code */
PMQLONG Reason); /* Reason code */

These calls use OS linkage, and can be called, for example, as follows:
CALL ’MQSETENV’ USING WS-VAR-NAME

WS-VAR-VALUE
WS-VAL-LEN
WS-COMPCODE
WS-REASON.

In addition, MQ client environment variables can be set using the Language
Environment for z/VSE run-time option ENVAR. In batch, in conjunction with
ENVAR, you can use the LE variable _CEE_ENVFILE to set one or more
environment variables in a single file. The _CEE_ENVFILE variable is not
supported in CICS.

v When building client applications, for CICS or batch, you must prelink your
application with the WebSphere MQ Client for z/VSE MQI object file,
MQICVSE.OBJ. For example:
// OPTION CATAL

PHASE YOURPROG,*
INCLUDE YOURPROG
INCLUDE MQICVSE

// EXEC EDCPRLK

Note: MQ client for z/VSE applications must be prelinked.
The MQICVSE.OBJ file resides in the client installation sublibrary. It contains an
entry point for each of the support MQI calls. These include:

MQCONN
MQCONNX
MQDISC
MQOPEN
MQCLOSE
MQPUT
MQPUT1
MQGET
MQINQ
MQSET
MQCMIT
MQBACK

Note: WebSphere for z/VSE client does not support message properties.
These MQI calls, at run time, dynamically load and call entry points in the
WebSphere MQ client for z/VSE functional phase, MQICVSEP.PHASE. The
MQICVSEP phase resides in the client installation sublibrary, and is flagged
SVA-eligable.

WebSphere MQ for z/VSE client differences

Chapter 10. WebSphere MQ clients 629

v When using the MQCONNX client MQI call, the WebSphere MQ client for VSE
supports up to version 2 MQCNO data structures, and up to version 4 MQCD
data structures.

System administration for clients
This section describes system administration for WebSphere MQ clients, specifically
in regard to:
v WebSphere MQ client security.
v Client and server connection channels.
v WebSphere MQ client environment variables.

WebSphere MQ client security
It is important to consider WebSphere MQ client security, so that the client
applications do not have unrestricted access to resources on the server.

There are two aspects to security between a client application and its queue
manager server:
v Authentication
v Access control

Authentication
Authentication deals with the identity of the client user. The identify of the client
user can be determined in two ways:

Environment variables
Environment variables that identify the client user include:
v MQ_USER_ID
v MQ_PASSWORD

These environment variables can be set in the WebSphere MQ client
application environment. Their values are passed to the server which can
use them to authenticate the client user, or pass them to a channel security
exit to authenticate the user.

Channel security exits
The channel security exits for client to server communication can work in
the same way as for server to server communication. A pair of exits
provide mutual authentication of both the client and the server. A full
description is given in the WebSphere MQ Intercommunication manual.

In client to server communication, the channel security exits do not have to
operate as a pair. The exit on the WebSphere MQ client side can be
omitted. In this case the user ID is placed in the channel descriptor
(MQCD) and the security exit can alter it, if required.

Access control
Access control deals with access permissions to WebSphere MQ objects for an
authenticated client user.

Access control in WebSphere MQ is based upon the user identifier associated with
the process making MQI calls. For WebSphere MQ clients, the process that issues
the MQI calls is the server MCA.

The user identifier used by the server MCA is that contained in the
MCAUserIdentifier field of the MQCD. The contents of MCAUserIdentifier are
determined by:

WebSphere MQ for z/VSE client differences

630 WebSphere MQ for z/VSE System Management Guide

v Any values set by security exits.
v The MQ_USER_ID environment variable from the client.
v The MCAUSER (in the server-connection channel definition).

Depending upon the combination of settings of the above, MCAUserIdentifier is
set to the appropriate value. If a server security exit is provided,
MCAUserIdentifier can be set by the exit. Otherwise MCAUserIdentifier is
determined as follows:
v If the server-connection channel MCAUSER attribute is nonblank, this value is

used.
v If the server-connection channel MCAUSER attribute is blank, the user ID

received from the client is used. However, for the clients that use the
MQ_USER_ID environment variable to supply the user ID, it is possible that no
environment variable is set. In this case, the user ID that started the server
channel is used.

If any server-connection channel definitions exist that have the MCAUSER
attribute set to blank, clients can use this channel definition to connect to the
queue manager with access authority determined by the user ID supplied by the
client. This might be a security exposure if the system on which the queue
manager is running allows unauthorized network connections. The WebSphere MQ
default server-connection channel (SYSTEM.DEF.SVRCONN) has the MCAUSER
attribute set to blank. To prevent unauthorized access, update the MCAUSER
attribute of the default definition with a user ID that has no access to WebSphere
MQ objects.

Client and server connection channels
A channel is a logical communication link between an WebSphere MQ client and
an WebSphere MQ server, or between two WebSphere MQ servers. A channel has
two definitions: one at the sender end of the connection, and one at the receiver
end.

The same channel name must be used at each end of the connection, and the
channel type used must be compatible.

Types of channels
There are two categories of channel in WebSphere MQ, with different channel
types within these categories:

Message channels
A message channel is a one-way link. It connects two queue managers via
message channel agents (MCAs). Its purpose is to transfer messages from
one queue manager to another.

Message channels are not required by the client server environment.

More information on message channels can be found in the WebSphere
MQ Intercommunication manual.

MQI channels
An MQI channel connects an WebSphere MQ client to a queue manager on
a server machine, and is established when you issue an MQCONN or
MQCONNX call. It is a two-way link and is used for the transfer of MQI
calls and responses only, including MQPUT calls that contain message
data.

An MQI channel can be used to connect a client to a single queue manager,
or to a queue manager that is part of a queue-sharing group.

Access control

Chapter 10. WebSphere MQ clients 631

There are two channel types for MQI channel definitions. They define the
bi-directional MQI channel.

Client-connection channel
This type is for the WebSphere MQ client.

Server-connection channel
This type is for the server running the queue manager, with which
the WebSphere MQ application, running in an WebSphere MQ
client environment, communicates.

Defining MQI channels
To create a new channel, you have to create two channel definitions, one for each
end of the connection, using the same channel name and compatible channel types.
In this case, the channel types are server-connection and client-connection.

For the server-connection channel, the WebSphere MQ Version 5.1 (and later)
products include a feature that can automatically create a channel definition on the
server if one does not exist. If an inbound attach request is received from a client
and an appropriate server-connection definition cannot be found in the channel
definition table, WebSphere MQ creates a definition automatically and adds it to
the channel definition table.

Automatic definitions are based on two default definitions supplied with
WebSphere MQ: SYSTEM.AUTO.RECEIVER and SYSTEM.AUTO.SVRCONN. You
enable automatic definition of server-connection definitions by updating the queue
manager object using MQSC ALTER QMGR (or the PCF command Change Queue
Manager).

For more information about the automatic creation of channel definitions, see the
WebSphere MQ Intercommunication manual.

Where the server does not automatically define channels, the server-connection
channel must be defined manually using MQSC DEFINE CHANNEL (or the PCF
command Create Channel).

The client-connection channel cannot be automatically defined or predefined in the
WebSphere MQ client for z/VSE environment. The client channel must be named
by the MQSERVER environment variable, or described in the MQCD data structure
in conjunction with the MQCONNX MQI call.

Client channel definition table
The WebSphere MQ client for z/VSE does not support the channel definition table
available in some other MQ client environments. Consequently it is not possible to
predefine client-connection channels on z/VSE.

Instead, as already mentioned, the client channel must be named by the
MQSERVER environment variable, or described in the MQCD data structure in
conjunction with the MQCONNX MQI call.

Channel exits
The channel exits available to the WebSphere MQ client for z/VSE are:
v Send exit
v Receive exit
v Security exit

Types of channels

632 WebSphere MQ for z/VSE System Management Guide

These exits are available at both the client and the server end of the channel. Exits
are not available to your application if you are using the MQSERVER environment
variable. Exits are explained in the WebSphere MQ Intercommunication manual.

The send and receive exit work together. There are several possible ways in which
you can use them:
v Splitting and reassembling a message.
v Compressing and decompressing data in a message.
v Encrypting and decrypting user data.
v Journaling each message sent and received.

You can use the security exit to ensure that the WebSphere MQ client and server
machines are correctly identified, as well as to control access to each machine.

Exit programs in the WebSphere MQ client for z/VSE environment are found via
the LIBDEF SEARCH specification.

WebSphere MQ client environment variables
The function of MQI calls when issued by WebSphere MQ client applications can
be affected by environment variables and their values.

The WebSphere MQ client environment variables are:

MQCCSID
This variable specifies the coded character set number to be used and
overrides the z/VSE default, 500.

MQDATA
This variable identifies a target for client log messages (e.g. client
application error messages).

The MQDATA environment variable, if used in batch, should name a DLBL
of a VSAM-managed SAM file, or an ESDS. Messages lengths are variable
up to 100 characters. If used in CICS, the MQDATA variable should name
a CICS transient data queue. If the MQDATA variable is not set, client log
messages are discarded.

MQSERVER
This variable is used to define a minimal channel. It specifies the location
of the WebSphere MQ server and the communication method to be used.
The format of the value for this variable is:
MQSERVER=ChannelName/TCP/ConnectionName

Note that ConnectionName must be a fully-qualified network name; for
example, hostname(port), or 1.11.1.11(1414). ChannelName cannot contain
the forward slash (/) character because it is used to separate the channel
name, transport type, and connection name. For z/VSE clients, the
transport type must be "TCP".

When the MQSERVER environment variable is used to define a client
channel, a maximum message length (MAXMSGL) of 4 MB is used, so
larger messages cannot flow across this channel. For larger messages, a
client-connection channel must be defined using the MQCD data structure
in conjunction with the MQCONNX MQI call, with MAXMSGL set to a
larger figure.

MQTRACE
This variable identifies a target for diagnostic trace messages.

Channel exits

Chapter 10. WebSphere MQ clients 633

The MQTRACE environment variable, if used in batch, should name a
DLBL of a VSAM-managed SAM file, or an ESDS. Messages lengths are
variable up to 80 characters. If used in CICS, the MQTRACE variable
should name a CICS transient data queue. If the MQTRACE variable is not
set, diagnostic trace messages are discarded.

Client tracing can introduce significant processing overhead for client
applications, and should not be used except in conjunction with IBM
service for problem resolution.

MQ_USER_ID
This variable specifies the user ID of the client.

MQ_PASSWORD
This variable specifies the password of the client.

Application programming for clients
This section describes the differences between running applications in an
WebSphere MQ client environment and running them in the full WebSphere MQ
queue manager environment. It also explains how to build and run applications in
the WebSphere MQ client for VSE environment, and how to solve potential
problems.

In addition, this section describes the WebSphere MQ client bridge which is unique
to the z/VSE environment.

Using the message queue interface (MQI)
The WebSphere MQ client for z/VSE supports the following MQI calls:

MQCONN
MQCONNX
MQDISC
MQOPEN
MQCLOSE
MQPUT
MQPUT1
MQGET
MQINQ
MQSET
MQCMIT
MQBACK

Limiting the size of a message
The maximum message length (MaxMsgLength) attribute of a queue manager is
the maximum length of a message that can be handled by that queue manager.
The default maximum message length supported depends on the platform you are
using.

You can find out the value of MaxMsgLength for a queue manager by using the
MQINQ call.

If the MaxMsgLength attribute is changed, no check is made that there are not
already queues, and even messages, with a length greater than the new value.
After a change to this attribute, applications and channels should be restarted in
order to ensure that the change has taken effect. It will then not be possible for any

WebSphere MQ client environment variables

634 WebSphere MQ for z/VSE System Management Guide

new messages to be generated that exceed either the queue manager's
MaxMsgLength or the queue's MaxMsgLength (unless queue manager
segmentation is allowed).

The maximum message length in a channel definition limits the size of a message
that you can transmit over a client connection. If an WebSphere MQ application
tries to use the MQPUT call or the MQGET call with a message larger than this, an
error code is returned to the application.

Coded character set identifiers (CCSID)
The data passed across the MQI from the application to the client stub should be
in the local coded character set identifier (CCSID), encoded for the WebSphere MQ
client. If the connected queue manager requires the data to be converted, this is
done by the client support code.

The client code assumes that the character data crossing the MQI in the client is in
the CCSID configured for that machine. If this CCSID is an unsupported CCSID or
is not the required CCSID, it can be overridden with the MQCCSID environment
variable, for example:
ENVAR=(’MQCCSID=1047’)

Set this in the application environment and all MQI data mim89cat is assumed to
be in code page 1047.

Note that this does not apply to application data in the message.

If your application is performing multiple PUTs that include WebSphere MQ
headers after the message descriptor (MQMD), be aware that the CCSID and
encoding fields of the MQMD are overwritten after completion of the first PUT.
After the first PUT, these fields contain the value used by the connected queue
manager to convert the WebSphere MQ headers. Ensure that your application
resets the values to those it requires.

Using MQINQ
Some values queried using MQINQ are modified by the client code.
v CCSID is set to the client CCSID, not that of the queue manager.
v MaxMsgLength is reduced if it is restricted by the channel definition. This is the

lower of:
– The value defined in the queue definition, or
– The value defined in the channel definition.

For more information, see the WebSphere MQ Application Programming Guide.

Using syncpoint coordination
Within WebSphere MQ, one of the roles of the queue manager is syncpoint control
within an application. If an application runs on an WebSphere MQ client, it can
issue MQCMIT and MQBACK, but the scope of the syncpoint control is limited to
the MQI resources.

Applications running in the full queue manager environment on the server can
coordinate multiple resources (for example databases) via a transaction monitor.
On the server you can use the Transaction Monitor supplied with the Version 5.1
WebSphere MQ products, or another transaction monitor such as CICS. You cannot
use a transaction monitor with a client application. The WebSphere MQ verb
MQBEGIN is not valid in a client environment.

Limiting the size of a message

Chapter 10. WebSphere MQ clients 635

Using MQCONNX
MQCONNX can be used from a client but only with the following MQCNO
options:

MQCNO_NONE

MQCONNX and MQCONN on a client are similar calls, except that MQCONNX
allows a client application to specify a channel data (MQCD) structure in the
MQCNO structure. This allows the calling client application to specify the
definition of the client-connection channel at run time. The actual call issued at the
server depends on the server level and the listener configuration.

Building applications for WebSphere MQ clients
The WebSphere MQ client for z/VSE can be used by applications written in
Language Environment C/VSE, COBOL/VSE and PLI/VSE.

Building applications for both environments
You can build an WebSphere MQ application for both the full WebSphere MQ
environment and the WebSphere MQ client environment without changing your
code, provided that:
v It does not need to connect to more than one queue manager concurrently.
v The queue manager name is not prefixed with an asterisk (*) on an MQCONN

or MQCONNX call.

Note: The libraries you use at link-edit time determine the environment in which
your application must run.

When working in the WebSphere MQ client environment, remember that:
v Each application running in the WebSphere MQ client environment has its own

connections to servers. It has one connection to each server it requires, a
connection being established with each MQCONN or MQCONNX call the
application issues.

v An application sends and gets messages synchronously.
v Message data conversion can be managed by the server.

Triggering in the client environment
Triggering is explained in detail in the WebSphere MQ Application Programming
Guide.

Messages sent by WebSphere MQ applications running on WebSphere MQ clients
contribute to triggering in exactly the same way as any other messages, and they
can be used to trigger programs on the server. The trigger monitor and the
application to be started must be on the same system.

The default characteristics of the triggered queue are the same as those in the
server environment. In particular, if no MQPMO syncpoint control options are
specified in a client application putting messages to a triggered queue that is local
to a queue manager, the messages are put within a unit of work (if the server
queue manager is running on z/OS or z/VSE). If the triggering condition is then
met, the trigger message is put on the initiation queue within the same unit of
work and cannot be retrieved by the trigger monitor until the unit of work ends.
The process that is to be triggered is not started until the unit of work ends.

Using MQCONNX

636 WebSphere MQ for z/VSE System Management Guide

Linking applications with the WebSphere MQ client
When building applications for the WebSphere MQ client environment, for CICS or
batch, you must prelink your application with the WebSphere MQ client for z/VSE
MQI object file, MQICVSE.OBJ. For example:
// OPTION CATAL

PHASE YOURPROG,*
INCLUDE YOURPROG
INCLUDE MQICVSE

// EXEC EDCPRLK

The MQICVSE.OBJ file resides in the WebSphere MQ client for z/VSE client
installation sublibrary.

Following the prelink, you must link-edit your application. For example:
/*
// EXEC LNKEDT

The WebSphere MQ client bridge
The WebSphere MQ client for z/VSE bridge is unique to the VSE environment.
The client bridge is managed by a long-running CICS transaction, MQCI. This
transaction must be active for the client bridge to be available.

The MQCI transaction can be started in native CICS or via the CICS START
command. The MQCI transaction requires a parameter to specify a bridge ID. For
example:
MQCI mqbisrv1

The bridge ID can be 1-8 alpha-numeric characters. Client applications running
outside CICS can use the interface by naming the bridge ID via a // SETPARM
card (or equivalent), as follows:
// SETPARM MQBISRV=mqbisrv1

If the bridge transaction (MQCI) is started without an ID parameter, the default
name MQBISERV is used. Similarly, if the application does not specify an ID via
the //SETPARM card (or equivalent), then the default name MQBISERV is used.

The bridge can be stopped by specifying "X". For example,
MQCI X

For each client connection, the bridge starts a "partner" transaction (MQCI) that
acts as a proxy for the client program. The client installation sublibrary includes
file MQCICSD.Z which provides sample CICS System Definitions for the bridge
programs and transactions. These must be defined to your CICS system before the
bridge can be used.

Building client bridge applications
Client application programs that intend to use the client bridge must be link-edited
with the WebSphere MQ Client for z/VSE bridge MQI object file, MQBIBTCH.OBJ.
For example:
// OPTION CATAL

PHASE YOURPROG,*
INCLUDE YOURPROG
INCLUDE MQBIBTCH

// EXEC LNKEDT

Linking applications with the WebSphere MQ client

Chapter 10. WebSphere MQ clients 637

Unlike normal z/VSE client applications, programs that use the client bridge MQI
(MQBIBTCH), do not require prelink.

The MQBIBTCH.OBJ file resides in the client installation sublibrary. It provides an
entry point for each of the support MQI calls listed in “Using the message queue
interface (MQI)” on page 634.

WebSphere MQ client bridge security
The WebSphere MQ MQ Client for z/VSE bridge can run in a secure mode. When
running in secure mode, the bridge transaction attempts to start proxy transactions
as the user issuing the MQCONNX call. In this way, the proxy transaction can run
with the same privileges as the user issuing the MQI calls from outside CICS.

The client bridge can be started in secure mode by specifying the SEC=YES
parameter, for example:
MQCI mqcisrv1 SEC=YES

The secure mode requires that the CICS region is started with the SEC=YES SIT
parameter, and that the z/VSE system is started with the SEC=YES IPL SYS
parameter. If security is not active for both CICS and your z/VSE system, you
should not run the Client Bridge in secure mode.

The user that starts the bridge transaction must be a surrogate for client
application users. In addition, the user used by the bridge transaction is taken from
the // ID card (or equivalent) of the client application environment.

The client bridge and batch interface
The WebSphere MQ client for z/VSE bridge works co-operatively with the
WebSphere MQ for z/VSE Batch Interface. Batch applications, link-edited with the
Batch Interface MQI (also MQBIBTCH) run client connections if they identify a
client bridge by means of // SETPARM MQBISRV.

Similarly, client applications, link-edited with the client bridge MQI (MQBIBTCH)
run batch connections if they identify a Batch Interface by means of // SETPARM
MQBISRV.

Running applications on WebSphere MQ clients
When an application running in an WebSphere MQ client environment issues an
MQCONN or MQCONNX call, the client identifies how it is to make the
connection. When an MQCONNX call is issued by an application, the MQI client
library searches for the client channel information in the following order:
1. Using the contents of the ClientConnOffset or ClientConnPtr fields of the

MQCNO structure (if supplied). These identify the channel data structure
(MQCD) to be used as the definition of the client connection channel.

2. If the MQSERVER environment variable is set, the channel it defines is used.

The first of these options (using the ClientConnOffset or ClientConnPtr fields of
MQCNO) is supported only by the MQCONNX call. If the application is using
MQCONN rather than MQCONNX, the channel information is obtained using the
MQSERVER environment variable. If the client fails to find the channel
information, the MQCONN or MQCONNX call fails.

The channel name (for the client connection) must match the server-connection
channel name defined on the server for the MQCONN or MQCONNX call to
succeed.

Building client bridge applications

638 WebSphere MQ for z/VSE System Management Guide

Using the MQCNO structure
The MQCONNX MQI call is documented in the WebSphere MQ Application
Programming Reference manual, along with the MQCNO and MQCD data
structures.

The MQCD data structure contains a set of variables that describe the
client-connection channel, including the channel name, transport type (which must
always be TCP/IP in the z/VSE environment) and the connection name. The
connection name identifies the server's hostname or IP address and the port
number of the server's MQ listener task.

The MQCNO data structure, which is passed as a parameter to the MQCONNX
call, includes an address or an offset for the call to find the MQCD data structure.
The MQCONNX call uses this information to establish a connection with the
server.

Once connected, the server is available to satisfy MQI requests and respond to the
client application with return and reason codes.

Using MQSERVER
Environment variables in z/VSE can be set in two general ways:
v Application program call.
v Language Environment run-time option.

The C run-time call setenv() allows application programs to set environment
variables. This call however is not available to COBOL applications. Consequently,
the WebSphere MQ client for z/VSE provides function MQSETENV() which allows
applications written in COBOL, C or PL/I to set environment variables. The
WebSphere MQ client for z/VSE also provides function MQGETENV() for
completeness.

Applications written in the C language can alternatively use the #pragma runopts
compiler directive to set environment variables using the Language Environment
ENVAR run-time option. For example:
#pragma runopts (ENVAR("MQSERVER=CLI1.CHAN/TCP/1.11.1.11(1414)"))

An application written in PL/I can use the PLIXOPT declaration to specify an
ENVAR setting, for example:
dcl plixopt char(100) var

init(’ENVAR("MQSERVER=CLI1.CHAN/TCP/1.11.1.11(1414)")’)
static external;

The Language Environment ENVAR option recognizes a special environment
variable called _CEE_ENVFILE. This special variable can be used to name a file
that contains a list of environment variable settings. For example:
#pragma runopts (ENVAR("_CEE_ENVFILE=DD:MQVARS.Z"))

In this example, the MQVARS.Z files might be created with the following batch
job:
// JOB LIBRCAT
// EXEC LIBR
ACCESS S=lib.sublib
CATALOG MQVARS.Z EOD=XX
MQSERVER=CLI1.CHAN/TCP/1.11.1.11(1414)

Using the MQCNO structure

Chapter 10. WebSphere MQ clients 639

MQCCSID=1047
XX
/*
/&

The _CEE_ENVFILE variable is not supported in CICS.

Alternatively, environment variables can be set when the application is run by
using the ENVAR option as a parameter on the EXEC card. For example:
// EXEC YOURPROG,PARM=’/ENVAR("MQSERVER=CLI1.CHAN/TCP/1.11.1.11(1414)")’

If you are using the WebSphere MQ client for z/VSE bridge to run an application
in an environment that does not support Language Environment for z/VSE, the
ENVAR option is not available. In such a case, the MQCONNX call must be used.

Solving WebSphere MQ client problems
An application running in the WebSphere MQ client environment receives
MQRC_* reason codes in the same way as WebSphere MQ server applications.
However, there are additional reason codes for error conditions associated with
WebSphere MQ clients. For example:
v Remote machine not responding.
v Communications line error.
v Invalid machine address.

The most common time for errors to occur is when an application issues an
MQCONN or MQCONNX and receives the response
MQRC_Q_MQR_NOT_AVAILABLE. Look in the client error log for a message
explaining the failure. There might also be errors logged at the server, depending
on the nature of the failure. Also, check that the application on the WebSphere MQ
client is linked with the correct library file.

WebSphere MQ client fails to make a connection
When the WebSphere MQ client issues an MQCONN or MQCONNX call to a
server, socket and port information is exchanged between the WebSphere MQ
client and the server. For any exchange of information to take place, there must be
a program on the server machine whose role is to 'listen' on the communications
line for any activity. This program is called the MQ listener.

If there is no program doing this, or there is one but it is not functioning correctly,
the MQCONN or MQCONNX call fails, and the relevant reason code is returned
to the WebSphere MQ application.

If the connection is successful, WebSphere MQ protocol messages are exchanged
and further checking takes place. During the WebSphere MQ protocol checking
phase, some aspects are negotiated while others cause the connection to fail. It is
not until all these checks are successful that the MQCONN or MQCONNX call
succeeds.

For information about the MQRC_* reason codes, see the WebSphere MQ Application
Programming Reference manual.

Stopping WebSphere MQ clients
Even though an WebSphere MQ client has stopped, it is still possible for the
process at the server to be holding its queues open. The queues is closed when the
communications layer detects that the partner has gone.

Using MQSERVER

640 WebSphere MQ for z/VSE System Management Guide

Error messages with WebSphere MQ clients
When an error occurs with an WebSphere MQ client system, error messages are
put into the error files associated with the server, if possible.

In addition, the WebSphere MQ client may attempt to place the error message in
an error log. The WebSphere MQ client for z/VSE uses the MQDATA environment
variable to identify a target for client log messages.

The MQDATA environment variable, if used in batch, should name a DLBL of a
VSAM managed SAM file, or an ESDS. Message lengths are variable up to 100
characters. If used in CICS, the MQDATA variable should name a CICS transient
data queue. If the MQDATA variable is not set, client log messages are discarded.

Tracing WebSphere MQ clients
The WebSphere MQ client for z/VSE uses the MQTRACE environment variable to
identify a target for diagnostic trace messages.

The MQTRACE environment variable, if used in batch, should name a DLBL of a
VSAM managed SAM file, or an ESDS. Message lengths are variable up to 80
characters. If used in CICS, the MQTRACE variable should name a CICS transient
data queue. If the MQTRACE variable is not set, diagnostic trace messages are
discarded.

Client tracing can introduce significant processing overhead for client applications,
and should not be used except in conjunction with IBM service for problem
resolution.

Example client trace: Figure 83 shows an extract from an WebSphere MQ for
z/VSE client trace.

WebSphere MQ Trace started at 04/19/05 16:00:28
<- xcsInitialize (rc = OK)
-> MQCONN
--> rrxOpenChannelDef
---> xcsGetMem
<--- xcsGetMem (rc = OK)
<-- rrxOpenChannelDef (rc = OK)
--> rrxGetFirstChannelDef
<-- rrxGetFirstChannelDef (rc = OK)
--> rriInitSess
---> xcsGetMem
<--- xcsGetMem (rc = OK)
.
.
.
---> rriTermExits
<--- rriTermExits (rc = OK)
---> rriDeleteStatusEntry
----> xcsFreeMem
<---- xcsFreeMem (rc = OK)
<--- rriDeleteStatusEntry (rc = OK)
---> xcsFreeMem
<--- xcsFreeMem (rc = OK)
<-- rriFreeSess (rc = OK)
<- MQDISC

Figure 83. Extract from WebSphere MQ for z/VSE client trace

Error messages with WebSphere MQ clients

Chapter 10. WebSphere MQ clients 641

Tracing WebSphere MQ clients

642 WebSphere MQ for z/VSE System Management Guide

Chapter 11. Secure Sockets Layer services

Secure Sockets Layer (SSL) is a communications protocol that provides secure
communications over an open communications network (for example, the Internet).
The SSL protocol is a layered protocol that is intended to be used on top of a
reliable transport, such as Transmission Control Protocol (TCP/IP). SSL provides
data privacy and integrity as well as server and client authentication based on
public key certificates. Once an SSL connection is established between a client and
server, data communications between client and server are transparent to the
encryption and integrity added by the SSL protocol.

WebSphere MQ for z/VSE incorporates SSL services between itself and remote
queue managers and MQ clients that also incorporate SSL services. From an SSL
perspective, in every case, the initiating application is considered the client and the
remote application accepting the connection, the server. From an WebSphere MQ
perspective, the client is a remote sender Message Channel Agent (MCA) or an
WebSphere MQ client, and the server is the receiver MCA.

WebSphere MQ activates SSL services on a per channel basis. This is possible
through the channel definition. Each channel can identify whether or not SSL
services are required when a connection is made or accepted, to or from a remote
system or client program.

There are a number of steps involved in establishing an SSL enabled and active
channel. These include:
v Installing the SSL feature.
v Configuring the queue manager for SSL.
v Configuring a channel for SSL.
v Activating SSL services.

Each of these is described in some detail below.

Installing the SSL feature
Before SSL channels can be established by WebSphere MQ, the SSL feature must be
installed and available under the z/VSE environment.

SSL for z/VSE is an optional product that is integrated into TCP/IP for z/VSE. As
an optional product, it requires a special product code to activate its features. Full
details for installation should be found in SSL for z/VSE documentation.

Part of the installation process, of immediate relevance to WebSphere MQ, is the
creation of the SSL key-ring sublibrary. The SSL key-ring sublibrary contains
private key members (.PRVK files) and X.509 certificate files (.CERT files).

If SSL enabled channels are required, WebSphere MQ for z/VSE must be
configured with the name of the SSL key-ring sublibrary, and the name of the
queue manager's private key and certificate files. This configuration is part of the
queue manager definition.

© Copyright IBM Corp. 2008, 2013 643

Configuring the queue manager for SSL
Once the SSL feature has been installed and is available under z/VSE, the
WebSphere MQ queue manager can be configured to identify the SSL key-ring
sublibrary and private key and certificate files.

Access SSL configuration for the queue manager from the Global System Definition
maintenance screen (MQMT option 1.1), using PF9. Pressing PF9 displays the
queue manager “Communication Settings” (Figure 84).

Queue manager communication settings are divided into five categories:
v TCP/IP settings
v SSL parameters
v PCF parameters
v Batch interface settings
v Channel auto-definition

Of immediate relevance to SSL enabled channels are the TCP/IP settings and the
SSL parameters.

TCP/IP settings

TCP/IP listener port
The TCP/IP listener port represents the IP port number on which the MQ Listener
program will accept remote connection requests. The MQ Listener is a long
running transaction, MQTL.

Caution should be taken not to use a port number that is already in use by another
application or subsystem. The default value for WebSphere MQ is 1414.

2012/11/14 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
15:33:21 Global System Definition CIC1
MQWMSYS Queue Manager Information A004
Queue Manager: PTHVSEC
Description Line 1.: TEST
Description Line 2.:

System Values
Maximum Connection Handles.: 00000100 System Wait Interval : 00000030
Maximum Concurrent Queues .: 00000100 Max. Recovery Tasks : 0000
Allow TDQ Write on Errors : Y CSMT Local Code Page . . : 01047
Allow Internal Dump . . . : Y Subsystem id : MQV1

Channel Auth Enabled : N
Queue Maximum Values

Maximum Q Depth: 00100000 Maximum Global Locks.: 00001000
Maximum Message Size. . . .: 00409600 Maximum Local Locks .: 00001000
Maximum Single Q Access . .: 00000100 Max Properties Length: 00004094

Global QUEUE /File Names
Configuration File. : MQFCNFG
LOG Queue Name. . . : SYSTEM.LOG
Dead Letter Name. . : SYSTEM.DEAD.LETTER.QUEUE
Monitor Queue Name. : SYSTEM.MONITOR
Requested record displayed.
PF2=Return PF3=Quit PF4/ENTER=Refresh PF6=Update

PF9=Communications PF10=Log PF11=Events PF12=Exits

Figure 84. Queue manager communication settings

644 WebSphere MQ for z/VSE System Management Guide

Licensed clients
The number of licensed clients represents the maximum number of concurrent
client connections that will be accepted by the queue manager. The number
allowed is determined by your WebSphere MQ for z/VSE license agreement.

You should check your license agreement for the number of concurrent client
connections permitted. If a restriction is not applicable, you can set the licensed
clients value to zero.

SSL parameters

Key-ring sublibrary
The key-ring sublibrary identifies the SSL key-ring sublibrary, identified and
generated during SSL for z/VSE installation. The key- ring sublibrary contains
private key and X.509 certificate files. The value entered should be a valid z/VSE
sublibrary name.

If a key-ring sublibrary is specified, WebSphere MQ will perform SSL initialization
during system startup, even if there are no SSL enabled channels. If SSL is not
installed, this field should be left blank.

Key-ring member
The key-ring member identifies the SSL key-ring sublibrary member name of the
private key and certificate files that will be used by WebSphere MQ enabled
channels. This must be a valid z/VSE sublibrary member name.

It should be noted that WebSphere MQ for z/VSE uses the same private key and
certificate for all SSL enabled channels. It is not possible to identify a different
certificate on a per channel basis. Consequently, the key-ring member name should
identify a private key and certificate files appropriate for all SSL enabled channels.

SSL reset count
During an SSL handshake a secret key is generated to encrypt data between the
SSL client and SSL server. The secret key is used in a mathematical formula that is
applied to the data to transform plaintext into unreadable ciphertext, and
ciphertext into plaintext.

The secret key is generated from the random text sent as part of the handshake
and is used to encrypt plaintext into ciphertext. The secret key is also used in the
MAC (Message Authentication Code) algorithm, which is used to determine
whether a message has been altered.

If the secret key is discovered, the plaintext of a message could be deciphered from
the ciphertext, or the message digest could be calculated, allowing messages to be
altered without detection. Even for a complex algorithm, the plaintext can
eventually be discovered by applying every possible mathematical transformation
to the ciphertext. To minimize the amount of data that can be deciphered or altered
if the secret key is broken, the secret key can be renegotiated periodically.

Once the secret key has been renegotiated, the previous secret key can no longer be
used to decrypt data encrypted with the new secret key.

The SSL reset count specifies the total number of unencrypted bytes that are sent
and received within an SSL conversation before the secret key is renegotiated. The
number of bytes includes control information sent by the message channel agent.

Chapter 11. Secure Sockets Layer services 645

Note: When a value greater than 0 but less than 32000 is specified, the value is
ignored, and 32000 is used.

It should further be noted that an SSL renegotiation is resource intensive, and can
place significant overhead on SSL-enabled channel processing time. Consequently,
when using SSL key reset, it is recommended that you use a value as high as
possible but does not compromising the channel's security.

Configuring a channel for SSL
Channels can be enabled for SSL. In the case of Sender, Server, Receiver and
Requester channels, SSL enablement assumes that the partner channel definition
(on a remote WMQ system) is also configured for SSL. For client channels, WMQ
documentation for the relevant client system should be reviewed to determine how
to enable a client for SSL.

Note that reference to Sender channels in this chapter refers generically to sender
and server (and requester channels during channel initialization), which send
messages to remote systems. Reference to Receiver channels refers to both receiver
and requester channels, which receive messages from remote systems.

Configure the SSL parameters for a channel using the “Channel SSL Parameters”
screen. To get to this screen, press PF10 at the “Maintain Channel Record” screen
(MQMT option 1.3)

SSL parameters are identical, regardless of channel type. Consequently, the above
screen is applicable to sender, receiver and client channels.

Secure Sockets Layer services are only available for TCP/IP channels.
Consequently, SSL parameters for SNA LU 6.2 channels are ignored.

11/28/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
12:44:28 Channel SSL Parameters CIC1
MQMMCHN A003

Channel Name: VSE1.TCP.NT1 Type: S

SSL Cipher Specification. : 02 (2 character code)
SSL Client Authentication : R (Required or Optional)

SSL Peer Attributes:
> O=IBM,OU="Australian Programming Centre",C=Australia,ST=WA,L=Per <
> th,CN=www.ibm.com <
> <
> <

SSL channel parameters displayed.
PF2 = Return PF3 = Quit PF4 = Read PF6 = Update

Figure 85. SSL parameters for a channel

646 WebSphere MQ for z/VSE System Management Guide

SSL channel parameters
Channel name

The name of the channel for which the SSL parameters apply. This is a display
field only.

Type
The type of the channel for which the SSL parameters apply. This is a display
field only.

SSL Cipher Specification
The SSL Cipher Specification is a two-character code that identifies an SSL
version 3 cipher specification supported by the SSL for z/VSE feature. For
example:

Table 13. Supported SSL cipher specifications

Cipher Description

01 NULL MD5

02 NULL SHA

08 DES40 SHA for Export

09 DES SHA for U.S.

0A Triple DES SHA for U.S.

62 RSA_EXPORT1024_DESCBC_SHA

2F RSA AES128 CBC SHA

35 RSA AES256 CBC SHA

The code selected must be supported on the remote system. In the case of a
sender channel, WebSphere MQ for z/VSE will establish an SSL enabled
channel with a remote MQ system only if the remote system accepts the
specified code. For receiver channels, the remote system will identified the
desired code. If the local SSL feature supports the designated code, channel
initialization will proceed. Otherwise the channel is terminated with an error.

It should be noted that this parameter determines whether or not the channel
is SSL enabled. If this field is blank, the other SSL parameters are ignored, and
the channel operates without SSL services. Any non-blank value means the
channel is SSL enabled, and the other SSL parameters are used during channel
initialization.

SSL Client Authentication
The SSL Client Authentication field can be set to 'R' for required, or 'O' for
optional. If client authentication is required, WebSphere MQ checks that a
certificate was sent from the remote system during SSL initial negotiation. If
not, the channel is terminated with a error.

Since a certificate is always sent by the receiver (or SSL server) to the sender
(or SSL client), this field is only meaningful to receiver and client channels.
However, the WebSphere MQ for z/VSE Receiver MCA, which acts as the SSL
server, requires that SSL clients send a certificate during SSL negotiation.
Consequently, under WebSphere MQ for z/VSE, a client certificate will always
be received during SSL negotiation. If not, the channel is terminated with an
initialization error.

The SSL client authentication field, therefore, exists for compatibility with other
WebSphere MQ systems and possible future expansion. To make this apparent,
this field should be set to 'R'.

Chapter 11. Secure Sockets Layer services 647

SSL Peer Attributes
The SSL Peer Attributes parameter allows a channel to verify that the partner's
certificate contains certain identifiable characteristics. If the partner's certificate
does not contain these characteristics, the channel is terminated with an error.

Identifiable characteristic types include:

Table 14. SSL Peer Attribute types

Type Description

CN Common name

L Locality

ST State or province

C Country

O Organization

OU Organizational unit

SERIAL Serial number

The characteristic types pertain to the Subject attributes of the X.509 certificate,
except for serial number, which pertains to the Serial Number of the certificate.

The SSL Peer Attributes field takes this form:

type=value, type=value,...Where type is one of the characteristic types listed in
Table 14, the equals sign (=) is constant, and value identifies an expected value
relevant to the characteristic type specified. For multiple attributes, the comma
(,) is also required and constant. For example:

O=IBM,C=US

In this example, the remote partner's certificate must have a Subject
Organization of "IBM", and a Subject Country of "US".

The SSL Peer Attributes parameter will also accept wildcards (*). Each value
can have only one wildcard. Wildcards cannot be imbedded in a value. For
example:

O=IBM,OU=LAB*,C=UK

In this example, the channel will accept remote certificates with a Subject
Organization of "IBM", a Subject Country of "UK" and any Subject
Organizational Unit beginning with "LAB".

The SSL Peer Attributes parameter will also accept imbedded spaces. These
must be enclosed in double quotes ("). For example:

O="IBM GSA"

Double quotes are optional for values that do not contain imbedded blanks.

If the SSL Peer Attribute parameter is set and the remote certificate does not
match its stipulations, the channel is terminated with an error. If the SSL Peer
Attributes is not set (it is left blank), the remote certificate's identifying
attributes are not examined. In other words, a blank parameter means the
channel can be activated by any valid certificate.

Activating SSL services
When a channel is configured for SSL, WebSphere MQ automatically activates SSL
services when the channel is established.

648 WebSphere MQ for z/VSE System Management Guide

For Sender channels, the Sender Message Channel Agent (MCA), trigger program
MQPSEND, examines the relevant channel definition to check if the SSL Cipher
Specification field has been set. If so, WebSphere MQ considers the channel "SSL
enabled" and will attempt to establish an SSL connection with the remote queue
manager using SSL services.

For Receiver and Client channels, the Receiver MCA does not, on invocation, have
details of the channel. Consequently, it cannot examine the SSL Cipher
Specification parameter. Instead, the Receiver MCA examines the initial dataflow
from the remote queue manager. If it is identifiable as an SSL exchange, the
Receiver MCA will attempt to secure the connection using SSL services. If
successful, subsequent dataflow will identify the appropriate channel.

It is at this point that WebSphere MQ will verify that the correct SSL Cipher
Specification, SSL Client Authentication and SSL Peer Attributes have been
received or negotiated. If not, the channel is immediately terminated with an error.

This means that for all SSL enabled channels, the dataflow, from start to finish, is
under SSL control. This included WebSphere MQ' initial channel negotiation which
contains channel, queue manager and target queue information.

The SSL Peer Attributes parameter adds further protection by allowing a channel
to reject any connection that uses a certificate that does not meet the stipulations of
the parameter.

Chapter 11. Secure Sockets Layer services 649

650 WebSphere MQ for z/VSE System Management Guide

Chapter 12. Security

This chapter describes the features of security control in WebSphere MQ for z/VSE
and how you can implement and manage this control.

Note: Examples in this chapter use CA-Top Secret as an external security manager
(ESM). If you are using a different ESM, you should modify the techniques
described. With z/VSE 4.3, the Basic Security Manager (BSM) now has the MQ
classes required to support WebSphere MQ for z/VSE security.

Where profile names are shown, replace the subsystem identifier (SSID) in the
profile name with the name of the WMQ subsystem you are using. The subsystem
name for your queue manager is a 4-character identifier determined during
installation. See “Installing security” on page 19 for information about the SSID.

For profile names, WebSphere MQ for z/VSE uses the full queue manager name
instead of the subsystem identifier if the SSID is blank (spaces). When using the
Basic Security Manager, it is recommended that the SSID is used in place of the
queue manager name so that the profile name fits the maximum length accepted
by the Basic Security Manager.

Why you need to protect WebSphere MQ resources
Because WebSphere MQ handles the transfer of information that is potentially
valuable, you need the safeguard of a security system. This ensures that the
resources that WebSphere MQ owns and manages are protected from unauthorized
access, which could lead to the loss or disclosure of the information. In a secure
system, it is essential that none of the following are accessed or changed by any
unauthorized user or process:
v Connections to WebSphere MQ.
v WebSphere MQ objects such as queue managers and queues.
v WebSphere MQ transmission links.
v WebSphere MQ system control commands.
v WebSphere MQ messages.
v Context information associated with messages.

To provide the necessary security, WebSphere MQ uses the z/VSE system
authorization facility (SAF) to route authorization requests to an ESM, for example,
CA-Top Secret. With z/VSE 4.3, the Basic Security Manager (BSM) now includes
the MQ classes and so may be used in place of an ESM.

The decision to allow access to an object is made by the ESM or BSM, and
WebSphere MQ follows that decision. If the ESM or BSM cannot make a decision,
WebSphere MQ prevents access to the object by default. However, by default, if the
CICS system running WebSphere MQ is configured without security, WebSphere
MQ will not restrict access to its resources.

Implementing WebSphere MQ security
It is easier to set up and administer your security if first you decide on a set of
naming conventions for your WebSphere MQ objects.

© Copyright IBM Corp. 2008, 2013 651

To implement a security strategy for your WebSphere MQ subsystem, you must
decide:
v How security is to be used and implemented.
v Who is going to use the WebSphere MQ system and resources.

To use the CA-Top Secret examples, as shown in this manual, you must be a
suitably authorized user, for example, the MSCA user. You can enter the
commands either from CICS or via a batch job, using the TSS transaction or the
TSSCMNDB program, respectively.

In the same way, if you use the Basic Security Manager you must be a suitably
authorized user to use the Interactive User Interface Security Maintenance panel or
the BSTADMIN batch program.

Resources you can protect
When WebSphere MQ starts, or when it is instructed by an operator command,
WebSphere MQ determines which resources you want to protect. You can control
which security checks are performed for each individual queue manager. For
example, you could implement a number of security checks on a production queue
manager, but none on a test queue manager.

Objects protected by WebSphere MQ for z/VSE include:
v Connections
v Queues
v Namelists
v Messages
v Commands
v Command resources

This chapter also explains how you might protect WebSphere MQ datasets,
specifically, the VSAM files used by WebSphere MQ.

Connection security
Connection security checking occurs either when an application program tries to
connect to a queue manager by issuing an MQCONN request, or when WebSphere
MQ itself issues a connection request. You can turn connection security checking
off for a particular WebSphere MQ subsystem, but if you do, any user can connect
to that subsystem.

WebSphere MQ itself issues a connection request when it attempts to log messages
to the system log. The logging mechanism writes messages to a transient data
queue (MQER) that triggers a transaction to write the message to the system log
queue. This transaction (MQER) runs as the CICS default user, or a user specified
in the DCT entry for the transient data queue. At installation, you must decide
whether to use the default user or a specific user to connect and write messages to
the system log.

Similarly, the message expiry feature of WebSphere MQ uses a transient data
queue. The message expiry transient data queue (MQXP) is defined in the CICS
Destination Control Table (DCT) to fire a trigger transaction (also MQXP) when the
data queue contains at least one entry. The MQXP transaction is responsible for
clearing expired messages from application queues, and for generating expiry
report message when they are required.

Implementing security

652 WebSphere MQ for z/VSE System Management Guide

Like the MQER transaction, the MQXP transaction runs with the authority of the
CICS default user unless the DCT definition includes the USERID parameter. See
“Changing the MQXP TDQ definition” on page 22. Since the MQXP transaction
may need to place a report message on any application queue, the user that runs
the transaction must have suitable authority. The user will at least require connect
authority. This is the case for the MQAC transient data queue and MQAC
transaction (used for accounting and statistics), and the MQIE transient data queue
and MQIE transaction (used to write event messages to the event queues).

Queue and message security
Resources are checked when an application opens an object with an MQOPEN or
an MQPUT1 call. The access needed to open an object depends on which open
options are specified when the queue is opened.

A security check is performed when the queue manager object is opened. In this
situation, the queue manager is protected in the same way as a queue object, that
is, a user must have permission to access ssid.qmname, where qmname is the name
of your queue manager.

Queue security controls who is allowed to open which queue, and what options
they are allowed to open it with. For example, a user might be allowed to open a
queue called PAYROLL.INCREASE.SALARY to browse the messages on the queue
(via the MQOO_BROWSE option), but not to remove messages from the queue (via
one of the MQOO_INPUT_* options). If you turn checking for queues off, any user
can open any queue with any valid open option (that is, any valid MQOO_* option
on an MQOPEN or MQPUT1 call).

Namelist security
Similar to queue security, namelist security checking is carried out when a user
opens a namelist.

If you turn checking for namelists off, any user can open any namelist.

When namelist security is active, permissions are checked when an application
issues an MQOPEN call. Namelists can only be opened for inquiry. For example
MQOO_INQUIRE, so the only applicable permission specifically required to open
a namelist is read access.

Command security
Command security involves protecting the creation, deletion, and modification of
WebSphere MQ objects. Commands that affect WebSphere MQ objects can be
issued in three ways:
v Master terminal commands
v PCF commands
v WebSphere MQ commands

Master terminal commands are those entered interactively in native CICS, or via
the CICS Web Support feature from a web browser. Master terminal commands are
generally selected from the primary options menu of the master terminal
transaction (MQMT).

PCF commands are processed as data messages by the WebSphere MQ command
server which is a long-running CICS transaction (MQCS). The command server
reads PCF messages from system command queue. The name of this queue is

Connection security

Chapter 12. Security 653

configurable as a communication parameter of the queue manager's global system
definition. Message read from the system command queue are expected to be PCF
commands which are parsed and processed by the WebSphere MQ command
processor (transaction MQCX). For more information about PCF commands, refer
to Chapter 8, “Programmable system management,” on page 221.

WebSphere MQ commands are verb-based text messages processed by the
WebSphere MQ MQSC batch utility program (MQPMQSC). The MQSC utility
program converts SYSIPT verb-based command text into PCF Escape messages and
places them on the system command queue. Responses to these commands are
placed on the system reply queue (a communication parameter of the global
system definition). The MQSC utility processes MQSC reply messages and
generates SYSLST text output. For more information about WebSphere MQ
commands and the command utility, refer to Chapter 9, “WebSphere MQ
commands,” on page 507.

Command security involves authorization by command type. For example, a user
might be authorized to issue 'DISPLAY' commands, but not 'ALTER' commands.
Similarly, a user may be authorized to perform the display options but not the
maintenance options under MQMT option 1 (Configuration).

The userid on the batch job // ID must have UPDATE access to the system admin
command and reply queues.

Command resource security
Command resource security involves protecting WebSphere MQ objects by name,
and works in conjunction with command security. For example, a user may be
authorized to issue 'DISPLAY' commands, but may be restricted to displaying
objects with a certain prefix.

Consequently, for a user to display the details of a specific queue, for example, that
user would need command authorization to 'DISPLAY' and command resource
authorization to display details of the specific queue.

Dataset security
WebSphere MQ for z/VSE queues are implemented as VSAM KSDS datasets, and
WebSphere MQ configuration is also stored in VSAM datasets. Therefore, it is
important that these datasets are protected against unauthorized access under
z/VSE generally.

Check your ESM or Basic Security Manager documentation for specific details on
protecting datasets. WebSphere MQ assumes that users with authorization to
specific queues, with specific access permissions, are also authorized to the
datasets that contain queue data, with the same permissions. This assumption
relies on the security administrator correlating the correct permissions for queues
and datasets.

See Appendix H, “Security implementation,” on page 1055 for more details on how
to protect your datasets.

Command security

654 WebSphere MQ for z/VSE System Management Guide

Using security classes and resources
CA-Top Secret and the Basic Security Manager classes are used to hold the
resources required for WebSphere MQ security checking. Each class holds one or
more resources used at some point in the checking sequence.

Table 15. Classes used by WebSphere MQ

Member class Description

MQADMIN Used mainly for holding resources for administration-type functions.
For example, profiles for WebSphere MQ security switches.

MQCONN Profiles used for connection security.

MQNLIST Profiles used in namelist resource security.

MQQUEUE Profiles used in queue resource security.

MQCMDS Profiles for command security.

MXTOPIC Profiles for topic security.

Depending on your External Security Manager, these classes may be predefined.
For CA-Top Secret, these are predefined Prefixed resources. To activate such
resources, ensure that the following setting exists in your CA-Top Secret parameter
file:

FACILITY(CICSPROD=RES)

The Basic Security Manager has the SURROGAT class in addition to the above
classes. Use the batch BSTADMIN to set these classes active. For example JCL, see
Appendix H, “Security implementation,” on page 1055.

Note:

1. CICSPROD should be replaced by the facility you are using for your
WebSphere MQ CICS region, if it is different.

2. After you change the parameter file, you need to restart your ESM.
3. If you are using the Basic Security Manager, then either use the batch

BSTADMIN REFRESH command or the "BSM Security Rebuild" option of the
Security Maintenance panel, after setting classes active.

Resources
All resources (BSM profile names) used by WebSphere MQ are prefixed with the
name of the subsystem that they are to be used by. For example, if queue manager
with SSID MQV1 has a queue called QUEUE_FOR_LOST_CARD_LIST, the
appropriate profile would be defined to the ESM or BSM in class MQQUEUE as:

MQV1.QUEUE_FOR_LOST_CARD_LIST

This means that different WebSphere MQ subsystems sharing the same ESM
database or BSM control file can have different security options. The subsystem
identifier for the resource cannot be generic.

If your MQ object name contains lowercase characters, or the characters %, /, or _,
then specify the profile name within quotes. For example:
’MQV1,QUEUE_FOR_LOST_CARD_LIST’

Security classes and resources

Chapter 12. Security 655

||

Switch resources
To control the security checking performed by WebSphere MQ, you must define
switch profiles. A switch profile is a normal resource that has a special meaning to
WebSphere MQ. If you do not want to control security checking, that is, allow
WebSphere MQ to check authority for all WebSphere MQ resources, you do not
need to define switch profiles.

Each switch profile that WebSphere MQ detects turns off the checking for that type
of resource. Switch profiles are activated during startup of the queue manager. If
you change the switch profiles while the queue manager is running, the changes
will not be recognized until WebSphere MQ is stopped and the WebSphere MQ
environment is re-established by the MQSE transaction.

The switch resources must always be defined in the MQADMIN class. The
following table shows the valid switch profiles and the security type they control.

Note: In the descriptions that follow, the part of each resource name shown in
upper case must be entered exactly as shown. The lower case 'ssid' part must be
replaced by the subsystem identifier for the WebSphere MQ subsystem you are
setting up.

Table 16. Switch Resources

Switch Resource Name Description

ssid.NO.SUBSYS.SECURITY Subsystem security

ssid.NO.CONNECT.CHECKS Connection security

ssid.NO.NLIST.CHECKS Namelist security

ssid.NO.QUEUE.CHECKS Queue security

ssid.NO.CMD.CHECKS Command security

ssid.NO.CMD.RESC.CHECKS Command resource security

ssid.NO.TOPIC.CHECKS Topic security

If you intended to use the security switches, you can create them and grant access
as follows:

TSS ADD(mqowner) MQADMIN(ssid.NO.CONNECT.CHECKS)
TSS PER(mqstart) MQADMIN(ssid.NO.CONNECT.CHECKS) ACC(READ)

For Basic Security Manager (BSM), the BSTADMIN commands are:
ADD MQADMIN ssid.NO.CONNECT.CHECKS UACC(NONE)
PERMIT MQADMIN ssid.NO.CONNECT.CHECKS ID(mqstart) ACCESS(READ)

In this example, the resource is owned by user mqowner, and the mqstart user is
granted read access to the resource. Note that access to security switch resources is
only relevant to the WebSphere MQ for z/VSE startup user (that is, the user who
starts WebSphere MQ for z/VSE using MQSE, MQIT, or MQMT).

In the preceding example, security checks for connecting to the WebSphere MQ for
z/VSE queue manager would be disabled.

How switches work
WebSphere MQ maintains an internal set of switches, which is associated with
each of the switch resources shown in Table 16. When a security switch is set on,

Switch resources

656 WebSphere MQ for z/VSE System Management Guide

||

the security checks associated with the switch are performed. When a security
switch is set off, the security checks associated with that switch are bypassed.

When a queue manager is started, first it checks the status of the resource switches.
The queue manager sets its subsystem security switch off only if the switch
resources exist and are readable by the user associated with WebSphere MQ
startup. In all other situations, the switches are set on. Note that switches are only
applicable when WebSphere MQ is installed with security active.

If the ssid.NO.SUBSYS.SECURITY resource is detected during startup, connection,
queue, and message security is bypassed, regardless of other switch settings. This
means it is possible to completely disable WebSphere MQ object security by
creating the NO.SUBSYS.SECURITY resource, making it readable to the startup
user, and re-establishing the WebSphere MQ environment by using the MQSE
transaction and then initializing WebSphere MQ using the MQIT transaction.

Take care with generic resources. Some ESMs automatically grant access to
resources if the prefix of the resource is owned, or accessible to, a user. For
example, if the resource ssid is created and owned by user MQM, and that
resource is generic, some ESMs may automatically grant read access to ssid.* to
user MQM. The result is that when WebSphere MQ is started up by user MQM,
WebSphere MQ will assume all of the switches exist, and all object security will be
disabled.

Protecting WebSphere MQ resources
As well as optionally defining switch resources, ESM or BSM resources must be
defined to protect the WebSphere MQ objects.

If you do not have a resource profile defined for a particular security check and a
user issues a request that would involve making that check, WebSphere MQ denies
access.

You do not need to define profiles for security types relating to any security switch
profiles that you have deactivated.

Resource definitions for connection security
If connection security is active, you must define profiles in the MQCONN class,
and permit the necessary groups or user IDs access to those profiles, so that they
can connect to WebSphere MQ subsystems.

To enable a connection to be made, you must grant users READ access to the
appropriate profile.

Resource names for checking connections to WebSphere MQ for z/VSE take the
form:

ssid.CICS

This applies to CICS applications, batch programs using the batch interface, and
remote clients. This is because all connections to WebSphere MQ for z/VSE are
effectively maintained within CICS.

For example, to grant user JOHNS connection authority to queue manager
VSE.QM1 with SSID MQV1, you must first define the resource and grant
ownership:

TSS ADD(MQOWNER) MQCONN(MQV1.CICS)

How switches work

Chapter 12. Security 657

You can then grant connection authority as follows:
TSS PER(JOHNS) MQCONN(MQV1.CICS) ACC(READ)

For BSM, the BSTADMIN commands are:
ADD MQCONN MQV1.CICS UACC(NONE)
PERMIT MQCONN MQV1.CICS ID(JOHNS) ACC(READ)

Depending on your ESM, the owner of a resource may by default have full
authority. This would mean that user MQOWNER, in this example, would
automatically be granted connection authority to queue manager MQV1.

Batch connections
Security for batch connections is a special case. Batch programs connect to
WebSphere MQ for z/VSE running under CICS via the WebSphere MQ for z/VSE
batch interface.

Programs executed from a batch partition should use the // ID statement to
identify their user and password. Security for batch programs should be
established to verify the user and password identified on the // ID card.

A sample batch job might appear as follows:
// JOB MQBATCH
// ID USER=JOHNS,PWD=JOHNSPWD
// EXEC MYMQPROG
/*
/&

The WebSphere MQ for z/VSE batch interface uses the user name identified in the
// ID card and passes it to an interface transaction running under CICS. The
interface transaction must be started by, and running as, a user identified to your
ESM as a SURROGATE for the user identified on the // ID card.

To identify a user as a surrogate for another, you can use a command similar to:
TSS ADD(MQBATCH) SURROGAT(JOHNS)

where MQBATCH is the user that starts the batch interface transaction (MQBI) in
CICS.

For BSM, the BSTADMIN commands are:
ADD SURROGAT JOHNS.DFHSTART UACC(NONE)
PERMIT SURROGAT JOHNS.DFHSTART ID(MQBATCH) ACC(READ)

When the WebSphere MQ batch program attempts to connect to the queue
manager, a check for the surrogate rights of the interface user is issued. If this is
successful, a partner transaction (MQBX) is started as the user identified on the
// ID card. Therefore, the user identified on the // ID card should be known to
CICS.

Once the partner transaction is started, it functions on behalf of the WebSphere
MQ batch program. This means that all MQI calls are executed as the user
identified on the // ID card. For connection security, this user must be granted
READ access to the ssid.CICS resource.

Connection security

658 WebSphere MQ for z/VSE System Management Guide

Client connections
Security for client connections is also a special case. For client connections, the
client program runs on a remote system. Security for the execution of such
programs remains the responsibility of the remote system.

For client programs, the WebSphere MQ for z/VSE server program effectively
performs WebSphere MQ API requests on behalf of the client program. The server
program runs under CICS and is executed as the WebSphere MQ for z/VSE
startup user. The startup user is the user who starts WebSphere MQ for z/VSE
using the MQSE, MQIT or MQMT transactions.

The WebSphere MQ for z/VSE server program identifies the client user when the
client connection is initiated with the MQCONN call. For authentication, the
environment of the client program must include the MQ_USER_ID and
MQ_PASSWORD environment variables. The values of these variables are passed
to the WebSphere MQ for z/VSE server program when the connection begins.
These variables should contain a valid user ID and password, respectively, that are
known to the z/VSE ESM or z/VSE BSM.

The WebSphere MQ for z/VSE server program, having identified and verified the
client user and password, then performs all security checks for that user, not the
WebSphere MQ for z/VSE startup user.

This means that the client user must have the appropriate access to the required
ESM resources. This is the same access that would be required for a normal CICS
transaction user.

For example, for a client program that identifies itself as user JANED, and intends
to connect to WebSphere MQ for z/VSE and browse queue EMPLOYEE.DETAILS
on z/VSE queue manager VSE.QM1 with SSID MQV1, you would need to define
and grant access to the following resources:

TSS PER(JANED) MQCONN(MQV1.CICS) ACC(READ)
TSS PER(JANED) MQQUEUE(MQV1.EMPLOYEE.DETAILS) ACC(READ)

For BSM, the BSTADMIN commands are:
PERMIT MQCONN MQV1.CICS ID(JANED) ACC(READ)
PERMIT MQQUEUE MQV1.EMPLOYEE.DETAILS ID(JANED) ACC(READ)

Because authentication is possible only for client programs that identify themselves
using the MQ_USER_ID and MQ_PASSWORD environment variables, WebSphere
MQ for z/VSE security for client programs is possible only for remote systems that
support this protocol.

Another consideration, which may affect Java program clients, is access permission
to the queue manager object. Some existing WebSphere MQ Java classes open the
queue manager object when they establish an initial connection. This means that
users using WebSphere MQ Java classes should be granted READ access to the
WebSphere MQ queue manager object.

For example:
TSS PER(cliuser) MQQUEUE(ssid.ssid) ACC(READ)

For BSM, the BSTADMIN command is:
PERMIT MQQUEUE ssid.ssid ID(cliuser) ACC(READ)

Client connections

Chapter 12. Security 659

Resource definitions for queue security
If queue security is active, you must define resources in the MQQUEUE class, and
permit the necessary groups or user IDs access to these resources, so that they can
issue WebSphere MQ API requests that use queues.

Resource names for queue security take the form:
ssid.queuename

where queuename is the name of the queue being opened, as specified in the object
descriptor on the MQOPEN or MQPUT1 call. It may also be the name of the queue
manager.

The ESM/BSM access required to open a queue depends on the MQOPEN or
MQPUT1 options specified. If more than one of the MQOO_* options is coded, the
queue security check is performed for the highest ESM/BSM authority required.

Table 17. Access levels for queue security

MQOPEN or MQPUT1 option ESM access level required to access
ssid.queuename

MQOO_BROWSE READ

MQOO_INQUIRE READ

MQOO_INPUT_* UPDATE

MQOO_OUTPUT or MQPUT1 UPDATE

MQOO_SET ALTER

For example, to grant user JOHNS authority to browse queue PAY.LIST on queue
manager VSE.QM1 with SSID MQV1:

TSS ADD(MQOWNER) MQQUEUE(MQV1.PAY.LIST)
TSS PER(JOHNS) MQQUEUE(MQV1.PAY.LIST) ACC(READ)

For BSM, the BSTADMIN commands are:
ADD MQQUEUE MQV1.PAY.LIST UACC(NONE)
PERMIT MQQUEUE MQV1.PAY.LIST ID(JOHNS) ACC(READ)

Alternatively, to grant user JOHNS authority to get and put messages to queue
PAY.LIST on SSID MQV1:

TSS PER(JOHNS) MQQUEUE(MQV1.PAY.LIST) ACC(READ,UPDATE)

For BSM, the BSTADMIN command is:
PERMIT MQQUEUE MQV1.PAY.LIST ID(JOHNS) ACC(UPDATE)

Note that the resource only needs to be created, and ownership applied, once.
Therefore, the TSS ADD command is issued only once for each queue resource
defined to class MQQUEUE. In BSM, the ADD command is also only issued once
for each resource defined to class MQQUEUE.

Considerations for alias queues
When you issue an MQOPEN or MQPUT1 call for an alias queue, WebSphere MQ
makes a resource check against the queue name specified in the object descriptor
(MQOD) on the call. It does not check whether the user is allowed access to the
target queue name.

Queue security

660 WebSphere MQ for z/VSE System Management Guide

For example, an alias queue called PAYROLL.REQUEST resolves to a target queue
of PAY.REQUEST. If queue security is active, a user only needs authorization to
access the queue PAYROLL.REQUEST. There is no check whether that user is
authorized to access the queue PAY.REQUEST.

Using alias queues with MQGET and MQPUT
The range of MQI calls available in one access level can cause a problem if you
want to restrict access to a queue to allow only the MQPUT call, or only the
MQGET call. You can protect a queue by defining two aliases that resolve to that
queue:
v One that enables applications to get message from the queue.
v One that enables applications to put messages on the queue.

The following text is an example of defining your queue to WebSphere MQ (these
definitions are based on OS/2 formats, and you should use the WebSphere MQ for
z/VSE Master Terminal transaction to create appropriate definitions):

DEFINE QLOCAL(USE_ALIAS_TO_ACCESS) GET(ENABLED)
PUT(ENABLED)

DEFINE QALIAS(USE_FOR_GETS) GET(ENABLED)
PUT(DISABLED) TARGQ(USE_ALIAS_TO_ACCESS)

DEFINE QALIAS(USE_FOR_PUTS) GET(DISABLED)
PUT(ENABLED) TARGQ(USE_ALIAS_TO_ACCESS)

You must also make the following ESM definitions:
TSS ADD(MQOWNER) MQQUEUE(ssid.USE_ALIAS_TO_ACCESS)
TSS ADD(MQOWNER) MQQUEUE(ssid.USE_FOR_GETS)
TSS ADD(MQOWNER) MQQUEUE(ssid.USE_FOR_PUTS)

For BSM, the BSTADMIN commands are:
ADD MQQUEUE ssid.USE_ALIAS_TO_ACCESS UACC(NONE)
ADD MQQUEUE ssid.USE_FOR_GETS UACC(NONE)
ADD MQQUEUE ssid.USE_FOR_PUTS UACC(NONE)

Then, you must ensure that no users have access to the queue
ssid.USE_ALIAS_TO_ACCESS, and give the appropriate users access to the alias.
You can do this using the following ESM commands:

TSS PER(JOHNS) MQQUEUE(ssid.USE_FOR_GETS) ACC(READ, UPDATE)
TSS PER(JANED) MQQUEUE(ssid.USE_FOR_PUTS) ACC(READ, UPDATE)

For BSM, the BSTADMIN commands are:
PERMIT MQQUEUE ssid.USE_FOR_GETS ID(JOHNS) ACC(UPDATE)
PERMIT MQQUEUE ssid.USE_FOR_PUTS ID(JANED) ACC(UPDATE)

This means that user JOHNS is only allowed to get messages from the
USE_ALIAS_TO_ACCESS queue through the alias USE_FOR_GETS, and user
JANED is only allowed to put messages through the alias queue USE_FOR_PUTS.

If you want to use a technique like this, you must inform the application
developers, so that they can design their programs appropriately.

Considerations for model queues
When you open a model queue, WebSphere MQ security makes two queue
security checks:
v Are you authorized to access the model queue?

Alias queues

Chapter 12. Security 661

v Are you authorized to access the dynamic queue to which the model queue
resolves?

If the dynamic queue name contains a trailing * character, this * is replaced by a
character string generated by WebSphere MQ, to create a dynamic queue with a
unique name. However, because the whole name, including this generated string,
is used for checking authority, you should define generic profiles for these queues.

For example, an MQOPEN call uses a model queue name of
CREDIT.CHECK.REPLY.MODEL and a dynamic queue name of CREDIT.REPLY.*
on queue manager MQV1. To do this, you must permit the issuing user
appropriate access to the following MQQUEUE resources:

MQV1.CREDIT.CHECK.REPLY.MODEL
MQV1.CREDIT.REPLY.*

If you are using BSM, then use the GEN keyword to denote generic profile names.
For example:

ADD MQQUEUE MQV1.CREDIT.CHECK.REPLY.MODEL UACC(NONE)
ADD MQQUEUE MQV1.CREDIT.REPLY GEN UACC(NONE)
PERMIT MQQUEUE MQV1.CREDIT.REPLY GEN ID(MQU3) ACCESS(UPDATE)

Permissions for these resources depend on the type of access required by the
MQOPEN call.

A typical dynamic queue name created by an MQOPEN is something like
CREDIT.REPLY.20051030163352675. The precise value of the last qualifier is
unpredictable; this is why you should use generic profiles for such queue names.

You might also consider defining a profile to control use of the dynamic queue
name used by default in the application programming copy members. The
WebSphere MQ-supplied copybooks contain a default DynamicQName, which is
AMQ.*. This enables an appropriate resource profile to be established.

Close options on permanent dynamic queues
If an application opens a permanent dynamic queue that was created by another
application and then attempts to delete that queue with an MQCLOSE option,
some extra security checks are applied when the attempt is made. See Table 18.

Table 18. Access levels for close options on permanent dynamic queues

MQCLOSE option ESM access level required to
access ssid.queuename

MQCO_DELETE ALTER

MQCO_DELETE_PURGE ALTER

Security and remote queues
When a message is put on a remote queue, a security check is performed against
the name of the remote queue. There is no check against the transmission queue
identified by the remote queue definition.

This means that users accessing a remote queue need at least UPDATE authority to
the resource, because it is not possible to browse a remote queue.

For example, you could define a remote queue as follows (this definition is based
on OS/2 formats, and you should use the WebSphere MQ for z/VSE Master
Terminal transaction to create appropriate definitions):

Alias queues

662 WebSphere MQ for z/VSE System Management Guide

DEFINE QREMOTE(BANK7.CREDIT.REFERENCE)
RNAME(CREDIT.SCORING.REQUEST)
RQMNAME(BNK7)
XMITQ(BANK1.TO.BANK7)

For user JOHNS to put a message to the remote queue, you would need to grant
the following access:

TSS PER(JOHNS) MQQUEUE(MQV1.BANK7.CREDIT.REFERENCE) ACC(UPDATE)

where MQV1 is the local WebSphere MQ for z/VSE subsystem ID.

For BSM, the BSTADMIN command is:
PERMIT MQQUEUE MQV1.BANK7.CREDIT.REFERENCE ID(JOHNS) ACC(UPDATE)

Dead-letter queue security
Undelivered messages can be put on a special queue called the dead-letter queue.
If you have sensitive data that could possibly be put on this queue, you must
consider the security implications of this, because you do not want unauthorized
users to be able to retrieve this data.

The only application able to retrieve messages from the dead-letter queue should
be a 'special' application that processes the undelivered messages. You can grant
access to the dead-letter queue in the same way as any other queue.

The WebSphere MQ for z/VSE Receiver and Sender MCAs user also requires
UPDATE authority to the dead-letter queue. The MCAs run as the WebSphere MQ
for z/VSE startup user (that is, the user who starts WebSphere MQ for z/VSE
using MQSE, MQIT or MQMT). If a message cannot be delivered by either MCA,
depending on the channel definition, the MCA may attempt to put the message to
the dead-letter queue. Therefore, the MCA user must have UPDATE authority. For
example:

TSS PER(MQSTART) MQQUEUE(MQV1.DEAD.LETTER.QUEUE) ACC(UPDATE)

where MQV1 is the local subsystem ID.

For BSM, the BSTADMIN command is:
PERMIT MQQUEUE MQV1.DEAD.LETTER.QUEUE ID(MQSTART) ACC(UPDATE)

If you want to use application programs that can put messages to, or get messages
from, the dead-letter queue (or do both), you might consider using aliases, as
described in “Using alias queues with MQGET and MQPUT” on page 661.

System queue security
System queues are accessed by the ancillary parts of the queue manager. System
queues, in addition to the dead-letter queue, include:
v System log
v System monitor

Messages are put to the system log by the MQER transaction. This transaction runs
as either the CICS default user identified by the CICS SIT parameter, or the user
specified in the MQER DCT entry (see Chapter 2, “Installation,” on page 13 for
more details). Therefore, whichever of these users is configured to put messages to
the system log should be granted connection, and also UPDATE authority, to the
queue resource.

For example:

Remote queues

Chapter 12. Security 663

TSS PER(MQSYS) MQCONN(MQV1.CICS) ACC(READ)
TSS PER(MQSYS) MQQUEUE(MQV1.SYSTEM.LOG) ACC(UPDATE)

For BSM, the BSTADMIN commands are:
PERMIT MQCONN MQV1.CICS ID(MQSYS) ACC(READ)
PERMIT MQQUEUE MQV1.SYSTEM.LOG ID(MQSYS) ACC(UPDATE)

For performance reasons, messages written to the system monitor are handled
internally to WebSphere MQ for z/VSE. This means that no explicit authority is
required for any particular user to put messages to the system monitor queue via
normal WebSphere MQ for z/VSE monitoring. If an application needs to explicitly
put messages to the system monitor, the application user must have UPDATE
authority to the queue resource.

If an application needs to get messages from the system monitor, the application
user must have READ or UPDATE authority to the queue resource. For example:

TSS PER(JOHNS) MQQUEUE(ssid.SYSTEM.MONITOR) ACC(UPDATE)

For BSM, the BSTADMIN command is:
PERMIT MQQUEUE ssid.SYSTEM.MONITOR ID(JOHNS) ACC(UPDATE)

Reply queue security
WebSphere MQ for z/VSE supports messages with report types of
Confirm-On-Arrival (COA) and Confirm-On-Delivery (COD). In either of these
cases, a report message is generated by WebSphere MQ for z/VSE. The required
user authority varies, depending on whether the report message is for COA or
COD, and how the ReplyToQ and ReplyToQMgr fields in the MQMD are used.

User authority for COA: When the ReplyToQ of the object message is a local
queue to the z/VSE queue manager, the application user that puts the object
message must have UPDATE authority to the ReplyToQ.

When the ReplyToQ of the object message is a remote queue name of the VSE
queue manager, the application user that puts the object message must have
UPDATE authority to the ReplyToQ.

When the ReplyToQ identifies a local queue on a remote queue manager, and the
ReplyToQMgr identifies a remote queue manager, the application user that puts
the object message must have UPDATE authority to the remote queue name that
resolves the remote local queue and remote queue manager.

User authority for COD: When the ReplyToQ of the object message is a local
queue to the z/VSE queue manager, the application user that gets the object
message must have UPDATE authority to the ReplyToQ.

When the ReplyToQ of the object message is a remote queue name of the VSE
queue manager, the application user that gets the object message must have
UPDATE authority to the ReplyToQ.

When the ReplyToQ identifies a local queue on a remote queue manager, and the
ReplyToQMgr identifies a remote queue manager, the application user that gets the
object message must have UPDATE authority to the remote queue name that
resolves the remote local queue and remote queue manager.

User authority for EXPIRY: Message expiry is managed by the queue manager
when an application attempts to retrieve a message from a queue. At this time, the

System queue security

664 WebSphere MQ for z/VSE System Management Guide

queue manager examines the Expiry field in the message descriptor of the message
to determine whether or not the message has expired. If the message has expired,
the queue manager continues to search for a valid message to return to the
application. Expired messages are never returned.

When a message is identified as 'expired', the queue manager places an expiry
entry on transient data queue MQXP. The MQXP data queue is defined at
installation time to automatically fire a transaction (also MQXP) when there are
items on the queue. For more information about installation and the MQXP
transient data queue, refer to “Changing the MQXP TDQ definition” on page 22.

The MQXP transaction is responsible for logically deleting expired messages from
queues. It is also responsible for generating expiry report messages when
requested.

An expiry report message is requested when the Report field of the message
descriptor of the originalmessage indicates one of the following report options:

MQRO_EXPIRATION
MQRO_EXPIRATION_WITH_DATA
MQRO_EXPIRATION_WITH_FULL_DATA

Expiry report messages are sent to the queue identified by the ReplyToQ and
ReplyToQMgr message descriptor fields of expired messages. Consequently, the
user that runs the MQXP transaction must have connect authority and the
authority to put a report message on any potential reply queue.

The MQXP transaction runs as the CICS default user unless the destination control
table (DCT) entry for the MQXP transient data queue identifies a specific userid in
its definition (see “Changing the MQXP TDQ definition” on page 22 for more
details).

Resource definitions for namelist security
If namelist security is active, you must define resources in the MQNLIST class, and
permit the necessary groups or user IDs access to these resources, so that they can
issue WebSphere MQ API requests that use namelists.

Resource names for namelist security take the form:
ssid.NamelistName

where NamelistName is the name of the namelist being opened, as specified in the
object descriptor on the MQOPEN call.

The ESM/BSM access required to open a namelist is always READ, because
namelists can only be opened for inquiry, by way of using the MQOO_INQUIRE
option.

Table 19. Access levels for namelist security

MQOPEN option ESM access level required to
access ssid.NamelistName

MQOO_INQUIRE READ

For example, to grant user JOHNS authority to inquire on namelist PAY.QUEUES
on queue manager with SSID MQV1:

Reply queue security

Chapter 12. Security 665

TSS ADD(MQOWNER) MQNLIST(MQV1.PAY.QUEUES)
TSS PER(JOHNS) MQNLIST(MQV1.PAY.QUEUES) ACC(READ)

For BSM, the BSTADMIN commands are:
ADD MQNLIST MQV1.PAY.QUEUES UACC(NONE)
PERMIT MQNLIST MQV1.PAY.QUEUES ID(JOHNS) ACC(READ)

Note, that the resource only needs to be created, and ownership applied, once.
Therefore, the TSS ADD (or BSM ADD) command is issued only once for each
namelist resource defined to class MQNLIST.

Resource definitions for command security
If command security is active, you must define resources in the MQCMDS class,
and permit the necessary groups or user IDs access to these resources, so that they
can issue WebSphere MQ commands.

Resource names for command security take the form:
ssid.command

where command is a type of command. For example:
ssid.ALTER.QLOCAL
ssid.DISPLAY.QMGR
ssid.DELETE.CHANNEL

Commands can be issued as:
v PCF messages.
v MQSC verb-based commands.
v Master terminal interactive options.

Command security for PCF messages
The WebSphere MQ command server (long-running transaction MQCS) starts an
instance of the WebSphere MQ command processor (transaction MQCX) for each
PCF messages retrieved from the system command queue that passes initial
validation.

If command security is active, the command server starts with MQCX transaction
as the user identified in the UserIdentifier field of the message descriptor of the
PCF message. Command security checks are then made for the user running the
MQCX transaction. Consequently, command security checks are made against the
user running the MQCX transaction, not the user running the MQCS transaction.

For command security to work in this way, the WebSphere MQ command server
(MQCS) must be started by a user with surrogate authority for all users that can
put messages to the system command queue.

Authority for users that send command messages to the system command queue is
three-fold:
v They must have authority to issue the command (for example, DISPLAY).
v They must have authority to send messages the ReplyToQ/ReplyToQMgr.
v They must have authority to issue the command against a specific resource.

This last requirement is only relevant for those commands that manipulate a
specific resources, and falls under command resource security described below.

Resource definitions for namelist security

666 WebSphere MQ for z/VSE System Management Guide

The authority required to issue PCF commands is described in the following table.

Table 20. Command authority for PCF commands

PCF Command Resource Authority

MQCMD_CHANGE_CHANNEL ssid.ALTER.CHANNEL ALTER

MQCMD_CHANGE_LISTENER ssid.ALTER.LISTENER ALTER

MQCMD_CHANGE_Q (alias) ssid.ALTER.QALIAS ALTER

MQCMD_CHANGE_SERVICE ssid.ALTER.SERVICE ALTER

MQCMD_CHANGE_NAMELIST ssid.ALTER.NAMELIST ALTER

MQCMD_CHANGE_Q_MGR ssid.ALTER.QMGR ALTER

MQCMD_CHANGE_Q (alias) ssid.ALTER.QALIAS ALTER

MQCMD_CHANGE_Q (local) ssid.ALTER.QLOCAL ALTER

MQCMD_CHANGE_Q (model) ssid.ALTER.QMODEL ALTER

MQCMD_CHANGE_Q (remote) ssid.ALTER.QREMOTE ALTER

MQCMD_COPY_CHANNEL ssid.DISPLAY.CHANNEL
ssid.ssid.DEFINE.CHANNEL

READ

MQCMD_COPY_LISTENER ssid.DISPLAY.LISTENER
ssid.DEFINE.LISTENER

READ
ALTER

MQCMD_COPY_NAMELIST ssid.DISPLAY.NAMELIST
ssid.DEFINE.NAMELIST

READ
ALTER

MQCMD_COPY_Q (alias) ssid.DISPLAY.QUEUE READ

ssid.DEFINE.QALIAS ALTER

MQCMD_COPY_Q (local) ssid.DISPLAY.QUEUE READ

ssid.DEFINE.QLOCAL ALTER

MQCMD_COPY_Q (model) ssid.DISPLAY.QUEUE READ

ssid.DEFINE.QMODEL ALTER

MQCMD_COPY_SERVICE ssid.DISPLAY.SERVICE
ssid.DEFINE.SERVICE

READ
ALTER

MQCMD_COPY_Q (remote) ssid.DISPLAY.QUEUE READ

ssid.DEFINE.QREMOTE ALTER

MQCMD_CREATE_CHANNEL ssid.DEFINE CHANNEL ALTER

MQCMD_CREATE_LISTENER ssid.DEFINE.LISTENER ALTER

MQCMD_CREATE_NAMELIST ssid.DEFINE.NAMELIST ALTER

MQCMD_CREATE_Q (alias) ssid.DEFINE.QALIAS ALTER

MQCMD_CREATE_Q (local) ssid.DEFINE.QLOCAL ALTER

MQCMD_CREATE_Q (model) ssid.DEFINE.QMODEL ALTER

MQCMD_CREATE_Q (remote) ssid.DEFINE.QALIAS ALTER

MQCMD_CREATE_SERVICE ssid.DEFINE.SERVICE ALTER

MQCMD_DELETE_CHANNEL ssid.DELETE.CHANNEL ALTER

MQCMD_DELETE_LISTENER ssid.DELETE.LISTENER ALTER

MQCMD_DELETE_NAMELIST ssid.DELETE.NAMELIST ALTER

MQCMD_DELETE_Q (alias) ssid.DELETE.QALIAS ALTER

MQCMD_DELETE_Q (local) ssid.DELETE.QLOCAL ALTER

MQCMD_DELETE_Q (model) ssid.DELETE.QMODEL ALTER

Command security for PCF messages

Chapter 12. Security 667

Table 20. Command authority for PCF commands (continued)

PCF Command Resource Authority

MQCMD_DELETE_Q (remote) ssid.DELETE.QREMOTE ALTER

MQCMD_DELETE_SERVICE ssid.DELETE.SERVICE ALTER

MQCMD_INQUIRE_CHANNEL ssid.DISPLAY.CHANNEL READ

MQCMD_INQUIRE_LISTENER
MQCMD_INQUIRE_LISTENER_STATUS

ssid.DISPLAY.LISTENER
ssid.DISPLAY.LSSTATUS

READ
READ

MQCMD_INQUIRE_CHANNEL_STATUS ssid.DISPLAY.CHANNEL READ

MQCMD_INQUIRE_CONNECTION ssid.DISPLAY.CONN READ

MQCMD_INQUIRE_Q ssid.DISPLAY.QUEUE READ

MQCMD_INQUIRE_Q_MGR ssid.DISPLAY.QMGR READ

MQCMD_INQUIRE_Q_STATUS ssid.DISPLAY.QUEUE READ

MQCMD_INQUIRE_CHANNEL_NAMES ssid.DISPLAY.CHANNEL READ

MQCMD_INQUIRE_NAMELIST ssid.DISPLAY.NAMELIST READ

MQCMD_INQUIRE_NAMELIST_NAMES ssid.DISPLAY.NAMELIST READ

MQCMD_INQUIRE_Q_NAMES ssid.DISPLAY.QUEUE READ

MQCMD_INQUIRE_SERVICE
MQCMD_INQUIRE_SERVICE_STATUS

ssid.DISPLAY.SERVICE
ssid.DISPLAY.SVSTATUS

READ
READ

MQCMD_PING_Q_MGR ssid.PING.QMGR CONTROL1

MQCMD_RESET_CHANNEL ssid.RESET.CHANNEL CONTROL1

MQCMD_START_CHANNEL ssid.START.CHANNEL CONTROL1

MQCMD_START_CHANNEL_LISTENER ssid.START.LISTENER CONTROL1

MQCMD_START_SERVICE ssid.START.SERVICE CONTROL1

MQCMD_STOP_CHANNEL ssid.STOP.CHANNEL CONTROL1

MQCMD_STOP_CONNECTION ssid.STOP.CONN CONTROL1

MQCMD_STOP_LISTENER
MQCMD_STOP_SERVICE

ssid.STOP.LISTENER
ssid.STOP.SERVICE

CONTROL1

CONTROL1

Note:

1. If you are using the Basic Security Manager (BSM), then use authority UPDATE instead
of CONTROL.

Command security for WebSphere MQ commands
WebSphere MQ commands are generated by the WebSphere MQ MQSC command
utility. The MQSC utility generates PCF Escape messages from SYSIPT batch input
and places them on the system command queue using the WebSphere MQ batch
interface. Consequently, the user that runs the MQSC command utility must have
authority to connect to the queue manager and put messages on the system
command queue.

Once an MQSC command has been placed on the system command queue (as a
PCF Escape message) it is treated like any other PCF message. The WebSphere MQ
command server retrieves the message and starts the WebSphere MQ command
processor (MQCX transaction) as the user identified in the UserIdentifier field of
the message descriptor.

If security is active, the user that submits the batch job to run the MQSC command
utility is the userid that is placed in the UserIdentifier field. This user must have

Command security for PCF messages

668 WebSphere MQ for z/VSE System Management Guide

authority to put a reply message on the system reply queue. The system reply
queue name is configurable as a communication parameter of the global system
definition.

The authority required for PCF Escape messages is dependent on the verb-based
text of the MQSC command embedded in the Escape message, and is determined
by the following table:

Table 21. Command authority for WebSphere MQ commands

WebSphere MQ Command Resource Authority

ALTER CHANNEL ssid.ALTER.CHANNEL ALTER

ALTER LISTENER ssid.ALTER.LISTENER ALTER

ALTER NAMELIST ssid.ALTER.NAMELIST ALTER

ALTER QMGR ssid.ALTER.QMGR ALTER

ALTER QALIAS ssid.ALTER.QALIAS ALTER

ALTER QLOCAL ssid.ALTER.QLOCAL ALTER

ALTER QMODEL ssid.ALTER.QMODEL ALTER

ALTER QREMOTE ssid.ALTER.QREMOTE ALTER

ALTER SERVICE ssid.ALTER.SERVICE ALTER

DEFINE CHANNEL ssid.DEFINE CHANNEL ALTER

DEFINE LISTENER ssid.DEFINE.LISTENER ALTER

DEFINE NAMELIST ssid.DEFINE.NAMELIST ALTER

DEFINE QALIAS ssid.DEFINE.QALIAS ALTER

DEFINE QLOCAL ssid.DEFINE.QLOCAL ALTER

DEFINE QMODEL ssid.DEFINE.QMODEL ALTER

DEFINE QREMOTE ssid.DEFINE.QALIAS ALTER

DEFINE SERVICE ssid.DEFINE.SERVICE ALTER

DELETE CHANNEL ssid.DELETE.CHANNEL ALTER

DELETE LISTENER ssid.DELETE.LISTENER ALTER

DELETE NAMELIST ssid.DELETE.NAMELIST ALTER

DELETE QALIAS ssid.DELETE.QALIAS ALTER

DELETE QLOCAL ssid.DELETE.QLOCAL ALTER

DELETE QMODEL ssid.DELETE.QMODEL ALTER

DELETE QREMOTE ssid.DELETE.QREMOTE ALTER

DELETE SERVICE ssid.DELETE.SERVICE ALTER

DISPLAY CHANNEL ssid.DISPLAY.CHANNEL READ

DISPLAY CHSTATUS ssid.DISPLAY.CHANNEL READ

DISPLAY CONN ssid.DISPLAY.CONN READ

DISPLAY LISTENER
DISPLAY LSSTATUS

ssid.DISPLAY.LISTENER
ssid.DISPLAY.LSSTAUS

READ
READ

DISPLAY NAMELIST ssid.DISPLAY.NAMELIST READ

DISPLAY QALIAS ssid.DISPLAY.QUEUE READ

DISPLAY QLOCAL ssid.DISPLAY.QUEUE READ

DISPLAY QMODEL ssid.DISPLAY.QUEUE READ

Command security for WebSphere MQ commands

Chapter 12. Security 669

Table 21. Command authority for WebSphere MQ commands (continued)

WebSphere MQ Command Resource Authority

DISPLAY QREMOTE ssid.DISPLAY.QUEUE READ

DISPLAY QMGR ssid.DISPLAY.QMGR READ

DISPLAY QSTATUS ssid.DISPLAY.QUEUE READ

DISPLAY SERVICE ssid.DISPLAY.SERVICE READ

DISPLAY SVSTATUS ssid.DISPLAY.SVSTATUS READ

PING QMGR ssid.PING.QMGR CONTROL1

RESET CHANNEL ssid.RESET.CHANNEL CONTROL1

START CHANNEL ssid.START.CHANNEL CONTROL1

START LISTENER ssid.START.LISTENER CONTROL1

START SERVICE ssid.START.SERVICE CONTROL1

STOP CHANNEL ssid.STOP.CHANNEL CONTROL1

STOP CONN ssid.STOP.CONN CONTROL1

STOP LISTENER ssid.STOP.LISTENER CONTROL1

STOP SERVICE ssid.STOP.SERVICE CONTROL1

Note:

1. If you are using the Basic Security Manager (BSM), then use authority ALTER instead
of CONTROL.

Command security for MQMT options
Command can be issued interactively via the WebSphere MQ master terminal
transaction. Generally, these are invoked in native CICS from the MQMT
transaction.

The MQMT transaction provides a primary options menu. Most of the menu
options can be invoked directly by starting the appropriate WebSphere MQ
transaction.

The following table describes these options and transactions, and the resources and
authority necessary to perform the option.

Table 22. Command authority for MQMT options

Option Trans Function Resource Authority

1.1 MQMS Maintain QMgr ssid.DISPLAY.QMGR READ

ssid.ALTER.QMGR ALTER

1.2 MQMQ Maintain Queues ssid.DISPLAY.QUEUE READ

1.2 MQMQ Maintain Queue (alias) ssid.ALTER.QALIAS ALTER

1.2 MQMQ Maintain Queue (local) ssid.ALTER.QLOCAL ALTER

1.2 MQMQ Maintain Queue
(remote)

ssid.ALTER.QREMOTE ALTER

1.3 MQMH Maintain Channel ssid.DISPLAY.CHANNEL READ

ssid.ALTER.CHANNEL ALTER

1.5 MQMN Maintain Namelists ssid.DISPLAY.NAMELIST
ssid.ALTER.NAMELIST

READ ALTER

1.6 MQDS Display QMgr ssid.DISPLAY.QMGR READ

Command security for WebSphere MQ commands

670 WebSphere MQ for z/VSE System Management Guide

Table 22. Command authority for MQMT options (continued)

Option Trans Function Resource Authority

1.7 MQDQ Display Queues ssid.DISPLAY.QUEUE READ

1.8 MQDH Display Channel ssid.DISPLAY.CHANNEL READ

1.10 MQDN Display Namelists ssid.DISPLAY.NAMELIST READ

2.2 MQMB Start channel ssid.START.CHANNEL CONTROL1

2.2 MQMB Stop channel ssid.STOP.CHANNEL CONTROL1

2.3 MQMR Reset channel ssid.RESET.CHANNEL CONTROL1

3.1 MQQM Monitor queues ssid.DISPLAY.QUEUE READ

3.2 MQCM Monitor channel ssid.DISPLAY.CHANNEL READ

Note:

1. If you are using the Basic Security Manager (BSM), then use authority ALTER instead
of CONTROL.

In addition to the command authority required to issue a command, the issuing
user must have command resource authority for a specific resource when a specific
resource is affected by the command.

Table 23 describes the resources and authority necessary to perform the various
actions on listener and service objects using the administrator panels.

Table 23. Authority and profiles for listener and service objects

Panel actions MQCMDS profile Access MQADMIN profile

Update ssid.ALTER.LISTENER ALTER ssid.LISTENER.listener

Update ssid.ALTER.SERVICE ALTER ssid.SERVICE.service

Add ssid.DEFINE.LISTENER ALTER ssid.LISTENER.listener

Add ssid.DEFINE.SERVICE ALTER ssid.SERVICE.service

Delete ssid.DELETE.LISTENER ALTER ssid.LISTENER.listener

Delete ssid.DELETE.SERVICE ALTER ssid.SERVICE.service

Read ssid.DISPLAY.LISTENER READ No check

Read ssid.DISPLAY.SERVICE READ No check

Start ssid.START.LISTENER CONTROL1 No check

Start ssid.START.SERVICE CONTROL1 No check

Stop ssid.STOP.LISTENER CONTROL1 No check

Stop ssid.STOP.SERVICE CONTROL1 No check

Note:

1. If you are using the Basic Security Manager (BSM), then use authority ALTER instead
of CONTROL.

Resource definitions for command resource security
If command resource security is active, you must grant command authority by
resource to any user that is authorized to issue commands against that specific
resource.

Command security allows a user to issue certain commands. Command resource
security allows a user to issue those commands against specific resources. For

Command security for MQMT options

Chapter 12. Security 671

example, a user may be authorized to 'DISPLAY' certain queues and not others. To
achieve this, the user is granted command authority to 'DISPLAY', and is then
granted command resource security for each queue the user is allowed to display.

Resources relevant to command resource security must be defined in the
MQADMIN class.

The following table describes the resources and authority required for PCF
messages (the constant 'ssid' should be replaced by the queue manager's subsystem
ID, and names expressed in lower-case should be replaced with the names of
specific resources):

Table 24. Command resource authority for PCF commands

Command Command resource Authority

MQCMD_CHANGE_CHANNEL ssid.CHANNEL.channel ALTER

MQCMD_CHANGE_NAMELIST ssid.NAMELIST.namelist ALTER

MQCMD_CHANGE_Q ssid.QUEUE.queue ALTER

MQCMD_COPY_CHANNEL ssid.CHANNEL.tochannel ALTER

MQCMD_COPY_NAMELIST ssid.NAMELIST.namelist ALTER

MQCMD_COPY_Q ssid.QUEUE.toqueue ALTER

MQCMD_CREATE_CHANNEL ssid.CHANNEL.channel ALTER

MQCMD_CREATE_NAMELIST ssid.NAMELIST.namelist ALTER

MQCMD_CREATE_Q ssid.QUEUE.queue ALTER

MQCMD_DELETE_CHANNEL ssid.CHANNEL.channel ALTER

MQCMD_DELETE_NAMELIST ssid.NAMELIST.namelist ALTER

MQCMD_DELETE_Q ssid.QUEUE.queue ALTER

MQCMD_RESET_CHANNEL ssid.CHANNEL.channel CONTROL1

MQCMD_START_CHANNEL ssid.CHANNEL.channel CONTROL1

MQCMD_STOP_CHANNEL ssid.CHANNEL.channel CONTROL1

Note:

1. if you are using the Basic Security Manager (BSM), then use authority ALTER instead
of CONTROL.

The following table describes the resources and authority required for MQCS
commands (the constant 'ssid' should be replaced by the queue manager's
subsystem identifier, and names expressed in lower-case should be replaced with
the names of specific resources):

Table 25. Command resource authority for WebSphere MQ commands

MQCS Command Resource Authority

ALTER CHANNEL ssid.CHANNEL.channel ALTER

ALTER NAMELIST ssid.NAMELIST.namelist ALTER

ALTER QALIAS ssid.QUEUE.queue ALTER

ALTER QLOCAL ssid.QUEUE.queue ALTER

ALTER QMODEL ssid.QUEUE.queue ALTER

ALTER QREMOTE ssid.QUEUE.queue ALTER

DEFINE CHANNEL ssid.CHANNEL.channel ALTER

Resource definitions for command resource security

672 WebSphere MQ for z/VSE System Management Guide

Table 25. Command resource authority for WebSphere MQ commands (continued)

MQCS Command Resource Authority

DEFINE NAMELIST ssid.NAMELIST.namelist ALTER

DEFINE QALIAS ssid.QUEUE.queue ALTER

DEFINE QLOCAL ssid.QUEUE.queue ALTER

DEFINE QMODEL ssid.QUEUE.queue ALTER

DEFINE QREMOTE ssid.QUEUE.queue ALTER

DELETE CHANNEL ssid.CHANNEL.channel ALTER

DELETE NAMELIST ssid.NAMELIST.namelist ALTER

DELETE QALIAS ssid.QUEUE.queue ALTER

DELETE QLOCAL ssid.QUEUE.queue ALTER

DELETE QMODEL ssid.QUEUE.queue ALTER

DELETE QREMOTE ssid.QUEUE.queue ALTER

RESET CHANNEL ssid.CHANNEL.channel CONTROL1

START CHANNEL ssid.CHANNEL.channel CONTROL1

STOP CHANNEL ssid.CHANNEL.channel CONTROL1

Note:

1. if you are using the Basic Security Manager (BSM), then use authority ALTER instead
of CONTROL.

The following table describes the resources and authority required for master
terminal options and associated transactions (the constant 'ssid' should be replaced
by the queue manager's subsystem identifier, and names expressed in lower-case
should be replaced with the names of specific resources):

Table 26. Command resource authority for MQMT options

Option Trans Function Resource Authority

1.2 MQMQ Maintain Queues ssid.QUEUE.queue ALTER

1.3 MQMH Maintain Channel ssid.CHANNEL.channel ALTER

1.5 MQMN Maintain Namelists ssid.NAMELIST.namelist ALTER

2.2 MQMB Start channel ssid.CHANNEL.channel CONTROL1

2.2 MQMB Stop channel ssid.CHANNEL.channel CONTROL1

2.3 MQMR Reset channel ssid.CHANNEL.channel CONTROL1

Note:

1. If you are using the Basic Security Manager (BSM), then use authority UPDATE instead
of CONTROL.

In addition to the command resource authority described in table x, the master
terminal transactions also require special authority for options 2.5 and 4.0. Relevant
resources must be defined in the MQQUEUE class (not the MQADMIN class)
according to the following table:

Table 27. Command resource authority for MQMT options 2.5 and 4.0

Option Trans Function Resource Authority

2.5 MQMD Maintain messages ssid.queue UPDATE

Resource definitions for command resource security

Chapter 12. Security 673

Table 27. Command resource authority for MQMT options 2.5 and 4.0 (continued)

Option Trans Function Resource Authority

4.0 MQBQ Browse queues ssid.queue READ

Security implementation checklist
This section contains a step-by-step procedure you can use to work out and define
the security implementation for each of your WebSphere MQ subsystems. Refer to
other sections for details, in particular “Using security classes and resources” on
page 655.

If you require security checking to be implemented on at least one of your
WebSphere MQ subsystems, you must first activate the MQADMIN class. Then, for
each WebSphere MQ subsystem, you must decide whether you need security
checking on that subsystem. If you do not require security checking, you must
define an ssid.NO.SUBSYS.SECURITY profile in the MQADMIN class.

If you do require security checking, use the following checklist to implement it:
v Do you need connection security?

Yes: Define appropriate connection profiles in the MQCONN class and
permit the appropriate users or groups access to these profiles.

No: Define an ssid.NO.CONNECT.CHECKS resource in the MQADMIN class
and grant your WebSphere MQ for z/VSE startup user READ access to
the resource.

v Do you need security checking on commands?

Yes: Activate the MQCMDS class. Define appropriate command profiles in
the MQCMDS class and permit the appropriate users access to these
profiles. If command authority by individual resource is required, define
appropriate resource profiles in the MQADMIN class and grant access to
these profiles as appropriate.

No: Define resources ssid.NO.CMDS.CHECKS and
ssid.NO.CMD.RESC.CHECKS in the MQADMIN class and grant read
authority to both resources to your WebSphere MQ for z/VSE startup
user.

v Do you need queue security?

Yes: Activate the MQQUEUE class. Define appropriate queue resources in the
MQQUEUE class and permit the appropriate user access to these
profiles.

Also, ensure that your WebSphere MQ VSAM datasets are protected
against unauthorized access.

No: Define an ssid.NO.QUEUE.CHECKS profile in the MQADMIN class and
grant read authority to your WebSphere MQ for z/VSE startup user.

v Do you need namelist security?

Yes: Activate the MQNLIST class. Define appropriate namelist resources in
the MQNLIST class and permit the appropriate user access to these
profiles.

No: Define an ssid.NO.NLIST.CHECKS profile in the MQADMIN class and
grant read authority to your WebSphere MQ for z/VSE startup user.

v Do you plan to have remote client connections?

Resource definitions for command resource security

674 WebSphere MQ for z/VSE System Management Guide

Yes: Ensure that your remote clients use the MQ_USER_ID and
MQ_PASSWORD environment variables, and ensure that such users are
defined to your ESM or BSM.

For a detailed example of resource definitions and access authorities for WebSphere
MQ for z/VSE, refer to Appendix H, “Security implementation,” on page 1055.

Security implementation checklist

Chapter 12. Security 675

676 WebSphere MQ for z/VSE System Management Guide

Chapter 13. API exits

API exits let you write code that changes the behavior of WebSphere MQ API calls,
such as MQPUT and MQGET, and then insert that code immediately before or
immediately after those calls. The insertion is automatic; the queue manager drives
the exit code at the registered points.

This chapter explains why you might want to use API exits, then describes what
administration tasks are involved in enabling them. The sections are:
v “Why you would use API exits”
v “Configuring API exits”
v “How API exits work” on page 678
v “How to write an API exit” on page 679
v “API Exit reference information” on page 681

Why you would use API exits
There are many reasons why you might want to insert code that modifies the
behavior of applications at the level of the queue manager. Each of your
applications has a specific job to do, and its code should do that task as efficiently
as possible. At a higher level, you might want to apply standards or business
processes to a particular queue manager for all the applications that use that queue
manager. It is more efficient to do this above the level of individual applications,
and thus without having to change the code of each application affected.

Here are a few suggestions of areas in which API exits might be useful:
v For security, you can provide authentication, checking that applications are

authorized to access a queue or queue manager. You can also police applications'
use of the API, authenticating the individual API calls, or even the parameters
they use.

v For flexibility, you can respond to rapid changes in your business environment
without changing the applications that rely on the data in that environment. You
could, for example, have API exits that respond to changes in interest rates,
currency exchange rates, or the price of components in a manufacturing
environment.

v For monitoring use of a queue or queue manager, you can trace the flow of
applications and messages, log errors in the API calls, set up audit trails for
accounting purposes, or collect usage statistics for planning purposes.

Configuring API exits
On WebSphere MQ for z/VSE, API exits are configured as part of the queue
manager's global system definition. API exits can only be configured using the
WMQ master terminal transactions; there is no facility to configure API exits using
PCF, MQSC or the WebSphere MQ Explorer on z/VSE.

Using the master terminal transaction MQMT option 1.1, and then PF12, you can
start the API Exits configuration screen.

© Copyright IBM Corp. 2008, 2013 677

On this screen, you can configure up to eight API exits and their associated exit
data. If more than one exit is configured, the API exits are called in the order
enumerated on the screen.

Here are the entry fields on this screen:

Name The descriptive name of the API exit passed to it in the ExitInfoName field
of the MQAXP structure. Like all WMQ object names, it must conform to
the naming rules described in “Object names” on page 3.

The maximum length of this field is MQ_OBJECT_NAME_LENGTH.

Module
The executable phase that contains your MQ API exit routine. API exits
programs must be accessible to your CICS region.

The maximum length of this field is MQ_EXIT_NAME_LENGTH,

Data Exit data passed to your exit program on invocation.

The maximum length of this field is MQ_EXIT_DATA_LENGTH.

Use the PF6 function key to add or update your MQ API exit settings.

How API exits work
The API exits defined to your queue manager are called in the sequence specified
when an MQCONN/MQCONNX call is issued by the queue manager or an
application. The API exit is expected to use the MQXEP application program
interface to register other exit routines that are to be called either before or after
MQI calls.

The MQXEP API is provided in the WMQ for z/VSE installation library as file
MQXEP.OBJ, and is described in detail in “MQXEP - Register entry point” on page
696. This object must be link-edited with your API exit program.

Your API exit can use MQXEP to register routines to be called before and after the
following:

10/22/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
10:51:25 Global System Definition CIC1
MQWMSYS API Exits Settings A000

Local API Exits
1. Name: MQ_SAMPLE_EXIT

Module: MQPSAXE Data: Exit data goes here if needed.
2. Name:

Module: Data:
3. Name:

Module: Data:
4. Name:

Module: Data:
5. Name:

Module: Data:
6. Name:

Module: Data:
7. Name:

Module: Data:
8. Name:

Module: Data:
Requested record displayed.
PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 86. API Exits screen

Configuring API exits

678 WebSphere MQ for z/VSE System Management Guide

v MQCONN/MQCONNX, to provide a queue manager connection handle for use
on subsequent API calls.

v MQDISC, to disconnect from a queue manager.
v MQBACK, to back out a UOW.
v MQCMIT, to commit a UOW.
v MQOPEN, to open an WMQ resource for subsequent access.
v MQCLOSE, to close an WMQ resource that had previously been opened for

access.
v MQGET, to retrieve a message from a queue that has previously been opened

for access.
v MQPUT, to place a message on to a queue that has previously been opened for

access.
v MQINQ, to inquire on the attributes of an WMQ resource that has previously

been opened for access.
v MQSET, to set the attributes of a queue that has previously been opened for

access.

Note that WebSphere MQ for z/VSE does not support exit points for the MQPUT1
call. This is because on WMQ for z/VSE the MQPUT1 call is an encapsulation of
the MQOPEN, MQPUT and MQCLOSE calls. Consequently, if you need to
intercept the MQPUT1 call, you must at least intercept the MQPUT call.

In addition, MQXEP can be called to register an exit routine before message data
conversion performed during MQGET processing that uses the
MQGMO_CONVERT option.

Registering exit points involves identifying the relevant MQI call, whether the exit
function should be called before or after the MQI call, and the address of the exit
function to call. These are passed as parameters to the MQXEP call.

Once the API exit (or exits) has been called by the queue manager, it is not called
again until another MQCONN/MQCONNX call is issued. Only the exit functions
registered by the API exit are called thereafter. These are called as often as the
relevant MQI calls are issued for the connection that activated the API exit. When
the connection ends, via the MQDISC call, the exit functions registered by the API
exit are deregistered automatically.

Exit functions registered with MQXEP can also call the MQXEP API to deregister
themselves or other exit functions associated with the connection. For more
information about deregistering exit functions refer to “MQXEP - Register entry
point” on page 696.

How to write an API exit
You write your exits using the C, COBOL or PL/I programming languages. To
help you do so, we provide a sample exit, MQPSAXE.Z, that generates trace
entries to a named file. When you start writing exits, we recommend that you use
this as your starting point.

Essentially, your API exit program will be a series of calls to the MQXEP API that
register the MQI calls you want to intercept and whether the interception should
occur before and/or after the MQI calls.

How API exits work

Chapter 13. API exits 679

For example, the following C language code illustrates how you might register an
exit function to be called before each MQOPEN call.
#include <cmqc.h>
#include <cmqxc.h>

#pragma linkage(EntryPoint, FETCHABLE)
MQ_INIT_EXIT EntryPoint;
void MQENTRY EntryPoint (PMQAXP pExitParms

, PMQAXC pExitContext
, PMQLONG pCompCode
, PMQLONG pReason)

{
PMQFUNC xfunc;

xfunc = (PMQFUNC)fetchep((void(*)())OpenBefore);

MQXEP (pExitParms->Hconfig
, MQXR_BEFORE
, MQXF_OPEN
, xfunc
, NULL
, pCompCode
, pReason);

return;
}

MQ_OPEN_EXIT OpenBefore;
void MQENTRY OpenBefore (PMQAXP pExitParms

, PMQAXC pExitContext
, PMQHCONN pHconn
, PPMQOD ppObjDesc
, PMQLONG pOptions
, PPMQHOBJ ppHobj
, PMQLONG pCompCode
, PMQLONG pReason)

{
.
.
.
return;

}

In this example, the API exit entry point called EntryPoint is called when the
queue manager or an application issues an MQCONN/MQCONNX call. The API
exit calls MQXEP to register exit function OpenBefore to be called before each
MQOPEN call. Consequently, each call to MQOPEN associated with the connection
that activated the API exit will result in a call to the OpenBefore function. Calls to
OpenBefore end when the MQDISC is called for the connection.

Note that your API exit and registered exit functions are always passed the
MQAXP and MQAXC data structures. These are described in “MQAXP - API exit
parameter” on page 689 and “MQAXC - API exit context” on page 685.

The following table identifies the copybooks and header files containing the
constants and prototypes needed to write API exits. These are provided in the
WMQ for z/VSE installation sublibrary.

Table 28. API exit copybooks

Copybook Description

CMQXC.H C language header file

How to write an API exit

680 WebSphere MQ for z/VSE System Management Guide

Table 28. API exit copybooks (continued)

Copybook Description

CMQXP.P PL/I language include file

CMQXV.C COBOL copybook

Exit functions take the general form:
MQ_call_EXIT (parameters)

where call is the API call name (PUT, GET, and so on), and the parameters control
the function of the exit, primarily providing communication between the exit and
the external control blocks MQAXP (the exit parameter structure) and MQAXC (the
exit context structure).

Compiling API exits
API exits can be written in C, COBOL or PL/I programming languages. The
MQ_INIT_EXIT entry point must be fetchable. For example, in the C language you
can use the following compiler directive:

#pragma linkage(my_init_exit, FETCHABLE)

When an MQCONN/MQCONNX call is issued, the queue manager uses the C
run-time FETCH() call to load configured API exits into storage, and then branches
to the fetched entry point of your API exit. The API exit is called prior to the
"before" MQCONN/MQCONNX exit point. Consequently, if your API exit uses
MQXEP to register an exit function to be called before MQCONN/MQCONNX, it
will be called after the API exit has run.

You compile your API exit with your relevant Language Environment for z/VSE
compiler.

Linking API exits
API exits must be linked with the MQXEP.OBJ object file provided in the WMQ for
z/VSE installation sublibrary.

The entry point in the MQXEP.OBJ file is also called MQXEP, consequently you do
not need an INCLUDE card in you link or pre-link step.

API Exit reference information
This section provides reference information for the API exit. It includes:
v “General usage notes” on page 682
v Data structures used by an API exit function:

– “MQACH - API exit chain header” on page 683
– “MQAXC - API exit context” on page 685
– “MQAXP - API exit parameter” on page 689

v Calls an API exit function can issue:
– “MQXEP - Register entry point” on page 696

v Definitions of the API exit functions:
– “MQ_BACK_EXIT - Back out changes” on page 699
– “MQ_CLOSE_EXIT - Close object” on page 699
– “MQ_CMIT_EXIT - Commit changes” on page 700
– “MQ_CONNX_EXIT - Connect queue manager (extended)” on page 701
– “MQ_DISC_EXIT - Disconnect queue manager” on page 702

How to write an API exit

Chapter 13. API exits 681

– “MQ_GET_EXIT - Get message” on page 703
– “MQ_INIT_EXIT - Initialize exit environment” on page 704
– “MQ_INQ_EXIT - Inquire object attributes” on page 705
– “MQ_OPEN_EXIT - Open object” on page 706
– “MQ_PUT_EXIT - Put message” on page 707
– “MQ_SET_EXIT - Set object attributes” on page 708
– “MQ_TERM_EXIT - Terminate exit environment” on page 709

The data structures, calls, and exits are described in the order shown above
(alphabetic order within each type).

General usage notes
This section contains general usage notes that relate to all API exit functions.
1. All exit functions can issue the MQXEP call; this call is designed specifically for

use from API exit functions.
2. The MQ_INIT_EXIT function cannot issue any WMQ calls other than MQXEP.
3. All other exit functions can issue the following MQ calls: MQBACK,

MQCLOSE, MQCMIT, MQCONN, MQDISC, MQGET, MQINQ, MQOPEN,
MQPUT, MQPUT1, MQSET.

4. If an exit function issues the MQCONN call, the call completes with reason
code MQRC_ALREADY_CONNECTED, and the handle returned is the same as
the one passed to the exit as a parameter.

5. When an API exit function issues an MQI call, API exits are not called
recursively. Consequently, if an exit issues an MQI call, no exit will be called
for that MQI call.

6. Exit functions can also put and get messages within the application's unit of
work. When the application commits or backs out the unit of work, all
messages within the unit of work are committed or backed out together,
regardless of who placed them in the unit of work (application or exit
function).
When an exit function uses the application's unit of work in this way, the exit
function should usually avoid issuing the MQCMIT call, as this commits the
application's unit of work and may impair the correct functioning of the
application. However, the exit function may sometimes need to issue the
MQBACK call, if the exit function encounters a serious error that prevents the
unit of work being committed (for example, an error putting a message as part
of the application's unit of work). When MQBACK is called, take care to ensure
that the application unit of work boundaries are not changed. In this situation
the exit function must set the appropriate values to ensure that completion
code MQCC_FAILED and reason code MQRC_BACKED_OUT are returned to
the application, so that the application can detect the fact that the unit of work
has been backed out.
If an exit function uses the application's connection handle to issue MQ calls,
those calls do not themselves result in further invocations of API exit functions.

7. If an MQXR_BEFORE exit function terminates abnormally, the queue manager
may be able to recover from the failure. If it can, the queue manager continues
processing as though the exit function had returned MQXCC_FAILED. If the
queue manager cannot recover, the application is terminated.

8. If an MQXR_AFTER exit function terminates abnormally, the queue manager
may be able to recover from the failure. If it can, the queue manager continues
processing as though the exit function had returned MQXCC_FAILED. If the
queue manager cannot recover, the application is terminated. Be aware that in

API Exit reference information

682 WebSphere MQ for z/VSE System Management Guide

the latter case, messages retrieved outside a unit of work are lost (this is the
same situation as the application failing immediately after removing a message
from the queue).

MQACH - API exit chain header

This table summarizes the fields in the structure.

Table 29. Fields in MQACH

Field Description

StrucId Structure identifier

Version Structure version number

StrucLength Length of MQACH structure

ChainAreaLength Total length of chain area

ExitInfoName Exit information name

NextChainAreaPtr Address of next chain area

The MQACH structure describes the header information that must be present at
the start of each exit chain area.
v The address of the first area in the chain in given by the ExitChainAreaPtr field

in MQAXP. If there is no chain, ExitChainAreaPtr is the null pointer.
v The address of the next area in the chain is given by the NextChainAreaPtr field

in MQACH. For the last area in the chain, NextChainAreaPtr is the null pointer.

Any exit function can create a chain area in dynamically-obtained storage (for
example, by using GETMAIN), and add that area to the chain at the desired
location (start, middle, or end). The exit function must ensure that it sets all fields
in MQACH to valid values.

The exit suite that creates the chain area is responsible for destroying that chain
area before termination (the MQ_TERM_EXIT function is a convenient point at
which to do this). However, adding and removing chain areas from the chain must
be done only by an exit function when it is invoked by the queue manager; this
restriction is necessary to avoid serialization problems.

Exit chain areas are made available to all exit suites, and must not be used to hold
private data. Use ExitUserArea in MQAXP to hold private data.

In general there is no correspondence between the chain of exit functions that are
invoked for an API call, and the chain of exit chain areas:
v Some exit functions might not have chain areas.
v Other exit functions might each have multiple chain areas.
v The order of the chain areas might be different from the order of the exit

functions that own those chain areas.

Fields

The MQACH structure contains these fields:

StrucId (MQCHAR4)
Structure identifier.

The value is:

General usage notes

Chapter 13. API exits 683

MQACH_STRUC_ID
Identifier for API exit chain header structure.

For the C programming language, the constant
MQACH_STRUC_ID_ARRAY is also defined; this has the same
value as MQACH_STRUC_ID, but is an array of characters instead
of a string.

This initial value of this field is MQACH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value is:

MQACH_VERSION_1
Version-1 API exit chain header structure.

The following constant specifies the version number of the current version:

MQACH_CURRENT_VERSION
Current version of API exit chain header structure.

Note: When a new version of the MQACH structure is introduced, the
layout of the existing part is not changed. The exit function must therefore
check that the version number is equal to or greater than the lowest
version that contains the fields that the exit function needs to use.

The initial value of this field is MQACH_CURRENT_VERSION.

StrucLength (MQLONG)
Length of MQACH structure.

This is the length of the MQACH structure itself; this length excludes the
exit-defined data that follows the MQACH structure (see the
ChainAreaLength field).
v The exit function that creates the MQACH structure must set this field to

the length of the MQACH.
v An exit function that wants to access the exit-defined data should use

StrucLength as the offset of the exit-defined data from the start of the
MQACH structure.

The following value is defined:

MQACH_LENGTH_1
Length of version-1 MQACH structure.

The following constant specifies the length of the current version:

MQACH_CURRENT_LENGTH
Length of current version of exit chain area header.

The initial value of this field is MQACH_CURRENT_LENGTH.

ChainAreaLength (MQLONG)
Total length of chain area.

This is the total length of the chain area. It is equal to the sum of the
length of the MQACH plus the length of the exit-defined data that follows
the MQACH.

The initial value of this field is zero.

ExitInfoName (MQCHAR48)
Exit information name.

MQACH - API exit chain header

684 WebSphere MQ for z/VSE System Management Guide

This is a name that is used to identify the exit suite to which the chain area
belongs.

The length of this field is given by MQ_EXIT_INFO_NAME_LENGTH.

The initial value of this field is the null string in C.

NextChainAreaPtr (PMQACH)
Address of next MQACH structure in chain.

This is the address of the next chain area in the chain. If the current chain
area is the last one in the chain, NextChainAreaPtr is the null pointer.

The initial value of this field is the null pointer.

C declaration
typedef struct tagMQACH MQACH;
struct tagMQACH
{

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Length of MQACH structure */
MQLONG ChainAreaLength; /* Total length of chain area */
MQCHAR48 ExitInfoName; /* Exit information name */
PMQACH NextChainAreaPtr; /* Address of next MQACH structure in chain */

};

MQAXC - API exit context

The following table summarizes the fields in the structure.

Table 30. Fields in MQAXC

Field Description

StrucId Structure identifier

Version Structure version number

Environment Environment

UserId User identifier

SecurityId Security identifier

ConnectionName Connection name

LongMCAUserIdLength Length of long MCA user identifier

LongRemoteUserIdLength Length of long remote user
identifier

LongMCAUserIdPtr Address of long MCA user
identifier

LongRemoteUserIdPtr Address of long remote user
identifier

ApplName Application name

ApplType Application type

ProcessId Process identifier

ThreadId Thread identifier

The MQAXC structure describes the context information that is passed to an API
exit. The context information relates to the environment in which the application is
running.

MQACH - API exit chain header

Chapter 13. API exits 685

Fields

The MQAXC structure contains these fields:

StrucId (MQCHAR4)
Structure identifier.

The value is:

MQAXC_STRUC_ID
Identifier for API exit parameter structure.

For the C programming language, the constant
MQAXC_STRUC_ID_ARRAY is also defined; this has the same
value as MQAXC_STRUC_ID, but is an array of characters instead
of a string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value is:

MQAXC_VERSION_1
Version-1 API exit parameter structure.

The following constant specifies the version number of the current version:

MQAXC_CURRENT_VERSION
Current version of API exit parameter structure.

Note: When a new version of the MQAXC structure is introduced, the
layout of the existing part is not changed. The exit should therefore check
that the version number is equal to or greater than the lowest version
which contains the fields that the exit needs to use.

This is an input field to the exit.

Environment (MQLONG)
Environment.

This indicates the environment from which the API call was issued. The
value is one of the following:

MQXE_COMMAND_SERVER
Command server.

MQXE_MCA
Message channel agent.

MQXE_OTHER
Environment not defined.

This is an input field to the exit.

UserId (MQCHAR12)
User identifier.

This is the user identifier associated with the program that issued the API
call. For a client connection (MQXE_MCA_SVRCONN), UserId contains
the user identifier of the adopted user, and not the user identifier of the
MCA.

The length of this field is given by MQ_USER_ID_LENGTH.

MQAXC - API exit context

686 WebSphere MQ for z/VSE System Management Guide

This is an input field to the exit.

SecurityId (MQBYTE40)
Security identifier.

This is the security identifier associated with the program that issued the
API call. For a client connection (MQXE_MCA_SVRCONN), SecurityId
contains the security identifier of the adopted user, and not the security
identifier of the MCA. If the security identifier is not known, SecurityId
has the value:

MQSID_NONE
No security identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQSID_NONE_ARRAY is
also defined; this has the same value as MQSID_NONE, but is an array of
characters instead of a string.

The length of this field is given by MQ_SECURITY_ID_LENGTH. This is
an input field to the exit.

ConnectionName (MQCHAR264)
Connection name.

For a client connection (MQXE_MCA_SVRCONN), this field contains the
address of the client (for example, the TCP/IP address). In other cases, this
field is blank.

The length of this field is given by MQ_CONN_NAME_LENGTH.

This is an input field to the exit.

LongMCAUserIdLength (MQLONG)
Length of long MCA user identifier.

For MQXE_MCA and MQXE_MCA_SVRCONN, this is the length in bytes
of the full MCA user identifier pointed to by LongMCAUserIdPtr. In other
cases, this field is zero.

This is an input field to the exit.

LongRemoteUserIdLength (MQLONG)
Length of long remote user identifier.

For MQXE_MCA and MQXE_MCA_SVRCONN, this is the length in bytes
of the full remote user identifier pointed to by LongRemoteUserIdPtr. In
other cases, this field is zero.

This is an input field to the exit.

LongMCAUserIdPtr (MQPTR)
Address of long MCA user identifier.

For MQXE_MCA and MQXE_MCA_SVRCONN, this is the address of the
full MCA user identifier. The length of the full identifier is given by
LongMCAUserIdLength. In other cases, this field is the null pointer.

This is an input field to the exit.

LongRemoteUserIdPtr (MQPTR)
Address of long remote user identifier.

MQAXC - API exit context

Chapter 13. API exits 687

For MQXE_MCA and MQXE_MCA_SVRCONN, this is the address of the
full remote user identifier. The length of the full identifier is given by
LongRemoteUserIdLength. In other cases, this field is the null pointer.

This is an input field to the exit.

ApplName (MQCHAR28)
Application name.

This is the name of the application that issued the API call. For WebSphere
MQ for z/VSE, this is the CICS transaction id. The length of this field is
given by MQ_APPL_NAME_LENGTH.

This is an input field to the exit.

ApplType (MQLONG)
Application type.

This is the type of the application that issued the API call. The value is the
same as MQAT_DEFAULT for the environment for which the application
was compiled.

This is an input field to the exit.

ProcessId (MQPID)
The WebSphere MQ process identifier.

For WebSphere MQ for z/VSE, this is the CICS task number.

This is an input field to the exit.

ThreadId (MQTID)
The WebSphere MQ thread identifier.

For WebSphere MQ for z/VSE, this is the API exit sequence number. For
example, if the exit being passed this parameter is the fifth exit in the API
exit chain, then the ThreadId is 5.

This is an input field to the exit.

C declaration
typedef struct tagMQAXC MQAXC;
struct tagMQAXC
{

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Environment; /* Environment */
MQCHAR12 UserId; /* User identifier */
MQBYTE40 SecurityId; /* Security identifier */
MQCHAR264 ConnectionName; /* Connection name */
MQLONG LongMCAUserIdLength; /* Length of long MCA user identifier */
MQLONG LongRemoteUserIdLength; /* Length of long remote user identifier */
MQPTR LongMCAUserIdPtr; /* Address of long MCA user identifier */
MQPTR LongRemoteUserIdPtr; /* Address of long remote user identifier */
MQCHAR28 ApplName; /* Application name */
MQLONG ApplType; /* Application type */
MQPID ProcessId; /* Process identifier */
MQTID ThreadId; /* Thread identifier */

};

MQAXC - API exit context

688 WebSphere MQ for z/VSE System Management Guide

MQAXP - API exit parameter

This table summarizes the fields in the structure.

Table 31. Fields in MQAXP

Field Description

StrucId Structure identifier

Version Structure version number

ExitId Type of exit

ExitReason Reason for invoking exit

ExitResponse Response from exit

ExitResponse2 Secondary response from exit

Feedback Feedback code

APICallerType API caller type

ExitUserArea Exit user area

ExitData Exit data

ExitInfoName Exit information name

ExitPDArea Problem determination area

QMgrName Name of local queue manager

ExitChainAreaPtr Address of first chain area

Hconfig Configuration handle

Function API function identifier

The MQAXP structure describes the information that is passed to an API exit.

Fields

The MQAXP structure contains thes fields:

StrucId (MQCHAR4)
Structure identifier.

The value is:

MQAXP_STRUC_ID
Identifier for API exit parameter structure.

For the C programming language, the constant
MQAXP_STRUC_ID_ARRAY is also defined; this has the same
value as MQAXP_STRUC_ID, but is an array of characters instead
of a string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value is:

MQAXP_VERSION_1
Version-1 API exit parameter structure.

The following constant specifies the version number of the current version:

MQAXP - API exit parameter

Chapter 13. API exits 689

MQAXP_CURRENT_VERSION
Current version of API exit parameter structure.

Note: When a new version of the MQAXP structure is introduced, the
layout of the existing part is not changed. The exit should therefore check
that the version number is equal to or greater than the lowest version
which contains the fields that the exit needs to use.

This is an input field to the exit.

ExitId (MQLONG)
Type of exit.

This indicates the type of exit being called.

The value is:

MQXT_API_EXIT
API exit.

This is an input field to the exit.

ExitReason (MQLONG)
Reason for invoking exit.

This indicates the reason why the exit is being called. Possible values are:

MQXR_CONNECTION
Connection level processing.

The exit is invoked with this value twice for each connection:
v Before the MQCONN or MQCONNX call, so that the exit can

perform connection-level initialization. The Function field has
the value MQXF_INIT in this case.
The MQXF_INIT exit function should be used for general
initialization of the exit suite, and the MQXF_CONN or
MQXF_CONNX exit functions should be used specifically for
processing the MQCONN or MQCONNX calls.

v After the MQDISC call, so that the exit can perform
connection-level termination. The Function field has the value
MQXF_TERM in this case.
The MQXF_TERM exit function should be used for general
termination of the exit suite, and the MQXF_DISC exit function
should be used specifically for processing the MQDISC call.

MQXR_BEFORE
Before API execution.

The Function field can have any of the MQXF_* values other than
MQXF_INIT or MQXF_TERM.

For the MQGET call, this value occurs with the:
v MQXF_GET exit function before API execution
v MQXF_DATA_CONV_ON_GET exit function after API execution

but before data conversion

MQXR_AFTER
After API execution.

The Function field can have any of the MQXF_* values other than
MQXF_INIT, MQXF_TERM, or MQXF_DATA_CONV_ON_GET.

MQAXP - API exit parameter

690 WebSphere MQ for z/VSE System Management Guide

For the MQGET call, this value occurs with the:
v MQXF_GET exit function after both API execution and data

conversion have been completed

This is an input field to the exit.

ExitResponse (MQLONG)
Response from exit.

This is set by the exit function to indicate the outcome of the processing
performed by the exit. It must be one of the following:

MQXCC_OK
Exit completed successfully.

This value can be set by all MQXR_* exit functions. The
ExitResponse2 field must be set by the exit function to indicate
how processing should continue.

Note: Returning MQXCC_OK does not imply that the completion
code for the API call is MQCC_OK, or that the reason code is
MQRC_NONE.

MQXCC_FAILED
Exit failed.

This value can be set by all MQXR_* exit functions. It causes the
queue manager to set the completion code for the API call to
MQCC_FAILED, and the reason code to one of the following
values:
Exit function Reason code set by queue manager
--
MQXF_INIT MQRC_API_EXIT_INIT_ERROR
MQXF_TERM MQRC_API_EXIT_TERM_ERROR
All others MQRC_API_EXIT_ERROR

However, the values set by the queue manager can be altered by
an exit function later in the chain. The ExitResponse2 field is
ignored; the queue manager continues processing as though
MQXR2_SUPPRESS_CHAIN had been returned:
v For an MQXR_BEFORE exit function, processing continues with

the MQXR_AFTER exit function that matches this
MQXR_BEFORE exit function (that is, all intervening
MQXR_BEFORE and MQXR_AFTER exit functions, plus the API
call itself, are skipped).

v For an MQXR_AFTER exit function, processing continues with
the next MQXR_AFTER exit function in the chain.

MQXCC_SUPPRESS_FUNCTION
Suppress function.

If an MQXR_BEFORE exit function returns this value, the queue
manager sets the completion code for the API call to
MQCC_FAILED, the reason code to
MQRC_SUPPRESSED_BY_EXIT, and the API call is skipped. If
returned by the MQXF_DATA_CONV_ON_GET exit function, data
conversion is skipped.

The ExitResponse2 field must be set by the exit function to indicate
whether the remaining MQXR_BEFORE exit functions and their
matching MQXR_AFTER exit functions should be invoked. Any of

MQAXP - API exit parameter

Chapter 13. API exits 691

these exit functions can alter the completion code and reason code
of the API call that were set by the queue manager.

If an MQXR_AFTER or MQXR_CONNECTION exit function
returns this value, the queue manager continues processing as
though the exit had returned MQXCC_FAILED.

MQXCC_SKIP_FUNCTION
Skip function.

This is the same as MQXCC_SUPPRESS_FUNCTION, except the
exit function can set the completion code and reason code of the
API call.

MQXCC_SUPPRESS_EXIT
Suppress exit.

If an MQXR_BEFORE or MQXR_AFTER exit function returns this
value, the queue manager deregisters immediately all of the exit
functions belonging to this exit suite. The only exception is the
MQXF_TERM exit function, which will be invoked at termination
of the connection if registered when MQXCC_SUPPRESS_EXIT is
returned. Note that if an MQXR_BEFORE exit function returns this
value, the matching MQXR_AFTER exit function will not be
invoked after the API call, since that exit function will no longer be
registered.

The ExitResponse2 field must be set by the exit function to indicate
whether the remaining MQXR_BEFORE exit functions and their
matching MQXR_AFTER exit functions should be invoked.

If an MQXR_CONNECTION exit function returns this value, the
queue manager continues processing as though the exit had
returned MQXCC_FAILED.

If the exit function sets ExitResponse to a value that is not valid, the queue
manager continues processing as though the exit had returned
MQXCC_FAILED.

On entry to the exit function, ExitResponse has the value MQXCC_OK.

This is an output field from the exit.

ExitResponse2 (MQLONG)
Secondary response from exit.

This is the secondary exit response code that can be set by an
MQXR_BEFORE exit function to provide additional information to the
queue manager. If set by an MQXR_AFTER or MQXR_CONNECTION exit
function, the value is ignored. The value must be one of the following:

MQXR2_DEFAULT_CONTINUATION
Default continuation.

Continuation with the next exit function in the chain depends on
the value of the ExitResponse field:
v If ExitResponse is MQXCC_OK or MQXCC_SUPPRESS_EXIT,

the next MQXR_BEFORE exit function in the chain is invoked.
v If ExitResponse is MQXCC_SUPPRESS_FUNCTION or

MQXCC_SKIP_FUNCTION, no further MQXR_BEFORE exit
functions are invoked for this particular API call.

MQAXP - API exit parameter

692 WebSphere MQ for z/VSE System Management Guide

MQXR2_CONTINUE_CHAIN
Continue with next MQXR_BEFORE exit function in chain.

MQXR2_SUPPRESS_CHAIN
Skip remaining MQXR_BEFORE exit functions in chain.

All subsequent MQXR_BEFORE exit functions in the chain, and
their matching MQXR_AFTER exit functions, are skipped for this
particular API call. The MQXR_AFTER exit functions that match
the current exit function and earlier MQXR_BEFORE exit functions
are not skipped.

If the exit function sets ExitResponse2 to a value that is not valid,
the queue manager continues processing as though the exit had
returned MQXR2_DEFAULT_CONTINUATION.

This is an output field from the exit.

Feedback (MQLONG)
Feedback.

This is a field that allows the exit functions belonging to an exit suite to
communicate feedback codes both to each other, and to exit functions
belonging to other exit suites. The field is initialized to MQFB_NONE
before the first invocation of the first exit function in the first exit suite (the
MQXF_INIT exit function), and thereafter any changes made to this field
by exit functions are preserved across the invocations of the exit functions.

This is an input/output field to the exit.

APICallerType (MQLONG)
API caller type.

This indicates the type of program that issued the API call that caused the
exit function to be invoked.

The value is one of the following:

MQXACT_EXTERNAL
Caller is external to the queue manager.

MQXACT_INTERNAL
Caller is internal to the queue manager.

This is an input field to the exit.

ExitUserArea (MQBYTE16)
Exit user area.

This is a field that allows exit functions belonging to the same exit suite to
share data with each other, but not with other exit suites. The field is
initialized to MQXUA_NONE (binary zero) before the first invocation of
the first exit function in the exit suite (the MQXF_INIT exit function), and
thereafter any changes made to this field by exit functions are preserved
across the invocations of the exit functions. The queue manager resets the
field to MQXUA_NONE when control returns from the MQXF_TERM exit
function to the queue manager.

The following value is defined:

MQXUA_NONE
No user information.

The value is binary zero for the length of the field. For the C
programming language, the constant MQXUA_NONE_ARRAY is

MQAXP - API exit parameter

Chapter 13. API exits 693

also defined; this has the same value as MQXUA_NONE, but is an
array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This
is an input/output field to the exit.

ExitData (MQCHAR32)
Exit data.

On input to each exit function, this field is set to the character data
associated with the definition of the exit suite to which the exit function
belongs. If no value has been defined for that data, ExitData is blank.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This is an
input field to the exit.

ExitInfoName (MQCHAR48)
Exit information name.

This is a name that is used to identify the exit suite to which the exit
function belongs.

The length of this field is given by MQ_EXIT_INFO_NAME_LENGTH.
This is an input field to the exit.

ExitPDArea (MQBYTE48)
Problem determination area.

This is a field that is available for the exit to use, to assist with problem
determination. The field is initialized to MQXPDA_NONE (binary zero)
before each invocation of the exit function. The exit function can set this
field to any value it chooses. When the exit returns control to the queue
manager, the contents of ExitPDArea are written to the trace file, if tracing
is active.

The following value is defined:

MQXPDA_NONE
No problem-determination information.

The value is binary zero for the length of the field. For the C
programming language, the constant MQXPDA_NONE_ARRAY is
also defined; this has the same value as MQXPDA_NONE, but is
an array of characters instead of a string.

The length of this field is given by
MQ_EXIT_PD_AREA_LENGTH. This is an input/output field to
the exit.

QMgrName (MQCHAR48)
Name of local queue manager.

This is the name of the queue manager that invoked the exit function.
QMgrName is never blank.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is
an input field to the exit.

ExitChainAreaPtr (PMQACH)
Address of first MQACH structure in chain.

The exit chain area allows exit functions belonging to one exit suite to
share data with exit functions belonging to another exit suite. The exit
chain area is a chain of MQACH structures that is made available to all
exit functions. The address of the first MQACH structure in the chain is

MQAXP - API exit parameter

694 WebSphere MQ for z/VSE System Management Guide

passed to each exit function in the ExitChainAreaPtr field. The exit
function can scan the chain, and examine or alter the data contained within
it. However, this should be done only with the prior agreement of the
owner of the data.

If there is no current exit chain area, ExitChainAreaPtr is the NULL
pointer. An exit function can at any time create an MQACH structure in
storage obtained dynamically (for example, by using the C function
malloc), and add it to the chain. The exit suite which creates an MQACH is
responsible for freeing the storage associated with the MQACH before the
exit suite terminates.

If data is to be shared between different exit functions belonging to the
same exit suite, but that data is not to be made available to other exit
suites, the ExitUserArea field should be used in preference to
ExitChainAreaPtr.

This is an input/output field to the exit.

Hconfig (MQHCONFIG)
Configuration handle.

This handle represents the set of exit functions that belong to the exit suite
whose name is given by the ExitInfoName field. The queue manager
generates a new configuration handle when the MQXF_INIT exit function
is invoked, and passes that handle to the other exit functions that belong to
the exit suite. This handle must be specified on the MQXEP call in order to
register the entry point for an exit function.

This is an input field to the exit.

Function (MQLONG)
API function identifier.

This is the identifier of the API call that is about to be executed (when
ExitReason has the value MQXR_BEFORE), or the API call that has just
been executed (when ExitReason has the value MQXR_AFTER). If
ExitReason has the value MQXR_CONNECTION, Function indicates
whether the exit should perform initialization or termination. The value is
one of the following:

MQXF_INIT
Initialization of exit suite.

MQXF_TERM
Termination of exit suite.

MQXF_CONN
MQCONN call.

MQXF_DISC
MQDISC call.

MQXF_OPEN
MQOPEN call.

MQXF_CLOSE
MQCLOSE call.

MQXF_PUT
MQPUT call.

MQXF_GET
MQGET call.

MQAXP - API exit parameter

Chapter 13. API exits 695

MQXF_DATA_CONV_ON_GET
Data conversion on MQGET call.

MQXF_INQ
MQINQ call.

MQXF_SET
MQSET call.

MQXF_CMIT
MQCMIT call.

MQXF_BACK
MQBACK call.

This is an input field to the exit.

C declaration
typedef struct tagMQAXP MQAXP;
struct tagMQAXP
{

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ExitId; /* Type of exit */
MQLONG ExitReason; /* Reason for invoking exit */
MQLONG ExitResponse; /* Response from exit */
MQLONG ExitResponse2; /* Secondary response from exit */
MQLONG Feedback; /* Feedback */
MQLONG APICallerType; /* API caller type */
MQBYTE16 ExitUserArea; /* Exit user area */
MQCHAR32 ExitData; /* Exit data */
MQCHAR48 ExitInfoName; /* Exit information name */
MQBYTE48 ExitPDArea; /* Problem determination area */
MQCHAR48 QMgrName; /* Name of local queue manager */
PMQACH ExitChainAreaPtr; /* Address of first MQACH structure in chain */
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Function; /* API function identifier */

};

MQXEP - Register entry point

This call is used by an exit function to register the entry points of other exit
functions in the exit suite. This is usually done by the MQ_INIT_EXIT function,
but can be done by any exit function in the exit suite.

The MQXEP call is also used to deregister entry points. This is usually done by the
MQ_TERM_EXIT function, but can be done by any exit function in the exit suite.

Syntax
MQXEP (Hconfig, ExitReason, Function, EntryPoint, Reserved, pCompCode, pReason)

Parameters

The MQXEP call has these parameters:

Hconfig (MQHCONFIG) - input
Configuration handle.

This handle represents the exit suite to which the current exit function
belongs. The queue manager generates this configuration handle when the
MQ_INIT_EXIT function is invoked, and uses the Hconfig field in the
MQAXP structure to pass the handle to each exit function in the exit suite.

MQAXP - API exit parameter

696 WebSphere MQ for z/VSE System Management Guide

ExitReason (MQLONG) - input
Exit reason.

This specifies when to call the entry point being registered or deregistered.
It must be one of the following:

MQXR_CONNECTION
Connection level processing.

The Function parameter must have the value MQXF_INIT or
MQXF_TERM.

MQXR_BEFORE
Before API execution.

The Function parameter can have any of the MQXF_* values other
than MQXF_INIT or MQXF_TERM.

MQXR_AFTER
After API execution.

The Function parameter can have any of the MQXF_* values other
than MQXF_INIT, MQXF_TERM, or
MQXF_DATA_CONV_ON_GET.

Function (MQLONG) - input
Function identifier.

This specifies the API call for which the entry point is being registered or
deregistered. It must be one of the following:

MQXF_INIT
Initialization of exit suite.

MQXF_TERM
Termination of exit suite.

MQXF_CONN
MQCONN call.

MQXF_DISC
MQDISC call.

MQXF_OPEN
MQOPEN call.

MQXF_CLOSE
MQCLOSE call.

MQXF_PUT
MQPUT call.

MQXF_GET
MQGET call.

MQXF_DATA_CONV_ON_GET
Data conversion on MQGET call.

MQXF_INQ
MQINQ call.

MQXF_SET
MQSET call.

MQXF_CMIT
MQCMIT call.

MQXEP - Register entry point

Chapter 13. API exits 697

MQXF_BACK
MQBACK call.

If the MQXEP call is used more than once to register different entry points
for a particular combination of Function and ExitReason, the last call made
provides the entry point that is used.

EntryPoint (PMQFUNC) - input
Exit function entry point.

This is the address of the entry point being registered.

If the value specified is the null pointer, it indicates either that the exit
function is not provided, or that a previously-registered exit function is
being deregistered. The null pointer is assumed for entry points which are
not defined using MQXEP.

Reserved (MQPTR) - input
Reserved.

This is a reserved parameter. The value specified must be the null pointer.

pCompCode (PMQLONG) - output
Completion code.

The value returned is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

pReason (PMQLONG) - output
Reason code qualifying pCompCode.

If CompCode is MQCC_OK:

MQRC_NONE (0, X'000')
No reason to report.

If CompCode is MQCC_FAILED:

MQRC_EXIT_REASON_ERROR (2377, X'949')
Exit reason not valid.

MQRC_FUNCTION_ERROR (2281, X'8E9')
Function identifier not valid.

MQRC_HCONFIG_ERROR (2280, X'8E8')
Configuration handle not valid.

MQRC_RESERVED_VALUE_ERROR (2378, X'94A')
Reserved value not valid.

MQRC_RESOURCE_PROBLEM (2102, X'836')
Insufficient system resources available.

MQRC_UNEXPECTED_ERROR (2195, X'893')
Unexpected error occurred.

For more information on these reason codes, see the WebSphere MQ
Application Programming Reference.

MQXEP - Register entry point

698 WebSphere MQ for z/VSE System Management Guide

C invocation
MQXEP (Hconfig, ExitReason, Function, EntryPoint, Reserved, &CompCode, &Reason);

Declare the parameters as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG ExitReason; /* Exit reason */
MQLONG Function; /* Function identifier */
PMQFUNC EntryPoint; /* Exit function entry point */
MQPTR Reserved; /* Reserved */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_BACK_EXIT - Back out changes

Exit providers can supply an MQ_BACK_EXIT function to intercept the MQBACK
call.

Syntax
MQ_BACK_EXIT (pExitParms, pExitContext, pHconn, pCompCode, pReason)

Parameters

The MQ_BACK_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pHconn (PMQHCONN) - input/output
Connection handle.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

C invocation
MQ_BACK_EXIT (&ExitParms, &ExitContext, &Hconn, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_CLOSE_EXIT - Close object

Exit providers can supply an MQ_CLOSE_EXIT function to intercept the
MQCLOSE call.

Syntax
MQ_CLOSE_EXIT (pExitParms, pExitContext, pHconn, ppHobj, pOptions, pCompCode, pReason)

MQXEP - Register entry point

Chapter 13. API exits 699

Parameters

The MQ_CLOSE_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pHconn (PMQHCONN) - input/output
Connection handle.

ppHobj (PPMQHOBJ) - input/output
Object handle.

pOptions (PMQLONG) - input/output
Options that control the action of MQCLOSE.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

C invocation
MQ_CLOSE_EXIT (&ExitParms, &ExitContext, &Hconn, &pHobj, &Options, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQHOBJ ppHobj; /* Object handle */
PMQLONG pOptions; /* Options that control the action of MQCLOSE */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_CMIT_EXIT - Commit changes

Exit providers can supply an MQ_CMIT_EXIT function to intercept the MQCMIT
call.

Syntax
MQ_CMIT_EXIT (pExitParms, pExitContext, pHconn, pCompCode, pReason)

Parameters

The MQ_CMIT_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pHconn (PMQHCONN) - input/output
Connection handle.

pCompCode (PMQLONG) - input/output
Completion code.

MQ_CLOSE_EXIT - Close object

700 WebSphere MQ for z/VSE System Management Guide

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

C invocation
MQ_CMIT_EXIT (&ExitParms, &ExitContext, &Hconn, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_CONNX_EXIT - Connect queue manager (extended)

Exit providers can supply an MQ_CONNX_EXIT function to intercept the
MQCONN and MQCONNX calls.

Syntax
MQ_CONNX_EXIT (pExitParms, pExitContext, pQMgrName, ppConnectOpts, ppHconn,

pCompCode, pReason)

Parameters

The MQ_CONNX_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pQMgrName (PMQCHAR48) - input/output
Name of queue manager.

ppConnectOpts (PPMQCNO) - input/output
Options that control the action of MQCONNX.

ppHconn (PPMQHCONN) - input/output
Connection handle.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

Usage notes
1. The MQ_CONNX_EXIT function interface described here is used for both the

MQCONN call and the MQCONNX call. However, WebSphere MQ for z/VSE
only supports the MQXF_CONN API exit point.

2. When a message channel agent (MCA) responds to an inbound client
connection, the MCA can issue a number of MQ calls before the client state is
fully known. These MQ calls result in the API exit functions being invoked
with the MQAXC structure containing data relating to the MCA, and not to the
client (for example, user identifier and connection name). However, once the
client state is fully known, subsequent MQ calls result in the API exit functions
being invoked with the appropriate client data in the MQAXC structure.

MQ_CLOSE_EXIT - Close object

Chapter 13. API exits 701

3. All MQXR_BEFORE exit functions are invoked before any parameter validation
is performed by the queue manager. The parameters may therefore be invalid
(including invalid pointers for the addresses of parameters).
The MQ_CONNX_EXIT function is invoked before any authorization checks are
performed by the queue manager.

4. The exit function must not change the name of the queue manager specified on
the MQCONN or MQCONNX call. If the name is changed by the exit function,
the results are undefined.

5. An MQXR_BEFORE exit function for the MQ_CONNX_EXIT cannot issue MQ
calls other than MQXEP.

C invocation
MQ_CONNX_EXIT (&ExitParms, &ExitContext, QMgrName, &pConnectOpts, &pHconn,

&CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQCHAR48 pQMgrName; /* Name of queue manager */
PPMQCNO ppConnectOpts; /* Options that control the action of MQCONNX */
PPMQHCONN ppHconn; /* Connection handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_DISC_EXIT - Disconnect queue manager

Exit providers can supply an MQ_DISC_EXIT function to intercept the MQDISC
call.

Syntax
MQ_DISC_EXIT (pExitParms, pExitContext, ppHconn, pCompCode, pReason)

Parameters

The MQ_DISC_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

ppHconn (PPMQHCONN) - input/output
Connection handle.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

C invocation
MQ_DISC_EXIT (&ExitParms, &ExitContext, &pHconn, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:

MQ_CONNX_EXIT - Connect queue manager (extended)

702 WebSphere MQ for z/VSE System Management Guide

PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PPMQHCONN ppHconn; /* Connection handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_GET_EXIT - Get message

Exit providers can supply an MQ_GET_EXIT function to intercept the MQGET call.
The same exit function interface is used for the MQXF_DATA_CONV_ON_GET
exit function.

Syntax
MQ_GET_EXIT (pExitParms, pExitContext, pHconn, pHobj, ppMsgDesc, ppGetMsgOpts,

pBufferLength, ppBuffer, ppDataLength, pCompCode, pReason)

Parameters

The MQ_GET_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pHconn (PMQHCONN) - input/output
Connection handle.

pHobj (PMQHOBJ) - input/output
Object handle.

ppMsgDesc (PPMQMD) - input/output
Message descriptor.

ppGetMsgOpts (PPMQGMO) - input/output
Options that control the action of MQGET.

pBufferLength (PMQLONG) - input/output
Length in bytes of the ppBuffer area.

ppBuffer (PPMQVOID) - input/output
Area to contain the message data.

ppDataLength (PPMQLONG) - input/output
Length of the message.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

Usage notes
1. The MQ_GET_EXIT function interface described here is used for both the

MQXF_GET exit function and the MQXF_DATA_CONV_ON_GET exit function.
However, separate entry points are defined for these two exit functions, so to
intercept both the MQXEP call must be used twice - once with function
identifier MQXF_GET, and again with MQXF_DATA_CONV_ON_GET.
Because the MQ_GET_EXIT interface is the same for MQXF_GET and
MQXF_DATA_CONV_ON_GET, a single exit function can be used for both; the

MQ_DISC_EXIT - Disconnect queue manager

Chapter 13. API exits 703

Function field in the MQAXP structure indicates which exit function has been
invoked. Alternatively, the MQXEP call can be used to register different exit
functions for the two cases.

2. There is no MQXR_AFTER exit function for MQXF_DATA_CONV_ON_GET;
the MQXR_AFTER exit function for MQXF_GET provides the required
capability for exit processing after data conversion.

C invocation
MQ_GET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc, &pGetMsgOpts,

&BufferLength, &pBuffer, &pDataLength, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQHOBJ pHobj; /* Object handle */
PPMQMD ppMsgDesc; /* Message descriptor */
PPMQGMO ppGetMsgOpts; /* Options that control the action of MQGET */
PMQLONG pBufferLength; /* Length in bytes of the pBuffer area */
PPMQVOID ppBuffer; /* Area to contain the message data */
PPMQLONG ppDataLength; /* Length of the message */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_INIT_EXIT - Initialize exit environment

Exit providers can supply an MQ_INIT_EXIT function to perform connection-level
initialization.

Syntax
MQ_INIT_EXIT (pExitParms, pExitContext, pCompCode, pReason)

Parameters

The MQ_INIT_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

Usage notes
1. The MQ_INIT_EXIT function can issue the MQXEP call to register the

addresses of the exit functions for the particular MQ calls to be intercepted. It is
not necessary to intercept all MQ calls, or to intercept both MQXR_BEFORE
and MQXR_AFTER calls. For example, an exit suite could choose to intercept
only the MQXR_BEFORE call of MQPUT.

2. Storage that is to be used by exit functions in the exit suite can be acquired by
the MQ_INIT_EXIT function. Alternatively, exit functions can acquire storage
when they are invoked, as and when needed. However, all storage should be

MQ_GET_EXIT - Get message

704 WebSphere MQ for z/VSE System Management Guide

freed before the exit suite is terminated; the MQ_TERM_EXIT function can free
the storage, or an exit function invoked earlier.

3. If MQ_INIT_EXIT returns MQXCC_FAILED in the ExitResponse field of
MQAXP, or fails in some other way, the MQCONN or MQCONNX call that
caused MQ_INIT_EXIT to be invoked also fails, with the CompCode and
Reason parameters set to appropriate values.

4. An MQ_INIT_EXIT function cannot issue MQ calls other than MQXEP.

C invocation
MQ_INIT_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_INQ_EXIT - Inquire object attributes

Exit providers can supply an MQ_INQ_EXIT function to intercept the MQINQ call.

Syntax
MQ_INQ_EXIT (pExitParms, pExitContext, pHconn, pHobj, pSelectorCount, ppSelectors,

pIntAttrCount, ppIntAttrs, pCharAttrLength, ppCharAttrs, pCompCode,
pReason)

Parameters

The MQ_INQ_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pHconn (PMQHCONN) - input/output
Connection handle.

pHobj (PMQHOBJ) - input/output
Object handle.

pSelectorCount (PMQLONG) - input/output
Count of selectors.

ppSelectors (PPMQLONG) - input/output
Array of attribute selectors.

pIntAttrCount (PMQLONG) - input/output
Count of integer attributes.

ppIntAttrs (PPMQLONG) - input/output
Array of integer attributes.

pCharAttrLength (PMQLONG) - input/output
Length of character attributes buffer.

ppCharAttrs (PPMQCHAR) - input/output
Character attributes.

MQ_INIT_EXIT - Initialize exit environment

Chapter 13. API exits 705

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

C invocation
MQ_INQ_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount, &pSelectors,

&IntAttrCount, &pIntAttrs, &CharAttrLength, &pCharAttrs, &CompCode,
&Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQHOBJ pHobj; /* Object handle */
PMQLONG pSelectorCount; /* Count of selectors */
PPMQLONG ppSelectors; /* Array of attribute selectors */
PMQLONG pIntAttrCount; /* Count of integer attributes */
PPMQLONG ppIntAttrs; /* Array of integer attributes */
PMQLONG pCharAttrLength; /* Length of character attributes buffer */
PPMQCHAR ppCharAttrs; /* Character attributes */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_OPEN_EXIT - Open object

Exit providers can supply an MQ_OPEN_EXIT function to intercept the MQOPEN
call.

Syntax
MQ_OPEN_EXIT (pExitParms, pExitContext, pHconn, ppObjDesc, pOptions, ppHobj,

pCompCode, pReason)

Parameters

The MQ_OPEN_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pHconn (PMQHCONN) - input/output
Connection handle.

ppObjDesc (PPMQOD) - input/output
Object descriptor.

pOptions (PMQLONG) - input/output
Options that control the action of MQ_OPEN_EXIT.

ppHobj (PPMQHOBJ) - input/output
Object handle.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

MQ_INQ_EXIT - Inquire object attributes

706 WebSphere MQ for z/VSE System Management Guide

C invocation
MQ_OPEN_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &Options, &pHobj,

&CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQOD ppObjDesc; /* Object descriptor */
PMQLONG pOptions; /* Options that control the action of MQ_OPEN_EXIT */
PPMQHOBJ ppHobj; /* Object handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_PUT_EXIT - Put message

Exit providers can supply an MQ_PUT_EXIT function to intercept the MQPUT call.

The MQ_PUT_EXIT function can also be used to intercept the MQPUT1 call.

Syntax
MQ_PUT_EXIT (pExitParms, pExitContext, pHconn, pHobj, ppMsgDesc, ppPutMsgOpts,

pBufferLength, ppBuffer, pCompCode, pReason)

Parameters

The MQ_PUT_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pHconn (PMQHCONN) - input/output
Connection handle.

pHobj (PMQHOBJ) - input/output
Object handle.

ppMsgDesc (PPMQMD) - input/output
Message descriptor.

ppPutMsgOpts (PPMQPMO) - input/output
Options that control the action of MQPUT.

pBufferLength (PMQLONG) - input/output
Length of the message in pBuffer.

ppBuffer (PPMQVOID) - input/output
Message data.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

C invocation
MQ_PUT_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc, &pPutMsgOpts,

&BufferLength, &pBuffer, &CompCode, &Reason);

MQ_OPEN_EXIT - Open object

Chapter 13. API exits 707

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQHOBJ pHobj; /* Object handle */
PPMQMD ppMsgDesc; /* Message descriptor */
PPMQPMO ppPutMsgOpts; /* Options that control the action of MQPUT */
PMQLONG pBufferLength; /* Length of the message in pBuffer */
PPMQVOID ppBuffer; /* Message data */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_SET_EXIT - Set object attributes

Exit providers can supply an MQ_SET_EXIT function to intercept the MQSET call.

Syntax
MQ_SET_EXIT (pExitParms, pExitContext, pHconn, pHobj, pSelectorCount,
ppSelectors, pIntAttrCount, ppIntAttrs, pCharAttrLength, ppCharAttrs,
pCompCode, pReason)

Parameters

The MQ_SET_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pHconn (PMQHCONN) - input/output
Connection handle.

pHobj (PMQHOBJ) - input/output
Object handle.

pSelectorCount (PMQLONG) - input/output
Count of selectors.

ppSelectors (PPMQLONG) - input/output
Array of attribute selectors.

pIntAttrCount (PMQLONG) - input/output
Count of integer attributes.

ppIntAttrs (PPMQLONG) - input/output
Array of integer attributes.

pCharAttrLength (PMQLONG) - input/output
Length of character attributes buffer.

ppCharAttrs (PPMQCHAR) - input/output
Character attributes.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

MQ_PUT_EXIT - Put message

708 WebSphere MQ for z/VSE System Management Guide

C invocation
MQ_SET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount, &pSelectors,

&IntAttrCount, &pIntAttrs, &CharAttrLength, &pCharAttrs, &CompCode,
&Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQHOBJ pHobj; /* Object handle */
PMQLONG pSelectorCount; /* Count of selectors */
PPMQLONG ppSelectors; /* Array of attribute selectors */
PMQLONG pIntAttrCount; /* Count of integer attributes */
PPMQLONG ppIntAttrs; /* Array of integer attributes */
PMQLONG pCharAttrLength; /* Length of character attributes buffer */
PPMQCHAR ppCharAttrs; /* Character attributes */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_TERM_EXIT - Terminate exit environment

Exit providers can supply an MQ_INIT_EXIT function to perform connection-level
termination.

Syntax
MQ_TERM_EXIT (pExitParms, pExitContext, pCompCode, pReason)

Parameters

The MQ_TERM_EXIT call has these parameters:

pExitParms (PMQAXP) - input/output
Exit parameter structure.

pExitContext (PMQAXC) - input/output
Exit context structure.

pCompCode (PMQLONG) - input/output
Completion code.

pReason (PMQLONG) - input/output
Reason code qualifying pCompCode.

Usage notes
1. The MQ_TERM_EXIT function is optional. It is not necessary for an exit suite

to register a termination exit if there is no termination processing to be done.
If functions belonging to the exit suite acquire resources during the connection,
an MQ_TERM_EXIT function is a convenient point at which to free those
resources, for example, freeing storage obtained dynamically.

2. If an MQ_TERM_EXIT function is registered when the MQDISC call is issued,
the exit function is invoked after all of the MQDISC exit functions have been
invoked.

3. If MQ_TERM_EXIT returns MQXCC_FAILED in the ExitResponse field of
MQAXP, or fails in some other way, the MQDISC call that caused
MQ_TERM_EXIT to be invoked also fails, with the CompCode and Reason
parameters set to appropriate values.

MQ_SET_EXIT - Set object attributes

Chapter 13. API exits 709

C invocation
MQ_TERM_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_TERM_EXIT - Terminate exit environment

710 WebSphere MQ for z/VSE System Management Guide

Appendix A. CICS control table definitions

This appendix contains various sample entries for the CICS control tables.

Sample file control table entries
FCT macro definitions are only necessary for WebSphere MQ for z/VSE running
under CICS for z/VSE. Matching file definitions under CICS TS are part of the
CICS CSD, and are defined using the DEFINE FILE CSD command. Consequently,
the following sample is for MQ under CICS for z/VSE only.
--
* Licensed Materials - Property of IBM *
* 5655-U97 *
* Copyright IBM Corp. 2008 *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
--
*
--
* Start of WebSphere MQ VSAM cluster definitions *
* *
* For performance reasons entries may be modified to add LSRPOOL *
* explicit specifications. *
--
*
* system setup file
MQFSSET DFHFCT TYPE=DATASET,DATASET=MQFSSET, *

ACCMETH=VSAM, *
SERVREQ=(READ,BROWSE), *
LOG=NO, *
RSL=PUBLIC, *
STRNO=5, *
RECFORM=(FIXED,BLOCKED)

* configuration file
MQFCNFG DFHFCT TYPE=DATASET,DATASET=MQFCNFG, *

ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
LOG=YES, *
RSL=PUBLIC, *
STRNO=20, *
RECFORM=(FIXED,BLOCKED)

*--reorganization file
MQFREOR DFHFCT TYPE=DATASET,DATASET=MQFREOR, *

ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
RSL=PUBLIC, *
LOG=NO, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

*--MQSC and MQSC command and reply queues
MQFADMN DFHFCT TYPE=DATASET,DATASET=MQFADMN, *

ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
RSL=PUBLIC, *
LOG=YES, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

*--WebSphere MQ Explorer model and reply queues
MQFDEFS DFHFCT TYPE=DATASET,DATASET=MQFDEFS, *

ACCMETH=VSAM, *

© Copyright IBM Corp. 2008, 2013 711

SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
RSL=PUBLIC, *
LOG=YES, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

*--example of queues (input followed by output)

MQFI001 DFHFCT TYPE=DATASET,DATASET=MQFI001, *
ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
RSL=PUBLIC, *
LOG=YES, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

MQFO001 DFHFCT TYPE=DATASET,DATASET=MQFO001, *
ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
LOG=YES, *
RSL=PUBLIC, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

MQFI002 DFHFCT TYPE=DATASET,DATASET=MQFI002, *
ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
RSL=PUBLIC, *
LOG=YES, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

MQFO002 DFHFCT TYPE=DATASET,DATASET=MQFO002, *
ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
LOG=YES, *
RSL=PUBLIC, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

MQFI003 DFHFCT TYPE=DATASET,DATASET=MQFI003, *
ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
LOG=YES, *
RSL=PUBLIC, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

MQFO003 DFHFCT TYPE=DATASET,DATASET=MQFO003, *
ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
LOG=YES, *
RSL=PUBLIC, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

*--WebSphere MQ Accounting Messages queue
MQFACCT DFHFCT TYPE=DATASET,DATASET=MQFACCT, *

ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
RSL=PUBLIC, *
LOG=YES, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

*--WebSphere MQ Statistics Messages queue
MQFSTAT DFHFCT TYPE=DATASET,DATASET=MQFSTAT, *

ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
RSL=PUBLIC, *
LOG=YES, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

*--SYSTEM DEFINITIONS
MQFLOG DFHFCT TYPE=DATASET,DATASET=MQFLOG, *

Sample FCT

712 WebSphere MQ for z/VSE System Management Guide

ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
LOG=YES, *
RSL=PUBLIC, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

MQFERR DFHFCT TYPE=DATASET,DATASET=MQFERR, *
ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
LOG=YES, *
RSL=PUBLIC, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

MQFMON DFHFCT TYPE=DATASET,DATASET=MQFMON, *
ACCMETH=VSAM, *
SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE), *
LOG=NO, *
RSL=PUBLIC, *
STRNO=16, *
RECFORM=(VARIABLE,BLOCKED)

--
* End of WebSphere MQ VSAM cluster definitions *
--

The following sample definitions are also provided for the Programmable
Command Formats (PCF) and WebSphere MQ Command (MQSC) features:
*--PCF SYSTEM DEFINITIONS
* MQFACMD DFHFCT TYPE=DATASET,DATASET=MQFACMD,
* ACCMETH=VSAM,
* SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE),
* LOG=YES,
* RSL=PUBLIC,
* STRNO=16,
* RECFORM=(VARIABLE,BLOCKED)
* MQFARPY DFHFCT TYPE=DATASET,DATASET=MQFARPY,
* ACCMETH=VSAM,
* SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE),
* LOG=YES,
* RSL=PUBLIC,
* STRNO=16,
* RECFORM=(VARIABLE,BLOCKED)

Similarly, the following sample definitions are also provided for the
Instrumentation Events feature:
*--INSTRUMENTATION EVENT DEFINITIONS
* MQFIEQE DFHFCT TYPE=DATASET,DATASET=MQFIEQE,
* ACCMETH=VSAM,
* SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE),
* LOG=YES,
* RSL=PUBLIC,
* STRNO=16,
* RECFORM=(VARIABLE,BLOCKED)
* MQFIECE DFHFCT TYPE=DATASET,DATASET=MQFIECE,
* ACCMETH=VSAM,
* SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE),
* LOG=YES,
* RSL=PUBLIC,
* STRNO=16,
* RECFORM=(VARIABLE,BLOCKED)
* MQFIEPE DFHFCT TYPE=DATASET,DATASET=MQFIEPE,
* ACCMETH=VSAM,
* SERVREQ=(READ,UPDATE,ADD,BROWSE,DELETE),
* LOG=YES,

Sample FCT

Appendix A. CICS control table definitions 713

* RSL=PUBLIC,
* STRNO=16,
* RECFORM=(VARIABLE,BLOCKED)

Sample destination control table entry
Destination control table entry MQER is required in order for WebSphere MQ
system messages to be logged to the SYSTEM.LOG queue.

In the event that security is installed for the WebSphere MQ subsystem, the DCT
entry may need to be modified to include a "USERID=user" parameter. For
information on this requirement, refer to “Changing the MQER TDQ definition” on
page 21.

Similarly, destination control table entry MQXP is required for the queue manager
to manage expired messages.

Once again, if security is installed, the DCT entry may need to be modified
according to the instructions described in section “Changing the MQXP TDQ
definition” on page 22.
--
* Licensed Materials - Property of IBM *
* *
* 5655-U97 *
* Copyright IBM Corp. 2008. *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
--
*
--
* START OF WebSphere MQ DCT ENTRIES
--
*
* MQER - System Log transient data queue
*
MQER DFHDCT TYPE=INTRA, *

RSL=PUBLIC, *
DESTID=MQER, *
DESTFAC=FILE, *
TRANSID=MQER, *
TRIGLEV=1

*
* MQXP - Message expiry transient data queue
*
MQXP DFHDCT TYPE=INTRA, *

RSL=PUBLIC, *
DESTID=MQXP, *
DESTFAC=FILE, *
TRANSID=MQXP, *
TRIGLEV=1

*
* MQIE - Instrumentation Events transient data queue
*
MQIE DFHDCT TYPE=INTRA, *

RSL=PUBLIC, *
DESTID=MQIE, *
DESTFAC=FILE, *
TRANSID=MQIE, *
TRIGLEV=1

*
* MQAC - Accounting Messages transient data queue.
*

Sample FCT

714 WebSphere MQ for z/VSE System Management Guide

MQAC DFHDCT TYPE=INTRA, *
RSL=PUBLIC, *
DESTID=MQAC, *
DESTFAC=FILE, *
TRANSID=MQAC, *
TRIGLEV=1

--
* END OF WebSphere MQ DCT ENTRIES
--

Sample JCL file definition for CICS deck

* Licensed Materials - Property of IBM *
* 5655-U97 *
* Copyright IBM Corp. 2008 *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *

* Sample JCL file definition for CICS deck *
* The DLBL statements in this JCL correspond to entries in CICSFCT*
* therefore if there are any new file ids to be added in here, *
* it must also be added into the corresponding JCL *
* *
* Fields marked with ?volid? and ?cat-name? must be changed to *
* suit customer own site specifications. *

// DLBL MQFSSET,’WMQZVSE.MQFSSET’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFCNFG,’WMQZVSE.MQFCNFG’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFREOR,’WMQZVSE.MQFREOR’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFI001,’WMQZVSE.MQFI001’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFI002,’WMQZVSE.MQFI002’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFI003,’WMQZVSE.MQFI003’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFO001,’WMQZVSE.MQFO001’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFO002,’WMQZVSE.MQFO002’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFO003,’WMQZVSE.MQFO003’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFERR,’WMQZVSE.MQFERR’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFLOG,’WMQZVSE.MQFLOG’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFMON,’WMQZVSE.MQFMON’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFADMN,’WMQZVSE.MQFADMN’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFDEFS,’WMQZVSE.MQFDEFS’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFACCT,’WMQZVSE.MQFACCT’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
// DLBL MQFSTAT,’WMQZVSE.MQFSTAT’,0,VSAM,CAT=?cat-name?
// EXTENT ,?volid?
/. c if you are using PCF then also customize following 2 labels
/. DLBL MQFACMD,’WMQZVSE.MQFACMD’,0,VSAM,CAT=?cat-name?
/. EXTENT ,?volid?
/. DLBL MQFARPY,’WMQZVSE.MQFARPY’,0,VSAM,CAT=?cat-name?
/. EXTENT ,?volid?
/. c if you require Instrumentation Events, customize following labels
/. DLBL MQFIEQE,’WMQZVSE.MQFIEQE’,0,VSAM,CAT=?cat-name?

Sample DCT

Appendix A. CICS control table definitions 715

/. EXTENT ,?volid?
/. DLBL MQFIECE,’WMQZVSE.MQFIECE’,0,VSAM,CAT=?cat-name?
/. EXTENT ,?volid?
/. DLBL MQFIEPE,’WMQZVSE.MQFIEPE’,0,VSAM,CAT=?cat-name?
/. EXTENT ,?volid?
/. DLBL MQFIEME,’WMQZVSE.MQFIEME’,0,VSAM,CAT=?cat-name?
/. EXTENT ,?volid?
/. DLBL MQFIENE,’WMQZVSE.MQFIENE’,0,VSAM,CAT=?cat-name?
/. EXTENT ,?volid?

--
* End of sample jcl file definition for cics deck *
--

Sample JCL to create CICS CSD group
WebSphere MQ for z/VSE provides two sample jobs for the creation of CICS
system definitions. These are:

MQJCSD.Z - For CICS for z/VSE
MQJCSD24.Z - For CICS Transaction Server

These JCL samples define WebSphere MQ programs, transactions and mapsets. In
addition, for CICS Transaction Server, the MQJCSD24.Z sample provides CSD
definitions for files. For CICS for z/VSE, files must be defined in the CICS File
Control Table (FCT). JCL sample MQCICFCT.A is provided for this purpose.

These JCL samples must be tailored for your CICS environment. In particular, each
program, transaction, mapset and file is defined to a specific group. This group is
added to CICS group list. You must tailor the sample JCL to specify a group
appropriate to your installation and specify your CICS startup group list.

CICS deck JCL

716 WebSphere MQ for z/VSE System Management Guide

Appendix B. Application Programming Reference

This appendix should be used in conjunction with the WebSphere MQ Application
Programming Reference manual.

Structure data types
The following structure data types are supported by WebSphere MQ for z/VSE
V3.0:
MQBMHO

Buffer to message handle options
MQCHARV

Variable-length string
MQCMHO

Create Message Handle Options
MQDH

Distribution header
MQDLH

Dead letter header
MQDMHO

Delete Message Handle Options
MQDMPO

Delete Message Property Options
MQGMO

Get message options
MQIMPO

Inquire Message Property Options
MQMD

Message descriptor
MQMDE

Message descriptor extension
MQMHBO

Message Handle To Buffer Options
MQOD

Object descriptor
MQOR

Object record
MQPD

Property Descriptor
MQPMO

Put message options
MQPMR

Put message record
MQRFH2

Rules and Formatting Header 2
MQRR

Response record
MQSMPO

Set Message Property Options
MQTM

Trigger message
MQXQH

Transmission-queue header

© Copyright IBM Corp. 2008, 2013 717

In addition, WebSphere MQ for z/VSE supports the MQCD and MQCXP in
conjunction with channel exits. These data structures are described in
“Channel-exit calls and data structures” on page 67. WebSphere MQ for z/VSE
also supports data structures associated with MQ API Exits. These are described in
Chapter 13, “API exits,” on page 677.

The declarations of these structures are as described in the WebSphere MQ
Application Programming Reference. This section describes how these data structures
may vary in the z/VSE programming environment.

MQBMHO – Buffer to message handle options

The MQBMHO structure allows applications to specify options that control how
message handles are produced from buffers. The structure is an input parameter
on the MQBUFMH call.

Data in MQBMHO must be in the character set of the application and encoding of
the application (MQENC_NATIVE).

Fields

Here is a summary of the fields in the MQBMHO structure.

Table 32. Fields in MQBMHO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options controlling the action of
MQBMHO

Here is a description of each field.

Options (MQLONG)
Options field. The value can be:

MQBMHO_DELETE_PROPERTIES
Properties that are added to the message handle are deleted from
the buffer. If the call fails, no properties are deleted. Default
options: If you do not need the option described, use the
MQBMHO_NONE option.

MQBMHO_NONE
No options specified. This is always an input field.

The initial value of this field is MQBMHO_DELETE_PROPERTIES.

StrucId (MQLONG)
The structure identifier. The value must be:

MQBMHO_STRUC_ID
Identifier for buffer to message handle structure.

For the C programming language, the constant
MQBMHO_STRUC_ID_ARRAY is also defined; this has the same
value as MQBMHO_STRUC_ID but is an array of characters
instead of a string.

This is always an input field.

Structure data types

718 WebSphere MQ for z/VSE System Management Guide

The initial value of this field is MQBMHO_STRUC_ID.

Version (MQLONG)
The structure version number. The value must be:

MQBMHO_VERSION_1
Version number for buffer to message handle structure.

The following constant specifies the version number of the current version:

MQBMHO_CURRENT_VERSION
Current version of buffer to message handle structure.

This is always an input field.

The initial value of this field is MQBMHO_VERSION_1.

Initial values and language declarations

Here are the initial values and language declarations for MQBMHO.

Table 33. Initial values of fields in MQBMHO

Field name Name of constant Value of constant

StrucId MQBMHO_STRUC_ID 'BMHO'

Version MQBMHO_VERSION_1 1

Options MQBMHO_NONE 0

Note: In the C programming language, the macro variable MQBMHO_DEFAULT
contains the values shown in Table 33. To provide initial values for the fields in the
structure, issue this statement:
MQBMHO MyBMHO = {MQBMHO_DEFAULT};

C declaration

COBOL declaration

PL/I declaration

typedef struct tagMQBMHO MQBMHO;
struct tagMQBMHO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of MQBUFMH */

};

** MQBMHO structure
10 MQBMHO.

** Structure identifier
15 MQBMHO-STRUCID PIC X(4).

** Structure version number
15 MQBMHO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQBUFMH
15 MQBMHO-OPTIONS PIC S9(9) BINARY.

MQBMHO - Buffer to message handle options

Appendix B. Application Programming Reference 719

MQCHARV – Variable-length string

Use the MQCHARV structure to describe a variable length string.

Data in the MQCHARV must be in the encoding of the local queue manager that is
given by MQENC_NATIVE and the character set of the VSCCSID field within the
structure. If the application is running as an MQ client, the structure must be in
the encoding of the client. Some character sets have a representation that depends
on the encoding. If VSCCSID is one of these character sets, the encoding used is
the same encoding as that of the other fields in the MQCHARV.

The MQCHARV structure addresses data that might be discontiguous with the
structure containing it. To address this data, fields declared with the pointer data
type can be used. Be aware that COBOL does not support the pointer data type in
all environments. Because of this, the data can also be addressed using fields that
contain the offset of the data from the start of the structure containing the
MQCHARV.

Fields

Here is a summary of the fields in the MQBMHO structure.

Table 34. Fields in MQCHARV

Field Description

VSPtr Pointer to the variable length
string.

VSOffset Offset in bytes of the variable
length string from the start of the
structure that contains this
MQCHARV structure.

VSLength The length in bytes of the variable
length string addressed by the
VSPtr or VSOffset field.

VSBufSize The size in bytes of the buffer
addressed by the VSPtr or VSOffset
field.

VSCCSID The character set identifier of the
variable-length string addressed by
the VSPtr or VSOffset field.

Here is a discription of the fields.

VSBufSize (MQLONG)
The size in bytes of the buffer addressed by the VSPtr or VSOffset field.

When the MQCHARV structure is used as an output field on a function
call, this field must be initialised with the length of the buffer provided. If
the value of VSLength is greater than VSBufSize, then only VSBufSize

dcl
1 MQBMHO based,
3 StrucId char(4)
init(MQBMHO_STRUC_ID), /* Structure identifier */

3 Version fixed bin(31)
init(MQBMHO_VERSION_1), /* Structure version number */

3 Options fixed bin(31)
init(MQBMHO_DELETE_PROPERTIES); /* Options that control the */

/* action of MQBUFMH */

MQCHARV - Variable-length string

720 WebSphere MQ for z/VSE System Management Guide

bytes of data are returned to the caller in the buffer. This value must be a
value greater than or equal to zero, or the following special value applies:

MQVS_USE_VSLENGTH
When specified, the length of the buffer is taken from the
VSLength field in the MQCHARV structure. Do not use this value
when using the structure as an output field and a buffer is
provided. This is the initial value of this field.

VSCCSID (MQLONG)
The character set identifier of the variable length-string addressed by the
VSPtr or VSOffset field.

The initial value of this field is MQCCSI_APPL. This is defined by MQ to
indicate that it should be changed by the queue manager to the true
character set identifier of the queue manager, or the MQ client if running
as an MQ client application. This is the same way as MQCCSI_Q_MGR
behaves. As a result, the value MQCCSI_APPL is never associated with a
variablelength string.

You can change the initial value of this field by defining a different value
for the constant MQCCSI_APPL for your compile unit by the appropriate
means for your application's programming language.

VSLength (MQLONG)
The length in bytes of the variable-length string addressed by the VSPtr or
VSOffset field. The initial value of this field is 0. The value must be either
greater than or equal to zero or the following special value applies:

MQVS_NULL_TERMINATED
If MQVS_NULL_TERMINATED is not specified, VSLength bytes
are included as part of the string. If null characters are present,
they do not delimit the string.

If MQVS_NULL_TERMINATED is specified, the string is delimited
by the first null encountered in the string. The null itself is not
included as part of that string.

Note: The null character used to terminate a string (if
MQVS_NULL_TERMINATED is specified) is a null from the codeset
specified by VSCCSID.

For example, in UTF-16 (UCS-2 CCSIDs 1200 and 13488), this is the
two-byteUnicode encoding where a null is represented by a 16-bit number
of all zeros. In TF-16, it is common to find single bytes set to all zero
which are part of characters (7-bit ASCII characters for instance), but the
strings are only null-terminated when two "zero" bytes are found on an
even-byte boundary. It is possible to get two "zero" bytes on an odd
boundary when they are each part of valid characters. For example, X'01'
X'00' X'00' X'30' are two valid Unicode characters and do not null-terminate
the string.

VSOffset (MQLONG)
The offset in bytes of the variable-length string from the start of the
MQCHARV, or the structure containing it. The offset can be positive or
negative. You can use either the VSPtr or VSOffset field to specify the
variable-length string, but not both.

MQCHARV - Variable-length string

Appendix B. Application Programming Reference 721

When the MQCHARV structure is embedded within another structure, this
value is the offset in bytes of the variable-length string from the start of the
structure that contains this MQCHARV structure.

When the MQCHARV structure is not embedded within another structure
(for example, if it is specified as a parameter on a function call), the offset
is relative to the start of the MQCHARV structure.

The initial value of this field is 0.

VSPtr (MQPTR)
A pointer to the variable length string.

You can use either the VSPtr or VSOffset field to specify the
variable-length string, but not both.

The initial value of this field is a null pointer or null bytes.

Initial values and language declarations

Here are the initial values and language declarations for MQBCHARV.

Table 35. Initial values of fields in MQBCHARV

Field name Name of constant Value of constant

VSPtr None Null pointer or null bytes

VSOffset None 0

VSBufSize MQVS_USE_VSLENGTH -1

VSLength None 0

VSCCSID MQCCSI_APPL -3

Note: In the C programming language, the macro variable MQCHARV_DEFAULT
contains the values listed above. To provide initial values for the fields in the
structure, issue this statement:
MQCHARV MyVarStr = {MQCHARV_DEFAULT};

C declaration

COBOL declaration

struct tagMQCHARV {
MQPTR VSPtr; /* addr of variable length string */
MQLONG VSOffset; /* offset of variable string */
MQLONG VSBufSize; /* Size of buffer */
MQLONG VSLength; /* length of variable string */
MQLONG VSCCSID; /* CCSID of variable string */

};

** MQCHARV structure
10 MQCHARV.

** Address of variable length string
15 MQCHARV-VSPTR USAGE POINTER.

** Offset of variable length string
15 MQCHARV-VSOFFSET PIC S9(9) BINARY.

** Size of buffer
15 MQCHARV-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string
15 MQCHARV-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string
15 MQCHARV-VSCCSID PIC S9(9) BINARY.

MQCHARV - Variable-length string

722 WebSphere MQ for z/VSE System Management Guide

PL/I declaration

MQCMHO – Create message handle options

The MQCMHO structure allows applications to specify options that control how
message handles are created. The structure is an input parameter on the
MQCRTMH call.

Data in MQCMHO must be in the character set of the application and encoding of
the application (MQENC_NATIVE).

Fields

Here is a summary of the fields in the MQCMHO structure.

Table 36. Fields in MQCMHO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options controlling the action of
MQCMHO

Here is a description of the fields.

Options (MQLONG)
One of these options can be specified:

MQCMHO_VALIDATE
When MQSETMP is called to set a property in this message
handle, the property name is validated to ensure that it:
v Contains no invalid characters.
v Does not begin with "JMS" or "usr.JMS" except for these:

– JMSCorrelationID
– JMSReplyTo
– JMSType
– JMSXGroupID
– JMSXGroupSeq
These names are reserved for JMS properties.

v Is not one of these keywords, in any mixture of upper or
lowercase:

AND
BETWEEN
ESCAPE
FALSE

dcl
1 MQCHARV based,
3 VSPtr pointer
init(null()), /* Address of variable length string */

3 VSOffset fixed bin(31)
init(0), /* Offset of variable length string */

3 VSBufSize fixed bin(31)
init(0), /* Size of buffer */

3 VSLength fixed bin(31)
init(0), /* Length of variable length string */

3 VSCCSID fixed bin(31)
init(MQCCSI_APPL); /* CCSID of variable length string */

MQCHARV - Variable-length string

Appendix B. Application Programming Reference 723

IN
IS
LIKE
NOT
NULL
OR
TRUE

v Does not begin with "Body." or "Root." (except for
"Root.MQMD.").

If the property is MQ-defined (mq.*) and the name is recognized,
the property descriptor fields are set to the correct values for the
property. If the property is not recognized, the Support field of the
property descriptor is set to MQPD_OPTIONAL.

MQCMHO_DEFAULT_VALIDATION
Specifies that the default level of validation of property names
should occur.

The default level of validation is equivalent to that specified by
MQCMHO_VALIDATE.

In a future release, an administrative option may be defined which
will change the level of validation that occurs when
MQCMHO_DEFAULT_VALIDATION is defined. This is the default
value.

MQCMHO_NO_VALIDATION
No validation on the property name occurs.

See the description of MQCMHO_VALIDATE.

Default option: If none of the options described above is required, the
following option can be used:

MQCMHO_NONE
All options assume their default values. Use this value to indicate
that no other options have been specified. MQCMHO_NONE aids
program documentation; it is not intended that this option be used
with any other, but as its value is zero, such use cannot be
detected.

This is always an input field. The initial value of this field is
MQCMHO_DEFAULT_VALIDATION.

StrucId (MQCHAR4)
This is the structure identifier; the value must be:

MQCMHO_STRUC_ID
Identifier for create message handle options structure.

For the C programming language, the constant
MQCMHO_STRUC_ID_ARRAY is also defined; this has the same
value as MQCMHO_STRUC_ID, but is an array of characters
instead of a string.

This is always an input field. The initial value of this field is
MQCMHO_STRUC_ID.

Version (MQLONG)
This is the structure version number; the value must be:

MQCMHO - Create message handle options

724 WebSphere MQ for z/VSE System Management Guide

MQCMHO_VERSION_1
Version-1 create message handle options structure.

The following constant specifies the version number of the current version:

MQCMHO_CURRENT_VERSION
Current version of create message handle options structure.

This is always an input field. The initial value of this field is
MQCMHO_VERSION_1.

Initial values and language declarations

Here are the initial values and language declarations for MQCMHO.

Table 37. Initial values of fields in MQBCCMHO

Field name Name of constant Value of constant

StrucId MQCMHO_STRUC_ID 'CMHO'

Version MQCMHO_VERSION_1 1

Options MQCMHO_DEFAULT_VALIDATION 0

Note: In the C programming language, the macro variable MQCMHO_DEFAULT
contains the values listed above. Issue this statement to provide initial values for
the fields in the structure:
MQCMHO MyCMHO = {MQCMHO_DEFAULT};

C declaration

COBOL declaration

PL/I declaration

struct tagMQCMHO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of MQCRTMH */

};

** MQCMHO structure
10 MQCMHO.

** Structure identifier
15 MQCMHO-STRUCID PIC X(4).

** Structure version number
15 MQCMHO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQCRTMH
15 MQCMHO-OPTIONS PIC S9(9) BINARY.

dcl
1 MQCMHO based,
3 StrucId char(4)
init(MQCMHO_STRUC_ID), /* Structure identifier */

3 Version fixed bin(31)
init(MQCMHO_VERSION_1), /* Structure version number */

3 Options fixed bin(31)
init(MQCMHO_DEFAULT_VALIDATION); /* Options that control the */

/* action of MQCRTMH */

MQCMHO - Create message handle options

Appendix B. Application Programming Reference 725

MQDLH – Dead-letter header

The MQDLH structure describes the information that prefixes the application
message data of messages on the dead-letter (undelivered-message) queue. A
message can arrive on the dead-letter queue either because the queue manager or
message channel agent has redirected it to the queue, or because an application has
put the message directly on the queue.

Applications that put messages directly on the dead-letter queue must prefix the
message data with an MQDLH structure, and initialize the fields with appropriate
values. However, the queue manager does not require that an MQDLH structure
be present, or that valid values have been specified for the fields.

If a message is too long to put on the dead-letter queue, the application must do
one of the following:
v Truncate the message data to fit on the dead-letter queue.
v Record the message on auxiliary storage and place an exception report message

on the dead-letter queue indicating this.
v Discard the message and return an error to its originator. If the message is (or

might be) a critical message, do this only if it is known that the originator still
has a copy of the message; for example, a message received by a message
channel agent from a communication channel.

Which of the above is appropriate (if any) depends on the design of the
application.

The queue manager performs special processing when a message that is a segment
is put with an MQDLH structure at the front; see the description of the MQMDE
structure for further details.

Fields

Here is a summary of the fields.

Table 38. Fields in MQDLH

Field Description

StrucId Structure identifier

Version Structure version number

Reason Reason message arrived on
dead-letter queue

DestQName Name of original destination queue

DestQMgrName Name of original destination queue
manager

Encoding Numeric encoding of data that
follows MQDLH

CodedCharSetId Character set identifier of data that
follows MQDLH

Format Format name of data that follows
MQDLH

PutApplType Type of application that put
message on dead-letter queue

MQDLH - Dead-letter header

726 WebSphere MQ for z/VSE System Management Guide

Table 38. Fields in MQDLH (continued)

Field Description

PutApplName Name of application that put
message on dead-letter queue

PutDate Date when message was put on
dead-letter queue

PutTime Time when message was put on
dead-letter queue

Here is a description of the fields.

CodedCharSetId (MQLONG)
This is the character set identifier of the data that follows the MQDLH
structure (usually the data from the original message); it does not apply to
character data in the MQDLH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data.

The initial value of this field is MQCCSI_UNDEFINED.

DestQMgrName (MQCHAR48)
This is the name of the queue manager that was the original destination
for the message.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The
initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

DestQName (MQCHAR48)
This is the name of the message queue that was the original destination for
the message.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

Encoding (MQLONG)
This is the numeric encoding of the data that follows the MQDLH
structure (usually the data from the original message); it does not apply to
numeric data in the MQDLH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data.

The initial value of this field is 0.

Format (MQCHAR8)
This is the format name of the data that follows the MQDLH structure
(usually the data from the original message).

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data. The rules for coding this field are the same
as those for the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial
value of this field is MQFMT_NONE.

PutApplName (MQCHAR28)
This is the name of the application that put the message on the dead-letter
(undelivered-message) queue.

MQDLH - Dead-letter header

Appendix B. Application Programming Reference 727

The format of the name depends on the PutApplType field. See also the
description of the PutApplName field in “MQMD – Message descriptor”
on page 774.

If the queue manager redirects the message to the dead-letter queue,
PutApplName contains the first 28 characters of the queue-manager name,
padded with blanks if necessary.

The length of this field is given by MQ_PUT_APPL_NAME_LENGTH. The
initial value of this field is the null string in C, and 28 blank characters in
other programming languages.

PutApplType (MQLONG)
This is the type of application that put the message on the dead- letter
(undelivered-message) queue. This field has the same meaning as the
PutApplType field in the message descriptor MQMD (see “MQMD –
Message descriptor” on page 774 for details).

If the queue manager redirects the message to the dead-letter queue,
PutApplType has the value MQAT_QMGR.

The initial value of this field is 0.

PutDate (MQCHAR8)
The date when the message was put on the dead-letter
(undelivered-message) queue. The format used for the date when this field
is generated by the queue manager is YYYYMMDD, where the characters
represent:

YYYY Year (four numeric digits)

MM Month of year (01 through 12)

DD Day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

The length of this field is given by MQ_PUT_DATE_LENGTH. The initial
value of this field is the null string in C, and 8 blank characters in other
programming languages.

PutTime (MQCHAR8)
This is time when the message was put on the dead-letter
(undelivered-message) queue. The format used for the time when this field
is generated by the queue manager is HHMMSSTH, where the characters
represent:

HH Hours (00 through 23)

MM Minutes (00 through 59)

SS Seconds (00 through 59)

T Tenths of a second (0 through 9)

H Hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard,
it is possible on rare occasions for 60 or 61 to be returned for the seconds
in PutTime. This happens when leap seconds are inserted into the global
time standard.
Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,

MQDLH - Dead-letter header

728 WebSphere MQ for z/VSE System Management Guide

subject to the system clock being set accurately to GMT. The length of this
field is given by MQ_PUT_TIME_LENGTH.

The initial value of this field is the null string in C, and 8 blank characters
in other programming languages.

Reason (MQLONG)
This identifies the reason why the message was placed on the dead-letter
queue instead of on the original destination queue. It should be one of the
MQFB_* or MQRC_* values (for example, MQRC_Q_FULL). See the
description of the Feedback field in “MQMD – Message descriptor” on
page 774 for details of the common MQFB_* values that can occur.

The initial value of this field is MQRC_NONE.

StrucId (MQCHAR4)
This is the structure identifier. The value must be:

MQDLH_STRUC_ID
Identifier for dead-letter header structure

For the C programming language, the constant
MQDLH_STRUC_ID_ARRAY is also defined; this has the same value as
MQDLH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQDLH_STRUC_ID.

Version (MQLONG)
This is the structure version number. The value must be:

MQDLH_VERSION_1
Version number for dead-letter header structure

The following constant specifies the version number of the current version:

MQDLH_CURRENT_VERSION
Current version of dead-letter header structure

The initial value of this field is MQDLH_VERSION_1.

C declaration

COBOL declaration

typedef struct tagMQDLH MQDLH;
struct tagMQDLH
{
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Reason; /* Reason message arrived on dead-letter queue */
MQCHAR48 DestQName; /* Name of original destination queue */
MQCHAR48 DestQMgrName; /* Name of original destination queue manager */
MQLONG Encoding; /* Numeric encoding of data that follows MQDLH */
MQLONG CodedCharSetId; /* Character set id of data that follows MQDLH */
MQCHAR8 Format; /* Format name of data that follows MQDLH */
MQLONG PutApplType; /* Type of application that put message on dlq */
MQCHAR28 PutApplName; /* Name of application that put message on dlq */
MQCHAR8 PutDate; /* Date when message was put on dlq */
MQCHAR8 PutTime; /* Time when message was put on the dlq */

};

MQDLH - Dead-letter header

Appendix B. Application Programming Reference 729

PL/I declaration

MQDH – Distribution Header

The MQDH structure describes the additional data that is present in a message,
when that message is a distribution-list message stored on a transmission queue. A
distribution-list message is a message that is sent to multiple destination queues.
The additional data consists of the MQDH structure, followed by an array of
MQOR records and an array of MQPMR records.

This structure is for use by specialized applications that put messages directly on
transmission queues, or which remove messages from transmission queues (for
example: message channel agents).

This structure should not be used by normal applications which simply want to
put messages to distribution lists. Those applications should use the MQOD
structure to define the destinations in the distribution list, and the MQPMO
structure to specify message properties or receive information about the messages
sent to the individual destinations.

Format name: MQFMT_DIST_HEADER

Character set and encoding: Character data in MQDH must be in the character set
of the local queue manager; this is given by the CodedCharSetId queue-manager
attribute. Numeric data in MQDH must be in the native machine encoding; this is
given by the value of MQENC_NATIVE for the C programming language.

** MQDLH structure
10 MQDLH.

** Structure identifier
15 MQDLH-STRUCID PIC X(4).

** Structure version number
15 MQDLH-VERSION PIC S9(9) BINARY.

** Reason message arrived on dead-letter queue
15 MQDLH-REASON PIC S9(9) BINARY.

** Name of original destination queue
15 MQDLH-DESTQNAME PIC X(48).

** Name of original destination queue manager
15 MQDLH-DESTQMGRNAME PIC X(48).

** Numeric encoding of data that follows MQDLH
15 MQDLH-ENCODING PIC S9(9) BINARY.

** Character set identifier of data that follows MQDLH
15 MQDLH-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of data that follows MQDLH
15 MQDLH-FORMAT PIC X(8).

** Type of application that put message on dlq
15 MQDLH-PUTAPPLTYPE PIC S9(9) BINARY.

** Name of application that put message on dlq
15 MQDLH-PUTAPPLNAME PIC X(28).

** Date when message was put on dlq
15 MQDLH-PUTDATE PIC X(8).

** Time when message was put on the dlq
15 MQDLH-PUTTIME PIC X(8).

dcl
1 MQDLH based,
3 StrucId char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number */
3 Reason fixed bin(31), /* Reason message arrived on dead-letter queue */
3 DestQName char(48), /* Name of original destination queue */
3 DestQMgrName char(48), /* Name of original destination queue manager */
3 Encoding fixed bin(31), /* Numeric encoding of data that follows MQDLH */
3 CodedCharSetId fixed bin(31), /* Character set id of data that follows MQDLH */
3 Format char(8), /* Format name of data that follows MQDLH */
3 PutApplType fixed bin(31), /* Type of application that put message on dlq */
3 PutApplName char(28), /* Name of application that put message on dlq */
3 PutDate char(8), /* Date when message was put on dlq */
3 PutTime char(8); /* Time when message was put on the dlq */

MQDLH - Dead-letter header

730 WebSphere MQ for z/VSE System Management Guide

The character set and encoding of the MQDH must be set into the CodedCharSetId
and Encoding fields in:
v The MQMD (if the MQDH structure is at the start of the message data), or
v The header structure that precedes the MQDH structure (all other cases).

When an application puts a message to a distribution list, and some or all of the
destinations are remote, the queue manager prefixes the application message data
with the MQXQH and MQDH structures, and places the message on the relevant
transmission queue. The data therefore occurs in the following sequence when the
message is on a transmission queue:
v MQXQH structure.
v MQDH structure plus arrays of MQOR and MQPMR records.
v Application message data.

Depending on the destinations, more than one such message may be generated by
the queue manager, and placed on different transmission queues. In this case, the
MQDH structures in those messages identify different subsets of the destinations
defined by the distribution list opened by the application.

An application that puts a distribution-list message directly on a transmission
queue must conform to the sequence described above, and must ensure that the
MQDH structure is correct. If the MQDH structure is not valid, the queue manager
may choose to fail the MQPUT or MQPUT1 call with reason code
MQRC_DH_ERROR.

Messages can be stored on a queue in distribution-list form only if the queue is
defined as being able to support distribution list messages. If an application puts a
distribution-list message directly on a queue that does not support distribution
lists, the queue manager splits the distribution list message into individual
messages, and places those on the queue instead.

Fields

Here is a summary of the fields.

Table 39. Fields in MQDH

Field Description

StrucId Structure identifier

Version Structure version number

StrucLength Length of MQDH structure plus
following records

Encoding Encoding of message data

CodedCharSetId Coded character-set identifier of
message data

Format Format name of message data

Flags General flags

PutMsgRecFields Flags indicating which MQPMR
fields are present

RecsPresent Number of object records present

ObjectRecOffset Offset of first object record from
start of MQDH

MQDH - Distribution Header

Appendix B. Application Programming Reference 731

Table 39. Fields in MQDH (continued)

Field Description

PutMsgRecOffset Offset of first put message record
from start of MQDH

Here is a description of the fields.

CodedCharSetId (MQLONG)
Character set identifier of data that follows the array of MQPMR records.

This specifies the character set identifier of the data that follows the arrays
of MQOR and MQPMR records; it does not apply to character data in the
MQDH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data. The following special value can be used:

MQCCSI_INHERIT
Inherit character-set identifier of this structure. Character data in
the data following this structure is in the same character set as this
structure.

The queue manager changes this value in the structure sent in the message
to the actual character-set identifier of the structure. Provided no error
occurs, the value MQCCSI_INHERIT is not returned by the MQGET call.

The initial value of this field is MQCCSI_UNDEFINED.

Encoding (MQLONG)
Numeric encoding of the data that follows the array of MQPMR records.

This specifies the numeric encoding of the data that follows the arrays of
MQOR and MQPMR records; it does not apply to numeric data in the
MQDH structure itself

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data.

The initial value of this field is 0.

Flags (MQLONG)
General flags.

The following flag can be specified:
v MQDHF_NEW_MSG_IDS

Generate new message identifiers. This flag indicates that a new
message identifier is to be generated for each destination in the
distribution list. This can be set only when there are no put-message
records present, or when the records are present, but they do not contain
the MsgId field.

Using this flag defers generation of the message identifiers until the last
possible moment, namely the moment when the distribution-list message is
finally split into individual messages. This minimizes the amount of
control information that must flow with the distribution-list message.

When an application puts a message to a distribution list, the queue
manager sets MQDHF_NEW_MSG_IDS in the MQDH it generates when
both of the following are true:
v There are no put-message records provided by the application, or the

records provided do not contain the MsgId field.

MQDH - Distribution Header

732 WebSphere MQ for z/VSE System Management Guide

v The MsgId field in MQMD is MQMI_NONE, or the Options field in
MQPMO includes MQPMO_NEW_MSG_ID.

If no flags are needed, the following can be specified:

MQDHF_NONE
No flags. This constant indicates that no flags have been specified.
MQDHF_NONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value
is zero, such use cannot be detected.

The initial value of this field is MQDHF_NONE.

Format (MQCHAR8)
Format name of the data that follows the array of MQPMR records.

This specifies the format name of the data that follows the arrays of
MQOD and MQPMR records, or whichever occurs last.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data. The rules for coding this field are the same
as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

ObjectRecOffset (MQLONG)
Offset of first object record from the start of MQDH.

This field gives the offset in bytes of the first record in the array of MQOR
object records containing the names of the destination queues. There are
RecsPresent records in this array. These records, plus any bytes skipped
between the first object record and the previous field, are included in the
length given by the StrucLength field.

A distribution list must always contain at least one destination, so
ObjectRecOffset must always be greater than zero.

The initial value of this field is 0.

PutMsgRecFields (MQLONG)
Flags indicating which MQPMR are present.

Zero or more of the following flags can be specified:
v MQPMRF_MSG_ID Message-identifier field is present.
v MQPMRF_CORREL_ID Correlation-identifier field is present.
v MQPMRF_GROUP_ID Group-identifier field is present.
v MQPMRF_FEEDBACK Feedback field is present.
v MQPMRF_ACCOUNTING_TOKEN Accounting-token field is present.

If no MQPMR fields are present, the following can be specified:

MQPMRF_NONE
No put-message record fields are present. MQPMRF_NONE is
defined to aid program documentation. It is not intended that this
constant be used with any other, but as its value is zero, such use
cannot be detected.

The initial value of this field is MQPMRDF_NONE.

PutMsgRecOffset (MQLONG)
Offset of first put message record from start of MQDH.

This field gives the offset in bytes of the first record in the array of
MQPMR put message records containing the message properties. If

MQDH - Distribution Header

Appendix B. Application Programming Reference 733

present, there are RecsPresent records in this array. These records, plus any
bytes skipped between the first put message record and the previous field,
are included in the length given by the StrucLength field.

Put message records are optional; if no records are provided,
PutMsgrecOffset is zero, and PutMsgRecFields has the value
MQPMRF_NONE.

The initial value of this field is O.

RecsPresent (MQLONG)
Number of object records present.

This defines the number of destinations. A distribution list must always
contain at least one destination, so RecsPresent must always be greater
than zero.

The initial value of this field is O.

StrucId (MQCHAR4)
Structure identifier.

The value must be:

MQDG_STRUC_ID
Identifier for distribution header structure. For the C programming
language, the constant MQDH_STRUC_ID_ARRAY is also defined;
this has the same value as MQDH_STRUC_ID, but is an array of
characters instead of a string.

The initial value of this field is MQDH_STRUC_ID.

StrucLength (MQLONG)
Length of MQDH structure plus following records.

This is the number of bytes from the start of the MQDH structure to the
start of the message data following the arrays of MQOR and MQPMR
records. The data occurs in the following sequence:
v MQDH_structure.
v Array of MQOR records.
v Array of MQPMR records.
v Message data.

The arrays of MQOR and MQPMR records are addressed by offsets
contained within the MQDH structure. If these offsets result in unused
bytes between one or more of the MQDH structure, the arrays of records,
and the message data, these unused bytes must be included in the value of
StrucLength. The content of these bytes, however, is not preserved by the
queue manager. It is valid for the array of MQPMR records to precede the
array of MQPMR records.

The initial value of this field is 0.

Version (MQLONG)
This is the structure version number; the value must be one of the
following:

MQDH_VERSION_1
Version-1 object descriptor structure.

The following constant specifies the version number of the current version:

MQDH - Distribution Header

734 WebSphere MQ for z/VSE System Management Guide

MQDH_CURRENT_VERSION
Current version of object descriptor structure. For WebSphere MQ
for z/VSE, this field defaults to MQOD_VERSION_1.

The initial value of this field is MQDH_VERSION_1.

C declaration

COBOL declaration

PL/I declaration

struct tagMQDH
{
MQCHAR4 StrucId;
MQLONG Version;
MQLONG StrucLength;
MQLONG Encoding;
MQLONG CodedCharSetId;
MQCHAR8 Format;
MQLONG Flags;
MQLONG PutMsgRecFields;
MQLONG RecsPresent;
MQLONG ObjectRecOffset;
MQLONG PutMsgRecOffset;

};
typedef struct tagMQDH MQDH;

** MQDH structure
10 MQDH.

** Structure identifier
15 MQDH-STRUCID PIC X(4).VALUE ’DH’.

** Structure version number
15 MQDH-VERSION PIC S9(9) BINARY VALUE 1.

** Length of MQDH structure plus following MQOR and MQPMR records
15 MQDH-STRUCLENGTH PIC S9(9) BINARY VALUE 0.

** Numeric encoding of data that follows the MQOR and MQPMR
** records

15 MQDH-ENDCODING PIC S9(9) BINARY VALUE 0.
** Character set identifier of data that follows the MQOR and
** MQPMR records

15 MQDH-CODEDCHARSETID PIC S9(9) BINARY VALUE 0.
** Format name of data that follows the MQOR and MQPMR records

15 MQDH-FORMAT PIC X(8) VALUE SPACES.
** General flags

15 MQDH-FLAGS PIC S9(9) BINARY VALUE O.
** Flags indicating which MQPMR fields are present

15 MQDH-PUTMSGRECFIELDS PIC S9(9) BINARY VALUE 0.
** Number of MQOR records present

15 MQDH-RECSPRESENT PIC S9(9)BINARY VALUE 0.
** Offset of first MQOR record from start of MQDH

15 MQDH-OBJECTRECOFFSET PIC S9(9) BINARY VALUE 0.
** Offset of first MQPMR record from start of MQDH

15 MQDH-PUTMSGRECOFFSET PIC S9(9) BINARY VALUE 0.

MQDH - Distribution Header

Appendix B. Application Programming Reference 735

MQDMHO – Delete message handle options

The MQDMHO structure allows applications to specify options that control how
message handles are deleted. The structure is an input parameter on the
MQDLTMH call.

Data in MQDMHO must be in the character set of the application and encoding of
the application (MQENC_NATIVE).

Fields

Here is a summary of the fields.

Table 40. Fields in MQDMHO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options controlling the action of
MQDMHO

Here is a description of the fields.

Options (MQLONG)
The value must be:

MQDMHO_NONE
No options specified.

This is always an input field. The initial value of this field is
MQDMHO_NONE.

dcl
1 MQDH based,
3 StrucId char(4)

init(MQDH_STRUC_ID), /* Structure identifier */
3 Version fixed bin(31)

init(MQDH_VERSION_1), /* Structure version number */
3 StrucLength fixed bin(31)

init(0), /* Length of MQDH structure plus
following MQOR and MQPMR
records */

3 Encoding fixed bin(31)
init(0), /* Numeric encoding of data that

follows the MQOR and MQPMR
records */

3 CodedCharSetId fixed bin(31)
init(MQCCSI_UNDEFINED), /* Character set identifier of data

that follows the MQOR and MQPMR
records */

3 Format char(8)
init(MQFMT_NONE), /* Format name of data that follows

the MQOR and MQPMR records */
3 Flags fixed bin(31)

init(MQDHF_NONE) /* General flags */
3 PutMsgRecFields fixed bin(31)

init(MQPMRF_NONE), /* Flags indicating which MQPMR
fields are present */

3 RecsPresent fixed bin(31)
init(0), /* Number of MQOR records

present */
3 ObjectRecOffset fixed bin(31)

init(0), /* Offset of first MQOR record from
start of MQDH */

3 PutMsgRecOffset fixed bin(31)
init(0), /* Offset of first MQPMR record

from start of MQDH */

MQDMHO - Delete message handle options

736 WebSphere MQ for z/VSE System Management Guide

StrucId (MQCHAR4)
This is the structure identifier; the value must be:

MQDMHO_STRUC_ID
Identifier for create message handle options structure.

For the C programming language, the constant
MQDMHO_STRUC_ID_ARRAY is also defined; this has the same
value as MQDMHO_STRUC_ID, but is an array of characters
instead of a string.

This is always an input field. The initial value of this field is
MQDMHO_STRUC_ID.

Version (MQLONG)
This is the structure version number; the value must be:

MQDMHO_VERSION_1
Version-1 create message handle options structure.

The following constant specifies the version number of the current version:

MQDMHO_CURRENT_VERSION
Current version of create message handle options structure.

This is always an input field. The initial value of this field is
MQDMHO_VERSION_1.

Initial values and language declarations

Here are the initial values and language declarations for MQDMHO.

Table 41. Initial values of fields in MQDMHO

Field name Name of constant Value of constant

StrucId MQDMHO_STRUC_ID 'DMHO'

Version MQDMHO_VERSION_1 1

Options MQDMHO_NONE 0

Note: In the C programming language, the macro variable MQDMHO_DEFAULT
contains the values shown in Table 33 on page 719. To provide initial values for the
fields in the structure, issue this statement:
MQDMHO MyDMHO = {MQDMHO_DEFAULT};

C declaration

COBOL declaration

struct tagMQDMHO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of MQDLTMH */

};

MQDMHO - Delete message handle options

Appendix B. Application Programming Reference 737

PL/I declaration

MQDMPO – Delete message properties options

The MQDMPO structure allows applications to specify options that control how
properties of messages are deleted. The structure is an input parameter on the
MQDLTMP call.

Data in MQDMPO must be in the character set of the application and encoding of
the application (MQENC_NATIVE).

Fields

Here is a summary of the fields.

Table 42. Fields in MQDMPO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options controlling the action of
MQDMPO

Here is a description of the fields.

Options (MQLONG)
Options field. Delete message property options structure.

Location options: The following options relate to the relative location of
the property compared to the property cursor.

MQDMPO_DEL_FIRST
Deletes the first property that matches the specified name.

MQDMPO_DEL_NEXT
Deletes the next property that matches the specified name,
continuing the search from the property cursor. If this is the first
MQDLTMP call for the specified name, the first property that
matches the specified name is deleted.

If the property under the cursor has been deleted, MQINQMP
deletes the next matching property following the one that has been
deleted.

** MQDMHO structure
10 MQDMHO.

** Structure identifier
15 MQDMHO-STRUCID PIC X(4).

** Structure version number
15 MQDMHO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQDLTMH
15 MQDMHO-OPTIONS PIC S9(9) BINARY.

dcl
1 MQDMHO based,
3 StrucId char(4)
init(MQDMHO_STRUC_ID), /* Structure identifier */

3 Version fixed bin(31)
init(MQDMHO_VERSION_1), /* Structure version number */

3 Options fixed bin(31)
init(MQDMHO_NONE); /* Options that control the action of */

/* MQDLTMH */

MQDMHO - Delete message handle options

738 WebSphere MQ for z/VSE System Management Guide

If a property is added that matches the specified name while
iteration is in progress, the property might be deleted during the
completion of the iteration. The property is deleted once the
iteration is restarted with MQDMPO_DEL_FIRST.

MQDMPO_DEL_PROP_UNDER_CURSOR
Deletes the property pointed to by the property cursor. That is, the
property that was last inquired using either the
MQIMPO_INQ_FIRST or the MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, or
when the message handle is specified in the MsgHandle field of
the MQGMO or MQPMO structure on an MQGET or MQPUT call
respectively.

If this option is used when the property cursor has not yet been
established, or if the property pointer to by the property cursor has
already been deleted, the call fails with completion code
MQCC_FAILED and reason
MQRC_PROPERTY_NOT_AVAILABLE.

If none of the options described above is required, the following option can
be used:

MQDMPO_NONE
No options specified.

This is always an input field. The initial value of this field is
MQDMPO_DEL_FIRST.

StrucId (MQCHAR4)
This is the structure identifier; the value must be:

MQDMPO_STRUC_ID
Identifier for create message handle options structure.

For the C programming language, the constant
MQDMPO_STRUC_ID_ARRAY is also defined. This has the same
value as MQDMPO_STRUC_ID, but is an array of characters
instead of a string.

This is always an input field. The initial value of this field is
MQDMPO_STRUC_ID.

Version (MQLONG)
This is the structure version number. The value must be:

MQDMPO_VERSION_1
Version-1 create message handle options structure.

The following constant specifies the version number of the current version:

MQDMPO_CURRENT_VERSION
Current version of create message handle options structure.

This is always an input field. The initial value of this field is
MQDMPO_VERSION_1.

MQDMPO - Delete message properties options

Appendix B. Application Programming Reference 739

Initial values and language declarations

Here are the initial values and language declarations for MQDMPO.

Table 43. Initial values of fields in MQDMPO

Field name Name of constant Value of constant

StrucId MQDMPO_STRUC_ID 'DMPO'

Version MQDMPO_VERSION_1 1

Options MQDMPO_NONE 0

Note: In the C programming language, the macro variable MQDMPO_DEFAULT
contains the values shown in Table 43. To provide initial values for the fields in the
structure, issue this statement:
MQDMPO MyDMPO = {MQDMPO_DEFAULT};

C declaration

COBOL declaration

PL/I declaration

MQGMO – Get message options

The MQGMO structure allows the application to specify options that control how
messages are removed from queues. The structure is an input/output parameter on
the MQGET call.

struct tagMQDMPO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of

MQDLTMP */
};

** MQDMPO structure
10 MQDMPO.

** Structure identifier
15 MQDMPO-STRUCID PIC X(4).

** Structure version number
15 MQDMPO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQDLTMP
15 MQDMPO-OPTIONS PIC S9(9) BINARY.

dcl
1 MQDMPO based,
3 StrucId char(4)
init(MQDMPO_STRUC_ID), /* Structure identifier */

3 Version fixed bin(31)
init(MQDMPO_VERSION_1), /* Structure version number */

3 Options fixed bin(31)
init(MQDMPO_DEL_FIRST); /* Options that control the action of */

/* MQDLTMP */

MQDMPO - Delete message properties options

740 WebSphere MQ for z/VSE System Management Guide

Fields

Here is a summary of the fields.

Table 44. Fields in MQGMO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options that control the action of
MQGET

WaitInterval Wait interval

Signal1 Signal

Signal2 Signal identifier

ResolvedQName Resolved name of destination
queue

Note: The remaining fields are ignored if Version is less than MQGMO_VERSION_2.

MatchOptions Options controlling selection
criteria used for MQGET

GroupStatus Flag indicating whether message
retrieved is in a group

SegmentStatus Flag indicating whether message
retrieved is a segment of a logical
message

Segmentation Flag indicating whether further
segmentation is allowed for the
message retrieved

Reserved1 Reserved

Note: The remaining fields are ignored if Version is less than MQGMO_VERSION_3.

MsgToken Message token

ReturnedLength Length of message data returned
(bytes)

Note: The remaining fields are ignored if Version is less than MQGMO_VERSION_4.

Reserved2 Reserved

MsgHandle The handle to a message that is to
be populated with the properties of
the message being retrieved from
the queue.

The MQGMO structure contains the following fields; the fields are described in
alphabetic order:

GroupStatus (MQCHAR)
This flag indicates whether the message retrieved is in a group. It has one
of the following values:

MQGS_NOT_IN_GROUP
Message is not in a group.

MQGS_MSG_IN_GROUP
Message is in a group, but is not the last in the group.

MQGMO - Get message options

Appendix B. Application Programming Reference 741

MQGS_LAST_MSG_IN_GROUP
Message is the last in the group. This is also the value returned if
the group consists of only one message.

This is an output field. The initial value of this field is
MQGS_NOT_IN_GROUP. This field is ignored if Version is less than
MQGMO_VERSION_2.

MatchOptions (MQLONG)
These options allow the application to choose which fields in the MsgDesc
parameter to use to select the message returned by the MQGET call. The
application sets the required options in this field, and then sets the
corresponding fields in the MsgDesc parameter to the values required for
those fields. Only messages that have those values in the MQMD for the
message are candidates for retrieval using that MsgDesc parameter on the
MQGET call. Fields for which the corresponding match option is not
specified are ignored when selecting the message to be returned. If you
specify no selection criteria on the MQGET call (that is, any message is
acceptable), set MatchOptions to MQMO_NONE.

If you specify MQGMO_LOGICAL_ORDER, only certain messages are
eligible for return by the next MQGET call:
v If there is no current group or logical message, only messages that have

MsgSeqNumber equal to 1 and Offset equal to 0 are eligible for return.
In this situation, you can use one or more of the following match
options to select which of the eligible messages is returned:

MQMO_MATCH_MSG_ID
MQMO_MATCH_CORREL_ID
MQMO_MATCH_GROUP_ID

v If there is a current group or logical message, only the next message in
the group or next segment in the logical message is eligible for return,
and this cannot be altered by specifying MQMO_* options.

In both of the above cases, you can specify match options that do not
apply, but the value of the relevant field in the MsgDesc parameter must
match the value of the corresponding field in the message to be returned;
the call fails with reason code MQRC_MATCH_OPTIONS_ERROR is this
condition is not satisfied.

MatchOptions is ignored if you specify either
MQGMO_MSG_UNDER_CURSOR or
MQGMO_BROWSE_MSG_UNDER_CURSOR. You can specify one or more
of the following match options:

MQMO_MATCH_MSG_ID
The message to be retrieved must have a message identifier that
matches the value of the MsgId field in the MsgDesc parameter of
the MQGET call. This match is in addition to any other matches
that might apply (for example, the correlation identifier).

If you omit this option, the MsgId field in the MsgDesc parameter
is ignored, and any message identifier will match.

The message identifier MQMI_NONE is a special value that
matches any message identifier in the MQMD for the message.
Therefore, specifying MQMO_MATCH_MSG_ID with
MQMI_NONE is the same as not specifying
MQMO_MATCH_MSG_ID.

MQGMO - Get message options

742 WebSphere MQ for z/VSE System Management Guide

MQMO_MATCH_CORREL_ID
The message to be retrieved must have a correlation identifier that
matches the value of the CorrelId field in the MsgDesc parameter
of the MQGET call. This match is in addition to any other matches
that might apply (for example, the message identifier).

If you omit this option, the CorrelId field in the MsgDesc
parameter is ignored, and any correlation identifier will match.

The correlation identifier MQCI_NONE is a special value that
matches any correlation identifier in the MQMD for the message.
Therefore, specifying MQMO_MATCH_CORREL_ID with
MQCI_NONE is the same as not specifying
MQMO_MATCH_CORREL_ID.

MQMO_MATCH_GROUP_ID
The message to be retrieved must have a group identifier that
matches the value of the GroupId field in the MsgDesc parameter
of the MQGET call. This match is in addition to any other matches
that might apply (for example, the correlation identifier).

If you omit this option, the GroupId field in the MsgDesc
parameter is ignored, and any group identifier will match.

The group identifier MQGI_NONE is a special value that matches
any group identifier in the MQMD for the message. Therefore,
specifying MQMO_MATCH_GROUP_ID with MQGI_NONE is the
same as not specifying MQMO_MATCH_GROUP_ID.

MQMO_MATCH_MSG_SEQ_NUMBER
The message to be retrieved must have a message sequence
number that matches the value of the MsgSeqNumber field in the
MsgDesc parameter of the MQGET call. This match is in addition
to any other matches that might apply (for example, the group
identifier).

If you omit this option, the MsgSeqNumber field in the MsgDesc
parameter is ignored, and any message sequence number will
match.

MQMO_MATCH_OFFSET
The message to be retrieved must have an offset that matches the
value of the Offset field in the MsgDesc parameter of the MQGET
call. This match is in addition to any other matches that might
apply (for example, the message sequence number).

If you omit this option is not specified, the Offset field in the
MsgDesc parameter is ignored, and any offset will match.

MQMO_NONE
Use no matches in selecting the message to be returned; all
messages on the queue are eligible for retrieval (but subject to
control by the MQGMO_ALL_MSGS_AVAILABLE,
MQGMO_ALL_SEGMENTS_AVAILABLE, and
MQGMO_COMPLETE_MSG options).

MQMO_NONE aids program documentation. It is not intended
that this option be used with any other MQMO_* option, but as its
value is zero, such use cannot be detected.

MQGMO - Get message options

Appendix B. Application Programming Reference 743

This is an input field. The initial value of this field is
MQMO_MATCH_MSG_ID with MQMO_MATCH_CORREL_ID.
This field is ignored if Version is less than MQGMO_VERSION_2.

MsgHandle (MQHMSG)
If the MQGMO_PROPERTIES_AS_Q_DEF option is specified and
the PropertyControl queue attribute is not set to
MQPROP_FORCE_MQRFH2, then this is the handle to a message
which will be populated with the properties of the message being
retrieved from the queue. The handle is created by an MQCRTMH
call. Any properties already associated with the handle will be
cleared before retrieving a message.

The following value can also be specified:

MQHM_NONE
No message handle supplied.

No message descriptor is required on the MQGET call if a valid
message handle is supplied and used on output to contain the
message properties. The message descriptor associated with the
message handle is used for input fields.

If a message descriptor is specified on the MQGET call, it always
takes precedence over the message descriptor associated with a
message handle.

If MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, or the
MQGMO_PROPERTIES_AS_Q_DEF is specified and the
PropertyControl queue attribute is MQPROP_FORCE_MQRFH2,
then the call fails with reason code MQRC_MD_ERROR when no
message descriptor parameter is specified.

On return from the MQGET call, the properties and message
descriptor associated with this message handle are updated to
reflect the state of the message retrieved (as well as the message
descriptor if one was supplied on the MQGET call). The properties
of the message can then be inquired using the MQINQMP call.

Except for message descriptor extensions, when present, a property
that can be inquired with the MQINQMP call is not contained in
the message data; if the message on the queue contained properties
in the message data, these are removed from the message data
before the data is returned to the application.

If no message handle is provided or Version is less than
MQGMO_VERSION_4, then you must supply a valid message
descriptor on the MQGET call. Any message properties (except
those contained in the message descriptor) are returned in the
message data subject to the value of the property options in the
MQGMO structure and the PropertyControl queue attribute.

This is an always an input field. The initial value of this field is
MQHM_NONE. This field is ignored if Version is less than
MQGMO_VERSION_4.

Note: MQHM_NONE is defined as an 8-byte character field in C
and PL/I, and defined in COBOL as PIC S9(18) COMP.

MsgToken (MQBYTE16)
Reserved field in WebSphere MQ for z/VSE.

MQGMO - Get message options

744 WebSphere MQ for z/VSE System Management Guide

Options (MQLONG)
These options control the action of MQGET. You can specify none or more
of the options described below. If you need more than one the values can
be:
v Added together (do not add the same constant more than once), or
v Combined using the bitwise OR operation (if the programming language

supports bit operations).

Combinations of options that are not valid are noted; all other
combinations are valid.

The following wait options relate to waiting for messages to arrive on the
queue:

MQGMO_WAIT
The application waits until a suitable message arrives. The
maximum time that the application waits is specified in
WaitInterval.

If MQGET requests are inhibited, the wait is canceled and the call
completes with MQCC_FAILED and reason code
MQRC_GET_INHIBITED, regardless of whether there are suitable
messages on the queue.

You can use this option with the MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT options.

If several applications are waiting on the same shared queue, the
applications that are activated when a suitable message arrives are
described below.

Note: In the description below, a browse MQGET call is one that
specifies one of the browse options, but not MQGMO_LOCK; an
MQGET call specifying the MQGMO_LOCK option is treated as a
nonbrowse call.
v If one or more nonbrowse MQGET calls is waiting, but no

browse MQGET calls are waiting, one is activated.
v If one or more browse MQGET calls is waiting, but no

nonbrowse MQGET calls are waiting, all are activated.
v If one or more nonbrowse MQGET calls, and one or more

browse MQGET calls are waiting, one nonbrowse MQGET call is
activated, and none, some, or all of the browse MQGET calls.
(The number of browse MQGET calls activated cannot be
predicted, because it depends on the scheduling considerations
of the operating system, and other factors.)

MQGMO_WAIT is ignored if specified with
MQGMO_BROWSE_MSG_UNDER_CURSOR or
MQGMO_MSG_UNDER_CURSOR; no error is raised.

MQGMO_NO_WAIT
The application does not wait if no suitable message is available.
This is the opposite of the MQGMO_WAIT option, and is defined
to aid program documentation.

It is the default if neither is specified.

MQGMO_FAIL_IF_QUIESCING
Force the MQGET call to fail if the queue manager is in the
quiescing state.

MQGMO - Get message options

Appendix B. Application Programming Reference 745

If this option is specified with MQGMO_WAIT, and the wait is
outstanding at the time the queue manager enters the quiescing
state, the wait is canceled and the call returns completion code
MQCC_FAILED with reason code MQRC_Q_MGR_QUIESCING.

If MQGMO_FAIL_IF_QUIESCING is not specified and the queue
manager or connection enters the quiescing state, the wait is not
canceled.

The following syncpoint options relate to the participation of the MQGET
call within a unit of work:

MQGMO_SYNCPOINT
The request is to operate within the normal unit-of-work protocols.
The message is marked as being unavailable to other applications,
but it is deleted from the queue only when the unit of work is
committed. The message is made available again if the unit of
work is backed out.

If neither this option nor MQGMO_NO_SYNCPOINT is specified,
the inclusion of the get request in unit-of-work protocols is
determined by the environment. On z/VSE, the get request is
within the current unit of work.

MQGMO_NO_SYNCPOINT
The request is to operate outside the normal unit-of-work
protocols. The message is deleted from the queue immediately
(unless this is a browse request). The message cannot be made
available again by backing out the unit of work.

If you specify neither this option nor MQGMO_SYNCPOINT, the
inclusion of the get request in unit-of-work protocols is determined
by the environment. On z/VSE, the get request is within the
current unit of work.

The following browse options relate to browsing messages on the queue:

MQGMO_BROWSE_FIRST
When a queue is opened with the MQOO_BROWSE option, a
browse cursor is established, and positioned logically before the
first message on the queue. You can then use MQGET calls
specifying the MQGMO_BROWSE_FIRST,
MQGMO_BROWSE_NEXT, or
MQGMO_BROWSE_MSG_UNDER_CURSOR option to retrieve
messages from the queue nondestructively. The browse cursor
marks the position, within the messages on the queue, from which
the next MQGET call with MQGMO_BROWSE_NEXT searches for
a suitable message.

An MQGET call with MQGMO_BROWSE_FIRST ignores the
previous position of the browse cursor. The first message on the
queue that satisfies the conditions specified in the message
descriptor is retrieved. The message remains on the queue, and the
browse cursor is positioned on this message.

After this call, the browse cursor is positioned on the message that
has been returned. If the message is removed from the queue
before the next MQGET call with MQGMO_BROWSE_NEXT is
issued, the browse cursor remains at the position in the queue that
the message occupied, even though that position is now empty.

MQGMO - Get message options

746 WebSphere MQ for z/VSE System Management Guide

The MQGMO_MSG_UNDER_CURSOR option can subsequently be
used with a nonbrowse MQGET call if required, to remove the
message from the queue.

The browse cursor is not moved by a nonbrowse MQGET call
using the same Hobj handle. Nor is it moved by a browse MQGET
call that returns a completion code of MQCC_FAILED, or a reason
code of MQRC_TRUNCATED_MSG_FAILED.

Specify the MQGMO_LOCK option with this option, to lock the
message that is browsed.

You can specify MQGMO_BROWSE_FIRST with any valid
combination of the MQGMO_* and MQMO_* options that control
the processing of messages in groups and segments of logical
messages.

If you specify MQGMO_LOGICAL_ORDER, the messages are
browsed in logical order. If you omit that option, the messages are
browsed in physical order. When you specify
MQGMO_BROWSE_FIRST, you can switch between logical order
and physical order, but subsequent MQGET calls using
MQGMO_BROWSE_NEXT must browse the queue in the same
order as the most-recent call that specified
MQGMO_BROWSE_FIRST for the queue handle.

The group and segment information that the queue manager
retains for MQGET calls that browse messages on the queue is
separate from the group and segment information that the queue
manager retains for MQGET calls that remove messages from the
queue. When you specify MQGMO_BROWSE_FIRST, the queue
manager ignores the group and segment information for browsing,
and scans the queue as though there were no current group and no
current logical message. If the MQGET call is successful
(completion code MQCC_OK or MQCC_WARNING), the group
and segment information for browsing is set to that of the message
returned; if the call fails, the group and segment information
remains the same as it was before the call.

This option is not valid with any of the following options:
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_BROWSE_NEXT
MQGMO_MSG_UNDER_CURSOR
MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_BROWSE_NEXT
Advance the browse cursor to the next message on the queue that
satisfies the selection criteria specified on the MQGET call. The
message is returned to the application, but remains on the queue.

After a queue has been opened for browse, the first browse call
using the handle has the same effect whether it specifies the
MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option.

If the message is removed from the queue before the next MQGET
call with MQGMO_BROWSE_NEXT is issued, the browse cursor
logically remains at the position in the queue that the message
occupied, even though that position is now empty.

MQGMO - Get message options

Appendix B. Application Programming Reference 747

The MQGMO_MSG_UNDER_CURSOR option can subsequently be
used with a nonbrowse MQGET call if required, to remove the
message from the queue.

The browse cursor is not moved by nonbrowse MQGET calls using
the same Hobj handle.

Specify the MQGMO_LOCK option with this option to lock the
message that is browsed.

You can specify MQGMO_BROWSE_NEXT with any valid
combination of the MQGMO_* and MQMO_* options that control
the processing of messages in groups and segments of logical
messages.

If you specify MQGMO_LOGICAL_ORDER, the messages are
browsed in logical order. If you omit that option, the messages are
browsed in physical order. When you specify
MQGMO_BROWSE_FIRST, you can switch between logical order
and physical order, but subsequent MQGET calls using
MQGMO_BROWSE_NEXT must browse the queue in the same
order as the most-recent call that specified
MQGMO_BROWSE_FIRST for the queue handle. The call fails with
reason code MQRC_INCONSISTENT_BROWSE if this condition is
not satisfied.

Note: Take special care when using an MQGET call to browse
beyond the end of a message group (or logical message not in a
group) when MQGMO_LOGICAL_ORDER is not specified. For
example, if the last message in the group precedes the first
message in the group on the queue, using
MQGMO_BROWSE_NEXT to browse beyond the end of the group,
specifying MQMO_MATCH_MSG_SEQ_NUMBER with
MsgSeqNumber set to 1 (to find the first message of the next
group) returns the first message in the group already browsed.
This can happen immediately, or a number of MQGET calls later (if
there are intervening groups).

To avoid the possibility of an infinite loop, open the queue twice
for browse:
v Use the first handle to browse only the first message in each

group.
v Use the second handle to browse only the messages within a

specific group.
v Use the MQMO_* options to move the second browse cursor to

the position of the first browse cursor, before browsing the
messages in the group.

v Do not use MQGMO_BROWSE_NEXT to browse beyond the
end of a group.

The group and segment information that the queue manager
retains for MQGET calls that browse messages on the queue is
separate from the group and segment information that it retains for
MQGET calls that remove messages from the queue.

This option is not valid with any of the following options:
MQGMO_BROWSE_FIRST
MQGMO_BROWSE_MSG_UNDER_CURSOR

MQGMO - Get message options

748 WebSphere MQ for z/VSE System Management Guide

MQGMO_MSG_UNDER_CURSOR
MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_BROWSE_MSG_UNDER_CURSOR
Retrieve the message pointed to by the browse cursor
nondestructively, regardless of the MQMO_* options specified in
the MatchOptions field in MQGMO.

The message pointed to by the browse cursor is the one that was
last retrieved using either the MQGMO_BROWSE_FIRST or the
MQGMO_BROWSE_NEXT option. The call fails if neither of these
calls has been issued for this queue since it was opened, or if the
message that was under the browse cursor has since been retrieved
destructively.

The position of the browse cursor is not changed by this call.

The MQGMO_MSG_UNDER_CURSOR option can subsequently be
used with a nonbrowse MQGET call if required, to remove the
message from the queue.

The browse cursor is not moved by a nonbrowse MQGET call
using the same Hobj handle. Nor is it moved by a browse MQGET
call that returns a completion code of MQCC_FAILED, or a reason
code of MQRC_TRUNCATED_MSG_FAILED.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified with
MQGMO_LOCK:
v If there is already a message locked, it must be the one under

the cursor, so that is returned without unlocking and relocking
it; the message remains locked.

v If there is no locked message, the message under the browse
cursor (if there is one) is locked and returned to the application;
if there is no message under the browse cursor the call fails.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified
without MQGMO_LOCK:
v If there is already a message locked, it must be the one under

the cursor. This message is returned to the application and then
unlocked. Because the message is now unlocked, there is no
guarantee that it can be browsed again, or retrieved
destructively (it can be retrieved destructively by another
application getting messages from the queue).

v If there is no locked message, the message under the browse
cursor (if there is one) is returned to the application; if there is
no message under the browse cursor the call fails.

If MQGMO_COMPLETE_MSG is specified with
MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse cursor
must identify a message whose Offset field in MQMD is zero. If
this condition is not satisfied, the call fails with reason code
MQRC_INVALID_MSG_UNDER_CURSOR.

The group and segment information that the queue manager
retains for MQGET calls that browse messages on the queue is
separate from the group and segment information that it retains for
MQGET calls that remove messages from the queue.

MQGMO - Get message options

Appendix B. Application Programming Reference 749

This option is not valid with any of the following options:
MQGMO_BROWSE_FIRST
MQGMO_BROWSE_NEXT
MQGMO_MSG_UNDER_CURSOR
MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_MSG_UNDER_CURSOR
Retrieve the message pointed to by the browse cursor, regardless of
the MQMO_* options specified in the MatchOptions field in
MQGMO. The message is removed from the queue.

The message pointed to by the browse cursor is the one that was
last retrieved using either the MQGMO_BROWSE_FIRST or the
MQGMO_BROWSE_NEXT option.

If MQGMO_COMPLETE_MSG is specified with
MQGMO_MSG_UNDER_CURSOR, the browse cursor must
identify a message whose Offset field in MQMD is zero. If this
condition is not satisfied, the call fails with reason code
MQRC_INVALID_MSG_UNDER_CURSOR.

This option is not valid with any of the following options:
MQGMO_BROWSE_FIRST
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_BROWSE_NEXT
MQGMO_UNLOCK

It is also an error if the queue was not opened both for browse and
for input. If the browse cursor is not currently pointing to a
retrievable message, an error is returned by the MQGET call.

The following lock options relate to locking messages on the queue:

MQGMO_LOCK
Lock the message that is browsed, so that the message becomes
invisible to any other handle open for the queue.

The option can be specified only if one of the following options is
also specified:

MQGMO_BROWSE_FIRST
MQGMO_BROWSE_NEXT
MQGMO_BROWSE_MSG_UNDER_CURSOR

Only one message can be locked for each queue handle, but this
can be a logical message or a physical message:
v If you specify MQGMO_COMPLETE_MSG, all the message

segments that comprise the logical message are locked to the
queue handle (provided that they are all present on the queue
and available for retrieval).

v If you omit MQGMO_COMPLETE_MSG, only a single physical
message is locked to the queue handle. If this message happens
to be a segment of a logical message, the locked segment
prevents other applications using MQGMO_COMPLETE_MSG to
retrieve or browse the logical message.

The locked message is always the one under the browse cursor,
and the message can be removed from the queue by a later
MQGET call that specifies the MQGMO_MSG_UNDER_CURSOR

MQGMO - Get message options

750 WebSphere MQ for z/VSE System Management Guide

option. Other MQGET calls using the queue handle can also
remove the message (for example, a call that specifies the message
identifier of the locked message).

If the call returns completion code MQCC_FAILED, or
MQCC_WARNING with reason code
MQRC_TRUNCATED_MSG_FAILED, no message is locked.

If the application does not remove the message from the queue, the
lock is released by:
v Issuing another MQGET call for this handle, specifying either

MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT (with
or without MQGMO_LOCK); the message is unlocked if the call
completes with MQCC_OK or MQCC_WARNING, but remains
locked if the call completes with MQCC_FAILED. However, the
following exceptions apply:
– The message is not unlocked if MQCC_WARNING is

returned with MQRC_TRUNCATED_MSG_FAILED.
– The message is unlocked if MQCC_FAILED is returned with

MQRC_NO_MSG_AVAILABLE.
If you also specify MQGMO_LOCK, the message returned is
locked. If you omit MQGMO_LOCK, there is no locked message
after the call.
If you specify MQGMO_WAIT, and no message is immediately
available, the unlock on the original message occurs before the
start of the wait (providing the call is otherwise free from error).

v Issuing another MQGET call for this handle, with
MQGMO_BROWSE_MSG_UNDER_CURSOR (without
MQGMO_LOCK); the message is unlocked if the call completes
with MQCC_OK or MQCC_WARNING, but remains locked if
the call completes with MQCC_FAILED. However, the following
exception applies:
– The message is not unlocked if MQCC_WARNING is

returned with MQRC_TRUNCATED_MSG_FAILED.
v Issuing another MQGET call for this handle with

MQGMO_UNLOCK.
v Issuing an MQCLOSE call for this handle (either explicitly, or

implicitly by the application ending).

No special open option is required to specify this option, other
than MQOO_BROWSE, which is needed to specify the
accompanying browse option.

This option is not valid with any of the following options:
MQGMO_UNLOCK

MQGMO_UNLOCK
The message to be unlocked must have been previously locked by
an MQGET call with the MQGMO_LOCK option. If there is no
message locked for this handle, the call completes with
MQCC_WARNING and MQRC_NO_MSG_LOCKED.

The MsgDesc, BufferLength, Buffer, and DataLength parameters are
not checked or altered if you specify MQGMO_UNLOCK. No
message is returned in Buffer.

MQGMO - Get message options

Appendix B. Application Programming Reference 751

No special open option is required to specify this option (although
MQOO_BROWSE is needed to issue the lock request in the first
place).

The following message-data options relate to the processing of the message
data when the message is read from the queue:

MQGMO_ACCEPT_TRUNCATED_MSG
If the message buffer is too small to hold the complete message,
allow the MQGET call to fill the buffer with as much of the
message as the buffer can hold, issue a warning completion code,
and complete its processing.

This means that:
v When browsing messages, the browse cursor is advanced to the

returned message.
v When removing messages, the returned message is removed

from the queue.
v Reason code MQRC_TRUNCATED_MSG_ACCEPTED is

returned if no other error occurs.

Without this option, the buffer is still filled with as much of the
message as it can hold, a warning completion code is issued, but
processing is not completed.

This means that:
v When browsing messages, the browse cursor is not advanced.
v When removing messages, the message is not removed from the

queue.
v Reason code MQRC_TRUNCATED_MSG_FAILED is returned if

no other error occurs.

MQGMO_CONVERT
This option converts the application data in the message to
conform to the CodedCharSetId and Encoding values specified in
the MsgDesc parameter on the MQGET call, before the data is
copied to the Buffer parameter.

The Format field specified when the message was put is assumed
by the conversion process to identify the nature of the data in the
message.

The message data is converted by the queue manager for built-in
formats, and by a user-written exit for other formats. See
Chapter 7, “Message data conversion,” on page 217 for details of
the data-conversion exit.
v If conversion is successful, the CodedCharSetId and Encoding

fields specified in the MsgDesc parameter are unchanged on
return from the MQGET call.

v If conversion fails (but the MQGET call otherwise completes
without error), the message data is returned unconverted, and
the CodedCharSetId and Encoding fields in MsgDesc are set to
the values for the unconverted message. The completion code is
MQCC_WARNING in this case.

In either case, these fields describe the character-set identifier and
encoding of the message data that is returned in the Buffer
parameter. See the Format field described in “MQMD – Message

MQGMO - Get message options

752 WebSphere MQ for z/VSE System Management Guide

descriptor” on page 774 for a list of format names for which the
queue manager performs the conversion.

Group and segment options: The following options relate to the
processing of messages in groups and segments of logical
messages. See Appendix C, “Application Programming Guidance,”
on page 941 for more information about message grouping and
segmentation.

MQGMO_LOGICAL_ORDER
This option controls the order in which messages are returned by
successive MQGET calls for the queue handle. The option must be
specified on each of those calls in order to have an effect.

If MQGMO_LOGICAL_ORDER is specified for successive MQGET
calls for the queue handle, messages in groups are returned in the
order given by their message sequence numbers, and segments of
logical messages are returned in the order given by their segment
offsets. This order might be different from the order in which those
messages and segments occur on the queue.

Note: Specifying MQGMO_LOGICAL_ORDER has no adverse
consequences on messages that do not belong to groups and that
are not segments. In effect, such messages are treated as though
each belonged to a message group consisting of only one message.
Thus it is perfectly safe to specify MQGMO_LOGICAL_ORDER
when retrieving messages from queues that might contain a
mixture of messages in groups, message segments, and
unsegmented messages not in groups.

To return the messages in the required order, the queue manager
retains the group and segment information between successive
MQGET calls. This information identifies the current message
group and current logical message for the queue handle, the
current position within the group and logical message, and
whether the messages are being retrieved within a unit of work.
Because the queue manager retains this information, the
application does not need to set the group and segment
information before each MQGET call. Specifically, it means that the
application does not need to set the GroupId, MsgSeqNumber, and
Offset fields in MQMD. However, the application must set the
MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT option
correctly on each call.

When the queue is opened, there is no current message group and
no current logical message. A message group becomes the current
message group when a message that has the
MQMF_MSG_IN_GROUP flag is returned by the MQGET call.
With MQGMO_LOGICAL_ORDER specified on successive calls,
that group remains the current group until a message is returned
that has:
v MQMF_LAST_MSG_IN_GROUP without MQMF_SEGMENT

(that is, the last logical message in the group is not segmented),
or

v MQMF_LAST_MSG_IN_GROUP with MQMF_LAST_SEGMENT
(that is, the message returned is the last segment of the last
logical message in the group).

MQGMO - Get message options

Appendix B. Application Programming Reference 753

When such a message is returned, the message group is
terminated, and on successful completion of that MQGET call there
is no longer a current group. In a similar way, a logical message
becomes the current logical message when a message that has the
MQMF_SEGMENT flag is returned by the MQGET call, and that
logical message is terminated when the message that has the
MQMF_LAST_SEGMENT flag is returned.

If no selection criteria are specified, successive MQGET calls return
(in the correct order) the messages for the first message group on
the queue, then the messages for the second message group, and
so on, until there are no more messages available. It is possible to
select the particular message groups returned by specifying one or
more of the following options in the MatchOptions field:

MQMO_MATCH_MSG_ID
MQMO_MATCH_CORREL_ID
MQMO_MATCH_GROUP_ID

However, these options are effective only when there is no current
message group or logical message; see the MatchOptions field
described in “MQGMO – Get message options” on page 740 for
further details.

When multiple message groups are present on the queue and
eligible for return, the groups are returned in the order determined
by the position on the queue of the first segment of the first logical
message in each group (that is, the physical messages that have
message sequence numbers of 1, and offsets of 0, determine the
order in which eligible groups are returned).

When MQGMO_LOGICAL_ORDER is specified, the MQGMO
supplied on the MQGET call must not be less than
MQGMO_VERSION_2, and the MQMD must not be less than
MQMD_VERSION_2. If this condition is not satisfied, the call fails
with reason code MQRC_WRONG_GMO_VERSION or
MQRC_WRONG_MD_VERSION, as appropriate.

If MQGMO_LOGICAL_ORDER is not specified for successive
MQGET calls for the queue handle, messages are returned without
regard for whether they belong to message groups, or whether
they are segments of logical messages. This means that messages
or segments from a particular group or logical message might be
returned out of order, or intermingled with messages or segments
from other groups or logical messages, or with messages that are
not in groups and are not segments. In this situation, the particular
messages that are returned by successive MQGET calls is
controlled by the MQMO_* options specified on those calls (see the
MatchOptions field described in “MQGMO – Get message options”
on page 740 for details of these options).

This is the technique that can be used to restart a message group
or logical message in the middle, after a system failure has
occurred. When the system restarts, the application can set the
GroupId, MsgSeqNumber, Offset, and MatchOptions fields to the
appropriate values, and then issue the MQGET call with
MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT set, but
without specifying MQGMO_LOGICAL_ORDER. If this call is
successful, the queue manager retains the group and segment

MQGMO - Get message options

754 WebSphere MQ for z/VSE System Management Guide

information, and subsequent MQGET calls using that queue handle
can specify MQGMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager
retains for the MQGET call is separate from the group and segment
information that it retains for the MQPUT call. In addition, the
queue manager retains separate information for:
v MQGET calls that remove messages from the queue.
v MQGET calls that browse messages on the queue.

For any given queue handle, the application can mix MQGET calls
that specify MQGMO_LOGICAL_ORDER with MQGET calls that
do not. However, note the following points:
v If you omit MQGMO_LOGICAL_ORDER, each successful

MQGET call causes the queue manager to set the saved group
and segment information to the values corresponding to the
message returned; this replaces the existing group and segment
information retained by the queue manager for the queue
handle. Only the information appropriate to the action of the call
(browse or remove) is modified.

v If you omit MQGMO_LOGICAL_ORDER, the call does not fail if
there is a current message group or logical message; the call
might succeed with an MQCC_WARNING completion code. In
these cases, if the completion code is not MQCC_OK, the reason
code is one of the following (as appropriate):

MQRC_INCOMPLETE_GROUP
MQRC_INCOMPLETE_MSG
MQRC_INCONSISTENT_UOW

Note: The queue manager does not check the group and segment
information when browsing a queue, or when closing a queue that
was opened for browse but not input; in those cases the
completion code is always MQCC_OK (assuming no other errors).

Applications that want to retrieve messages and segments in
logical order are recommended to specify
MQGMO_LOGICAL_ORDER, as this is the simplest option to use.
This option relieves the application of the need to manage the
group and segment information, because the queue manager
manages that information. However, specialized applications might
need more control than that provided by the
MQGMO_LOGICAL_ORDER option, and this can be achieved by
not specifying that option. The application must then ensure that
the MsgId, CorrelId, GroupId, MsgSeqNumber, and Offset fields in
MQMD, and the MQMO_* options in MatchOptions in MQGMO,
are set correctly, before each MQGET call.

For example, an application that wants to forward physical
messages that it receives, without regard for whether those
messages are in groups or segments of logical messages, must not
specify MQGMO_LOGICAL_ORDER. In a complex network with
multiple paths between sending and receiving queue managers, the
physical messages might arrive out of order. By specifying neither
MQGMO_LOGICAL_ORDER, nor the corresponding
MQPMO_LOGICAL_ORDER on the MQPUT call, the forwarding

MQGMO - Get message options

Appendix B. Application Programming Reference 755

application can retrieve and forward each physical message as
soon as it arrives, without having to wait for the next one in
logical order to arrive.

You can specify MQGMO_LOGICAL_ORDER with any of the
other MQGMO_* options, and with various of the MQMO_*
options in appropriate circumstances (see above).

MQGMO_COMPLETE_MSG
Only a complete logical message can be returned by the MQGET
call. If the logical message is segmented, the queue manager
reassembles the segments and returns the complete logical message
to the application; the fact that the logical message was segmented
is not apparent to the application retrieving it.

Note: This is the only option that causes the queue manager to
reassemble message segments. If not specified, segments are
returned individually to the application if they are present on the
queue (and they satisfy the other selection criteria specified on the
MQGET call). Applications that do not want to receive individual
segments must always specify MQGMO_COMPLETE_MSG.

To use this option, the application must provide a buffer that is big
enough to accommodate the complete message, or specify the
MQGMO_ACCEPT_TRUNCATED_MSG option.

If the queue contains segmented messages with some of the
segments missing (perhaps because they have been delayed in the
network and have not yet arrived), specifying
MQGMO_COMPLETE_MSG prevents the retrieval of segments
belonging to incomplete logical messages. However, those message
segments still contribute to the value of the CurrentQDepth queue
attribute; this means that there might be no retrievable logical
messages, even though CurrentQDepth is greater than zero.

Each physical message that is a segment has its own message
descriptor. For the segments constituting a single logical message,
most of the fields in the message descriptor are the same for all
segments in the logical message; usually it is only the MsgId,
Offset, and MsgFlags fields that differ between segments in the
logical message. However, if a segment is placed on a dead- letter
queue at an intermediate queue manager, the DLQ handler
retrieves the message specifying the MQGMO_CONVERT option,
and this can result in the character set or encoding of the segment
being changed. If the DLQ handler successfully sends the segment
on its way, the segment might have a character set or encoding
that differs from the other segments in the logical message when
the segment arrives at the destination queue manager.

A logical message consisting of segments in which the
CodedCharSetId and Encoding fields differ cannot be reassembled
by the queue manager into a single logical message. Instead, the
queue manager reassembles and returns the first few consecutive
segments at the start of the logical message that have the same
character-set identifiers and encodings, and the MQGET call
completes with completion code MQCC_WARNING and reason
code MQRC_INCONSISTENT_CCSIDS or
MQRC_INCONSISTENT_ENCODINGS, as appropriate. This
happens regardless of whether MQGMO_CONVERT is specified.

MQGMO - Get message options

756 WebSphere MQ for z/VSE System Management Guide

To retrieve the remaining segments, the application must reissue
the MQGET call without the MQGMO_COMPLETE_MSG option,
retrieving the segments one by one. MQGMO_LOGICAL_ORDER
can be used to retrieve the remaining segments in order.

An application that puts segments can also set other fields in the
message descriptor to values that differ between segments.
However, there is no advantage in doing this if the receiving
application uses MQGMO_COMPLETE_MSG to retrieve the logical
message. When the queue manager reassembles a logical message,
it returns in the message descriptor the values from the message
descriptor for the first segment; the only exception is the MsgFlags
field, which the queue manager sets to indicate that the
reassembled message is the only segment.

If MQGMO_COMPLETE_MSG is specified for a report message,
the queue manager performs special processing. The queue
manager checks the queue to see if all the report messages of that
report type relating to the different segments in the logical message
are present on the queue. If they are, they can be retrieved as a
single message by specifying MQGMO_COMPLETE_MSG. For this
to be possible, either the report messages must be generated by a
queue manager or MCA which supports segmentation, or the
originating application must request at least 100 bytes of message
data (that is, the appropriate MQRO_*_WITH_DATA or
MQRO_*_WITH_FULL_DATA options must be specified). If less
than the full amount of application data is present for a segment,
the missing bytes are replaced by nulls in the report message
returned.

If MQGMO_COMPLETE_MSG is specified with
MQGMO_MSG_UNDER_CURSOR or
MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse cursor
must be positioned on a message whose Offset field in MQMD has
a value of 0. If this condition is not satisfied, the call fails with
reason code MQRC_INVALID_MSG_UNDER_CURSOR.

MQGMO_COMPLETE_MSG implies
MQGMO_ALL_SEGMENTS_AVAILABLE, which need not
therefore be specified.

MQGMO_COMPLETE_MSG can be specified with any of the other
MQGMO_* options, and with any of the MQMO_* options apart
from MQMO_MATCH_OFFSET.

MQGMO_ALL_MSGS_AVAILABLE
Messages in a group become available for retrieval only when all
messages in the group are available. If the queue contains message
groups with some of the messages missing (perhaps because they
have been delayed in the network and have not yet arrived),
specifying MQGMO_ALL_MSGS_AVAILABLE prevents retrieval of
messages belonging to incomplete groups. However, those
messages still contribute to the value of the CurrentQDepth queue
attribute; this means that there may be no retrievable message
groups, even though CurrentQDepth is greater than zero. If there
are no other messages that are retrievable, reason code
MQRC_NO_MSG_AVAILABLE is returned after the specified wait
interval (if any) has expired.

MQGMO - Get message options

Appendix B. Application Programming Reference 757

The processing of MQGMO_ALL_MSGS_AVAILABLE depends on
whether MQGMO_LOGICAL_ORDER is also specified:
v If both options are specified, MQGMO_ALL_MSGS_AVAILABLE

has an effect only when there is no current group or logical
message. If there is a current group or logical message,
MQGMO_ALL_MSGS_AVAILABLE is ignored. This means that
MQGMO_ALL_MSGS_AVAILABLE can remain on when
processing messages in logical order.

v If MQGMO_ALL_MSGS_AVAILABLE is specified without
MQGMO_LOGICAL_ORDER,
MQGMO_ALL_MSGS_AVAILABLE always has an effect. This
means that the option must be turned off after the first message
in the group has been removed from the queue, in order to be
able to remove the remaining messages in the group.

Successful completion of an MQGET call specifying
MQGMO_ALL_MSGS_AVAILABLE means that at the time that the
MQGET call was issued, all the messages in the group were on the
queue. However, be aware that other applications can still remove
messages from the group (the group is not locked to the
application that retrieves the first message in the group).

If you omit this option, messages belonging to groups can be
retrieved even when the group is incomplete.

MQGMO_ALL_MSGS_AVAILABLE implies
MQGMO_ALL_SEGMENTS_AVAILABLE, which need not
therefore be specified.

MQGMO_ALL_MSGS_AVAILABLE can be specified with any of
the other MQGMO_* options, and with any of the MQMO_*
options.

MQGMO_ALL_SEGMENTS_AVAILABLE
Segments in a logical message become available for retrieval only
when all segments in the logical message are available. If the
queue contains segmented messages with some of the segments
missing (perhaps because they have been delayed in the network
and have not yet arrived), specifying
MQGMO_ALL_SEGMENTS_AVAILABLE prevents retrieval of
segments belonging to incomplete logical messages. However,
those segments still contribute to the value of the CurrentQDepth
queue attribute; this means that there might be no retrievable
logical messages, even though CurrentQDepth is greater than zero.
If there are no other messages that are retrievable, reason code
MQRC_NO_MSG_AVAILABLE is returned after the specified wait
interval (if any) has expired.

The processing of MQGMO_ALL_SEGMENTS_AVAILABLE
depends on whether MQGMO_LOGICAL_ORDER is also specified:
v If both options are specified,

MQGMO_ALL_SEGMENTS_AVAILABLE has an effect only
when there is no current logical message. If there is a current
logical message, MQGMO_ALL_SEGMENTS_AVAILABLE is
ignored. This means that
MQGMO_ALL_SEGMENTS_AVAILABLE can remain on when
processing messages in logical order.

MQGMO - Get message options

758 WebSphere MQ for z/VSE System Management Guide

v If MQGMO_ALL_SEGMENTS_AVAILABLE is specified without
MQGMO_LOGICAL_ORDER,
MQGMO_ALL_SEGMENTS_AVAILABLE always has an effect.
This means that the option must be turned off after the first
segment in the logical message has been removed from the
queue, in order to be able to remove the remaining segments in
the logical message.

If this option is not specified, message segments can be retrieved
even when the logical message is incomplete.

While both MQGMO_COMPLETE_MSG and
MQGMO_ALL_SEGMENTS_AVAILABLE require all segments to
be available before any of them can be retrieved, the former
returns the complete message, whereas the latter allows the
segments to be retrieved one by one.

If MQGMO_ALL_SEGMENTS_AVAILABLE is specified for a report
message, the queue manager checks the queue to see if there is at
least one report message for each of the segments that comprise
the complete logical message. If there is, the
MQGMO_ALL_SEGMENTS_AVAILABLE condition is satisfied.
However, the queue manager does not check the type of the report
messages present, and so there might be a mixture of report types
in the report messages relating to the segments of the logical
message. As a result, the success of
MQGMO_ALL_SEGMENTS_AVAILABLE does not imply that
MQGMO_COMPLETE_MSG will succeed. If there is a mixture of
report types present for the segments of a particular logical
message, those report messages must be retrieved one by one.

You can specify MQGMO_ALL_SEGMENTS_AVAILABLE with any
of the other MQGMO_* options, and with any of the MQMO_*
options.

MQGMO_NONE
Use this value to indicate that no other options have been
specified; all options assume their default values. MQGMO_NONE
aids program documentation; it is not intended that this option be
used with any other, but as its value is zero, such use cannot be
detected.

The initial value of the Options field is MQGMO_NO_WAIT.

Reserved1 (MQCHAR)
This is a reserved field. The initial value of this field is a blank character.
This field is ignored if Version is less than MQGMO_VERSION_2.

ResolvedQName (MQCHAR48)
This is an output field that the queue manager sets to the local name of the
queue from which the message was retrieved, as defined to the local queue
manager. This is different from the name used to open the queue if:
v An alias queue was opened (in which case, the name of the local queue

to which the alias resolved is returned), or
v A model queue was opened (in which case, the name of the dynamic

local queue is returned).

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

MQGMO - Get message options

Appendix B. Application Programming Reference 759

Segmentation (MQCHAR)
This is a flag that indicates whether further segmentation is allowed for the
message retrieved. It has one of the following values:

MQSEG_INHIBITED
Segmentation not allowed.

MQSEG_ALLOWED
Segmentation allowed.

This is an output field. The initial value of this field is
MQSEG_INHIBITED. This field is ignored if Version is less than
MQGMO_VERSION_2.

ReturnedLength (MQLONG)
This is an output field that the queue manager sets to the length in bytes
of the message data returned by the MQGET call in the Buffer parameter.
If the queue manager does not support this capability, ReturnedLength is
set to the value MQRL_UNDEFINED.

When messages are converted between encodings or character sets, the
message data can sometimes change size. On return from the MQGET call:
v If ReturnedLength is not MQRL_UNDEFINED, the number of bytes of

message data returned is given by ReturnedLength.
v If ReturnedLength has the value MQRL_UNDEFINED, the number of

bytes of message data returned is usually given by the smaller of
BufferLength and DataLength, but can be less than this if the MQGET
call completes with reason code
MQRC_TRUNCATED_MSG_ACCEPTED. If this happens, the
insignificant bytes in the Buffer parameter are set to nulls.

This special value is defined:

MQRL_UNDEFINED
Length of returned data not defined.

The initial value of this field is MQRL_UNDEFINED. This field is ignored
if Version is less than MQGMO_VERSION_3.

SegmentStatus (MQCHAR)
This is a flag that indicates whether the message retrieved is a segment of
a logical message. It has one of the following values:

MQSS_NOT_A_SEGMENT
Message is not a segment.

MQSS_SEGMENT
Message is a segment, but is not the last segment of the logical
message.

MQSS_LAST_SEGMENT
Message is the last segment of the logical message.

This is also the value returned if the logical message consists of only one
segment.

This is an output field. The initial value of this field is
MQSS_NOT_A_SEGMENT.

This field is ignored if Version is less than MQGMO_VERSION_2.

MQGMO - Get message options

760 WebSphere MQ for z/VSE System Management Guide

Signal1 (MQLONG)
This is an input field that is used only in conjunction with the
MQGMO_SET_SIGNAL option; it identifies a signal that is to be delivered
when a message is available.

This field is not supported by WebSphere MQ for z/VSE.

Signal2 (MQLONG)
This is an input field that is used only in conjunction with the
MQGMO_SET_SIGNAL option. It is a reserved field; its value is not
significant. The initial value of this field is 0.

StrucId (MQCHAR4)
This is the structure identifier. The value must be:

MQGMO_STRUC_ID
Identifier for get-message options structure. For the C
programming language, the constant MQGMO_STRUC_ID_ARRAY
is also defined; this has the same value as MQGMO_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is
MQGMO_STRUC_ID.

Version (MQLONG)
This is the structure version number. The value must be one of the
following:

MQGMO_VERSION_1
Version-1 get-message options structure. This version is supported
in all environments.

MQGMO_VERSION_2
Version-2 get-message options structure. This version is supported
in all environments.

MQGMO_VERSION_3
Version-3 get-message options structure. This version is supported
in all environments.

MQGMO_VERSION_4
Version-4 get-message options structure. This version is supported
in all environments.

Fields that exist only in the more-recent versions of the structure are
identified as such in the descriptions of the fields.

This is always an input field. The initial value of this field is
MQGMO_VERSION_1.

WaitInterval (MQLONG)
This is the approximate time, expressed in milliseconds, that the MQGET
call waits for a suitable message to arrive (that is, a message satisfying the
selection criteria specified in the MsgDesc parameter of the MQGET call;
see the MsgId field described in “MQMD – Message descriptor” on page
774 for more details.

If no suitable message has arrived after this time has elapsed, the call
completes with MQCC_FAILED and reason code
MQRC_NO_MSG_AVAILABLE.

MQGMO - Get message options

Appendix B. Application Programming Reference 761

WaitInterval is used in conjunction with the MQGMO_WAIT option. It is
ignored if MQGMO_WAIT is not specified. If it is specified, WaitInterval
must be greater than or equal to zero, or the following special value:

MQWI_UNLIMITED
Unlimited wait interval.

The initial value of this field is 0.

C declaration

COBOL declaration

typedef struct tagMQGMO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of

MQGET */
MQLONG WaitInterval; /* Wait interval */
MQLONG Signal1; /* Signal */
MQLONG Signal2; /* Reserved */
MQCHAR48 ResolvedQName; /* Resolved name of destination queue */
/* Ver:1 */
MQLONG MatchOptions; /* Options controlling selection criteria

used for MQGET */
MQCHAR GroupStatus; /* Flag indicating whether message

retrieved is in a group */
MQCHAR SegmentStatus; /* Flag indicating whether message

retrieved is a segment of a logical
message */

MQCHAR Segmentation; /* Flag indicating whether segmentation is
allowed for the message retrieved */

MQCHAR Reserved1; /* Reserved */
/* Ver:2 */
MQBYTE16 MsgToken; /* Message token */
MQLONG ReturnedLength; /* Length of message data returned

(bytes) */
/* Ver:3 */
MQLONG Reserved2; /* Reserved */
MQHMSG MsgHandle; /* Message handle */
/* Ver:4 */

} MQGMO;

MQGMO - Get message options

762 WebSphere MQ for z/VSE System Management Guide

PL/I declaration

** MQGMO structure
10 MQGMO.

** Structure identifier
15 MQGMO-STRUCID PIC X(4).

** Structure version number
15 MQGMO-VERSION PIC S9(9) BINARY.

** Options
15 MQGMO-OPTIONS PIC S9(9) BINARY.

** Wait interval
15 MQGMO-WAITINTERVAL PIC S9(9) BINARY.

** Signal
15 MQGMO-SIGNAL1 PIC S9(9) BINARY.

** Reserved
15 MQGMO-SIGNAL2 PIC S9(9) BINARY.

** Resolved name of destination queue
15 MQGMO-RESOLVEDQNAME PIC X(48).

** Ver:1 **
** Options controlling selection criteria used for MQGET

15 MQGMO-MATCHOPTIONS PIC S9(9) BINARY.
** Flag indicating whether message retrieved is in a group

15 MQGMO-GROUPSTATUS PIC X.
** Flag indicating whether message retrieved is a segment of a
** logical message

15 MQGMO-SEGMENTSTATUS PIC X.
** Flag indicating whether further segmentation is allowed for
** the message retrieved

15 MQGMO-SEGMENTATION PIC X.
** Reserved

15 MQGMO-RESERVED1 PIC X.
** Ver:2 **
** Message token

15 MQGMO-MSGTOKEN PIC X(16).
** Length of message data returned (bytes)

15 MQGMO-RETURNEDLENGTH PIC S9(9) BINARY.
** Ver:3 **
** Reserved

15 MQGMO-RESERVED2 PIC S9(9) BINARY.
** Message handle

15 MQGMO-MSGHANDLE PIC S9(18) BINARY.
** Ver:4 **

MQGMO - Get message options

Appendix B. Application Programming Reference 763

MQIMPO – Inquire message property options

The MQIMPO structure allows applications to specify options that control how
properties of messages are inquired. The structure is an input parameter on the
MQINQMP call.

Data in MQIMPO must be in the character set of the application and encoding of
the application (MQENC_NATIVE).

Fields

Here is a summary of the fields.

Table 45. Fields in MQIMPO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options controlling the action of
MQIMPO

RequestedEncoding Encoding into which the enquired
property is to be converted

dcl
1 MQGMO based,
3 StrucId char(4)

init(MQGMO_STRUC_ID), /* Structure identifier */
3 Version fixed bin(31)

init(MQGMO_VERSION_1), /* Structure version number */
3 Options fixed bin(31)

init(MQGMO_NO_WAIT), /* Options that control the action of
MQGET */

3 WaitInterval fixed bin(31)
init(0), /* Wait interval */

3 Signal1 pointer
init(null()), /* Pointer to signal */

3 Signal2 fixed bin(31)
init(0), /* Signal identifier */

3 ResolvedQName char(48)
init(’’), /* Resolved name of destination

queue */
/* Ver:1 */
3 MatchOptions fixed bin(31)
init((MQMO_MATCH_MSG_ID+MQMO_MATCH_CORREL_ID)), /* Options

controlling selection criteria
used for MQGET */

3 GroupStatus char(1)
init(MQGS_NOT_IN_GROUP), /* Flag indicating whether message

retrieved is in a group */
3 SegmentStatus char(1)
init(MQSS_NOT_A_SEGMENT), /* Flag indicating whether message

retrieved is a segment of a logical
message */

3 Segmentation char(1)
init(MQSEG_INHIBITED), /* Flag indicating whether further

segmentation is allowed for the
message retrieved */

3 Reserved1 char(1)
init(’’), /* Reserved */

/* Ver:2 */
3 MsgToken char(16)
init(MQMTOK_NONE), /* Message token */

3 ReturnedLength fixed bin(31)
init(MQRL_UNDEFINED), /* Length of message data */

/* returned (bytes) */
/* Ver:3 */
3 Reserved2 fixed bin(31)
init(0), /* Reserved */

3 MsgHandle char(8)
init(MQHM_NONE); /* Message handle */

/* Ver:4 */

MQIMPO - Inquire message property options

764 WebSphere MQ for z/VSE System Management Guide

Table 45. Fields in MQIMPO (continued)

Field Description

RequestedCCSID Character set of the inquired
property

ReturnedEncoding Encoding of the returned value

ReturnedCCSID Character set of returned value

Reserved1 Reserved field

ReturnedName Name of the inquired property

TypeString String representation of the data
type of the property

Here is a description of the fields.

Options (MQLONG)
The options shown here control the action of MQINQMP. You can specify
one or more of these options and, if you need more than one, the values
can be:
v Added together (do not add the same constant more than once), or
v Combined using the bitwise OR operation (if the programming language

supports bit operations).

Combinations of options that are not valid are noted; all other
combinations are valid.

Value data options:

The following options relate to the processing of the value data when the
property is retrieved from the message.

MQIMPO_CONVERT_VALUE
This option requests that the value of the property be converted to
conform to the RequestedCCSID and RequestedEncoding values
specified before the MQINQMP call returns the property value in
the Value area.

If conversion is successful, the ReturnedCCSID and
ReturnedEncoding fields are set to the same as RequestedCCSID
and RequestedEncoding on return from the MQINQMP call. If
conversion fails, but the MQINQMP call otherwise completes
without error, the property value is returned unconverted.

If the property is a string, the ReturnedCCSID and
ReturnedEncoding fields are set to the character set and encoding
of the unconverted string. The completion code is
MQCC_WARNING in this case, with reason code
MQRC_PROP_VALUE_NOT_CONVERTED. The property cursor is
advanced to the returned property.

If the property value expands during conversion and exceeds the
size of the Value parameter, the value is returned unconverted with
completion code MQCC_FAILED; the reason code is set to
MQRC_PROPERTY_VALUE_TOO_BIG.

The DataLength parameter of the MQINQMP call returns the
length that the property value would have converted to, in order

MQIMPO - Inquire message property options

Appendix B. Application Programming Reference 765

to allow the application to determine the size of the buffer required
to accommodate the converted property value. The property cursor
is unchanged.

This option also requests that:
v If the property name contains a wildcard, and The

ReturnedName field is initialized with an address or offset for
the returned name, then the returned name is converted to
conform to the RequestedCCSID and RequestedEncoding values.

v If conversion is successful, the VSCCSID field of ReturnedName
and the encoding of the returned name are set to the input value
of RequestedCCSID and RequestedEncoding.

v If conversion fails, but the MQINQMP call otherwise completes
without error or warning, the returned name is unconverted.
The completion code is MQCC_WARNING in this case, with
reason code MQRC_PROP_NAME_NOT_CONVERTED.

The property cursor is advanced to the returned property.
MQRC_PROP_VALUE_NOT_CONVERTED is returned if both the
value and the name are not converted.

If the returned name expands during conversion, and exceeds the
size of the VSBufsize field of the RequestedName, the returned
string is left unconverted with completion code MQCC_FAILED
and the reason code is set to
MQRC_PROPERTY_NAME_TOO_BIG.

The VSLength field of the MQCHARV structure returns the length
that the property value would have converted to, in order to allow
the application to determine the size of the buffer required to
accommodate the converted property value. The property cursor is
unchanged.

MQIMPO_CONVERT_TYPE
This option requests that the value of the property be converted
from its current data type into the data type specified on the Type
parameter of the MQINQMP call.
v If conversion is successful, the Type parameter is unchanged on

return of the MQINQMP call.
v If conversion fails, but the MQINQMP call otherwise completes

without error, the call fails with reason
MQRC_PROP_CONV_NOT_SUPPORTED. The property cursor
is unchanged.

If the conversion of the data type causes the value to expand
during conversion and the converted value exceeds the size of the
Value parameter, the value is returned unconverted with
completion code MQCC_FAILED and the reason code is set to
MQRC_PROPERTY_VALUE_TOO_BIG.

The DataLength parameter of the MQINQMP call returns the
length that the property value would have converted to, in order
to allow the application to determine the size of the buffer required
to accommodate the converted property value. The property cursor
is unchanged.

If the value of the Type parameter of the MQINQMP call is not
valid, the call fails with reason MQRC_PROPERTY_TYPE_ERROR.
If the requested data type conversion is not supported, the call fails

MQIMPO - Inquire message property options

766 WebSphere MQ for z/VSE System Management Guide

with reason MQRC_PROP_CONV_NOT_SUPPORTED. Table 46
shows the data type conversions that are supported.

Table 46. Data type conversions supported by MQIMPO

Property data type Supported target data types

MQTYPE_BOOLEAN MQTYPE_STRING, MQTYPE_INT8, MQTYPE_INT16,
MQTYPE_INT32

MQTYPE_BYTE_STRING MQTYPE_STRING

MQTYPE_INT8 MQTYPE_STRING, MQTYPE_INT16, MQTYPE_INT32

MQTYPE_INT16 MQTYPE_STRING, MQTYPE_INT32

MQTYPE_INT32 MQTYPE_STRING

MQTYPE_FLOAT32 MQTYPE_STRING

MQTYPE_FLOAT64 MQTYPE_STRING

MQTYPE_STRING MQTYPE_BOOLEAN, MQTYPE_INT8, MQTYPE_INT16,
MQTYPE_INT32, MQTYPE_FLOAT32, MQTYPE_FLOAT64

MQTYPE_NULL None

The general rules governing the supported conversions are:
v Numeric property values can be converted from one data type to

another, provided that no data is lost during the conversion.
For example, the value of a property with data type
MQTYPE_INT16 can be converted into a value with data type
MQTYPE_INT32, but cannot be converted into a value with data
type MQTYPE_INT8.

v A property value of any data type can be converted into a string.
v A string property value can be converted to any other data type

provided the string is formatted correctly for the conversion. If
an application attempts to convert a string property value that is
not formatted correctly, WebSphere MQ returns reason code
MQRC_PROP_NUMBER_FORMAT_ERROR.

v If an application attempts a conversion that is not supported,
WebSphere MQ returns reason code
MQRC_PROP_CONV_NOT_SUPPORTED.

The specific rules for converting a property value from one data
type to another are as follows:
v When converting an MQTYPE_BOOLEAN property value to a

string, the value TRUE is converted to the string "TRUE", and
the value false is converted to the string "FALSE".

v When converting an MQTYPE_BOOLEAN property value to a
numeric data type, the value TRUE is converted to one, and the
value FALSE is converted to zero.

v When converting a string property value to an
MQTYPE_BOOLEAN value, the string "TRUE" , or "1" , is
converted to TRUE, and the string "FALSE", or "0", is converted
to FALSE.

Note: The terms "TRUE" and "FALSE" are not case-sensitive. Any
other string cannot be converted. WebSphere MQ returns reason
code MQRC_PROP_NUMBER_FORMAT_ERROR.

MQIMPO - Inquire message property options

Appendix B. Application Programming Reference 767

v When converting a string property value to a value with data
type MQTYPE_INT8, MQTYPE_INT16, MQTYPE_INT32, or
MQTYPE_INT64, the string must have the format:
[blanks][sign]digits
The meanings of the components of the string are:

blanks
Optional leading blank characters.

sign An optional plus sign (+) or minus sign (-) character.

digits A contiguous sequence of digit characters (0-9). At least
one digit character must be present.

After the sequence of digit characters, the string can contain
other characters that are not digit characters, but the conversion
stops as soon as the first of these characters is reached. The
string is assumed to represent a decimal integer.
WebSphere MQ returns reason code
MQRC_PROP_NUMBER_FORMAT_ERROR if the string is not
formatted correctly. When converting a string property value to
a value with data type MQTYPE_FLOAT32 or
MQTYPE_FLOAT64, the string must have the format:
[blanks][sign]digits[.digits][e_char[e_sign]e_digits]
The meanings of the components of the string are :

blanks
Optional leading blank characters.

sign An optional plus sign (+) or minus sign (-) character.

digits A contiguous sequence of digit characters (0-9). At least
one digit character must be present.

e_char An exponent character, which is either "E" or "e".

e_sign An optional plus sign (+) or minus sign (-) character for
the exponent.

e_digits
A contiguous sequence of digit characters (0-9) for the
exponent. At least one digit character must be present if
the string contains an exponent character.

After the sequence of digit characters, or the optional characters
representing an exponent, the string can contain other characters
that are not digit characters but the conversion stops as soon as
the first of these characters is reached. The string is assumed to
represent a decimal floating point number with an exponent that
is a power of 10.
WebSphere MQ returns reason code
MQRC_PROP_NUMBER_FORMAT_ERROR if the string is not
formatted correctly.

v When converting a numeric property value to a string, the value
is converted to the string representation of the value as a
decimal number, not the string containing the ASCII character
for that value. For example, the integer 65 is converted to the
string "65", not the string "A".

v When converting a byte string property value to a string, each
byte is converted to the two hexadecimal characters that

MQIMPO - Inquire message property options

768 WebSphere MQ for z/VSE System Management Guide

represent the byte. For example, the byte array {0xF1, 0x12, 0x00,
0xFF} is converted to the string "F11200FF".

MQIMPO_QUERY_LENGTH
Query the type and length of the property value. The length is
returned in the DataLength parameter of the MQINQMP call. The
property value is not returned.

If a ReturnedName buffer is specified, the VSLength field of the
MQCHARV structure is filled in with the length of the property
name. The property name is not returned.

Iteration options:

The following options relate to iterating over properties, using a name with
a wildcard character.

MQIMPO_INQ_FIRST
Inquire on the first property that matches the specified name. After
this call, a cursor is established on the property that is returned.
This is the default value.

The MQIMPO_INQ_PROP_UNDER_CURSOR option can
subsequently be used with an MQINQMP call, if required, to
inquire on the same property again. Note that there is only one
property cursor. Therefore, if the property name specified in the
MQINQMP call changes, the cursor is reset.

This option is not valid with either of these options:
MQIMPO_INQ_NEXT
MQIMPO_INQ_PROP_UNDER_CURSOR

MQIMPO_INQ_NEXT
Inquires on the next property that matches the specified name,
continuing the search from the property cursor. The cursor is
advanced to the property that is returned.

If this is the first MQINQMP call for the specified name, then the
first property that matches the specified name is returned.

The MQIMPO_INQ_PROP_UNDER_CURSOR option can
subsequently be used with an MQINQMP call if required, to
inquire on the same property again.

If the property under the cursor has been deleted, MQINQMP
returns the next matching property following the one that has been
deleted.

If a property is added that matches the wildcard while an iteration
is in progress, the property may be returned during the completion
of the iteration. The property is returned once the iteration restarts
using MQIMPO_INQ_FIRST.

A property matching the wildcard that was deleted while the
iteration was in progress, is not returned subsequent to its deletion.
This option is not valid with either of these options:

MQIMPO_INQ_FIRST
MQIMPO_INQ_PROP_UNDER_CURSOR

MQIMPO_INQ_PROP_UNDER_CURSOR
Retrieve the value of the property pointed to by the property

MQIMPO - Inquire message property options

Appendix B. Application Programming Reference 769

cursor. The property pointed to by the property cursor is the one
that was last inquired, using either the MQIMPO_INQ_FIRST or
the MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused,
when the message handle is specified in the MsgHandle field of
the MQGMO on an MQGET call, or when the message handle is
specified in OriginalMsgHandle or NewMsgHandle fields of the
MQPMO structure on an MQPUT call.

If this option is used when the property cursor has not yet been
established, or if the property pointed to by the property cursor
has been deleted, the call fails with completion code
MQCC_FAILED and reason
MQRC_PROPERTY_NOT_AVAILABLE.

This option is not valid with either of these:
MQIMPO_INQ_FIRST
MQIMPO_INQ_NEXT

If none of the options previously described is required, the following
option can be used:

MQIMPO_NONE
Use this value to indicate that no other options have been
specified; all options assume their default values.

MQIMPO_NONE aids program documentation; it is not intended
that this option be used with any other option but, as its value is
zero, such use cannot be detected.

This is always an input field. The initial value of this field is
MQIMPO_INQ_FIRST.

RequestedCCSID (MQLONG)
The character set that the inquired property value is to be converted into if
the value is a character string. This is also the character set into which the
ReturnedName is to be converted when MQIMPO_CONVERT_VALUE or
MQIMPO_CONVERT_TYPE is specified.

The initial value of this field is MQCCSI_APPL.

RequestedEncoding (MQLONG)
This is the encoding into which the inquired property value is to be
converted when MQIMPO_CONVERT_VALUE or
MQIMPO_CONVERT_TYPE is specified.

The initial value of this field is MQENC_NATIVE.

Reserved1 (MQCHAR)
This is a reserved field. The initial value of this field is a blank character.

ReturnedCCSID (MQLONG)
On output, this is the character set of the value returned if the Type
parameter of the MQINQMP call is MQTYPE_STRING.

If the MQIMPO_CONVERT_VALUE option is specified and conversion
was successful, the ReturnedCCSID field, on return, is the same value as
the value passed in.

The initial value of this field is zero.

ReturnedEncoding (MQLONG)
On output, this is the encoding of the value returned.

MQIMPO - Inquire message property options

770 WebSphere MQ for z/VSE System Management Guide

If the MQIMPO_CONVERT_VALUE option is specified and conversion
was successful, the ReturnedEncoding field, on return, is the same value as
the value passed in.

The initial value of this field is MQENC_NATIVE.

ReturnedName (MQCHARV)
The actual name of the inquired property.

On input, a string buffer can be passed in using the VSPtr or VSOffset field
of the MQCHARV structure. The length of the string buffer is specified
using the VSBufsize field of the MQCHARV structure.

On return from the MQINQMP call, the string buffer is completed with the
name of the property that was inquired, provided the string buffer was
long enough to fully contain the name. The VSLength field of the
MQCHARV structure is filled in with the length of the property name. The
VSCCSID field of the MQCHARV structure is filled in to indicate the
character set of the returned name, whether or not conversion of the name
failed.

This is an input/output field. The initial value of this field is
MQCHARV_DEFAULT.

StrucId (MQCHAR4)
This is the structure identifier. The value must be:

MQIMPO_STRUC_ID
Identifier for buffer to message handle structure.

For the C programming language, the constant
MQIMPO_STRUC_ID_ARRAY is also defined; this has the same
value as MQIMPO_STRUC_ID, but is an array of characters
instead of a string.

This is always an input field. The initial value of this field is
MQIMPO_STRUC_ID.

TypeString (MQCHAR8)
A string representation of the data type of the property.

If the property was specified in an MQRFH2 header and the MQRFH2 dt
attribute is not recognized, this field can be used to determine the data
type of the property. TypeString is returned in coded character set 1208
(UTF-8), and is the first eight bytes of the value of the dt attribute of the
property that failed to be recognized.

This is always an output field. The initial value of this field is the null
string in the C programming language, and 8 blank characters in other
programming languages.

Version (MQLONG)
This is the structure version number.

The value must be:

MQIMPO_VERSION_1
Version number for inquire message property options structure.

The following constant specifies the version number of the current version:

MQIMPO_CURRENT_VERSION
Current version of inquire message property options structure.

MQIMPO - Inquire message property options

Appendix B. Application Programming Reference 771

This is always an input field. The initial value of this field is
MQIMPO_VERSION_1.

Initial values and language declarations

Here are the initial values and language declarations for MQIMPO.

Table 47. Initial values of fields in MQIMPO

Field name Name of constant Value of constant

StrucId MQIMPO_STRUC_ID 'IMPO'

Version MQIMPO_VERSION_1 1

Options MQIMPO_INQ_FIRST

RequestedEncoding MQENC_NATIVE

RequestedCCSID MQCCSI_APPL

ReturnedEncoding MQENC_NATIVE

ReturnedCCSID 0

Reserved1 0

ReturnedName MQCHARV_DEFAULT

TypeString Null string or blanks

Note:

1. The value Null string or blanks denotes the null string in C, and blank
characters in other programming languages.

2. In the C programming language, the macro variable MQIMPO_DEFAULT
contains the values listed above. Use it in the following way to provide initial
values for the fields in the structure:
MQIMPO MyIMPO = {MQIMPO_DEFAULT};

C declaration

COBOL declaration

struct tagMQIMPO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of

MQINQMP */
MQLONG RequestedEncoding; /* Requested encoding of Value */
MQLONG RequestedCCSID; /* Requested character set identifier

of Value */
MQLONG ReturnedEncoding; /* Returned encoding of Value */
MQLONG ReturnedCCSID; /* Returned character set identifier of

Value */
MQLONG Reserved1; /* Reserved */
MQCHARV ReturnedName; /* Returned property name */
MQCHAR8 TypeString; /* Property data type as a string */

};

MQIMPO - Inquire message property options

772 WebSphere MQ for z/VSE System Management Guide

PL/I declaration

** MQIMPO structure
10 MQIMPO.

** Structure identifier
15 MQIMPO-STRUCID PIC X(4).

** Structure version number
15 MQIMPO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQINQMP
15 MQIMPO-OPTIONS PIC S9(9) BINARY.

** Requested encoding of Value
15 MQIMPO-REQUESTEDENCODING PIC S9(9) BINARY.

** Requested character set identifier of Value
15 MQIMPO-REQUESTEDCCSID PIC S9(9) BINARY.

** Returned encoding of Value
15 MQIMPO-RETURNEDENCODING PIC S9(9) BINARY.

** Returned character set identifier of Value
15 MQIMPO-RETURNEDCCSID PIC S9(9) BINARY.

** Reserved
15 MQIMPO-RESERVED1 PIC S9(9) BINARY.

** Returned property name
15 MQIMPO-RETURNEDNAME.

** Address of variable length string
20 MQIMPO-RETURNEDNAME-VSPTR USAGE POINTER.

** Offset of variable length string
20 MQIMPO-RETURNEDNAME-VSOFFSET PIC S9(9) BINARY.

** Size of buffer
20 MQIMPO-RETURNEDNAME-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string
20 MQIMPO-RETURNEDNAME-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string
20 MQIMPO-RETURNEDNAME-VSCCSID PIC S9(9) BINARY.

** Property data type as a string
15 MQIMPO-TYPESTRING PIC X(8).

dcl
1 MQIMPO based,
3 StrucId char(4)
init(MQIMPO_STRUC_ID), /* Structure identifier */

3 Version fixed bin(31)
init(MQIMPO_VERSION_1), /* Structure version number */

3 Options fixed bin(31)
init(MQIMPO_INQ_FIRST), /* Options that control the */

/* action of MQINQMP */
3 RequestedEncoding fixed bin(31)
init(MQENC_NATIVE), /* Requested encoding of Value */

3 RequestedCCSID fixed bin(31)
init(MQCCSI_APPL), /* Requested character set */

/* identifier of Value */
3 ReturnedEncoding fixed bin(31)
init(MQENC_NATIVE), /* Returned encoding of Value */

3 ReturnedCCSID fixed bin(31)
init(0), /* Returned character set */

/* identifier of Value */
3 Reserved1 fixed bin(31)
init(0), /* Reserved */

3 ReturnedName, /* Returned property name */
5 VSPtr pointer
init(null()), /* Address of variable length */

/* string */
5 VSOffset fixed bin(31)
init(0), /* Offset of variable length */

/* string */
5 VSBufSize fixed bin(31)
init(0), /* Size of buffer */

5 VSLength fixed bin(31)
init(0), /* Length of variable length */

/* string */
5 VSCCSID fixed bin(31)
init(MQCCSI_APPL), /* CCSID of variable length */

/* string */
3 TypeString char(8)
init(’’); /* Property data type as a */

MQIMPO - Inquire message property options

Appendix B. Application Programming Reference 773

MQMD – Message descriptor

The MQMD structure contains the control information that accompanies the
application data when a message travels between the sending and receiving
applications. The structure is an input/output parameter on the MQGET, MQPUT,
and MQPUT1 calls.

Data in MQMD must be in the character set and encoding of the local queue
manager; these are given by the CodedCharSetId queue-manager attribute and
MQENC_NATIVE, respectively. However, if the application is running as an MQ
client, the structure must be in the character set and encoding of the client.

If the sending and receiving queue managers use different character sets or
encodings, the data in MQMD can be converted automatically. It is not necessary
for the application to convert the MQMD.

A version-2 MQMD is generally equivalent to using a version-1 MQMD and
prefixing the message data with an MQMDE structure. However, if all the fields in
the MQMDE structure have their default values, the MQMDE can be omitted. A
version-1 MQMD plus MQMDE are used as described below.
v On the MQPUT and MQPUT1 calls, if the application provides a version-1

MQMD, the application can optionally prefix the message data with an
MQMDE, setting the Format field in MQMD to MQFMT_MD_EXTENSION to
indicate that an MQMDE is present. If the application does not provide an
MQMDE, the queue manager assumes default values for the fields in the
MQMDE.

Note: Several of the fields that exist in the version-2 MQMD but not the
version-1 MQMD are input/output fields on the MQPUT and MQPUT1 calls.
However, the queue manager does not return any values in the equivalent fields
in the MQMDE on output from the MQPUT and MQPUT1 calls; if the
application requires those output values, it must use a version-2 MQMD.

v On the MQGET call, if the application provides a version-1 MQMD, the queue
manager prefixes the message returned with an MQMDE, but only if one or
more of the fields in the MQMDE has a non-default value. The Format field in
MQMD will have the value MQFMT_MD_EXTENSION to indicate that an
MQMDE is present.

Certain fields in MQMD contain the message context. There are two types of
message context: identity context and origin context. Usually:
v Identity context relates to the application that originally put the message.
v Origin context relates to the application that most recently put the message.

These two applications can be the same application, but they can also be different
applications (for example, when a message is forwarded from one application to
another).

Fields

Here is a summary of the fields.

Table 48. Fields in MQMD

Field Description

StrucId Structure identifier

MQMD - Message descriptor

774 WebSphere MQ for z/VSE System Management Guide

Table 48. Fields in MQMD (continued)

Field Description

Version Structure version number

Report Options for report messages

MsgType Message type

Expiry Message lifetime

Feedback Feedback or reason code

Encoding Numeric encoding of message data

CodedCharSetId Character set identifier of message
data

Format Format name of message data

Priority Message priority

Persistence Message persistence

MsgId Message identifier

CorrelId Correlation identifier

BackoutCount Backout counter

ReplyToQ Name of reply queue

ReplyToQMgr Name of reply queue manager

UserIdentifier User identifier

AccountingToken Accounting token

ApplIdentityData Application data relating to identity

PutApplType Type of application that put the
message

PutApplName Name of application that put the
message

PutDate Date when message was put

PutTime Time when message was put

ApplOriginData Application data relating to origin

Note: The remaining fields are ignored if Version is less than MQMD_VERSION_2.

GroupId Group identifier

MsgSeqNumber Sequence number of logical
message within group

Offset Offset of data in physical message
from start of logical message

MsgFlags Message flags

OriginalLength Length of original message

Here is a description of the fields.

AccountingToken (MQBYTE32)
This is the accounting token, part of the identity context of the message.
AccountingToken allows an application to charge appropriately for work
done as a result of the message. The queue manager treats this information
as a string of bits and does not check its content.

WebSphere MQ for z/VSE does not support this field.

MQMD - Message descriptor

Appendix B. Application Programming Reference 775

ApplIdentityData (MQCHAR32)
This is part of the identity context of the message. ApplIdentityData is
information that is defined by the application suite, and can be used to
provide additional information about the message or its originator.

WebSphere MQ for z/VSE does not support this field.

ApplOriginData (MQCHAR4)
This is part of the origin context of the message. ApplOriginData is
information that is defined by the application suite that can be used to
provide additional information about the origin of the message.

For example, it could be set by applications running with suitable user
authority to indicate whether the identity data is trusted. The queue
manager treats this information as character data, but does not define the
format of it.

When the queue manager generates this information, it is entirely blank.

WebSphere MQ for z/VSE does not support this field.

BackoutCount (MQLONG)
This is a count of the number of times that the message has been
previously returned by the MQGET call as part of a unit of work, and
subsequently backed out. It helps the application to detect processing
errors that are based on message content. The count excludes MQGET calls
that specify any of the MQGMO_BROWSE_* options.

WebSphere MQ for z/VSE does not support this field.

CodedCharSetId (MQLONG)
This specifies the character set identifier of character data in the message.

Note: Character data in MQMD and the other MQ data structures that are
parameters on calls must be in the character set of the queue manager. This
is defined by the queue manager's CodedCharSetId attribute; see “Global
QUEUE /File Names” on page 85 for details of this attribute.
You can use the following special values:

MQCCSI_Q_MGR
Character data in the message is in the queue manager's character
set.

On the MQPUT and MQPUT1 calls, the queue manager changes
this value in the MQMD that is sent with the message to the true
character-set identifier of the queue manager. As a result, the value
MQCCSI_Q_MGR is never returned by the MQGET call.

MQCCSI_DEFAULT
The CodedCharSetId of the data in the String field is defined by
the CodedCharSetId field in the header structure that precedes the
MQCFH structure, or by the CodedCharSetId field in the MQMD if
the MQCFH is at the start of the message.

On the MQPUT and MQPUT1 calls, the queue manager changes the value
MQCCSI_Q_MGR in the MQMD that is sent with the message as described
above, but does not change the MQMD specified on the MQPUT or
MQPUT1 call. No other check is carried out on the value specified.
Applications that retrieve messages must compare this field against the
value the application is expecting; if the values differ, the application might
need to convert character data in the message.

MQMD - Message descriptor

776 WebSphere MQ for z/VSE System Management Guide

If you specify the MQGMO_CONVERT option on the MQGET call, this
field is an input/output field. The value specified by the application is the
coded character-set identifier to which to convert the message data if
necessary. If conversion is successful or unnecessary, the value is
unchanged (except that the value MQCCSI_Q_MGR is converted to the
actual value). If conversion is unsuccessful, the value after the MQGET call
represents the coded character-set identifier of the unconverted message
that is returned to the application. Otherwise, this is an output field for the
MQGET call, and an input field for the MQPUT and MQPUT1 calls.

The initial value of this field is MQCCSI_Q_MGR.

CorrelId (MQBYTE24)
This is a byte string that the application can use to relate one message to
another, or to relate the message to other work that the application is
performing. The correlation identifier is a permanent property of the
message, and persists across restarts of the queue manager. Because the
correlation identifier is a byte string and not a character string, the
correlation identifier is not converted between character sets when the
message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, the application can specify any value.
The queue manager transmits this value with the message and delivers it
to the application that issues the get request for the message.

If the application specifies MQPMO_NEW_CORREL_ID, the queue
manager generates a unique correlation identifier which is sent with the
message, and also returned to the sending application on output from the
MQPUT or MQPUT1 call.

When the queue manager or a message channel agent generates a report
message, it sets the CorrelId field in the way specified by the Report field
of the original message, either MQRO_COPY_MSG_ID_TO_CORREL_ID or
MQRO_PASS_CORREL_ID. Applications that generate report messages
must also do this.

For the MQGET call, CorrelId is one of the five fields that can be used to
select a particular message to be retrieved from the queue. See the
description of the MsgId field for details on how to specify values for this
field.

Specifying MQCI_NONE as the correlation identifier has the same effect as
not specifying MQMO_MATCH_CORREL_ID, that is, any correlation
identifier will match. If the MQGMO_MSG_UNDER_CURSOR option is
specified in the GetMsgOpts parameter on the MQGET call, this field is
ignored.

On return from an MQGET call, the CorrelId field is set to the correlation
identifier of the message returned (if any).

The following special values can be used:

MQCI_NONE
No correlation identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQCI_NONE_ARRAY is also defined; this has the same value as
MQCI_NONE, but is an array of characters instead of a string.

MQMD - Message descriptor

Appendix B. Application Programming Reference 777

MQCI_NEW_SESSION
Message is the start of a new session.

This value is recognized by the CICS bridge as indicating the start
of a new session, that is, the start of a new sequence of messages.

For the C programming language, the constant
MQCI_NEW_SESSION_ARRAY is also defined; this has the same
value as MQCI_NEW_SESSION, but is an array of characters
instead of a string.

For the MQGET call, this is an input/output field. For the MQPUT and
MQPUT1 calls, this is an input field if MQPMO_NEW_CORREL_ID is not
specified, and an output field if MQPMO_NEW_CORREL_ID is specified.
The length of this field is given by MQ_CORREL_ID_LENGTH. The initial
value of this field is MQCI_NONE.

Encoding (MQLONG)
This specifies the numeric encoding of numeric data in the message; it
does not apply to numeric data in the MQMD structure itself. The numeric
encoding defines the representation used for binary integers,
packed-decimal integers, and floating-point numbers.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data. The queue manager does not check that the
field is valid.

The following special value is defined:

MQENC_NATIVE
The encoding is the default for the programming language and
machine on which the application is running.

Note: The value of this constant depends on the programming
language and environment. For this reason, applications must be
compiled using the header, macro, COPY, or INCLUDE files
appropriate to the environment in which the application will run.

Applications that put messages usually specify MQENC_NATIVE.
Applications that retrieve messages must compare this field against the
value MQENC_NATIVE; if the values differ, the application might need to
convert numeric data in the message. Use the MQGMO_CONVERT option
to request the queue manager to convert the message as part of the
processing of the MQGET call.

If you specify the MQGMO_CONVERT option on the MQGET call, this
field is an input/output field. The value specified by the application is the
encoding to which to convert the message data if necessary. If conversion
is successful or unnecessary, the value is unchanged. If conversion is
unsuccessful, the value after the MQGET call represents the encoding of
the unconverted message that is returned to the application.

In other cases, this is an output field for the MQGET call, and an input
field for the MQPUT and MQPUT1 calls. The initial value of this field is
MQENC_NATIVE.

Expiry (MQLONG)
This is a period of time expressed in tenths of a second, set by the
application that puts the message. The message becomes eligible to be
discarded if it has not been removed from the destination queue before this
period of time elapses.

MQMD - Message descriptor

778 WebSphere MQ for z/VSE System Management Guide

Message expiry is described in detail in “Message expiry” on page 165.

The following special value is recognized:

MQEI_UNLIMITED
The message has an unlimited expiration time.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQEI_UNLIMITED.

Feedback (MQLONG)
This is used with a message of type MQMT_REPORT to indicate the
nature of the report, and is only meaningful with that type of message. The
field can contain one of the MQFB_* values, or one of the MQRC_* values.
Feedback codes are grouped as follows:

MQFB_NONE
No feedback provided.

MQFB_SYSTEM_FIRST
Lowest value for system-generated feedback.

MQFB_SYSTEM_LAST
Highest value for system-generated feedback.

The range of system-generated feedback codes
MQFB_SYSTEM_FIRST through MQFB_SYSTEM_LAST includes
the general feedback codes listed below (MQFB_*), and also the
reason codes (MQRC_*) that can occur when the message cannot
be put on the destination queue.

MQFB_APPL_FIRST
Lowest value for application-generated feedback.

MQFB_APPL_LAST
Highest value for application-generated feedback.

Applications that generate report messages must not use feedback codes in
the system range (other than MQFB_QUIT), unless they want to simulate
report messages generated by the queue manager or message channel
agent.

On the MQPUT or MQPUT1 calls, the value specified must either be
MQFB_NONE, or be within the system range or application range. This is
checked whatever the value of MsgType.

General feedback codes:

MQFB_COA
Confirmation of arrival on the destination queue (see
MQRO_COA).

MQFB_COD
Confirmation of delivery to the receiving application (see
MQRO_COD).

MQFB_EXPIRATION
Message was discarded because it had not been removed from the
destination queue before its expiry time had elapsed.

MQFB_PAN
Positive action notification (see MQRO_PAN).

MQMD - Message descriptor

Appendix B. Application Programming Reference 779

MQFB_NAN
Negative action notification (see MQRO_NAN).

MQFB_QUIT
End application.

This can be used by a workload scheduling program to control the
number of instances of an application program that are running.
Sending an MQMT_REPORT message with this feedback code to
an instance of the application program indicates to that instance
that it should stop processing. However, adherence to this
convention is a matter for the application; it is not enforced by the
queue manager.

CICS-bridge feedback codes: The following feedback codes can be
generated by the CICS bridge:

MQFB_CICS_APPL_ABENDED
The application program specified in the message abended. This
feedback code occurs only in the Reason field of the MQDLH
structure.

MQFB_CICS_APPL_NOT_STARTED
The EXEC CICS LINK for the application program specified in the
message failed. This feedback code occurs only in the Reason field
of the MQDLH structure.

MQFB_CICS_BRIDGE_FAILURE
CICS bridge terminated abnormally without completing normal
error processing.

MQFB_CICS_CCSID_ERROR
Character set identifier not valid.

MQFB_CICS_CIH_ERROR
CICS information header structure missing or not valid.

MQFB_CICS_COMMAREA_ERROR
Length of CICS commarea not valid.

MQFB_CICS_CORREL_ID_ERROR
Correlation identifier not valid.

MQFB_CICS_DLQ_ERROR
The CICS bridge task was unable to copy a reply to this request to
the dead-letter queue. The request was backed out.

MQFB_CICS_ENCODING_ERROR
Encoding not valid.

MQFB_CICS_INTERNAL_ERROR
CICS bridge encountered an unexpected error. This feedback code
occurs only in the Reason field of the MQDLH structure.

MQFB_CICS_NOT_AUTHORIZED
User identifier not authorized or password not valid. This feedback
code occurs only in the Reason field of the MQDLH structure.

MQFB_CICS_UOW_BACKED_OUT
The unit of work was backed out, for one of the following reasons:
v A failure was detected while processing another request within

the same unit of work.
v A CICS abend occurred while the unit of work was in progress.

MQMD - Message descriptor

780 WebSphere MQ for z/VSE System Management Guide

MQFB_CICS_UOW_ERROR
Unit-of-work control field UOWControl not valid.

This is an output field for the MQGET call, and an input field for MQPUT
and MQPUT1 calls. The initial value of this field is MQFB_NONE.

Format (MQCHAR8)
This is a name that the sender of the message uses to indicate to the
receiver the nature of the data in the message. Any characters that are in
the queue manager's character set can be specified for the name, but it is
recommended that the name be restricted to the following:
v Uppercase A through Z.
v Numeric digits 0 through 9.

If other characters are used, it might not be possible to translate the name
between the character sets of the sending and receiving queue managers.

Pad the name with blanks to the length of the field, or use a null character
to terminate the name before the end of the field; the null and any
subsequent characters are treated as blanks. Do not specify a name with
leading or embedded blanks. For the MQGET call, the queue manager
returns the name padded with blanks to the length of the field.

The queue manager does not check that the name complies with the
recommendations described above.

Names beginning MQ in upper, lower, and mixed case have meanings that
are defined by the queue manager; do not use names beginning with these
letters for your own formats. The queue manager built-in formats are:

MQFMT_NONE
The nature of the data is undefined: the data cannot be converted
when the message is retrieved from a queue using the
MQGMO_CONVERT option.

If you specify MQGMO_CONVERT on the MQGET call, and the
character set or encoding of data in the message differs from that
specified in the MsgDesc parameter, the message is returned with
the following completion and reason codes (assuming no other
errors):
v Completion code MQCC_WARNING and reason code

MQRC_FORMAT_ERROR if the MQFMT_NONE data is at the
beginning of the message.

v Completion code MQCC_OK and reason code MQRC_NONE if
the MQFMT_NONE data is at the end of the message (that is,
preceded by one or more MQ header structures). The MQ
header structures are converted to the requested character set
and encoding in this case.

For the C programming language, the constant
MQFMT_NONE_ARRAY is also defined; this has the same value
as MQFMT_NONE, but is an array of characters instead of a
string.

MQFMT_ADMIN
The message is a command-server request or reply message in
programmable command format (PCF). Messages of this format
can be converted if the MQGMO_CONVERT option is specified on
the MQGET call. See Chapter 8, “Programmable system

MQMD - Message descriptor

Appendix B. Application Programming Reference 781

management,” on page 221 for more information about using
programmable command format messages.

For the C programming language, the constant
MQFMT_ADMIN_ARRAY is also defined; this has the same value
as MQFMT_ADMIN, but is an array of characters instead of a
string.

MQFMT_CICS
The message data begins with the CICS information header
MQCIH, followed by the application data. The format name of the
application data is given by the Format field in the MQCIH
structure.

Specify the MQGMO_CONVERT option on the MQGET call to
convert messages that have format MQFMT_CICS.

For the C programming language, the constant
MQFMT_CICS_ARRAY is also defined; this has the same value as
MQFMT_CICS, but is an array of characters instead of a string.

MQFMT_COMMAND_1
The message is an MQSC command-server reply message
containing the object count, completion code, and reason code.
Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_COMMAND_1_ARRAY is also defined; this has the same
value as MQFMT_COMMAND_1, but is an array of characters
instead of a string.

MQFMT_COMMAND_2
The message is an MQSC command-server reply message
containing information about the objects requested. Messages of
this format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

For the C programming language, the constant
MQFMT_COMMAND_2_ARRAY is also defined; this has the same
value as MQFMT_COMMAND_2, but is an array of characters
instead of a string.

MQFMT_DEAD_LETTER_HEADER
The message data begins with the dead-letter header MQDLH. The
data from the original message immediately follows the MQDLH
structure. The format name of the original message data is given
by the Format field in the MQDLH structure; see “MQDLH –
Dead-letter header” on page 726 for details of this structure.
Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

COA and COD reports are not generated for messages that have a
Format of MQFMT_DEAD_LETTER_HEADER.

For the C programming language, the constant
MQFMT_DEAD_LETTER_HEADER_ARRAY is also defined; this
has the same value as MQFMT_DEAD_LETTER_HEADER, but is
an array of characters instead of a string.

MQFMT_DIST_HEADER
The message data begins with the distribution-list header MQDH;

MQMD - Message descriptor

782 WebSphere MQ for z/VSE System Management Guide

this includes the arrays of MQOR and MQPMR records. The
distribution- list header can be followed by additional data.
Messages with format MQFMT_DIST_HEADER can be converted if
the MQGMO_CONVERT option is specified on the MQGET call.
This format is supported in the following environments: AIX,
HP-UX, i5/OS™, Solaris, Linux, Windows, plus WebSphere MQ
clients connected to these systems.

For the C programming language, the constant
MQFMT_DIST_HEADER_ARRAY is also defined; this has the same
value as MQFMT_DIST_HEADER, but is an array of characters
instead of a string.

MQFMT_EVENT
The message is an MQ event message that reports an event that
occurred. Event messages have the same structure as
programmable commands; refer to Chapter 8, “Programmable
system management,” on page 221 for more information about this
structure, and for information about events.

Version-1 event messages can be converted in all environments if
the MQGMO_CONVERT option is specified on the MQGET call.

Version-2 event messages can be converted only on z/OS.

For the C programming language, the constant
MQFMT_EVENT_ARRAY is also defined; this has the same value
as MQFMT_EVENT, but is an array of characters instead of a
string.

MQFMT_IMS
The message data begins with the IMS™ information header
MQIIH, which is followed by the application data. Specify the
MQGMO_CONVERT option on the MQGET call to convert
messages that have format MQFMT_IMS.

For the C programming language, the constant
MQFMT_IMS_ARRAY is also defined; this has the same value as
MQFMT_IMS, but is an array of characters instead of a string.

MQFMT_IMS_VAR_STRING
The message is an IMS variable string, which is a string of the
form llzzccc, where:

ll Is a 2-byte length field specifying the total length of the
IMS variable string item. This length is equal to the length
of ll (2 bytes), plus the length of zz (2 bytes), plus the
length of the character string itself. ll is a 2-byte binary
integer in the encoding specified by the Encoding field.

zz Is a 2-byte field containing flags that are significant to IMS.
zz is a byte string consisting of two MQBYTE fields, and is
transmitted without change from sender to receiver (that is,
zz is not subject to any conversion).

ccc Is a variable-length character string containing ll-4
characters. ccc is in the character set specified by the
CodedCharSetId field.

On z/OS, the message data can consist of a sequence of IMS
variable strings butted together, with each string being of the form

MQMD - Message descriptor

Appendix B. Application Programming Reference 783

llzzccc. There must be no bytes skipped between successive IMS
variable strings. This means that if the first string has an odd
length, the second string will be misaligned, that is, it will not
begin on a boundary that is a multiple of two. Take care when
constructing such strings on machines that require alignment of
elementary data types.

Use the MQGMO_CONVERT option on the MQGET call to convert
messages that have format MQFMT_IMS_VAR_STRING.

For the C programming language, the constant
MQFMT_IMS_VAR_STRING_ARRAY is also defined; this has the
same value as MQFMT_IMS_VAR_STRING, but is an array of
characters instead of a string.

MQFMT_MD_EXTENSION
The message data begins with the message-descriptor extension
MQMDE, and is optionally followed by other data (usually the
application message data). The format name, character set, and
encoding of the data that follow the MQMDE are given by the
Format, CodedCharSetId, and Encoding fields in the MQMDE. See
“MQMDE – Message descriptor extension” on page 806 for details
of this structure.

Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_MD_EXTENSION_ARRAY is also defined; this has the
same value as MQFMT_MD_EXTENSION, but is an array of
characters instead of a string.

MQFMT_PCF
The message is a user-defined message that conforms to the
structure of a programmable command format (PCF) message.
Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call. Refer
to Chapter 8, “Programmable system management,” on page 221
for more information about using programmable command format
messages.

For the C programming language, the constant
MQFMT_PCF_ARRAY is also defined; this has the same value as
MQFMT_PCF, but is an array of characters instead of a string.

MQFMT_REF_MSG_HEADER
The message data begins with the reference message header
MQRMH, and is optionally followed by other data. Messages of
this format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

This format is supported in the following environments: AIX, HP-
UX, i5/OS, Solaris, Linux, Windows, plus WebSphere MQ clients
connected to these systems.

For the C programming language, the constant
MQFMT_REF_MSG_HEADER_ARRAY is also defined; this has the
same value as MQFMT_REF_MSG_HEADER, but is an array of
characters instead of a string.

MQMD - Message descriptor

784 WebSphere MQ for z/VSE System Management Guide

MQFMT_RF_HEADER
The message data begins with the rules and formatting header
MQRFH, and is optionally followed by other data. Messages of this
format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

For the C programming language, the constant
MQFMT_RF_HEADER_ARRAY is also defined; this has the same
value as MQFMT_RF_HEADER, but is an array of characters
instead of a string.

MQFMT_RF_HEADER_2
The message data begins with the version-2 rules and formatting
header MQRFH2, and is optionally followed by other data.
Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_RF_HEADER_2_ARRAY is also defined; this has the same
value as MQFMT_RF_HEADER_2, but is an array of characters
instead of a string.

MQFMT_STRING
The application message data can be either an SBCS string
(single-byte character set), or a DBCS string (double-byte character
set). Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_STRING_ARRAY is also defined; this has the same value
as MQFMT_STRING, but is an array of characters instead of a
string.

MQFMT_TRIGGER
The message is a trigger message, described by the MQTM
structure; see “MQTM – Trigger message” on page 863 for details
of this structure. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_TRIGGER_ARRAY is also defined; this has the same
value as MQFMT_TRIGGER, but is an array of characters instead
of a string.

MQFMT_XMIT_Q_HEADER
The message data begins with the transmission queue header
MQXQH. The data from the original message immediately follows
the MQXQH structure. The format name of the original message
data is given by the Format field in the MQMD structure, which is
part of the transmission queue header MQXQH. See “MQXQH –
Transmission-queue header” on page 866 for details of this
structure.

COA and COD reports are not generated for messages that have a
Format of MQFMT_XMIT_Q_HEADER.

For the C programming language, the constant
MQFMT_XMIT_Q_HEADER_ARRAY is also defined; this has the
same value as MQFMT_XMIT_Q_HEADER, but is an array of
characters instead of a string.

MQMD - Message descriptor

Appendix B. Application Programming Reference 785

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The length of this field is given by
MQ_FORMAT_LENGTH.

The initial value of this field is MQFMT_NONE.

GroupId (MQBYTE24)
This is a byte string that is used to identify the particular message group
or logical message to which the physical message belongs. GroupId is also
used if segmentation is allowed for the message. In all these cases,
GroupId has a non-null value, and one or more of the following flags is set
in the MsgFlags field:

MQMF_MSG_IN_GROUP
MQMF_LAST_MSG_IN_GROUP
MQMF_SEGMENT
MQMF_LAST_SEGMENT
MQMF_SEGMENTATION_ALLOWED

If none of these flags is set, GroupId has the special null value
MQGI_NONE.

The application does not need to set this field on the MQPUT or MQGET
call if:
v On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
v On the MQGET call, MQMO_MATCH_GROUP_ID is not specified.

These are the recommended ways of using these calls for messages that are
not report messages. However, if the application requires more control, or
the call is MQPUT1, the application must ensure that GroupId is set to an
appropriate value.

Message groups and segments can be processed correctly only if the group
identifier is unique. For this reason, applications must not generate their
own group identifiers; instead, applications must do one of the following:
v If MQPMO_LOGICAL_ORDER is specified, the queue manager

automatically generates a unique group identifier for the first message in
the group or segment of the logical message, and uses that group
identifier for the remaining messages in the group or segments of the
logical message, so the application does not need to take any special
action. This is the recommended procedure.

v If MQPMO_LOGICAL_ORDER is not specified, the application must
request the queue manager to generate the group identifier, by setting
GroupId to MQGI_NONE on the first MQPUT or MQPUT1 call for a
message in the group or segment of the logical message. The group
identifier returned by the queue manager on output from that call must
then be used for the remaining messages in the group or segments of the
logical message. If a message group contains segmented messages, the
same group identifier must be used for all segments and messages in the
group.
When MQPMO_LOGICAL_ORDER is not specified, messages in groups
and segments of logical messages can be put in any order (for example,
in reverse order), but the group identifier must be allocated by the first
MQPUT or MQPUT1 call that is issued for any of those messages.

On output from the MQPUT and MQPUT1 calls, the queue manager sets
this field to the value that was sent with the message if the object opened
is a single queue and not a distribution list, but leaves it unchanged if the
object opened is a distribution list. In the latter case, if the application

MQMD - Message descriptor

786 WebSphere MQ for z/VSE System Management Guide

needs to know the group identifiers generated, the application must
provide MQPMR records containing the GroupId field.

On output from the MQGET call, the queue manager sets this field to the
value for the message retrieved. The following special value is defined:

MQGI_NONE
No group identifier specified.

The value is binary zero for the length of the field. This is the
value that is used for messages that are not in groups, not
segments of logical messages, and for which segmentation is not
allowed.

For the C programming language, the constant MQGI_NONE_ARRAY is
also defined; this has the same value as MQGI_NONE, but is an array of
characters instead of a string.

The length of this field is given by MQ_GROUP_ID_LENGTH. The initial
value of this field is MQGI_NONE. This field is ignored if Version is less
than MQMD_VERSION_2.

MsgFlags (MQLONG)
These are flags that specify attributes of the message, or control its
processing. The flags are divided into the following categories:
v Segmentation flags.
v Status flags.

Segmentation flags
When a message is too big for a queue, an attempt to put the
message on the queue usually fails. Segmentation is a technique
whereby the queue manager or application splits the message into
smaller pieces called segments, and places each segment on the
queue as a separate physical message. The application that
retrieves the message can either retrieve the segments one by one,
or request the queue manager to reassemble the segments into a
single message that is returned by the MQGET call. The latter is
achieved by specifying the MQGMO_COMPLETE_MSG option on
the MQGET call, and supplying a buffer that is big enough to
accommodate the complete message. (See “MQGMO – Get
message options” on page 740 for details of the
MQGMO_COMPLETE_MSG option.)

A message can be segmented at the sending queue manager, at an
intermediate queue manager, or at the destination queue manager.

You can specify one of the following to control the segmentation of
a message:

MQMF_SEGMENTATION_INHIBITED
This option prevents the message being broken into
segments by the queue manager. If specified for a message
that is already a segment, this option prevents the segment
being broken into smaller segments. The value of this flag
is binary zero. This is the default.

MQMF_SEGMENTATION_ALLOWED
This option allows the message to be broken into segments
by the queue manager. If specified for a message that is
already a segment, this option allows the segment to be
broken into smaller segments.

MQMD - Message descriptor

Appendix B. Application Programming Reference 787

MQMF_SEGMENTATION_ALLOWED can be set without
either MQMF_SEGMENT or MQMF_LAST_SEGMENT
being set.

When the queue manager segments a message, the queue manager
turns on the MQMF_SEGMENT flag in the copy of the MQMD
that is sent with each segment, but does not alter the settings of
these flags in the MQMD provided by the application on the
MQPUT or MQPUT1 call. For the last segment in the logical
message, the queue manager also turns on the
MQMF_LAST_SEGMENT flag in the MQMD that is sent with the
segment.

Note: Take care when putting messages with
MQMF_SEGMENTATION_ALLOWED but without
MQPMO_LOGICAL_ORDER. If the message is:
v Not a segment, and
v Not in a group, and
v Not being forwarded,

the application must reset the GroupId field to MQGI_NONE
before each MQPUT or MQPUT1 call, so that the queue manager
can generate a unique group identifier for each message. If this is
not done, unrelated messages can have the same group identifier,
which might lead to incorrect processing subsequently. See the
descriptions of the GroupId field and the
MQPMO_LOGICAL_ORDER option for more information about
when to reset the GroupId field.

The queue manager splits messages into segments as necessary so
that the segments (plus any required header data) fit on the queue.
However, there is a lower limit for the size of a segment generated
by the queue manager (see below), and only the last segment
created from a message can be smaller than this limit. (The lower
limit for the size of an application-generated segment is one byte.)
Segments generated by the queue manager might be of unequal
length. The queue-manager processes the message as follows:
v User-defined formats are split on boundaries that are multiples

of 16 bytes; the queue manager does not generate segments that
are smaller than 16 bytes (other than the last segment).

v Built-in formats other than MQFMT_STRING are split at points
appropriate to the nature of the data present. However, the
queue manager never splits a message in the middle of an MQ
header structure. This means that a segment containing a single
MQ header structure cannot be split further by the queue
manager, and as a result the minimum possible segment size for
that message is greater than 16 bytes. The second or later
segment generated by the queue manager begins with one of the
following:
– An MQ header structure.
– The start of the application message data.
– Part of the way through the application message data.

v MQFMT_STRING is split without regard for the nature of the
data present (SBCS, DBCS, or mixed SBCS/DBCS). When the
string is DBCS or mixed SBCS/DBCS, this might result in
segments that cannot be converted from one character set to
another (see below). The queue manager never splits

MQMD - Message descriptor

788 WebSphere MQ for z/VSE System Management Guide

MQFMT_STRING messages into segments that are smaller than
16 bytes (other than the last segment).

v The queue manager sets the Format, CodedCharSetId, and
Encoding fields in the MQMD of each segment to describe
correctly the data present at the start of the segment; the format
name is either the name of a built-in format, or the name of a
user-defined format.

v The Report field in the MQMD of segments with Offset greater
than zero is modified. For each report type, if the report option
is MQRO_*_WITH_DATA, but the segment cannot contain any
of the first 100 bytes of user data (that is, the data following any
MQ header structures that may be present), the report option is
changed to MQRO_*.

The queue manager follows the above rules, but otherwise splits
messages as it thinks fit; you cannot assume that the queue
manager splits a message in a particular way.

Take special care when converting data in messages that might be
segmented:
v If the receiving application converts data on the MQGET call,

and specifies the MQGMO_COMPLETE_MSG option, the
data-conversion exit is passed the complete message for the exit
to convert, and the fact that the message was segmented is be
apparent to the exit.

v If the receiving application retrieves one segment at a time, the
data-conversion exit is invoked to convert one segment at a time.
The exit must therefore be capable of converting the data in a
segment independently of the data in any of the other segments.
If the nature of the data in the message is such that arbitrary
segmentation of the data on 16-byte boundaries might result in
segments that cannot be converted by the exit, or the format is
MQFMT_STRING and the character set is DBCS or mixed
SBCS/DBCS, the sending application must create and put the
segments, specifying MQMF_SEGMENTATION_INHIBITED to
suppress further segmentation. In this way, the sending
application can ensure that each segment contains sufficient
information to allow the data-conversion exit to convert the
segment successfully.

v If sender conversion is specified for a sending message channel
agent (MCA), the MCA converts only messages that are not
segments of logical messages; the MCA never attempts to
convert messages that are segments.

This flag is an input flag on the MQPUT and MQPUT1 calls, and
an output flag on the MQGET call. On the latter call, the queue
manager also echoes the value of the flag to the Segmentation field
in MQGMO.

The initial value of this flag is
MQMF_SEGMENTATION_INHIBITED.

Status flags
These are flags that indicate whether the physical message belongs
to a message group, is a segment of a logical message, both, or
neither. One or more of the following can be specified on the
MQPUT or MQPUT1 call, or returned by the MQGET call:

MQMD - Message descriptor

Appendix B. Application Programming Reference 789

MQMF_MSG_IN_GROUP
Message is a member of a group.

MQMF_LAST_MSG_IN_GROUP
Message is the last logical message in a group. If this flag
is set, the queue manager turns on
MQMF_MSG_IN_GROUP in the copy of MQMD that is
sent with the message, but does not alter the settings of
these flags in the MQMD provided by the application on
the MQPUT or MQPUT1 call.

It is valid for a group to consist of only one logical
message. If this is the case,
MQMF_LAST_MSG_IN_GROUP is set, but the
MsgSeqNumber field has the value one.

MQMF_SEGMENT
Message is a segment of a logical message. When
MQMF_SEGMENT is specified without
MQMF_LAST_SEGMENT, the length of the application
message data in the segment (excluding the lengths of any
MQ header structures that might be present) must be at
least one. If the length is zero, the MQPUT or MQPUT1
call fails with reason code
MQRC_SEGMENT_LENGTH_ZERO.

MQMF_LAST_SEGMENT
Message is the last segment of a logical message. If this
flag is set, the queue manager turns on MQMF_SEGMENT
in the copy of MQMD that is sent with the message, but
does not alter the settings of these flags in the MQMD
provided by the application on the MQPUT or MQPUT1
call.

A logical message can consist of only one segment. If this
is the case, MQMF_LAST_SEGMENT is set, but the Offset
field has the value zero.

When MQMF_LAST_SEGMENT is specified, the length of
the application message data in the segment (excluding the
lengths of any header structures that might be present) can
be zero.

The application must ensure that these flags are set correctly when
putting messages. If MQPMO_LOGICAL_ORDER is specified, or
was specified on the preceding MQPUT call for the queue handle,
the settings of the flags must be consistent with the group and
segment information retained by the queue manager for the queue
handle. The following conditions apply to successive MQPUT calls
for the queue handle when MQPMO_LOGICAL_ORDER is
specified:
v If there is no current group or logical message, all these flags

(and combinations of them) are valid.
v Once MQMF_MSG_IN_GROUP has been specified, it must

remain on until MQMF_LAST_MSG_IN_GROUP is specified.
The call fails with reason code MQRC_INCOMPLETE_GROUP if
this condition is not satisfied.

MQMD - Message descriptor

790 WebSphere MQ for z/VSE System Management Guide

v Once MQMF_SEGMENT has been specified, it must remain on
until MQMF_LAST_SEGMENT is specified. The call fails with
reason code MQRC_INCOMPLETE_MSG if this condition is not
satisfied.

v Once MQMF_SEGMENT has been specified without
MQMF_MSG_IN_GROUP, MQMF_MSG_IN_GROUP must
remain off until after MQMF_LAST_SEGMENT has been
specified. The call fails with reason code
MQRC_INCOMPLETE_MSG if this condition is not satisfied.

These flags are input flags on the MQPUT and MQPUT1 calls, and
output flags on the MQGET call. On the latter call, the queue
manager also echoes the values of the flags to the GroupStatus and
SegmentStatus fields in MQGMO.

Default flags
The following can be specified to indicate that the message has
default attributes:

MQMF_NONE
No message flags (default message attributes). This inhibits
segmentation, and indicates that the message is not in a
group and is not a segment of a logical message.
MQMF_NONE is defined to aid program documentation. It
is not intended that this flag be used with any other, but as
its value is zero, such use cannot be detected.

The initial value of this field is MQMF_NONE. This field is ignored if
Version is less than MQMD_VERSION_2.

MsgId (MQBYTE24)
This is a byte string that is used to distinguish one message from another.
Generally, no two messages should have the same message identifier,
although this is not disallowed by the queue manager. The message
identifier is a permanent property of the message, and persists across
restarts of the queue manager. Because the message identifier is a byte
string and not a character string, the message identifier is not converted
between character sets when the message flows from one queue manager
to another.

For the MQPUT and MQPUT1 calls, if MQMI_NONE or
MQPMO_NEW_MSG_ID is specified by the application, the queue
manager generates a unique message identifier when the message is put,
and places it in the message descriptor sent with the message. The queue
manager also returns this message identifier in the message descriptor
belonging to the sending application. The application can use this value to
record information about particular messages, and to respond to queries
from other parts of the application.

The sending application can also specify a value for the message identifier
other than MQMI_NONE; this stops the queue manager generating a
unique message identifier. An application that is forwarding a message can
use this to propagate the message identifier of the original message.

The queue manager does not use this field except to:
v Generate a unique value if requested, as described above.
v Deliver the value to the application that issues the get request for the

message.

MQMD - Message descriptor

Appendix B. Application Programming Reference 791

v Copy the value to the CorrelId field of any report message that it
generates about this message (depending on the Report options).

When the queue manager or a message channel agent generates a report
message, it sets the MsgId field in the way specified by the Report field of
the original message, either MQRO_NEW_MSG_ID or
MQRO_PASS_MSG_ID. Applications that generate report messages must
also do this.

For the MQGET call, MsgId is one of the five fields that can be used to
retrieve a particular message from the queue. Normally the MQGET call
returns the next message on the queue, but a particular message can be
obtained by specifying one or more of the five selection criteria, in any
combination; these fields are:

MsgId
CorrelId
GroupId
MsgSeqNumber
Offset

The application sets one or more of these field to the values required, and
then sets the corresponding MQMO_* match options in the MatchOptions
field in MQGMO to use those fields as selection criteria. Only messages
that have the specified values in those fields are candidates for retrieval.
The default for the MatchOptions field (if not altered by the application) is
to match both the message identifier and the correlation identifier.

Normally, the message returned is the first message on the queue that
satisfies the selection criteria. But if MQGMO_BROWSE_NEXT is specified,
the message returned is the next message that satisfies the selection
criteria; the scan for this message starts with the message following the
current cursor position.

Note: The queue is scanned sequentially for a message that satisfies the
selection criteria, so retrieval times are slower than if no selection criteria
are specified, especially if many messages have to be scanned before a
suitable one is found.

Specifying MQMI_NONE as the message identifier has the same effect as
not specifying MQMO_MATCH_MSG_ID, that is, any message identifier
matches.

This field is ignored if the MQGMO_MSG_UNDER_CURSOR option is
specified in the GetMsgOpts parameter on the MQGET call.

On return from an MQGET call, the MsgId field is set to the message
identifier of the message returned (if any).

The following special value can be used:

MQMI_NONE
No message identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQMI_NONE_ARRAY is also defined; this has the same value as
MQMI_NONE, but is an array of characters instead of a string.

MQMD - Message descriptor

792 WebSphere MQ for z/VSE System Management Guide

This is an input/output field for the MQGET, MQPUT, and
MQPUT1 calls. The length of this field is given by
MQ_MSG_ID_LENGTH. The initial value of this field is
MQMI_NONE.

MsgSeqNumber (MQLONG)
This is the sequence number of a logical message within a group.Sequence
numbers start at 1, and increase by 1 for each new logical message in the
group, up to a maximum of 999 999 999. A physical message that is not in
a group has a sequence number of 1.

The application does not have to set this field on the MQPUT or MQGET
call if:
v On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
v On the MQGET call, MQMO_MATCH_MSG_SEQ_NUMBER is not

specified.

These are the recommended ways of using these calls for messages that are
not report messages. However, if the application requires more control, or
the call is MQPUT1, the application must ensure that MsgSeqNumber is
set to an appropriate value.

On output from the MQPUT and MQPUT1 calls, the queue manager sets
this field to the value that was sent with the message.

On output from the MQGET call, the queue manager sets this field to the
value for the message retrieved. The initial value of this field is one. This
field is ignored if Version is less than MQMD_VERSION_2.

MsgType (MQLONG)
This indicates the type of the message. Message types are grouped as
follows:

MQMT_SYSTEM_FIRST
Lowest value for system-defined message types.

MQMT_SYSTEM_LAST
Highest value for system-defined message types.

The following values are currently defined within the system range:

MQMT_DATAGRAM
The message is one that does not require a reply.

MQMT_REQUEST
The message is one that requires a reply.

Specify the name of the queue to which to send the reply in the
ReplyToQ field. The Report field indicates how to set the MsgId
and CorrelId of the reply.

MQMT_REPLY
The message is the reply to an earlier request message
(MQMT_REQUEST). The message must be sent to the queue
indicated by the ReplyToQ field of the request message. Use the
Report field of the request to control how to set the MsgId and
CorrelId of the reply.

Note: The queue manager does not enforce the request-reply
relationship; this is an application responsibility.

MQMD - Message descriptor

Appendix B. Application Programming Reference 793

MQMT_REPORT
The message is reporting on some expected or unexpected
occurrence, usually related to some other message (for example, a
request message was received that contained data that was not
valid). Send the message to the queue indicated by the ReplyToQ
field of the message descriptor of the original message. Set the
Feedback field s to indicate the nature of the report. Use the Report
field of the original message to control how to set the MsgId and
CorrelId of the report message.

Report messages generated by the queue manager or message
channel agent are always sent to the ReplyToQ queue, with the
Feedback and CorrelId fields set as described above.

Application-defined values can also be used. They must be within the
following range:

MQMT_APPL_FIRST
Lowest value for application-defined message types.

MQMT_APPL_LAST
Highest value for application-defined message types.

For the MQPUT and MQPUT1 calls, the MsgType value must be within
either the system-defined range or the application- defined range; if it is
not, the call fails with reason code MQRC_MSG_TYPE_ERROR.

This is an output field for the MQGET call, and an input field for MQPUT
and MQPUT1 calls. The initial value of this field is MQMT_DATAGRAM.

Offset (MQLONG)
This is the offset in bytes of the data in the physical message from the start
of the logical message of which the data forms part. This data is called a
segment. The offset is in the range 0 through 999 999 999. A physical
message that is not a segment of a logical message has an offset of zero.

The application does not need to set this field on the MQPUT or MQGET
call if:
v On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
v On the MQGET call, MQMO_MATCH_OFFSET is not specified.

These are the recommended ways of using these calls for messages that are
not report messages. However, if the application does not comply with
these conditions, or the call is MQPUT1, the application must ensure that
Offset is set to an appropriate value.

On output from the MQPUT and MQPUT1 calls, the queue manager sets
this field to the value that was sent with the message. For a report message
reporting on a segment of a logical message, the OriginalLength field
(provided it is not MQOL_UNDEFINED) is used to update the offset in the
segment information retained by the queue manager.

On output from the MQGET call, the queue manager sets this field to the
value for the message retrieved. The initial value of this field is zero. This
field is ignored if Version is less than MQMD_VERSION_2.

OriginalLength (MQLONG)
This field is relevant only for report messages that are segments. It
specifies the length of the message segment to which the report message
relates; it does not specify the length of the logical message of which the
segment forms part, or the length of the data in the report message.

MQMD - Message descriptor

794 WebSphere MQ for z/VSE System Management Guide

Note: When generating a report message for a message that is a segment,
the queue manager and message channel agent copy into the MQMD for
the report message the GroupId, MsgSeqNumber, Offset, and MsgFlags,
fields from the original message. As a result, the report message is also a
segment. Applications that generate report messages must do the same,
and set the OriginalLength field correctly.

The following special value is defined:

MQOL_UNDEFINED
Original length of message not defined.

OriginalLength is an input field on the MQPUT and MQPUT1 calls, but
the value that the application provides is accepted only in particular
circumstances:
v If the message being put is a segment and is also a report message, the

queue manager accepts the value specified. The value must be:
– Greater than zero if the segment is not the last segment.
– Not less than zero if the segment is the last segment.
– Not less than the length of data present in the message.

If these conditions are not satisfied, the call fails with reason code
MQRC_ORIGINAL_LENGTH_ERROR.

v If the message being put is a segment but not a report message, the
queue manager ignores the field and uses the length of the application
message data instead.

v In all other cases, the queue manager ignores the field and uses the
value MQOL_UNDEFINED instead.

This is an output field on the MQGET call. The initial value of this field is
MQOL_UNDEFINED. This field is ignored if Version is less than
MQMD_VERSION_2.

Persistence (MQLONG)
This indicates whether the message survives system failures and restarts of
the queue manager. For the MQPUT and MQPUT1 calls, the value must be
one of the following:

MQPER_PERSISTENT
The message survives system failures and restarts of the queue
manager. Once the message has been put, and the unit of work in
which it was put has been committed (if the message is put as part
of a unit of work), the message is preserved on auxiliary storage. It
remains there until the message is removed from the queue, and
the unit of work in which it was got has been committed (if the
message is retrieved as part of a unit of work).

When a persistent message is sent to a remote queue, a store-and-
forward mechanism holds the message at each queue manager
along the route to the destination, until the message is known to
have arrived at the next queue manager.

Persistent messages cannot be placed on temporary dynamic
queues.

Persistent messages can be placed on permanent dynamic queues,
and predefined queues.

MQPER_NOT_PERSISTENT
The message does not usually survive system failures or queue

MQMD - Message descriptor

Appendix B. Application Programming Reference 795

manager restarts. This applies even if an intact copy of the message
is found on auxiliary storage when the queue manager restarts.

For WebSphere MQ for z/VSE, non-persistent messages can only
be placed on temporary dynamic queues.

MQPER_PERSISTENCE_AS_Q_DEF
For WebSphere MQ for z/VSE, this value is converted by the
queue manager to MQPER_PERSISTENT for predefined and
permanent dynamic queues, and to MQPER_NOT_PERSISTENT
for temporary dynamic queues.

When replying to a message, applications must use the persistence of the
request message for the reply message.

For an MQGET call, the value returned is either MQPER_PERSISTENT or
MQPER_NO_PERSISTENT.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQPER_PERSISTENCE_AS_Q_DEF.

Priority (MQLONG)
The priority of the message.

This field is not supported by WebSphere MQ for z/VSE, but if it is set,
and the message's destination is to another system, WebSphere MQ for
z/VSE will preserve the value.

PutApplName (MQCHAR28)
This is the name of application that put the message, and is part of the
origin context of the message. The format of the PutApplName depends on
the value of PutApplType.

When the queue manager sets this field, it sets the field to a value that is
determined by the environment. WebSphere MQ for z/VSE sets this field
to the CICS application id concatenated with the CICS transaction name.

PutApplType (MQLONG)
This is the type of application that put the message, and is part of the
origin context of the message.

PutApplType can have one of a number of standard types. You can also
define your own types, but only with values in the range
MQAT_USER_FIRST through MQAT_USER_LAST.

WebSphere MQ for z/VSE uses the standard type:

MQAT_CICS_VSE
CICS for z/VSE transaction.

PutDate (MQCHAR8)
This is the date when the message was put, and is part of the origin
context of the message.

The format used for the date when this field is generated by the queue
manager is YYYYMMDD, where the characters represent:

YYYY Year (four numeric digits)

MM Month of year (01 through 12)

DD Day of month (01 through 31)

MQMD - Message descriptor

796 WebSphere MQ for z/VSE System Management Guide

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

If the message was put as part of a unit of work, the date is that when the
message was put, and not the date when the unit of work was committed.

The contents of the field are not checked by the queue manager, except
that any information following a null character within the field is
discarded. The queue manager converts the null character and any
following characters to blanks.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutDate that was transmitted with the message.

This is an output field for the MQGET call. The length of this field is given
by MQ_PUT_DATE_LENGTH. The initial value of this field is the null
string in C, and 8 blank characters in other programming languages.

PutTime (MQCHAR8)
This is the time when the message was put, and is part of the origin
context of the message. The format used for the time when this field is
generated by the queue manager is HHMMSSTH, where the characters
represent (in order):

HH Hours (00 through 23)

MM Minutes (00 through 59)

SS Seconds (00 through 59; see note below)

T Tenths of a second (0 through 9)

H Hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard,
it is possible on rare occasions for 60 or 61 to be returned for the seconds
in PutTime. This happens when leap seconds are inserted into the global
time standard.
Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

If the message was put as part of a unit of work, the time is that when the
message was put, and not the time when the unit of work was committed.

The queue manager does not check the contents of the field, except that
any information following a null character within the field is discarded.
The queue manager converts the null character and any following
characters to blanks.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutTime that was transmitted with the message.

This is an output field for the MQGET call. The length of this field is given
by MQ_PUT_TIME_LENGTH. The initial value of this field is the null
string in C, and 8 blank characters in other programming languages.

ReplyToQ (MQCHAR48)
This is the name of the message queue to which the application that issued
the get request for the message sends MQMT_REPLY and MQMT_REPORT
messages. The name is the local name of a queue that is defined on the
queue manager identified by ReplyToQMgr. This queue must not be a
model queue, although the sending queue manager does not verify this
when the message is put.

MQMD - Message descriptor

Appendix B. Application Programming Reference 797

For the MQPUT and MQPUT1 calls, this field must not be blank if the
MsgType field has the value MQMT_REQUEST, or if any report messages
are requested by the Report field. However, the value specified (or
substituted; see below) is passed on to the application that issues the get
request for the message, whatever the message type.

If the ReplyToQMgr field is blank, the local queue manager looks up the
ReplyToQ name in its own queue definitions. If a local definition of a
remote queue exists with this name, the ReplyToQ value in the transmitted
message is replaced by the value of the RemoteQName attribute from the
definition of the remote queue, and this value is returned in the message
descriptor when the receiving application issues an MQGET call for the
message. If a local definition of a remote queue does not exist, ReplyToQ is
unchanged.

If the name is specified, it can contain trailing blanks; the first null
character and characters following it are treated as blanks. Otherwise no
check is made that the name satisfies the naming rules for queues; this is
also true for the name transmitted, if the ReplyToQ is replaced in the
transmitted message. The only check made is that a name has been
specified, if the circumstances require it.

If a reply-to queue is not required, set the ReplyToQ field to blanks, or (in
the C programming language) to the null string, or to one or more blanks
followed by a null character; do not leave the field uninitialized.

For the MQGET call, the queue manager always returns the name padded
with blanks to the length of the field.

If a message that requires a report message cannot be delivered, and the
report message also cannot be delivered to the queue specified, both the
original message and the report message go to the dead-letter
(undelivered-message) queue.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The length of this field is given by
MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

ReplyToQMgr (MQCHAR48)
This is the name of the queue manager to which to send the reply message
or report message. ReplyToQ is the local name of a queue that is defined
on this queue manager.

If the ReplyToQMgr field is blank, the local queue manager looks up the
ReplyToQ name in its queue definitions. If a local definition of a remote
queue exists with this name, the ReplyToQMgr value in the transmitted
message is replaced by the value of the RemoteQMgrName attribute from
the definition of the remote queue, and this value is returned in the
message descriptor when the receiving application issues an MQGET call
for the message. If a local definition of a remote queue does not exist, the
ReplyToQMgr that is transmitted with the message is the name of the local
queue manager.

If the name is specified, it can contain trailing blanks; the first null
character and characters following it are treated as blanks. Otherwise no
check is made that the name satisfies the naming rules for queue
managers, or that this name is known to the sending queue manager; this
is also true for the name transmitted, if the ReplyToQMgr is replaced in
the transmitted message.

MQMD - Message descriptor

798 WebSphere MQ for z/VSE System Management Guide

If a reply-to queue is not required, set the ReplyToQMgr field to blanks, or
(in the C programming language) to the null string, or to one or more
blanks followed by a null character; do not leave the field uninitialized.

For the MQGET call, the queue manager always returns the name padded
with blanks to the length of the field.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The length of this field is given by
MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages.

Report (MQLONG)
A report message is a message about another message, used to inform an
application about expected or unexpected events that relate to the original
message. The Report field enables the application sending the original
message to specify which report messages are required, whether the
application message data is to be included in them, and also (for both
reports and replies) how the message and correlation identifiers in the
report or reply message are to be set. Any or all (or none) of the following
types of report message can be requested:

Exception.
Expiration.
Confirm on arrival (COA).
Confirm on delivery (COD).

If more than one type of report message is required, or other report
options are needed, the values can be:
v Added together (do not add the same constant more than once), or
v Combined using the bitwise OR operation (if the programming language

supports bit operations).

The application that receives the report message can determine the reason
that the report was generated by examining the Feedback field in the
MQMD; see the Feedback field for more details.

Exception options
Specify one of the options listed below to request an exception
report message.

MQRO_EXCEPTION
A message channel agent generates this type of report
when a message is sent to another queue manager and the
message cannot be delivered to the specified destination
queue. For example, the destination queue or an
intermediate transmission queue might be full, or the
message might be too big for the queue.

An exception report is not generated if the application that
put the original message can be notified synchronously of
the problem by means of the reason code returned by the
MQPUT or MQPUT1 call.

Applications can also send exception reports, to indicate
that a message cannot be processed (for example, because
it is a debit transaction that would cause the account to
exceed its credit limit).

Message data from the original message is not included
with the report message. Do not specify more than one of

MQMD - Message descriptor

Appendix B. Application Programming Reference 799

MQRO_EXCEPTION, MQRO_EXCEPTION_WITH_DATA,
and MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_DATA
This is the same as MQRO_EXCEPTION, except that the
first 100 bytes of the application message data from the
original message are included in the report message. If the
original message contains one or more MQ header
structures, they are included in the report message, in
addition to the 100 bytes of application data.

Do not specify more than one of MQRO_EXCEPTION,
MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_FULL_DATA
Exception reports with full data required.

This is the same as MQRO_EXCEPTION, except that all the
application message data from the original message is
included in the report message.

Do not specify more than one of MQRO_EXCEPTION,
MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

Expiration options: Specify one of the options listed below
to request an expiration report message.

MQRO_EXPIRATION
This type of report is generated by the queue manager if
the message is discarded before delivery to an application
because its expiry time has passed (see the Expiry field). If
this option is not set, no report message is generated if a
message is discarded for this reason (even if you specify
one of the MQRO_EXCEPTION_* options).

Message data from the original message is not included
with the report message.

Do not specify more than one of MQRO_EXPIRATION,
MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_DATA
This is the same as MQRO_EXPIRATION, except that the
first 100 bytes of the application message data from the
original message are included in the report message. If the
original message contains one or more MQ header
structures, they are included in the report message, in
addition to the 100 bytes of application data.

Do not specify more than one of MQRO_EXPIRATION,
MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_FULL_DATA
This is the same as MQRO_EXPIRATION, except that all
the application message data from the original message is
included in the report message.

MQMD - Message descriptor

800 WebSphere MQ for z/VSE System Management Guide

Do not specify more than one of MQRO_EXPIRATION,
MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

Confirm-on-arrival options
Specify one of the options listed below to request a
confirm-on-arrival report message.

MQRO_COA
This type of report is generated by the queue manager that
owns the destination queue when the message is placed on
the destination queue. Message data from the original
message is not included with the report message.

If the message is put as part of a unit of work, and the
destination queue is a local queue, the COA report
message generated by the queue manager can be retrieved
only if the unit of work is committed.

A COA report is not generated if the Format field in the
message descriptor is MQFMT_XMIT_Q_HEADER or
MQFMT_DEAD_LETTER_HEADER. This prevents a COA
report being generated if the message is put on a
transmission queue, or is undeliverable and put on a
dead-letter queue.

Do not specify more than one of MQRO_COA,
MQRO_COA_WITH_DATA, and
MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_DATA
This is the same as MQRO_COA, except that the first 100
bytes of the application message data from the original
message are included in the report message. If the original
message contains one or more MQ header structures, they
are included in the report message, in addition to the 100
bytes of application data.

Do not specify more than one of MQRO_COA,
MQRO_COA_WITH_DATA, and
MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_FULL_DATA
This is the same as MQRO_COA, except that all the
application message data from the original message is
included in the report message.

Do not specify more than one of MQRO_COA,
MQRO_COA_WITH_DATA, and
MQRO_COA_WITH_FULL_DATA.

Confirm-on-delivery options
Specify one of the options listed below to request a
confirm-on-delivery report message.

MQRO_COD
This type of report is generated by the queue manager
when an application retrieves the message from the
destination queue in a way that deletes the message from
the queue. Message data from the original message is not
included with the report message.

MQMD - Message descriptor

Appendix B. Application Programming Reference 801

If the message is retrieved as part of a unit of work, the
report message is generated within the same unit of work,
so that the report is not available until the unit of work is
committed. If the unit of work is backed out, the report is
not sent.

A COD report is not generated if the Format field in the
message descriptor is MQFMT_DEAD_LETTER_HEADER.
This prevents a COD report being generated if the message
is undeliverable and put on a dead-letter queue.

Do not specify more than one of MQRO_COD,
MQRO_COD_WITH_DATA, and
MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_DATA
This is the same as MQRO_COD, except that the first 100
bytes of the application message data from the original
message are included in the report message. If the original
message contains one or more MQ header structures, they
are included in the report message, in addition to the 100
bytes of application data.

If MQGMO_ACCEPT_TRUNCATED_MSG is specified on
the MQGET call for the original message, and the message
retrieved is truncated, the amount of application message
data placed in the report message depends on the
environment:
v On z/OS, it is the minimum of:

– The length of the original message.
– The length of the buffer used to retrieve the message.
– 100 bytes.

v In other environments, it is the minimum of:
– The length of the original message.
– 100 bytes.

Do not specify more than one of MQRO_COD,
MQRO_COD_WITH_DATA, and
MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_FULL_DATA
This is the same as MQRO_COD, except that all the
application message data from the original message is
included in the report message.

Do not specify more than one of MQRO_COD,
MQRO_COD_WITH_DATA, and
MQRO_COD_WITH_FULL_DATA.

Default option
Specify the following if no report options are required:

MQRO_NONE
Use this value to indicate that no other options have been
specified. MQRO_NONE is defined to aid program
documentation. It is not intended that this option be used
with any other, but as its value is zero, such use cannot be
detected.

MQMD - Message descriptor

802 WebSphere MQ for z/VSE System Management Guide

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQRO_NONE.

StrucId (MQCHAR4)
This is the structure identifier, and must be: MQMD_STRUC_ID Identifier
for message descriptor structure.

For the C programming language, the constant
MQMD_STRUC_ID_ARRAY is also defined; this has the same value as
MQMD_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is
MQMD_STRUC_ID.

UserIdentifier (MQCHAR12)
This is part of the identity context of the message.

UserIdentifier specifies the user identifier of the application that originated
the message. The queue manager treats this information as character data,
but does not define the format of it.

WebSphere MQ for z/VSE populates this field with the user id associated
with the CICS transaction.

Version (MQLONG)
This is the structure version number, and must be one of the following:

MQMD_VERSION_1
Version-1 message descriptor structure. This version is supported
in all environments.

MQMD_VERSION_2
Version-2 message descriptor structure. This version is supported
in all WebSphere MQ V6 environments, plus WebSphere MQ
clients connected to these systems, and WebSphere MQ for z/VSE.

Fields that exist only in the more-recent version of the structure are
identified as such in the descriptions of the fields.

C declaration

MQMD - Message descriptor

Appendix B. Application Programming Reference 803

COBOL declaration

typedef struct tagMQMD MQMD;
struct tagMQMD
{
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Report; /* Options for report messages */
MQLONG MsgType; /* Message type */
MQLONG Expiry; /* Message lifetime */
MQLONG Feedback; /* Feedback or reason code */
MQLONG Encoding; /* Numeric encoding of message data */
MQLONG CodedCharSetId; /* Character set identifier of message data */
MQCHAR8 Format; /* Format name of message data */
MQLONG Priority; /* Message priority */
MQLONG Persistence; /* Message persistence */
MQBYTE24 MsgId; /* Message identifier */
MQBYTE24 CorrelId; /* Correlation identifier */
MQLONG BackoutCount; /* Backout counter */
MQCHAR48 ReplyToQ; /* Name of reply queue */
MQCHAR48 ReplyToQMgr; /* Name of reply queue manager */
MQCHAR12 UserIdentifier; /* User identifier */
MQBYTE32 AccountingToken; /* Accounting token */
MQCHAR32 ApplIdentityData; /* Application data relating to identity */
MQLONG PutApplType; /* Type of application that put the message */
MQCHAR28 PutApplName; /* Name of application that put the message */
MQCHAR8 PutDate; /* Date when message was put */
MQCHAR8 PutTime; /* Time when message was put */
MQCHAR4 ApplOriginData; /* Application data relating to origin */
MQBYTE24 GroupId; /* Group identifier */
MQLONG MsgSeqNumber; /* Sequence number of logical message within group */
MQLONG Offset; /* Offset of data in physical msg from start of logical msg */
MQLONG MsgFlags; /* Message flags */
MQLONG OriginalLength; /* Length of original message */

};

MQMD - Message descriptor

804 WebSphere MQ for z/VSE System Management Guide

PL/I declaration

** MQMD structure
10 MQMD.

** Structure identifier
15 MQMD-STRUCID PIC X(4).

** Structure version number
15 MQMD-VERSION PIC S9(9) BINARY.

** Options for report messages
15 MQMD-REPORT PIC S9(9) BINARY.

** Message type
15 MQMD-MSGTYPE PIC S9(9) BINARY.

** Message lifetime
15 MQMD-EXPIRY PIC S9(9) BINARY.

** Feedback or reason code
15 MQMD-FEEDBACK PIC S9(9) BINARY.

** Numeric encoding of message data
15 MQMD-ENCODING PIC S9(9) BINARY.

** Character set identifier of message data
15 MQMD-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of message data
15 MQMD-FORMAT PIC X(8).

** Message priority
15 MQMD-PRIORITY PIC S9(9) BINARY.

** Message persistence
15 MQMD-PERSISTENCE PIC S9(9) BINARY.

** Message identifier
15 MQMD-MSGID PIC X(24).

** Correlation identifier
15 MQMD-CORRELID PIC X(24).

** Backout counter
15 MQMD-BACKOUTCOUNT PIC S9(9) BINARY.

** Name of reply queue
15 MQMD-REPLYTOQ PIC X(48).

** Name of reply queue manager
15 MQMD-REPLYTOQMGR PIC X(48).

** User identifier
15 MQMD-USERIDENTIFIER PIC X(12).

** Accounting token
15 MQMD-ACCOUNTINGTOKEN PIC X(32).

** Application data relating to identity
15 MQMD-APPLIDENTITYDATA PIC X(32).

** Type of application that put the message
15 MQMD-PUTAPPLTYPE PIC S9(9) BINARY.

** Name of application that put the message
15 MQMD-PUTAPPLNAME PIC X(28).

** Date when message was put
15 MQMD-PUTDATE PIC X(8).

** Time when message was put
15 MQMD-PUTTIME PIC X(8).

** Application data relating to origin
15 MQMD-APPLORIGINDATA PIC X(4).

** Group identifier
15 MQMD-GROUPID PIC X(24).

** Sequence number of logical message within group
15 MQMD-MSGSEQNUMBER PIC S9(9) BINARY.

** Offset of data in physical message from start of logical message
15 MQMD-OFFSET PIC S9(9) BINARY.

** Message flags
15 MQMD-MSGFLAGS PIC S9(9) BINARY.

** Length of original message
15 MQMD-ORIGINALLENGTH PIC S9(9) BINARY.

MQMD - Message descriptor

Appendix B. Application Programming Reference 805

MQMDE – Message descriptor extension

The MQMDE structure describes the data that sometimes occurs preceding the
application message data. The structure contains those MQMD fields that exist in
the version-2 MQMD, but not in the version-1 MQMD.

Applications that use a version-2 MQMD will not encounter an MQMDE structure.
However, specialized applications, and applications that continue to use a
version-1 MQMD, might encounter an MQMDE in some situations.

The MQMDE structure can occur in the following circumstances:
v Specified on the MQPUT and MQPUT1 calls.
v Returned by the MQGET call.
v In messages on transmission queues.

MQMDE specified on MQPUT and MQPUT1 calls

On the MQPUT and MQPUT1 calls, if the application provides a version-1 MQMD,
the application can optionally prefix the message data with an MQMDE, setting
the Format field in MQMD to MQFMT_MD_EXTENSION to indicate that an
MQMDE is present. If the application does not provide an MQMDE, the queue
manager assumes default values for the fields in the MQMDE.

If the application provides a version-2 MQMD and prefixes the application
message data with an MQMDE, the structure is treated as message data.

There is one special case. If the application uses a version-2 MQMD to put a
message that is a segment (that is, the MQMF_SEGMENT or
MQMF_LAST_SEGMENT flag is set), and the format name in the MQMD is
MQFMT_DEAD_LETTER_HEADER, the queue manager generates an MQMDE
structure and inserts it between the MQDLH structure and the data that follows it.
In the MQMD that the queue manager retains with the message, the version-2
fields are set to their default values.

dcl
1 MQMD based,

3 StrucId char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number */
3 Report fixed bin(31), /* Options for report messages */
3 MsgType fixed bin(31), /* Message type */
3 Expiry fixed bin(31), /* Message lifetime */
3 Feedback fixed bin(31), /* Feedback or reason code */
3 Encoding fixed bin(31), /* Numeric encoding of message data */
3 CodedCharSetId fixed bin(31), /* Character set identifier of message data */
3 Format char(8), /* Format name of message data */
3 Priority fixed bin(31), /* Message priority */
3 Persistence fixed bin(31), /* Message persistence */
3 MsgId char(24), /* Message identifier */
3 CorrelId char(24), /* Correlation identifier */
3 BackoutCount fixed bin(31), /* Backout counter */
3 ReplyToQ char(48), /* Name of reply queue */
3 ReplyToQMgr char(48), /* Name of reply queue manager */
3 UserIdentifier char(12), /* User identifier */
3 AccountingToken char(32), /* Accounting token */
3 ApplIdentityData char(32), /* Application data relating to identity */
3 PutApplType fixed bin(31), /* Type of application that put the message */
3 PutApplName char(28), /* Name of application that put the message */
3 PutDate char(8), /* Date when message was put */
3 PutTime char(8), /* Time when message was put */
3 ApplOriginData char(4), /* Application data relating to origin */
3 GroupId char(24), /* Group identifier */
3 MsgSeqNumber fixed bin(31), /* Sequence number of logical message within group */
3 Offset fixed bin(31), /* Offset of data in physical msg from start of logical msg */
3 MsgFlags fixed bin(31), /* Message flags */
3 OriginalLength fixed bin(31); /* Length of original message */

MQMDE - Message descriptor extension

806 WebSphere MQ for z/VSE System Management Guide

Several of the fields that exist in the version-2 MQMD but not the version-1
MQMD are input/output fields on MQPUT and MQPUT1. However, the queue
manager does not return any values in the equivalent fields in the MQMDE on
output from the MQPUT and MQPUT1 calls; if the application requires those
output values, it must use a version-2 MQMD.

MQMDE returned by MQGET call

On the MQGET call, if the application provides a version-1 MQMD, the queue
manager prefixes the message returned with an MQMDE, but only if one or more
of the fields in the MQMDE has a nondefault value. The queue manager sets the
Format field in MQMD to the value MQFMT_MD_EXTENSION to indicate that an
MQMDE is present.

If the application provides an MQMDE at the start of the Buffer parameter, the
MQMDE is ignored. On return from the MQGET call, it is replaced by the
MQMDE for the message (if one is needed), or overwritten by the application
message data (if the MQMDE is not needed).

If the MQGET call returns an MQMDE, the data in the MQMDE is usually in the
queue manager's character set and encoding.

MQMDE in messages on transmission queues

Messages on transmission queues are prefixed with the MQXQH structure, which
contains within it a version-1 MQMD. An MQMDE might also be present,
positioned between the MQXQH structure and application message data, but it is
usually present only if one or more of the fields in the MQMDE has a nondefault
value.

Other MQ header structures can also occur between the MQXQH structure and the
application message data. For example, when the dead-letter header MQDLH is
present, and the message is not a segment, the order is:
v MQXQH (containing a version-1 MQMD)
v MQMDE
v MQDLH
v Application message data

Fields

Here is a summary of the fields.

Table 49. Fields in MQMDE

Field Description

StrucId Structure identifier

Version Structure version number

StrucLength Length of MQMDE structure

Encoding Numeric encoding of data that
follows MQMDE

CodedCharSetId Character set identifier of data that
follows MQMDE

Format Format name of data that follows
MQMDE

Flags General flags

MQMDE - Message descriptor extension

Appendix B. Application Programming Reference 807

Table 49. Fields in MQMDE (continued)

Field Description

GroupId Group identifier

MsgSeqNumber Sequence number of logical
message within group

Offset Offset of data in physical message
from start of logical message

MsgFlags Message flags

OriginalLength Length of original message

Here is a description of the fields.

CodedCharSetId (MQLONG)
This specifies the character set identifier of the data that follows the
MQMDE structure; it does not apply to character data in the MQMDE
structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data. The queue manager does not check that this
field is valid. The following special value can be used:

MQCCSI_INHERIT
Character data in the data following this structure is in the same
character set as this structure.

The queue manager changes this value in the structure sent in the
message to the actual character-set identifier of the structure.
Provided no error occurs, the value MQCCSI_INHERIT is not
returned by the MQGET call.

The initial value of this field is MQCCSI_UNDEFINED.

Encoding (MQLONG)
This specifies the numeric encoding of the data that follows the MQMDE
structure; it does not apply to numeric data in the MQMDE structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data. The queue manager does not check that the
field is valid. See the Encoding field described in “MQMD – Message
descriptor” on page 774 for more information about data encodings.

The initial value of this field is MQENC_NATIVE.

Flags (MQLONG)
The following flag can be specified:

MQMDEF_NONE
No flags.

The initial value of this field is MQMDEF_NONE.

Format (MQCHAR8)
This specifies the format name of the data that follows the MQMDE
structure.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data. The queue manager does not check that this
field is valid. See the Format field described in “MQMD – Message
descriptor” on page 774 for more information about format names.

MQMDE - Message descriptor extension

808 WebSphere MQ for z/VSE System Management Guide

The initial value of this field is MQFMT_NONE.

GroupId (MQBYTE24)
See the GroupId field described in “MQMD – Message descriptor” on page
774.

The initial value of this field is MQGI_NONE.

MsgFlags (MQLONG)
See the MsgFlags field described in “MQMD – Message descriptor” on
page 774.

The initial value of this field is MQMF_NONE.

MsgSeqNumber (MQLONG)
See the MsgSeqNumber field described in “MQMD – Message descriptor”
on page 774.

The initial value of this field is 1.

Offset (MQLONG)
See the Offset field described in “MQMD – Message descriptor” on page
774.

The initial value of this field is 0.

OriginalLength (MQLONG)
See the OriginalLength field described in “MQMD – Message descriptor”
on page 774.

The initial value of this field is MQOL_UNDEFINED.

StrucId (MQCHAR4)
The value must be:

MQMDE_STRUC_ID
Identifier for message descriptor extension structure.

For the C programming language, the constant
MQMDE_STRUC_ID_ARRAY is also defined; this has the same value as
MQMDE_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQMDE_STRUC_ID.

StrucLength (MQLONG)
This is the length of the MQMDE structure; the following value is defined:

MQMDE_LENGTH_2
Length of version-2 message descriptor extension structure.

The initial value of this field is MQMDE_LENGTH_2.

Version (MQLONG)
This is the structure version number; the value must be:

MQMDE_VERSION_2
Version-2 message descriptor extension structure.

The following constant specifies the version number of the current version:

MQMDE_CURRENT_VERSION
Current version of message descriptor extension structure.

The initial value of this field is MQMDE_VERSION_2.

MQMDE - Message descriptor extension

Appendix B. Application Programming Reference 809

C declaration

COBOL declaration

PL/I declaration

MQMHBO – Message handle to buffer options

The MQMHBO structure allows applications to specify options that control how
buffers are produced from message handles. The structure is an input parameter
on the MQMHBUF call.

typedef struct tagMQMDE MQMDE;
struct tagMQMDE
{
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Length of MQMDE structure */
MQLONG Encoding; /* Numeric encoding of data that follows MQMDE */
MQLONG CodedCharSetId; /* Character-set identifier of data that follows MQMDE */
MQCHAR8 Format; /* Format name of data that follows MQMDE */
MQLONG Flags; /* General flags */
MQBYTE24 GroupId; /* Group identifier */
MQLONG MsgSeqNumber; /* Sequence number of logical message within group */
MQLONG Offset; /* Offset of data in physical msg from start of logical msg */
MQLONG MsgFlags; /* Message flags */
MQLONG OriginalLength /* Length of original message */

};

** MQMDE structure
10 MQMDE.

** Structure identifier
15 MQMDE-STRUCID PIC X(4).

** Structure version number
15 MQMDE-VERSION PIC S9(9) BINARY.

** Length of MQMDE structure
15 MQMDE-STRUCLENGTH PIC S9(9) BINARY.

** Numeric encoding of data that follows MQMDE
15 MQMDE-ENCODING PIC S9(9) BINARY.

** Character-set identifier of data that follows MQMDE
15 MQMDE-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of data that follows MQMDE
15 MQMDE-FORMAT PIC X(8).

** General flags
15 MQMDE-FLAGS PIC S9(9) BINARY.

** Group identifier
15 MQMDE-GROUPID PIC X(24).

** Sequence number of logical message within group
15 MQMDE-MSGSEQNUMBER PIC S9(9) BINARY.

** Offset of data in physical message from start of logical message
15 MQMDE-OFFSET PIC S9(9) BINARY.

** Message flags
15 MQMDE-MSGFLAGS PIC S9(9) BINARY.

** Length of original message
15 MQMDE-ORIGINALLENGTH PIC S9(9) BINARY.

dcl
1 MQMDE based,
3 StrucId char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number */
3 StrucLength fixed bin(31), /* Length of MQMDE structure */
3 Encoding fixed bin(31), /* Numeric encoding of data that follows MQMDE */
3 CodedCharSetId fixed bin(31), /* Character-set identifier of data that follows MQMDE */
3 Format char(8), /* Format name of data that follows MQMDE */
3 Flags fixed bin(31), /* General flags */
3 GroupId char(24), /* Group identifier */
3 MsgSeqNumber fixed bin(31), /* Sequence number of logical message within group */
3 Offset fixed bin(31), /* Offset of data in physical msg from start of logical msg */
3 MsgFlags fixed bin(31), /* Message flags */
3 OriginalLength fixed bin(31); /* Length of original message */

MQMDE - Message descriptor extension

810 WebSphere MQ for z/VSE System Management Guide

Data in MQMHBO must be in the character set of the application and encoding of
the application (MQENC_NATIVE).

Fields

Here is a summary of the fields.

Table 50. Fields in MQMHBO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options controlling the action of
MQMHBO

Here is a description of the fields.

Options (MQLONG)
These options control the action of MQMHBUF.

You must specify the following option:

MQMHBO_PROPERTIES_IN_MQRFH2
When converting properties from a message handle into a buffer,
convert them into the MQRFH2 format.

Optionally, you can also specify the following value. If required,
values can be:
v Added together (do not add the same constant more than once),

or
v Combined using the bitwise OR operation (if the programming

language supports bit operations).

MQMHBO_DELETE_PROPERTIES
Properties that are added to the buffer are deleted from the
message handle. If the call fails no properties are deleted.

This is always an input field. The initial value of this field is
MQMHBO_PROPERTIES_IN_MQRFH2.

StrucId (MQCHAR4)
This is the structure identifier. The value must be:

MQMHBO_STRUC_ID
Identifier for buffer to message handle structure.

For the C programming language, the constant
MQMHBO_STRUC_ID_ARRAY is also defined. This has the same
value as MQMHBO_STRUC_ID, but is an array of characters
instead of a string.

This is always an input field. The initial value of this field is
MQMHBO_STRUC_ID.

Version (MQLONG)
This is the structure version number.

The value must be:

MQMHBO_VERSION_1
Version number for message handle to buffer options structure.

MQMHBO - Message handle to buffer options

Appendix B. Application Programming Reference 811

The following constant specifies the version number of the current version:

MQMHBO_CURRENT_VERSION
Current version of message handle to buffer options structure.

This is always an input field. The initial value of this field is
MQMHBO_VERSION_1.

Initial values and language declarations

Here are the initial values and language declarations for MQMHBO.

Table 51. Initial values of fields in MQMHBO

Field name Name of constant Value of constant

StrucId MQMHBO_STRUC_ID 'MHBO'

Version MQMHBO_VERSION_1 1

Options MQMHBO_NONE 0

Note:

1. The value Null string or blanks denotes the null string in C, and blank
characters in other programming languages.

2. In the C programming language, the macro variable MQMHBO_DEFAULT
contains the values listed above. Use it in the following way to provide initial
values for the fields in the structure:
MQMHBO MyMHBO = {MQMHBO_DEFAULT};

C declaration

COBOL declaration

PL/I declaration

struct tagMQMHBO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of MQMHBUF */

};

** MQBMHO structure
10 MQBMHO.

** Structure identifier
15 MQBMHO-STRUCID PIC X(4).

** Structure version number
15 MQBMHO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQBUFMH
15 MQBMHO-OPTIONS PIC S9(9) BINARY.

dcl
1 MQMHBO based,
3 StrucId char(4)
init(MQMHBO_STRUC_ID), /* Structure identifier */

3 Version fixed bin(31)
init(MQMHBO_VERSION_1), /* Structure version number */

3 Options fixed bin(31)
init(MQMHBO_PROPERTIES_IN_MQRFH2); /* Options that control the */

/* action of MQMHBUF */

MQMHBO - Message handle to buffer options

812 WebSphere MQ for z/VSE System Management Guide

MQOD – Object descriptor

The MQOD structure is used to specify an object by name. The following types of
object are valid with WebSphere MQ for z/VSE:
v Queue
v Queue manager
v Namelist

The structure is an input/output parameter on the MQOPEN and MQPUT1 calls.

Fields

Here is a summary of the fields.

Table 52. Fields in MQOD

Field Description

StrucId Structure identifier

Version Structure version number

ObjectType Object type

ObjectName Object name

ObjectQMgrName Object queue manager name

DynamicQName Dynamic queue name

AlternateUserId Alternate user identifier

RecsPresent Number of object records present

KnownDestCount Number of local queues opened
successfully

UnknownDestCount Number of remote queues opened
successfully

InvalidDestCount Number of queues that failed to
open

ObjectRecOffset Offset of first object record from
start of MQOD

ResponseRecOffset Offset of first response record from
start of MQOD

ObjectRecPtr Address of first object record

ResponseRecPtr Address of first response record

Here is a description of the fields.

AlternateUserId (MQCHAR12)
This field contains an alternate user identifier that is used to check the
authorization for the open, in place of the user identifier that the
application is currently running under.

This field is not supported by WebSphere MQ for z/VSE.

DynamicQName (MQCHAR48)
Dynamic queue name.

MQOD - Object descriptor

Appendix B. Application Programming Reference 813

This is the name of a dynamic queue that is to be created by the MQOPEN
call. This is of relevance only when ObjectName specifies the name of a
model queue; in all other cases DynamicQName is ignored.

The characters that are valid in the name are the same as those for
ObjectName (see above), except that an asterisk is also valid (see below). A
name that is completely blank (or one in which only blanks appear before
the first null character) is not valid if ObjectName is the name of a model
queue.

If the last nonblank character in the name is an asterisk (*), the queue
manager replaces the asterisk with a string of characters that guarantees
that the name generated for the queue is unique at the local queue
manager. To allow a sufficient number of characters for this, the asterisk is
valid only in positions 1 through 33. There must be no characters other
than blanks or a null character following the asterisk.

It is valid for the asterisk to appear in the first character position, in which
case the name consists solely of the characters generated by the queue
manager.

This is an input field. The length of this field is given by
MQ_Q_NAME_LENGTH. The initial value of this field is determined by
the environment. On WebSphere MQ for z/VSE, the value is 'AMQ.*'.

The value is a blank-padded string.

InvalidDestCount (MQLONG)
Number of queues that failed to open.

This is the number of queues in the distribution list that failed to open
successfully. If present, this field is also set when opening a single queue
which is not in a distribution list.

Note: If present, this field is set only if the CompCode parameter on the
MQOPEN or MQPUT1 call is MQCC_OK or MQC_WARNING; it is not set
if the CompCode parameter is MQCC_FAILED.

This is an output field. The initial value of this field is 0. This field is
ignored if Version is less than MQOD_VERSION_2.

KnownDestCount (MQLONG)
Number of local queues opened successfully.

This is the number of queues in the distribution list that resolve to local
queues and that were opened successfully. The count does not include
queues that resolve to remote queues (even though a local transmission
queue is used initially to store the message). If present, this field is also set
when opening a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is
ignored if Version is less than MQOD_VERSION_2.

ObjectName (MQCHAR48)
This is the local name of the object as defined on the queue manager
identified by ObjectQMgrName. The name can contain the following
characters:
v Uppercase alphabetic characters (A through Z)
v Lowercase alphabetic characters (a through z)
v Numeric digits (0 through 9)
v Period (.)
v Forward slash (/)

MQOD - Object descriptor

814 WebSphere MQ for z/VSE System Management Guide

v Underscore (_)
v Percent (%)

The name must not contain leading or embedded blanks, but can contain
trailing blanks. Use a null character to indicate the end of significant data
in the name; the null and any characters following it are treated as blanks.

The following points apply to the types of object indicated:
v If ObjectName is the name of a model queue, the queue manager creates

a dynamic queue with the attributes of the model queue, and returns in
the ObjectName field the name of the queue created. A model queue can
be specified only on the MQOPEN call; a model queue is not valid on
the MQPUT1 call.

v If ObjectType is MQOT_Q_MGR, special rules apply; in this case the
name must be entirely blank up to the first null character or the end of
the field.

This is an input/output field for the MQOPEN call when ObjectName is
the name of a model queue, and an input-only field in all other cases. The
length of this field is given by MQ_Q_NAME_LENGTH. The initial value
of this field is the null string in C, and 48 blank characters in other
programming languages.

ObjectQMgrName (MQCHAR48)
This is the name of the queue manager on which the ObjectName object is
defined. The characters that are valid in the name are the same as those for
ObjectName. A name that is entirely blank up to the first null character or
the end of the field denotes the queue manager to which the application is
connected (the local queue manager).

The following points apply to the types of object indicated:
v If ObjectType is MQOT_Q_MGR, ObjectQMgrName must be blank or

the name of the local queue manager.
v If ObjectName is the name of a model queue, the queue manager creates

a dynamic queue with the attributes of the model queue, and returns in
the ObjectQMgrName field the name of the queue manager on which
the queue is created; this is the name of the local queue manager. A
model queue can be specified only on the MQOPEN call; a model queue
is not valid on the MQPUT1 call.

This is an input/output field for the MQOPEN call when ObjectName is
the name of a model queue, and an input-only field in all other cases. The
length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

ObjectRecOffset (MQLONG)
Offset of first object record from start of MQOD..

This is the offset in bytes of the first MQOR object record from the start of
the MQOD structure. The offset can be positive or negative.
ObjectRecOffset is used only when a distribution list is being opened. The
field is ignored if RecsPresent is zero.

When a distribution list is being opened, an array of one or more MQOR
object records must be provided in order to specify the names of the
destination queues in th distribution list. This can be done in one or two
ways:
v By using the offset field ObjectRecOffset

MQOD - Object descriptor

Appendix B. Application Programming Reference 815

In this case, the application should declare its own structure containing
an MQOD, followed by the array of MQOR records (with as many array
elements as are needed), and set ObjectRecOffset to the offset of the first
element in the array from the start of the MQOD. Care must be taken to
ensure that this offset is correct.
Using ObjectOffset is recommended for programming languages which
do not support the pointer data type, or which implement the pointer
data type in a fashion which is not portable to different environments, as
in the COBOL programming language.

v By using the pointer field ObjectRecPtr
In this case, the application can declare the array of MQOR structures
separately from the MQOD structure, and set ObjectRecPtr to the
address of the array.
Using ObjectRecPtr is recommended fro programming languages which
support the pointer data type in a fashion which is portable to different
environments, as in the C programming language.

Whichever technique is chosen, one of ObjectRecOffset and ObjectRecPtr
must be used; the call fails with reason code
MQRC_OBJECT_RECORDS_ERROR if both are zero, or both are non zero.

This is an input field. The initial value of this field is 0. This field is
ignored if Version is less than MQOD_VERSION_2.

ObjectRecPtr (MQLONG)
Address of first object record.

This is the address of the first MQOR object record. ObjectRecPtr is used
only when a distribution list is being opened. The field is ignored if
ObjectRecPresent is zero.

Either ObjectRecPtr or ObjectRecOffset can be used to specify the object
records, but not both; see the description of the ObjectRecOffset field above
for details. If ObjectRecPtr is not used, it must be set to the null pointer or
null bytes.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and all-null byte
string otherwise. This field is ignored if Version is less than
MQOD_VERSION_2.

Note: On platforms where the programming language does not support
the pointer date type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte string

ObjectType (MQLONG)
The type of object being named in ObjectName. Possible values are:

MQOT_Q
Queue

MQOT_Q_MGR
Queue manager

This is always an input field. The initial value of this field is MQOT_Q.

RecsPresent (MQLONG)
Number of object records present.

MQOD - Object descriptor

816 WebSphere MQ for z/VSE System Management Guide

This is the number of MQOR object records that have been provided by
the application. If this number is greater than zero, it indicates that a
distribution list is being opened, with RecsPresent being the number of
destination queues in the list. It is valid for a distribution list to contain
only one destination.

The value of RecsPresent must not be less than zero, and if it is greater
than zero, ObjectType must be MQOT_Q; the call fails with reason code
MQRC_RECS_PRESENT_ERROR if these conditions are not satisfied.

This is an input field. The initial value of this field is 0. This field is
ignored if Version is less than MQOD_VERSION_2.

ResponseRecOffset (MQLONG)
Offset of first response record from start of MQOD.

This is the offset in bytes fo the first MQRR response record from the start
of the MQOD structure. The offset can be positive or negative.
ResponseRecOffset is used only when a distribution list is being opened.
The field is ignored if RecsPresent is zero.

When a distribution list is being opened, an array of one or more MQRR
response records can be provided in order to identify the queues that failed
to open (CompCode field in MQRR), and the reason for each failure
(Reason field in MQRR). The data is returned in the array of response
records in the same order as the queue names occur in the array of object
records. The queue manager sets the response records only when the
outcome of the call is mixed. That is, some queues were opened
successfully while others failed, or failed for differing reasons. Reason code
MQRC_MULTIPLE_REASONS from the call indicates this case. If the same
reason code applies to all queues, that reason is returned in the Reason
parameter of the MQOPEN or MQPUT1 call, and the response records are
not set. Response records are optional, but if they are supplied, there must
be RecsPresent of them.

The response records can be provided in the same way as the object
records; either by specifying an offset in ResponseRecOffset, or by
specifying an address in ResponseRecPtr; see the description of
ObjectRecOffset above for details of how to do this. However, no more
than one of ResponseRecOffset and ResponseRecPtr can be used; the call
fails with reason code MQRC_RESPONSE_RECORDS_ERROR if both are
nonzero.

For the MQPUT1 call, these response records are used to return
information about errors that occur when the message is sent to the queues
in the distribution list, as well as errors that occur when the queues are
opened. The completion code and reason code, from the put operation for
a queue, replace those from the open operation for that queue only if the
completion code from the latter was MQCC_OK or MQCC_WARNING.

This is an input field. The initial value of this field is 0. This field is
ignored if Version is less than MQOD_VERSION_2.

ResponseRecPtr (MQLONG)
Address of first response record.

This is the address of the first MQOR response record. ResponseRecPtr is
used only when a distribution list is being opened. The field is ignored if
RecsPresent is zero.

MQOD - Object descriptor

Appendix B. Application Programming Reference 817

Either ResponseRecPtr or ResponseRecOffset can be used to specify the
response records, but not both; see the description of the
ResponseRecOffset field above for details. If ResponseRecPtr is not used, it
must be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and all-null byte
string otherwise. This field is ignored if Version is less than
MQOD_VERSION_2.

Note: On platforms where the programming language does not support
the pointer date type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte string

StrucId (MQCHAR4)
This is the structure identifier; the value must be:

MQOD_STRUC_ID
Identifier for object descriptor structure.

For the C programming language, the constant
MQOD_STRUC_ID_ARRAY is also defined; this has the same
value as MQOD_STRUC_ID, but is an array of characters instead
of a string.

This is always an input field. The initial value of this field is
MQOD_STRUC_ID.

UnknownDestCount (MQLONG)
Number of remote queues opened successfully.

This is the number of queues in the distribution list that resolve to remote
queues and that were opened successfully. If present, this field is also set
when opening a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is
ignored if Version is less than MQOD_VERSION_2.

Version (MQLONG)
This is the structure version number; the value must be one of the
following:

MQOD_VERSION_1
Version-1 object descriptor structure.

MQOD_VERSION_2
Version-2 object descriptor structure.

The following constant specifies the version number of the current version:

MQOD_CURRENT_VERSION
Current version of object descriptor structure. For WebSphere MQ
for z/VSE, this field defaults to MQOD_VERSION_1.

The initial value of this field is MQOD_VERSION_1.

C declaration

MQOD - Object descriptor

818 WebSphere MQ for z/VSE System Management Guide

COBOL declaration

PL/I declaration

typedef struct tagMQOD MQOD;
struct tagMQOD
{
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ObjectType; /* Object type */
MQCHAR48 ObjectName; /* Object name */
MQCHAR48 ObjectQMgrName; /* Object queue manager name */
MQCHAR48 DynamicQName; /* Dynamic queue name */
MQCHAR12 AlternateUserId; /* Alternate user identifier */
MQLONG RecsPresent; /* Number of object records present */
MQLONG KnownDestCount; /* Number of local queues opened

successfully */
MQLONG UnknownDestCount; /* Number of remote queues opened

successfully */
MQLONG InvalidDestCount; /* Number of queues that failed to

open */
MQLONG ObjectRecOffset; /* Offset of first object record from

start of MQOD */
MQLONG ResponseRecOffset;/* Offset fo first response record from

start of MQOD */
MQPTR ObjectRecPtr; /* Address of first object record */
MQPTR ResponseRecPtr; /* Address of first response record */

};MQOD;
typedef MQOD MQPOINTER PMQOD

** MQOD structure
10 MQOD.

** Structure identifier
15 MQOD-STRUCID PIC X(4) VALUE ’OD ’.

** Structure version number
15 MQOD-VERSION PIC S9(9) BINARY VALUE 1.

** Object type
15 MQOD-OBJECTTYPE PIC S9(9) BINARY VALUE 1.

** Object name
15 MQOD-OBJECTNAME PIC X(48) VALUE SPACES.

** Object queue manager name
15 MQOD-OBJECTQMGRNAME PIC X(48) VALUE SPACES.

** Dynamic queue name
15 MQOD-DYNAMICQNAME PIC X(48) VALUE ’AMQ.*’.

** Alternate user identifier
15 MQOD-ALTERNATEUSERID PIC X(12) VALUE SPACES.

** Number of object records present
15 MQOD-RECSPRESENT PIC S9(9) BINARY VALUE 0.

** Number of local queues opened successfully
15 MQOD-KNOWNDESTCOUNT PIC S9(9) BINARY VALUE 0.

** Number of remote queues opened successfully
15 MQOD-UNKNOWNDESTCOUNT PIC S9(9) BINARY VALUE 0.

** Number of queues that failed to open
15 MQOD-INVALIDDESTCOUNT PIC S9(9) BINARY VALUE 0.

** Offset of first object record from start of MQOD
15 MQOD-OBJECTRECOFFSET PIC S9(9) BINARY VALUE O.

** Offset of first response record from start of MQOD
15 MQOD-RESPONSERECOFFSET PIC S9(9) BINARY VALUE 0.

** Address of first object record
15 MQOD-OBJECTRECPTR POINTER VALUE NULL.

** Address of first response record
15 MQOD-RESPONSERECPTR POINTER VALUE NULL.

MQOD - Object descriptor

Appendix B. Application Programming Reference 819

MQOR - Object Record

The MQOR structure is used to specify the queue name and queue-manager name
of a single destination queue. MQOR is an input structure for the MQOPEN and
MQPUT1 calls.

By providing and array of these structures on the MQOPEN call, it is possible to
open a list of queues; this list is called a distribution list. Each message put using
the queue handle returned by that MQOPEN call is placed on each of the queues
in the list, provided that the queue was opened successfully.

Fields

Here is a summary of the fields.

Table 53. Fields in MQOR

Field Description

ObjectName Object name

ObjectQMgrName Object Queue Manager Name

The MQOR structure contains the following fields; the fields are described in
alphabetic order:

ObjectName (MQCHAR48)
This is the same as ObjectName field in the MQOD structure (see MQOD
for details), except that:
v It must be the name of a queue.

dcl
1 MQOD based,
3 StrucId char(4)

init(MQOD_STRUC_ID), /* Structure identifier */
3 Version fixed bin(31)

init(MQOD_VERSION_1), /* Structure version number */
3 ObjectType fixed bin(31)

init(MQOT_Q), /* Object type */
3 ObjectName char(48)

init(’’), /* Object name */
3 ObjectQMgrName char(48)

init(’’), /* Object queue manager name */
3 DynamicQName char(48)

init(’AMQ.*’) /* Dynamic queue name */
3 AlternateUserId char(12)

init(’’), /* Alternate user identifier */
3 RecsPresent fixed bin(31)

init(0), /* Number of object records
present */

3 KnownDestCount fixed bin(31)
init(0), /* Number of local queues

opened successfully */
3 UnknownDestCount fixed bin(31)

init(0), /* Number of remote queues
opened successfully */

3 InvalidDestCount fixed bin(31)
init(0), /* Number of queues that failed

to open */
3 ObjectRecOffset fixed bin(31)

init(0), /* Offset of first object
record from start of MQOD */

3 ObjectRecPtr pointer
init(null()), /* Address of first object

record */
3 ResponseRecPtr pointer

init(null()) /* Address of first response
record */

MQOD - Object descriptor

820 WebSphere MQ for z/VSE System Management Guide

v It must not be the name of a model queue.

This is always an input field. The initial value of this field is the null string
in C, and 48 blank characters in other programming languages.

ObjectQMgrName (MQCHAR48)
This is the same as the ObjectQMgrName field in the MQOD structure (see
MQOD for details).

This is always an input field. The initial value of this field is the null string
in C, and 48 bland characters in other programming languages.

C declaration

COBOL declaration

PL/I declaration

MQPD – Property descriptor

The MQPD is used to define the attributes of a property. The structure is an
input/output parameter on the MQSETMP call and an output parameter on the
MQINQMP call.

Data in MQPD must be in the character set of the application and encoding of the
application (MQENC_NATIVE).

Fields

Here is a summary of the fields.

Table 54. Fields in MQPD

Field Description

StrucId Structure identifier

Version Structure version number

Options Options controlling the action of
MQPD

typedef struct tagMQOR {
struct tagMQOR
{
MQCHAR48 ObjectName; /* Object name */
MQCHAR48 ObjectQMgrName; /* Object queue manager name */

};MQOR;
typedef MQOR MQPOINTER PMQOR;

** MQOR structure
10 MQOR.

** Object name
15 MQOR-OBJECTNAME PIC X(48) VALUE SPACES.

** Object queue manager name
15 MQOR-OBJECTQMGRNAME PIC X(48) VALUE SPACES.

dcl
1 MQOR based,
3 Object name char(48)

init(’’), /* Object name */
3 ObjectQMgrName char(48)

init(’’), /* Object queue manager name */

MQOD - Object descriptor

Appendix B. Application Programming Reference 821

Table 54. Fields in MQPD (continued)

Field Description

Support Required support for message
property

Context Message context to which property
belongs

CopyOptions Copy options to which property
belongs

Here is a description of the fields.

Context (MQLONG)
This describes what message context the property belongs to.

When a queue manager receives a message containing a WebSphere
MQ-defined property that the queue manager recognizes as being
incorrect, the queue manager corrects the value of the Context field.

The following option can be specified:

MQPD_USER_CONTEXT
The property is associated with the user context.

No special authorization is required to be able to set a property
associated with the user context using the MQSETMP call.

If the option previously described is not required, the following option can
be used:

MQPD_NO_CONTEXT
The property is not associated with a message context.

An unrecognized value is rejected with a Reasoncode of
MQRC_PD_ERROR.

This is an input/output field to the MQSETMP call and an output field
from the MQINQMP call. The initial value of this field is
MQPD_NO_CONTEXT.

CopyOptions (MQLONG)
This describes which type of messages the property should be copied into.
This is an output only field for recognized WebSphere MQ-defined
properties. WebSphere MQ sets the appropriate value.

When a queue manager receives a message containing a WebSphere
MQ-defined property that the queue manager recognizes as being
incorrect, the queue manager corrects the value of the CopyOptions field.

You can specify one or more of the options shown here. If you need more
than one option, the values can be:
v Added together (do not add the same constant more than once), or
v Combined using the bitwise OR operation (if the programming language

supports bit operations)

MQCOPY_FORWARD
This property is copied into a message being forwarded.

MQCOPY_REPLY
This property is copied into a reply message.

MQPD - property descriptor

822 WebSphere MQ for z/VSE System Management Guide

MQCOPY_REPORT
This property is copied into a report message.

MQCOPY_ALL
This property is copied into all types of subsequent messages.

The MQCOPY_DEFAULT option can be specified to supply the default set
of copy options:

MQCOPY_DEFAULT
This property is copied into a message being forwarded, into a
report message, or into a message received by a subscriber when a
message is being published.

This is equivalent to specifying the combination of options
MQCOPY_FORWARD, plus MQCOPY_REPORT, plus
MQCOPY_PUBLISH.

If none of the options described above is required, use the
MQCOPY_NONE option:

MQCOPY_NONE
Use this value to indicate that no other copy options have been
specified; programmatically no relationship exists between this
property and subsequent messages. This is always returned for
message descriptor properties. This is an input/output field to the
MQSETMP call and an output field from the MQINQMP call.

The initial value of this field is MQCOPY_DEFAULT.

Options (MQLONG)
The value must be:

MQPD_NONE
No options specified

This is always an input field. The initial value of this field is
MQPD_NONE.

StrucId (MQCHAR4)
This is the structure identifier. The value must be:

MQPD_STRUC_ID
Identifier for property descriptor structure.

For the C programming language, the constant MQPD_STRUC_ID_ARRAY
is also defined. This has the same value as MQPD_STRUC_ID, but is an
array of characters instead of a string.

This is always an input field. The initial value of this field is
MQPD_STRUC_ID.

Support (MQLONG)
This field describes what level of support for the message property is
required of the queue manager, in order for the message containing this
property to be put to a queue. This applies only to WebSphere MQ-defined
properties; support for all other properties is optional.

The field is automatically set to the correct value when the WebSphere
MQ-defined property is known by the queue manager. If the property is
not recognized, MQPD_SUPPORT_OPTIONAL is assigned. When a queue
manager receives a message containing a WebSphere MQ- defined property
that the queue manager recognizes as being incorrect, the queue manager
corrects the value of the Support field.

MQPD - property descriptor

Appendix B. Application Programming Reference 823

When setting a WebSphere MQ-defined property using the MQSETMP call
on a message handle where the MQCMHO_NO_VALIDATION option was
set, Support becomes an input field. This allows an application to put a
WebSphere MQ-defined property with the correct value, where the
property is unsupported by the connected queue manager, but where the
message is intended to be processed on another queue manager.

The value MQPD_SUPPORT_OPTIONAL is always assigned to properties
that are not WebSphere MQ-defined properties.

One of the following values is returned by the MQINQMP call, or one of
the values can be specified when using the MQSETMP call on a message
handle where the MQCMHO_NO_VALIDATION option is set:

MQPD_SUPPORT_OPTIONAL
The property is accepted by a queue manager even if it is not
supported.

The property can be discarded in order for the message to flow to
a queue manager that does not support message properties. This
value is also assigned to properties that are not WebSphere
MQ-defined.

MQPD_SUPPORT_REQUIRED
Support for the property is required. The message is rejected by a
queue manager that does not support the WebSphere MQ-defined
property. The MQPUT or MQPUT1 call fails with completion code
MQCC_FAILED and reason code
MQRC_UNSUPPORTED_PROPERTY.

MQPD_SUPPORT_REQUIRED_IF_LOCAL
The message is rejected by a queue manager that does not support
the WebSphere MQ-defined property if the message is destined for
a local queue. The MQPUT or MQPUT1 call fails with completion
code MQCC_FAILED and reason code
MQRC_UNSUPPORTED_PROPERTY.

The MQPUT or MQPUT1 call succeeds if the message is destined
for a remote queue manager.

This is an output field on the MQINQMP call and an input field
on the MQSETMP call if the message handle was created with the
MQCMHO_NO_VALIDATION option set. The initial value of this
field is MQPD_SUPPORT_OPTIONAL.

Version (MQLONG)
This is the structure version number. The value must be:

MQPD_VERSION_1
Version-1 property descriptor structure.

This constant specifies the version number of the current version:

MQPD_CURRENT_VERSION
Current version of property descriptor structure.

This is always an input field. The initial value of this field is
MQPD_VERSION_1.

MQPD - property descriptor

824 WebSphere MQ for z/VSE System Management Guide

Initial values and language declarations

Here are the initial values and language declarations for MQPD.

Table 55. Initial values of fields in MQPD

Field name Name of constant Value of constant

StrucId MQPD_STRUC_ID 'PD'

Version MQPD_VERSION_1 1

Options MQPD_NONE 0

Support MQPD_SUPPORT_OPTIONAL 0

Context MQPD_NO_CONTEXT 0

CopyOptions MQCOPY_DEFAULT 0

Note: In the C programming language, the macro variable MQPD_DEFAULT
contains the values listed above. It can be used in the following way to provide
initial values for the fields in the structure:
MQPD MyPD = {MQPD_DEFAULT};

C declaration

COBOL declaration

PL/I declaration

struct tagMQPD {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of MQSETMP

and MQINQMP */
MQLONG Support; /* Property support option */
MQLONG Context; /* Property context */
MQLONG CopyOptions; /* Property copy options */

};

** MQPD structure
10 MQPD.

** Structure identifier
15 MQPD-STRUCID PIC X(4).

** Structure version number
15 MQPD-VERSION PIC S9(9) BINARY.

** Options that control the action of MQSETMP and MQINQMP
15 MQPD-OPTIONS PIC S9(9) BINARY.

** Property support option
15 MQPD-SUPPORT PIC S9(9) BINARY.

** Property context
15 MQPD-CONTEXT PIC S9(9) BINARY.

** Property copy options
15 MQPD-COPYOPTIONS PIC S9(9) BINARY.

MQPD - property descriptor

Appendix B. Application Programming Reference 825

MQPMO – Put message options

The MQPMO structure allows the application to specify options that control how
messages are placed on queues. The structure is an input/output parameter on the
MQPUT and MQPUT1 calls.

Fields

Here is a summary of the fields.

Table 56. Fields in MQPMO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options that control the action of
MQPUT and MQPUT1

Timeout Reserved

Context Object handle of input queue

KnownDestCount Number of messages sent
successfully to local queues

UnknownDestCount Number of messages sent
successfully to remote queues

InvalidDestCount Number of messages that could not
be sent

ResolvedQName Resolved name of destination
queue

ResolvedQMgrName Name Resolved name of
destination queue manager

Note: The remaining fields are ignored if Version is less than MQPMO_VERSION_2.

RecsPresent Number of put message records or
response records present

PutMsgRecFields Flags indicating which MQPMR
fields are present

PutMsgRecOffset Offset of first put message record
from start of MQPMO

ResponseRecOffset Offset of first response record from
start of MQPMO

PutMsgRecPtr Address of first put message record

ResponseRecPtr Address of first response record

dcl
1 MQPD based,
3 StrucId char(4)
init(MQPD_STRUC_ID), /* Structure identifier */

3 Version fixed bin(31)
init(MQPD_VERSION_1), /* Structure version number */

3 Options fixed bin(31)
init(MQPD_NONE), /* Options that control the action */

/* of MQSETMP and MQINQMP */
3 Support fixed bin(31)
init(MQPD_SUPPORT_OPTIONAL), /* Property support option */

3 Context fixed bin(31)
init(MQPD_NO_CONTEXT), /* Property context */

3 CopyOptions fixed bin(31)
init(MQCOPY_DEFAULT); /* Property copy options */

MQPMO - Put message options

826 WebSphere MQ for z/VSE System Management Guide

Table 56. Fields in MQPMO (continued)

Field Description

Note: The remaining fields are ignored if Version is less than MQPMO_VERSION_3.

OriginalMsgHandle Original message handle

NewMsgHandle New message handle

Action New message handle
NewMsgHandle Action Type of put
being performed and the
relationship between the original
message specified by the
OriginalMsgHandle field and the
new message specified by the
NewMsgHandle field

PubLevel Level of subscription targeted by
the publication

Here is a description of the fields.

Action (MQLONG)
This specifies the type of put being performed and the relationship
between the original message specified by the OriginalMsgHandle field
and the new message specified by the NewMsgHandle field. The
properties of the message are chosen by the queue manager according to
the value of the Action specified.

If the MsgDesc parameter is not supplied, then the message descriptor for
the new message is populated from the message handle fields of the
MQPMO, according to the rules described in this topic.

If an incorrect action value is specified, the call fails with the reason code
MQRC_ACTION_ERROR.

Any one of the following actions can be specified:

MQACTP_NEW
A new message is being put, and no relationship to a previous
message is being specified by the program. The message descriptor
is composed as follows:
v If a MsgDesc is supplied on the MQPUT or MQPUT1 call, this is

used as the message descriptor unmodified
v If a MsgDesc is not supplied, then the queue manager generates

the message descriptor using a combination of properties from
OriginalMsgHandle and NewMsgHandle. Any message
descriptor fields explicitly set on the new message handle take
precedence over those in the original message handle.

Message data is taken from the MQPUT or MQPUT1 Buffer
parameter.

MQACTP_FORWARD
A previously retrieved message is being forwarded. The original
message handle specifies the message that was previously
retrieved. The new message handle specifies any modifications to
the properties (including any in the message descriptor) in the
original message handle.

The message descriptor is composed as follows:

MQPMO - Put message options

Appendix B. Application Programming Reference 827

v If a MsgDesc is supplied on the MQPUT or MQPUT1 call, this is
used as the message descriptor unmodified.

v If a MsgDesc is not supplied, then the queue manager generates
the message descriptor using a combination of properties from
OriginalMsgHandle and NewMsgHandle. Any message
descriptor fields explicitly set on the new message handle take
precedence over those in the original message handle.

v If MQPMO_NEW_MSG_ID or MQPMO_NEW_CORREL_ID are
specified in the MQPMO.Options, then these are honoured.

The message properties are composed as follows:
v All properties from the original message handle which have

MQCOPY_FORWARD in the MQPD.CopyOptions.
v All properties from the new message handle. For each property

in the new message handle that has the same name as a
property in the original message handle, the value is taken from
the new message handle. The only exception to this rule is the
special case when the property in the new message handle has
the same name as a property in the original message handle, but
the value of the property is null. In this case the property is
removed from the message.

The message data to be forwarded is taken from the MQPUT or
MQPUT1 Buffer parameter.

MQACTP_REPLY
A reply is being made to a previously retrieved message. The
original message handle specifies the message that was previously
retrieved.

The new message handle specifies any modifications to the
properties (including any in the message descriptor) in the original
message handle.

The message descriptor is composed as follows:
v If a MsgDesc is supplied on the MQPUT or MQPUT1 call,, this

is used as the message descriptor unmodified.
v If a MsgDesc is not supplied then initial message descriptor

fields are chosen as shown in Table 57.

Table 57. Reply message handle transformation

Field in MQMD Value used

Report If MQRO_PASS_DISCARD_AND_EXPIRY and MQRO_DISCARD_MSG
are set, MQRO_DISCARD_MSG; otherwise, MQRO_NONE

MsgType MQMT_REPLY

Expiry If MQRO_PASS_DISCARD_AND_EXPIRY is set, copied from the input
message; otherwise, MQEI_UNLIMITED

Feedback MQFB_NONE

MsgId If MQPMO_NEW_MSG_ID is set, a new message identifier is
generated; else, if MQRO_PASS_MSG_ID is set, copied from the input
message; otherwise, MQMI_NONE

MQPMO - Put message options

828 WebSphere MQ for z/VSE System Management Guide

Table 57. Reply message handle transformation (continued)

Field in MQMD Value used

CorrelId If MQPMO_NEW_CORREL_ID is set, a new correlation identifier is
generated; else, if MQRO_COPY_MSG_ID_TO_CORREL_ID is set,
copied from the MsgId field of the input message; else, if
MQRO_PASS_CORREL_ID is set, copied from the CorrelId field of the
input message; otherwise, MQCI_NONE

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Blanks

GroupId MQGI_NONE

MsgSeqNumber 1

Offset 0

MsgFlags MQMF_NONE

OriginalLength MQOL_UNDEFINED

v The message descriptor is then modified by the new message
handle. Any message descriptor fields explicitly set as properties
in the new message handle take precedence over the message
descriptor fields as described above.

The message properties are composed as follows:
v All properties from the original message handle which have

MQCOPY_REPLY in the MQPD.CopyOptions.
v All properties from the new message handle. For each property

in the new message handle that has the same name as a
property in the original message handle, the value is taken from
the new message handle. The only exception to this rule is the
special case when the property in the new message handle has
the same name as a property in the original message handle, but
the value of the property is null. In this case the property is
removed from the message.

The message data to be forwarded is taken from the
MQPUT/MQPUT1 Buffer parameter.

MQACTP_REPORT
A report is being generated as a result of a previously retrieved
message. The original message handle specifies the message
causing the report to be generated.

The new message handle specifies any modifications to the
properties (including any in the message descriptor) in the original
message handle.The message descriptor is composed as follows:
v If a MsgDesc is supplied on the MQPUT or MQPUT1 call, and

MQPMO_MD_FOR_OUTPUT_ONLY is not in the
MQPMO.Options, this is used as the message descriptor
unmodified.

v If a MsgDesc is not supplied, or
MQPMO_MD_FOR_OUTPUT_ONLY is in the MQPMO.Options,
then initial message descriptor fields are chosen as shown in
Table 58 on page 830.

MQPMO - Put message options

Appendix B. Application Programming Reference 829

Table 58. Report message handle transformation

Field in MQMD Value used

Report If MQRO_PASS_DISCARD_AND_EXPIRY and MQRO_DISCARD_MSG
are set, MQRO_DISCARD_MSG; otherwise, MQRO_NONE

MsgType MQMT_REPORT

Expiry If MQRO_PASS_DISCARD_AND_EXPIRY is set, copied from the input
message; otherwise, MQEI_UNLIMITED

MsgId If MQPMO_NEW_MSG_ID is set, a new message identifier is
generated; else, if MQRO_PASS_MSG_ID is set, copied from the input
message; otherwise, MQMI_NONE

CorrelId If MQPMO_NEW_CORREL_ID is set, a new correlation identifier is
generated; else, if MQRO_COPY_MSG_ID_TO_CORREL_ID is set,
copied from the MsgId field of the input message; else, if
MQRO_PASS_CORREL_ID is set, copied from the CorrelId field of the
input message; otherwise, MQCI_NONE

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Blanks

OriginalLength Set to the BufferLength

v The message descriptor is then modified by the new message
handle. Any message descriptor fields explicitly set as properties
in the new message handle take precedence over the message
descriptor fields as described above.

The message properties are composed as follows:
v All properties from the original message handle which have

MQCOPY_REPORT in the MQPD.CopyOptions.
v All properties from the new message handle. For each property

in the new message handle that has the same name as a
property in the original message handle, the value is taken from
the new message handle. The only exception to this rule is the
special case when the property in the new message handle has
the same name as a property in the original message handle, but
the value of the property is null. In this case, the property is
removed from the message.

The Feedback field in the resultant MQMD represents the report
that is to be generated. A Feedback value of MQFB_NONE causes
the MQPUT or MQPUT1 call to fail with reason code
MQRC_FEEDBACK_ERROR.

To choose the user data of the report message, WebSphere MQ
consults the Report and Feedback fields in the resultant MQMD,
and the Buffer and BufferLength parameters of the MQPUT or
MQPUT1 call.
v If Feedback is MQFB_COA, MQFB_COD, or

MQFB_EXPIRATION, then the value of Report is inspected.
v If any of the following cases is true, the full message data from

Buffer for a length of BufferLength is used.
– Feedback is MQFB_EXPIRATION and Report contains

MQRO_EXPIRATION_WITH_FULL_DATA.

MQPMO - Put message options

830 WebSphere MQ for z/VSE System Management Guide

– Feedback is MQFB_COD and Report contains
MQRO_COD_WITH_FULL_DATA.

– Feedback is MQFB_COA and Report contains
MQRO_COA_WITH_FULL_DATA.

v If any of the following cases is true, the first 100 bytes of the
message (or BufferLength if this is less than 100) from Buffer are
used
– Feedback is MQFB_EXPIRATION and Report contains

MQRO_EXPIRATION_WITH_DATA.
– Feedback is MQFB_COD and Report contains

MQRO_COD_WITH_DATA.
– Feedback is MQFB_COA and Report contains

MQRO_COA_WITH_DATA.
v If Feedback is MQFB_EXPIRATION, MQFB_COD, or

MQFB_COA, and Report does not contain the
*_WITH_FULL_DATA or *_WITH_DATA options relevant to that
Feedback value, then no user data is included with the message.

v If Feedback takes a different value from those listed above, then
Buffer and BufferLength are used as normal.

The derivation of the user data is shown in Table 59.

Table 59. Source of user data

MQFB_COA MQFB_COD MQFB_EXPIRATION

MQRO_EXPIRATION_WITH_FULL_DATA None None Buffer(Bufferlength)

MQRO_COD_WITH_FULL_DATA None Buffer(Bufferlength) None

MQRO_COA_WITH_FULL_DATA Buffer(Bufferlength) None None

MQRO_EXPIRATION_WITH_DATA None None Buffer(First 100 bytes)

MQRO_COD_WITH_DATA None Buffer(First 100 bytes) None

MQRO_COA_WITH_DATA Buffer(First 100 bytes) None None

Context (MQHOBJ)
If MQPMO_PASS_IDENTITY_CONTEXT or
MQPMO_PASS_ALL_CONTEXT is specified, this field must contain the
input queue handle from which context information to be associated with
the message being put is taken.

If neither MQPMO_PASS_IDENTITY_CONTEXT nor
MQPMO_PASS_ALL_CONTEXT is specified, this field is ignored.

This field is not supported by WebSphere MQ for z/VSE.

InvalidDestCount (MQLONG)
This is the number of messages that could not be sent to queues in the
distribution list. The count includes queues that failed to open, as well as
queues that were opened successfully but for which the put operation
failed.

This field is also set when putting a message to a single queue that is not
in a distribution list.

This field is not supported by WebSphere MQ for z/VSE.

KnownDestCount (MQLONG)
This is the number of messages that the current MQPUT or MQPUT1 call

MQPMO - Put message options

Appendix B. Application Programming Reference 831

has sent successfully to queues in the distribution list that are local queues.
The count does not include messages sent to queues that resolve to remote
queues (even though a local transmission queue is used initially to store
the message).

This field is also set when putting a message to a single queue that is not
in a distribution list.

This field is not supported by WebSphere MQ for z/VSE.

NewMsgHandle (MQHMSG)
This is an optional handle to the message being put, subject to the value of
the Action field. It defines the properties of the message and overrides the
values of the OriginalMsgHandle, if specified.

On return from the MQPUT or MQPUT1 call, the contents of the handle
reflect the message that was actually put.

This is an input field. The initial value of this field is MQHM_NONE. This
field is ignored if Version is less than MQPMO_VERSION_3.

Options (MQLONG)
Any or none of the following can be specified. If more than one is required
the values can be:
v Added together (do not add the same constant more than once), or
v Combined using the bitwise OR operation (if the programming language

supports bit operations).

Combinations that are not valid are noted; any other combinations are
valid.

The following syncpoint options relate to the participation of the MQPUT
or MQPUT1 call within a unit of work:

MQPMO_SYNCPOINT
The request is to operate within the normal unit-of-work protocols.
The message is not visible outside the unit of work until the unit
of work is committed. If the unit of work is backed out, the
message is deleted.

If neither this option nor MQPMO_NO_SYNCPOINT is specified,
the inclusion of the put request in unit-of-work protocols is
determined by the environment. On z/VSE, the message is
included in the current unit of work.

Because of these differences, an application that you want to port
must not allow this option to default; specify either
MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT explicitly.

Do not specify MQPMO_SYNCPOINT with
MQPMO_NO_SYNCPOINT.

MQPMO_NO_SYNCPOINT
The request is to operate outside the normal unit-of-work
protocols. The message is available immediately, and it cannot be
deleted by backing out a unit of work.

If neither this option nor MQPMO_SYNCPOINT is specified, the
inclusion of the put request in unit-of-work protocols is determined
by the environment. On z/VSE, the message is included in the
current unit of work.

MQPMO - Put message options

832 WebSphere MQ for z/VSE System Management Guide

Because of these differences, an application that you want to port
must not allow this option to default; specify either
MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT explicitly.

Do not specify MQPMO_NO_SYNCPOINT with
MQPMO_SYNCPOINT.

The following Message-identifier and correlation-identifier options request the
queue manager to generate a new message identifier or correlation
identifier:

MQPMO_NEW_MSG_ID
The queue manager replaces the contents of the MsgId field in
MQMD with a new message identifier. This message identifier is
sent with the message, and returned to the application on output
from the MQPUT or MQPUT1 call.

Using this option relieves the application of the need to reset the
MsgId field to MQMI_NONE prior to each MQPUT or MQPUT1
call.

MQPMO_NEW_CORREL_ID
The queue manager replaces the contents of the CorrelId field in
MQMD with a new correlation identifier. This correlation identifier
is sent with the message, and returned to the application on output
from the MQPUT or MQPUT1 call.

MQPMO_NEW_CORREL_ID is useful in situations where the
application requires a unique correlation identifier.

The following group and segment option relates to the processing of
messages in groups and segments of logical messages. See “Message
grouping and segmentation” on page 959 for definitions of these terms.

MQPMO_LOGICAL_ORDER
This option tells the queue manager how the application puts
messages in groups and segments of logical messages. It can be
specified only on the MQPUT call; it is not valid on the MQPUT1
call.

If MQPMO_LOGICAL_ORDER is specified, it indicates that the
application will use successive MQPUT calls to:
v Put the segments in each logical message in the order of

increasing segment offset, starting from 0, with no gaps.
v Put all the segments in one logical message before putting the

segments in the next logical message.
v Put the logical messages in each message group in the order of

increasing message sequence number, starting from 1, with no
gaps.

v Put all the logical messages in one message group before putting
logical messages in the next message group.

The above order is called logical order.

Because the application has told the queue manager how it will
put messages in groups and segments of logical messages, the
application does not have to maintain and update the group and
segment information on each MQPUT call, because the queue
manager does this. Specifically, it means that the application does
not need to set the GroupId, MsgSeqNumber, and Offset fields in

MQPMO - Put message options

Appendix B. Application Programming Reference 833

MQMD, because the queue manager sets these to the appropriate
values. The application needs to set only the MsgFlags field in
MQMD, to indicate when messages belong to groups or are
segments of logical messages, and to indicate the last message in a
group or last segment of a logical message.

Once a message group or logical message has been started,
subsequent MQPUT calls must specify the appropriate MQMF_*
flags in MsgFlags in MQMD. If the application tries to put a
message that is not in a group when there is an unterminated
message group, or put a message that is not a segment when there
is an unterminated logical message, the call fails with reason code
MQRC_INCOMPLETE_GROUP or MQRC_INCOMPLETE_MSG, as
appropriate. However, the queue manager retains the information
about the current message group or current logical message, and
the application can terminate them by sending a message (possibly
with no application message data) specifying
MQMF_LAST_MSG_IN_GROUP or MQMF_LAST_SEGMENT as
appropriate, before reissuing the MQPUT call to put the message
that is not in the group or not a segment.

When MQPMO_LOGICAL_ORDER is specified, the MQMD
supplied on the MQPUT call must not be less than
MQMD_VERSION_2. If this condition is not satisfied, the call fails
with reason code MQRC_WRONG_MD_VERSION.

If MQPMO_LOGICAL_ORDER is not specified, messages in
groups and segments of logical messages can be put in any order,
and it is not necessary to put complete message groups or
complete logical messages. It is the application's responsibility to
ensure that the GroupId, MsgSeqNumber, Offset, and MsgFlags
fields have appropriate values.

Use the following technique to restart a message group or logical
message in the middle, after a system failure has occurred. When
the system restarts, the application can set the GroupId,
MsgSeqNumber, Offset, MsgFlags, and Persistence fields to the
appropriate values, and then issue the MQPUT call with
MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT set as
desired, but without specifying MQPMO_LOGICAL_ORDER. If
this call is successful, the queue manager retains the group and
segment information, and subsequent MQPUT calls using that
queue handle can specify MQPMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager
retains for the MQPUT call is separate from the group and segment
information that it retains for the MQGET call.

For any given queue handle, the application can mix MQPUT calls
that specify MQPMO_LOGICAL_ORDER with MQPUT calls that
do not, but note the following points:
v If MQPMO_LOGICAL_ORDER is not specified, each successful

MQPUT call causes the queue manager to set the group and
segment information for the queue handle to the values specified
by the application; this replaces the existing group and segment
information retained by the queue manager for the queue
handle.

MQPMO - Put message options

834 WebSphere MQ for z/VSE System Management Guide

v If MQPMO_LOGICAL_ORDER is not specified, the call does not
fail if there is a current message group or logical message; the
call might succeed with an MQCC_WARNING completion code.
In these cases, if the completion code is not MQCC_OK, the
reason code is one of the following (as appropriate):

MQRC_INCOMPLETE_GROUP
MQRC_INCOMPLETE_MSG

Note: The queue manager does not check the group and segment
information for the MQPUT1 call.

For applications that put messages and segments in logical order,
specify MQPMO_LOGICAL_ORDER, as this is the simplest option
to use. This option relieves the application of the need to manage
the group and segment information, because the queue manager
manages that information. However, specialized applications might
need more control than that provided by the
MQPMO_LOGICAL_ORDER option, and this can be achieved by
not specifying that option. If this is done, the application must
ensure that the GroupId, MsgSeqNumber, Offset, and MsgFlags
fields in MQMD are set correctly, before each MQPUT or MQPUT1
call.

For example, an application that wants to forward physical
messages that it receives, without regard for whether those
messages are in groups or segments of logical messages, must not
specify MQPMO_LOGICAL_ORDER. There are two reasons for
this:
v If the messages are retrieved and put in order, specifying

MQPMO_LOGICAL_ORDER assigns a new group identifier to
the messages, and this might make it difficult or impossible for
the originator of the messages to correlate any reply or report
messages that result from the message group.

v In a complex network with multiple paths between sending and
receiving queue managers, the physical messages might arrive
out of order. By specifying neither MQPMO_LOGICAL_ORDER
nor the corresponding MQGMO_LOGICAL_ORDER on the
MQGET call, the forwarding application can retrieve and
forward each physical message as soon as it arrives, without
having to wait for the next one in logical order to arrive.

Applications that generate report messages for messages in groups
or segments of logical messages must also not specify
MQPMO_LOGICAL_ORDER when putting the report message.

MQPMO_LOGICAL_ORDER can be specified with any of the
other MQPMO_* options.

The following options affect what happens when the queue manager is
quiescing:

MQPMO_FAIL_IF_QUIESCING
This option forces the MQPUT or MQPUT1 call to fail if the queue
manager is in the quiescing state.

The call returns completion code MQCC_FAILED with reason code
MQRC_Q_MGR_QUIESCING.

MQPMO - Put message options

Appendix B. Application Programming Reference 835

If you need none of the options described, use the following default
option:

MQPMO_NONE
Use this value to indicate that no other options have been
specified; all options assume their default values.

MQPMO_NONE is defined to aid program documentation; it is
not intended that this option be used with any other, but as its
value is zero, such use cannot be detected.

This is an input field. The initial value of the Options field is
MQPMO_NONE.

OriginalMsgHandle (MQHMSG)
This is an optional handle to a message. It may have been previously
retrieved from a queue. The use of this handle is subject to the value of the
Action field. See also NewMsgHandle.

The contents of the original message handle are not altered by the MQPUT
or MQPUT1 call.

This is an input field. The initial value of this field is MQHM_NONE. This
field is ignored if Version is less than MQPMO_VERSION_3.

PubLevel (MQLONG)
This is a reserved field in WebSphere MQ for z/VSE.

The initial value of this field is 9.

PutMsgRecFields (MQLONG)
Flags indicating which MQPMR fields are present.

This field contains flags that must be set to indicate which MQPMR fields
are present in the put message records provided by the application.
PutMsgRecFields is used only when the message is being put to a
distribution list. The field is ignored if RecsPresent is zero, or both
PutMsgRecOffset and PutMsgRecPtr are zero.

For fields that are present, the queue manager uses, for each destination,
the values from the fields in the corresponding put message record. For
fields that are absent, the queue manager uses the values from the MQMD
structure.

One or more of the following flags can be specified to indicate which fields
are present in the put message records:
v MQPMRF_MSF_ID Message-identifier field is present.
v MQPMRF_CORREL_ID Correlation-identifier field is present.
v MQPMRF_GROUP_ID Group-identifier field is present.
v MQPMRF_FEEDBACK Feedback field is present.
v MQPMRF_ACCOUNTING_TOKEN Accounting-token field is present.

If this flag is specified, either MQPMO_SET_IDENTITY_CONTEXT or
MQPMO_SET_ALL_CONTEXT must be specified in the Options field. If
this condition is not satisfied, the call fails with reason code
MQ_PMO_RECORD_FLAGS_ERROR.

If no MQPMR fields are present, the following can be specified:
v MQPMRF_NONE No put-message record fields are present.

If this value is specified, either RecsPresent must be zero, or both
PutMsgRecOffset and PutMsgRecPtr must be zero.

MQPMO - Put message options

836 WebSphere MQ for z/VSE System Management Guide

MQPMRF_NONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value is zero,
such use cannot be detected.

If PutMsgRecFields contains flags which are not valid, or put message
records are provided but PutMsgRecFields has the value MQPMRF_NONE,
the call fails with reason code MQRC_PMO_RECORD_FLAGS_ERROR.

This is an input field. The initial value of this field is MQPMRF-NONE.
This field is ignored if Version is less than MQPMO_VERSION_2.

PutMsgRecOffset (MQLONG)
Offset fo first put message record from start of MQPMO.

This is the offset in bytes of the first MQPMR put message record from the
start of the MQPMO structure. The offset can be positive or negative.
PutMsgRecOffset is used only when the message is being put to a
distribution list. The field is ignored if RecsPresent is zero.

When the message is being put to a distribution list, an array of one or
more MQPMR put message records can be provided in order to specify
certain properties of the message for each destination individually. These
properties are:
v Message identifier
v Correlation identifier
v Group identifier
v Feedback value
v Accounting token

It is not necessary to specify all of these properties, but whatever subset is
chosen, the fields must be specified in the correct order. See the description
of the MQPMR structure for further details.

Usually, there should be as many put messages as there are object records
specified by the MQOD when the distribution list is opened. Each put
message record supplies the message properties for the queue identified by
the corresponding object record. Queues in the distribution list which fail
to open must still have message records allocated for them at the
appropriate positions in the array, although the message properties are
ignored in this case.

It is possible for the number of put message records to differ from the
number of object records. If there are fewer put message records than
object records, the message properties for the destinations, which do not
have put message records, are taken from the corresponding fields in the
message descriptor MQMD. If there are more put message records than
object records, the excesses are not used (although it must still be possible
to access them). Put message records are optional, buf if they are supplied,
there must be RecsPresent of them

The put message records can be provided in a similar way to the object
records in MQOD, either by specifying an offset in PutMsgRecOffset, or by
specifying an address in PutMsgRecPtr. For details of how to do this, see
"MQOD - Object descriptor" above.

No more than one of PutMsgRecOffset and PutMsgRecPtr can be used; the
call fails with reason code MQRC_PUT_MSG_RECORDS_ERROR if both
are nonzero.

MQPMO - Put message options

Appendix B. Application Programming Reference 837

This is an input field. The initial value of this field is 0. This field is
ignored if Version is less than MQPMO_VERSION_2.

PutMsgRecPtr (MQPTR)
Address of first put message record.

This is the address of the first MQPMR put message record. PutMsgRecPtr
is used only when the message is being put to a distribution list. The field
is ignored if RecsPresent is zero.

Either PutMsgRecPtr of PutMsgRecOffset can be used to specify the put
message records, but not both. See the description of the PutMsgRecOffset
field above for details. If PutMsgRecPtr is not used, it must be set to the
null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and an all-null byte
string otherwise. This field is ignored if Version is less than
MQPMO_VERSION_2.

Note: On platforms where the programming language does not support
the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte string.

RecsPresent (MQLONG)
Number of put message records or response records present.

This is the number of MQPMR put message records or MQRR response
records that have been provided by the application. This number can be
greater than zero only if the message is being put to a distribution list. Put
message records and response records are optional. The application need
not provide any records, or it can choose to provide records of only one
type. However, if the application provides records of both types, it must
provide RecsPresent records of each type.

The value of RecsPresent need not be the same as the number of
destinations in the distribution list. If too many records are provided, the
excess is not used. If too few records are provided, default values are used
for the message properties for those destinations that do not have put
message records (see PutMsgRecOffset below).

If RecsPresent is less than zero, or is greater than zero, but the message is
not being put to a distribution list, the call fails with reason code
MQRC_RECS_PRESENT_ERROR.

This is an input field. The initial value of this field is 0. This field is
ignored if Version is less than MQPMO_VERSION_2.

ResolvedQMgrName (MQCHAR48)
This is the name of the destination queue manager after name resolution
has been performed by the local queue manager. The name returned is the
name of the queue manager that owns the queue identified by
ResolvedQName, and can be the name of the local queue manager.

A nonblank value is returned if the object is a single queue.

This is an output field. The length of this field is given by
MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages.

ResolvedQName (MQCHAR48)
This is the name of the destination queue after name resolution has been

MQPMO - Put message options

838 WebSphere MQ for z/VSE System Management Guide

performed by the local queue manager. The name returned is the name of
a queue that exists on the queue manager identified by
ResolvedQMgrName.

A nonblank value is returned if the object is a single queue.

This is an output field. The length of this field is given by
MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

ResponseRecOffset (MQLONG)
Offset of first response record from start of MQPMO.

This is the offset in bytes of the first MQRR response record from the start
of the MQPMO structure. The offset can be positive or negative.
ResponseRecOffset is used only when the message is being put to a
distribution list. The field is ignored if RecsPresent is zero.

When the message is being put to a distribution list, an array of one or
more MQRR response records can be provided in order to identify the
queues to which the message was not sent successfully (CompCode field in
MQRR), and the reason for each failure (Reason field in MQRR). The
message may not have been sent, either because the queue failed to open,
or because the put operation failed. The queue manager sets the response
records only when the outcome of the call is mixed, that is some messages
were sent successfully, while others failed, or all failed for differing
reasons. Reason code MQRC_MULTIPLE_REASONS from the call indicates
this case. If the same reason code applies to all queues, that reason is
returned in the Reason parameter of the MQPUT or MQPUT1 call, and the
response records are not set.

Usually, there should be as many response records as there are object
records specified by MQOD when the distribution list is opened. When
necessary, each response record is set to the completion code and reason
code for the put to the queue identified by the corresponding object record.
Queues in the distribution list which fail to open must still have response
records allocated for them at the appropriate positions in the array,
although they are set to the complication code and reason code resulting
from the open operation, rather than the put operation.

It is possible for the number of response records to differ from the number
of object records. If there are fewer response records than object records, it
may not be possible for the application to identify all of the destinations
for which the put operation failed, or the reasons for the failures. If there
are more response records than object records, the excesses are not used,
although it must still be possible to access them. Response records are
optional, but if they are supplied, there must be RecsPresent of them.

The response records can be provided in a similar way to the object
records in MQOD, either by specifying an offset in ResponseRecOffset, or
by specifying an address in ResponseRecPtr. For details on how to do this,
see "MQOD - object descriptor" above.However, no more than one of
ResponseRecOffset and ResponseRecPtr can be used. The call fails with
reason code MQRC_RESPONSE_RECORDS_ERROR if both are nonzero.

For the MQPUT1 call, this field must be zero. This is because the response
information (if requested) is returned in the response records specified by
the object descriptor MQOD.

This is an input field. The initial value of this field is 0. This field is
ignored if Version is less than MQPMO_VERSION_2.

MQPMO - Put message options

Appendix B. Application Programming Reference 839

ResponseRecPtr (MQPTR)
Address of first response record.

This is the address of the first MQRR response record. ResponseRecPtr is
used only when the message is being put to a distribution list. The field is
ignored if RecsPresent is zero.

Either ResponseRecPtr or ResponseRecOffset can be used to specify the
response records, but not both. See the description of the
ResponseRecOffset field above for details. If ResponseRecPtr is not used, it
must be set to the null pointer or null bytes.

For the MQPUT1 call, this field must be the null pointer or null bytes. This
is because the response information, if requested, is returned in the
response records specified by the object descriptor MQOD.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and an all-null byte
string otherwise. This field is ignored if Version is less than
MQPMO_VERSION_2.

Note: On platforms where the programming language does not support
the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte string.

ResolvedQName (MQCHAR48)
This is the name of the destination queue after name resolution has been
performed by the local queue manager. The name returned is the name of
a queue that exists on the queue manager identified by
ResolvedQMgrName.

A nonblank value is returned if the object is a single queue.

This is an output field. The length of this field is given by
MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

StrucId (MQCHAR4)
This is the structure identifier; the value must be:

MQPMO_STRUC_ID
Identifier for put-message options structure.

For the C programming language, the constant
MQPMO_STRUC_ID_ARRAY is also defined; this has the same value as
MQPMO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is
MQPMO_STRUC_ID.

Timeout (MQLONG)
This is a reserved field; its value is not significant. The initial value of this
field is ?1.

UnknownDestCount (MQLONG)
This is the number of messages that the current MQPUT or MQPUT1 call
has sent successfully to queues in the distribution list that resolve to
remote queues. Messages that the queue manager retains temporarily in
distribution-list form count as the number of individual destinations that
those distribution lists contain.

This field is not supported by WebSphere MQ for z/VSE.

MQPMO - Put message options

840 WebSphere MQ for z/VSE System Management Guide

Version (MQLONG)
This is the structure version number; the value must be one of the
following:

MQPMO_VERSION_1
Version-1 put-message options structure.

MQPMO_VERSION_2
Version-2 put-message options structure.

The following constant specifies the version number of the current version:

MQPMO_CURRENT_VERSION
Current version of put-message options structure. For WebSphere
MQ for z/VSE, this field defaults to MQPMO_VERSION_1.

The initial value of this field is MQPMO_VERSION_1.

C declaration

COBOL declaration

typedef struct tagMQPMO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of MQPUT or MQPUT1 */
MQLONG Timeout; /* Reserved */
MQHOBJ Context; /* Object handle of input queue */
MQLONG KnownDestCount; /* Reserved */
MQLONG UnknownDestCount; /* Reserved */
MQLONG InvalidDestCount; /* Reserved */
MQCHAR48 ResolvedQName; /* Resolved name of destination queue */
MQCHAR48 ResolvedQMgrName; /* Resolved name of destination queue manager */
MQLONG RecsPresent; /* Number of put message records or response records

present */
MQLONG PutMsgRecFields; /* Flags indicating which MQPMR fields are present */
MQLONG PutMsgRecOffset; /* Offset of first put message record from start

of MQPMO */
MQLONG ResponseRecOffset;/* Offset of first response record from start of MQPMO */
MQPTR PutMsgRecPtr; /* Address of first put message record */
MQPTR ResponseRecPtr; /* Address of first response record */

} MQPMO;
typedef MQPMO MQPOINTER PMQPMO;

MQPMO - Put message options

Appendix B. Application Programming Reference 841

PL/I declaration

** MQPMO structure
10 MQPMO.

** Structure identifier
15 MQPMO-STRUCID PIC X(4) VALUE ’PMO’.

** Structure version number
15 MQPMO-VERSION PIC S9(9) BINARY VALUE 1.

** Options that control the action of MQPUT and MQPUT1
15 MQPMO-OPTIONS PIC S9(9) BINARY VALUE 0.

** Reserved
15 MQPMO-TIMEOUT PIC S9(9) BINARY VALUE -1.

** Object handle of input queue
15 MQPMO-CONTEXT PIC S9(9) BINARY VALUE 0.

** Number of messages sent successfully to local queues
15 MQPMO-KNOWNDESTCOUNT PIC S9(9) BINARY VALUE 0.

** Number of messages sent successfully to remote queues
15 MQPMO-UNKNOWNDESTCOUNT PIC S9(9) BINARY VALUE 0.

** Number of messages that could not be sent
15 MQPMO-INVALIDDESTCOUNT PIC S9(9) BINARY VALUE 0.

** Resolved name of destination queue
15 MQPMO-RESOLVEDQNAME PIC X(48) VALUE SPACES.

** Resolved name of destination queue manager
15 MQPMO-RESOLVEDQMGRNAME PIC X(48) VALUE SPACES.

** Number of put message records or response records present
15 MQPMO-RECSPRESENT PIC S9(9) BINARY VALUE 0.

** Flags indicating which MQPMR fields are present
15 MQPMO-PUTMSGRECFIELDS PIC S9(9) BINARY VALUE 0.

** Offset of first put message record from start of MQPMO
15 MQPMO-PUTMSGRECOFFSET PIC S9(9) BINARY VALUE 0.

** Offset of first response record from start of MQPMO
15 MQPMO-RESPONSERECOFFSET PIC S9(9) BINARY VALUE 0.

** Address of first put message record
15 MQPMO-PUTMSGRECPTR POINTER VALUE NULL.

** Address of first response record
15 MQPMO-RESPONSERECPTR POINTER VALUE NULL.

dcl
1 MQPMO based,
3 StrucId char(4)

init(MQPMO_STRUC_ID), /* Structure identifier */
3 Version fixed bin(31)

init(MQPMO_VERSION_1), /* Structure version number */
3 Options fixed bin(31)

init(MQPMO_NONE), /* Options that control the action of MQPUT and MQPUT1 */
3 Timeout fixed bin(31)

init(-1), /* Reserved */
3 Context fixed bin(31)

init(0), /* Object handle of input queue */
3 KnownDestCount fixed bin(31)

init(0), /* Reserved */
3 UnknownDestCount fixed bin(31)

init(0), /* Reserved */
3 InvalidDestCount fixed bin(31)

init(0), /* Reserved */
3 ResolvedQName char(48)

init(’’), /* Resolved name of destination queue */
3 ResolvedQMgrName char(48)

init(’’), /* Resolved name of destination queue manager */
3 RecsPresent fixed bin(31)

init(0), /* Number of put message records or response
records present */

3 PutMsgRecFields fixed bin(31)
init(MQPMRF_NONE), /* Flags indicating which MQPMR fields are

present */
3 PutMsgRecOffset fixed bin(31)

init(0), /* Offset of first put message record from
start of MQPMO */

3 ResponseRecOffset fixed bin(31)
init(0) /* Offset of first response record from start

of MQPMO */
3 PutMsgRecPtr pointer

init(null()), /* Address of first put message record */
3 ResponseRecPtr pointer

init(null()), /* Address of first response */

MQPMO - Put message options

842 WebSphere MQ for z/VSE System Management Guide

MQPMR – Put message record

The MQPMR structure is used to specify various message properties for a single
destination when a message is being put to a distribution list. MQPMR is an
input/output structure for the MQPUT and MQPUT1 calls.

By providing an array of these structures on the MQPUT or MQPUT1 call, it is
possible to specify different values for each destination queue in a distribution list.
Some of the fields are input only, others are input/ output.

Note: This structure is unusual in that it does not have a fixed layout. The fields
in this structure are optional, and the presence or absence of each field is indicated
bay the flags in the PutMsgRecFields field in MQPMO. Fields that are present
must occur in the following order:
v MsgId
v CorrelId
v GroupId
v Feedback
v AccountingToken

Fields that are absent occupy no space in the record.

Because MQPMR does not have a fixed layout, no definition of it is provided in
the header, COPY, and INCLUDE files for the supported programming languages.
The application programmer should create a declaration containing the fields that
are required by the application, and set the flags in PutMsgRecFields to indicate
the fields that are present.

or another example:

MQRFH2 - Rules and formatting header 2

The MQRFH2 header is based on the MQRFH header, but it allows Unicode
strings to be transported without translation, and it can carry numeric datatypes.

The MQRFH2 structure defines the format of the version-2 rules and formatting
header. Use this header to send data that has been encoded using an XML-like
syntax. A message can contain two or more MQRFH2 structures in series, with
user data optionally following the last MQRFH2 structure in the series.

Format name

MQFMT_RF_HEADER_2

typedef struct tagMQPMR MQPMR;
struct tagMQPMR
{
MQBYTE24 MsgId;
MQBYTE24 CorrelId;

} MQPMRa;

typedef struct tagMQPMRb MQPMRb;
struct tagMQPMRb
{
MQBYTE24 CorrelId;
MQBYTE24 GroupId;
MQBYTE24 Feedback;

};MQPMRb;

MQPMR - Put message record

Appendix B. Application Programming Reference 843

Character set and encoding

Special rules apply to the character set and encoding used for the MQRFH2
structure:
v Fields other than NameValueData are in the character set and encoding given by

the CodedCharSetId and Encoding fields in the header structure that precedes
MQRFH2, or by those fields in the MQMD structure if the MQRFH2 is at the
start of the application message data.
The character set must be one that has single-byte characters for the characters
that are valid in queue names.
When MQGMO_CONVERT is specified on the MQGET call, the queue manager
converts these fields to the requested character set and encoding.

v NameValueData is in the character set given by the NameValueCCSID field.
Only certain Unicode character sets are valid for NameValueCCSID (see the
description of NameValueCCSID for details).
Some character sets have a representation that depends on the encoding. If
NameValueCCSID is one of these character sets, NameValueData must be in the
same encoding as the other fields in the MQRFH2.
When MQGMO_CONVERT is specified on the MQGET call, the queue manager
converts NameValueData to the requested encoding, but does not change its
character set.

Fields

Here is a summary of the fields.

Table 60. Fields in MQRFH2

Field Description

StrucId Structure identifier

Version Structure version number

StrucLength Length in bytes of the MQRFH2
structure

Encoding Numeric encoding of the data that
follows the last NameValueData
field

CodedCharSetId CCSID of the data that follows the
last NameValueData field.

Format Format name of the data that
follows the last NameValueData
field.

Flags Flags

NameValueCCSID CCSID of the data in the
NameValueData field.

Here is a description of the fields.

CodedCharSetId (MQLONG)
This specifies the character set identifier of the data that follows the last
NameValueData field. It does not apply to character data in the MQRFH2
structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data. This special value can be used:

MQRFH2 - Rules and formatting header 2

844 WebSphere MQ for z/VSE System Management Guide

MQCCSI_INHERIT
Character data in the data following this structure is in the same
character set as this structure.

The queue manager changes this value in the structure sent in the
message to the actual character-set identifier of the structure.
Provided no error occurs, the value MQCCSI_INHERIT is not
returned by the MQGET call. MQCCSI_INHERIT cannot be used if
the value of the PutApplType field in MQMD is MQAT_BROKER.

The initial value of this field is MQCCSI_INHERIT.

Encoding (MQLONG)
This specifies the numeric encoding of the data that follows the last
NameValueData field. It does not apply to numeric data in the MQRFH2
structure itself. On the MQPUT or MQPUT1 call, the application must set
this field to the value appropriate to the data.

The initial value of this field is MQENC_NATIVE.

Flags (MQLONG)
This value must be specified:

MQRFH_NONE
No flags.

The initial value of this field is MQRFH_NONE.

Format (MQCHAR8)
This specifies the format name of the data that follows the last
NameValueData field.

On the MQPUT or MQPUT1 call, the application must set this field to the
value appropriate to the data. The rules for coding this field are the same
as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

NameValueCCSID (MQLONG)
This specifies the coded character set identifier of the data in the
NameValueData field. This is different from the character set of the other
strings in the MQRFH2 structure, and can be different from the character
set of the data (if any) that follows the last NameValueData field at the end
of the structure.

NameValueCCSID must have one of the values shown in Table 61.

Table 61. NameValueCCSID (MQLONG) valid values

CCSID Meaning

1200 UCS-2 open-ended

13488 UCS-2 2.0 subset

17584 UCS-2 2.1 subset (includes the Euro symbol)

1208 UTF-8

For the UCS-2 character sets, the encoding (byte order) of the
NameValueData must be the same as the encoding of the other fields in
the MQRFH2 structure. Surrogate characters (X'D800' through X'DFFF') are
not supported.

MQRFH2 - Rules and formatting header 2

Appendix B. Application Programming Reference 845

Note: If NameValueCCSID does not have one of the values listed in
Table 61 on page 845, and the MQRFH2 structure requires conversion on
the MQGET call, the call completes with reason code
MQRC_SOURCE_CCSID_ERROR and the message is returned
unconverted.

The initial value of this field is 1208.

NameValueData (MQCHARn)
This is a variable-length character string containing data encoded using an
XML-like syntax. The length in bytes of this string is given by the
NameValueLength field that precedes the NameValueData field. This
length must be a multiple of four.

The NameValueLength and NameValueData fields are optional, but if
present they must occur as a pair and be adjacent. The pair of fields can be
repeated as many times as required. For example: length1 data1 length2
data2 length3 data3.

Note:

1. Because these fields are optional, they are omitted from the declarations
of the structure that are provided for the various programming
languages supported.

2. For further information on the method of terminating the following
NameValue fields, see topic NameValueString.

NameValueData is not converted to the character set specified on the
MQGET call when the message is retrieved with the MQGMO_CONVERT
option in effect; NameValueData remains in its original character set.
However, NameValueData is converted to the encoding specified on the
MQGET call.

Syntax of name/value data:

The string consists of a single folder that contains zero or more properties.
The folder is delimited by XML start and end tags whose name is the
name of the folder:

<folder> property1 property2 ... </folder>

Optionally, the content='properties' element can be included in the folder
start tag. This indicates that the content of the folder is to be treated as
message properties. This element must only be used with user-defined
folders and not IBM-defined folders. For example, <wmq> or <jms>.

For example:
<com.ourcompany content=’properties’> ... </com.ourcompany>

Characters following the folder end tag, up to the length defined by
NameValueLength, must be blank. Within the folder, each property is
composed of a name and a value, and optionally a data type:
<name dt="datatype">value</name>

In these examples:
v Specify the delimiter characters (<, =, ?, /, and >) exactly as shown. The

parameter value can be wrapped in either double quotes or apostrophes,
for example dt="datatype" or dt='datatype'

v name is the user-specified name of the property. See below for more
information about names.

MQRFH2 - Rules and formatting header 2

846 WebSphere MQ for z/VSE System Management Guide

v datatype is an optional user-specified data type of the property. See
below for valid data types.

v value is the user-specified value of the property. See below for more
information about values.

v Blanks are significant between the > character that precedes a value, and
the < character that follows the value, and at least one blank must
precede dt=. Elsewhere you can code blanks freely between tags, or
preceding or following tags (for example, in order to improve
readability); these blanks are not significant.

If properties are related to each other, you can group them together by
enclosing them within XML start and end tags whose name is the name of
the group:
<folder> <group> property1 property2 ... </group> </folder>

Groups can be nested within other groups, without limit, and a given
group can occur more than once within a folder. A folder can also contain
some properties in groups and other properties not in groups.

Names of properties, groups, and folders:

The names of properties, groups, and folders must be valid XML tag
names, with the exception of the colon character (:), which is not permitted
in a property, group, or folder name. In particular:
v Names must start with a letter or an underscore. Valid letters are

defined in the W3C XML specification and consist essentially of Unicode
categories Ll, Lu, Lo, Lt, and Nl.

v The remaining characters in a name can be letters, decimal digits,
underscores, hyphens, or dots. These correspond to Unicode categories
Ll, Lu, Lo, Lt, Nl, Mc, Mn, Lm, and Nd.

v The Unicode compatibility characters (X'F900' and above) are not
permitted in any part of a name.

v Names must not start with the string XML in any mixture of uppercase
or lowercase. In addition:
– Names are case-sensitive. For example, ABC, abc, and Abc are treated

as three different names.
– Each folder has a separate name space. As a result, a group or

property in one folder does not conflict with a group or property of
the same name in another folder.

– Groups and properties occupy the same name space within a folder.
As a result, a property cannot have the same name as a group within
the folder containing that property.

Generally, programs that analyze the NameValueData field must ignore
properties or groups that have names that the program does not recognize,
provided that those properties or groups are correctly formed.

Data types of properties:

Each property can have an optional data type. If specified, the data type
must be one of the values shown in Table 62 on page 848, in uppercase,
lowercase, or mixed case.

MQRFH2 - Rules and formatting header 2

Appendix B. Application Programming Reference 847

Table 62. Data types of properties

Data type Used for

string Any sequence of characters. Certain characters must be specified using
escape sequences (see below).

boolean The character 0 or 1 (1 denotes TRUE).

bin.hex Hexadecimal digits representing octets.

i1 Integer number in the range -128 through +127, expressed using only
decimal digits and optional sign.

i2® Integer number in the range -32 768 through +32 767, expressed using
only decimal digits and optional sign.

i4 Integer number in the range -2 147 483 648 through +2 147 483 647,
expressed using only decimal digits and optional sign.

int Integer number in the range -9 223 372 036 854 775 808 through +9 223 372
036 854 775 807, expressed using only decimal digits and optional sign.
This can be used in place of i1, i2, i4, or i8 if the sender does not wish to
imply a particular precision.

r4 Floating-point number with magnitude in the range 1.175E-37 through
3.402 823 47E+38, expressed using decimal digits, optional sign, optional
fractional digits, and optional exponent.

r8 Floating-point number with magnitude in the range 2.225E-307 through
1.797 693 134 862 3E+308 expressed using decimal digits, optional sign,
optional fractional digits, and optional exponent.

Values of properties:

The value of a property can consist of any characters, except as shown in
Table 63. Each occurrence in the value of a character marked as mandatory
must be replaced by the corresponding escape sequence. Each occurrence
in the value of a character marked as optional can be replaced by the
corresponding escape sequence, but this is not required.

Table 63. Data types of properties

Character Escape sequence Usage

& & Mandatory

< < Mandatory

> > Optional

" " Optional

' ' Optional

Note: The & character at the start of an escape sequence must not be
replaced by &.

In the example shown here, the blanks in the value are significant.
However, no escape sequences are needed:
<Famous_Words>The program displayed "Hello World"</Famous_Words>

NameValueLength (MQLONG)
This specifies the length in bytes of the data in the NameValueData field.
To avoid problems with data conversion of the data (if any) that follows
the NameValueData field, NameValueLength must be a multiple of four.

MQRFH2 - Rules and formatting header 2

848 WebSphere MQ for z/VSE System Management Guide

Note: The NameValueLength and NameValueData fields are optional but,
if present, they must occur as a pair and be adjacent. The pair of fields can
be repeated as many times as required. For example:
length1 data1 length2 data2 length3 data3

As these fields are optional, they are omitted from the declarations of the
structure that are provided for the various programming languages
supported.

StrucId (MQCHAR4)
This is the structure identifier. The value must be:

MQRFH_STRUC_ID
Identifier for rules and formatting header structure.

For the C programming language, the constant
MQRFH_STRUC_ID_ARRAY is also defined. This has the same
value as MQRFH_STRUC_ID, but is an array of characters instead
of a string.

The initial value of this field is MQRFH_STRUC_ID.

StrucLength (MQLONG)
The length in bytes of the MQRFH2 structure, including the
NameValueLength and NameValueData fields at the end of the structure. It
is valid for there to be multiple pairs of NameValueLength and
NameValueData fields at the end of the structure, in the sequence:
length1, data1, length2, data2, ...

StrucLength does not include any user data that may follow the last
NameValueData field at the end of the structure.

To avoid problems with converting the user data in some environments,
StrucLength must be a multiple of four.

The constant shown here gives the length of the fixed part of the structure;
that is, the length excluding the NameValueLength and NameValueData
fields:

MQRFH_STRUC_LENGTH_FIXED_2
Length of fixed part of MQRFH2 structure.

The initial value of this field is MQRFH_STRUC_LENGTH_FIXED_2.

Version (MQLONG)
The structure version number. The value must be:

MQRFH_VERSION_2
Version-2 rules and formatting header structure.

The initial value of this field is MQRFH_VERSION_2.

Initial values and language declarations

Here are the initial values and language declarations for MQRFH2.

Table 64. Initial values of fields in MQRFH2

Field name Name of constant Value of constant

StrucId MQRFH2_STRUC_ID 'RFH'

Version MQRFH2_VERSION_1 2

StrucLength MQRFH_STRUC_LENGTH_FIXED_2 36

MQRFH2 - Rules and formatting header 2

Appendix B. Application Programming Reference 849

Table 64. Initial values of fields in MQRFH2 (continued)

Field name Name of constant Value of constant

Encoding MQENC_NATIVE Depends on
environment

CodedCharSetId MQCCSI_INHERIT -2

Format MQFMT_NONE Blanks

Flags MQRFH_NONE 0

NameValueCCSID None 1208

Note: In the C programming language, the macro variable MQRFH2_DEFAULT
contains the values listed above. Issue this statement to provide initial values for
the fields in the structure:
MQRFH2 MyRFH2 = {MQRFH2_DEFAULT};

C declaration

COBOL declaration

PL/I declaration

struct tagMQRFH2 {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Total length of MQRFH2 including all

NameValueLength and NameValueData
fields */

MQLONG Encoding; /* Numeric encoding of data that follows
last NameValueData field */

MQLONG CodedCharSetId; /* Character set identifier of data that
follows last NameValueData field */

MQCHAR8 Format; /* Format name of data that follows last
NameValueData field */

MQLONG Flags; /* Flags */
MQLONG NameValueCCSID; /* Character set identifier of

NameValueData */
};

** MQRFH2 structure
10 MQRFH.

** Structure identifier
15 MQRFH-STRUCID PIC X(4).

** Structure version number
15 MQRFH-VERSION PIC S9(9) COMP.

** Total length of MQRFH2 including all NameValueLength and
** NameValueData fields
15 MQRFH-STRUCLENGTH PIC S9(9) COMP.

** Numeric encoding of data that follows last NameValueData field
15 MQRFH-ENCODING PIC S9(9) COMP.

** Character set identifier of data that follows last
** NameValueData field
15 MQRFH-CODEDCHARSETID PIC S9(9) COMP.

** Format name of data that follows last NameValueData field
15 MQRFH-FORMAT PIC X(8).

** Flags
15 MQRFH-FLAGS PIC S9(9) COMP.

** Character set identifier of NameValueData
15 MQRFH-NAMEVALUECCSID PIC S9(9) COMP.

MQRFH2 - Rules and formatting header 2

850 WebSphere MQ for z/VSE System Management Guide

MQRR – Response record

The MQRR structure is used to receive the completion code and reason code
resulting from the open or put operation for a single destination queue, when the
destination is a distribution list. MQRR is an output structure for the MQOPEN,
MQPUT, and MQPUT1 calls.

By providing an array of these structures on the MQOPEN and MQPUT calls, or
on the MQPUT1 call, it is possible to determine the completion codes and reason
codes for all of the queues in a distribution list when the outcome of the call is
mixed. That is, when the call succeeds for some queues in the list, but fails for
others. Reason code MQRC_MULTIPLE_REASONS from the call indicates that the
response records, if provided by the application, have been set by the queue
manager.

Fields

Here is a summary of the fields.

Table 65. Fields in MQRR

Field Description

CompCode Completion code

Reason Reason code

Here is a description of the fields.

CompCode (MQLONG)
Completion code of queue.

This is the completion code resulting from the open or put operation for
the queue whose name was specified by the corresponding element in the
array of MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is
MQRC_NONE.

dcl
1 MQRFH2 based,
3 StrucId char(4)
init(MQRFH_STRUC_ID), /* Structure identifier */

3 Version fixed bin(31)
init(MQRFH_VERSION_2), /* Structure version number */

3 StrucLength fixed bin(31)
init(MQRFH_STRUC_LENGTH_FIXED_2), /* Total length of MQRFH2 */

/* including all */
/* NameValueLength and */
/* NameValueData fields */

3 Encoding fixed bin(31)
init(MQENC_NATIVE), /* Numeric encoding of data */

/* that follows last */
/* NameValueData field */

3 CodedCharSetId fixed bin(31)
init(MQCCSI_INHERIT), /* Character set identifier of */

/* data that follows last */
/* NameValueData field */

3 Format char(8)
init(MQFMT_NONE), /* Format name of data that */

/* follows last NameValueData */
/* field */

3 Flags fixed bin(31)
init(MQRFH_NONE), /* Flags */

3 NameValueCCSID fixed bin(31)
init(1208); /* Character set identifier of */

/* NameValueData */

MRR - Response record

Appendix B. Application Programming Reference 851

Reason (MQLONG)
Reason code for queue.

This is the reason code resulting from the open or put operation for the
queue whose name was specified by the corresponding element in the
array of MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is
MQRC_NONE.

C declaration

COBOL declaration

PL/I declaration

MQSD – Subscription descriptor

The MQSD structure is used to specify details about the subscription being made.
The structure is an input/output parameter on the MQSUB call.

Fields

Here is a summary of the fields.

Table 66. Fields in MQSD

Field Description

StrucId Structure identifier

VersionStructure Version number

Options Options

ObjectName Object name

AlternateUserId Alternate User Id

AlternateSecurityId Alternate Security ID

SubExpiry Subscription Expiry

ObjectString Object String

typedef struct tagMQRR MQRR;
struct tagMQRR
{
MQLONG CompCode; /* Completion code for queue */
MQLONG Reason; /* Reason code for queue */

} MQRR;
typedef MQRR MQPOINTER PMQRR;

** MQRR structure
10 MQRR.

** Completionm code for queue
15 MQRR-COMPCODE PIC S9(9) BINARY VALUE 0.

** Reason code for queue
15 MQRR-REASON PIC S9(9) BINARY VALUE 0.

dcl
1 MQRR based,
3 CompCode fixed bin(31)

init(MQCC_OK), /* Completion code for queue */
3 Reason fixed bin(31)

init(MQRC_NONE); /* Reason code for queue */

MRR - Response record

852 WebSphere MQ for z/VSE System Management Guide

|

|
|

|

|

||

||

||

||

||

||

||

||

||

||

Table 66. Fields in MQSD (continued)

Field Description

SubName Subscription Name

SubUserData Subscription user data

SubCorrelId Subscription Correlation ID

PubPriority Publication priority

PubAccountingToken Publication Accounting Token

PubAppIdentityData Publication application identity data

SelectionString String providing selection criteria

SubLevel Subscription Level

ResObjectString Long object name

Here is a description of the fields.

StrucId (MQCHAR4)
This is the structure identifier; the value must be: MQSD_STRUC_ID
Identifier for Subscription Descriptor structure.

For the C programming language, the constant MQSD_STRUC_ID_ARRAY
is also defined; this has the same value as MQSD_STRUC_ID, but is an
array of characters instead of a string.

This is always an input field. The initial value of this field is
MQSD_STRUC_ID.

Version (MQLONG)
This is the structure version number; the value must be:

MQSD_VERSION_1
Version-1 Subscription Descriptor structure.

Options (MQLONG)
This provides options to control the action of the MQSUB call. You must
specify at least one of the following options:
v MQSO_RESUME
v MQSO_CREATE
MQSO_CREATE

Create a new subscription for the topic specified. If a subscription
using the same SubName exists, the call fails with
MQRC_SUB_ALREADY_EXISTS. This failure can be avoided by
combining the MQSO_CREATE option with MQSO_RESUME. The
SubName is not always necessary. For more details, see the
description of that field.

Combining MQSO_CREATE with MQSO_RESUME returns a
handle to a pre-existing subscription for the specified SubName if
one is found; if there is no existing subscription, a new one is
created using all the fields provided in the MQSD.

MQSO_RESUME
Return a handle to a pre-existing subscription which matches that
specified by SubName. No changes are made to the matching
subscriptions attributes and they are returned on output in the
MQSD structure. Only the following MQSD fields are used:
StrucId, Version, Options, AlternateUserId and AlternateSecurityId,
and SubName.

MQSD - Subscription descriptor

Appendix B. Application Programming Reference 853

|

||

||

||

||

||

||

||

||

||

||
|

|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

The call fails with reason code MQRC_NO_SUBSCRIPTION if a
subscription does not exist matching the full subscription name.
This failure can be avoided by combining the MQSO_CREATE
option with MQSO_RESUME.

The user ID of the subscription is the user ID that created the
subscription, or if it has been later altered by a different user ID, it
is the user ID of the most recent successful alteration. If an
AlternateUserId is used, and use of alternate user IDs is allowed
for that user, the alternate user ID is recorded as the user ID that
created the subscription instead of the user ID under which the
subscription was made.

If a matching subscription exists that was created without the
MQSO_ANY_USERID option, and the user ID of the subscription
is different from that of the application requesting a handle to the
subscription, the call fails with reason code
MQRC_IDENTITY_MISMATCH.

If a matching subscription exists and is currently in use, the call
fails with MQRC_SUBSCRIPTION_IN_USE.

If the subscription named in SubName is not a valid subscription
to resume or alter from an application, the call fails with
MQRC_INVALID_SUBSCRIPTION. MQSO_RESUME is implied by
MQSO_ALTER so you do not need to combine it with that option.
However, combining the two options does not cause an error.

Durability options
The following options control how durable the subscription is. You
can specify only one of these options. On return from an MQSUB
call using MQSO_RESUME, the appropriate durability option is
set.
MQSO_DURABLE

Request that the subscription to this topic remains until it
is explicitly removed using MQCLOSE with the
MQCO_REMOVE_SUB option. If this subscription is not
explicitly removed it will remain even after this
applications connection to the queue manager is closed. If
a durable subscription is requested to a topic that is
defined as not allowing durable subscriptions, the call fails
with MQRC_DURABILITY_NOT_ALLOWED.

MQSO_NON_DURABLE
Request that the subscription to this topic is removed when
the applications connection to the queue manager is closed,
if it is not already explicitly removed.
MQSO_NON_DURABLE is the opposite of the
MQSO_DURABLE option, and is defined to aid program
documentation. It is the default if neither is specified.

Destination options
The following option controls the destination that publications for
a topic that has been subscribed to are sent to. On return from an
MQSUB call using MQSO_RESUME, this option is set if
appropriate.

MQSO_MANAGED
Request that the destination that the publications are sent
to is managed by the queue manager. The object handle

MQSD - Subscription descriptor

854 WebSphere MQ for z/VSE System Management Guide

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

returned in Hobj represents a queue manager managed
queue and is for use with subsequent MQGET, MQINQ, or
MQCLOSE calls. An object handle returned from a
previous MQSUB call cannot be provided in the Hobj
parameter when MQSO_MANAGED is not specified.

Scope option
The following option controls the scope of the subscription being
made. On returning from an MQSUB call using MQSO-RESUME,
the appropriate scope option is set.

MQSO_SCOPE_QMGR
This subscription is made only on the local queue manager.
Note this is only value supported in z/VSE. Only
publications that are published at this queue manager are
sent to this subscriber.

Registration options
The following options control the details of the registration that is
made to the queue manager for this subscription. On return from
an MQSUB call using MQSO.
MQSO_ANY_USERID

When MQSO_ANY_USERID is specified, the identity of
the subscriber is not restricted to a single user ID. This
allows any user to alter or resume the subscription when
they have suitable authority. Only a single user may have
the subscription at any one time. An attempt to resume use
of a subscription currently in use by another application
causes the call to fail with
MQRC_SUBSCRIPTION_IN_USE.

If an MQSUB call refers to an existing subscription with
MQSO_ANY_USERID set, and the user ID differs from the
original subscription, the call succeeds only if the new user
ID has authority to subscribe to the topic. On successful
completion, future publications to this subscriber are put to
the subscribers queue with the new user ID set in the
publication message.

Do not specify both MQSO_ANY_USERID and
MQSO_FIXED_USERID. If neither is specified, the default
is MQSO_FIXED_USERID.

MQSO_FIXED_USERID
When MQSO_FIXED_USERID is specified, the subscription
can be altered or resumed by only the last user ID to alter
the subscription.

If a user ID other than the one recorded as owning a
subscription tries to resume the call fails with
MQRC_IDENTITY_MISMATCH. The owning user ID of a
subscription can be viewed using the DISPLAY SBSTATUS
command.

Do not specify both MQSO_ANY_USERID and
MQSO_FIXED_USERID. If neither is specified, the default
is MQSO_FIXED_USERID.

Publication options
The following options control the way publications are sent to this
subscriber.

MQSD - Subscription descriptor

Appendix B. Application Programming Reference 855

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

MQSO_NEW_PUBLICATIONS_ONLY
No currently retained publications are to be sent, when this
subscription is created, only new publications. This option
only applies when MQSO_CREATE is specified. Any
subsequent changes to a subscription do not alter the flow
of publications and so any publications retained on a topic,
will have already been sent to the subscriber as new
publications.

If this option is specified without MQSO_CREATE the call
fails with MQRC_OPTIONS_ERROR. On return from an
MQSUB call using MQSO_RESUME, this option is not set
even if the subscription was created using this option.

If this option is not used, previously retained messages are
sent to the destination queue provided. If this action fails
due to an error, either MQRC_RETAINED_MSG_Q_ERROR
or MQRC_RETAINED_NOT_DELIVERED, the creation of
the subscription fails.

MQSO_PUBLICATIONS_ON_REQUEST
Setting this option indicates that the subscriber will request
information specifically when required. The queue
manager does not send unsolicited messages to the
subscriber. The retained publication (or possibly multiple
publications if a wildcard is specified in the topic) is sent
to the subscriber each time an MQSUBRQ call is made
using the Hsub handle from a previous MQSUB call. No
publications are sent as a result of the MQSUB call using
this option. On return from an MQSUB call using
MQSO_RESUME, this option is set if appropriate.

ObjectName (MQCHAR48)
This is the name of the topic object as defined on the local queue manager.
The name can contain the following characters:
v Uppercase alphabetic characters (A through Z)
v Lowercase alphabetic characters (a through z)
v Numeric digits (0 through 9)
v Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but can contain
trailing blanks. Use a null character to indicate the end of significant data
in the name; the null and any characters following it are treated as blanks.

The ObjectName is used to form the full topic name.

The full topic name can be built from two different fields: ObjectName and
ObjectString. For details of how these two fields are used, see “Using topic
strings” on page 1077.

If the object identified by the ObjectName field cannot be found, the call
fails with reason code MQRC_UNKNOWN_OBJECT_NAME even if there
is a string specified in ObjectString.

On return from an MQSUB call using the MQSO_RESUME option this
field is unchanged.

The length of this field is given by MQ_TOPIC_NAME_LENGTH. The
initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

MQSD - Subscription descriptor

856 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|

AlternateUserId (MQCHAR12)
Ignored in z/VSE

AlternateSecurityId (MQBYTE40)
Ignored in z/VSE

SubExpiry (MQLONG)
This is the time expressed in tenths of a second after which the
subscription expires. No more publications will match this subscription
after this interval has passed. As soon as a subscription expires,
publications are no longer sent to the queue. However, the publications
that are already there are not affected in any way. SubExpiry has no effect
on publication expiry.

The following special value is recognized:

MQEI_UNLIMITED
The subscription has an unlimited expiration time.

On return from an MQSUB call using the MQSO_RESUME option this
field is set to the original expiry of the subscription and not the remaining
expiry time.

ObjectString (MQCHARV)
This is the long object name to be used.

The ObjectString is used to form the Full topic name.

The full topic name can be built from two different fields: ObjectName and
ObjectString. For details of how these two fields are used, see “Using topic
strings” on page 1077.

The maximum length of ObjectString is 256 in z/VSE.

If ObjectString is not specified correctly, according to the description of
how to use the MQCHARV structure, or if it exceeds the maximum length,
the call fails with reason code MQRC_OBJECT_STRING_ERROR. This is an
input field. The initial values of the fields in this structure are the same as
those in the MQCHARV structure.

On return from an MQSUB call using the MQSO_RESUME option this
field is unchanged. The full topic name used is returned in the
ResObjectString field if a buffer is provided.

SubName (MQCHARV)
This specifies the subscription name. This field is only required if Options
specifies the option MQSO_DURABLE, but if provided will be used by the
queue manager for MQSO_NON_DURABLE as well.

If specified, SubName must be unique within the queue manager, because
it is the method used to identify the subscription.

The maximum length of SubName is 48 bytes in z/VSE.

This field serves two purposes. For an MQSO_DURABLE subscription, you
use this field to identify a subscription so you can resume it after it has
been created if you have either closed the handle to the subscription (using
the MQCO_KEEP_SUB option) or have been disconnected from the queue
manager. This is done using the MQSUB call with the MQSO_RESUME
option. It is also displayed in the administrative view of subscriptions in
the SUBNAME field in DISPLAY SBSTATUS.

If SubName is specified incorrectly, according to the description of how to
use the MQCHARV structure, is left out when it is required (that is

MQSD - Subscription descriptor

Appendix B. Application Programming Reference 857

|
|

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|

SubName.VSLength is zero), or if it exceeds the maximum length, the call
fails with reason code MQRC_SUB_NAME_ERROR.

This is an input field. The initial values of the fields in this structure are
the same as those in the MQCHARV structure.

SubUserData (MQCHARV)
Ignored in z/VSE

SubCorrelId (MQBYTE24)
This field contains a correlation identifier common to all publications
matching this subscription.

All publications sent to match this subscription contain this correlation
identifier in the message descriptor. If multiple subscriptions get their
publications from the same queue, using MQGET by correlation identifier
allows only publications for a specific subscription to be obtained. This
correlation identifier can either be generated by the queue manager or by
the user.

If the option MQSO_SET_CORREL_ID is not specified, the correlation
identifier is generated by the queue manager and this field is an output
field containing the correlation identifier that will be set in each message
published for this subscription.

If the option MQSO_SET_CORREL_ID is specified, the correlation
identifier is generated by the user and this field is an input field containing
the correlation identifier to be set in each publication for this subscription.
In this case, if the field contains MQCI_NONE, the correlation identifier
that is set in each message published for this subscription is the correlation
identifier created by the original put of the message.

The length of this field is given by MQ_CORREL_ID_LENGTH. The initial
value of this field is MQCI_NONE.

On return from an MQSUB call using MQSO_RESUME, this field is set to
the current correlation identifier for the subscription.

PubPriority (MQLONG)
Ignored in z/VSE

PubAccountingToken (MQBYTE32)
Ignored in z/VSE

PubApplIdentityData (MQCHAR32)
Ignored in z/VSE

SelectionString (MQCHARV)
This is not supported in z/VSE. Value ignored.

SubLevel (MQLONG)
Ignored in z/VSE

ResObjectString (MQCHARV)
This is the long object name after the queue manager resolves the name
provided in ObjectName.

If the long object name is provided in ObjectString and nothing is provided
in ObjectName, then the value returned in this field is the same as
provided in ObjectString.

If this field is omitted (that is ResObjectString.VSBufSize is zero) then the
ResObjectString is not returned, but the length is returned in
ResObjectString.VSLength. If the length is shorter than the full

MQSD - Subscription descriptor

858 WebSphere MQ for z/VSE System Management Guide

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

ResObjectString then it is truncated and returns as many of the rightmost
characters as can fit in the provided length.

If ResObjectString is specified incorrectly, according to the description of
how to use the MQCHARV structure, or if it exceeds the maximum length,
the call fails with reason code MQRC_RES_OBJECT_STRING_ERROR.

MQSMPO – Set message property options

The MQSMPO structure allows applications to specify options that control how
properties of messages are set. The structure is an input parameter on the
MQSETMP call.

Data in MQSMPO must be in the character set of the application and encoding of
the application (MQENC_NATIVE).

Fields

Here is a summary of the fields.

Table 67. Fields in MQSMPO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options

ValueEncoding Property value encoding

ValueCCSID Property value character set

Here is a description of the fields.

Options (MQLONG)
Location options: The following options relate to the relative location of
the property compared to the property cursor.

MQSMPO_SET_FIRST
Sets the value of the first property that matches the specified name,
or if it does not exist, adds a new property after all other
properties with a matching hierarchy.

MQSMPO_SET_PROP_UNDER_CURSOR
Sets the value of the property pointed to by the property cursor.
The property pointed to by the property cursor is the one that was
last inquired using either the MQIMPO_INQ_FIRST or the
MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, or
when the message handle is specified in the MsgHandle field of
the MQGMO or MQPMO structure on an MQGET or MQPUT call
respectively.

If this option is used when the property cursor has not yet been
established, or if the property pointed to by the property cursor
has been deleted, the call fails with completion code
MQCC_FAILED and reason code
MQRC_PROPERTY_NOT_AVAILABLE.

MQSD - Subscription descriptor

Appendix B. Application Programming Reference 859

|
|

|
|
|

|

MQSMPO_SET_PROP_BEFORE_CURSOR
Sets a new property before the property pointed to by the property
cursor. The property pointed to by the property cursor is the one
that was last inquired using either the MQIMPO_INQ_FIRST or the
MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, or
when the message handle is specified in the MsgHandle field of
the MQGMO or MQPMO structure on an MQGET or MQPUT call
respectively.

If this option is used when the property cursor has not yet been
established, or if the property pointed to by the property cursor
has been deleted, the call fails with completion code
MQCC_FAILED and reason code
MQRC_PROPERTY_NOT_AVAILABLE.

MQSMPO_SET_PROP_AFTER_CURSOR
Sets a new property after the property pointed to by the property
cursor. The property pointed to by the property cursor is the one
that was last inquired using either the MQIMPO_INQ_FIRST or the
MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, or
when the message handle is specified in the MsgHandle field of
the MQGMO or MQPMO structure on an MQGET or MQPUT call
respectively.

If this option is used when the property cursor has not yet been
established, or if the property pointed to by the property cursor
has been deleted, the call fails with completion code
MQCC_FAILED and reason code
MQRC_PROPERTY_NOT_AVAILABLE.

If you need none of the options described, use this option:

MQSMPO_NONE
No options specified. This is always an input field. The initial
value of this field is MQSMPO_SET_FIRST.

StrucId (MQCHAR4)
This is the structure identifier; the value must be:

MQSMPO_STRUC_ID
Identifier for set message property options structure.

For the C programming language, the constant
MQSMPO_STRUC_ID_ARRAY is also defined. This has the same
value as MQSMPO_STRUC_ID, but is an array of characters
instead of a string.

This is always an input field. The initial value of this field is
MQSMPO_STRUC_ID.

ValueCCSID (MQLONG)
The character set of the property value to be set if the value is a character
string.

This is always an input field. The initial value of this field is
MQCCSI_APPL.

ValueEncoding (MQLONG)
The encoding of the property value to be set if the value is numeric.

MQSMPO - Set message property options

860 WebSphere MQ for z/VSE System Management Guide

This is always an input field. The initial value of this field is
MQENC_NATIVE.

Version (MQLONG)
This is the structure version number; the value must be:

MQSMPO_VERSION_1
Version-1 set message property options structure.

This constant specifies the version number of the current version:

MQSMPO_CURRENT_VERSION
Current version of set message property options structure.

This is always an input field. The initial value of this field is
MQSMPO_VERSION_1.

Initial values and language declarations

Here are the initial values and language declarations for MQSMPO.

Table 68. Initial values of fields in MQSMPO

Field name Name of constant Value of constant

StrucId MQSMPO_STRUC_ID 'SMPO'

Version MQSMPO_VERSION_1 1

Options MQSMPO_NONE 0

ValueEncoding MQENC_NATIVE Depends on environment

ValueCCSID MQCCSI_APPL -3

Note:

1. The value Null string or blanks denotes the null string in C, and blank
characters in other programming languages.

2. In the C programming language, the macro variable MQSMPO_DEFAULT
contains the values listed above. It can be used in the following way to provide
initial values for the fields in the structure:
MQSMPO MySMPO = {MQSMPO_DEFAULT};

C declaration

COBOL declaration

struct tagMQSMPO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of

MQSETMP */
MQLONG ValueEncoding; /* Encoding of Value */
MQLONG ValueCCSID; /* Character set identifier of Value */

};

MQSMPO - Set message property options

Appendix B. Application Programming Reference 861

PL/I declaration

MQSRO - Subscription request options

The MQSRO structure allows the application to specify options that control how a
subscription request is made. The structure is an input/output parameter on the
MQSUBRQ call.

Fields

Here is a summary of the fields.

Table 69. Fields in MQSRO

Field Description

StrucId Structure identifier

Version Structure version number

Options Options

NumPubs Number of publications

Here is a description of the fields.

StrucId (MQCHAR4)
This is the structure identifier; the value must be: MQSRO_STRUC_ID
Identifier for Subscription Request Options structure.

For the C programming language, the constant
MQSRO_STRUC_ID_ARRAY is also defined; this has the same value as
MQSRO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is
MQSRO_STRUC_ID.

Version (MQLONG)
This is the structure version number; the value must be:
MQSRO_VERSION_1 Version-1 Subscription Request Options structure.

** MQSMPO structure
10 MQSMPO.

** Structure identifier
15 MQSMPO-STRUCID PIC X(4).

** Structure version number
15 MQSMPO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQSETMP
15 MQSMPO-OPTIONS PIC S9(9) BINARY.

** Encoding of Value
15 MQSMPO-VALUEENCODING PIC S9(9) BINARY.

** Character set identifier of Value
15 MQSMPO-VALUECCSID PIC S9(9) BINARY.

dcl
1 MQSMPO based,
3 StrucId char(4)
init(MQSMPO_STRUC_ID), /* Structure identifier */

3 Version fixed bin(31)
init(MQSMPO_VERSION_1), /* Structure version number */

3 Options fixed bin(31)
init(MQSMPO_SET_FIRST), /* Options that control the action */

/* of MQSETMP */
3 ValueEncoding fixed bin(31)
init(MQENC_NATIVE), /* Encoding of Value */

3 ValueCCSID fixed bin(31)
init(MQCCSI_APPL); /* Character set identifier of */

/* Value */

MQSMPO - Set message property options

862 WebSphere MQ for z/VSE System Management Guide

|

|
|
|

|

|

||

||

||

||

||

||
|

|

|
|
|

|
|
|

|
|

|
|
|

The following constant specifies the version number of the current version:
MQSRO_CURRENT_VERSION Current version of Subscription Request
Options structure.

This is always an input field. The initial value of this field is
MQSRO_VERSION_1.

Options (MQLONG)
Default option: the following option must be used:

MQSRO_NONE
Use this value to indicate that no other options have been
specified; all options assume their default values. MQSRO_NONE
helps program documentation.

Although it is not intended that this option be used with any other,
because its value is zero, this use cannot be detected.

NumPubs (MQLONG)
This is an output field, returned to the application to indicate the number
of publications sent to the subscription queue as a result of this call.
Although this number of publications have been sent as a result of this
call, there is no guarantee that this many messages will be available for the
application to get, especially if they are non-persistent messages.

There might be more than one publication if the topic subscribed to
contained a wildcard. If no wildcards were present in the topic string when
the subscription represented by Hsub was created, then at most one
publication is sent as a result of this call.

MQTM – Trigger message

On the WebSphere MQ for z/VSE platform, triggers are invoked by the queue
manager using either the transaction ID code, or program ID code, in the queue
definition.

The transaction ID, or program ID, determines if the trigger is invoked using an
EXEC CICS START, or EXEC CICS LINK, program respectively.

Trigger programs using the START mechanism can use the EXEC CICS RETRIEVE
program to retrieve the trigger data structure. Programs invoked by the LINK
mechanism can retrieve the MQTM structure in the DFHCOMMAREA.

Fields

Here is a summary of the fields.

Table 70. Fields in MQTM

Field Description

StrucId Structure identifier

Version Structure version number

QName Name of triggered queue

ProcessName Name of process object

TriggerData Trigger data

ApplType Application type

ApplId Application identifier

MQSRO - Subscription request options

Appendix B. Application Programming Reference 863

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

Table 70. Fields in MQTM (continued)

Field Description

EnvData Environment data

UserData User data

Here is a description of the fields.

ApplId (MQCHAR256)
Application identifier.

On WebSphere MQ for z/VSE ApplId is:
v A CICS transaction ID (for MQAT_CICS_VSE applications).

ApplType (MQLONG)
Application type.

On WebSphere MQ for z/VSE ApplType has the following standard value:
MQAT_CICS_VSE

WebSphere MQ for z/VSE application.

The initial value of this field is 0.

EnvData (MQCHAR128)
Environment data.

This is a reserved field.

ProcessName (MQCHAR48)
Name of process object.

This is a reserved field.

QName (MQCHAR48)
This is the name of the queue for which a trigger event occurred, and is
used by the application started by the trigger-monitor application. The
queue manager initializes this field with the value of the QName attribute
of the triggered queue.

Names that are shorter than the defined length of the field are padded to
the right with blanks; they are not ended prematurely by a null character.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

StrucId (MQCHAR4)
This is the structure identifier. The value must be:

MQTM_STRUC_ID
Identifier for trigger message structure

For the C programming language, the constant MQTM_STRUC_ID_ARRAY
is also defined; this has the same value as MQTM_STRUC_ID, but is an
array of characters instead of a string.The initial value of this field is
MQTM_STRUC_ID.

TriggerData (MQCHAR64)
Trigger data.

On WebSphere MQ for z/VSE this is a 13-byte field, consisting of:
v 4-byte transaction ID code.
v 8-byte program ID code.

MQTM - Trigger message

864 WebSphere MQ for z/VSE System Management Guide

v 1-byte trigger-event flag.

The trigger event flag indicates whether the trigger was started from a
(F)irst message or (E)very message event. When a trigger instance is a
program (rather than a transaction), the MQTM data structure is passed to
the trigger program as a COMMAREA.

In the case of (E)very event triggers, the queue manager will start another
trigger instance when a trigger instance ends, if it detects that there are still
messages on the queue.

If an error has occurred such that the trigger program cannot process
messages from the object queue, a loop condition may arise (the queue
manager will continue to start trigger instances which themselves continue
to fail).

This can be avoided by setting the trigger event flag in the TriggerData
field of the MQTM data structure to “S” (stop). Since the trigger event flag
is in a COMMAREA, the queue manager will detect that the event flag has
been set to (S)top, and will cease starting new trigger instances.

UserData (MQCHAR128)
User data.

Contains user-defined data configured in the queue definition of the queue
that initiates the trigger instance.

Version (MQLONG)
Structure version number.

The value must be:

MQTM_VERSION_1
Version number for trigger message structure.

C declaration

COBOL declaration

typedef struct tagMQTM MQTM;
struct tagMQTM
{
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQCHAR48 QName; /* Name of triggered queue */
MQCHAR48 ProcessName; /* Name of process object */
MQCHAR64 TriggerData; /* Trigger data */
MQLONG ApplType; /* Application type */
MQCHAR256 ApplId; /* Application identifier */
MQCHAR128 EnvData; /* Environment data */
MQCHAR128 UserData; /* User data */

};

MQTM - Trigger message

Appendix B. Application Programming Reference 865

PL/I declaration

MQXQH – Transmission-queue header

The MQXQH structure describes the information that is prefixed to the application
message data of messages when they are on transmission queues. A transmission
queue is a special type of local queue that temporarily holds messages destined for
remote queues (that is, destined for queues that do not belong to the local queue
manager). A transmission queue is denoted by the Usage queue attribute having
the value MQUS_TRANSMISSION.

A message that is on a transmission queue has two message descriptors:
v One message descriptor is stored separately from the message data; this is called

the separate message descriptor, and is generated by the queue manager when
the message is placed on the transmission queue. Some of the fields in the
separate message descriptor are copied from the message descriptor provided by
the application on the MQPUT or MQPUT1 call (see below for details). The
separate message descriptor is the one that is returned to the application in the
MsgDesc parameter of the MQGET call when the message is removed from the
transmission queue.

v A second message descriptor is stored within the MQXQH structure as part of
the message data; this is called the embedded message descriptor, and is a copy
of the message descriptor that was provided by the application on the MQPUT
or MQPUT1 call (with minor variations; see below for details).
The embedded message descriptor is always a version-1 MQMD. If the message
put by the application has nondefault values for one or more of the version-2
fields in the MQMD, an MQMDE structure follows the MQXQH, and is in turn
followed by the application message data (if any). The MQMDE is either:
– Generated by the queue manager (if the application uses a version-2 MQMD

to put the message), or

** MQTM structure
10 MQTM.

** Structure identifier
15 MQTM-STRUCID PIC X(4).

** Structure version number
15 MQTM-VERSION PIC S9(9) BINARY.

** Name of triggered queue
15 MQTM-QNAME PIC X(48).

** Name of process object
15 MQTM-PROCESSNAME PIC X(48).

** Trigger data
15 MQTM-TRIGGERDATA PIC X(64).

** Application type
15 MQTM-APPLTYPE PIC S9(9) BINARY.

** Application identifier
15 MQTM-APPLID PIC X(256).

** Environment data
15 MQTM-ENVDATA PIC X(128).

** User data
15 MQTM-USERDATA PIC X(128).

dcl
1 MQTM based,
3 StrucId char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number */
3 QName char(48), /* Name of triggered queue */
3 ProcessName char(48), /* Name of process object */
3 TriggerData char(64), /* Trigger data */
3 ApplType fixed bin(31), /* Application type */
3 ApplId char(256), /* Application identifier */
3 EnvData char(128), /* Environment data */
3 UserData char(128); /* User data */

MQTM - Trigger message

866 WebSphere MQ for z/VSE System Management Guide

– Already present at the start of the application message data (if the application
uses a version-1 MQMD to put the message).

The embedded message descriptor is the one that is returned to the application
in the MsgDesc parameter of the MQGET call when the message is removed
from the final destination queue.

Putting messages on remote queues

When an application puts a message on a remote queue (either by specifying the
name of the remote queue directly, or by using a local definition of the remote
queue), the local queue manager:
v Creates an MQXQH structure containing the embedded message descriptor.
v Appends an MQMDE if one is needed and is not already present.
v Appends the application message data.
v Places the message on an appropriate transmission queue.

Putting messages directly on transmission queues

An application can also put a message directly on a transmission queue. In this
case the application must prefix the application message data with an MQXQH
structure, and initialize the fields with appropriate values. In addition, the Format
field in the MsgDesc parameter of the MQPUT or MQPUT1 call must have the
value MQFMT_XMIT_Q_HEADER.

Character data in the MQXQH structure created by the application must be in the
character set of the local queue manager (defined by the CodedCharSetId
queue-manager attribute), and integer data must be in the native machine
encoding. In addition, character data in the MQXQH structure must be padded
with blanks to the defined length of the field; the data must not be ended
prematurely by using a null character, because the queue manager does not
convert the null and subsequent characters to blanks in the MQXQH structure.

On z/VSE, the queue manager does check that an MQXQH structure is present,
but does not check that valid values have been specified for the fields.

Getting messages from transmission queues

Applications that get messages from a transmission queue must process the
information in the MQXQH structure in an appropriate fashion. The presence of
the MQXQH structure at the beginning of the application message data is
indicated by the value MQFMT_XMIT_Q_HEADER being returned in the Format
field in the MsgDesc parameter of the MQGET call. The values returned in the
CodedCharSetId and Encoding fields in the MsgDesc parameter indicate the
character set and encoding of the character and integer data in the MQXQH
structure, respectively. The character set and encoding of the application message
data are defined by the CodedCharSetId and Encoding fields in the embedded
message descriptor.

Fields

Here is a summary of the fields.

Table 71. Fields in MQXQH

Field Description

StrucId Structure identifier

MQTM - Trigger message

Appendix B. Application Programming Reference 867

Table 71. Fields in MQXQH (continued)

Field Description

Version Structure version number

RemoteQName Name of destination queue

RemoteQMgrName Name of destination queue
manager

MsgDesc Original message descriptor

Here is a description of the fields.

MsgDesc (MQMD1)
This is the embedded message descriptor, and is a close copy of the
message descriptor MQMD that was specified as the MsgDesc parameter
on the MQPUT or MQPUT1 call when the message was originally put to
the remote queue.

Note: This is a version-1 MQMD. The initial values of the fields in this
structure are the same as those in the MQMD structure.

RemoteQMgrName (MQCHAR48)
This is the name of the queue manager or queue-sharing group that owns
the queue that is the apparent eventual destination for the message.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The
initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

RemoteQName (MQCHAR48)
This is the name of the message queue that is the apparent eventual
destination for the message (this might prove not to be the eventual
destination if, for example, this queue is defined at RemoteQMgrName to
be a local definition of another remote queue).

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

StrucId (MQCHAR4)
This is the structure identifier. The value must be:

MQXQH_STRUC_ID
Identifier for transmission-queue header structure

For the C programming language, the constant
MQXQH_STRUC_ID_ARRAY is also defined; this has the same value as
MQXQH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQXQH_STRUC_ID.

Version (MQLONG)
This is the structure version number. The value must be:

MQXQH_VERSION_1
Version number for transmission-queue header structure.

The following constant specifies the version number of the current version:

MQXQH_CURRENT_VERSION
Current version of transmission-queue header structure.

MQTM - Trigger message

868 WebSphere MQ for z/VSE System Management Guide

The initial value of this field is MQXQH_VERSION_1.

C declaration

COBOL declaration

typedef struct tagMQXQH MQXQH;
struct tagMQXQH
{
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQCHAR48 RemoteQName; /* Name of destination queue */
MQCHAR48 RemoteQMgrName; /* Name of destination queue manager */
MQMD1 MsgDesc; /* Original message descriptor */

};

** MQXQH structure
10 MQXQH.

** Structure identifier
15 MQXQH-STRUCID PIC X(4).

** Structure version number
15 MQXQH-VERSION PIC S9(9) BINARY.

** Name of destination queue
15 MQXQH-REMOTEQNAME PIC X(48).

** Name of destination queue manager
15 MQXQH-REMOTEQMGRNAME PIC X(48).

** Original message descriptor
15 MQXQH-MSGDESC.

** Structure identifier
20 MQXQH-MSGDESC-STRUCID PIC X(4).

** Structure version number
20 MQXQH-MSGDESC-VERSION PIC S9(9) BINARY.

** Report options
20 MQXQH-MSGDESC-REPORT PIC S9(9) BINARY.

** Message type
20 MQXQH-MSGDESC-MSGTYPE PIC S9(9) BINARY.

** Expiry time
20 MQXQH-MSGDESC-EXPIRY PIC S9(9) BINARY.

** Feedback or reason code
20 MQXQH-MSGDESC-FEEDBACK PIC S9(9) BINARY.

** Numeric encoding of message data
20 MQXQH-MSGDESC-ENCODING PIC S9(9) BINARY.

** Character set identifier of message data
20 MQXQH-MSGDESC-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of message data
20 MQXQH-MSGDESC-FORMAT PIC X(8).

** Message priority
20 MQXQH-MSGDESC-PRIORITY PIC S9(9) BINARY.

** Message persistence
20 MQXQH-MSGDESC-PERSISTENCE PIC S9(9) BINARY.

** Message identifier
20 MQXQH-MSGDESC-MSGID PIC X(24).

** Correlation identifier
20 MQXQH-MSGDESC-CORRELID PIC X(24).

** Backout counter
20 MQXQH-MSGDESC-BACKOUTCOUNT PIC S9(9) BINARY.

** Name of reply-to queue
20 MQXQH-MSGDESC-REPLYTOQ PIC X(48).

** Name of reply queue manager
20 MQXQH-MSGDESC-REPLYTOQMGR PIC X(48).

** User identifier
20 MQXQH-MSGDESC-USERIDENTIFIER PIC X(12).

** Accounting token
20 MQXQH-MSGDESC-ACCOUNTINGTOKEN PIC X(32).

** Application data relating to identity
20 MQXQH-MSGDESC-APPLIDENTITYDATA PIC X(32).

** Type of application that put the message
20 MQXQH-MSGDESC-PUTAPPLTYPE PIC S9(9) BINARY.

** Name of application that put the message
20 MQXQH-MSGDESC-PUTAPPLNAME PIC X(28).

** Date when message was put
20 MQXQH-MSGDESC-PUTDATE PIC X(8).

** Time when message was put
20 MQXQH-MSGDESC-PUTTIME PIC X(8).

** Application data relating to origin
20 MQXQH-MSGDESC-APPLORIGINDATA PIC X(4).

MQTM - Trigger message

Appendix B. Application Programming Reference 869

PL/I declaration

MQI calls
This section identifies the MQI calls supported by WebSphere MQ for z/VSE,
which are:
MQBACK

Back out changes
MQBUFMH

Convert buffer into message handle
MQCLOSE

Close object
MQCMIT

Commit changes
MQCONN

Connect queue manager
MQCRTMH

Create message handle
MQDISC

Disconnect queue manager
MQDLTMH

Delete message handle
MQDLTMP

Delete message properties
MQGET

Get message
MQINQ

Inquire about object attributes
MQINQMP

Inquire message property
MQMHBUF

Comvert message handle into buffer

dcl
1 MQXQH based,
3 StrucId char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number */
3 RemoteQName char(48), /* Name of destination queue */
3 RemoteQMgrName char(48), /* Name of destination queue manager */
3 MsgDesc, /* Original message descriptor */
5 StrucId char(4), /* Structure identifier */
5 Version fixed bin(31), /* Structure version number */
5 Report fixed bin(31), /* Report options */
5 MsgType fixed bin(31), /* Message type */
5 Expiry fixed bin(31), /* Expiry time */
5 Feedback fixed bin(31), /* Feedback or reason code */
5 Encoding fixed bin(31), /* Numeric encoding of message data */
5 CodedCharSetId fixed bin(31), /* Character set identifier of message data */
5 Format char(8), /* Format name of message data */
5 Priority fixed bin(31) /* Message priority */
5 Persistence fixed bin(31), /* Message persistence */
5 MsgId char(24), /* Message identifier */
5 CorrelId char(24), /* Correlation identifier */
5 BackoutCount fixed bin(31), /* Backout counter */
5 ReplyToQ char(48), /* Name of reply-to queue */
5 ReplyToQMgr char(48), /* Name of reply queue manager */
5 UserIdentifier char(12), /* User identifier */
5 AccountingToken char(32), /* Accounting token */
5 ApplIdentityData char(32), /* Application data relating to identity */
5 PutApplType fixed bin(31), /* Type of application that put the message */
5 PutApplName char(28), /* Name of application that put the message */
5 PutDate char(8), /* Date when message was put */
5 PutTime char(8), /* Time when message was put */
5 ApplOriginData char(4); /* Application data relating to origin */

MQTM - Trigger message

870 WebSphere MQ for z/VSE System Management Guide

MQOPEN
Open object

MQPUT
Put message

MQPUT1
Put one message

MQSET
Set object attributes

MQSETMP
Set message property

MQSUB
Register subscription

MQSUBRQ
Request retained subscription

The MQCONNX MQI call is not supported by WebSphere MQ for z/VSE, however
the WebSphere MQ for z/VSE server will accept connection requests by MQ client
programs issuing the MQCONNX call. In addition, the WebSphere MQ client for
z/VSE supports the MQCONNX call. The client is described in Chapter 10,
“WebSphere MQ clients,” on page 623.

MQBACK - Back out changes

The MQBACK call indicates to the queue manager that all of the message gets and
puts that have occurred since the last syncpoint are to be backed out (for client and
batch programs) or have been backed out (for online programs). Messages put as
part of a unit of work are deleted; messages retrieved as part of a unit of work are
reinstated on the queue (for client and batch programs).

Note: For online applications, it is required that the application itself performs a
CICS SYNCPOINT ROLLBACK before issuing the MQBACK call. The MQBACK
call is used to re-enter the queue manager to update internal WebSphere MQ for
z/VSE tables.

For client and batch programs, the CICS SYNCPOINT ROLLBACK is performed
for the caller.

Syntax

MQBACK (Hconn,CompCode,Reason)

Parameters

The MQBACK call has the following parameters:

Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.

MQI calls

Appendix B. Application Programming Reference 871

|
|
|
|

MQCC_FAILED
Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQBACK (Hconn,&CompCode,&Reason);

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQBACK’ USING HCONN,COMPCODE,REASON.

Declare the parameters:
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Completion code

01 COMPCODE PIC S9(9)BINARY.
**Reason code qualifying CompCode

01 REASON PICS9(9)BINARY.
PL/I invocation

CALL MQBACK (HCONN,COMPCODE,REASON);

Declare the parameters:
DCL HCONN FIXED BIN(31); /*Connection handle */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode */

MQBUFMH - Convert buffer into message handle

The MQBUFMH function call converts a buffer into a message handle and is the
inverse of the MQMHBUF call.

This call takes a message descriptor and MQRFH2 properties in the buffer and
makes them available through a message handle. The MQRFH2 properties in the
message data are, optionally, removed. The Encoding, CodedCharSetId, and
Format fields of the message descriptor are updated, if necessary, to correctly
describe the contents of the buffer after the properties have been removed.

Syntax

MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, Buffer, BufferLength,
DataLength, CompCode, Reason)

MQBACK - Back out changes

872 WebSphere MQ for z/VSE System Management Guide

Parameters

The MQBUFMH call has the following parameters:

Hconn (MQHCONN) - input
This handle represents the connection to the queue manager. The value of
Hconn must match the connection handle that was used to create the
message handle specified in the Hmsg parameter.

Hmsg (MQHMSG) - input
This is the message handle for which a buffer is required. The value was
returned by a previous MQCRTMH call.

BufMsgHOpts (MQBMHO) - input
The MQBMHO structure allows applications to specify options that control
how message handles are produced from buffers. See “MQBMHO – Buffer
to message handle options” on page 718 for details.

MsgDesc (MQMD) - input/output
The MsgDesc structure contains the message descriptor properties and
describes the contents of the buffer area.

On output from the call, the properties are optionally removed from the
buffer area and, in this case, the message descriptor is updated to correctly
describe the buffer area.

Data in this structure must be in the character set and encoding of the
application.

BufferLength (MQLONG) - input
BufferLength is the length of the Buffer area, in bytes.

A BufferLength of zero bytes is valid, and indicates that the buffer area
contains no data.

Buffer (MQBYTExBufferLength) - input/output
Buffer defines the area containing the message buffer. For most data, you
should align the buffer on a 4-byte boundary.

If Buffer contains character or numeric data, set the CodedCharSetId and
Encoding fields in the MsgDesc parameter to the values appropriate to the
data; this enables the data to be converted, if necessary.

If properties are found in the message buffer they are optionally removed;
they later become available from the message handle on return from the
call.

In the C programming language, the parameter is declared as a
pointer-to-void, which means the address of any type of data can be
specified as the parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this case,
the parameter address passed by programs written in C or System/390®

assembler can be null.

DataLength (MQLONG) - output
DataLength is the length, in bytes, of the buffer which might have the
properties removed.

CompCode (MQLONG) - output
The completion code; it is one of the following:
MQCC_OK

Successful completion.

MQBUFMH - Convert buffer into message handle

Appendix B. Application Programming Reference 873

MQCC_FAILED
Call failed.

Reason (MQLONG) - output
The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE (0, X'000')
No reason to report.

If CompCode is MQCC_FAILED:

MQRC_BMHO_ERROR (2489, X'09B9')
Buffer to message handle options structure not valid.

MQRC_BUFFER_ERROR (2004, X'07D4')
Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR (2005, X'07D5')
Buffer length parameter not valid.

MQRC_CONNECTION_BROKEN (2009, X'07D9')
Connection to queue manager lost.

MQRC_HMSG_ERROR (2460, X'099C')
Message handle not valid.

MQRC_MD_ERROR (2026, X'07EA')
Message descriptor not valid.

MQRC_MSG_HANDLE_IN_USE (2499, X'09C3')
Message handle already in use.

MQRC_OPTIONS_ERROR (2046, X'07FE')
Options not valid or not consistent.

MQRC_RFH_ERROR (2334, X'091E')
MQRFH2 structure not valid.

MQRC_RFH_FORMAT_ERROR (2421, X'0975')
An MQRFH2 folder containing properties could not be parsed.

MQRC_UNEXPECTED_ERROR (2195, X'893')
Unexpected error occurred.

Usage notes

MQBUFMH calls cannot be intercepted by API exits. A buffer is converted into a
message handle in the application space; the call does not reach the queue
manager.

Language invocations

This call is supported in the following programming languages:
C invocation

MQBUFMH (Hconn, Hmsg, &BufMsgHOpts, &MsgDesc, BufferLength,
Buffer, &DataLength, &CompCode, &Reason);

Declare the parameters:
MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQBMHO BufMsgHOpts; /* Options that control the action of MQBUFMH */
MQMD MsgDesc; /* Message descriptor */

MQBUFMH - Convert buffer into message handle

874 WebSphere MQ for z/VSE System Management Guide

MQLONG BufferLength; /* Length in bytes of the Buffer area */
MQBYTE Buffer[n]; /* Area to contain the message buffer */
MQLONG DataLength; /* Length of the output buffer */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation
CALL ’MQBUFMH’ USING HCONN, HMSG, BUFMSGHOPTS, MSGDESC,
BUFFERLENGTH, BUFFER, DATALENGTH,COMPCODE, REASON.

Declare the parameters:
** Connection handle
01 HCONN PIC S9(9) BINARY.
** Message handle
01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQBUFMH
01 BUFMSGHOPTS.

COPY CMQBMHOV.
** Message descriptor
01 MSGDESC.

COPY CMQMD.
** Length in bytes of the Buffer area
01 BUFFERLENGTH PIC S9(9) BINARY.
** Area to contain the message buffer
01 BUFFER PIC X(n).
** Length of the output buffer
01 DATALENGTH PIC S9(9) BINARY.
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation
call MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, BufferLength,
Buffer,DataLength, CompCode, Reason);

Declare the parameters:
dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg char(8) /* Message handle */
dcl BufMsgHOpts like MQBMHO;

/* Options that control the action of MQBUFMH */
dcl MsgDesc like MQMD; /* Message descriptor */
dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer area */
dcl Buffer char(n); /* Area to contain the message buffer */
dcl DataLength fixed bin(31); /* Length of the output buffer */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

MQCLOSE - Close object

The MQCLOSE call relinquishes access to an object, and is the inverse of the
MQOPEN call.

Syntax

MQCLOSE (Hconn,Hobj,Options,CompCode,Reason)

Parameters

The MQCLOSE call has the following parameters:

Hconn (MQHCONN) - input
Connection handle.

MQBUFMH - Convert buffer into message handle

Appendix B. Application Programming Reference 875

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call.

Hobj (MQHOBJ) - input/output
Object handle.

This handle represents the object that is being closed. The object can be of
any type. The value of Hobj was returned by a previous MQOPEN call. On
successful completion of the call, the queue manager sets this parameter to
a value of binary zeros.

Options (MQLONG) - input
Options that control the action of MQCLOSE.

The following options are supported:

MQCO_NONE
No optional close processing required. This must be specified for:
v Objects other than queues.
v Predefined queues.
v Temporary dynamic queues (but only in those cases where Hobj

is not the handle returned by the MQOPEN call that created the
queue).

In all of the above cases, the object is retained and not deleted. If
this option is specified for a temporary dynamic queue: the queue
is deleted, if it was created by the MQOPEN call that returned
Hobj; any messages that are on the queue are purged. In all other
cases the queue (and any messages on it) are retained.

If this option is specified for a permanent dynamic queue, the
queue is retained and not deleted.

MQCO_DELETE
Delete the queue.

The queue is deleted if either of the following is true:
v It is a permanent dynamic queue, and there are no messages on

the queue.
v It is the temporary dynamic queue that was created by the

MQOPEN call that returned Hobj. In this case, all the messages
on the queue are purged.

In all other cases the call fails with reason code
MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not
deleted.

MQCO_DELETE_PURGE
Delete the queue, purging any messages on it.

The queue is deleted if either of the following is true:
v It is a permanent dynamic queue.
v It is the temporary dynamic queue that was created by the

MQOPEN call that returned Hobj.

In all other cases the call fails with reason code
MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not
deleted.

The following points apply if the object being closed is a dynamic
queue (either permanent or temporary):

MQCLOSE - Close object

876 WebSphere MQ for z/VSE System Management Guide

v For a dynamic queue, the options MQCO_DELETE or
MQCO_DELETE_PURGE can be specified regardless of the
options specified on the corresponding MQOPEN call.

v When a dynamic queue is deleted, all MQGET calls with the
MQGMO_WAIT option that are outstanding against the queue
are canceled and reason code MQRC_Q_DELETED is returned.
After a dynamic queue has been deleted, any call (other than
MQCLOSE) that attempts to reference the queue using a
previously acquired Hobj handle fails with reason code
MQRC_Q_DELETED.
Be aware that although a deleted queue cannot be accessed by
applications, the queue is not removed from the system, and
associated resources are not freed, until such time as all handles
that reference the queue have been closed.

v When a dynamic queue is deleted, if the Hobj handle specified
on the MQCLOSE call is not the one that was returned by the
MQOPEN call that created the queue, a check is made that the
user identifier is authorized to delete the queue. This check is
not performed if:
– The WebSphere MQ for z/VSE security feature is not active.
– The handle specified is the one returned by the MQOPEN call

that created the queue.
– The queue being deleted is a temporary dynamic queue.

v When a temporary dynamic queue is closed, if the Hobj handle
specified on the MQCLOSE call is the one that was returned by
the MQOPEN call that created the queue, the queue is deleted.
This occurs regardless of the close options specified on the
MQCLOSE call. If there are messages on the queue, they are
discarded; no report messages are generated. If there are
uncommitted units of work that affect the queue, the queue and
its messages are still deleted, but this does not cause the units of
work to fail. However, as described above, the resources
associated with the units of work are not freed until each of the
units of work has been either committed or backed out.

CompCode (MQLONG) - output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQCLOSE - Close object

Appendix B. Application Programming Reference 877

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_OPTION_NOT_VALID_FOR_TYPE
(2045, X'7FD') Option inconsistent with queue status.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

Language invocations

This call is supported in the following programming languages:
C invocation

MQCLOSE (Hconn,&Hobj,Options,&CompCode,&Reason);

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQHOBJ Hobj; /*Object handle */
MQLONG Options; /*Options that control the action of MQCLOSE */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQCLOSE’USING HCONN,HOBJ,OPTIONS,COMPCODE,REASON.

Declare the parameters:
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Object handle

01 HOBJ PICS9(9)BINARY.
**Options that control the action of MQCLOSE

01 OPTIONS PICS9(9)BINARY.
**Completion code

01 COMPCODE PIC S9(9)BINARY.
**Reason code qualifying CompCode

01 REASON PICS9(9)BINARY.
PL/I invocation

CALL MQCLOSE (HCONN,HOBJ,OPTIONS,COMPCODE,REASON);

Declare the parameters:
DCL HCONN FIXED BIN(31); /*Connection handle */
DCL HOBJ FIXED BIN(31); /*Object handle */
DCL OPTIONS FIXED BIN(31); /*Options that control the action of

MQCLOSE */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode */

MQCMIT - Commit changes

For client and batch programs, the MQCMIT call indicates to the queue manager
that the application has reached a syncpoint, and that all of the message gets and
puts that have occurred since the last syncpoint are to be made permanent by the
queue manager issuing a CICS SYNCPOINT for the application. Messages put as
part of a unit of work are made available to other applications; messages retrieved
as part of a unit of work are deleted.

MQCLOSE - Close object

878 WebSphere MQ for z/VSE System Management Guide

For online application programs, the MQCMIT call (issued after the online
application issues a CICS SYNCPOINT) indicates to the queue manager it can
verify that syncpoint has occurred, update internal tables and clear any delayed
gets.

Syntax

MQCMIT (Hconn,CompCode,Reason)

Parameters

The MQCMIT call has the following parameters:

Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call.

CompCode (MQLONG) - output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQCMIT (Hconn,&CompCode,&Reason)

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQCMIT’USING HCONN,COMPCODE,REASON.

Declare the parameters:
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Completion code

01 COMPCODE PIC S9(9)BINARY.
**Reason code qualifying CompCode

01 REASON PICS9(9)BINARY.

MQCMIT - Commit changes

Appendix B. Application Programming Reference 879

PL/I invocation
CALL MQCMIT (HCONN,COMPCODE,REASON);

Declare the parameters:
DCL HCONN FIXED BIN(31); /*Connection handle */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode */

MQCONN - Connect queue manager

The MQCONN call connects an application program to a queue manager. It
provides a queue manager connection handle, which is used by the application on
subsequent message queuing calls.

Syntax

MQCONN (QMgrName,Hconn,CompCode,Reason)

Parameters

The MQCONN call has the following parameters:

QMgrName (MQCHAR48) - input
Name of queue manager.

The name specified must be the name of a local queue manager. In
WebSphere MQ for z/VSE there is only one queue manager in a CICS
partition.

Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager. It must be
specified on all subsequent message queuing calls issued by the
application. It ceases to be valid when the MQDISC call is issued, or when
the CICS transaction terminates.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_MAX_CONNS_LIMIT_REACHED

(2025, X'7E9') Maximum number of connections reached.
MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.
MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQCMIT - Commit changes

880 WebSphere MQ for z/VSE System Management Guide

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQCONN (QMgrName,&Hconn,&CompCode,&Reason);

Declare the parameters:
MQCHAR48 QMgrName; /*Name of queue manager */
MQHCONN Hconn; /*Connection handle */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQCONN’USING QMGRNAME,HCONN,COMPCODE,REASON.

Declare the parameters:
**Name of queue manager

01 QMGRNAME PICX(48).
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Completion code

01 COMPCODE PIC S9(9)BINARY.
**Reason code qualifying CompCode

01 REASON PICS9(9)BINARY.
PL/I invocation

CALL MQCONN (QMGRNAME,HCONN,COMPCODE,REASON);

Declare the parameters:
DCL QMGRNAME CHAR(48); /*Name of queue manager */
DCL HCONN FIXED BIN(31); /*Connection handle */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode */

MQCRTMH - Create message handle

The MQCRTMH call returns a message handle. An application can use it on
subsequent message queuing calls:
v Use the MQSETMP call to set a property of the message handle.
v Use the MQINQMP call to inquire on the value of a property of the message

handle.
v Use the MQDLTMP call to delete a property of the message handle.

The message handle can be used on the MQPUT and MQPUT1 calls to associate
the properties of the message handle with those of the message being put.
Similarly, by specifying a message handle on the MQGET call, the properties of the
message being retrieved can be accessed using the message handle when the
MQGET call completes.

Use MQDLTMH to delete the message handle.

Syntax

MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason)

MQCONN - Connect queue manager

Appendix B. Application Programming Reference 881

Parameters

The MQCRTMH call has the following parameters:

Hconn (MQHCONN) - input

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN or MQCONNX call. If the
connection to the queue manager ceases to be valid and no WebSphere MQ
call is operating on the message handle, MQDLTMH is implicitly called to
delete the message.

Alternatively, you can specify this value:

CrtMsgHOpts (MQCMHO) - input
The options that control the action of MQCRTMH. See MQCMHO
for details.

Hmsg (MQHMSG) - output

On output, a message handle is returned that can be used to set, inquire
and delete properties of the message handle. Initially the message handle
contains no properties.

A message handle also has an associated message descriptor. Initially this
contains the default values. The values of the associated message
descriptor fields can be set and inquired using the MQSETMP and
MQINQMP calls. The MQDLTMP call resets a field of the message
descriptor back to its default value.

The returned message handle can only be used on the specified connection.

The same Hconn parameter value must be used on the subsequent MQI
calls where this message handle is used:

MQDLTMH MQSETMP MQINQMP MQDLTMP MQMHBUF MQBUFMH

The returned message handle ceases to be valid when the MQDLTMH call
is issued for the message handle, or when the unit of processing that
defines the scope of the handle terminates.

CompCode (MQLONG) - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_CMHO_ERROR
(2461, X'099D') Create message handle options structure not valid.

MQRC_CONNECTION_BROKEN
(2273, X'7D9') Connection to queue manager lost.

MQCRTMH - Create message handle

882 WebSphere MQ for z/VSE System Management Guide

MQRC_HANDLE_NOT_AVAILABLE
(2017, X'07E1') No more handles available.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HMSG_ERROR
(2460, X'099C') Message handle pointer not valid.

MQRC_OPTIONS_ERROR
(2046, X'07FE') Options not valid or not consistent.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQCRTMH (Hconn, &CrtMsgHOpts, &Hmsg, &CompCode, &Reason);

Declare the parameters:
MQHCONN Hconn; /* Connection handle */
MQCMHO CrtMsgHOpts; /* Options that control the action of MQCRTMH */
MQHMSG Hmsg; /* Message handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation
CALL ’MQCRTMH’ USING HCONN, CRTMSGOPTS, HMSG, COMPCODE, REASON.

Declare the parameters:
** Connection handle
01 HCONN PIC S9(9) BINARY.
** Options that control the action of MQCRTMH
01 CRTMSGHOPTS.

COPY CMQCMHOV.
** Message handle
01 HMSG PIC S9(18) BINARY.
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation
call MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason);

Declare the parameters:
dcl Hconn fixed bin(31); /* Connection handle */
dcl CrtMsgHOpts like MQCMHO;

/* Options that control the action of MQCRTMH */
dcl Hmsg char(8); /* Message handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

MQDISC - Disconnect queue manager

The MQDISC call breaks the connection between the queue manager and the
application program. It is the inverse of the MQCONN call.

MQCRTMH - Create message handle

Appendix B. Application Programming Reference 883

Syntax

MQDISC (Hconn,CompCode,Reason)

Parameters

The MQDISC call has the following parameters:

Hconn (MQHCONN) - input/output
Connection handle.

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call.

On successful completion of the call, the queue manager sets Hconn to
binary zeros.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_DISC_LOAD_ERROR

(2138, X'85A') Unable to load adapter disconnection module.
MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.
MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.
MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.
MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQDISC (&Hconn,&CompCode,&Reason);

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQDISC’USING HCONN,COMPCODE,REASON.

Declare the parameters:
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Completion code

01 COMPCODE PIC S9(9)BINARY.
**Reason code qualifying CompCode

01 REASON PIC S9(9)BINARY.

MQDISC - Disconnect queue manager

884 WebSphere MQ for z/VSE System Management Guide

PL/I invocation
CALL MQDISC (HCONN,COMPCODE,REASON);

Declare the parameters:
DCL HCONN FIXED BIN(31); /*Connection handle */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode *
/

MQDLTMH - Delete message handle

The MQDLTMH call deletes a message handle and is the inverse of the
MQCRTMH call.

Syntax

MQDLTMH (Hconn, Hmsg, DltMsgHOpts, CompCode, Reason)

Parameters

The MQDLTMH call has the following parameters:

Hconn (MQHCONN) - input

This handle represents the connection to the queue manager. The value
must match the connection handle that was used to create the message
handle specified in the Hmsg parameter.

Hmsg (MQHMSG) - input/output

This is the message handle to be deleted. The value was returned by a
previous MQCRTMH call. On successful completion of the call, the handle
is set to an invalid value for the environment. This value is:

MQHM_UNUSABLE_HMSG
Unusable message handle.

DltMsgHOpts (MQDMHO) - input
See MQDMHO for details.

CompCode (MQLONG) - output

The completion code. It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_CONNECTION_BROKEN
(2009, X'07D9') Connection to queue manager lost.

MQRC_DMHO_ERROR
(2462, X'099E') Delete message handle options structure not valid.

MQDISC - Disconnect queue manager

Appendix B. Application Programming Reference 885

MQRC_HMSG_ERROR
(2460, X'099C') Message handle pointer not valid.

MQRC_OPTIONS_ERROR
(2046, X'07FE') Options not valid or not consistent.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQDLTMH (Hconn, &Hmsg, &DltMsgHOpts, &CompCode, &Reason);

Declare the parameters:
MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQDMHO DltMsgHOpts; /* Options that control the action of MQDLTMH */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation
CALL ’MQDLTMH’ USING HCONN, HMSG, DLTMSGOPTS, COMPCODE, REASON.

Declare the parameters:
** Connection handle
01 HCONN PIC S9(9) BINARY.
** Message handle
01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQDLTMH
01 DLTMSGHOPTS.
COPY CMQDMHOV.
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation
call MQDLTMH (Hconn, Hmsg, DltMsgHOpts, CompCode, Reason);

Declare the parameters:
dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg char(8); /* Message handle */
dcl DltMsgHOpts like MQDMHO;

/* Options that control the action of MQDLTMH */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

MQDLTMP - Delete message property

The MQDLTMP call deletes a property from a message handle and is the inverse
of the MQSETMP call.

Syntax

MQDLTMP (Hconn, Hmsg, DltPropOpts, Name, CompCode, Reason)

MQDLTMH - Delete message handle

886 WebSphere MQ for z/VSE System Management Guide

Parameters

The MQDLTMP call has the following parameters:

Hconn (MQHCONN) - Input

This handle represents the connection to the queue manager. The value
must match the connection handle that was used to create the message
handle specified in the Hmsg parameter.

Hmsg (MQHMSG) - input

This is the message handle containing the property to be deleted. The
value was returned by a previous MQCRTMH call.

DltPropOps (MQDMPO) - Input

See the MQDMPO data type for details.

Name (MQCHARV) - input

The name of the property to delete.

Wildcards are not allowed in the property name.

CompCode (MQLONG) - output

The completion code. It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) - output
The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_PROPERTY_NOT_AVAILABLE
(2471, X'09A7') Property not available.

MQRC_RFH_FORMAT_ERROR
(2421, X'0975') An MQRFH2 folder containing properties could not
be parsed.

If CompCode is MQCC_FAILED:

MQRC_CONNECTION_BROKEN
(2009, X'07D9') Connection to queue manager lost.

MQRC_DMPO_ERROR
(2481, X'09B1') Delete message property options structure not valid.

MQRC_HMSG_ERROR
(2460, X'099C') Message handle not valid.

MQRC_OPTIONS_ERROR
(2046, X'07FE') Options not valid or not consistent.

MQDLTMP - Delete message property

Appendix B. Application Programming Reference 887

MQRC_PROPERTY_NAME_ERROR
(2442, X'098A') Invalid property name.

MQRC_SOURCE_CCSID_ERROR
(2111, X'083F') Property name coded character set identifier not
valid.

MQRC_UNEXPECTED_ERROR
(2195, X'0893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQDLTMP (Hconn, Hmsg, &DltPropOpts, &Name, &CompCode, &Reason)

Declare the parameters:
MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQDMPO DltPropOpts; /* Options that control the action of MQDLTMP */
MQCHARV Name; /* Property name */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation
CALL ’MQDLTMP’ USING HCONN, HMSG, DLTPROPOPTS, NAME, COMPCODE,
REASON.

Declare the parameters:
** Connection handle
01 HCONN PIC S9(9) BINARY.
** Message handle
01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQDLTMP
01 DLTPROPOPTS.
COPY CMQDMPOV.
** Property name
01 NAME
COPY CMQCHRVV.
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation
call MQDLTMP (Hconn, Hmsg, DltPropOpts, Name, CompCode, Reason);

Declare the parameters:
dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg char(8); /* Message handle */
dcl DltPropOpts like MQDMPO;

/* Options that control the action of MQDLTMP */
dcl Name like MQCHARV; /* Property name */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

MQGET - Get message

The MQGET call retrieves a message from a local queue that has been opened
using the MQOPEN call.

MQDLTMP - Delete message property

888 WebSphere MQ for z/VSE System Management Guide

Syntax

MQGET (Hconn,Hobj,MsgDesc,GetMsgOpts,BufferLength,
Buffer,DataLength,CompCode,Reason)

Parameters

The MQGET call has the following parameters:

Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call.

Hobj (MQHOBJ) - input
Object handle.

This handle represents the queue from which a message is to be retrieved.
The value of Hobj was returned by a previous MQOPEN call. The queue
must have been opened with one or more of the following options (see
“MQOPEN - Open object” on page 914 for details):

MQOO_INPUT_SHARED
MQOO_INPUT_EXCLUSIVE
MQOO_BROWSE

MsgDesc (MQMD) - input/output
Message descriptor.

This structure describes the attributes of the message required, and the
attributes of the message retrieved. See “MQMD – Message descriptor” on
page 774 for details.

If BufferLength is less than the message length, MsgDesc is still filled in by
the queue manager, whether or not
MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts
parameter (see the Options field described in “MQGMO – Get message
options” on page 740.

GetMsgOpts (MQGMO) - input/output
Options that control the action of MQGET. See “MQGMO – Get message
options” on page 740 for details.

BufferLength (MQLONG) - input
Length in bytes of the Buffer area.

Zero can be specified for messages that have no data, or if the message is
to be removed from the queue and the data discarded
(MQGMO_ACCEPT_TRUNCATED_MSG must be specified in this case).

Buffer (MQBYTE×BufferLength) - output
Area to contain the message data.

If BufferLength is less than the message length, as much of the message as
possible is moved into Buffer ; this happens whether or not
MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts
parameter (see the Options field described in “MQGMO – Get message
options” on page 740).

The character set and encoding of the data in Buffer are given
(respectively) by the CodedCharSetId and Encoding fields returned in the
MsgDesc parameter. If these are different from the values required by the

MQGET - Get message

Appendix B. Application Programming Reference 889

receiver, the receiver must convert the application message data to the
character set and encoding required. The MQGMO_CONVERT option can
be used with a user-written exit to perform the conversion of the message
data (see “MQGMO – Get message options” on page 740 for details of this
option).

Note: All of the other parameters on the MQGET call are in the character
set of the local queue manager.

DataLength (MQLONG) - output
Length of the message.

This is the length in bytes of the application data in the message. If this is
greater than BufferLength, only BufferLength bytes are returned in the
Buffer parameter (that is, the message is truncated). If the value is zero, it
means that the message contains no application data.

If BufferLength is less than the message length, DataLength is still filled in
by the queue manager, whether or not
MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts
parameter (see the Options field described in “MQGMO – Get message
options” on page 740 for more information).

This allows the application to determine the size of the buffer required to
accommodate the message data, and then reissue the call with a buffer of
the appropriate size.

However, if the MQGMO_CONVERT option is specified, and the
converted message data is too long to fit in Buffer , the value returned for
DataLength is:
v The length of the unconverted data, for queue-manager defined formats.

In this case, if the nature of the data causes it to expand during
conversion, the application must allocate a buffer somewhat bigger than
the value returned by the queue manager for DataLength.

v The value returned by the data-conversion exit, for application-defined
formats.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

The reason codes listed below are the ones that the queue manager can
return for the Reason parameter. If the application specifies the
MQGMO_CONVERT option, and a user-written exit is invoked to convert
some or all of the message data, it is the exit that decides what value is
returned for the Reason parameter. As a result, values other than those
documented below are possible.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQGET - Get message

890 WebSphere MQ for z/VSE System Management Guide

MQRC_TRUNCATED_MSG_ACCEPTED
(2079, X'81F') Truncated message returned (processing completed).

MQRC_TRUNCATED_MSG_FAILED
(2080, X'820') Truncated message returned (processing not
completed).

If CompCode is MQCC_FAILED:
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.
MQRC_CONVERTED_MSG_TOO_BIG

(2120, X'848') Converted data too big for buffer.
MQRC_DBCS_ERROR

(2150, X'866') DBCS string not valid.
MQRC_FILE_SYSTEM_ERROR

(2216, X'8A8') Queuer received file error.
MQRC_FORMAT_ERROR

(2110, X'83E') Format field not valid.
MQRC_GET_INHIBITED

(2016, X'7E0') Gets inhibited for the queue.
MQRC_GMO_ERROR

(2186, X'88A') Get-message options structure not valid.
MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.
MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.
MQRC_MD_ERROR

(2026, X'7EA') Message descriptor not valid.
MQRC_NO_MSG_AVAILABLE

(2033, X'7F1') No message available.
MQRC_NO_MSG_UNDER_CURSOR

(2034, X'7F2') Browse cursor not positioned on message.
MQRC_NOT_CONVERTED

(2119, X'847') Application message data not converted.
MQRC_NOT_OPEN_FOR_BROWSE

(2036, X'7F4') Queue not open for browse.
MQRC_NOT_OPEN_FOR_INPUT

(2037, X'7F5') Queue not open for input.
MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.
MQRC_Q_DELETED

(2052, X'804') The queue has been deleted.
MQRC_SOURCE_CCSID_ERROR

(2111, X'83F') Source coded character set identifier not valid.
MQRC_SOURCE_DECIMAL_ENC_ERROR

(2113, X'841') Packed-decimal encoding in message not recognized.
MQRC_SOURCE_FLOAT_ENC_ERROR

(2114, X'842') Floating-point encoding in message not recognized.
MQRC_SOURCE_INTEGER_ENC_ERROR

(2112, X'840') Source integer encoding not recognized.
MQRC_SOURCE_LENGTH_ERROR

(2143, X'85F') Source length parameter not valid.
MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQGET - Get message

Appendix B. Application Programming Reference 891

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR
(2117, X'845') Packed-decimal encoding specified by receiver not
recognized.

MQRC_TARGET_FLOAT_ENC_ERROR
(2118, X'846') Floating-point encoding specified by receiver not
recognized.

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844') Target integer encoding not recognized.

MQRC_TARGET_LENGTH_ERROR
(2144, X'860') Target length parameter not valid.

MQRC_WAIT_INTERVAL_ERROR
(2090, X'82A') Wait interval in MQGMO not valid.

Language invocations

This call is supported in the following programming languages:
C invocation

MQGET (Hconn,Hobj,&MsgDesc,&GetMsgOpts,BufferLength,Buffer,
&DataLength,&CompCode,&Reason);

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQHOBJ Hobj; /*Object handle */
MQMD MsgDesc; /*Message descriptor */
MQGMO GetMsgOpts; /*Options that control the action of MQGET */
MQLONG BufferLength; /*Length in bytes of the Buffer area */
MQBYTE Buffer[n]; /*Area to contain the message data */
MQLONG DataLength; /*Length of the message */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQGET’USING HCONN,HOBJ,MSGDESC,GETMSGOPTS,
BUFFERLENGTH,BUFFER,DATALENGTH,COMPCODE,REASON.

Declare the parameters:
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Object handle

01 HOBJ PIC S9(9)BINARY.
**Message descriptor

01 MSGDESC.
COPY CMQMDV.

**Options that control the action of MQGET
01 GETMSGOPTS.

COPY CMQGMOV.
**Length in bytes of the Buffer area

01 BUFFERLENGTH PIC S9(9)BINARY.
**Area to contain the message data

01 BUFFER PIC X(n).
**Length of the message

01 DATALENGTH PIC S9(9)BINARY.
**Completion code

01 COMPCODE PIC S9(9)BINARY.
**Reason code qualifying CompCode

01 REASON PIC S9(9)BINARY.
PL/I invocation

CALL MQGET (HCONN,HOBJ,MSGDESC,GETMSGOPTS,BUFFERLENGTH,BUFFER,
DATALENGTH,COMPCODE,REASON);

Declare the parameters:

MQGET - Get message

892 WebSphere MQ for z/VSE System Management Guide

DCL HCONN FIXED BIN(31); /*Connection handle */
DCL HOBJ FIXED BIN(31); /*Object handle */
DCL MSGDESC LIKE MQMD; /*Message descriptor */
DCL GETMSGOPTS LIKE MQGMO; /*Options that control the action of MQGET */
DCL BUFFERLENGTH FIXED BIN(31);/*Length in bytes of the Buffer area */
DCL BUFFER CHAR(n); /*Area to contain the message data */
DCL DATALENGTH FIXED BIN(31); /*Length of the message */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode */

MQINQ - Inquire about object attributes

The MQINQ call returns an array of integers and a set of character strings
containing the attributes of an object. The following types of object are valid:
v Queue
v Queue manager
v Namelist

Syntax

MQINQ (Hconn,Hobj,SelectorCount,Selectors,IntAttrCount,
IntAttrs,CharAttrLength,CharAttrs,CompCode,Reason)

Parameters

The MQINQ call has the following parameters:

Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call.

Hobj (MQHOBJ) - input
Object handle.

This handle represents the object (of any type) whose attributes are
required. The handle must have been returned by a previous MQOPEN
call that specified the MQOO_INQUIRE option.

SelectorCount (MQLONG) - input
Count of selectors.

This is the count of selectors that are supplied in the Selectors array. It is
the number of attributes that are to be returned. Zero is a valid value. The
maximum number allowed is 256.

Selectors (MQLONG× SelectorCount) - input
Array of attribute selectors.

This is an array of SelectorCount attribute selectors; each selector identifies
an attribute (integer or character) whose value is required. Each selector
must be valid for the type of object that Hobj represents, otherwise the call
fails with completion code MQCC_FAILED and reason code
MQRC_SELECTOR_ERROR.

In the special case of queues:
v If the selector is not valid for queues of any type, the call fails with

completion code MQCC_FAILED and reason code
MQRC_SELECTOR_ERROR.

MQGET - Get message

Appendix B. Application Programming Reference 893

v If the selector is applicable only to queues of type or types other than
that of the object, the call succeeds with completion code
MQCC_WARNING and reason code
MQRC_SELECTOR_NOT_FOR_TYPE.

Selectors for queue managers:
MQCA_ALTERATION_DATE

Last modification date (Length of 12, format
'YYYY-MM-DD ').

MQCA_ALTERATION_TIME
Last modification time (Length of 8, format 'HH:MM:SS').

MQCA_BATCH_INTERFACE_ID
Batch interface identifier
(MQ_BATCH_INTERFACE_ID_LENGTH).

MQCA_CHANNEL_AUTO_DEF_EXIT
Automatic channel definition exit name
(MQ_EXIT_NAME_LENGTH).

MQCA_COMMAND_INPUT_Q_NAME
System command queue name (MQ_Q_NAME_LENGTH).

MQCA_COMMAND_REPLY_Q_NAME
MQSC reply queue name (MQ_Q_NAME_LENGTH).

MQCA_DEAD_LETTER_Q_NAME
System dead letter queue name (MQ_Q_NAME_LENGTH).

MQCA_MONITOR_Q_NAME
MQI monitor queue name (MQ_Q_NAME_LENGTH).

MQCA_Q_MGR_DESC
Queue manager description
(MQ_Q_MGR_DESC_LENGTH).

MQCA_Q_MGR_IDENTIFIER
Queue manager identifier
(MQ_Q_MGR_IDENTIFIER_LENGTH).

MQCA_Q_MGR_NAME
Queue manager name (MQ_Q_MGR_NAME_LENGTH).

MQCA_SSL_KEY_LIBRARY
SSL key library name (MQ_SSL_KEY_LIBRARY_LENGTH).

MQCA_SSL_KEY_MEMBER
SSL key library member name
(MQ_SSL_KEY_MEMBER_LENGTH).

MQCA_SYSTEM_LOG_Q_NAME
System log queue name (MQ_Q_NAME_LENGTH).

MQIA_ACCOUNTING_CONN_OVERRIDE
Accounting connection override setting.

MQIA_ACCOUNTING_INTERVAL
Accounting message interval.

MQIA_ACCOUNTING_MQI
MQI Accounting setting.

MQIA_ACCOUNTING_Q
Default queue accounting setting.

MQIA_ADOPTNEWMCA_CHECK
Indicates whether the Adopt MCA feature checks the
partner net address when adopting an MCA instance. Can
be one of the following values:

MQADOPT_CHECK_NONE
MQADOPT_CHECK_NET_ADDR

MQINQ - Inquire about object attributes

894 WebSphere MQ for z/VSE System Management Guide

MQIA_ADOPTNEWMCA_TYPE
Indicates whether the channel Adopt MCA feature is active
for the queue manager. Can be one of the following values:

MQADOPT_TYPE_NO
MQADOPT_TYPE_RCVR

MQIA_AUTHORITY_EVENT
Control attribute for authority events.

MQIA_BATCH_INTERFACE_AUTO
Indicator for the automatic activation of the batch interface.
Can be one of the following values:

MQAUTO_START_NO
MQAUTO_START_YES

MQIA_CHANNEL_AUTO_DEF
Control attribute for automatic channel definition.

MQIA_CHANNEL_AUTO_DEF_EVENT
Control attribute for automatic channel definition events.

MQIA_CHANNEL_EVENT
Indicates whether channel-related events are generated.
Can be one of the following values:

MQEVR_ENABLED
MQEVR_DISABLED

MQIA_CMD_SERVER_AUTO
Indicator for the automatic activation of the PCF command
server. Can be one of the following values:

MQAUTO_START_NO
MQAUTO_START_YES

MQIA_CMD_SERVER_CONVERT_MSG
Indicator for the data conversion of PCF messages. Can be
one of the following values:

MQCSRV_CONVERT_NO
MQCSRV_CONVERT_YES

MQIA_CMD_SERVER_DLQ_MSG
Indicator for the storage of undeliverable PCF reply
messages. Can be one of the following values:

MQCSRV_DLQ_NO
MQCSRV_DLQ_YES

MQIA_CODED_CHAR_SET_ID
Local code page for queue manager.

MQIA_COMMAND_EVENT
Control attribute for command events. The value can be:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.
MQEVR_NO_DISPLAY

Event reporting enabled for all successful
commands except Inquire commands.

MQIA_COMMAND_LEVEL
Supported command level. For WebSphere MQ for z/VSE,
this value is always MQCMDL_LEVEL_211.

MQIA_CONFIGURATION_EVENT
Control attribute for configuration events. The value can
be:
MQEVR_DISABLED

Event reporting disabled.

MQINQ - Inquire about object attributes

Appendix B. Application Programming Reference 895

MQEVR_ENABLED
Event reporting enabled.

MQIA_DIST_LISTS
Indicator for distributed list support. Can be one of the
following values:

MQDL_SUPPORTED
MQDL_NOT_SUPPORTED

MQIA_INHIBIT_EVENT
Control attribute for inhibit events.

MQIA_LISTENER_PORT_NUMBER
Port number for TCP/IP Listener process.

MQIA_LOCAL_EVENT
Control attribute for local events.

MQIA_MAX_CLIENTS
Specifies the maximum number of licensed clients that can
establish a server connection at any one time.

MQIA_MAX_GLOBAL_LOCKS
Buffer size for queue manager to manage concurrent queue
access.

MQIA_MAX_HANDLES
Maximum number of concurrent connections to the queue
manager.

MQIA_MAX_LOCAL_LOCKS
Buffer size for applications to manage concurrent queue
access.

MQIA_MAX_MSG_LENGTH
Maximum message length for queue messages.

MQIA_MAX_OPEN_Q
Maximum number of concurrently open queues.

MQIA_MAX_Q_DEPTH
Maximum allowable queue depth for queues.

MQIA_MAX_RECOVERY_TASKS
Indicates the maximum number of CICS tasks that the
queue manager will start to resolve discrepancies in dual
queues.

MQIA_MONITOR_INTERVAL
Queue manager housekeeping process interval.

MQIA_MONITORING_CHANNEL
Default channel monitoring setting.

MQIA_MONITORING_Q
Default queue monitoring setting.

MQIA_PERFORMANCE_EVENT
Control attribute for performance events.

MQIA_PLATFORM
WebSphere MQ system platform identifier. For WebSphere
MQ for z/VSE, this value is always MQPL_VSE.

MQIA_Q_USERS
Maximum number of concurrent opens per queue.

MQIA_QMOPT_CONS_COMMS_MSGS
Indicates whether the queue manager sends
communication related messages to the console. Can be
one of the following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED
MQQMOPT_REPLY

MQINQ - Inquire about object attributes

896 WebSphere MQ for z/VSE System Management Guide

MQIA_QMOPT_CONS_CRITICAL_MSGS
Indicates whether the queue manager sends messages of
critical severity to the console. Can be one of the following
values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED
MQQMOPT_REPLY

MQIA_QMOPT_CONS_ERROR_MSGS
Indicates whether the queue manager sends messages of
error severity to the console. Can be one of the following
values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED
MQQMOPT_REPLY

MQIA_QMOPT_CONS_INFO_MSGS
Indicates whether the queue manager sends messages of
informational severity to the console. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_CONS_REORG_MSGS
Indicates whether the queue manager sends reorganization
related messages to the console. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED
MQQMOPT_REPLY

MQIA_QMOPT_CONS_SYSTEM_MSGS
Indicates whether the queue manager sends general system
related messages to the console. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED
MQQMOPT_REPLY

MQIA_QMOPT_CONS_WARNING_MSGS
Indicates whether the queue manager sends messages of
warning severity to the console. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_CSMT_ON_ERROR
Indicates whether operational messages are sent to the
CICS CSMT when the system log queue is unavailable.
Can be one of the following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_INTERNAL_DUMP
Indicates whether the queue manager generates a CICS
dump when an MQI application generates an
unrecoverable error. Can be one of the following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_LOG_COMMS_MSGS
Indicates whether the queue manager sends
communication related messages to the system log. Can be
one of the following values:

MQINQ - Inquire about object attributes

Appendix B. Application Programming Reference 897

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_LOG_CRITICAL_MSGS
Indicates whether the queue manager sends messages of
critical severity to the system log. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_LOG_ERROR_MSGS
Indicates whether the queue manager sends messages of
error severity to the system log. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_LOG_INFO_MSGS
Indicates whether the queue manager sends messages of
informational severity to the system log. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_LOG_REORG_MSGS
Indicates whether the queue manager sends reorganization
related messages to the system log. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_LOG_SYSTEM_MSGS
Indicates whether the queue manager sends general system
related messages to the system log. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_LOG_WARNING_MSGS
Indicates whether the queue manager sends messages of
warning severity to the system log. Can be one of the
following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_TRACE_COMMS
Indicates whether the queue manager traces
communication related events. Can be one of the following
values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_TRACE_CONVERSION
Indicates whether the queue manager traces data
conversion related events. Can be one of the following
values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_TRACE_MQI_CALLS
Indicates whether the queue manager traces MQI call
related events. Can be one of the following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQINQ - Inquire about object attributes

898 WebSphere MQ for z/VSE System Management Guide

MQIA_QMOPT_TRACE_REORG
Indicates whether the queue manager traces reorganization
related events. Can be one of the following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_QMOPT_TRACE_SYSTEM
Indicates whether the queue manager traces general system
related events. Can be one of the following values:

MQQMOPT_ENABLED
MQQMOPT_DISABLED

MQIA_REMOTE_EVENT
Control attribute for remote events.

MQIA_SSL_EVENT
Control attribute for channel events. The value can be:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.
MQIA_SSL_RESET_COUNT

SSL key reset count.
MQIA_START_STOP_EVENT

Control attribute for start stop events.
MQIA_STATISTICS_CHANNEL

Default channel statistics setting.
MQIA_STATISTICS_INTERVAL

Statistics message interval.
MQIA_STATISTICS_MQI

MQI Statistics setting.
MQIA_STATISTICS_Q

Default queue statistics setting.
MQIA_SYNCPOINT

Indicator for SYNCPOINT support. For WebSphere MQ for
z/VSE, this value is always MQSP_NOT_AVAILABLE.

Selectors for all types of queue:
MQCA_CREATION_DATE

Queue creation date (Length of 12, format 'YYYY-MM-DD
').

MQCA_CREATION_TIME
Queue creation time (Length of 8, format 'HH:MM:DD').

MQCA_Q_DESC
Queue description (MQ_Q_DESC_LENGTH).

MQCA_Q_NAME
Queue name (MQ_Q_NAME_LENGTH).

MQIA_INHIBIT_PUT
Whether put operations are allowed. Can be one of the
following values:

MQQA_PUT_ALLOWED
MQQA_PUT_INHIBITED

MQIA_Q_TYPE
Queue type. Can be one of the following values:

MQQT_ALIAS
MQQT_LOCAL
MQQT_REMOTE

Selectors for local queues:

MQINQ - Inquire about object attributes

Appendix B. Application Programming Reference 899

MQCA_AUTO_REORG_CATALOG
The contents of this field are now treated as comments and
may not reflect the actual VSAM catalog containing the
reorganization file. For the reorganization process, the
VSAM catalog where the reorganization file is defined is
now extracted from the system and so no longer needs to
be specified in the queue definition.

MQCA_AUTO_REORG_START_TIME
Indicates the time of day, in HHMM format, for the
automatic VSAM reorganization to occur following a
system restart (MQ_AUTO_REORG_TIME_LENGTH).

MQCA_CICS_FILE_NAME
CSD file name for queue messages
(MQ_CICS_FILE_NAME_LENGTH).

MQCA_TRIGGER_CHANNEL_NAME
Channel name for MCA trigger process
(MQ_CHANNEL_NAME_LENGTH).

MQCA_TRIGGER_DATA
Trigger user data (MQ_PROCESS_USER_DATA_LENGTH).

MQCA_TRIGGER_PROGRAM_NAME
Program name for trigger process
(MQ_TRIGGER_PROGRAM_NAME_LENGTH).

MQCA_TRIGGER_TERM_ID
Terminal identifier for trigger process
(MQ_TRIGGER_TERM_ID_LENGTH).

MQCA_TRIGGER_TRANS_ID
Transaction identifier for trigger process
(MQ_TRIGGER_TRANS_ID_LENGTH).

MQIA_ACCOUNTING_Q
Queue accounting setting.

MQIA_AUTO_REORG_INTERVAL
Indicates the frequency, in minutes, for the automatic
VSAM reorganization to occur, after its initial activation.

MQIA_AUTO_REORGANIZATION
Indicates whether the VSAM file hosting a queue should
be scheduled for automatic VSAM reorganization. Can be
one of the following values:

MQREORG_ENABLED
MQREORG_DISABLED

MQIA_CURRENT_Q_DEPTH
Current queue depth.

MQIA_DEF_PERSISTENCE
Default persistence for queue. For WebSphere MQ for
z/VSE, this value is always MQPER_PERSISTENT.

MQIA_DEFINITION_TYPE
Queue definition type. For WebSphere MQ for z/VSE, this
value is always MQQDT_PREDEFINED.

MQIA_INHIBIT_GET
Whether get operations are allowed. Can be one of the
following values:

MQQA_GET_ALLOWED
MQQA_GET_INHIBITED

MQIA_MAX_GLOBAL_LOCKS
Buffer size for queue manager to manage concurrent queue
access.

MQINQ - Inquire about object attributes

900 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|

MQIA_MAX_LOCAL_LOCKS
Buffer size for applications to manage concurrent queue
access.

MQIA_MAX_MSG_LENGTH
Maximum message length for queue messages.

MQIA_MAX_Q_DEPTH
Maximum allowable queue depth for queues.

MQIA_MAX_Q_TRIGGERS
Maximum number of concurrent trigger instances for a
particular queue.

MQIA_MONITORING_Q
Queue monitoring setting.

MQIA_OPEN_INPUT_COUNT
Number of opens for input currently issued against queue.

MQIA_OPEN_OUTPUT_COUNT
Number of opens for output currently issued against
queue.

MQIA_Q_DEPTH_HIGH_EVENT
Control attribute for queue depth high events.

MQIA_Q_DEPTH_HIGH_LIMIT
High limit for queue depth.

MQIA_Q_DEPTH_LOW_EVENT
Control attribute for queue depth low events.

MQIA_Q_DEPTH_LOW_LIMIT
Low limit for queue depth.

MQIA_Q_DEPTH_MAX_EVENT
Control attribute for queue depth max events.

MQIA_Q_SERVICE_INTERVAL
Limit for queue service interval.

MQIA_Q_SERVICE_INTERVAL_EVENT
Control attribute for queue service interval events.

MQIA_Q_USERS
Maximum number of concurrent opens per queue.

MQIA_SHAREABILITY
Queue shareability mode. Can be one of the following
values:

MQQA_SHAREABLE
MQQA_NOT_SHAREABLE

MQIA_STATISTICS_Q
Queue statistics setting.

MQIA_TRIGGER_CONTROL
Whether a trigger is required for the queue. Can be one of
the following values:

MQTC_OFF
MQTC_ON

MQIA_TRIGGER_RESTART
Indicator for the reactivation of a trigger process. Can be
one of the following values:

MQTRIGGER_RESTART_YES
MQTRIGGER_RESTART_NO

MQIA_TRIGGER_TYPE
Trigger event type. Can be one of the following values:

MQTT_NONE
MQTT_FIRST
MQTT_EVERY

MQINQ - Inquire about object attributes

Appendix B. Application Programming Reference 901

MQIA_USAGE
Queue usage. Can be one of the following values:

MQUS_NORMAL
MQUS_TRANSMISSION

Selectors for local definitions of remote queues
MQCA_REMOTE_Q_MGR_NAME

Name of remote queue manager
(MQ_Q_MGR_NAME_LENGTH).

MQCA_REMOTE_Q_NAME
Name of remote queue as known on remote queue
manager (MQ_Q_NAME_LENGTH).

MQCA_XMIT_Q_NAME
Name of local transmission queue.

Selectors for alias queues
MQCA_BASE_Q_NAME

Name of queue that alias resolves to
(MQ_Q_NAME_LENGTH).

MQIA_INHIBIT_GET
Whether get operations are allowed.

Selectors for namelists
MQCA_ALTERATION_DATE

Date of most-recent alteration (MQ_DATE_LENGTH).
MQCA_ALTERATION_TIME

Time of most-recent alteration (MQ_TIME_LENGTH).
MQCA_NAMELIST_NAME

Name of namelist object
(MQ_NAMELIST_NAME_LENGTH).

MQCA_NAMELIST_DESC
Description of namelist object
(MQ_NAMELIST_DESC_LENGTH).

MQCA_NAMES
Names in the namelist. Namelist names have a length
specified by the MQ_OBJECT_NAME_LENGTH constant.

MQIA_NAME_COUNT
Names of names in the namelist.

IntAttrCount (MQLONG) - input
Count of integer attributes.

This is the number of elements in the IntAttrs array. Zero is a valid value.
If this is at least the number of MQIA_* selectors in the Selectors
parameter, all integer attributes requested are returned.

IntAttrs (MQLONG×IntAttrCount) - output
Array of integer attributes.

This is an array of IntAttrCount integer attribute values.

Integer attribute values are returned in the same order as the MQIA_*
selectors in the Selectors parameter. If the array contains more elements
than the number of MQIA_* selectors, the excess elements are unchanged.

If Hobj represents a queue, but an attribute selector is not applicable to
that type of queue, the specific value MQIAV_NOT_APPLICABLE is
returned for the corresponding element in the IntAttrs array.

MQINQ - Inquire about object attributes

902 WebSphere MQ for z/VSE System Management Guide

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not
referred to; in this case, the parameter address passed by programs written
in C or S/390 assembler may be null.

CharAttrLength (MQLONG) - input
Length of character attributes buffer.

This is the length in bytes of the CharAttrs parameter.

This must be at least the sum of the lengths of the requested character
attributes (see Selectors). Zero is a valid value.

CharAttrs (MQCHAR×CharAttrLength) - output
Character attributes.

This is the buffer in which the character attributes are returned,
concatenated together. The length of the buffer is given by the
CharAttrLength parameter. Character attributes are returned in the same
order as the MQCA_* selectors in the Selectors parameter. The length of
each attribute string is fixed for each attribute (see Selectors), and the value
in it is padded to the right with blanks if necessary. If the buffer is larger
than that needed to contain all of the requested character attributes
(including padding), the bytes beyond the last attribute value returned are
unchanged.

If Hobj represents a queue, but an attribute selector is not applicable to
that type of queue, a character string consisting entirely of asterisks (*) is
returned as the value of that attribute in CharAttrs.

If the CharAttrLength or SelectorCount parameter is zero, CharAttrs is not
referred to; in this case, the parameter address passed by programs written
in C may be null.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_CHAR_ATTR_LENGTH_ERROR

(2006, X'7D6') Length of character attributes not valid.
MQRC_CHAR_ATTRS_ERROR

(2007, X'7D7') Character attributes string not valid.
MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.
MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.
MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.
MQRC_INT_ATTR_COUNT_ERROR

(2021, X'7E5') Count of integer attributes not valid.

MQINQ - Inquire about object attributes

Appendix B. Application Programming Reference 903

MQRC_INT_ATTRS_ARRAY_ERROR
(2023, X'7E7') Integer attributes array not valid.

MQRC_NOT_OPEN_FOR_INQUIRE
(2038, X'7F6') Queue not open for inquire.

MQRC_Q_DELETED
(2052, X'804') The queue has been deleted.

MQRC_SELECTOR_COUNT_ERROR
(2065, X'811') Count of selectors not valid.

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRC_SELECTOR_LIMIT_EXCEEDED
(2066, X'812') Count of selectors too big.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQINQ (Hconn,Hobj,SelectorCount,Selectors,IntAttrCount,IntAttrs,
CharAttrLength,CharAttrs,&CompCode,&Reason);

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQHOBJ Hobj; /*Object handle */
MQLONG SelectorCount; /*Count of selectors */
MQLONG Selectors [n]; /*Array of attribute selectors */
MQLONG IntAttrCount; /*Count of integer attributes */
MQLONG IntAttrs [n]; /*Array of integer attributes */
MQLONG CharAttrLength; /*Length of character attributes buffer */
MQCHAR CharAttrs [n]; /*Character attributes */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQINQ’USING HCONN,HOBJ,SELECTORCOUNT, SELECTORS-
TABLE,INTATTRCOUNT,INTATTRS-TABLE,
CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON.

Declare the parameters:
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Object handle

01 HOBJ PICS9(9)BINARY.
**Count of selectors

01 SELECTORCOUNT PIC S9(9)BINARY.
**Array of attribute selectors

01 SELECTORS-TABLE.
02 SELECTORS PIC S9(9)BINARY OCCURS n TIMES.

**Count of integer attributes
01 INTATTRCOUNT PIC S9(9)BINARY.

**Array of integer attributes
01 INTATTRS-TABLE.

02 INTATTRS PIC S9(9)BINARY OCCURS n TIMES.
**Length of character attributes buffer

01 CHARATTRLENGTH PIC S9(9)BINARY.
**Character attributes

01 CHARATTRS PIC X(n).

MQINQ - Inquire about object attributes

904 WebSphere MQ for z/VSE System Management Guide

**Completion code
01 COMPCODE PIC S9(9)BINARY.

**Reason code qualifying CompCode
01 REASON PICS9(9)BINARY.

PL/I invocation
CALL MQINQ (HCONN,HOBJ,SELECTORCOUNT,SELECTORS,INTATTRCOUNT,
INTATTRS,CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON);

Declare the parameters:
DCL HCONN FIXED BIN(31); /*Connection handle */
DCL HOBJ FIXED BIN(31); /*Object handle */
DCL SELECTORCOUNT FIXED BIN(31); /*Count of selectors */
DCL SELECTORS(N) FIXED BIN(31); /*Array of attribute selectors */
DCL INTATTRCOUNT FIXED BIN(31); /*Count of integer attributes */
DCL INTATTRS(N) FIXED BIN(31); /*Array of integer attributes */
DCL CHARATTRLENGTH FIXED BIN(31); /*Length of character attributes buffer */
DCL CHARATTRS CHAR(N); /*Character attributes */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode */

MQINQMP - Inquire message property

The MQINQMP call returns the value of a property of a message.

Syntax

MQINQMP (Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type, ValueLength,
Value, DataLength, CompCode,Reason)

Parameters

The MQINQMP call has the following parameters:

Hconn (MQHCONN) - Input

This handle represents the connection to the queue manager. The value of
Hconn must match the connection handle that was used to create the
message handle specified in the Hmsg parameter.

Hmsg (MQHMSG) - input

This is the message handle to be inquired. The value was returned by a
previous MQCRTMH call.

InqPropOpts (MQIMPO) - Input

See the MQIMPO data type for details.

Name (MQCHARV) - input

The name of the property to inquire.

If no property with this name can be found, the call fails with reason
MQRC_PROPERTY_NOT_AVAILABLE.

You can use the wildcard character "%" at the end of the property name.
The wildcard matches zero or more characters, including the "." character.
This allows an application to inquire the value of many properties.

Call MQINQMP with option MQIMPO_INQ_FIRST to get the first
matching property and again with the option MQIMPO_INQ_NEXT to get
the next matching property. When no more matching properties are
available, the call fails with MQRC_PROPERTY_NOT_AVAILABLE.

MQINQ - Inquire about object attributes

Appendix B. Application Programming Reference 905

If the ReturnedName field of the InqPropOpts structure is initialized with
an address or offset for the returned name of the property, this is filled in
on return from MQINQMP with the same address or offset of the property
that has been matched. If the VSBufSize field of the ReturnedName in the
InqPropOpts structure is less than the length of the returned property
name, the completion code is set MQCC_FAILED with reason
MQRC_PROPERTY_NAME_TOO_BIG.

Properties that have known synonyms are returned as follows:
v Properties with the prefix "mqps." are returned with the MQ property

name. For example, "MQTopicString" is the returned name rather than
"mqps.Top".

v Properties with the prefix "jms." or "mcd." are returned as the JMS
header field name. For example, "JMSExpiration" is the returned name
rather than "jms.Exp".

v Properties with the prefix "usr." are returned without that prefix. For
example, "Color" is returned rather than "usr.Color".

Properties with synonyms are only returned once.

In the C programming language, the following macro variables are defined
for inquiring on all properties and all properties that begin "usr"
respectively:

MQPROP_INQUIRE_ALL
Inquire on all properties of the message.

MQPRP_INQUIRE_ALL_USR
Inquire on all properties of the message that start "usr.". The
returned name is returned without the "usr." prefix.

If MQIMP_INQ_NEXT is specified but Name has changed since the
previous call, or this is the first call, then MQIMPO_INQ_FIRST is implied.

PropDesc (MQPD) - output
This structure is used to define the attributes of a property, including what
happens if the property is not supported, what message context the
property belongs to, and what messages the property should be copied
into. See MQPD for details of this structure.

Type (MQLONG) - input/output
On return from the MQINQMP call, this parameter is set to the data type
of Value. The data type can be any of the following:

MQTYPE_BOOLEAN
A boolean.

MQTYPE_BYTE_STRING
A byte string.

MQTYPE_INT8
An 8-bit signed integer.

MQTYPE_INT16
A 16-bit signed integer.

MQTYPE_INT32
A 32-bit signed integer.

MQTYPE_FLOAT32
A 32-bit floating-point number.

MQINQMP - Inquire message property

906 WebSphere MQ for z/VSE System Management Guide

MQTYPE_FLOAT64
A 64-bit floating-point number.

MQTYPE_STRING
A character string.

MQTYPE_NULL
The property exists but has a null value.

If the data type of the property value is not recognized, then
MQTYPE_STRING is returned and a string representation of the value is
placed into the Value area. A string representation of the data type can be
found in the TypeString field of the InqPropOpts parameter. A warning
completion code is returned with reason
MQRC_PROP_TYPE_NOT_SUPPORTED.

Additionally, if the option MQIMPO_CONVERT_TYPE is specified,
conversion of the property value is requested. Use Type as an input to
specify the data type that you want the property to be returned as. See the
description of the MQIMPO_CONVERT_TYPE option of the MQIMPO
structure for details of data type conversion.

If you do not request type conversion, you can use the following value on
input:

MQTYPE_AS_SET
The value of the property is returned without converting its data
type.

ValueLength (MQLONG) - input

The length in bytes of the Value area. Specify zero for properties that you
do not require the value returned for. These could be properties which are
designed by an application to have a null value or an empty string. Also
specify zero if the MQIMPO_QUERY_LENGTH option has been specified;
in this case no value is returned.

Value (MQBYTExValueLength) - output
This is the area to contain the inquired property value. The buffer should
be aligned on a boundary appropriate for the value being returned. Failure
to do so may result in an error when the value is later accessed.

If ValueLength is less than the length of the property value, as much of the
property value as possible is moved into Value and the call fails with
completion code MQCC_FAILED and reason
MQRC_PROPERTY_VALUE_TOO_BIG.

The character set of the data in Value is given by the ReturnedCCSID field
in the InqPropOpts parameter. The encoding of the data in Value is given
by the ReturnedEncoding field in the InqPropOpts parameter.

In the C programming language, the parameter is declared as a
pointer-to-void; the address of any type of data can be specified as the
parameter.

If the ValueLength parameter is zero, Value is not referred to and its value
passed by programs written in C can be null.

DataLength (MQLONG) - output

This is the length in bytes of the actual property value as returned in the
Value area.

MQINQMP - Inquire message property

Appendix B. Application Programming Reference 907

If DataLength is less than the property value length, DataLength is still
filled in on return from the MQINQMP call. This allows the application to
determine the size of the buffer required to accommodate the property
value, and then reissue the call with a buffer of the appropriate size.

The following values may also be returned.

If the Type parameter is set to MQTYPE_STRING or
MQTYPE_BYTE_STRING:

MQVL_EMPTY_STRING
The property exists but contains no characters or bytes.

CompCode (MQLONG) - output

The completion code; it is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_PROP_NAME_NOT_CONVERTED
(2492, X'09BC') Returned property name not converted.

MQRC_PROP_VALUE_NOT_CONVERTED
(2466, X'09A2') Property value not converted.

MQRC_PROP_TYPE_NOT_SUPPORTED
(2467, X'09A3') Property data type is not supported.

MQRC_RFH_FORMAT_ERROR
(2421, X'0975') An MQRFH2 folder containing properties could not
be parsed.

If CompCode is MQCC_FAILED:

MQRC_BUFFER_ERROR
(2004, X'07D4') Value parameter not valid.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'07D5') Value length parameter not valid.

MQRC_CONNECTION_BROKEN
(2009, X'07D9') Connection to queue manager lost.

MQRC_DATA_LENGTH_ERROR
(2010, X'07DA') Data length parameter not valid.

MQRC_IMPO_ERROR
(2464, X'09A0') Inquire message property options structure not
valid.

MQINQMP - Inquire message property

908 WebSphere MQ for z/VSE System Management Guide

MQRC_HMSG_ERROR
(2460, X'099C') Message handle not valid.

MQRC_OPTIONS_ERROR
(2046, X'07F8') Options not valid or not consistent.

MQRC_PD_ERROR
(2482, X'09B2') Property descriptor structure not valid.

MQRC_PROP_CONV_NOT_SUPPORTED
(2470, X'09A6') Conversion from the actual to requested data type
not supported.

MQRC_PROPERTY_NAME_ERROR
(2442, X'098A') Invalid property name.

MQRC_PROPERTY_NAME _TOO_BIG
(2465, X'09A1') Property name too big for returned name buffer.

MQRC_PROPERTY_NOT_AVAILABLE
(2471, X'09A7') Property not available.

MQRC_PROPERTY_VALUE_TOO_BIG
(2469, X'09A5') Property value too big for the Value area.

MQRC_PROP_NUMBER_FORMAT_ERROR
(2472, X'09A8') Number format error encountered in value data.

MQRC_PROPERTY_TYPE_ERROR
(2473, X'09A9') Invalid requested property type.

MQRC_SOURCE_CCSID_ERROR
(2111, X'083F') Property name coded character set identifier not
valid.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'0871') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'0893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQINQMP (Hconn, Hmsg, &InqPropOpts, &Name, &PropDesc,
&Type,ValueLength, Value, &DataLength, &CompCode, &Reason);

Declare the parameters:
MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQDIMPO InqPropOpts; /* Options that control the action of MQINQMP */
MQCHARV Name; /* Property name */
MQPD PropDesc; /* Property descriptor */
MQLONG Type; /* Property data type */
MQLONG ValueLength; /* Length in bytes of the Value area */
MQBYTE Value[n]; /* Area to contain the property value */
MQLONG DataLength; /* Length of the property value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation
CALL ’MQINQMP’ USING HCONN, HMSG, INQMSGOPTS, NAME, PROPDESC,
TYPE,VALUELENGTH, VALUE, DATALENGTH, COMPCODE, REASON.

MQINQMP - Inquire message property

Appendix B. Application Programming Reference 909

Declare the parameters:
** Connection handle
01 HCONN PIC S9(9) BINARY.
** Message handle
01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQINQMP
01 INQMSGOPTS.

COPY CMQIMPOV.
** Property name
01 NAME.

COPY CMQCHRVV.
** Property descriptor
01 PROPDESC.

COPY CMQPDV.
** Property data type
01 TYPE PIC S9(9) BINARY.
** Length in bytes of the VALUE area
01 VALUELENGTH PIC S9(9) BINARY.
** Area to contain the property value
01 VALUE PIC X(n).
** Length of the property value
01 DATALENGTH PIC S9(9) BINARY.
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation
call MQINQMP (Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type,
ValueLength, Value, DataLength, CompCode, Reason);

Declare the parameters:
dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg char(8); /* Message handle */
dcl InqPropOpts like MQIMPO;

/* Options that control the action of MQINQMP */
dcl Name like MQCHARV; /* Property name */
dcl PropDesc like MQPD; /* Property descriptor */
dcl Type fixed bin (31); /* Property data type */
dcl ValueLength fixed bin (31); /* Length in bytes of the Value area */
dcl Value char (n); /* Area to contain the property value */
dcl DataLength fixed bin (31); /* Length of the property value */
dcl CompCode fixed bin (31); /* Completion code */
dcl Reason fixed bin (31); /* Reason code qualifying CompCode */

MQMHBUF - Convert message handle into buffer

The MQMHBUF converts a message handle into a buffer and is the inverse of the
MQBUFMH call.

Syntax

MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc, BufferLength, Buffer,
DataLength, CompCode, Reason)

Parameters

The MQMHBUF call has the following parameters:

Hconn (MQHCONN) - input

This handle represents the connection to the queue manager. The value of
Hconn must match the connection handle that was used to create the
message handle specified in the Hmsg parameter.

MQINQMP - Inquire message property

910 WebSphere MQ for z/VSE System Management Guide

Hmsg (MQHMSG) - input

This is the message handle for which a buffer is required.

The value was returned by a previous MQCRTMH call.

MsgHBufOpts (MQMHBO) - input
The MQMHBO structure allows applications to specify options that control
how buffers are produced from message handles.

See “MQMHBO – Message handle to buffer options” on page 810 for
details.

Name (MQCHARV) - input

The name of the property or properties to put into the buffer.

If no property matching the name can be found, the call fails with
MQRC_PROPERTY_NOT_AVAILABLE.

Wildcards:

You can use a wildcard to put more than one property into the buffer. To
do this, use the wildcard character "%" at the end of the property name.
This wildcard matches zero or more characters, including the "." character.

In the C programming language, these macro variables are defined for
inquiring on all properties and all properties that begin "usr", respectively:

MQPROP_INQUIRE_ALL
Put all properties of the message into the buffer.

MQPROP_INQUIRE_ALL_USR
Put all properties of the message that start with the characters
"usr." into the buffer.

MsgDesc (MQMD) - input/output

The MsgDesc structure describes the contents of the buffer area.

On output, the Encoding, CodedCharSetId, and Format fields are set to
correctly describe the encoding, character set identifier and format of the
data in the buffer area as written by the call.

Data in this structure is in the character set and encoding of the
application.

BufferLength (MQLONG) - input

BufferLength is the length of the Buffer area, in bytes.

Buffer (MQBYTExBufferLength) - output

Buffer defines the area to contain the message properties. You should align
the buffer on a 4-byte boundary.

If BufferLength is less than the length required to store the properties in
Buffer, MQMHBUF fails with MQRC_PROPERTY_VALUE_TOO_BIG. The
contents of the buffer can change even if the call fails.

DataLength (MQLONG) - output

DataLength is the length, in bytes, of the returned properties in the buffer.
If the value is zero, no properties matched the value given in Name and
the call fails with reason code MQRC_PROPERTY_NOT_AVAILABLE.

If BufferLength is less than the length required to store the properties in
the buffer, the MQMHBUF call fails with

MQMHBUF - Convert message handle into buffer

Appendix B. Application Programming Reference 911

MQRC_PROPERTY_VALUE_TOO_BIG, but a value is still entered into
DataLength. This allows the application to determine the size of the buffer
required to accommodate the properties, and then reissue the call with the
required BufferLength.

CompCode (MQLONG) - output

The completion code; it is has one of these values:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_MHBO_ERROR
(2501, X'095C') Message handle to buffer options structure not
valid.

MQRC_BUFFER_ERROR
(2004, X'07D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'07D5') Buffer length parameter not valid.

MQRC_CONNECTION_BROKEN
(2009, X'07D9') Connection to queue manager lost.

MQRC_DATA_LENGTH_ERROR
(2010, X'07DA') Data length parameter not valid.

MQRC_HMSG_ERROR
(2460, X'099C') Message handle not valid.

MQRC_MD_ERROR
(2026, X'07EA') Message descriptor not valid.

MQRC_OPTIONS_ERROR
(2046, X'07FE') Options not valid or not consistent.

MQRC_PROPERTY_NAME_ERROR
(2442, X'098A') Property name is not valid.

MQRC_PROPERTY_NOT_AVAILABLE
(2471, X'09A7') Property not available.

MQRC_PROPERTY_VALUE_TOO_BIG
(2469, X'09A5') BufferLength value is too small to contain specified
properties.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQMHBUF - Convert message handle into buffer

912 WebSphere MQ for z/VSE System Management Guide

Usage notes

MQMHBUF converts a message handle into a buffer.

You can use it with an MQGET API exit to access certain properties, using the
message property APIs, and then pass these in a buffer back to an application
designed to use MQRFH2 headers rather than message handles.

This call is the inverse of the MQBUFMH call, which you can use to parse message
properties from a buffer into a message handle.

Language invocations

This call is supported in the following programming languages:
C invocation

MQMHBUF (Hconn, Hmsg, &MsgHBufOpts, &Name, &MsgDesc, BufferLength,
Buffer, &DataLength, &CompCode, &Reason);

Declare the parameters:
MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQMHBO MsgHBufOpts; /* Options that control the action of MQMHBUF */
MQCHARV Name; /* Property name */
MQMD MsgDesc; /* Message descriptor */
MQLONG BufferLength; /* Length in bytes of the Buffer area */
MQBYTE Buffer[n]; /* Area to contain the properties */
MQLONG DataLength; /* Length of the properties */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation
CALL ’MQMHBUF’ USING HCONN, HMSG, MSGHBUFOPTS, NAME, MSGDESC,
BUFFERLENGTH, BUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters:
** Connection handle
01 HCONN PIC S9(9) BINARY.
** Message handle
01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQMHBUF
01 MSGHBUFOPTS.
COPY CMQMHBOV.
** Property name
01 NAME

COPY CMQCHRVV.
** Message descriptor
01 MSGDESC

COPY CMQMDV.
** Length in bytes of the Buffer area */
01 BUFFERLENGTH PIC S9(9) BINARY.
** Area to contain the properties
01 BUFFER PIC X(n).
** Length of the properties
01 DATALENGTH PIC S9(9) BINARY.
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation
call MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc,
BufferLength, Buffer,DataLength, CompCode, Reason);

Declare the parameters:

MQMHBUF - Convert message handle into buffer

Appendix B. Application Programming Reference 913

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg char(8); /* Message handle */
dcl MsgHBufOpts like MQMHBO;

/* Options that control the action of MQMHBUF */
dcl Name like MQCHARV; /* Property name */
dcl MsgDesc like MQMD; /* Message descriptor */
dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer area */
dcl Buffer char(n); /* Area to contain the properties */
dcl DataLength fixed bin(31); /* Length of the properties */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

MQOPEN - Open object

The MQOPEN call establishes access to an object. The following types of object are
valid:

Queue
Queue manager
Namelist

Syntax

MQOPEN (Hconn,ObjDesc,Options,Hobj,CompCode,Reason)

Parameters

The MQOPEN call has the following parameters:

Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call.

ObjDesc (MQOD) - input/output
Object descriptor.

This is a structure that identifies the object to be opened; see “MQOD –
Object descriptor” on page 813 for details.

Options (MQLONG) - input
Options that control the action of MQOPEN.

The following options apply and you must specify at least one of these.
However, you cannot specify the two input options together and you
cannot specify an input option with an output option.

MQOO_BROWSE
MQOO_INPUT_SHARED
MQOO_INPUT_EXCLUSIVE
MQOO_INQUIRE
MQOO_OUTPUT
MQOO_SET

Note that namelist objects can only be opened with the MQOO_INQUIRE
option.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The
call can succeed if the queue is currently open by this or another

MQMHBUF - Convert message handle into buffer

914 WebSphere MQ for z/VSE System Management Guide

application with MQOO_INPUT_SHARED, but fails with reason
code MQRC_OBJECT_IN_USE if the queue is currently open with
MQOO_INPUT_EXCLUSIVE.

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The
call fails with reason code MQRC_OBJECT_IN_USE if the queue is
currently open by this or another application for input of any type
(MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE).

This option is valid only for local, alias, and model queues; it is
not valid for remote queues.

The following notes apply to these options:
v Only one of these options can be specified.
v An MQOPEN call with one of these options can succeed even if

the InhibitGet queue attribute is set to MQQA_GET_INHIBITED
(although subsequent MQGET calls will fail while the attribute is
set to this value).

v If an alias queue is opened with one of these options, the test for
exclusive use (or for whether another application has exclusive
use) is against the base queue to which the alias resolves.

v These options are not valid if ObjectQMgrName is the name of a
queue manager alias; this is true even if the value of the
RemoteQMgrName attribute in the local definition of a remote
queue used for queue-manager aliasing is the name of the local
queue manager.

MQOO_BROWSE
Open queue to browse messages.

The queue is opened for use with subsequent MQGET calls with
one of the following options:
1. MQGMO_BROWSE_FIRST
2. MQGMO_BROWSE_NEXT
3. MQGMO_BROWSE_MSG_UNDER_CURSOR

This is allowed even if the queue is currently open for
MQOO_INPUT_EXCLUSIVE. An MQOPEN call with the
MQOO_BROWSE option establishes a browse cursor, and positions
it logically before the first message on the queue; see “MQGET -
Get message” on page 888 for further information.

This option is valid only for local and alias; it is not valid for
remote queues and objects which are not queues. It is also not
valid if ObjectQMgrName is the name of a queue manager alias;
this is true even if the value of the RemoteQMgrName attribute in
the local definition of a remote queue used for queue-manager
aliasing is the name of the local queue manager.

MQOO_OUTPUT
Open queue to put messages.

The queue is opened for use with subsequent MQPUT calls. An
MQOPEN call with this option can succeed even if the InhibitPut
queue attribute is set to MQQA_PUT_INHIBITED (although
subsequent MQPUT calls will fail while the attribute is set to this
value).

MQOPEN - Open object

Appendix B. Application Programming Reference 915

MQOO_INQUIRE
Open object to inquire attributes.

The queue or queue manager is opened for use with subsequent
MQINQ calls.

The queue, queue manager or namelist is opened for use with
subsequent MQINQ calls.

MQOO_SET
Open queue to set attributes.

The queue is opened for use with subsequent MQSET calls. This
option is valid for all queue types supported by WebSphere MQ
for z/VSE.

Hobj (MQHOBJ) - output
Object handle.

This handle represents the access that has been established to the object. It
must be specified on subsequent message queuing calls that operate on the
object. It ceases to be valid when the MQCLOSE call is issued, or when the
CICS task terminates.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_FAILED:
MQRC_ALIAS_BASE_Q_TYPE_ERROR

(2001, X'7D1') Alias base queue not a valid type.
MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.
MQRC_DYNAMIC_Q_NAME_ERROR

(2011, X'7DB') The dynamic queue name is invalid.
MQRC_HANDLE_NOT_AVAILABLE

(2017, X'7E1') No more handles available.
MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.
MQRC_OBJECT_ALREADY_EXISTS

(2100, X'834') For a dynamic queue, the queue name already exists.
MQRC_OBJECT_IN_USE

(2042, X'7FA') Object already open with conflicting options.
MQRC_OBJECT_TYPE_ERROR

(2043, X'7FB') Object type not valid.
MQRC_OD_ERROR

(2044, X'7FC') Object descriptor structure not valid.
MQRC_OPTION_NOT_VALID_FOR_TYPE

(2045, X'7FD') Option not valid for object type.
MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.
MQRC_Q_DELETED

(2052, X'804') The queue has been deleted.

MQOPEN - Open object

916 WebSphere MQ for z/VSE System Management Guide

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UNKNOWN_ALIAS_BASE_Q
(2082, X'822') Unknown alias base queue.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRC_UNKNOWN_OBJECT_Q_MGR
(2086, X'826') Unknown object queue manager.

MQRC_UNKNOWN_REMOTE_Q_MGR
(2087, X'827') Unknown remote queue manager.

Usage notes

1. The object opened is one of the following:
v A queue, in order to:

– Get or browse messages (using the MQGET call).
– Put messages (using the MQPUT call).
– Inquire about the attributes of the queue (using the MQINQ call).
– Set the attributes of the queue (using the MQSET call).

v The queue manager, in order to:
– Inquire about the attributes of the local queue manager (using the

MQINQ call).
v A namelist, in order to:

– Inquire about the attributes of the namelist object (using the
MQINQ call).

2. It is valid for an application to open the same object more than once. A
different object handle is returned for each open. Each handle that is
returned can be used for the functions for which the corresponding
open was performed.

3. If security is enabled, the queue manager performs security checks
when an MQOPEN call is issued, to verify that the user identifier
under which the application is running has the appropriate level of
authority before access is permitted. The authority check is made on
the name of the object being opened, and not on the name, or names,
resulting after a name has been resolved.

Language invocations

This call is supported in the following programming languages:
C invocation

MQOPEN (Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQOD ObjDesc; /*Object descriptor */
MQLONG Options; /*Options that control the action of MQOPEN */
MQHOBJ Hobj; /*Object handle */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQOPEN’USING HCONN,OBJDESC,OPTIONS,HOBJ,COMPCODE,REASON.

Declare the parameters:

MQOPEN - Open object

Appendix B. Application Programming Reference 917

**Connection handle
01 HCONN PIC S9(9)BINARY.

**Object descriptor
01 OBJDESC.
COPY CMQODV.

**Options that control the action of MQOPEN
01 OPTIONS PICS9(9)BINARY.

**Object handle
01 HOBJ PICS9(9)BINARY.

**Completion code
01 COMPCODE PIC S9(9)BINARY.

**Reason code qualifying CompCode
01 REASON PICS9(9)BINARY.

PL/I invocation
CALL MQOPEN (HCONN,OBJDESC,OPTIONS,HOBJ,COMPCODE,REASON);

Declare the parameters:
DCL HCONN FIXED BIN(31); /*Connection handle */
DCL OBJDESC LIKE MQOD; /*Object descriptor */
DCL OPTIONS FIXED BIN(31); /*Options that control the action of

MQOPEN */
DCL HOBJ FIXED BIN(31); /*Object handle */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode */

MQPUT - Put message

The MQPUT call puts a message on a queue. The queue must already be open.

Syntax

MQPUT (Hconn,Hobj,MsgDesc,PutMsgOpts,BufferLength, Buffer,CompCode,Reason)

Parameters

The MQPUT call has the following parameters:

Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call.

Hobj (MQHOBJ) - input
Object handle.

This handle represents the queue to which the message is added. The
value of Hobj was returned by a previous MQOPEN call that specified the
MQOO_OUTPUT option.

This handle can also represent an open distribution list.

MsgDesc (MQMD) - input/output
Message descriptor.

This structure describes the attributes of the message being sent, and
receives information about the message after the put request is complete.
See “MQMD – Message descriptor” on page 774 for details.

PutMsgOpts (MQPMO) - input/output
Put message options.

Options that control the action of MQPUT. See “MQPMO – Put message
options” on page 826 for details.

MQOPEN - Open object

918 WebSphere MQ for z/VSE System Management Guide

BufferLength (MQLONG) - input
Length of the message in Buffer.

Zero is valid, and indicates that the message contains no application data.

Buffer (MQBYTE×BufferLength) - input
Message data.

This is a buffer containing the application data to be sent. The buffer
should be aligned on a boundary appropriate to the nature of the data in
the message. 4-byte alignment should be suitable for most messages
(including messages containing MQ header structures), but some messages
may require more stringent alignment.

If Buffer contains character and/or numeric data, the CodedCharSetId and
Encoding fields in the MsgDesc parameter should be set to the values
appropriate to the data; this will enable the receiver of the message to
convert the data (if necessary) to the character set and encoding used by
the receiver.

Note: All of the other parameters on the MQPUT call must be in the
character set and encoding of the local queue manager (given by the
CodedCharSetId queue-manager attribute and MQENC_NATIVE,
respectively).

In the C programming language, the parameter is declared as a
pointer-to-void; this means that the address of any type of data can be
specified as the parameter. If the BufferLength parameter is zero, Buffer is
not referred to; in this case, the parameter address passed by programs
written in C can be null.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_PRIORITY_EXCEEDS_MAXIMUM

(2049, X'801') Message Priority exceeds maximum value supported.

If CompCode is MQCC_FAILED:
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.
MQRC_EXPIRY_ERROR

(2013, X'7DD') Expiry time not valid.

MQPUT - Put message

Appendix B. Application Programming Reference 919

MQRC_FEEDBACK_ERROR
(2014, X'7DE') Feedback code not valid.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

MQRC_MISSING_REPLY_TO_Q
(2027, X'7EB') Missing reply-to queue.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE') Message length greater than maximum for queue.

MQRC_MSG_TYPE_ERROR
(2029, X'7ED') Message type in message descriptor not valid.

MQRC_NOT_OPEN_FOR_OUTPUT
(2039, X'7F7') Queue not open for output.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_PERSISTENCE_ERROR
(2047, X'7FF') Persistence not valid.

MQRC_PERSISTENT_NOT_ALLOWED
(2048, X'800') Persistence specified is inconsistent with the queue.

MQRC_PMO_ERROR
(2173, X'87D') Put-message options structure not valid.

MQRC_PRIORITY_ERROR
(2050, X'802') Message priority not valid.

MQRC_PUT_INHIBITED
(2051, X'803') Put calls inhibited for the queue.

MQRC_Q_DELETED
(2052, X'804') The queue has been deleted.

MQRC_Q_FULL
(2053, X'805') Queue already contains maximum number of
messages.

MQRC_Q_SPACE_NOT_AVAILABLE
(2056, X'808') No space available on disk for queue.

MQRC_REPORT_OPTIONS_ERROR
(2061, X'80D') Report options in message descriptor not valid.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UNKNOWN_CCSID
(2115, X'843') Unknown CCSID.

Language invocations

This call is supported in the following programming languages:
C invocation

MQPUT (Hconn,Hobj,&MsgDesc,&PutMsgOpts,BufferLength,Buffer,
&CompCode,&Reason);

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQHOBJ Hobj; /*Object handle */
MQMD MsgDesc; /*Message descriptor */
MQPMO PutMsgOpts; /*Options that control the action of MQPUT */
MQLONG BufferLength; /*Length of the message in Buffer */

MQPUT - Put message

920 WebSphere MQ for z/VSE System Management Guide

MQBYTE Buffer [n]; /*Message data */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQPUT’USING HCONN,HOBJ,MSGDESC,PUTMSGOPTS,
BUFFERLENGTH,BUFFER,COMPCODE,REASON.

Declare the parameters:
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Object handle

01 HOBJ PIC S9(9)BINARY.
**Message descriptor

01 MSGDESC.
COPY CMQMDV.

**Options that control the action of MQPUT
01 PUTMSGOPTS.
COPY CMQPMOV.

**Length of the message in Buffer
01 BUFFERLENGTH PIC S9(9)BINARY.

**Message data
01 BUFFER PIC X(n).

**Completion code
01 COMPCODE PIC S9(9)BINARY.

**Reason code qualifying CompCode
01 REASON PICS9(9)BINARY.

PL/I invocation
CALL MQPUT (HCONN,HOBJ,MSGDESC,PUTMSGOPTS,BUFFERLENGTH,BUFFER,
COMPCODE,REASON);

Declare the parameters:
DCL HCONN FIXED BIN(31); /*Connection handle */
DCL HOBJ FIXED BIN(31); /*Object handle */
DCL MSGDESC LIKE MQMD; /*Message descriptor */
DCL PUTMSGOPTS LIKE MQPMO; /*Options that control the action of

MQPUT */
DCL BUFFERLENGTH FIXED BIN(31); /*Length of the message in Buffer */
DCL BUFFER CHAR(N); /*Message data */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode */

MQPUT1 - Put one message

The MQPUT1 call puts one message on a queue. The queue need not be open.

Note: You cannot issue an MQPUT1 call to a model queue.

Syntax

MQPUT1 (Hconn,ObjDesc,MsgDesc,PutMsgOpts,BufferLength,
Buffer,CompCode,Reason)

Parameters

The MQPUT1 call has the following parameters:

Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN call.

MQPUT - Put message

Appendix B. Application Programming Reference 921

ObjDesc (MQOD) - input/output
Object descriptor.

This is a structure which identifies the queue to which the message is
added. See “MQOD – Object descriptor” on page 813 for details.

If security is enabled, the user must be authorized to open the queue for
output.

MsgDesc (MQMD) - input/output
Message descriptor.

This structure describes the attributes of the message being sent, and
receives feedback information after the put request is complete. See
“MQMD – Message descriptor” on page 774 for details.

PutMsgOpts (MQPMO) - input/output
Put message options.

Options that control the action of MQPUT1. See “MQPMO – Put message
options” on page 826 for details.

BufferLength (MQLONG) - input
Length of the message in Buffer.

Zero is valid, and indicates that the message contains no application data.

Buffer (MQBYTE×BufferLength) - input
Message data.

This is a buffer containing the application data to be sent. The buffer
should be aligned on a boundary appropriate to the nature of the data in
the message. 4-byte alignment should be suitable for most messages
(including messages containing MQ header structures), but some messages
may require more stringent alignment.

If Buffer contains character and/or numeric data, the CodedCharSetId and
Encoding fields in the MsgDesc parameter should be set to the values
appropriate to the data; this will enable the receiver of the message to
convert the data (if necessary) to the character set and encoding used by
the receiver.

Note: All of the other parameters on the MQPUT call must be in the
character set and encoding of the local queue manager (given by the
CodedCharSetId queue-manager attribute and MQENC_NATIVE,
respectively).

In the C programming language, the parameter is declared as a
pointer-to-void; this means that the address of any type of data can be
specified as the parameter. If the BufferLength parameter is zero, Buffer is
not referred to; in this case, the parameter address passed by programs
written in C can be null.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

MQPUT1 - Put one message

922 WebSphere MQ for z/VSE System Management Guide

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_WARNING:
MQRC_PRIORITY_EXCEEDS_MAXIMUM

(2049, X'801') Message Priority exceeds maximum value supported.

If CompCode is MQCC_FAILED:
MQRC_ALIAS_BASE_Q_TYPE_ERROR

(2001, X'7D1') Alias base queue not a valid type.
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.
MQRC_EXPIRY_ERROR

(2013, X'7DD') Expiry time not valid.
MQRC_FEEDBACK_ERROR

(2014, X'7DE') Feedback code not valid.
MQRC_HANDLE_NOT_AVAILABLE

(2017, X'7E1') No more handles available.
MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.
MQRC_MD_ERROR

(2026, X'7EA') Message descriptor not valid.
MQRC_MISSING_REPLY_TO_Q

(2027, X'7EB') Missing reply-to queue.
MQRC_MSG_TOO_BIG_FOR_Q

(2030, X'7EE') Message length greater than maximum for queue.
MQRC_MSG_TYPE_ERROR

(2029, X'7ED') Message type in message descriptor not valid.
MQRC_OBJECT_TYPE_ERROR

(2043, X'7FB') Object type not valid.
MQRC_OD_ERROR

(2044, X'7FC') Object descriptor structure not valid.
MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.
MQRC_PERSISTENCE_ERROR

(2047, X'7FF') Persistence not valid.
MQRC_PERSISTENT_NOT_ALLOWED

(2048, X'800') Persistence specified is inconsistent with the queue.
MQRC_PMO_ERROR

(2173, X'87D') Put-message options structure not valid.
MQRC_PRIORITY_ERROR

(2050, X'802') Message priority not valid.
MQRC_PUT_INHIBITED

(2051, X'803') Put calls inhibited for the queue.
MQRC_Q_DELETED

(2052, X'804') The queue has been deleted.
MQRC_Q_FULL

(2053, X'805') Queue already contains maximum number of
messages.

MQRC_Q_SPACE_NOT_AVAILABLE
(2056, X'808') No space available on disk for queue.

MQRC_Q_TYPE_ERROR
(2057, X'809') Cannot MQPUT1 to a model queue.

MQRC_REPORT_OPTIONS_ERROR
(2061, X'80D') Report options in message descriptor not valid.

MQPUT1 - Put one message

Appendix B. Application Programming Reference 923

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UNKNOWN_ALIAS_BASE_Q
(2082, X'822') Unknown alias base queue.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRC_UNKNOWN_OBJECT_Q_MGR
(2086, X'826') Unknown object queue manager.

MQRC_UNKNOWN_REMOTE_Q_MGR
(2087, X'827') Unknown remote queue manager.

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not valid.

Usage notes
Both the MQPUT and MQPUT1 calls can be used to put messages on a
queue; which call to use depends on the circumstances:
v The MQPUT call should be used when multiple messages are to be

placed on the same queue.
An MQOPEN call specifying the MQOO_OUTPUT option is issued first,
followed by one or more MQPUT requests to add messages to the
queue; finally the queue is closed with an MQCLOSE call. This gives
better performance than repeated use of the MQPUT1 call.

v The MQPUT1 call should be used when only one message is to be put
on a queue. This call encapsulates the MQOPEN, MQPUT, and
MQCLOSE calls into a single call, thereby minimizing the number of
calls that must be issued.

Language invocations

This call is supported in the following programming languages:
C invocation

MQPUT1 (Hconn,&ObjDesc,&MsgDesc,&PutMsgOpts, BufferLength,Buffer,
&CompCode,&Reason);

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQOD ObjDesc; /*Object descriptor */
MQMD MsgDesc; /*Message descriptor */
MQPMO PutMsgOpts; /*Options that control the action of MQPUT1 */
MQLONG BufferLength; /*Length of the message in Buffer */
MQBYTE Buffer[n]; /*Message data */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQPUT1’USING HCONN,OBJDESC,MSGDESC,PUTMSGOPTS,
BUFFERLENGTH,BUFFER,COMPCODE,REASON.

Declare the parameters:
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Object descriptor

01 OBJDESC.
COPY CMQODV.

**Message descriptor
01 MSGDESC.
COPY CMQMDV.

**Options that control the action of MQPUT1

MQPUT1 - Put one message

924 WebSphere MQ for z/VSE System Management Guide

01 PUTMSGOPTS.
COPY CMQPMOV.

**Length of the message in Buffer
01 BUFFERLENGTH PIC S9(9)BINARY.

**Message data
01 BUFFER PIC X(n).

**Completion code
01 COMPCODE PIC S9(9)BINARY.

**Reason code qualifying CompCode
01 REASON PIC S9(9)BINARY.

PL/I invocation
CALL MQPUT1 (HCONN,OBJDESC,MSGDESC,PUTMSGOPTS,BUFFERLENGTH,BUFFER,
COMPCODE,REASON);

Declare the parameters:
dcl Hconn fixed bin(31); /*Connection handle */
dcl ObjDesc like MQOD; /*Object descriptor */
dcl MsgDesc like MQMD; /*Message descriptor */
dcl PutMsgOpts like MQPMO; /*Options that control the action of

MQPUT1 */
dcl BufferLength fixed bin(31); /*Length of the message in Buffer */
dcl Buffer char(n); /*Message data */
dcl CompCode fixed bin(31); /*Completion code */
dcl Reason fixed bin(31); /*Reason code qualifying CompCode */

MQSET - Set object attributes

The MQSET call is used to change the attributes of an object represented by a
handle. The object must be a queue.

Note: Once you have issued this call, if you issue a rollback, changes made to the
WebSphere MQ configuration will be reversed. However, the queue manager's
internal control blocks will retain the changes created by the MQSET call. To
remove the changes, reissue the MQSET call with the original values.

Syntax

MQSET (Hconn,Hobj,SelectorCount,Selectors,IntAttrCount,
IntAttrs,CharAttrLength,CharAttrs,CompCode,Reason)

Parameters

The MQSET call has the following parameters:

Hconn (MQHCONN) - input
Connection handle.

The value of Hconn was returned by a previous MQCONN call.

Hobj (MQHOBJ) - input
Object handle.

This handle represents the queue object whose attributes are to be set. The
handle was returned by a previous MQOPEN call that specified the
MQOO_SET option.

SelectorCount (MQLONG) - input
Count of selectors.

This is the count of selectors that are supplied in the Selectors array. It is
the number of attributes that are to be set. Zero is a valid value. The
maximum number allowed is 256.

MQPUT1 - Put one message

Appendix B. Application Programming Reference 925

Selectors (MQLONG×SelectorCount) - input
Array of attribute selectors.

This is an array of SelectorCount attribute selectors; each selector identifies
an attribute (integer or character) whose value is to be set.

Each selector must be valid for the type of queue that Hobj represents.
Only certain MQIA_* and MQCA_* values are allowed; these values are
listed below.

Selectors for all types of queue
MQCA_Q_DESC

Queue description (MQ_Q_DESC_LENGTH).
MQIA_INHIBIT_PUT

Whether put operations are allowed. Can be one of the
following values:

MQQA_PUT_ALLOWED
MQQA_PUT_INHIBITED

Selectors for local queues
MQCA_AUTO_REORG_CATALOG

The contents of this field are now treated as comments and
may not reflect the actual VSAM catalog containing the
reorganization file. For the reorganization process, the
VSAM catalog where the reorganization file is defined is
now extracted from the system and so no longer needs to
be specified in the queue definition.

MQCA_AUTO_REORG_START_TIME
Indicates the time of day, in HHMM format, for the
automatic VSAM reorganization to occur following a
system restart (MQ_AUTO_REORG_TIME_LENGTH).

MQCA_TRIGGER_CHANNEL_NAME
Channel name for MCA trigger process
(MQ_CHANNEL_NAME_LENGTH).

MQCA_TRIGGER_DATA
Trigger user data (MQ_PROCESS_USER_DATA_LENGTH).

MQCA_TRIGGER_PROGRAM_NAME
Program name for trigger process
(MQ_TRIGGER_PROGRAM_NAME_LENGTH).

MQCA_TRIGGER_TERM_ID
Terminal identifier for trigger process
(MQ_TRIGGER_TERM_ID_LENGTH).

MQCA_TRIGGER_TRANS_ID
Transaction identifier for trigger process
(MQ_TRIGGER_TRANS_ID_LENGTH).

MQIA_ACCOUNTING_Q
Queue accounting setting. Can be one of the following
values:

MQMON_Q_MGR
MQMON_OFF
MQMON_ON

MQIA_AUTO_REORG_INTERVAL
Indicates the frequency, in minutes, for the automatic
VSAM reorganization to occur, after its initial activation.

MQIA_AUTO_REORGANIZATION
Indicates whether the VSAM file hosting a queue should
be scheduled for automatic VSAM reorganization. Can be
one of the following values:

MQSET - Set object attributes

926 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|

MQREORG_ENABLED
MQREORG_DISABLED

MQIA_INHIBIT_GET
Whether get operations are allowed. Can be one of the
following values:

MQQA_GET_ALLOWED
MQQA_GET_INHIBITED

MQIA_MAX_GLOBAL_LOCKS
Buffer size for queue manager to manage concurrent queue
access.

MQIA_MAX_LOCAL_LOCKS
Buffer size for applications to manage concurrent queue
access.

MQIA_MAX_MSG_LENGTH
Maximum message length for queue messages.

MQIA_MAX_Q_DEPTH
Maximum allowable queue depth for queues.

MQIA_MAX_Q_TRIGGERS
Maximum number of concurrent trigger instances for a
particular queue.

MQIA_MONITORING_Q
Queue monitoring setting. Can be one of the following
values:
v MQMON_OFF
v MQMON_Q_MGR
v MQMON_LOW
v MQMON_MEDIUM
v MQMON_HIGH

MQIA_Q_DEPTH_HIGH_EVENT
Control attribute for queue depth high events.

MQIA_Q_DEPTH_HIGH_LIMIT
High limit for queue depth.

MQIA_Q_DEPTH_LOW_EVENT
Control attribute for queue depth low events.

MQIA_Q_DEPTH_LOW_LIMIT
Low limit for queue depth.

MQIA_Q_DEPTH_MAX_EVENT
Control attribute for queue depth max events.

MQIA_Q_SERVICE_INTERVAL
Limit for queue service interval.

MQIA_Q_SERVICE_INTERVAL_EVENT
Control attribute for queue service interval events.

MQIA_Q_USERS
Maximum number of concurrent opens per queue.

MQIA_SHAREABILITY
Queue shareability mode. Can be one of the following
values:

MQQA_SHAREABLE
MQQA_NOT_SHAREABLE

MQIA_STATISTICS_Q
Queue statistics setting. Can be one of the following
values:
v MQMON_Q_MGR
v MQMON_OFF
v MQMON_ON

MQSET - Set object attributes

Appendix B. Application Programming Reference 927

MQIA_TRIGGER_CONTROL
Whether a trigger is required for the queue. Can be one of
the following values:

MQTC_OFF
MQTC_ON

MQIA_TRIGGER_RESTART
Indicator for the reactivation of a trigger process. Can be
one of the following values:

MQTRIGGER_RESTART_YES
MQTRIGGER_RESTART_NO

MQIA_TRIGGER_TYPE
Trigger event type. Can be one of the following values:

MQTT_NONE
MQTT_FIRST
MQTT_EVERY

MQIA_USAGE
Queue usage. Can be one of the following values:

MQUS_NORMAL
MQUS_TRANSMISSION

Selectors for remote queues
MQCA_REMOTE_Q_MGR_NAME

Name of remote queue manager
(MQ_Q_MGR_NAME_LENGTH).

MQCA_REMOTE_Q_NAME
Name of remote queue as known on remote queue
manager (MQ_Q_NAME_LENGTH).

MQCA_XMIT_Q_NAME
Name of local transmission queue
(MQ_Q_NAME_LENGTH).

Selectors for alias queues
MQCA_BASE_Q_NAME

Name of queue that alias resolves to
(MQ_Q_NAME_LENGTH).

MQIA_INHIBIT_GET
Whether get operations are allowed. Can be one of the
following values:

MQQA_GET_ALLOWED
MQQA_GET_INHIBITED

IntAttrCount (MQLONG) - input
Count of integer attributes.

This is the number of elements in the IntAttrs array, and must be at least
the number of MQIA_* selectors in the Selectors parameter. Zero is a valid
value if there are none.

IntAttrs (MQLONG×IntAttrCount) - input
Array of integer attributes.

This is an array of IntAttrCount integer attribute values. These attribute
values must be in the same order as the MQIA_* selectors in the Selectors
array.

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not
referred to; in this case, the parameter address passed by programs written
in C may be null.

MQSET - Set object attributes

928 WebSphere MQ for z/VSE System Management Guide

CharAttrLength (MQLONG) - input
Length of character attributes buffer.

This is the length in bytes of the CharAttrs parameter and for WebSphere
MQ for z/VSE must zero.

CharAttrs (MQCHAR×CharAttrLength) - input
Character attributes.

This is not referred to by WebSphere MQ for z/VSE. If programs are
written in C then the parameter address passed by programs written in C
may be null.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_CHAR_ATTR_LENGTH_ERROR

(2006, X'7D6') Length of character attributes not valid.
MQRC_CHAR_ATTRS_ERROR

(2007, X'7D7') Character attributes string not valid.
MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS.
MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.
MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.
MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.
MQRC_INHIBIT_VALUE_ERROR

(2020, X'7E4') Value for inhibit-get or inhibit-put queue attribute
not valid.

MQRC_INT_ATTR_COUNT_ERROR
(2021, X'7E5') Count of integer attributes not valid.

MQRC_INT_ATTRS_ARRAY_ERROR
(2023, X'7E7') Integer attributes array not valid.

MQRC_NOT_OPEN_FOR_SET
(2040, X'7F8') Queue not open for set.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_Q_DELETED
2052, X'804') The queue has been deleted.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQSET - Set object attributes

Appendix B. Application Programming Reference 929

MQRC_SELECTOR_COUNT_ERROR
(2065, X'811') Count of selectors not valid.

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRC_SELECTOR_LIMIT_EXCEEDED
(2066, X'812') Count of selectors too big.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQSET (Hconn,Hobj,SelectorCount,Selectors,IntAttrCount,IntAttrs,
CharAttrLength,CharAttrs,&CompCode,&Reason);

Declare the parameters:
MQHCONN Hconn; /*Connection handle */
MQHOBJ Hobj; /*Object handle */
MQLONG SelectorCount; /*Count of selectors */
MQLONG Selectors[n]; /*Array of attribute selectors */
MQLONG IntAttrCount; /*Count of integer attributes */
MQLONG IntAttrs[n]; /*Array of integer attributes */
MQLONG CharAttrLength; /*Length of character attributes buffer */
MQCHAR CharAttrs[n]; /*Character attributes */
MQLONG CompCode; /*Completion code */
MQLONG Reason; /*Reason code qualifying CompCode */

COBOL invocation
CALL ’MQSET’USING HCONN,HOBJ,SELECTORCOUNT, SELECTORS-
TABLE,INTATTRCOUNT,INTATTRS-TABLE,
CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON.

Declare the parameters:
**Connection handle

01 HCONN PIC S9(9)BINARY.
**Object handle

01 HOBJ PIC S9(9)BINARY.
**Count of selectors

01 SELECTORCOUNT PIC S9(9)BINARY.
**Array of attribute selectors

01 SELECTORS-TABLE.
02 SELECTORS PIC S9(9)BINARY OCCURS n TIMES.

**Count of integer attributes
01 INTATTRCOUNT PIC S9(9)BINARY.

**Array of integer attributes
01 INTATTRS-TABLE.

02 INTATTRS PIC S9(9)BINARY OCCURS n TIMES.
**Length of character attributes buffer

01 CHARATTRLENGTH PIC S9(9)BINARY.
**Character attributes

01 CHARATTRS PIC X(n).
**Completion code

01 COMPCODE PIC S9(9)BINARY.
**Reason code qualifying CompCode

01 REASON PICS9(9)BINARY.
PL/I invocation

CALL MQSET (HCONN,HOBJ,SELECTORCOUNT,SELECTORS,INTATTRCOUNT,
INTATTRS,CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON);

Declare the parameters:

MQSET - Set object attributes

930 WebSphere MQ for z/VSE System Management Guide

DCL HCONN FIXED BIN(31); /*Connection handle */
DCL HOBJ FIXED BIN(31); /*Object handle */
DCL SELECTORCOUNT FIXED BIN(31); /*Count of selectors */
DCL SELECTORS(N) FIXED BIN(31); /*Array of attribute selectors */
DCL INTATTRCOUNT FIXED BIN(31); /*Count of integer attributes */
DCL INTATTRS(N) FIXED BIN(31); /*Array of integer attributes */
DCL CHARATTRLENGTH FIXED BIN(31); /*Length of character attributes

buffer */
DCL CHARATTRS CHAR(N); /*Character attributes */
DCL COMPCODE FIXED BIN(31); /*Completion code */
DCL REASON FIXED BIN(31); /*Reason code qualifying CompCode */

MQSETMP - Set message property

The MQSETMP call sets or modifies a property of a message handle.

Syntax

MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type, ValueLength,
Value, CompCode, Reason)

Parameters

The MQSETMP call has the following parameters:

Hconn (MQHCONN) - input
This handle represents the connection to the queue manager. The value
must match the connection handle that was used to create the message
handle specified in the Hmsg parameter.

Hmsg (MQHMSG) - input
This is the message handle to be modified. The value was returned by a
previous MQCRTMH call.

SetPropOpts (MQSMPO) - input
Control how message properties are set.

This structure allows applications to specify options that control how
message properties are set. The structure is an input parameter on the
MQSETMP call. See MQSMPO for further information.

Name (MQCHARV) - input
This is the name of the property to set.

PropDesc (MQPD) - input/output
This structure is used to define the attributes of a property, including:
v What happens if the property is not supported.
v What message context the property belongs to.
v What messages the property is copied into as it flows.

See MQPD for further information about this structure.

Type (MQLONG) - input
The data type of the property being set. It can be one of the following:

MQTYPE_BOOLEAN
A boolean. ValueLength must be 4.

MQTYPE_BYTE_STRING
A byte string. ValueLength must be zero or greater.

MQTYPE_INT8
An 8-bit signed integer. ValueLength must be 1.

MQSET - Set object attributes

Appendix B. Application Programming Reference 931

MQTYPE_INT16
A 16-bit signed integer. ValueLength must be 2.

MQTYPE_INT32
A 32-bit signed integer. ValueLength must be 4.

MQTYPE_FLOAT32
A 32-bit floating-point number. ValueLength must be 4.

MQTYPE_FLOAT64
A 64-bit floating-point number. ValueLength must be 8.

MQTYPE_STRING
A character string. ValueLength must be zero or greater, or the
special value MQVL_NULL_TERMINATED.

MQTYPE_NULL
The property exists but has a null value.ValueLength must be zero.

ValueLength (MQLONG) - input
The length in bytes of the property value in the Value parameter. Zero is
valid only for null values or for strings or byte strings. Zero indicates that
the property exists but that the value contains no characters or bytes.

The value must be greater than or equal to zero or the following special
value if the Type parameter has MQTYPE_STRING set:

MQVL_NULL_TERMINATED
The value is delimited by the first null encountered in the string.
The null is not included as part of the string. This value is invalid
if MQTYPE_STRING is not also set.

Note: The null character used to terminate a string if
MQVL_NULL_TERMINATED is set is a null from the character set
of the Value.

Value (MQBYTE x ValueLength) - input
The value of the property to be set. The buffer must be aligned on a
boundary appropriate to the nature of the data in the value.

In the C programming language, the parameter is declared as a
pointer-to-void. The address of any type of data can be specified as the
parameter.

If ValueLength is zero, Value is not referred to. In this case, the parameter
address passed by programs written in C or System/390 assembler can be
null.

CompCode (MQLONG) - output
The completion code; it has one of these values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQSETMP - Set message property

932 WebSphere MQ for z/VSE System Management Guide

MQRC_RFH_FORMAT_ERROR
(2421, X'0975') An MQRFH2 folder containing properties could not
be parsed.

MQRC_BUFFER_ERROR
(2004, X'07D4') Value parameter not valid.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'07D5') Value length parameter not valid.

MQRC_HMSG_ERROR
(2460, X'099C') Message handle pointer not valid.

MQRC_OPTIONS_ERROR
(2046, X'07FE') Options not valid or not consistent.

MQRC_PD_ERROR
(2482, X'09B2') Property descriptor structure not valid.

MQRC_PROPERTY_NAME_ERROR
(2442, X'098A') Invalid property name.

MQRC_PROPERTY_TYPE_ERROR
(2473, X'09A9') Invalid property data type.

MQRC_PROP_NUMBER_FORMAT_ERROR
(2472, X'09A8') Number format error encountered in value data.

MQRC_SMPO_ERROR
(2463, X'099F') Set message property options structure not valid.

MQRC_SOURCE_CCSID_ERROR
(2111, X'083F') Property name coded character set identifier not
valid.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

Language invocations

This call is supported in the following programming languages:
C invocation

MQSETMP (Hconn, Hmsg, &SetPropOpts, &Name, &PropDesc, Type,
ValueLength, &Value, &CompCode, &Reason);

Declare the parameters:
MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQSMPO SetPropOpts; /* Options that control the action of MQSETMP */
MQCHARV Name; /* Property name */
MQPD PropDesc; /* Property descriptor */
MQLONG Type; /* Property data type */
MQLONG ValueLength; /* Length of property value in Value */
MQBYTE Value[n]; /* Property value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation
CALL ’MQSETMP’USING HCONN,HOBJ,OPTIONS,COMPCODE,REASON.

Declare the parameters:

MQSETMP - Set message property

Appendix B. Application Programming Reference 933

** Connection handle
01 HCONN PIC S9(9) BINARY.
** Message handle
01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQSETMP
01 SETMSGOPTS.

COPY CMQSMPOV.
** Property name
01 NAME

COPY CMQCHRVV.
** Property descriptor
01 PROPDESC.

COPY CMQPDV.
** Property data type
01 TYPE PIC S9(9) BINARY.
** Length of property value in VALUE
01 VALUELENGTH PIC S9(9) BINARY.
** Property value
01 VALUE PIC X(n).
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation
call MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type,
ValueLength,Value, CompCode, Reason);

Declare the parameters:
dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg char(8); /* Message handle */
dcl SetPropOpts like MQSMPO;

/* Options that control the action of MQSETMP */
dcl Name like MQCHARV; /* Property name */
dcl PropDesc like MQPD; /* Property descriptor */
dcl Type fixed bin(31); /* Property data type */
dcl ValueLength fixed bin(31); /* Length of property value in Value */
dcl Value char(n); /* Property value */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

MQSUB - Register subscription

Use the MQSUB call to register the applications subscription to a particular topic.

Syntax
MQSUB (Hconn, SubDesc, Hobj, Hsub, Compcode, Reason)

Parameters

The MQSUB call has the following parameters:

Hconn
Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN or MQCONNX call.

SubDesc
Type: MQSD - input/output

This is a structure that identifies the object in use that is being registered
by the application. See “MQSD – Subscription descriptor” on page 852 for
more information.

MQSETMP - Set message property

934 WebSphere MQ for z/VSE System Management Guide

|

|

|

|

|

|

|
|

|
|

|
|

|
|
|

Hobj Type: MQHOBJ - input/output

This handle represents the access that has been established to obtain the
messages sent to this subscription. These messages can either be stored on
a specific queue or the queue manager can manage their storage without
using a specific queue.

To use a specific queue, you must associate it with the subscription when
the subscription is created. You can do this in two ways:
v By using the DEFINE SUB MQSC command and provided that

command with the name of a queue object.
v By providing this handle when calling MQSUB with the

MQSO_CREATE. If this handle is provided as an input parameter on the
call, it must be a valid object handle returned from a previous MQOPEN
call of a queue using at least one of the following options:
MQOO_INPUT_*
MQOO_BROWSE
MQOO_OUTPUT (if the queue is a remote queue)

If this is not the case, the call fails with MQRC_HOBJ_ERROR. It cannot be
an object handle to an alias queue that resolves to a topic object. If so, the
call fails with MQRC_HOBJ_ERROR.

If the queue manager is to manage the storage of messages sent to this
subscription, this should be set when you create the subscription, by using
the MQSO_MANAGED option. The queue manager then returns this
handle as an output parameter on the call. The handle that is returned is
known as a managed handle. If MQHO_NONE is specified but
MQSO_MANAGED is not specified, the call fails with
MQRC_HOBJ_ERROR.

When a managed handle is returned to you by the queue manager, you
can use it on an MQGET call with or without browse options, on an
MQINQ call, or on MQCLOSE. You cannot use it on MQPUT, MQSUB,
MQSET; attempting to do so fails with
MQRC_NOT_OPEN_FOR_OUTPUT, MQRC_HOBJ_ERROR, or
MQRC_NOT_OPEN_FOR_SET.

If this subscription is being resumed using the MQSO_RESUME option in
the MQSD structure, the handle can be returned to the application in this
parameter by setting MQSO_MANAGED to MQHO_NONE. You can do
this whether the subscription is using a managed handle or not and it can
be useful to provide subscriptions created using DEFINE SUB with the
handle to the subscription queue defined on that command. In the case
where an administratively created subscription is being resumed, the
queue opens with MQOO_INPUT and MQOO_BROWSE.

If you need to specify other options, the application must open the
subscription queue explicitly and provide the object handle on the call. If
there is a problem opening the queue the call fails with
MQRC_INVALID_DESTINATION.

If the Hobj is provided, it must be equivalent to the Hobj in the original
MQSUB call. This means if an object handle returned from an MQOPEN
call is being provided, the handle must be to the same queue as previously
used. If it is not the same queue, the call fails with MQRC_HOBJ_ERROR.

The table summarizes the use of this parameter with various subscription
options:

MQSUB - Register subscription

Appendix B. Application Programming Reference 935

||

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

Table 72. The use of Hobj with different subscription options

Options Hobj Description

MQSO_CREATE +
MQSO_MANAGED

Ignored on input Creates a subscription with storage of messages
managed by the queue manager.

MQSO_CREATE A valid object
handle

Creates a subscription providing a specific
queue as the destination for messages.

MQSO_RESUME MQHO_NONE Resumes a previously created subscription
whether it was managed or not, and has the
queue manager return the object handle for use
by the application.

MQSO_RESUME A valid,
matching, object
handle

Resumes a previously created subscription that
uses a specific queue as the destination for
messages and use an object handle with specific
open options.

Note: MQSO_ALTER is not currently supported in WebSphere MQ for
z/VSE.

Whether it was provided or returned, Hobj must be specified on
subsequent MQGET call that want to receive the publication messages sent
to this subscription.

The Hobj handle is no longer valid when the MQCLOSE call is issued on
it, or the application program finishes.

An MQCLOSE of the Hobj handle does not affect the Hsub handle.

Hsub Type: MQHOBJ - output

This handle represents the subscription that has been made. It can be used
for two further operations:
v It can be used on a subsequent MQSUBRQ call to request that

publications be sent when the MQSO_PUBLICATIONS_ON_REQUEST
option has been used when making the subscription.

v It can be used on a subsequent MQCLOSE call to remove the
subscription that has been made. The Hsub handle ceases to be valid
when the MQCLOSE call is issued, or when the unit of processing that
defines the scope of the handle terminates. The scope of the object
handle returned is the same as that of the connection handle specified
on the call. An MQCLOSE of the Hsub handle does not affect the Hobj
handle.

This handle cannot be passed to an MQGET call. You must use the Hobj
parameter. You cannot use this handle on any WebSphere MQ call other
than MQCLOSE or MQSUB. Passing this handle to any other WebSphere
MQ call results in MQRC_HOBJ_ERROR.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion
MQCC_WARNING

Warning (partial completion)
MQCC_FAILED

Call failed

MQSUB - Register subscription

936 WebSphere MQ for z/VSE System Management Guide

||

|||

|
|
||
|

||
|
|
|

|||
|
|
|

||
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|

||

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

Reason
Type: MQLONG - output

Language invocations

This call is supported in the following programming languages:

C invocation

MQSUB (Hconn, &SubDesc, &Hobj, &Hsub, &Code, &Reason)

Declare the parameters as follows:
MQHCONN Hconn; /* Connection handle */
MQSD SubDesc; /* Subscription descriptor */
MQHOBJ Hobj; /* Object handle */
MQHOBJ Hsub; /* Subscription handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation
CALL ’MQSUB’ USING HCONN, SUBDESC, HOBJ, HSUB, COMPCODE, REASON.

Declare the parameters as follows:
** Connection handle
01 HCONN PIC S9(9) BINARY.
** Subscription descriptor
01 SUBDESC.

COPY CMQSDV.
** Object handle
01 HOBJ PIC S9(9) BINARY.
** Subscription handle
01 HSUB PIC S9(9) BINARY.
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation
call MQSUB (Hconn, SubDesc, Hobj, Hsub, CompCode, Reason)

Declare the parameters as follows:
dcl Hconn fixed bin(31); /* Connection handle */
dcl SubDesc like MQSD; /* Subscription descriptor */
dcl Hobj fixed bin(31); /* Object handle */
dcl Hsub fixed bin(31); /* Subscription handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation
CALL MQSUB,(HCONN,SUBDESC,HOBJ,HSUB,COMPCODE,REASON)

Declare the parameters as follows:
HCONN DS F Connection handle
SUBDESC CMQSDA , Subscription descriptor
HOBJ DS F Object handle
HSUB DS F Subscription handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQSUBRQ - Subscription request

Use the MQSUBRQ call to make a request for the retained publication, when the
subscriber has been registered with MQSO_PUBLICATIONS_ON_REQUEST.

MQSUB - Register subscription

Appendix B. Application Programming Reference 937

|
|

|

|

|

|

|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|

|
|

Syntax
MQSUBRQ (Hconn, Hsub, Action, SubRqOpts, Compcode, Reason)

Parameters

The MQSUBRQ call has the following parameters:

Hconn
Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of
Hconn was returned by a previous MQCONN or MQCONNX call.

Hsub Type: MQHOBJ - input

This handle represents the subscription for which an update is to be
requested. The value of Hsub was returned from a previous MQSUB call.

Action
Type: MQLONG - input

This parameter controls the particular action that is being requested on the
subscription. The following value must be specified:

MQSR_ACTION_PUBLICATION

This action requests that an update publication is sent for the
specified topic. It can be used only if the subscriber specified the
option MQSO_PUBLICATIONS_ON_REQUEST on the MQSUB call
when it made the subscription. If the queue manager has a
retained publication for the topic, this is sent to the subscriber. If
not, the call fails. If an application is sent a publication which was
retained, this is indicated by the MQIsRetained message property
of that publication.

Since the topic in the existing subscription represented by the Hsub
parameter can contain wildcards, the subscriber might receive multiple
retained publications.

SubRqOpts
Type: MQSRO - input/output

These options control the action of MQSUBRQ, see “MQSRO - Subscription
request options” on page 862 for details.

If no options are required, programs written in C or S/390 assembler can
specify a null parameter address instead of specifying the address of an
MQSRO structure.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion
MQCC_WARNING

Warning (partial completion)
MQCC_FAILED

Call failed

Reason
Type: MQLONG - output

The reason code qualifying CompCode.

MQSUBRQ - Subscription request

938 WebSphere MQ for z/VSE System Management Guide

|

|

|

|

|
|

|
|

||

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

|

Language invocations

This call is supported in the following programming languages:

C invocation
MQSUB (Hconn, Hsub, Action, &SubRqOpts, &CompCode, &Reason)

Declare the parameters as follows:
MQHCONN Hconn; /* Connection handle */
MQHOBJ Hsub; /* Subscription handle */
MQLONG Action; /* Action requested by MQSUBRQ */
MQSRO SubRqOpts; /* Options that control the action of MQSUBRQ */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation
CALL ’MQSUBRQ’ USING HCONN, HSUB, ACTION, SUBRQOPTS, COMPCODE,
REASON.

Declare the parameters as follows:
** Connection handle
01 HCONN PIC S9(9) BINARY.
** Subscription handle
01 HSUB PIC S9(9) BINARY.
** Action requested by MQSUBRQ
01 ACTION PIC S9(9) BINARY.
** Options that control the action of MQSUBRQ
01 SUBRQOPTS.

COPY CMQSROV.
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation
call MQSUBRQ (Hconn, Hsub, Action, SubRqOpts, CompCode, Reason)

Declare the parameters as follows:
dcl Hconn fixed bin(31); /* Connection handle */
dcl Hsub fixed bin(31); /* Subscription handle */
dcl Action fixed bin(31); /* Action requested by MQSUBRQ */
dcl SubRqOpts like MQSRO; /* Options that control the action of MQSUBRQ */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation
CALL MQSUBRQ,(HCONN, HSUB, ACTION, SUBRQOPTS,COMPCODE,REASON)

Declare the parameters as follows:
HCONN DS F Connection handle
HSUB DS F Subscription handle
ACTION DS F Action requested by MQSUBRQ
SUBRQOPTS CMQSROA , Options that control the action of MQSUBRQ
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Attributes of WebSphere MQ objects
In WebSphere MQ for z/VSE, the attributes of all objects are as described in the
WebSphere MQ Application Programming Reference manual, with the following
exception:
v Attributes of process definitions do not apply.
v Attributes of AuthInfo definitions do not apply.

MQSUBRQ - Subscription request

Appendix B. Application Programming Reference 939

|

|

|
|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|

The platform constant MQPL_VSE applies, value 27L.

Reason codes
In WebSphere MQ for z/VSE, the reason codes (MQRC_) are described in older
versions of the WebSphere MQ Application Programming Reference manual or in
Websphere MQ Messages.

Reason codes

940 WebSphere MQ for z/VSE System Management Guide

Appendix C. Application Programming Guidance

This appendix describes:
v Application environment overview.
v Sample source code overview.
v Application design guidelines.
v Dynamic queues.

Application environment overview
WebSphere MQ application programs need specific objects before they can run
successfully. For example, Figure 87 shows an application that removes messages
from a queue, processes them, and then sends some results to another queue on
the same queue manager.

Whereas applications can put (using MQPUT) messages on local or remote queues,
they can only get (using MQGET) messages directly from local queues.

Before this application can run, these conditions must be satisfied:
v The queue manager must exist and be running.
v The first application queue, from which the messages are to be removed, must

be defined.
v The second queue, on which the application puts the messages, must also be

defined.
v The application must be able to connect to the queue manager. To do this the

application must be linked to the WebSphere MQ for z/VSE MQI object files
provided in the installation sublibrary.

v The applications that put the messages on the first queue must also connect to a
queue manager. If they are remote, they must also be set up with transmission
queues and channels. This part of the system is not shown in Figure 87.

Application

Queue Manager

From other
applications

To other
applications

getput

putget

Figure 87. Queues, messages, and applications

© Copyright IBM Corp. 2008, 2013 941

Sample source code overview
One COBOL-language sample trigger program, MQPECHO is provided with
WebSphere MQ for z/VSE. The source code for this program is provided in the
WebSphere MQ installation sublibrary. Within the source code for MQPECHO, you
can find examples that illustrate the use of the MQI calls in a trigger program.

In addition there are three sample programs, TTPTST1, TTPTST2, and TTPTST3.
COBOL language copybook files are provided with the distribution file in the
installation sublibrary. These files provide examples of all of the MQI calls.

Compiling your application program
The MQI calls are provided in the library PRD2.WMQZVSE.

Compilation
Ensure that you include the PRD2.WMQZVSE library as part of the application
phase step.

Developing applications in the C and PL/I programming
languages

For CICS, COBOL is the language in which the WebSphere MQ interface is written.
Applications written in COBOL for z/VSE have been thoroughly tested with
WebSphere MQ. Sample programs and copybooks are provided in COBOL for
z/VSE.

However, for a variety of reasons, you may need to write in another programming
language. In these cases, you must meet the requirements of the COBOL language
interface.

There are no sample programs provided in any other language, however, there are
equivalents to the COBOL copybooks to enable applications to be built in other
languages.

For the PL/I programming language, the following include files are provided:
CMQEPP.P

Declares the MQI calls and structures
CMQP.P

Declares the MQI constants
CMQCFP.P

Constants for MQI and PCF
CMQXP.P

Constants for MQI and PCF

For the C programming language, the following header files are provided:
CMQC.H

MQI header file.
CMQCFC.H

Constants for MQI and PCF.
CMQXC.H

Constants for MQI and PCF.

Sample code

942 WebSphere MQ for z/VSE System Management Guide

Application design guidelines
One of the key benefits provided by WebSphere MQ is the ability for a distributed
application to be developed that is totally independent of the underlying network.
This network independence means that there is no need for an application to be
aware of:
v The lower levels of the communication protocols, or
v The physical location of other applications on the network.

In order to take full advantage of this network independence, you must choose the
queue names used by the application with care.

In particular, you are recommended to use a single logical name only, in your
application programs, to refer to each WebSphere MQ queue. For the WebSphere
MQ calls, this means only the Queue_Name field is used to identify queues. The
use of the queue’s fully qualified name (which includes both the Queue_Name
field and the Queue_Manager_Name field) is not recommended.

The same is true when addressing WebSphere MQ queues. As the
Queue_Manager_Name is typically associated with a particular system, its use
implies knowledge of the physical network.

Note: You are strongly recommended to use the Queue_Name field as the only
logical queue name. This usage maximizes application flexibility and network
independence. The mapping of the queue name in this form to the proper network
destination then becomes a configuration issue to be handled by the WebSphere
MQ system administrator.

Application syncpoint
Syncpoints allow an application to perform a series of changes, where the changes
are treated as though they were a single change.

Syncpoint considerations
Most applications need to access resources of one form or another, and a common
requirement is to be able to make a coordinated set of changes to two or more
resources.

“Coordinated” means that either all of the changes made to the resources take
effect, or none of the changes takes effect. For some applications, queues need to
be coordinated. Applications need to be able to get and put messages (and possibly
update other resources, for example, databases), and know that either all of the
operations take effect, or that none of the operations takes effect.

This set of coordinated operations is called a unit of work. An example of a unit of
work is a debit and credit for a funds transfer in a financial application. Both
operations must complete, or neither operation must complete, for a valid financial
transaction to be completed.

Units of work: A unit of work starts when the first recoverable resource is
affected. For message queuing, a unit of works starts when a message get or put
occurs under syncpoint control.

The unit of work ends when either the application ends, or when the application
declares a syncpoint.

Design guidelines

Appendix C. Application Programming Guidance 943

If the unit of work is ended by an application ending, another unit of work can
start. One instance of an application can be involved with several sequential units
of work.

When a syncpoint is declared, any party (applications and the queue manager) that
has interest in the unit of work can vote “yes” to commit the work, or “no”, to
back out of the unit of work.

Applications declare syncpoints, and register their votes, by issuing an
environment-dependent call. It is advisable that an application should process
CICS SYNCPOINT, followed by an MQCMIT call, prior to invoking an MQCLOSE
call.

Participation of the MQGET, MQPUT, and MQPUT1 calls in the current unit of
work is determined by the environment.

Distributed units of work (involving more than one queue manager) are not
supported. A unit of work can contain queuing operations at only one instance of
the queue manager.

If a message is put to a remote queue (that is, one on another queuing system), the
action of the put request can be within the unit of work on the system that puts
the message but the arrival of the message on the target (remote) queue is outside
its scope.

The get request for the message on the remote queue can be within the scope of
work on that system, but the two units of work are not related by the queue
manager.

Putting messages within a unit of work: If an MQPUT or MQPUT1 call
participates in the current unit of work, the message is not available for retrieval
from the target queue, between the completion of the MQPUT call and the
successful completion of the unit of work. The only exception to this rule is if the
target queue is within the same unit of work as the one within which it was put.

Only when, and if, the unit of work is committed successfully does the message
become generally available.

Any errors detected by the queue manager when the message is put are returned
to the application immediately, by means of the completion code and reason code
parameters. Errors that can be detected in this way include:
v Message too large for queue.
v Queue full.
v Put requests inhibited for queue.

Failure to put the message does not affect the status of the unit of work, because
that message is not part of the unit of work. The application can still commit or
backout of the unit of work as required.

However, should an application fail after a message was put successfully within a
unit of work, the transaction is backed out.

Getting messages within a unit of work: If an MQGET call participates in the
current unit of work, between the completion of the MQGET call and the
successful completion of the unit of work, the message remains on the queue but
becomes invisible.

Design guidelines

944 WebSphere MQ for z/VSE System Management Guide

Neither the application that retrieved the message, nor any other application
serving the queue, can see or obtain the message again. If the unit of work is
committed successfully, the message is deleted from the queue. However, if the
unit of work is backed out, the message is reinstated in the queue in its original
position, and becomes available to the same or another application to retrieve.

Syncpoint and persistence: Persistent messages do not get deleted if the queue
manager is restarted. Therefore, they are fully recovered when the queue manager
is restarted. Syncpointing by the application causes these records to be in a logical
unit of work. Any records that were syncpointed are still recovered if the queue
manager is shutdown and restarted.

Non-persistent messages, that is messages placed on a temporary dynamic queue,
are removed by the queue manager when WebSphere MQ is stopped and restarted.
Non-persistent messages placed on a predefined or permanent dynamic queue are
not removed by the queue manager at system restart.

Application rollback
If your application wants to undo what has been done since the beginning of the
current logical unit of work, it has to issue the following commands:

EXEC CICS SYNCPOINT ROLLBACK
CALL ’MQBACK’ USING...

This can have the following results:
v Monitoring shows an incorrect queue depth value until the application that

rolled back work issues a subsequent MQI call. For this reason, it is
recommended that the MQBACK MQI call is used immediately following an
application rollback.

v The queue depth and the last queue sequence number (QSN) are not the same.
If a message has been rolled back, its queue sequence number is not used again.
This is because other applications may have also put messages into the same
queue. For example:

Transaction A writes queue sequence number 5
Transaction B 6
Transaction A 7
Transaction C 8

At this point the queue depth is 8. Assume Transaction A rolls back, in which
case messages 5 and 7 will be never retrieved. Note that this is not an error. The
queue depth is now 6, and the next QSN will be 9.
From an application point of view this has no impact at all, but can be
surprising when using the MQMT dialogs.

Note: To be able to use SYNCPOINT ROLLBACK, you MUST use a CICS
System LOG file, that is, define a CICS JCT. Unpredictable results may occur if
the CICS system does not have a CICS system journal defined. Tasks abending
or applications issuing CICS ROLLBACK can lead to duplicate messages.

Triggering
Some applications run continuously, and are always available to read a message
when it arrives on the application’s input queue. However, keeping the application
active consumes system resources, even when the application is waiting for a
message to arrive. This additional load on the system is not desirable. Instead of

Design guidelines

Appendix C. Application Programming Guidance 945

the application running continuously, the application is designed to run only when
there are messages to be processed. The queue manager’s triggering facility is used
to help make this happen.

Overview of triggering
A local queue definition can have a trigger event associated with it when it is
defined. This event is defined to activate the MQ trigger API Handler, that is, the
MQ02 CICS Transaction.

The trigger API handler does either a CICS LINK to the application program or a
CICS START to the application transaction. This is based on whether you defined a
program name or a transaction name in the queue definition.

When a trigger type of (E)very is used to trigger a transaction, and the number of
messages exceeds the maximum starts specified for the queue, then maintaining
the number of active trigger transactions is managed by the WebSphere MQ for
z/VSE system monitor (transaction MQSM) at a frequency determined by the
system wait interval. This can lead to spikes of trigger tasks starting after every
system wait interval. If this poses a problem, it is recommended that triggers be
started by specifying an application program name rather than a transaction ID.
When this is done, the queue manager will maintain the requested number of
maximum starts as each trigger application finishes.

When an application program is entered, an information area is available. This area
can be mapped by using the structure defined in the member CMQTMV.C:
1. If the trigger facility specified a program name, this area is passed using the

COMMAREA.
To return to the API handler, you should issue an EXEC CICS RETURN.

2. If the trigger facility specified a transaction name, this information area can be
accessed by issuing an EXEC CICS RETRIEVE command.
Before exiting from the program, you must issue an MQCLOSE command.

Note: In order to perform this function, this transaction ID must be unique in
respect to any WebSphere MQ system local queue. Essentially, the WebSphere MQ
system queue manager recognizes this transaction ID as a local queue being
opened. When this queue is closed fully, this trigger event will be closed, allowing
another trigger for this queue to be activated.

Trigger conditions
The queue manager activates a trigger event based on the event type defined for
the current queue, against which the MQPUT operation has been requested.

Note: If a non-empty queue is stopped and restarted, the trigger condition suffices,
regardless of the trigger event type.

The trigger API handler waits until this MQPUT request has been completed. This
implies that the MQPUT request can be successful or unsuccessful, that is, rolled
back. The activated trigger application program should perform an MQGET call.

If the result of this MQGET call is an empty condition, that is,
MQRC_NO_MSG_AVAILABLE, the original application current logical
unit-of-work has been rolled back. It is up to the application trigger program to
determine whether to continue to wait or just end.

Design guidelines

946 WebSphere MQ for z/VSE System Management Guide

A trigger event type of “FIRST” generates a trigger event after the queue goes from
an empty status to a non-empty one. Therefore, any application triggered in this
manner must process the queue until the queue is empty.

A trigger event type of “EVERY” generates a trigger event after every MQPUT call
has been completed, up to the maximum number of trigger events specified on the
Extended Local Queue Configuration screen. See “Local queue extended definition
screen” on page 100 for further information.

Defining a sender channel component
A sender channel component causes the channel to start if there are messages on
the transmission queue to be sent to the remote node.

In contrast, a server channel component will not start unless started by a remote
requester component, or by manual intervention, even when there are messages to
be sent.

On the transmission queue for the sender channel, code the fields as follows:
v Usage Mode - T.
v Trigger Enable - Y.
v Trigger Type - E.
v Max Trigger Starts - 1.
v Transaction ID - <blanks>.
v Program ID - MQPSEND.
v Remote CID - <the name of the channel>.

Note: WebSphere MQ for z/VSE does not support requester channels.

Defining a program to be triggered
This technique is used when an application program is to receive messages from
the WebSphere MQ system queue manager in the manner described in “Overview
of triggering” on page 946 for a CICS LINK.
v Usage Mode - N.
v Trigger Enable - Y.
v Trigger Type - E or F.
v Max Trigger Starts - 1.
v Transaction ID - <blanks>.
v Program ID - <application program name>.
v Remote CID - <blanks>.
v User data - <optional data for trigger program>.

Defining a transaction to be triggered
“Overview of triggering” on page 946, for CICS START, provides details of how to
trigger a program based on its transaction ID. Note, that the transaction should not
be invoked outside the trigger mechanism. However, by defining a different
transaction name with the same program name, the program can be invoked
outside the trigger environment.

Code as follows in the queue definition:
v Usage Mode - N.
v Trigger Enable - Y.
v Trigger Type - E or F.
v Max Trigger Starts - 1.
v Transaction ID - <user Transaction>.
v Program ID - <blanks>.
v Remote CID - <blanks>.

Design guidelines

Appendix C. Application Programming Guidance 947

v User data - <optional data for trigger program>.

Queue depth
The QDepth, as displayed in MQMT option 3.1, shows the current number of
unread messages on a queue, including uncommitted messages being put to the
queue. It does not show uncommitted messages currently being retrieved from the
queue. It is the value of the Last Written (LW) pointer less the Last Read (LR)
pointer, less any messages within that range which have been retrieved and
committed or which were put and rolled back.

The QDepth is maintained by the queue manager using internal tables. These
tables are associated with a queue and with each queue object handle open for that
queue. Whenever the queue manager is called (by means of an MQI call), it checks
to see if a CICS SYNCPOINT or SYNCPOINT ROLLBACK was performed by the
application. If either was performed, the queue manager updates its internal tables.

Failure of the application to commit or rollback the unit of work before closing a
queue object handle will result in these internal tables not being updated correctly,
and lead to the Last Read (LR) and QDepth not being correct.

The Last Read (LR) not being updated can result in additional VSAM I/O as the
queue always begins searching for next committed message from the Last Read
(LR) pointer. An invalid QDepth may result in triggering of a task when there are
no messages for the trigger application to retrieve.

If an application has to perform significant processing following committing a unit
of work, but before calling the queue manager again, then an MQCMIT call can be
performed to enter the queue manager and update its internal tables. The same is
true if the application issues a CICS SYNCPOINT ROLLBACK followed by an
MQBACK. Note that in an online application these calls, MQCMIT and MQBACK,
do not issue the CICS SYNCPOINT. The SYNCPOINT should be issued explicitly
by the application.

Distribution lists
Distribution lists allow you to put a message to multiple destinations in a single
MQPUT or MQPUT1 call. Multiple queues can be opened using a single MQOPEN
and a message can then be put to each of those queues using a single MQPUT.
Some generic information from the MQI structures used for this process can be
superseded by specific information relating to the individual destinations included
in the distribution list.

When an MQOPEN call is issued, generic information is taken from the Object
Descriptor (MQOD). If you specify MQOD_VERSION_2 in the Version field and a
value greater than zero in the RecsPresent field, the Hobj can be defined as a
handle of a list (of one or more queues) rather than of a queue. In this case,
specific information is given through the object records (MQORs), which give
details of destination (that is, ObjectName and ObjectQMgrName).

When a message is put on the queues (MQPUT), generic information is taken from
the Put Message Option structure (MQPMQ) and the Message Descriptor
(MQMD). Specific information is given in the form of Put Message Records
(MQQPMRs).

Design guidelines

948 WebSphere MQ for z/VSE System Management Guide

Response Records (MQRR) can receive a completion code and reason code specific
to each destination queue.

Opening distribution lists
Use the MQOPEN call to open a distribution list, and use the options of the call to
specify what you want to do with the list.

As input to MQOPEN, you must supply:
v A connection handle.
v Generic information in the Object Descriptor structure (MQOD).
v The name of each queue you want to open, using the Object Record structure

(MQOR).

The output from the MQOPEN is:
v An object handle that represents your access to the distribution list.
v A generic completion code.
v A generic reason code.
v Response Records (optional), containing a completion code and reason for each

destination.

The following notes apply to the use of distribution lists.
1. Fields in the MQOD structure must be set as follows when opening a

distribution list:
v Version must be MQOD_VERSION_2 or greater.
v ObjectType must be MQOT_Q.
v ObjectName must be blank or the null string.
v ObjectQMgrName must be blank or the null string.
v RecsPresent must be greater than zero.
v One of the ObjectRecOffset and ObjectRecPtr must be zero and the other

nonzero.
v There must be RecsPresent object records, addressed by either

ObjectRecOffset or ObjectRecPtr. The object records must be set to the names
of the destination queues to be opened.

v No more than one of ResponseRecOffset and ResponseRecPtr can be
nonzero.

v If one of ResponseRecOffset and ResponseRecPtr is nonzero, there must be
RecsPresent response records present. These are set by the queue manager if
the call completes with reason code MQRC_MULTIPLE_REASONS.

A version-2 MQOD can also be used to open a single queue that is not in a
distribution list, by ensuring that RecsPresent is zero.

2. Only the following open options are valid in the Options parameter:
v MQOO_OUTPUT
v MQOO_FAIL_IF_QUIESCING

3. The destination queues in the distribution list can be local, alias, or remote
queues, but they cannot be model queues. If a model queue is specified, that
queue fails to open, with reason code MQRC_Q_TYPE_ERROR. However, this
does not prevent other queues in the list being opened successfully.

4. The completion code and reason parameters are set as follows:

distribution lists

Appendix C. Application Programming Guidance 949

v If the open operations for the queues in the distribution list all succeed or
fail in the same way, the completion code and reason code parameters are set
to describe the common result. The MQRR response records (if provided by
the application) are not set in this case. For example, if every open succeeds,
the completion code and reason code are set to MQCC_OK and
MQRC_NONE, respectively; if every open fails because none of the queues
exists, the parameters are set to MQCC_FAILED and
MQ_UNKNOWN_OBJECT_NAME.

v If the open operations for the queues in the distribution list do not all
succeed or fail in the same way:
– The completion code parameter is set to MQCC_WARNING, if at least one

open succeeded, and to MQCC_FAILED if all failed.
– The reason code parameter is set to MQRC_MULTIPLE_REASONS. The

response records (if provided by the application) are set to the individual
completion codes and reason codes for the queues in the distribution list.

5. When a distribution list has been opened successfully, the handle Hobj returned
by the call can be used on subsequent MQPUT calls to put messages to queues
in the distribution lists, and on an MQCLOSE call to relinquish access to the
distribution list. The only valid close option for a distribution list is
MQCO_NONE. The MQPUT1 call can also be used to put a message to a
distribution list; the MQOD structure defining the queues in the list is specified
as a parameter on that call.

6. Each successfully-opened destination in the distribution list counts as a
separate handle when checking whether the application has exceeded the
permitted maximum number of handles (see the MaxOpen queue-manager
attribute). This is true even when two or more of the destinations in the
distribution lists actually resolve to the same physical queue. If the MQOPEN
or MQPUT1 call for a distribution list would cause the number of handles in
use by the application to exceed MaxOpen, the call fails with reason code
MQRC_HANDLW_NOT_AVAILABLE.

7. Each destination that is opened successfully has the value of its
OpenOutputCount attribute incremented by one. If two or more of the
destinations in the distribution list actually resolve to the same physical queue,
that queue has its OpenOutputCount attribute incremented by the number of
destinations in the distribution list that resolve to that queue.

8. Any change to the queue definitions that would have caused a handle to
become invalid had the queues been opened individually (for example, a
change in the resolution path), does not cause the distribution-list handle to
become invalid. However, it does result in a failure for that particular queue
when the distribution-list handle is used on a subsequent MQPUT call.

9. It is valid for a distribution list to contain only one destination.

Using the MQOD structure
Use the MQOD structure to identify the queues you want to open. To define a
distribution list, you must specify MQOD_VERSION_2 in the Version field, a value
greater than zero in the RecsPresent field, and MQOT_Q in the ObjectType field.
See the WebSphere MQ Application Programming Reference manual for a
description of all the fields of the MQOD structure.

Using the MQOR structure
An MQOR structure must be provided for each destination. The structure contains
the destination queue and queue manager names. The ObjectName and
ObjectQMgrName fields in the MQOD are not used for distribution list. There
must be one or more object records. If the ObjectMQMgrName is left blank, the

opening distribution lists

950 WebSphere MQ for z/VSE System Management Guide

local queue manager is used. See the WebSphere MQ Application Programming
Reference manual for further information about these fields.

You can specify the destination queues in two ways:
1. By using the offset field ObjectRecOffset.

In this case, the application should declare its own structure containing an
MQOD structure, followed by an array of MQOR records (with as many array
elements as are needed), and set ObjectRecOffset to the offset of the first
element in the array from the start of the MQOD. Care must be taken to ensure
that this offset is correct.
Use of the built-in facilities provided by the programming language is
recommended, if these are available in all of the environments in which the
application must run. The following illustrates this technique for the COBOL
programming language:

01 MY-OPEN-DATA.
02 MY-MQOD.

COPY CMQODV.
02 MY-MQOR-TABLE OCCURS 100 TIMES.

COPY CMQORV.

MOVE LENGTH OF MY-MQOD TO MQOD-OBJECTRECOFFSET.

Alternatively, the constant MQOD_CURRENT_LENGTH can be used if the
programming language does not support the necessary built-in facilities in all
of the environments concerned. The following illustrates this technique:

01 MY-MQ-CONSTANTS.
COPY CMQV.

01 MY-OPEN-DATA.
02 MY-MQOD.

COPY CMQODV.
02 MY-MQOR-TABLE OCCURS 100 TIMES.

COPY CMQORV.
MOVE MQOD-CURRENT-LENGTH TO MQOD-OBJECTRECOFFSET.

However, this will work correctly only if the MQOD structure and the array of
MQOR records are contiguous; if the compiler inserts skip bytes between the
MQOD and the MQOR array, these must be added to the value stored in
ObjectRecOffset.
Using ObjectRecOffset is recommended for programming languages that do not
support the pointer data type, or that implement the pointer data type in a way
that is not portable to different environments (for example, the COBOL
programming language).

2. By using the pointer field ObjectRecPtr.
In this case, the application can declare the array of MQOR structures
separately from the MQOD structure, and set ObjectRecPtr to the address of the
array. The following illustrates this technique for the C programming language:

MQOD MyMqod;
MQOR MyMqor[100];
MyMqod.ObjectRecPtr = MyMqor;

Using ObjectRecPtr is recommended for programming languages that support
the pointer data type in a way that is portable to different environments (for
example, the C programming language).
Whichever technique is chosen, one of ObjectRecOffset and ObjectRecPtr must
be used; the call fails with reason code MQRC_OBJECT_RECORDS_ERROR if
both are zero, or both are nonzero.

Using the MQOR structure

Appendix C. Application Programming Guidance 951

Using the MQRR structure
These structures are destination specific as each Response Record contains a
CompCode and Reason field for each queue of a distribution list. You must use
this structure to enable you to distinguish where any problems lie.

For example, if you receive a reason code of MQRC_MULTIPLE_REASONS, and
your distribution list contains five destination queues, you will not know which
queues the problems apply to if you do not use this structure. However, if you
have a completion code and reason code for each destination, you can locate the
errors more easily.

See the WebSphere MQ Application Programming Reference manual for further
information about the MQRR structure.

Using the MQOPEN options
The following options can be specified when opening a distribution list in
WebSphere MQ for z/VSE:
v MQOO_OUTPUT
v MQOO_FAIL_IF_QUIESCING (optional)

A distribution list is a special type of queue object that contains a list of queues. It
can be opened to put messages, but not to get or browse messages, or to inquire or
set attributes.

Putting messages to a distribution list
To put messages to a distribution list, you can use MQPUT or MQPUT1. As input,
you must supply:
v A connection handle.
v An object handle. If a distribution list is opened using MQOPEN, the Hobj

allows you only to put to the list.
v A message descriptor structure (MQMD). See the WebSphere MQ Application

Programming Reference manual for a description of this structure.
v Control information in the form of a put-message option structure (MQPMO).
v Control information in the form of Put Message Records (MQPMR).
v The length of the data contained within the message (MQLONG).
v The message data itself.

The output is:
v A completion code.
v A reason code.
v Response Records (optional).

Using the MQPMR structure
This structure is optional and gives destination-specific information for some fields
that you may want to identify differently from those already identified in the
MQMD. For a description of these fields, see the WebSphere MQ Application
Programming Reference manual.

The content of each record depends on the information given in the
PutMsgRecFields field of the MQPMO. For example:

typedef struct
{
MQBYTE24 MsgId;

Using the MQRR structure

952 WebSphere MQ for z/VSE System Management Guide

MQBYTE24 CorrelId;
} PutMsgRec;...
/**********************
MQLONG PutMsgRecFields=MQPMRF_MSG_ID | MQPMRF_CORREL_ID;

This implies that MsgId and CorrelId are provided for each destination of a
distribution list. The Put Message Records are provided as an array.

Using MQPUT1
If you are using MQPUT1, consider the following:
v The values of the ResponseRecOffset and ResponseRecPtr fields must be null or

zero.
v The Response Records, if required, must be addressed from the MQOD.

Closing distribution lists
The following points apply if the object being closed is a distribution list:
v The only valid close option for a distribution list is MQCO_NONE; the call fails

with reason code MQRC_OPTIONS_ERROR or
MQRC_OPTION_NOT_VALID_FOR_TYPE, if any other options are specified.

v When a distribution list is closed, individual completion codes and reason codes
are not returned for the queues in the list. Only the CompCode and Reason
parameters of the call are available for diagnostic purposes. If a failure occurs
closing one of the queues, the queue manager continues processing and attempts
to close the remaining queues in the distribution list. The CompCode and
Reason parameters of the call are then set to return information describing the
failure. Thus, it is possible for the completion code to be MQC_FAILED, even
though most of the queues were closed successfully. The queue that encountered
the error is not identified.
If there is a failure on more that one queue, it is not defined which failure is
reported in the CompCode and Reason parameters.

Object configuration
The queue manager, and relevant queues, must be configured to allow the use of
distribution lists.

Queue Manager
The queue manager has the following attributes which affect the operation of
distribution lists:

DistLists (MQLONG)
This indicates whether the local queue manager supports distribution lists
on the MQPUT and MQPUT1 calls. The value is one of the following:
v MQDL_SUPPORTED Distribution lists supported.
v MQDL_NOT_SUPPORTED Distribution lists not supported.

To determine the value of this attribute, use the MQIA_DIST_LISTS
selector with the MQINQ call.

MaxQOpen (MQLONG)
Maximum number of open queue handles.

This is the maximum number of open handles that any one task can use
concurrently. Each successful MQOPEN call for a single queue, or for an
object that is not a queue, uses one handle. That handle becomes available
for reuse when the object is closed. However, when a distribution list is
opened, each queue in the distribution list is allocated a separate handle,

Using the MQPMR structure

Appendix C. Application Programming Guidance 953

and so that MQOPEN call uses as many handles as there are queues in the
distribution list. This must be taken into account when deciding on a
suitable value for MaxQOpen.

The MQPUT1 call performs an MQOPEN call as part of its processing; as a
result, MQPUT1 uses as many handles as MQOPEN would, but the
handles are used only for the duration of the MQPUT1 call itself.

The value is in the range 1 through 999 999 999. The default value is
determined by the environment.

To determine the value of this attribute, use the MQIA_MAX_HANDLES
selector with the MQINQ call.

Queues
Queues have the following attributes which affect the operation of distribution
lists:

DistLists (MQLONG)
Distribution list support.

This indicates whether distribution-list messages can be placed on the
queue. The attribute is set by a message channel agent (MCA) to inform
the local queue manager whether the queue manager at the other end of
the channel supports distribution lists. This latter queue manager, called
the "partnering queue manager", is the one which next receives the
message, after it has been removed from the local transmission queue by a
sending MCA.

The attribute is set by the sending MCA whenever it establishes a
connection to the receiving MCA on the partnering queue manager. In this
way, the sending MCA can cause the local queue manager to place on the
transmission queue, only messages which the partnering queue manager is
capable of processing correctly.

This attribute is primarily for use with transmission queues, but the
processing described is performed regardless of the usage defined for the
queue (see the Usage attribute).

The value is one of the following:

MQDL_SUPPORTED
Distribution lists supported.

This indicates that distribution-list messages can be stored on the
queue, and transmitted to the partnering queue manager in that
form. This reduces the amount of processing required to send the
message to multiple destinations.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

This indicates that distribution-list messages cannot be stored on
the queue, because the partnering queue manager does not support
distribution lists. If an application puts a distribution-list message,
and that message is to be placed on this queue, the queue manager
splits the distribution-list message and places the individual
messages on the queue instead. This increases the amount of
processing required to send the message to multiple destinations,
but ensures that the messages will be processed correctly by the
partnering queue manager.

Queue Manager

954 WebSphere MQ for z/VSE System Management Guide

To determine the value of this attribute, use the MQIA_DIST_LISTS selector with
the MQINQ call. To change the value of this attribute, use the MQSET call.

Dynamic queues
When an application program issues an MQOPEN call to open a model queue, the
queue manager dynamically creates an instance of a local queue with the same
attributes as the model queue. Depending on the value of the DefinitionType field
of the model queue, the queue manager creates either a temporary or permanent
dynamic queue.

Properties of temporary dynamic queues
Temporary dynamic queues have the following properties:
v They hold nonpersistent messages only.
v They are non-recoverable.
v They are deleted when the queue manager is started.
v They are deleted when the application that issued the MQOPEN call which

resulted in the creation of the queue closes the queue or terminates.
v If there are any committed messages on the queue, they will be deleted.
v If the queue happens to be in use at this time (by the creating, or another

application), the queue is marked as being logically deleted, and is only
physically deleted when closed by the last application using the queue.
Attempts to access a logically deleted queue (other than to close it) fail with
reason code MQRC_Q_DELETED.

MQCO_NONE, MQCO_DELETE and MQCO_DELETE_PURGE are all treated as
MQCO_NONE when specified on an MQCLOSE call for the corresponding
MQOPEN call that created the queue.

Properties of permanent dynamic queues
Permanent dynamic queues have the following properties:
v They hold persistent or nonpersistent messages.
v They are recoverable in the event of system failures.
v They are deleted when an application (not necessarily the one that issued the

MQOPEN call which resulted in the creation of the queue) successfully closes
the queue using the MQCO_DELETE, or the MQCO_DELETE_PURGE option.

v A close request with the MQCO_DELETE option fails if there are any messages
(committed or uncommitted) still on the queue. A close request with the
MQCO_DELETE_PURGE option succeeds, even if there are committed messages
on the queue (the messages being deleted as part of the close) or if there are
uncommitted MQGET, MQPUT, or MQPUT1 calls outstanding against the
queue.

v If the delete request is successful, but the queue happens to be in use (by the
creating, or another application), the queue is marked as being logically deleted
and is only physically deleted when closed by the last application using the
queue.

v If an application closing the queue, was not the application that issued the
MQOPEN which created the queue, authorization checks are performed against
the user.

v They can be deleted in the same way as a normal queue.

Queues

Appendix C. Application Programming Guidance 955

Uses of dynamic queues
You can use dynamic queues for:
v Applications that do not require queues to be retained after the application has

terminated.
v Applications that require replies to messages to be processed by another

application can dynamically create a reply-to queue by opening a model queue.
For example, a client application could:
– Create a dynamic queue.
– Supply its name in the ReplyToQ field of the message descriptor structure of

the request message.
– Place the request on a queue being processed by a server.
– The server could then place the reply message on the reply-to queue. Finally,

the client could process the reply, and close the reply-to queue with the delete
option.

Recommendations for uses of dynamic queues
You should consider the following points when using dynamic queues:
v In a client-server model, each client should create and use its own dynamic

reply-to queue. If a dynamic reply-to queue is shared between more than one
client, the deletion of the reply-to queue may be delayed because there is
uncommitted activity outstanding against the queue, or because the queue is in
use by another client. Additionally, the queue may be marked as being logically
deleted, and hence inaccessible for subsequent API requests (other than
MQCLOSE).

v If your application environment requires that dynamic queues must be shared
between applications, you should ensure that the queue is only closed (with the
delete option) when all activity against the queue has been committed. This
should be by the last user preferably. This ensures that deletion of the queue is
not delayed, and should minimize the period that the queue is inaccessible
because it has been marked as being logically deleted.

Creating dynamic queues
To create a dynamic queue, you use a template known as a model queue, together
with the MQOPEN call. You create a model queue using the WebSphere MQ
commands or the master terminal transactions. The dynamic queue you create
takes the attributes of the model queue.

When you call MQOPEN, specify the name of the model queue in the ObjectName
field of the MQOD structure.

When the call completes, the ObjectName field is set to the name of the dynamic
queue that is created. Also, the ObjectQMgrName field is set to the name of the
local queue manager. Subsequent operations using the Hobj returned by the
MQOPEN call are performed on the new dynamic queue, and not on the model
queue. This is true even for the MQINQ and MQSET calls.

There are three ways to specify the name of the dynamic queue you create:
v Give the full name you want in the DynamicQName field of the MQOD

structure.
v Specify a prefix (fewer than 33 characters) for the name, and allow the queue

manager to generate the rest of the name. This means that the queue manager
generates a unique name, but you still have some control (for example, you may

dynamic queues

956 WebSphere MQ for z/VSE System Management Guide

want each user to use a certain p refix, or you may want to give a special
security classification to queues with a certain prefix in their name). To use this
method, specify an asterisk (*) for the last non-blank character of the
DynamicQName field. Do not specify a single asterisk (*) for the dynamic queue
name.

v Allow the queue manager to generate the full name. To use this method, specify
an asterisk (*) in the first character position of the DynamicQName field.
WebSphere MQ for z/VSE generates a queue name prefixed by "AMQ.".

For more information about these methods, see the description of the
DynamicQName field in the WebSphere MQ Application Programming Reference
manual.

Closing dynamic queues
When using the MQCLOSE MQI call, the Options parameter controls how the
object is closed. Only permanent dynamic queues can be closed in more than one
way, being either retained or deleted; these are queues whose DefinitionType
attribute has the value MQQDT_PERMANENT_DYNAMIC.

One (and only one) of the following must be specified:

MQCO_NONE
No optional close processing required. This must be specified for:
v Objects other than queues.
v Predefined queues.
v Temporary dynamic queues (but only in those cases where Hobj is not

the handle returned by the MQOPEN call that created the queue).

In all of the above cases, the object is retained and not deleted. If this
option is specified for a temporary dynamic queue, the queue is deleted (if
it was created by the MQOPEN call that returned Hobj) and any messages
that are on the queue are purged. In all other cases the queue (and any
messages on it) are retained.

If this option is specified for a permanent dynamic queue, the queue is
retained and not deleted.

MQCO_DELETE
Delete the queue.

The queue is deleted if either of the following is true:
v It is a permanent dynamic queue, and there are no messages on the

queue.
v It is the temporary dynamic queue that was created by the MQOPEN

call that returned Hobj. In this case, all the messages on the queue are
purged.

In all other cases the call fails with reason code
MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not deleted.

MQCO_DELETE_PURGE
Delete the queue, purging any messages on it.

The queue is deleted if either of the following is true:
v It is a permanent dynamic queue.
v It is the temporary dynamic queue that was created by the MQOPEN

call that returned Hobj.

dynamic queues

Appendix C. Application Programming Guidance 957

In all other cases the call fails with reason code
MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not deleted.

The following points apply if the object being closed is a dynamic queue (either
permanent or temporary):
v For a dynamic queue, the options MQCO_DELETE or MQCO_DELETE_PURGE

can be specified regardless of the options specified on the corresponding
MQOPEN call.

v When a dynamic queue is deleted, all MQGET calls with the MQGMO_WAIT
option that are outstanding against the queue are canceled and reason code
MQRC_Q_DELETED is returned. After a dynamic queue has been deleted, any
call (other than MQCLOSE) that attempts to reference the queue using a
previously acquired Hobj handle fails with reason code MQRC_Q_DELETED.
Be aware that although a deleted queue cannot be accessed by applications, the
queue is not removed from the system, and associated resources are not freed,
until such time as all handles that reference the queue have been closed.

v When a dynamic queue is deleted, if the Hobj handle specified on the
MQCLOSE call is not the one that was returned by the MQOPEN call that
created the queue, a check is made that the user identifier is authorized to delete
the queue. This check is not performed if:
– The handle specified is the one returned by the MQOPEN call that created

the queue.
– The queue being deleted is a temporary dynamic queue.

v When a temporary dynamic queue is closed, if the Hobj handle specified on the
MQCLOSE call is the one that was returned by the MQOPEN call that created
the queue, the queue is deleted. This occurs regardless of the close options
specified on the MQCLOSE call. If there are messages on the queue, they are
discarded; no report messages are generated. If there are uncommitted units of
work that affect the queue, the queue and its messages are still deleted, but this
does not cause the units of work to fail. However, as described above, the
resources associated with the units of work are not freed until each of the units
of work has been either committed or backed out.

Queue definition types
This indicates how the queue was defined. The value is one of the following:

MQQDT_PREDEFINED
Predefined permanent queue.

The queue is a permanent queue created by the system administrator; only
the system administrator can delete it.

Predefined queues are created, for example, using the DEFINE MQSC
command, and can be deleted using the DELETE MQSC command.
Predefined queues cannot be created from model queues.

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

The queue is a permanent queue that was created by an application issuing
an MQOPEN call with the name of a model queue specified in the object
descriptor MQOD. The model queue definition had the value
MQQDT_PERMANENT_DYNAMIC for the DefinitionType attribute.

This type of queue can be deleted using the MQCLOSE call.

dynamic queues

958 WebSphere MQ for z/VSE System Management Guide

MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

The queue is a temporary queue that was created by an application issuing
an MQOPEN call with the name of a model queue specified in the object
descriptor MQOD. The model queue definition had the value
MQQDT_TEMPORARY_DYNAMIC for the DefinitionType attribute.

This type of queue is deleted automatically by the MQCLOSE call when it
is closed by the application that created it.

Dynamic queue name
DynamicQName is a field of the MQOD data structure passed to the MQOPEN
call.

This is the name of a dynamic queue that is to be created by the MQOPEN call.
This is of relevance only when ObjectName specifies the name of a model queue;
in all other cases DynamicQName is ignored.

The characters that are valid in the name are the same as those for ObjectName
(see above), except that an asterisk is also valid (see below). A name that is
completely blank (or one in which only blanks appear before the first null
character) is not valid if ObjectName is the name of a model queue.

If the last nonblank character in the name is an asterisk (*), the queue manager
replaces the asterisk with a string of characters that guarantees that the name
generated for the queue is unique at the local queue manager. To allow a sufficient
number of characters for this, the asterisk is valid only in positions 1 through 33.
There must be no characters other than blanks or a null character following the
asterisk.

It is valid for the asterisk to appear in the first character position, in which case the
name consists solely of the characters generated by the queue manager.

This is an input field. The length of this field is given by MQ_Q_NAME_LENGTH.
The initial value of this field is determined by the environment. On WebSphere
MQ for z/VSE, the value is 'AMQ.*'.

The value is a blank-padded string.

Message grouping and segmentation
This section describes message grouping and segmentation features as applicable
to WebSphere MQ for z/VSE.

Key concepts and definitions
The following definitions describe key concepts of message grouping and
segmentation.

Message group
A group of logical messages. Logical grouping of messages allows
applications to group messages that are similar and to ensure the sequence
of the messages.

This is a set of one or more logical messages that have the same nonnull
group identifier. The logical messages in the group are distinguished by
differing values for the message sequence number, which is an integer in

dynamic queues

Appendix C. Application Programming Guidance 959

the range 1 through n, where n is the number of logical messages in the
group. If one or more of the logical messages is segmented, there will be
more than n physical messages in the group.

Message segment
One of a number of segments of a message that is too large either for the
application or for the queue manager to handle.

Physical message
This is the smallest unit of information that can be placed on or removed
from a queue; it often corresponds to the information specified or retrieved
on a single MQPUT, MQPUT1, or MQGET call. Every physical message
has its own message descriptor (MQMD). Generally, physical messages are
distinguished by differing values for the message identifier (MsgId field in
MQMD), although this is not enforced by the queue manager.

Logical message
This is a single unit of application information. In the absence of system
constraints, a logical message would be the same as a physical message.
But where logical messages are extremely large, system constraints may
make it advisable or necessary to split a logical message into two or more
physical messages, called segments.

A logical message that has been segmented consists of two or more
physical messages that have the same nonnull group identifier (GroupId
field in MQMD), and the same message sequence number (MsgSeqNumber
field in MQMD). The segments are distinguished by differing values for
the segment offset (Offset field in MQMD), which gives the offset of the
data in the physical message from the start of the data in the logical
message. Because each segment is a physical message, the segments in a
logical message usually have differing message identifiers.

A logical message that has not been segmented, but for which
segmentation has been permitted by the sending application, also has a
nonnull group identifier, although in this case there is only one physical
message with that group identifier if the logical message does not belong
to a message group. Logical messages for which segmentation has been
inhibited by the sending application have a null group identifier
(MQGI_NONE), unless the logical message belongs to a message group.

Message groups
Messages can occur within groups. This allows ordering of messages, and
segmentation of large messages within the same group.

The hierarchy within a group is as follows: group, logical message, segment.

Group This is the highest level in the hierarchy and is identified by a GroupId. It
consists of one or more messages that contain the same GroupId. These
messages can be stored anywhere on the queue.

Note: The term "message" is used here to denote one item on a queue,
such as would be returned by a single MQGET that does not specify
MQGMO_COMPLETE_MSG.

Logical message
Logical messages within a group are identified by the GroupId and
MsgSeqNumber fields. The MsgSeqNumber starts at 1 for the first message
within a group, and if a message is not in a group, the value of the field is
1. Logical messages within a group can be used to:

Message grouping and segmentation

960 WebSphere MQ for z/VSE System Management Guide

v Ensure ordering (if this is not guaranteed under the circumstances in
which the message is transmitted).

v Allow applications to group together similar messages (for example,
those that must all be processed by the same server instance).

Each message within a group consists of one physical message, unless it is
split into segments. Each message is logically a separate message, and only
the GroupId and MsgSeqNumber fields in the MQMD need bear any
relationship to other messages in the group. Other fields in the MQMD are
independent; some may be identical for all messages in the group whereas
others may be different. For example, messages in a group may have
different format names, CCSIDs, encodings, and so on.

Segment
Segments are used to handle messages that are too large for either the
putting or getting application or the queue manager including intervening
queue managers through which the message passes).

A segment of a message is identified by the GroupId, MsgSeqNumber, and
Offset fields. The Offset field starts at zero for the first segment within a
message.

Each segment consists of one physical message that may or may not
belong to a group. A segment is logically part of a single message, so only
the MsgId, Offset, and SegmentFlag fields in the MQMD should differ
between separate segments of the same message.

Message segmentation
For putting and destructively getting, it is assumed that the MQPUT or MQGET
calls always operate within a unit of work. It is strongly recommended that this
technique is always used, to reduce the possibility of incomplete groups being
present in the network. Single-phase commit by the queue manager is assumed,
but of course other coordination techniques are equally valid.

Also, in the getting applications, it is assumed that if multiple servers are
processing the same queue, each server executes similar code, so that one server
never fails to find a message or segment that it expects to be there (because it had
specified MQGMO_ALL_MSGS_AVAILABLE or
MQGMO_ALL_SEGMENTS_AVAILABLE earlier).

Segmentation and reassembly by queue manager
This is the simplest scenario, in which one application puts a message to be
retrieved by another. The message may be large: not too large for either the putting
or the getting application to handle in a single buffer, but possibly too large for the
queue manager or a queue on which the message is to be put.

The only changes necessary for these applications are for the putting application to
authorize the queue manager to perform segmentation if necessary,

PMO.Options = (existing options)
MQPUT MD.MsgFlags = MQMF_SEGMENTATION_ALLOWED

and for the getting application to ask the queue manager to reassemble the
message if it has been segmented:

GMO.Options = MQGMO_COMPLETE_MSG | (existing options)
MQGET

Message grouping and segmentation

Appendix C. Application Programming Guidance 961

The application buffer must be large enough to contain the reassembled message
(unless the MQGMO_ACCEPT_TRUNCATED_MSG option is included).

If data conversion is necessary, it may have to be done by the getting application
specifying MQGMO_CONVERT. This should be straightforward because the data
conversion exit is presented with the complete message. Attempting to do data
conversion in a sender channel will not be successful if the message is segmented,
and the format of the data is such that the data-conversion exit cannot carry out
the conversion on incomplete data.

Application segmentation
This example shows how to segment a single large message.

Application segmentation is used for two main reasons:
v Queue-manager segmentation alone is not adequate because the message is too

large to be handled in a single buffer by the applications.
v Data conversion must be performed by sender channels, and the format is such

that the putting application needs to stipulate where the segment boundaries are
to be in order for conversion of an individual segment to be possible.

However, if data conversion is not an issue, or if the getting application always
uses MQGMO_COMPLETE_MSG, queue-manager segmentation can also be
allowed by specifying MQMF_SEGMENTATION_ALLOWED. In our example, the
application segments the message into four segments:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_SEGMENT

MQCMIT

If you do not use MQPMO_LOGICAL_ORDER, the application must set the Offset
and the length of each segment. In this case, logical state is not maintained
automatically.

The getting application cannot, or chooses not to, guarantee to have a buffer that
will hold any reassembled message. It must therefore be prepared to process
segments individually.

For messages that are segmented, this application does not want to start processing
one segment until all of the segments that constitute the logical message are
present. MQGMO_ALL_SEGMENTS_AVAILABLE is therefore specified for the first
segment. If you specify MQGMO_LOGICAL_ORDER and there is a current logical
message, MQGMO_ALL_SEGMENTS_AVAILABLE is ignored.

Once the first segment of a logical message has been retrieved,
MQGMO_LOGICAL_ORDER is used to ensure that the remaining segments of the
logical message are retrieved in order.

No consideration is given to messages within different groups. If such messages do
occur, they are processed in the order in which the first segment of each message
appears on the queue.

GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_SEGMENTS_AVAILABLE | MQGMO_WAIT

do while (SegmentStatus == MQSS_SEGMENT)

Message grouping and segmentation

962 WebSphere MQ for z/VSE System Management Guide

MQGET
/* Process each remaining segment of the logical message */
...

MQCMIT

Application segmentation of logical messages
The messages must be maintained in logical order in a group, and some or all of
them may be so large that they require application segmentation.

In our example, a group of four logical messages is to be put. All but the third
message are large, and require segmentation which is performed by the putting
application:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQCMIT

In the getting application, MQGMO_ALL_MSGS_AVAILABLE is specified on the
first MQGET. This means that no messages or segments of a group are retrieved
until the entire group is available. When the first physical message of a group has
been retrieved, MQGMO_LOGICAL_ORDER is used to ensure that the segments
and messages of the group are retrieved in order:

GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_MESSAGES_AVAILABLE | MQGMO_WAIT

do while ((GroupStatus != MQGS_LAST_MSG_IN_GROUP) ||
(SegmentStatus != MQGS_LAST_SEGMENT))

MQGET
/* Process a segment or complete logical message. Use the

GroupStatus and SegmentStatus information to see what has
been returned */

...

MQCMIT

Note: If you specify MQGMO_LOGICAL_ORDER and there is a current group,
MQGMO_ALL_MSGS_AVAILABLE is ignored.

Logical and physical ordering
Messages on queues can occur in physical or logical order:

Physical
This is the order in which messages arrive on a queue.

Logical
This is when all of the messages and segments within a group are in their
logical sequence, adjacent to each other, in the position determined by the
physical position of the first item belonging to the group.

Message grouping and segmentation

Appendix C. Application Programming Guidance 963

These physical and logical orders may differ because:
v Groups can arrive at a destination at similar times from different applications,

therefore losing any distinct physical order.
v Even within a single group, messages may get out of order due to rerouting or

delay of some of the messages in the group.

For example, these messages may appear in the following logical order on a queue:
Message A (not in a group).
Logical message 1 of group Y.
Logical message 2 of group Y.
Segment 1 of (last) logical message 3 of group Y.
(Last) segment 2 of (last) logical message 3 of group Y.
Logical message 1 of group Z.
(Last) logical message 2 of group Z.
Message B (not in a group).

The physical order, however, may be entirely different. The physical position of the
first item within each group determines the logical position of the whole group.
For example, if groups Y and Z arrived at similar times, and message 2 of group Z
overtook message 1 of the same group, the physical order would look like:

Message A (not in a group).
Logical message 1 of group Y.
Logical message 2 of group Z.
Logical message 2 of group Y.
Segment 1 of (last) logical message 3 of group Y.
(Last) segment 2 of (last) logical message 3 of group Y.
Logical message 1 of group Z.
Message B (not in a group).

When getting messages, you can specify MQGMO_LOGICAL_ORDER to retrieve
messages in logical rather than physical order.

If you issue an MQGET call with MQGMO_BROWSE_FIRST and
MQGMO_LOGICAL_ORDER, subsequent MQGET calls with
MQGMO_BROWSE_NEXT must also specify this option. Conversely, if the
MQGET with MQGMO_BROWSE_FIRST does not specify
MQGMO_LOGICAL_ORDER, neither must the following MQGETs with
MQGMO_BROWSE_NEXT.

The group and segment information that the queue manager retains for MQGET
calls that browse messages on the queue is separate from the group and segment
information that the queue manager retains for MQGET calls that remove
messages from the queue. When MQGMO_BROWSE_FIRST is specified, the queue
manager ignores the group and segment information for browsing, and scans the
queue as though there were no current group and no current logical message.

Note: Special care is needed if an MQGET call is used to browse beyond the end
of a message group (or logical message not in a group) when
MQGMO_LOGICAL_ORDER is not specified. For example, if the last message in
the group happens to precede the first message in the group on the queue, using
MQGMO_BROWSE_NEXT to browse beyond the end of the group, specifying
MQMO_MATCH_MSG_SEQ_NUMBER with MsgSeqNumber set to 1 (to find the
first message of the next group) would return again the first message in the group
already browsed. This could happen immediately, or a number of MQGET calls
later (if there are intervening groups).

Message grouping and segmentation

964 WebSphere MQ for z/VSE System Management Guide

The possibility of an infinite loop can be avoided by opening the queue twice for
browse:
v Use the first handle to browse only the first message in each group.
v Use the second handle to browse only the messages within a specific group.
v Use the MQMO_* options to move the second browse cursor to the position of

the first browse cursor, before browsing the messages in the group.
v Do not use the MQGMO_BROWSE_NEXT browse beyond the end of a group.

For further information about this, see the WebSphere MQ Application Programming
Reference.

For most applications you will probably choose either logical or physical ordering
when browsing. However, if you want to switch between these modes, remember
that when you first issue a browse with MQGMO_LOGICAL_ORDER, your
position within the logical sequence is established.

If the first item within the group is not present at this time, the group you are in is
not considered to be part of the logical sequence.

Once the browse cursor is within a group, it can continue within the same group,
even if the first message is removed. Initially though, you can never move into a
group using MQGMO_LOGICAL_ORDER where the first item is not present.

Grouping logical messages
There are two main reasons for using logical messages in a group:
v The messages may need to be processed in the correct order.
v Each of the messages in a group may need to be processed in a related way.

In either case, retrieval of the entire group must be carried out by the same getting
application instance.

For example, assume that the group consists of four logical messages. The putting
application looks like this:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP

MQCMIT

The getting application chooses not to start processing any group until all of the
messages within it have arrived. MQGMO_ALL_MSGS_AVAILABLE is therefore
specified for the first message in the group; the option is ignored for subsequent
messages within the group.

Once the first logical message of the group is retrieved,
MQGMO_LOGICAL_ORDER is used to ensure that the remaining logical messages
of the group are retrieved in order.

So, the getting application looks like this:
/* Wait for the first message in a group, or a message not in

a group */
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

| MQGMO_ALL_MSGS_AVAILABLE | MQGMO_LOGICAL_ORDER
do while (GroupStatus == MQGS_MSG_IN_GROUP)

Message grouping and segmentation

Appendix C. Application Programming Guidance 965

MQGET
/* Process each remaining message in the group */
...

MQCMIT

Putting and getting a group that spans units of work
In the previous case, messages or segments cannot start to leave the node (if its
destination is remote) or start to be retrieved until all of the group has been put
and the unit of work is committed. This may not be what you want if it takes a
long time to put the whole group, or if queue space is limited on the node. To
overcome this, the group can be put in several units of work.

If the group is put within multiple units of work, it is possible for some of the
group to commit even when a failure of the putting application occurs. The
application must therefore save status information, committed with each unit of
work, which it can use after a restart to resume an incomplete group. The simplest
place to record this information is in a STATUS queue. If a complete group has
been successfully put, the STATUS queue is empty.

If segmentation is involved, the logic is similar. In this case, the StatusInfo must
include the Offset.

Here is an example of putting the group in several units of work:
PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

/* First UOW */

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

/* Next and subsequent UOWs */
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

/* Last UOW */
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
MQCMIT

If all the units of work have been committed, the entire group has been put
successfully, and the STATUS queue is empty. If not, the group must be resumed at
the point indicated by the status information. MQPMO_LOGICAL_ORDER cannot
be used for the first put, but can thereafter.

Restart processing looks like this:
MQGET (StatusInfo from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)

/* Proceed to normal processing */
...

Message grouping and segmentation

966 WebSphere MQ for z/VSE System Management Guide

else
/* Group was terminated prematurely */
Set GroupId, MsgSeqNumber in MQMD to values from Status message
PMO.Options = MQPMO_SYNCPOINT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

/* Now normal processing is resumed.
Assume this is not the last message */

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

From the getting application, you may want to start processing the messages in a
group before the whole group has arrived. This improves response times on the
messages within the group, and also means that storage is not required for the
entire group.

For recovery reasons, each message must be retrieved within a unit of work.
However, in order to realize the above benefits, several units of work must be used
for each group of messages.

As with the corresponding putting application, this requires status information to
be recorded somewhere automatically as each unit of work is committed. Again,
the simplest place to record this information is on a STATUS queue. If a complete
group has been successfully processed, the STATUS queue is empty.

Note: For intermediate units of work, you can avoid the MQGET calls from the
STATUS queue by specifying that each MQPUT to the status queue is a segment of
a message (that is, by setting the MQMF_SEGMENT flag), instead of putting a
complete new message for each unit of work. In the last unit of work, a final
segment is put to the status queue specifying MQMF_LAST_SEGMENT, and then
the status information is cleared with an MQGET specifying
MQGMO_COMPLETE_MSG. During restart processing, instead of using a single
MQGET to get a possible status message, browse the status queue with
MQGMO_LOGICAL_ORDER until you reach the last segment (that is, until no
further segments are returned). In the first unit of work after restart, also specify
the offset explicitly when putting the status segment. In the following example, we
consider only messages within a group. It is assumed that the application's buffer
is always large enough to hold the entire message, whether or not the message has
been segmented. MQGMO_COMPLETE_MSG is therefore specified on each
MQGET. The same principles apply if segmentation is involved (in this case, the
StatusInfo must include the Offset).

For simplicity, we assume that a maximum of 4 messages should be retrieved
within a single UOW:

msgs = 0 /* Counts messages retrieved within UOW */
/* Should be no status message at this point */

/* Retrieve remaining messages in the group */
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/* Process up to 4 messages in the group */
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

| MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

MQGET

Message grouping and segmentation

Appendix C. Application Programming Guidance 967

msgs = msgs + 1
/* Process this message */
...

/* end while

/* Have retrieved last message or 4 messages */
/* Update status message if not last in group */
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)

StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options =

MQPMO_SYNCPOINT
MQCMIT
msgs = 0

/* end while

if (msgs > 0)
/* Come here if there was only 1 message in the group */
MQCMIT

If all of the units of work have been committed, then the entire group has been
retrieved successfully, and the STATUS queue is empty. If not, then the group must
be resumed at the point indicated by the status information.
MQGMO_LOGICAL_ORDER cannot be used for the first retrieve, but can
thereafter.

Restart processing looks like this:
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)

/* Proceed to normal processing */
...

else
/* Group was terminated prematurely */
/* The next message on the group must be retrieved by matching

the sequence number and group id with those retrieved from
the status information. */

GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT
MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID |

MQMO_MATCH_MSG_SEQ_NUMBER,
MQMD.GroupId = value from Status message,
MQMD.MsgSeqNumber = value from Status message plus 1

msgs = 1
/* Process this message */
...

/* Now normal processing is resumed */
/* Retrieve remaining messages in the group */
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/* Process up to 4 messages in the group */
GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT |

MQGMO_WAIT | MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

MQGET
msgs = msgs + 1
/* Process this message */
...

/* Have retrieved last message or 4 messages */
/* Update status message if not last in group */
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)

StatusInfo = GroupId,MsgSeqNumber from MQMD

Message grouping and segmentation

968 WebSphere MQ for z/VSE System Management Guide

MQPUT (StatusInfo to STATUS queue) PMO.Options =
MQPMO_SYNCPOINT

MQCMIT
msgs = 0

Reports and segmented messages
If a message is segmented and you ask for reports to be generated, you may
receive more reports than you would have done had the message not been
segmented.

WebSphere MQ-generated reports
If you segment your messages or allow the queue manager to do so, there is only
one case in which you can expect to receive a single report for the entire message.
This is when you have requested only COD reports, and you have specified
MQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports;
usually one for each segment.

Note: If you segment your messages, and you need only the first 100 bytes of the
original message data to be returned, you must change the setting of the report
options to ask for reports with no data for segments that have an offset of 100 or
more. If you do not do this, and you leave the setting so that each segment
requests 100 bytes of data, and you retrieve the report messages with a single
MQGET specifying MQGMO_COMPLETE_MSG, the reports assemble into a large
message containing 100 bytes of read data at each appropriate offset. If this
happens, you need a large buffer or you need to specify
MQGMO_ACCEPT_TRUNCATED_MSG.

Application-generated reports
If your application generates reports, you should always copy the WebSphere MQ
headers that are present at the start of the original message data to the report
message data. Then add none, 100 bytes, or all of the original message data (or
whatever other amount you would normally include) to the report message data.

You can recognize the WebSphere MQ headers that must be copied by looking at
the successive Format names, starting with the MQMD nd continuing through any
headers present. The following Format names indicate these WebSphere MQ
headers:

MQMDE
MQDLH
MQXQH
MQIIH
MQH*

MQH* means any name starting with the characters MQH.

The Format name occurs at specific positions for MQDLH and MQXQH, but for
the other WebSphere MQ headers it occurs at the same position. The length of the
header is contained in a field that also occurs at the same position for MQMDE,
MQIMS and all MQH* headers.

If you are using a Version 1 of the MQMD, and you are reporting on a segment, or
a message in a group, or a message for which segmentation is allowed, the report

Message grouping and segmentation

Appendix C. Application Programming Guidance 969

data must start with an MQMDE. You should set the OriginalLength field to the
length of the original message data excluding the lengths of any WebSphere MQ
headers that you find.

Retrieval of reports
If you ask for COA or COD reports, you can ask for them to be reassembled for
you with MQGMO_COMPLETE_MSG. An MQGET with
MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single
type, for example COA, and with the same GroupId) are present on the queue to
represent one complete original message. This is true even if the report messages
themselves do not contain the complete original data; the OriginalLength field in
each report message gives the length of original data represented by that report
message, even if the data itself is not present.

This technique can be used even if there are several different report types present
on the queue (for example, both COA and COD), because an MQGET with
MQGMO_COMPLETE_MSG reassembles report messages only if they have the
same Feedback code. Note, however, that you cannot normally use the technique
for exception reports, since in general these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has
arrived. However, in most circumstances you need to cater for the possibility that
some segments arrive while others may generate an exception (or expiry, if you
have allowed this). You cannot use MQGMO_COMPLETE_MSG in this case
because in general you may get different Feedback codes for different segments
and, as noted above, you may get more than one report for a given segment. You
can, however, use MQGMO_ALL_SEGMENTS_AVAILABLE.

To allow for this you may need to retrieve reports as they arrive, and build up a
picture in your application of what happened to the original message. You can use
the GroupId field in the report message to correlate reports with the GroupId of
the original message, and the Feedback field to identify the type of each report
message. The way in which you do this depends on your application requirements.

One approach is as follows:
1. Ask for COD reports and exception reports.
2. After a specific time, check whether a complete set of COD reports has been

received using MQGMO_COMPLETE_MSG. If so, your application knows that
the entire message has been processed.
If not, and exception reports relating to this message are present, the problem
should be handled just as for unsegmented messages, though provision must
also be made for 'orphan' segments to be cleaned up at some point.
If there are segments for which there are no reports of any kind, the original
segments (or the reports) may be waiting for a channel to be reconnected, or
the network may be overloaded at some point. If no exception reports at all
have been received (or if you think that the ones you have may be temporary
only), you may decide to let your application wait a little longer.

As before, this is similar to the considerations you have when dealing with
unsegmented messages, except that you must also consider the possibility of
'orphan' segments which have to be cleaned up.

If the original message is not critical (for example, if it is a query, or a message that
can be repeated later), set an expiry time to ensure that orphan segments are
removed.

Message grouping and segmentation

970 WebSphere MQ for z/VSE System Management Guide

Back-level queue managers
When a report is generated by a queue manager that supports segmentation, but is
received on a queue manager that does not support segmentation, the MQMDE
structure (which identifies the Offset and OriginalLength represented by the
report) is always included in the report data, in addition to zero, 100 bytes, or all
of the original data in the message.

However, if a segment of a message passes through a queue manager that does not
support segmentation, you should be aware that if a report is generated there, the
MQMDE structure in the original message will be treated purely as data. It will
not therefore be included in the report data if zero bytes of the original data have
been requested. Without the MQMDE, the report message may not be useful.

You should therefore request at least 100 bytes of data in reports if there is a
possibility that the message might travel through a back-level queue manager.

Message properties
Use message properties to allow an application to select messages to process, or to
retrieve information about a message without accessing MQMD or MQRFH2
headers. They also facilitate communication between Websphere MQ and JMS
applications.

A message property is data associated with a message, consisting of a textual name
and a value of a particular type. Message properties are used by message selectors
to filter publications to topics or to selectively get messages from queues. Message
properties can be used to include business data or state information without
having to store it in the application data. Applications do not have to access data
in the MQ Message Descriptor (MQMD) or MQRFH2 headers because fields in
these data structures can be accessed as message properties using Message Queue
Interface (MQI) function calls.

The use of message properties in WebSphere MQ mimics the use of properties in
JMS. This means that you can set properties in a JMS application and retrieve them
in a procedural WebSphere MQ application, or the other way round. To make a
property available to a JMS application, assign it the prefix "usr"; it is then
available (without the prefix) as a JMS message user property. For example, the
Websphere MQ property usr.myproperty (a character string) is accessible to a JMS
application using the JMS call:
message.getStringProperty(’myproperty’)

Note that a property with the prefix "usr" can contain only a single U+002E (".")
character. A property with no prefix and no U+002E (".") character is treated as if it
had the prefix "usr". Conversely, a user property set in a JMS application can be
accessed in a WebSphere MQ application by adding the "usr." prefix to the
property name inquired on in an MQINQMP call.

Message properties and message length
Use the queue manager attribute MaxPropertiesLength to control the size of the
properties that can flow with any message in a WebSphere MQ queue manager.

In general, when you use MQSETMP to set properties, the size of a property is the
length of the property name in bytes, plus the length of the property value in bytes
as passed into the MQSETMP call. It is possible for the character set of the

Message grouping and segmentation

Appendix C. Application Programming Guidance 971

property name and the property value to change during transmission of the
message to its destination because these can be converted into Unicode. In this
case the size of the property may change.

On an MQPUT or MQPUT1 call, properties of the message do not count towards
the length of the message for the queue and the queue manager, but they do count
towards the length of the properties as perceived by the queue manager (whether
they were set using the message property MQI calls or not).

If the size of the properties exceeds the maximum properties length, the message is
rejected with MQRC_PROPERTIES_TOO_BIG. Because the size of the properties is
dependent on its representation, you should set the maximum properties length at
a gross level.

It is possible for an application to successfully put a message with a buffer that is
larger than the value of MaxMsgLength, if the buffer includes properties. This is
because, even when represented as MQRFH2 elements, message properties do not
count towards the length of the message. The MQRFH2 header fields add to the
properties length only if one or more folders are contained and every folder in the
header contains properties. If one or more folders are contained in the MQRFH2
header and any folder does not contain properties, the MQRFH2 header fields
count towards the message length instead.

On an MQGET call, properties of the message do not count towards the length of
the message as far as the queue and the queue manager are concerned. However,
because the properties are counted separately it is possible that the buffer returned
by an MQGET call is larger than the value of the MaxMsgLength attribute.

Do not have your applications query the value of MaxMsgLength and then allocate
a buffer of this size before calling MQGET; instead, allocate a buffer you consider
large enough. If the MQGET fails, allocate a buffer guided by the size of the
DataLength parameter.

The DataLength parameter of the MQGET call now returns the length in bytes of
the application data and any properties returned in the buffer you have provided,
if a message handle is not specified in the MQGMO structure.

The Buffer parameter of the MQPUT call now contains the application message
data to be sent and any properties represented in the message data.

There is a length limit of 4 MB for message properties, excluding the message
descriptor or extension for each message.

The size of a property in its internal representation is the length of the name, plus
the size of its value, plus some control data for the property. There is also some
control data for the set of properties after one property is added to the message.

Property names
A property name is a character string. Certain restrictions apply to its length and
the set of characters that can be used.

A property name is a case-sensitive character string, limited to +4095 characters
unless otherwise restricted by the context. This limit is contained in the
MQ_MAX_PROPERTY_NAME_LENGTH constant.

Message properties

972 WebSphere MQ for z/VSE System Management Guide

If you exceed this maximum length when using a message property MQI call, the
call fails with reason code MQRC_PROPERTY_NAME_LENGTH_ERR.

As there is no maximum property name length in JMS, it is possible for a JMS
application to set a valid JMS property name that is not a valid WebSphere MQ
property name when stored in an MQRFH2 structure.

In this case, when parsed, only the first 4095 characters of the property name are
used; the following characters are truncated. This could cause an application using
selectors to fail to match a selection string, or to match a string when not expecting
to, since more than one property may truncate to the same name. When a property
name is truncated, WebSphereMQ issues an error log message.

All property names must follow the rules defined by the Java Language
Specification for Java Identifiers, with the exception that Unicode character U+002E
(".") is permitted as part of the name, but not the start. The rules for Java
Identifiers equate to those contained in the JMS specification for property names.

White space characters and comparison operators are prohibited. Embedded nulls
are allowed in a property name, but not recommended. If you use embedded nulls,
this prevents the use of the MQVS_NULL_TERMINATED constant when used
with the MQCHARV structure to specify variable length strings.

Keep property names simple because applications can select messages based on the
property names and the conversion between the character set of the name and of
the selector may cause the selection to fail unexpectedly.

WebSphere MQ property names use character U+002E (".") for logical grouping of
properties. This divides up the namespace for properties. Properties with the
prefixes shown here, in any mixture of lowercase or uppercase are reserved for use
by the product:

mcd
jms
usr
mq
sib
wmq
Root
Body

A good way to avoid name clashes is to ensure that all applications prefix their
message properties with their Internet domain name. For example, if you are
developing an application using domain name "ourcompany.com" you could name
all properties with the prefix "com.ourcompany". This naming convention also
allows for easy selection of properties; for example, an application can inquire on
all message properties starting "com.ourcompany.%".

See “Property name restrictions” for further information about the use of property
names.

Property name restrictions
When you name a property, you must observe certain rules.

These restrictions apply to property names:
v A property must not begin with these strings:

Message properties

Appendix C. Application Programming Guidance 973

"JMS" Reserved for use by WebSphere MQ classes for JMS.
"usr.JMS"

Invalid.
The only exceptions to this are the properties shown in Table 73 which provide
synonyms for JMS properties:

Table 73. Data types of properties

Property Synonym for

JMSCorrelationID Root.MQMD.CorrelId or jms.Cid

JMSDeliveryMode Root.MQMD.Persistence or jms.Dlv

JMSDestination jms.Dst

JMSExpiration Root.MQMD.Expiry or jms.Exp

JMSMessageID Root.MQMD.MsgId

JMSPriority Root.MQMD.Priority or jms.Pri

JMSRedelivered Root.MQMD.BackoutCount

JMSReplyTo (a string
encoded as a URI)

Root.MQMD.ReplyToQ or Root.MQMD.ReplyToQMgr or
jms.Rto

JMSTimestamp Root.MQMD.PutDate or Root.MQMD.PutTime or jms.Tms

JMSType mcd.Type or mcd.Set or mcd.Fmt

JMSXAppID Root.MQMD.PutApplName

JMSXDeliveryCount Root.MQMD.BackoutCount

JMSXGroupID Root.MQMD.GroupId or jms.Gid

JMSXGroupSeq Root.MQMD.MsgSeqNumber or jms.Seq

JMSXUserID Root.MQMD.UserIdentifier

These synonyms allow an MQI application to access JMS properties in a similar
fashion to a WebSphere MQ classes for JMS client application. Of these
properties, only JMSCorrelationID, JMSReplyTo, JMSType, JMSXGroupID, and
JMSXGroupSeq can be set using the MQI.
Note that the JMS_IBM_* properties available from within WebSphere MQ
classes for JMS are not available using the MQI. The fields that the JMS_IBM_*
properties reference can be accessed in other ways by MQI applications.

v A property must not be called, in any mixture of lowercase or uppercase,
"NULL", "TRUE", "FALSE", "NOT", "AND", "OR", "BETWEEN", "LIKE", "IN", "IS"
or "ESCAPE". These are the names of SQL keywords used in selection strings.

v A property beginning "mq" (except "mq_usr"), "jms", "mcd", "usr", or "sib" (in
any mixture of lowercase or uppercase) can only contain a single "." character
(U+002E).

v Two "." characters must contain other characters in between; you cannot have an
empty point in the hierarchy. Similarly a property name cannot end in a "."
character.

v If an application sets the property "a.b" and then the property "a.b.c", it is
unclear whether in the hierarchy "b" contains a value or another logical
grouping. Such a hierarchy is "mixed content" and this is not supported. Setting
a property that causes mixed content is not allowed.

These restrictions are enforced by the validation mechanism as follows:
v Property names are validated when setting a property using the MQSETMP call,

if validation was requested when the message handle was created. If an attempt

Message properties

974 WebSphere MQ for z/VSE System Management Guide

to validate a property is undertaken and fails due to an error in the specification
of the property name, the completion code is MQCC_FAILED with reason:
– MQRC_PROPERTY_NAME_ERROR for reasons 1-4
– MQRC_MIXED_CONTENT_NOT_ALLOWED for reason 5

v The names of properties specified directly as MQRFH2 elements are not
guaranteed to be validated by the MQPUT call.

Message descriptor fields as properties
Most message descriptor fields can be treated as properties. The property name is
constructed by adding a prefix to the name of the message descriptor field.

If an MQI application wants to identify a message property contained in a message
descriptor field (for example, in a selector string or using the message property
APIs), use the syntax shown in Table 74.

Table 74. Message descriptor field syntax when identifying a message property

Property name Message descriptor field

Property name Message
descriptor field
Root.MQMD.<Field>>

<Field>

Specify <Field> with the same case as for the MQMD structure fields in the C
language declaration. For example, the property name
Root.MQMD.AccountingToken accesses the AccountingToken field of the message
descriptor.

The StrucId and Version fields of the message descriptor are not accessible using
the syntax shown in Table 74.

Message descriptor fields are never represented in an MQRFH2 header as for other
properties.

If the message data starts with an MQMDE that is honored by the queue manager,
the MQMDE fields can be accessed using the Root.MQMD.<Field> notation shown
in Table 74. In this case, the MQMDE fields are treated as logically part of the
MQMD from a properties perspective. See “MQMDE specified on MQPUT and
MQPUT1 calls” on page 806.

Property data types and values
A property can be a boolean, a byte string, a character string, or a floating-point or
integer number. The property can store any valid value in the range of the data
type unless otherwise restricted by the context.

The data type of a property value must be one of these values:
MQBOOL
MQBYTE[]
MQCHAR[]
MQFLOAT32
MQFLOAT64
MQINT8
MQINT16
MQINT32

Message properties

Appendix C. Application Programming Guidance 975

A property can exist but have no defined value; In this case, it is a null property. A
null property is different from a byte or character string property (MQBYTE[] and
MQCHAR[] respectively) that has a defined but empty value; that is, one with a
zero-length value. Byte string is not a valid property data type in JMS or XMS. It is
recommended that you do not use byte string properties in the <usr>> folder.

Message properties

976 WebSphere MQ for z/VSE System Management Guide

Appendix D. Sample JCL and programs

This appendix provides sample JCL to run WebSphere MQ for z/VSE utility
programs, and sample source code that uses the WebSphere MQ MQI. Program
samples are provided in COBOL, C, and PL/I.

Sample JCL
This section provides sample JCL for running the MQPUTIL, MQPEXCIC, and
MQPMQSC utility programs.

Sample JCL for MQPUTIL
* ** JOB JNM=MQJUTILY,DISP=D,CLASS=A
* ** LST DISP=H,CLASS=Q,PRI=3
// JOB MQJUTILY - Execute WebSphere MQ z/VSE Batch Utility Program.
* --*
* I M P O R T A N T I M P O R T A N T I M P O R T A N T *
* *
* Please change : *
* "* ** JOB" to "* $$ JOB" *
* "* ** LST" to "* $$ LST" *
* "* ** EOJ" to "* $$ EOJ" *
* *
* --*
* This job executes MQPUTIL to access the CONFIGURATION file *
* *
* This file is a sample and needs modification to suit the *
* users environment. *
* *
* --*
* Licensed Materials - Property of IBM *
* *
* 5655-U97 *
* Copyright IBM Corp. 2008 *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
* --*
* --*
* SELECT ONE OF THE FOLLOWING SYSIPT CARD OPTIONS *
* & INSERT IT AFTER // EXEC MQPUTIL ... *
* --*
* col 1.................20....... *
* RESET MSN 00000002 *
* PRINT MESSAGES *
* PRINT CONFIG *
* PRINT LOG *
* PRINT LOG FROMQ system.log *
* --*
// LIBDEF PHASE,SEARCH=(PRD2.WMQZVSE,PRD2.SCEEBASE)
// DLBL CONFIG,’WMQZVSE.MQFCNFG’,,VSAM,CAT=MQMCAT
// DLBL INLOG,’WMQZVSE.MQFLOG’,,VSAM,CAT=MQMCAT
// ASSGN SYS005,SYSLST
/. C
/. C if using PRINT LOG FROMQ then ensure following SETPARM is
/. C set to the batch interface id of the required queue manager
/. C
// SETPARM MQBISRV=’mqbiserv’
// EXEC MQPUTIL,SIZE=MQPUTIL
/*RESET MSN 00000002

© Copyright IBM Corp. 2008, 2013 977

/*RESET CHECKPOINT 00000002
/*PRINT CONFIG
/*PRINT LOG
/*PRINT LOG FROMQ system.log
/*
/&
* ** EOJ

Sample JCL for MQPEXCIC
// JOB MQJEXCIC
// ID USER=userid,PWD=userpwd
// LIBDEF *,SEARCH=(PRD2.WMQZVSE,prd2.sceebase)
// ASSGN SYS005,SYSLST
// EXEC MQPEXCIC,PARM=’vtam-applid’,OS390
CHANNEL(MY.CHANNEL) DLQSTORE(Y) ENABLE(Y)
/*
/&

Sample JCL for MQPMQSC
// JOB MQSCRUN
// SETPARM MQBISRV=’mqbiserv’
// LIBDEF *,SEARCH=(PRD2.WMQZVSE,prd2.sceebase)
// EXEC MQPMQSC,SIZE=MQPMQSC
*
* Define a local queue.
*
DEFINE QLOCAL(EXAMPLE.Q) +

DESCR(’Example queue’) +
CICSFILE(MQFO001) +
USAGE(NORMAL) +
SHARE +
PUT(ENABLED) +
GET(ENABLED) +

*
MAXDEPTH(5000) +
MAXMSGL(2000) +
MAXQUSER(100) +
MAXGLOCK(200) +
MAXLLOCK(200) +

*
NOTRIGGER +
MAXTRIGS(1) +
NOTRIGREST +

*
QSVCIEV(NONE) +
QSVCINT(0) +
QDPMAXEV(DISABLED) +
QDPHIEV(DISABLED) +
QDEPTHHI(0) +
QDPLOEV(DISABLED) +
QDEPTHLO(0) +

*
REORG(DISABLED) +
REORGINT(0000) +
REORGTI(0000)

/*
/&

Sample JCL

978 WebSphere MQ for z/VSE System Management Guide

Sample programs
WebSphere MQ for z/VSE provides a number of source code samples. These are
described in the following table:

Table 75. Sample program files

File Language Description

DCHFMT4.Z C Message data conversion exit

MQBICALL.Z COBOL Batch interface MQI program

MQBISTOP.Z COBOL Batch interface stop program

MQPCHNX.Z COBOL Generic channel exit

MQPECHO.Z COBOL Trigger program example

MQPSAXE.Z C WMQ API Exit program

TTMTST3.Z Assembler BMS map program for TTPTST3

TTPTST1.Z COBOL CICS MQI transaction

TTPTST2.Z COBOL CICS MQI program

TTPTST3.Z COBOL Driver program for TTPTST2

In addition to these sample programs, the following program listings are provided
to illustrate the use of the message queue interface (MQI) from programming
languages: COBOL, C and PL/I.

Sample COBOL MQI program
IDENTIFICATION DIVISION.
**
* *
* Program name: MQICPUTC *
* *
* Description: Sample COBOL program that puts messages *
* to a message queue (example using MQPUT) *
* <START_COPYRIGHT> *
* Licensed Materials - Property of IBM *
* *
* 5655-U97 *
* Copyright IBM Corp. 2008. All Rights Reserved. *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with *
* IBM Corp. *
* <END_COPYRIGHT> *
* *
**
* *
* Function: *
* *
* *
* MQICPUTC is a sample COBOL program to put messages on *
* a message queue, and is an example of the use of MQPUT *
* *
* -- target queue name received from screen, i.e. *
* *
* <tranid> <target-queue> *
* *
* -- open the target queue, put a single message and *
* close the queue *
* *
* -- writes a message for each MQI reason other than *

Sample programs

Appendix D. Sample JCL and programs 979

* MQCC-OK; stops if there is an MQI failure *
* *
* Program logic: *
* RECEIVE target queue name from screen *
* MQCONNect to default queue manager *
* MQOPEN target queue for OUTPUT *
* MQPUT a message *
* MQCLOSE target queue *
* MQDISConnect from queue manager *
* *
* *
**
PROGRAM-ID. ’MQICPUTC’.

**
DATA DIVISION.
WORKING-STORAGE SECTION.
*
** Declare MQI structures needed
* MQI named constants
01 MY-MQ-CONSTANTS.

COPY CMQV.
* Object Descriptor
01 OBJECT-DESCRIPTOR.

COPY CMQODV.
* Message Descriptor
01 MESSAGE-DESCRIPTOR.

COPY CMQMDV.
* Put message options
01 PMOPTIONS.

COPY CMQPMOV.
** note, sample uses defaults where it can
01 QM-NAME PIC X(48) VALUE SPACES.
01 HCONN PIC S9(9) BINARY.
01 Q-HANDLE PIC S9(9) BINARY.
01 OPTIONS PIC S9(9) BINARY.
01 COMPLETION-CODE PIC S9(9) BINARY.
01 OPEN-CODE PIC S9(9) BINARY.
01 CON-REASON PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.
01 SEND-REASON PIC 9999.
01 SEND-TEXT PIC X(60).
01 BUFFER PIC X(60).
01 TRANSID PIC X(4).
01 RECEIVE-BUFFER PIC X(60).
01 BUFFER-LENGTH PIC S9(9) BINARY.
01 RECEIVE-LENGTH PIC S9(9) BINARY.
01 TARGET-QUEUE PIC X(48).

**
PROCEDURE DIVISION.
P0.

**
* *
* Get name of target queue via RECEIVE *
* *
**

EXEC CICS RECEIVE
INTO(RECEIVE-BUFFER)
LENGTH(LENGTH OF RECEIVE-BUFFER)
NOHANDLE

END-EXEC.

UNSTRING RECEIVE-BUFFER DELIMITED BY ALL SPACES INTO
TRANSID

Sample programs

980 WebSphere MQ for z/VSE System Management Guide

TARGET-QUEUE.

**
* *
* Connect to default queue manager *
* *
**

CALL ’MQCONN’
USING QM-NAME, HCONN,
COMPLETION-CODE, CON-REASON.

* report reason and stop if it failed
IF COMPLETION-CODE NOT = MQCC-OK

MOVE CON-REASON TO SEND-REASON
STRING ’MQCONN ended with reason code ’ SEND-REASON

DELIMITED BY LOW-VALUE
INTO SEND-TEXT

PERFORM ERRORS
END-IF.

**
* *
* Open the target message queue for output *
* *
**
OPENS.

MOVE TARGET-QUEUE TO MQOD-OBJECTNAME.
MOVE MQOO-OUTPUT TO OPTIONS.
CALL ’MQOPEN’
USING HCONN, OBJECT-DESCRIPTOR,
OPTIONS, Q-HANDLE,
OPEN-CODE, REASON.

* report reason, if any; stop if failed
IF OPEN-CODE NOT = MQCC-OK

MOVE REASON TO SEND-REASON
STRING ’MQOPEN ended with reason code ’ SEND-REASON

DELIMITED BY LOW-VALUE
INTO SEND-TEXT

PERFORM ERRORS
END-IF.

**
* *
* Put message to the target queue *
* *
**
PUTS.

MOVE LENGTH OF BUFFER TO BUFFER-LENGTH.
MOVE MQFMT-STRING TO MQMD-FORMAT.
MOVE ’This is a test message’ TO BUFFER.
CALL ’MQPUT’
USING HCONN, Q-HANDLE,
MESSAGE-DESCRIPTOR, PMOPTIONS,
BUFFER-LENGTH, BUFFER,
COMPLETION-CODE, REASON.

* report reason, if failed
IF COMPLETION-CODE NOT = MQCC-OK

MOVE REASON TO SEND-REASON
STRING ’MQPUT ended with reason code ’ SEND-REASON

DELIMITED BY LOW-VALUE
INTO SEND-TEXT

PERFORM ERRORS
END-IF.

EXEC CICS SYNCPOINT END-EXEC.

Sample programs

Appendix D. Sample JCL and programs 981

**
* *
* Close the target queue *
* *
**
CLOSES.

MOVE MQCO-NONE TO OPTIONS.
CALL ’MQCLOSE’
USING HCONN, Q-HANDLE, OPTIONS,
COMPLETION-CODE, REASON.

* report reason, if any
IF COMPLETION-CODE NOT = MQCC-OK

MOVE REASON TO SEND-REASON
STRING ’MQCLOSE ended with reason code ’ SEND-REASON

DELIMITED BY LOW-VALUE
INTO SEND-TEXT

PERFORM ERRORS
END-IF.

**
* *
* Disconnect from queue manager (if not previously connected) *
* *
**
DISCS.

IF CON-REASON NOT = MQRC-ALREADY-CONNECTED
CALL ’MQDISC’
USING HCONN, COMPLETION-CODE, REASON

* report reason, if any
IF COMPLETION-CODE NOT = MQCC-OK

MOVE REASON TO SEND-REASON
STRING ’MQDISC ended with reason code ’ SEND-REASON

DELIMITED BY LOW-VALUE
INTO SEND-TEXT

PERFORM ERRORS
END-IF.

**
* *
* Indicate success, and return. *
* *
**
OVER.

STRING ’Message put to ’ TARGET-QUEUE
DELIMITED BY LOW-VALUE
INTO SEND-TEXT

EXEC CICS SEND
FROM (SEND-TEXT)
LENGTH (LENGTH OF SEND-TEXT)
ERASE

END-EXEC.

EXEC CICS RETURN END-EXEC.

**
* *
* Send error text to the screen and terminate. *
* *
**
ERRORS.

EXEC CICS SEND
FROM (SEND-TEXT)
LENGTH (LENGTH OF SEND-TEXT)
ERASE

Sample programs

982 WebSphere MQ for z/VSE System Management Guide

END-EXEC.

EXEC CICS RETURN END-EXEC.

**
* *
* END OF MQICPUTC *
* *
**

Sample C MQI program
/**/
/* */
/* Program name: MQICINQX */
/* */
/* Description: Sample C program that demonstrates the MQINQ call. */
/* */
/* <START_COPYRIGHT> */
/* Licensed Materials - Property of IBM */
/* */
/* 5655-U97 */
/* Copyright IBM Corp. 2008 All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* <END_COPYRIGHT> */
/**/
/* */
/* Function: */
/* */
/* */
/* MQICINQX is a sample C program that demonstrates how to use */
/* the MQINQ call to get information about a queue. */
/* */
/* This sample connects to a queue manager, opens a queue, */
/* inquires on its attributes, closes the queue and disconnects */
/* from the queue manager. */
/* */
/* */
/**/
/* */
/* MQICINQX expects input parameters provided via the screen. */
/* */
/* i.e. */
/* */
/* <transid> <source-queue> */
/* */
/* */
/**/

/* Includes */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
#include <cmqxc.h>

/* Defines */
#define FALSE 0
#define TRUE 1
#define MAX_NO_MSGS 10
#define MAX_MSG_LEN 80
#define MAX_INQ_CNT 3
#define MAX_INT_CNT 2

Sample programs

Appendix D. Sample JCL and programs 983

/* Function prototypes */
void mqStrCpy(char *target, char *source, int len);

/**/
/* This program connects to a queue manager, opens a source queue, */
/* inquires on its attributes, closes it, and disconnects from the */
/* queue manager. The source queue name is read from the screen. */
/**/
int main(int argc, char **argv)
{

/*
* Local variables.
*/
int msgno;
char msg[MAX_NO_MSGS][MAX_MSG_LEN];
char buf[80];
short recvlen;
short sendlen;
MQLONG selcnt;
MQLONG seltab[MAX_INQ_CNT];
MQLONG iattrcnt;
MQLONG iattrtab[MAX_INT_CNT];
MQLONG cattrlen;
MQCHAR *cattrtab;
MQHCONN Hcon;
MQHOBJ Hobj;
MQLONG O_options;
MQLONG C_options;
MQLONG CompCode;
MQLONG Reason;
MQCHAR48 QMName;
MQOD od = { MQOD_DEFAULT };
struct tagRBUF
{

char transid[4];
char filler;
char srcq[MQ_Q_NAME_LENGTH];

} recvbuf;

/*
* Initialize local variables.
*/
msgno = 0;
Hcon = MQHC_UNUSABLE_HCONN;
Hobj = MQHO_UNUSABLE_HOBJ;
memset(&msg, 0, (MAX_NO_MSGS * MAX_MSG_LEN));
strcpy(&msg[msgno++][0], "Program begins");

/*
* Receive source queue name.
*/
recvlen = sizeof(struct tagRBUF);
memset(&recvbuf.srcq, 0, MQ_Q_NAME_LENGTH);
EXEC CICS RECEIVE

INTO(&recvbuf)
LENGTH(recvlen)
NOHANDLE;

/*
* Connect to queue manager.
*/
memset(QMName, ’ ’, MQ_Q_MGR_NAME_LENGTH);
MQCONN(QMName,

&Hcon,

Sample programs

984 WebSphere MQ for z/VSE System Management Guide

&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{

sprintf(msg[msgno++],
"MQCONN returned (%ld,%ld)",
CompCode, Reason);

goto ProgExit;
}

/*
* Open source queue.
*/
mqStrCpy(od.ObjectName, recvbuf.srcq, MQ_Q_NAME_LENGTH);
O_options = MQOO_INQUIRE;
MQOPEN(Hcon,

&od,
O_options,
&Hobj,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{

sprintf(msg[msgno++],
"MQOPEN returned (%ld,%ld)\n",
CompCode, Reason);

goto ProgExit;
}

/*
* Inquire on some queue attributes.
*/
selcnt = MAX_INQ_CNT;
seltab[0] = MQIA_MAX_Q_DEPTH;
seltab[1] = MQIA_MAX_MSG_LENGTH;
seltab[2] = MQCA_Q_DESC;
iattrcnt = MAX_INT_CNT;
cattrlen = MQ_Q_DESC_LENGTH;
cattrtab = (char *)&buf;
MQINQ(Hcon,

Hobj,
selcnt,
seltab,
iattrcnt,
iattrtab,
cattrlen,
cattrtab,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{

sprintf(msg[msgno++],
"MQINQ returned (%ld,%ld)\n",
CompCode, Reason);

goto ProgExit;
}

/*
* Report queue attributes.
*/
buf[MQ_Q_DESC_LENGTH] = 0;
sprintf(msg[msgno++],

"Maximum queue depth (%ld)\n", iattrtab[0]);
sprintf(msg[msgno++],

Sample programs

Appendix D. Sample JCL and programs 985

"Maximum message length (%ld)\n", iattrtab[1]);
sprintf(msg[msgno++], "Description (%s)\n", buf);

ProgExit:
/*
* Close the source queue.
*/
if (Hobj != MQHO_UNUSABLE_HOBJ)
{

C_options = MQCO_NONE;
MQCLOSE(Hcon,

&Hobj,
C_options,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{

sprintf(msg[msgno++],
"MQCLOSE returned (%ld,%ld)\n",
CompCode, Reason);

}
}

/*
* Disconnect from queue manager.
*/
if (Hcon != MQHC_UNUSABLE_HCONN)
{

MQDISC(&Hcon, &CompCode, &Reason);
if (CompCode != MQCC_OK)
{

sprintf(msg[msgno++],
"MQDISC returned (%ld,%ld)\n",
CompCode, Reason);

}
}

/*
* Terminate.
*/
strcpy(&msg[msgno++][0], "Program ends");
sendlen = msgno * 80;
EXEC CICS SEND

FROM(&msg)
LENGTH(sendlen)
ERASE;

EXEC CICS RETURN;
}

/**/
/* This function copies a source string to a target string up to */
/* the first null, and then pads the rest of the target string */
/* with blanks. */
/**/
void mqStrCpy(char *target, char *source, int len)
{

int i, j;

for (i=0; i<len; i++)
{

if (*source == 0x00)
{

for (j=0; j<(len-i); j++)
*target++ = ’ ’;

break;

Sample programs

986 WebSphere MQ for z/VSE System Management Guide

}
else
{

*target++ = *source++;
}

}

return;
}

/**/
/* End of MQICINQX */
/**/

Sample PL/I MQI program
*process langlvl(os),macro,not(’^’),or(’|’);
/***/
/* */
/* Program name: MQICGETP */
/* */
/* Description: Sample PL/I program for WebSphere MQ that gets */
/* messages from a message queue. */
/* <START_COPYRIGHT> */
/* Licensed Materials - Property of IBM */
/* */
/* 5655-U97 */
/* Copyright IBM Corp. 2008 All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* <END_COPYRIGHT> */
/***/
/* */
/* Function: */
/* */
/* MQICGETP is a sample PL/I program to get messages from a */
/* message queue, and is an example of the use of MQGET. */
/* */
/* -- Receives source queue name from screen. */
/* */
/* -- Opens the source queue, gets a message, displays it on */
/* the screen, and closes the queue. */
/* */
/* -- Writes a message for each MQI failure */
/* */
/* */
/* Program logic: */
/* */
/* RECEIVE source queue name from screen */
/* MQCONN connect to default queue manager */
/* MQOPEN open queue for input */
/* MQGET get next message, remove from queue */
/* print message */
/* MQCLOSE close queue */
/* MQDISC disconnect from queue manager */
/* */
/***/
/* */
/* MQICGETP has 2 parameters: */
/* */
/* - transid */
/* - source queue name */
/* */
/* i.e. <transid> <source-queue> */
/* */

Sample programs

Appendix D. Sample JCL and programs 987

/***/
MQICGET: PROCEDURE OPTIONS(MAIN NOEXECOPS);

/***/
/* Builtin functions */
/***/
dcl (low

,substr
,addr
,index
,null
) builtin;

/***/
/* Message Queue Interface (MQI) structures and constants */
/***/
%include syslib(cmqp);
%include syslib(cmqxp);
%include syslib(cmqcfp);
%include syslib(cmqepp);

/***/
/* Working variables */
/***/
dcl QName char(MQ_Q_NAME_LENGTH); /* Queue name */
dcl QMName char(MQ_Q_MGR_NAME_LENGTH); /* Queue manager name */
dcl recvBuf char(60); /* Receive buffer */
dcl charPos fixed bin(15); /* char position */
dcl recvLen fixed bin(15); /* Receive buffer length */
dcl hCon fixed bin(31); /* handle to connection */
dcl hObj fixed bin(31); /* handle to object */
dcl options fixed bin(31); /* options */
dcl reason fixed bin(31); /* reason code */
dcl connReason fixed bin(31); /* MQCONN reason code */
dcl compCode fixed bin(31); /* completion code */
dcl openCompCode fixed bin(31); /* MQOPEN completion code */
dcl msg char(100) varying; /* message */
dcl msgBuf char(100); /* message buffer */
dcl msgBufLen fixed bin(31); /* message buffer length */
dcl msgLen fixed bin(31); /* message length received */
dcl outBuf (10) char(80); /* output buffer */
dcl outCnt fixed bin(15); /* output message count */
dcl outLen fixed bin(15); /* output buffer length */

/***/
/* Declare MQI structures needed, using defaults */
/***/
dcl 1 od like mqod; /* object descriptor */
dcl 1 md like mqmd; /* message descriptor */
dcl 1 gmo like mqgmo; /* get message options */

/***/
/* Receive the source queue name from the screen. */
/***/
outCnt = 1;
outBuf(outCnt) = ’Program begins’;
EXEC CICS RECEIVE

INTO(recvbuf)
LENGTH(recvlen)
NOHANDLE;

charPos = index(recvbuf, ’ ’);
QName = substr(recvbuf, charPos+1, recvlen-charPos);

outCnt = outCnt + 1;
outBuf(outCnt) = ’Source queue is ’ || QName;

Sample programs

988 WebSphere MQ for z/VSE System Management Guide

/***/
/* Connect to queue manager */
/***/
QMName = ’’;
call mqconn(QMName, hCon, compCode, connReason);

if compCode = MQCC_FAILED then
do;

outCnt = outCnt + 1;
outBuf(outCnt) = ’MQCONN ended with reason code ’ || connReason;
go to ProgExit;

end;

/***/
/* Open the source message queue for input */
/***/
options = MQOO_INPUT_SHARED;
od.ObjectName = QName;

call mqopen(hCon, od, options, hObj, openCompCode, reason);

if openCompCode = MQCC_FAILED then
do;

outCnt = outCnt + 1;
outBuf(outCnt) = ’MQOPEN ended with reason code ’ || reason;
go to ProgExit;

end;

/***/
/* Set up some things for the MQGET */
/***/
msgBufLen = 100;
gmo.Options = MQGMO_WAIT + MQGMO_CONVERT;
gmo.WaitInterval = 15000; /* 15 sec limit for waiting */

/***/
/* Get a message from the queue */
/***/

md.MsgId = MQMI_NONE;
md.CorrelId = MQCI_NONE;

call mqget(hCon, hObj, md, gmo, msgBufLen, msgBuf, msgLen,
compCode, reason);

if compCode = MQCC_FAILED then
do;

outCnt = outCnt + 1;
outBuf(outCnt) = ’MQGET ended with reason code ’ || reason;
go to ProgExit;

end;

/***/
/* Display the message */
/***/
outCnt = outCnt + 1;
outBuf(outCnt) = ’Message -> ’ || msgBuf;

EXEC CICS SYNCPOINT;

ProgExit:

/***/
/* Close queue if opened */
/***/
if openCompCode ^= MQCC_FAILED then
do;

Sample programs

Appendix D. Sample JCL and programs 989

options = 0; /* no close options */

call mqclose(hCon, hObj, options, compCode, reason);

if compCode = MQCC_FAILED then
do;

outCnt = outCnt + 1;
outBuf(outCnt) = ’MQCLOSE ended with reason code ’ || reason;

end;
end;

/***/
/* Disconnect from queue manager if not already connected */
/***/
if connReason ^= MQRC_ALREADY_CONNECTED then
do;

call mqdisc(hCon, compCode, reason);

if compCode = MQCC_FAILED then
do;

outCnt = outCnt + 1;
outBuf(outCnt) = ’MQDISC ended with reason code ’ || reason;

end;
end;

outCnt = outCnt + 1;
outBuf(outCnt) = ’Program ends’;
outLen = outCnt * 80;
EXEC CICS SEND

FROM(outBuf)
LENGTH(outLen)
ERASE;

EXEC CICS RETURN;

END MQICGET;

Sample programs

990 WebSphere MQ for z/VSE System Management Guide

Appendix E. Example configuration - WebSphere MQ for
z/VSE Version 3.0.0

This appendix gives an example of how to set up communication links from
WebSphere MQ for z/VSE to WebSphere MQ products on the following platforms:
v OS/2
v Windows NT
v AIX
v HP-UX
v AT&T GIS UNIX (This platform has become NCR UNIX SVR4 MP-RAS, R3.0)
v Sun Solaris
v OS/400®

v z/OS without CICS

It describes the parameters needed for an LU 6.2 and TCP/IP connection. Once the
connection is established, you need to define some channels to complete the
configuration. This is described in “WebSphere MQ for z/VSE configuration” on
page 996.

Configuration parameters for an LU 6.2 connection
Table 76 presents a worksheet listing all the parameters needed to set up
communication from z/VSE to one of the other WebSphere MQ platforms. The
worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter" in conjunction with the worksheet in the WebSphere MQ
Intercommunication book for the platform to which you are connecting.

Configuration worksheet
Use the following worksheet to record the values you will use for this
configuration. Where numbers appear in the Reference column they indicate that
the value must match that in the appropriate worksheet in the WebSphere MQ
Intercommunication book. The examples that follow in this chapter refer back to the
values in the ID column of this table. The entries in the Parameter Name column
are explained in “Explanation of terms” on page 993.

Table 76. Configuration worksheet for z/VSE using APPC

ID Parameter Name Reference Example Used User Value

Definition for local node

�1� Network ID NETID

�2� Node name VSEPU

�3� Local LU name VSELU

�4� Local Transaction Program name MQ01 MQ01

�5� LAN destination address 400074511092

Connection to an OS/2 system

The values in this section of the table must match those used in the table for OS/2 in the WebSphere MQ
Intercommunication book, as indicated.

© Copyright IBM Corp. 2008, 2013 991

Table 76. Configuration worksheet for z/VSE using APPC (continued)

ID Parameter Name Reference Example Used User Value

�6� Connection name OS2

�7� Group name EXAMPLE

�8� Session name OS2SESS

�9� Netname �6� OS2LU

Connection to a Windows NT system

The values in this section of the table must match those used in the table for Windows NT in the WebSphere MQ
Intercommunication book, as indicated.

�6� Connection name WNT

�7� Group name EXAMPLE

�8� Session name WNTSESS

�9� Netname �5� WINNTLU

Connection to an AIX system

The values in this section of the table must match those used in the table for AIX in the WebSphere MQ
Intercommunication book, as indicated.

�6� Connection name AIX

�7� Group name EXAMPLE

�8� Session name AIXSESS

�9� Netname �4� AIXLU

Connection to an HP-UX system

The values in this section of the table must match those used in the table for HP-UX in the WebSphere MQ
Intercommunication book, as indicated.

�6� Connection name HPUX

�7� Group name EXAMPLE

�8� Session name HPUXSESS

�9� Netname �5� HPUXLU

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in the table for GIS UNIX in the WebSphere MQ
Intercommunication book, as indicated.

�6� Connection name GIS

�7� Group name EXAMPLE

�8� Session name GISSESS

�9� Netname �4� GISLU

Connection to a Sun Solaris system

The values in this section of the table must match those used in the table for Sun Solaris in the WebSphere MQ
Intercommunication book, as indicated.

�6� Connection name SOL

�7� Group name EXAMPLE

�8� Session name SOLSESS

�9� Netname �5� SOLARLU

VSEand LU 6.2

992 WebSphere MQ for z/VSE System Management Guide

Table 76. Configuration worksheet for z/VSE using APPC (continued)

ID Parameter Name Reference Example Used User Value

Connection to an AS/400 system

The values in this section of the table must match those used in the table for AS/400 in the WebSphere MQ
Intercommunication book, as indicated.

�6� Connection name AS4

�7� Group name EXAMPLE

�8� Session name AS4SESS

�9� Netname �3� AS400LU

Connection to a z/OS system without CICS

The values in this section of the table must match those used in the table for z/OS in the WebSphere MQ
Intercommunication book, as indicated.

�6� Connection name z/OS

�7� Group name EXAMPLE

�8� Session name MVSSESS

�9� Netname �4� MVSLU

Explanation of terms
�1� Network ID

This is the unique ID of the network to which you are connected. Your
system administrator will tell you this value.

�2� Node name
This is the name of the SSCP which owns the CICS for z/VSE region.

�3� Local LU name
This is the unique VTAM APPLID of this CICS for z/VSE region.

�4� Transaction Program name
WebSphere MQ applications trying to converse with this queue manager
will specify a transaction name for the program to be run at the receiving
end. This will have been defined on the channel definition at the sender.
WebSphere MQ for z/VSE uses a name of MQ01.

�5� LAN destination address
This is the LAN destination address that your partner nodes will use to
communicate with this host. It is usually the address of the 3745 on the
same LAN as the partner node.

�6� Connection name
This is a 4-character name by which each connection will be individually
known in CICS RDO.

�7� Group name
You choose your own 8-character name for this value. Your system may
already have a group defined for connections to partner nodes. Your
system administrator will give you a value to use.

�8� Session name
This is an 8-character name by which each session will be individually
known. For clarity we use the connection name, concatenated with 'SESS'.

VSEand LU 6.2

Appendix E. Example configuration - WebSphere MQ for z/VSE Version 3.0.0 993

�9� Netname
This is the LU name of the WebSphere MQ queue manager on the system
with which you are setting up communication.

Establishing an LU 6.2 connection
This example is for a connection to an OS/2 system. The steps are the same
whatever platform you are using; change the values as appropriate.

Defining a connection
1. At a CICS command line type:

CEDA DEF CONN(connection name) �6� GROUP(group name) �7�

For example:
CEDA DEF CONN(OS2) GROUP(EXAMPLE)

2. Press Enter to define a connection to CICS.

DEF CONN(OS2) GROUP(EXAMPLE)
OVERTYPE TO MODIFY
CEDA DEFine
Connection : OS2
Group : EXAMPLE
DEscription ==>
CONNECTION IDENTIFIERS
Netname ==> OS2LU
INDsys ==>
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
CONNECTION PROPERTIES
ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm
Protocol ==> Appc Appc | Lu61
SInglesess ==> No No | Yes
DAtastream ==> User User | 3270 | SCs | STrfield | Lms
RECordformat ==> U U | Vb
OPERATIONAL PROPERTIES

+ AUtoconnect ==> Yes No | Yes | All
I New group EXAMPLE created.

DEFINE SUCCESSFUL TIME: 16.49.30 DATE: 96.054
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

3. On the panel change the Netname field in the CONNECTION IDENTIFIERS
section to be the LU name (�9�) of the target system.

4. In the CONNECTION PROPERTIES section set the ACcessmethod field to Vtam
and the Protocol to Appc.

5. Press Enter to make the change.

Defining a session
1. At a CICS command line type:

CEDA DEF SESS(session name) �8� GROUP(group name) �7�

For example:
CEDA DEF SESS(OS2SESS) GROUP(EXAMPLE)

2. Press Enter to define a session for the connection.

VSEand LU 6.2

994 WebSphere MQ for z/VSE System Management Guide

DEF SESS(OS2SESS) GROUP(EXAMPLE)
OVERTYPE TO MODIFY
CEDA DEFine
Sessions ==> OS2SESS
Group ==> EXAMPLE
DEscription ==>
SESSION IDENTIFIERS
Connection ==> OS2
SESSName ==>
NETnameq ==>
MOdename ==> #INTER
SESSION PROPERTIES
Protocol ==> Appc Appc | Lu61
MAximum ==> 008 , 004 0-999
RECEIVEPfx ==>
RECEIVECount ==> 1-999
SENDPfx ==>
SENDCount ==> 1-999
SENDSize ==> 04096 1-30720

+ RECEIVESize ==> 04096 1-30720
S CONNECTION MUST BE SPECIFIED.

TIME: 14.23.19 DATE: 96.054
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

3. In the SESSION IDENTIFIERS section of the panel specify the Connection name
(�6�) in the Connection field and set the MOdename to #INTER.

4. In the SESSION PROPERTIES section set the Protocol to Appc and the
MAximum field to 008 , 004.

Installing the new group definition
1. At a CICS command line type:

CEDA INS GROUP(group name) �7�

2. Press Enter to install the new group definition.

Note: If this connection group is already in use you may get severe errors
reported. If this happens, take the existing connections out of service, retry the
above group installation, and then set the connections in service using the
following commands:
a. CEMT I CONN
b. CEMT S CONN(*) OUTS
c. CEDA INS GROUP(group name)
d. CEMT S CONN(*) INS

What next?
The LU 6.2 connection is now established. You are ready to complete the
configuration. Go to “WebSphere MQ for z/VSE configuration” on page 996.

Establishing a TCP/IP connection
TCP/IP connections do not require the configuration of additional profiles as does
the LU 6.2 protocol. Instead, WebSphere MQ for z/VSE processes the WebSphere
MQ listener program during WebSphere MQ startup.

The WebSphere MQ listener program waits for remote TCP/IP connection requests.
As these are received, the listener starts the receiver MCA to process the remote

Establishing a connection

Appendix E. Example configuration - WebSphere MQ for z/VSE Version 3.0.0 995

connection. When the remote connection is received from a client program, the
receiver MCA starts the WebSphere MQ server program.

Note: There is one WebSphere MQ server process for each client connection.

Provided that the MQ Listener is active and TCP/IP is active in a z/VSE partition,
TCP/IP connections can be established.

WebSphere MQ for z/VSE configuration
Configuring WebSphere MQ for z/VSE involves these tasks:
v Configuring channels.
v Defining a local queue.
v Defining a remote queue.
v Defining a sender channel.
v Defining a receiver channel.

Note: WebSphere MQ for z/VSE does not understand the format of the
WebSphere MQ channel ping command. The only way to verify your WebSphere
MQ definitions is to start the channels and put messages onto remote queues.

Configuring channels
Examples are given for connecting WebSphere MQ for z/VSE and WebSphere MQ
for OS/2. If you wish connect to another WebSphere MQ platform use the
appropriate set of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of WebSphere
MQ objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Refer to the sections “Defining a local queue” on page 999 and “Defining a remote
queue” on page 1001 for details of how to create queue definitions, and “Defining
a SNA LU 6.2 sender channel” on page 1003 and “Defining a SNA LU 6.2 receiver
channel” on page 1005 for details of how to create channels.

Table 77. Configuration worksheet for WebSphere MQ for z/VSE

ID Parameter Name Reference Example Used User Value

Definition for local node

�A� Queue Manager Name VSEP

�B� Local queue name VSE.LOCALQ

Connection to WebSphere MQ for OS/2

The values in this section of the table must match those used in the worksheet table for OS/2 in the WebSphere MQ
Intercommunication book, as indicated.

�C� Remote queue manager name �A� OS2

�D� Remote queue name OS2.REMOTEQ

�E� Queue name at remote system �B� OS2.LOCALQ

�F� Transmission queue name OS2

�G� Sender channel name VSE.OS2.SNA

�I� Receiver channel name �G� OS2.VSE.SNA

TCP/IP connection

996 WebSphere MQ for z/VSE System Management Guide

Table 77. Configuration worksheet for WebSphere MQ for z/VSE (continued)

ID Parameter Name Reference Example Used User Value

Connection to WebSphere MQ for Windows NT

The values in this section of the table must match those used in the worksheet table for Windows NT in the WebSphere MQ
Intercommunication book, as indicated.

�C� Remote queue manager name �A� WINNT

�D� Remote queue name WINNT.REMOTEQ

�E� Queue name at remote system �B� WINNT.LOCALQ

�F� Transmission queue name WINNT

�G� Sender channel name VSE.WINNT.SNA

�I� Receiver channel name �G� WINNT.VSE.SNA

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in the worksheet table for AIX in the WebSphere MQ
Intercommunication book, as indicated.

�C� Remote queue manager name AIX

�D� Remote queue name AIX.REMOTEQ

�E� Queue name at remote system �B� AIX.LOCALQ

�F� Transmission queue name AIX

�G� Sender channel name VSE.AIX.SNA

�I� Receiver channel name �G� AIX.VSE.SNA

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in the worksheet table for HP-UX in the WebSphere MQ
Intercommunication book, as indicated.

�C� Remote queue manager name HPUX

�D� Remote queue name HPUX.REMOTEQ

�E� Queue name at remote system �B� HPUX.LOCALQ

�F� Transmission queue name HPUX

�G� Sender channel name VSE.HPUX.SNA

�I� Receiver channel name �G� HPUX.VSE.SNA

Connection to WebSphere MQ for AT&T GIS UNIX

The values in this section of the table must match those used in the worksheet table for GIS UNIX in the WebSphere MQ
Intercommunication book, as indicated.

�C� Remote queue manager name GIS

�D� Remote queue name GIS.REMOTEQ

�E� Queue name at remote system �B� GIS.LOCALQ

�F� Transmission queue name GIS

�G� Sender channel name VSE.GIS.SNA

�I� Receiver channel name �G� GIS.VSE.SNA

Connection to WebSphere MQ for Sun Solaris

The values in this section of the table must match those used in the worksheet table for Sun Solaris in the WebSphere MQ
Intercommunication book, as indicated.

�C� Remote queue manager name SOLARIS

�D� Remote queue name SOLARIS.REMOTEQ

�E� Queue name at remote system �B� SOLARIS.LOCALQ

�F� Transmission queue name SOLARIS

�G� Sender channel name VSE.SOLARIS.SNA

�I� Receiver channel name �G� SOLARIS.VSE.SNA

z/VSE configuration

Appendix E. Example configuration - WebSphere MQ for z/VSE Version 3.0.0 997

Table 77. Configuration worksheet for WebSphere MQ for z/VSE (continued)

ID Parameter Name Reference Example Used User Value

Connection to WebSphere MQ for AS/400

The values in this section of the table must match those used in the worksheet table for AS/400 in the WebSphere MQ
Intercommunication book, as indicated.

�C� Remote queue manager name AS400

�D� Remote queue name AS400.REMOTEQ

�E� Queue name at remote system �B� AS400.LOCALQ

�F� Transmission queue name AS400

�G� Sender channel name VSE.AS400.SNA

�I� Receiver channel name �G� AS400.VSE.SNA

Connection to WebSphere MQ for z/OS without CICS

The values in this section of the table must match those used in the worksheet table for z/OS in the WebSphere MQ
Intercommunication book, as indicated.

�C� Remote queue manager name z/OS

�D� Remote queue name MVS™.REMOTEQ

�E� Queue name at remote system �B� MVS.LOCALQ

�F� Transmission queue name z/OS

�G� Sender channel name VSE.MVS.SNA

�I� Receiver channel name �G� MVS.VSE.SNA

For TCP/IP, the sender channel name �G� and the receiver channel name �I�, in
the preceding table, can be VSE.sys.tcp and sys.VSE.TCP respectively.

In both cases sys represents the remote system name, for example, OS2. Therefore,
in this case, �G� becomes VSE.OS2.TCP and �I� becomes OS2.VSE.TCP.

WebSphere MQ for z/VSE sender-channel definitions
Local Queue

Object Type : L
Object Name : OS2 �F�

Usage Mode: T (Transmission)

Remote Queue
Object Type : R
Object Name : OS2.REMOTEQ �D�

Remote QUEUE Name : OS2.LOCALQ �E�
Remote QM Name : OS2 �C�
Transmission Name : OS2 �F�

Sender Channel
Channel name : VSE.OS2.SNA �G�
Channel type : S (Sender)

Transmission queue name : OS2 �F�
Partner : OS2 �6�
TP Name : MQTP

WebSphere MQ for z/VSE receiver-channel definitions
Local Queue

Object type : QLOCAL
Object Name : VSE.LOCALQ �B�
Usage Mode : N (Normal)

Receiver Channel
Channel name : OS2.VSE.SNA �I�
Channel type : R (Receiver)

z/VSE configuration

998 WebSphere MQ for z/VSE System Management Guide

Defining a local queue
1. Run the WebSphere MQ master terminal transaction MQMT.

01/03/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
14:51:52 *** Master Terminal Main Menu *** CIC1
MQWMTP A004

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option: 1

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Clear/PF3=Exit Enter=Select

2. Select option 1 to configure.

12/24/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
10:56:35 *** Configuration Main Menu *** CIC1
MQWMCFG A000

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions
4. Code Page Definitions
5. Namelist Definitions

Display Options :
6. Global System Definition
7. Queue Definitions
8. Channel Definitions
9. Code Page Definitions
10. Namelist Definitions

Option:

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Enter=Process PF2=Return PF3=Exit

3. Select option 2 to work with queue definitions.

z/VSE configuration

Appendix E. Example configuration - WebSphere MQ for z/VSE Version 3.0.0 999

01/03/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
14:53:16 Queue Main Options CIC1
MQWMQUE A004

SYSTEM IS ACTIVE

Default Q Manager. : VSE.TS.QM1

Object Type. . . . : L L = Local Queue
R = Remote Queue
AQ = Alias Queue
AM = Alias Queue Manager
AR = Alias Reply Queue

Object Name. . . . : VSE.LOCALQ

PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update
PF9=List PF12=Delete

4. Select an Object type of L and specify the name of the queue.
5. Press PF5.

11/19/2009 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:24:40 Queue Definition Record CIC1
MQWMQUE Local Queue Definition A000

Object Name : VSE.LOCALQ
Description line 1 . . . : Test Q
Description line 2 . . . :

Dual Update Queue . . . :

Put Enabled : Y Inbound status . . : A
Get Enabled : Y Outbound status . : A

Accounting, Statistics & Monitoring
Queue accounting : Q Queue monitoring . : Q
Queue statistics : Q

Automatic Reorganization
Reorganize : N Start Time: 0000 Interval: 0000
VSAM Catalog :

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF10=Queue PF12=Delete

6. Press PF5 again.

z/VSE configuration

1000 WebSphere MQ for z/VSE System Management Guide

11/11/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
13:00:08 Queue Extended Definition CIC1
MQMMQUE A005

Object Name: VSE.LOCALQ

General Maximums Events
Type . . : Local Max. Q depth . : 00001000 Service int. event: N
File name : MQFO001 Max. msg length: 00004000 Service interval : 00000000
Usage . . : N Max. Q users . : 00000100 Max. depth event : N
Shareable : Y Max. gbl locks : 00000200 High depth event : N

Max. lcl locks : 00000200 High depth limit : 000
Low depth event . : N

Triggering Low depth limit . : 000
Enabled . : N Transaction id.:
Type . . . : Program id . . :
Max. starts: 0001 Terminal id . :
Restart . : N Channel name . :
User data :

:

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF10=Queue

7. Specify the name of a CICS file to store messages for this queue.
8. If you are creating a transmission queue, specify a Usage Mode of T, a Program

ID of MQPSEND, and a Channel Name<�G�>.
For a normal queue specify a Usage Mode of N.

9. Press PF5 again.

Defining a remote queue
1. Run the WebSphere MQ master terminal transaction MQMT.

01/03/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
14:51:52 *** Master Terminal Main Menu *** CIC1
MQWMTP A004

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option: 1

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Clear/PF3=Exit Enter=Select

2. Select option 1 to configure.

z/VSE configuration

Appendix E. Example configuration - WebSphere MQ for z/VSE Version 3.0.0 1001

12/24/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
10:56:35 *** Configuration Main Menu *** CIC1
MQWMCFG A000

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions
4. Code Page Definitions
5. Namelist Definitions

Display Options :
6. Global System Definition
7. Queue Definitions
8. Channel Definitions
9. Code Page Definitions
10. Namelist Definitions

Option:

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Enter=Process PF2=Return PF3=Exit

3. Select option 2 to work with queue definitions.

01/03/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
15:02:59 Queue Main Options CIC1
MQWMQUE A004

SYSTEM IS ACTIVE

Default Q Manager. : VSE.TS.QM1

Object Type. . . . : R L = Local Queue
R = Remote Queue
AQ = Alias Queue
AM = Alias Queue Manager
AR = Alias Reply Queue

Object Name. . . . : OS2.REMOTEQ

PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update
PF9=List PF12=Delete

4. Select an Object type of R and specify the name of the queue.
5. Press PF5.

z/VSE configuration

1002 WebSphere MQ for z/VSE System Management Guide

01/03/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
15:04:25 Queue Definition Record CIC1
MQWMQUE QM - VSE.TS.QM1 A004

Remote Queue Definition

Object Name. : OS2.REMOTEQ
Description line 1 : Test remote queue on OS/2
Description line 2 :

Put Enabled : Y Y=Yes, N=No
Get Enabled : Y Y=Yes, N=No

Remote Queue Name. : OS2.LOCALQ
Remote Queue Manager Name. : OS2
Transmission Queue Name. . : OS2

Record being added - Press ADD key again.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF12=Delete

6. Specify a remote queue name, remote queue manager name, and transmission
queue name.

7. Press PF5.

Defining a SNA LU 6.2 sender channel
1. Run the WebSphere MQ master terminal transaction MQMT.

01/03/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
14:51:52 *** Master Terminal Main Menu *** CIC1
MQWMTP A004

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option: 1

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Clear/PF3=Exit Enter=Select

2. Select option 1 to configure.

z/VSE configuration

Appendix E. Example configuration - WebSphere MQ for z/VSE Version 3.0.0 1003

12/24/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
10:56:35 *** Configuration Main Menu *** CIC1
MQWMCFG A000

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions
4. Code Page Definitions
5. Namelist Definitions

Display Options :
6. Global System Definition
7. Queue Definitions
8. Channel Definitions
9. Code Page Definitions
10. Namelist Definitions

Option:

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Enter=Process PF2=Return PF3=Exit

3. Select option 3 to work with channel definitions.

11/19/2009 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:27:20 Channel Record DISPLAY CIC1
MQWMCHN A000
Channel : VSE1.SNA.AIX1
Desc. . :
Protocol: L (L/T) Type : S (S=Snd/R=Rcv/V=Srv/Q=Req/C=svrConn) Enabled : Y

Sender/Server
Remote TCP/IP port : 00000 Short/Long retry count . : 000000003
Get retry number : 00000001 Short retry interval . . : 000000003
Get retry delay (secs) . . : 00000010 Long retry interval . . . : 000000010
Convert msgs(Y/N). : N Batch interval : 000020000
Transmission queue name. . : VSE1.AIX1.XQ1
TP name. . : MQ01

Sender/Receiver/Server/Requester
Connection : AIX1
Max Messages per Batch . . : 000050 Message Sequence Wrap . . : 999999999
Max Message Size : 0004096 Dead letter store(Y/N) . : N
Max Transmission Size . . : 032000 Split Msg(Y/N) : N
Max TCP/IP Wait : 000000 Channel statistics . . . : Q

Channel monitoring . . . : Q
Channel record displayed.
F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

4. Complete the parameter fields as indicated, specifically the fields Channel
name<�G�>, Channel type, Connection ID, Remote task ID, and Transmit
queue name<�F�>.
All other parameters can be entered as shown.

5. Press PF5.

z/VSE configuration

1004 WebSphere MQ for z/VSE System Management Guide

Defining a SNA LU 6.2 receiver channel
1. Run the WebSphere MQ master terminal transaction MQMT.

01/03/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
14:51:52 *** Master Terminal Main Menu *** CIC1
MQWMTP A004

SYSTEM IS ACTIVE

1. Configuration

2. Operations

3. Monitoring

4. Browse Queue Records

Option: 1

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Clear/PF3=Exit Enter=Select

2. Select option 1 to configure.

12/24/2008 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
10:56:35 *** Configuration Main Menu *** CIC1
MQWMCFG A000

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions
4. Code Page Definitions
5. Namelist Definitions

Display Options :
6. Global System Definition
7. Queue Definitions
8. Channel Definitions
9. Code Page Definitions
10. Namelist Definitions

Option:

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All Rights Reserved.

Enter=Process PF2=Return PF3=Exit

3. Select option 3 to work with channel definitions.

z/VSE configuration

Appendix E. Example configuration - WebSphere MQ for z/VSE Version 3.0.0 1005

11/19/2009 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:27:20 Channel Record DISPLAY CIC1
MQWMCHN A000
Channel : AIX1.SBA.VSE1
Desc. . :
Protocol: L (L/T) Type : R (S=Snd/R=Rcv/V=Srv/Q=Req/C=svrConn) Enabled : Y

Sender/Server
Remote TCP/IP port : 00000 Short/Long retry count . : 000000003
Get retry number : 00000000 Short retry interval . . : 000000003
Get retry delay (secs) . . : 00000000 Long retry interval . . . : 000000010
Convert msgs(Y/N). : N Batch interval : 000020000
Transmission queue name. . :
TP name. . :

Sender/Receiver/Server/Requester
Connection :
Max Messages per Batch . . : 000050 Message Sequence Wrap . . : 999999999
Max Message Size : 0004096 Dead letter store(Y/N) . : N
Max Transmission Size . . : 032000 Split Msg(Y/N) : N
Max TCP/IP Wait : 000000 Channel statistics . . . : Q

Channel monitoring . . . : Q
Channel record displayed.
F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

4. Complete the parameter fields as indicated, specifically the field Channel
name<�L�>.
All other parameters can be entered as shown.

5. Press PF5.

Defining a TCP/IP sender channel
To define a TCP/IP sender channel, carry out the following procedure:
1. Run the WebSphere MQ master terminal transaction MQMT.
2. Select option 1 to configure.
3. Select option 3 to work with channel definitions. The screen shown in Figure 88

on page 1007 is displayed:

z/VSE configuration

1006 WebSphere MQ for z/VSE System Management Guide

4. Complete the parameter fields as follows:
v Channel name - �G� on the configuration worksheet.
v Partner - should contain either the domain name or the IP address of the

remote host, for example NTSERV1 or 1.20.33.44.
v Port - the port number must match the port number configured for the

remote host. This is configured in the global system definition of the remote
host. The default port number for WebSphere MQ for z/VSE is 1414.

v Transmission queue name - �F� on the configuration worksheet.
v Protocol - enter T for TCP/IP.
v Channel type - enter S for sender.

Note:

a. The TP Name is not used by TCP/IP channels.
b. Ensure that the parameter field values match the values of the receiver

channel definition of the same name on the remote host.
5. Press PF5 (Add) to add the new channel definition.

Defining a TCP/IP receiver channel
To define a TCP/IP receiver channel, carry out the following procedure:
1. Run the WebSphere MQ master terminal transaction MQMT.
2. Select option 1 to configure.
3. Select option 3 to work with channel definitions. The screen shown in Figure 88

is displayed.
4. Complete the parameter fields as follows:

v Channel name - �G� on the configuration worksheet.
v Protocol - enter T for TCP/IP.
v Channel type - enter R for receiver.

11/19/2009 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQBD
14:27:20 Channel Record DISPLAY CIC1
MQWMCHN A000
Channel : VSE1.TCP.NT1
Desc. . :
Protocol: T (L/T) Type : S (S=Snd/R=Rcv/V=Srv/Q=Req/C=svrConn) Enabled : Y

Sender/Server
Remote TCP/IP port : 01414 Short/Long retry count . : 000000003
Get retry number : 00000003 Short retry interval . . : 000000003
Get retry delay (secs) . . : 00000030 Long retry interval . . . : 000000010
Convert msgs(Y/N). : N Batch interval : 000020000
Transmission queue name. . : VSE1.NT1.XQ1
TP name. . :

Sender/Receiver/Server/Requester
Connection : NT1SERV
Max Messages per Batch . . : 000050 Message Sequence Wrap . . : 999999999
Max Message Size : 0004096 Dead letter store(Y/N) . : N
Max Transmission Size . . : 065535 Split Msg(Y/N) : N
Max TCP/IP Wait : 000000 Channel statistics . . . : Q

Channel monitoring . . . : Q
Channel record displayed.
F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

Figure 88. Channel configuration panel

z/VSE configuration

Appendix E. Example configuration - WebSphere MQ for z/VSE Version 3.0.0 1007

Note:

a. The Partner and Port are not required for a TCP/IP receiver channel.
b. The TP Name is not used by TCP/IP channels.
c. Ensure that the parameter field values match the values of the sender

channel definition of the same name on the remote host.
5. Press PF5 (Add) to add the new channel definition.

z/VSE configuration

1008 WebSphere MQ for z/VSE System Management Guide

Appendix F. WebSphere MQ server

The WebSphere MQ for z/VSE server is a special instance of a Message Channel
Agent (MCA) that accepts and manages client MQI connections. WebSphere MQ
for z/VSE accepts client connections using TCP/IP only.

Client applications, that is those application running in an WebSphere MQ client
environment, connect to a server instance using an MQCONN or MQCONNX MQI
call. Once successfully connected, the client application issues MQI calls which are
performed by the WebSphere MQ server, and the results of the call are reported to
the client application. The client/server session ends when the client applications
uses the MQDISC call.

The WebSphere MQ server is provided with the WebSphere MQ for z/VSE
product. For this feature to be available, the MQ TCP/IP listener task must be
running in the CICS region that hosts the queue manager. When the listener task
detects a connection request from a client application it starts a server instance to
negotiate the connection and service the client application's MQI calls.

Because the WebSphere MQ server runs as an MCA instance, it runs as transaction
MQ01 in the CICS region.

For more information about the WebSphere MQ client, see Chapter 10, “WebSphere
MQ clients,” on page 623, and WebSphere MQ Clients, (GC34-6590).

Server MQI support
The WebSphere MQ for z/VSE server supports clients issuing the following MQI
calls:
MQCONN

Connect queue manager
MQCONNX

Connect queue manager (extended)
MQOPEN

Open message queue
MQGET

Get message
MQPUT

Put message
MQPUT1

Put one message
MQINQ

Inquire about object attributes
MQSET

Set object attributes
MQCLOSE

Close object
MQDISC

Disconnect queue manager
MQCMIT

Commit changes
MQBACK

Backout changes

© Copyright IBM Corp. 2008, 2013 1009

MQBUFMH
Buffer to message handle

MQCRTMH
Create message handle

MQDLTMH
Delete message handle

MQDLTMP
Delete message property

MQINQMP
Inquire message property

MQMHBUF
Message handle to buffer

MQSETMP
Set message property

The MQI calls, generally, expect parameters that specify particular options relevant
to the MQI call. In some cases parameters are data structure that indicate a
version. Each WebSphere MQ server, by platform, potentially supports different
options and different data structure versions.

The MQI options and data structure versions supported by the WebSphere MQ for
z/VSE server are the same as those supported by z/VSE applications local to the
VSE queue manager. For more specific details, see Appendix B, “Application
Programming Reference,” on page 717.

Security considerations
In the WebSphere MQ for z/VSE environment, there are several ways to
implement security for WebSphere MQ client access through an WebSphere MQ
server. These include:
v WebSphere MQ queue manager security.
v Channel exits.

Security can also be implemented by combining both queue manager security and
channel exits.

Queue manager security
To use queue manager security to authenticate and control WebSphere MQ client
access, it is necessary to install the z/VSE queue manager with the security feature
active. This is described in “Installing security” on page 19.

The client must identify itself with both a userid and password using the
WebSphere MQ client environment variables: MQ_USER_ID and MQ_PASSWORD.
The WebSphere MQ for z/VSE server uses these values to authenticate the client
and ensure that access to queue manager resources is controlled by the permission
granted to the authenticated user.

User permissions should be granted as if the user were a user using local queue
manager resources. In addition, the user that starts the queue manager's MQ
listener task must be a surrogate for all client users. The user that starts the MQ
listener is generally the queue manager startup user.

Some WebSphere MQ clients do not support client authentication using these
variables. If the client system does not support this type of authentication, then
channel security exits are required to authenticate the client.

Server MQI support

1010 WebSphere MQ for z/VSE System Management Guide

Channel exits
Channel security exits can be used to authenticate WebSphere MQ client
connections. If a security exit is defined to the server-connection channel, it is
executed during when the client has established a connection to the client, but
before the MQCONN or MQCONNX call is deemed successful.

A security exit can also be defined to the client-connection channel. If an exit is
defined, it is passed data generated by server's security exit. If no data is generated
by the server's security exit, the client's security exit is still executed. The two
security exits can exchange data, or send "null" data flows, until both exits either
accept or reject the connection.

If security exits are to be used in conjunction with queue manager security, the
security exit can set the MQCD data structure (passed to the exit) to identify a user
and password. Relevant fields are:

MCAUserIdentifier
RemotePassword

If queue manager security is active, and the MQ_USER_ID and MQ_PASSWORD
fields are not used by the client, the WebSphere MQ for z/VSE server authenticates
the client user using these fields. If the authentication is successful, the permissions
granted to the user are used to control access to queue manager resources.

Send and receive exits can also be used for security purposes. For example, the
client might encrypt data before it is sent to the server, and a receive exit defined
to the server-connection channel might decrypt the data before it is processed by
the server.

Code page conversion
There is no guarantee that the code page of the WebSphere MQ client will match
that of the WebSphere MQ server. In addition, message data retrieved by the server
for the client may use a different code page to the one used in the client
environment. For these reasons it may be necessary for the server to manage code
page conversion.

The WebSphere MQ for z/VSE server uses Language Environment/VSE services to
manage code page conversion. This means the client code page and the server
code page must represent a pair that Language Environment/VSE is capable of
converting.

Language Environment/VSE is shipped with a number of default conversion
tables. These are documented in the Language Environment V1R4 C Run-Time
Programming Guide, SC33-6688.

Client programs are not limited to the default code page conversion tables
supplied with Language Environment/VSE. It is possible to create your own
conversion tables using the Language Environment/VSE code page conversion
utilities.

Creating code page conversion tables
The code page conversion utilities can be reviewed in the Language Environment
C Run-Time Programming Guide, SC33-6688. For convenience, an overview of the
steps needed to create a code page conversion table are provided here.

Channel exits

Appendix F. WebSphere MQ server 1011

Here are the items involved in the creation of Language Environment/VSE code
page conversion tables:
v “Code page numbers”
v “Code page translation tables”
v “The GENXLT utility” on page 1013
v “CSD definitions” on page 1013

If you follow the suggestions set out for each item, you can create your own code
page conversion tables. This process is only necessary if you have an MQ client
that uses a code page that does not have a default translation table to and from
your z/VSE server code page.

Code page numbers
Code pages have their own unique number; for example, 037 for USA and Canada,
273 for Germany and Austria, and 285 for the United Kingdom. You should
determine the numbers of the code pages you want to convert. Some code pages
have names that are not numeric, but these generally will have numeric aliases.
For example, code page 819 is an alias for code page ISO8859-1. If you want to use
code page ISO8859-1, the WebSphere MQ client should set its code page to 819.

There are several ways to do this. One is to set the MQCCSID environment
variable to 819. For example:
c:\>set MQCCSID=819

If your client program uses Java classes, you can set the CCSID attribute of the
MQEnvironment object. For example:
MQEnvironment.CCSID = 819;

The Language Environment/VSE source file EDCUCSNM.A, in PRD2.SCEEBASE,
documents some of the code page aliases. You can create your own aliases.

Code page translation tables
Code page translation tables have a strict naming convention. This is because the
appropriate translation table name is built dynamically by Language
Environment/VSE based on the two code page numbers involved in the
translation.

Translation tables follow the naming convention EDCUfftt, where ff is a two
character synonym for the 'from' code page, and tt is a two character synonym for
the 'to' code page. For example, the two character synonym for code page 37 is EA
and the synonym for code page 273 is EB. Consequently, the translation table name
for 37 to 273 is EDCUEAEB and the translation table for 273 to 37 is EDCUEBEA.

The two character synonyms for code page numbers are documented in the
Language Environment C Run-Time Programming Guide, SC33-6688. They are also
coded in a phase used by Language Environment/VSE to dynamically build the
translation table name from the code page numbers. This phase is EDCUCSNM
and it is used by Language Environment/VSE when code page conversion services
are employed.

When these services are used, as they are by the WebSphere MQ for z/VSE server,
only the code page numbers are identified. Language Environment/VSE uses the
EDCUCSNM to dynamically build the name of the translation table that is
subsequently used for code page conversion.

The following is an example of EDCUCSNM source entries:

Creating code page conversion tables

1012 WebSphere MQ for z/VSE System Management Guide

EDCCSNAM TYPE=ENTRY,CODESET=’IBM-037’,CODE=’EA’
EDCCSNAM TYPE=ENTRY,CODESET=’IBM-273’,CODE=’EB’
EDCCSNAM TYPE=ENTRY,CODESET=’IBM-274’,CODE=’EC’
EDCCSNAM TYPE=ENTRY,CODESET=’IBM-275’,CODE=’ED’
EDCCSNAM TYPE=ENTRY,CODESET=’IBM-277’,CODE=’EE’
EDCCSNAM TYPE=ENTRY,CODESET=’IBM-278’,CODE=’EF’

The source for EDCUCSNM is found in PRD2.SCEEBASE library, EDCUCSNM.A
file.

Code page translation source files are also found in the PRD2.SCEEBASE library.
These source files are prefixed EDCU and have an 'X' extension, for example,
EDCUAAEY.X. These can be used as a basis for new conversion tables.

The source files contain three columns. The first two columns contain hexadecimal
values from 0x00 to 0xFF; the third column documents the relevant character being
converted. For example, (showing only the first 16 entries):
0x00 0x00 <NUL>
0x01 0x01 <SOH>
0x02 0x02 <STX>
0x03 0x03 <ETX>
0x04 0xdc <SEL>
0x05 0x09 <tab>
0x06 0xc3 <RNL>
0x07 0x1c
0x08 0xca <GE>
0x09 0xb2 <SPS>
0x0a 0xd5 <RPT>
0x0b 0x0b <vertical-tab>
0x0c 0x0c <form-feed>
0x0d 0x0d <carriage-return>
0x0e 0x0e <SO>
0x0f 0x0f <SI>

The GENXLT utility
The source files are assembled using the Language Environemt/VSE GENXLT
utility and then link edited to produce executable phases. Each phase represents a
conversion from one code page to another. They are mono-directional, so there
should be two phases for each translation needed.

The following example shows JCL that could be used to generate a translation
table phase using the GENXLT utility.
// JOB MQGENXLT
// LIBDEF *,SEARCH=PRD2.SCEEBASE
// LIBDEF PHASE,CATALOG=target.sublib
// OPTION LINK,CATAL
// EXEC EDCGNXLT,PARM=’IFILE(DD:PRD2.SCEEBASE(EDCU1AEA.X)),NODBCS, X

NAME(EDCU1AEA)’
/*
// EXEC LNKEDT
/*
/&

The code page name table, EDCUCSNM, does not require the GENXLT utility. The
source can be punched from the Language Environment/VSE installation
sublibrary, modified as appropriate, assembled and link edited.

CSD definitions
Since WebSphere MQ for z/VSE runs under CICS, the EDCUCSNM and the
translation table phases must be known to CICS. Consequently, you will need CSD

Code page translation tables

Appendix F. WebSphere MQ server 1013

program entries for these phases. The language type is assembler, and the CSD
group for default tables is CEE. You can use the CEDA transaction to look at
existing entries. For example:
OBJECT CHARACTERISTICS
CEDA View
PROGram : EDCUAAEY
Group : CEE
Language : Assembler CObol | Assembler | C | Pli | Rpg
RELoad : No No | Yes
RESident : No No | Yes
RSl : 00 0-24 | Public
Status : Enabled Enabled | Disabled
REMOTE ATTRIBUTES
REMOTESystem :
REMOTEName :
Transid :
Executionset : Fullapi Fullapi | Dplsubset

CSD definitions

1014 WebSphere MQ for z/VSE System Management Guide

Appendix G. System messages

This appendix describes the messages issued by WebSphere MQ.

WebSphere MQ generates both internal and external messages. Internal messages
are generated when an application program activates WebSphere MQ and an
abnormal condition occurs.

These messages are stored on the system log queue when it is available; otherwise,
the CICS CSMT Transient Data (TD) queue is used.

API system messages
These messages consist of five lines of text, each with a maximum of 78 characters,
together with two lines of error code information as follows:

Line 1 -
MQInnnnnns PRG:pppppppp TRN:tttt TRM:rrrr TSK:ccccc mm/dd/yy hh:mm:ss

Where:
nnnnnn WebSphere MQ message code - see “WebSphere MQ message codes” on

page 1016
s Severity

Severity values have the following meanings:
I An information message. No error has occurred.
W A warning message. A condition has been detected of which you

should be aware. You may need to take further action.
E An error message. An error has been detected that the system

typically corrects. However, you may have to intervene.
C A critical error message. An error has been detected that may

severely affect user or system operation. This requires your
immediate intervention.

pppppppp
CICS Program name

tttt CICS Transaction code
rrrr CICS Term ID
ccccc CICS Task ID
mm/dd/yy

Date
hh:mm:ss

Time

Line 2 - Textual description of message

Line 3 - Queue name, if available

Line 4 - Channel name, if available

Line 5 - Detail of message (optional)

Line 6 -
EIBFN:fff EIBRCODE:rrrrrrrrrrrr EXEC LINE: lllll

© Copyright IBM Corp. 2008, 2013 1015

Where:
fff EIBFN value at time of condition
rrrrrrrr

EIBRCODE
lllll The DEBUG CICS command number

Line 7 -
EIBRESP: rrrrrrrr EIBRESP2: ssssssss EIBRSRCE:cccccccc ABCODE: aaaa

Where:
rrrrrrrr

EIBRESP
ssssssss

EIBRESP2
cccccccc

EIBRSRCE
aaaa CICS ABENDCODE

WebSphere MQ message definitions
Each WebSphere MQ message provides the following information:

Explanation:
This section explains what the message or code means, why it occurred,
and what caused it.

Function
This section indicates which modules issued the message, to assist in
diagnosing problems.

Operator action
If an operator response is necessary, this section describes what the
appropriate responses are, and what their effect is. If this information is
omitted, no operator response is required.

System action
This part describes what is happening as a result of the condition causing
the message or code. If this information is omitted, no system action is
taken.

WebSphere MQ messages
WebSphere MQ system messages are numbered 000000 through 900000, and they
are listed in this book in numeric order. However, not all numbers have been used,
therefore, the list is not continuous.

WebSphere MQ console messages are numbered from MQI0001 onwards, and they
are listed in this book in numeric order; see “Console Messages” on page 1052.

WebSphere MQ message codes

000000I Queue manager started

Explanation: The local queue manager has been
started.

System action: The queue manager is available for
queuing services.

User response: None.

000001I Queue manager stop requested

Explanation: A request to stop the queue manager has
been issued.

System action: Queue manager services are stopping.

000000I • 000001I

1016 WebSphere MQ for z/VSE System Management Guide

User response: None.

000002I Queue manager stopped

Explanation: The local queue manager has been
stopped.

System action: Queue manager services are
unavailable until the system is restarted.

User response: None.

000003E Channel Message Sequence Number
error

Explanation: The received MSN does not match the
expected MSN.

System action: Fatal error - Communication is
terminated.

User response:

1. Review the LOCAL MSN and the REMOTE MSN in
the detail portion of the message.

2. Identify the cause (proper running should preclude
this occurrence).

3. Reset the appropriate MSN so that the sender and
receiver channel MSN's are equal.

4. Restart communication.

000004W Synch MSG duplicate

Explanation: The received message may be
duplicated.

System action: Continue on negotiating.

User response: None.

000007I LU62 session started

Explanation: A communication session was started by
MQPRECV.

System action: None.

User response: None.

000009E Channel wrap value negotiation
mismatch

Explanation: A sent WRAP value did not match that
of the of the receiver.

System action: Channel communication ends.

User response: Review the SENT and RECEIVED
match values and change one side to match the other.

000010E LU62 FREE error

Explanation:

For Program MQPRECV
Upon completion of a RECEIVE command the
EIBFREE and the EIBERR fields are both not
equal to low values.

For Program MQPSEND
As a Server upon completion of a RECEIVE
command at least one of EIBERR, EIBRECV
and EIBFREE does not equal to low values.

As a Server or Sender upon receipt of an
acknowledgement of messages sent the
EIBFREE is not equal to low values and the
EIBERR is equal to low values.

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message. TRM in the error
message contains the EIBTRMID which is the
principal facility associated with this error. Locate
any messages associated with this principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They
contain information about the cause of the problem.
Refer to the CICS/ESA Application Programming
Reference manual for an explanation of these
values.

3. Correct problem and restart communication.

000011E LU62 EIB error

Explanation: For Program MQPSEND

1. As a Server upon completion of a RECEIVE the
EIBERR not equal to low values.

2. As a Server or Sender upon receipt of an
acknowledgement of messages sent, the EIBERR is
not equal to low values.

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message. TRM in the error
message contains the EIBTRMID which is the
principal facility associated with this error. Locate
any messages associated with this principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They
contain information about the cause of the problem.
Refer to the CICS/ESA Application Programming
Reference manual for an explanation of these
values.

3. Correct problem and restart communication.

000002I • 000011E

Appendix G. System messages 1017

000012E LU62 STAT error For Program
MQPSEND -

Explanation: As a Server or Sender upon receipt of an
acknowledgement of messages sent, the EIBRECV is
not equal to low values.

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message. TRM in the error
message contains the EIBTRMID which is the
principal facility associated with this error. Locate
any messages associated with this principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They
contain information about the cause of the problem.
Refer to the CICS/ESA Application Programming
Reference manual for an explanation of these
values.

3. Correct problem and restart communication.

000013E LU62 ALLOC error

Explanation: For Program MQPSEND

v As a Sender upon completion of an ALLOCATE
command, EIBRCODE is not equal to low values and
all retries have been performed.

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message. TRM in the error
message contains the EIBTRMID which is the
principal facility associated with this error. Locate
any messages associated with this principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They
contain information about the cause of the problem.
Refer to the CICS/ESA Application Programming
Reference manual for an explanation of these
values.

3. Correct problem and restart communication.

000014W LU62 ALLOC RETRY error For Program
MQPSEND -

Explanation: As a Sender upon completion of an
ALLOCATE command, EIBRCODE is not equal to low
values and all retry attempts have not been performed.

System action: Non-Fatal error - Allocation is retried
until allocation is successful or the retry count equals
zero.

User response:

1. Review System Log or error TD Queue for
messages prior to this message. TRM in the error
message contains the EIBTRMID which is the
principal facility associated with this error. Locate
any messages associated with this principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They
contain information about the cause of the problem.
Refer to the CICS/ESA Application Programming
Reference manual for an explanation of these
values.

000015E LU62 CONN error

Explanation: For Program MQPSEND

v As a Sender upon completion of a CONNECT
PROCESS command, EIBRCODE is not equal to low
values.

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message. TRM in the error
message contains the EIBTRMID which is the
principal facility associated with this error. Locate
any messages associated with this principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They
contain information about the cause of the problem.
Refer to the CICS/ESA Application Programming
Reference manual for an explanation of these
values.

3. Correct problem and restart communication.

000016E LU62 SEND error

Explanation: For Program MQPSEND

v As a Sender or Server upon completion of a SEND
command, EIBRCODE is not equal to low values.

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message. TRM in the error
message contains the EIBTRMID which is the
principal facility associated with this error. Locate
any messages associated with this principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They
contain information about the cause of the problem.
Refer to the CICS/ESA Application Programming
Reference manual for an explanation of these
values.

3. Correct problem and restart communication.

000012E • 000016E

1018 WebSphere MQ for z/VSE System Management Guide

000017I Remote deallocation or communication
shutdown

Explanation: For Program MQPSEND or MQPRECV

v The remote MCA deallocated the conversation or
closed an active IP socket. Alternatively, a request to
shutdown the MQ communications subsystem was
issued (via MQ shutdown).

System action: Communication is terminated.

User response: Normally, this is an informational
message and no additional user action is required.
However, in the event that the deallocation has
occurred due to a remote system failure, intervention
may be required on the remote system.

000023E Invalid error data

Explanation: For Program MQPSEND or MQPRECV

v The Sender or Receiver MCA received an error data
transmission that contained an unrecognized error
code.

System action: Fatal error - Communication is
terminated.

User response: Review System Log or error TD Queue
for messages prior to this message. Proper running
should preclude this occurrence.

000024E Invalid MSN value received during
negotiation

Explanation: (Reserved)

000025E Fatal response type

Explanation: (Reserved)

000026E Recoverable response type

Explanation: (Reserved)

000029E Parser MSN error

Explanation: (Reserved)

000030E Parser type error

Explanation: (Reserved)

000031E Parser PDM error

Explanation: (Reserved)

000032E Parser SID error

Explanation: (Reserved)

000033E Parser PN error

Explanation: (Reserved)

000034E Parser KEY error

Explanation: (Reserved)

000035E Parser APID error

Explanation: (Reserved)

000038E Parser ORG DT error

Explanation: (Reserved)

000039E Parser ORIG MSN error

Explanation: (Reserved)

000040E Parser BODY error

Explanation: (Reserved)

000041E Parser status error

Explanation: The received message does not have the
proper status value.

System action: Fatal error - Communication is
terminated.

User response: Review System Log or error TD Queue
for messages prior to this message. Proper running
should preclude this occurrence. Investigate sender
process for programming error.

000042E Parser length error

Explanation: The received message does not have the
proper length value.

System action: Fatal error - Communication is
terminated.

User response: Review System Log or error TD Queue
for messages prior to this message. Proper running
should preclude this occurrence. Investigate sender
process for programming error.

000051E Queue connection error

Explanation: The QM cannot be connected to.

System action: Fatal error - Communication is
terminated.

User response: Review System Log for associated
error messages. Ensure that the queue manager has not
been shutdown during communication activity.

000017I • 000051E

Appendix G. System messages 1019

000052E Queue open error

Explanation: The Sender or Receiver MCA could not
open a source or target queue.

System action: Fatal error - Communication is
terminated.

User response:

1. For a sender channel, check that the associated
transmission queue is valid and enabled. For a
receiver channel, check that the intended target
queue and the system dead letter queue are valid
and enabled.

2. Review the fields in this error message:
QUEUE ID

Transmission queue name that failed.
CHANNEL ID

Channel name that was connected. This
channel identifies the corresponding
transmission queue.

Last line of error message
Reason code returned from queuer and
corresponding description.

3. Correct problem and restart communication.

000053E Queue GET error

Explanation: The Server or Sender could not get a
message from the associated transmission queue even if
there are messages in the transmission queue.

System action: Fatal error - Communication is
terminated.

User response:

1. Review the following fields in the error message:
QUEUE ID

Transmission queue name that failed.
CHANNEL ID

Channel name that was connected. This
channel identifies the corresponding
transmission queue.

Last line of error message
Reason code returned from queuer and
corresponding description.

2. Correct problem and restart communication.

000054E Queue PUT error

Explanation: The RECEIVER could not put a message
to an application queue.

System action: There are two possible system actions
based upon reason code returned from queuer:
Reason code equals MQRC-Q-FULL or
MQRC-Q-SPACE-NOT-AVAILABLE

Non-Fatal error - communication will proceed
normally after first putting failed put message
on dead letter queue.

All other Reason codes
Fatal error - Communication is terminated.

User response:

1. Review the following fields in the error message:
QUEUE ID

Application queue name that failed.
CHANNEL ID

Channel name that was connected.
Last line of error message

Reason code returned from queuer and
corresponding description.

2. User action is based upon returned reason code:
Reason code equals MQRC-Q-FULL (2053) or
MQRC-Q-SPACE-NOT-AVAILABLE (2056)

Destination application queue was full and
the message was placed on the dead letter
queue. Determine if destination queue
should be expanded to accommodate more
messages or an alternate destination used.

All other Reason codes
Correct problem and restart
communication.

000055E Queue PUT1 error

Explanation: The RECEIVER could not put a message
to the dead letter queue.

System action: Fatal error - Communication is
terminated.

User response:

1. Review the following fields in the error message:
QUEUE ID

The dead letter queue name that failed.
CHANNEL ID

Channel name that was connected.
Last line of error message

Reason code returned from queuer and
corresponding description.

2. Correct problem and restart communication.

000056W Queue CLOSE error

Explanation: The RECEIVER could not close an
application queue.

System action: Non-Fatal error - communication will
proceed normally. (The unclosed resources, however,
will result in a “garbage collection” mechanism be
triggered at a proper time to close the unclosed
resources).

User response:

1. Review the following fields in the error message:
QUEUE ID

Application queue name that failed.
CHANNEL ID

Channel name that was connected.
Last line of error message

Reason code returned from queuer and
corresponding description.

2. Investigate problem

000052E • 000056W

1020 WebSphere MQ for z/VSE System Management Guide

000057E Queue DISC error

Explanation: An error has occurred to DISCONNECT
the connecting Queue Manager.

System action: Fatal error - Communication is
terminated.

User response: Review System Log or error TD Queue
for messages prior to this message. Proper running
should preclude this occurrence. Investigate sender
process for program error.

000060E Unexpected queue error

Explanation: An unexpected error occurred during
queue processing.

System action: Fatal error - queue processing is
terminated.

User response: This can occur if the queue manager is
shutdown while queue manager connections are active.

000080E Receiver return LON status

Explanation: (Reserved)

000081E Receiver return LON type

Explanation: (Reserved)

000091E SIDRC return format

Explanation: (Reserved)

000100I Function started

Explanation: The requested function has been started

System action: Function is started

User response: None.

000110I Queue modification requested

Explanation: A request was issued to modify a queue.

System action: If the request is successful, the queue
is modified.

User response: None.

000112I Queue message modification requested

Explanation: A request was issued to modify
messages on a queue.

System action: If the request is successful, the queue
messages are modified.

User response: None.

000114I Channel modification requested

Explanation: A request was issued to modify a
channel.

System action: If the request is successful, the channel
is modified.

User response: None.

000116I Queue manager modification requested

Explanation: A request was issued to modify the
queue manager.

System action: If the request is successful, the queue
manager is modified.

User response: None.

000700I IBM WebSphere MQ for z/VSE - CICS
bridge started

Explanation: The IBM WebSphere MQ for z/VSE
CICS bridge has started.

System action: WMQ CICS Bridge started.

User response: None.

000701E StrucId invalid in bridge global data
area

Explanation: A bridge task found that the area
pointed to by the global data address passed to it in its
start data did not contain the expected identifier. This is
probably because the monitor task has terminated with
a bridge task start request queued. The bridge task
checks the global data area at startup and terminates if
the structure identifier is not valid.

System action: The request will be processed when
the monitor is restarted.

User response: None.

000702I WMQ CICS Bridge Monitor
initialization complete

Explanation: Monitor initialization completed
successfully.

System action: Bridge monitor ready to process bridge
requests.

User response: None.

000704E WMQ CICS Bridge EXEC CICS call
error

Explanation: An error occurred in a CICS call issued
by the bridge.

System action: Depending on the failure, the bridge
related task may proceed or issue an abend.

000057E • 000704E

Appendix G. System messages 1021

User response: Use CICS trace facilities to identify the
cause on the failure and refer to the CICS Application
Programming manual for an explanation. Take
appropriate action.

000705E WMQ CICS Bridge start parameter is
invalid

Explanation: A parameter provided to the MQ CICS
bridge at startup is invalid.

System action: WMQ CICS bridge is terminated.

User response: Correct the parameter and restart the
bridge monitor.

000706E WMQ CICS Bridge authentication
option invalid

Explanation: The authentication option requested is
not supported.

System action: WMQ CICS bridge is terminated.

User response: Choose a supported authentication
option for the release of CICS and restart the bridge
monitor.

000707I WMQ CICS Bridge not supported on
non-z/VSE platforms

Explanation: The bridge is being run on a system
other than z/VSE This might work, but is not
supported.

System action: None.

User response: None.

000708E WMQ CICS Bridge Monitor must run at
a terminal for AUTH option

Explanation: AUTH=VERIFY_UOW was requested.
AUTH=VERIFY_UOW on CICS TS 1.1 requires that the
monitor is run at a terminal.

System action: Bridge monitor terminated.

User response: Restart the bridge monitor from a
terminal or set AUTH=LOCAL.

000709E WMQ CICS Bridge preset security not
valid for AUTH=VERIFY_UOW

Explanation: AUTH=VERIFY_UOW was requested.
AUTH=VERIFY_UOW on CICS TS 1.1 requires that the
monitor is run at a terminal, but that terminal might
not have preset security.

System action: Bridge monitor terminated.

User response: Redefine the terminal, or use a
different one, before restarting the monitor, or set
AUTH=LOCAL

000710E WMQ CICS Bridge MQI call failed

Explanation: An error occurred in an MQI call issued
by the bridge.

System action: Depending on the failure, the bridge
related task may proceed or issue an abend.

User response: Use CICS trace facilities to identify the
cause on the failure and refer to the WebSphere MQ
Application Programming manual for an explanation.
Take appropriate action. Also refer to the WMQ System
Log for associated messages.

000711E WMQ CICS Bridge unable to open
bridge queue

Explanation: The bridge queue specified is not known
to the queue manager.

System action: WMQ CICS bridge monitor
terminated.

User response: Check the bridge queue is defined
correctly and that the correct queue is identified at
bridge startup.

000712I WMQ CICS Bridge quiescing

Explanation: Monitor quiesce has been initiated. This
would normally be because CICS or WMQ is shutting
down or because the operator has set the bridge queue
GET(DISABLED).

System action: WMQ CICS bridge monitor is
stopping.

User response: None.

000713I WMQ CICS Bridge terminated normally

Explanation: Monitor shutdown completed normally.

System action: WMQ CICS bridge monitor shutdown.

User response: None.

000715E WMQ CICS Bridge invalid
COMMAREA length in message

Explanation: The COMMAREA length calculated by
the bridge is not valid. It probably exceeds the
maximum of 32767. This error can also occur if a
negative length was calculated.

System action: Message cannot be processed.

User response: If OutputDataLength is set within the
MQCIH, check it does not exceed 32759 (allowing 8
bytes for the program name). If it is not set, check the
total request message length (also allowing bytes for
the program name). The length of any MQCIH must
not exceed 32767. Note that the length of the MQCIH is
taken from the MQCIH length field.

000705E • 000715E

1022 WebSphere MQ for z/VSE System Management Guide

000716E WMQ CICS Bridge MQCIH required
for UOW middle and last messages

Explanation: A bridge task has received a message for
a second or subsequent MQGET call within a multipart
unit of work. The correlation identifier matches the
message identifier of the first message within the unit
of work, but the message does not contain an MQCIH.

System action: The unit of work is backed out.

User response: Make sure that all messages within a
multipart unit of work contain an MQCIH and rerun
the unit of work.

000717E WMQ CICS Bridge UOW first/only
received, UOW middle/last expected

Explanation: A bridge task has received a message for
a second or subsequent MQGET call within a multipart
unit of work. The correlation identifier matches the
message identifier of the first message within the unit
of work, but the UOWControl field within the MQCIH
is invalid. It is set to MQCUOWC_FIRST or
MQCUOWC_ONLY when MQCUOWC_MIDDLE,
MQCUOWC_LAST, MQCUOWC_COMMIT, or
MQCUOWC_BACKOUT is required.

System action: The unit of work is backed out.

User response: Correct the UOWControl field and
rerun the unit of work.

000718E WMQ CICS Bridge UOW middle/last
received, UOW first/only expected

Explanation: The bridge monitor has received a
request message for a new unit of work, the correlation
identifier is set to MQCI_NEW_SESSION but the
UOWControl field within the MQCIH is set to
something other than MQCUOWC_FIRST or
MQCUOWC_ONLY.

System action: The unit of work is backed out.

User response: Correct the UOWControl field and
rerun the unit of work.

000720E WMQ CICS Bridge Authentication
option requires ESM

Explanation: An attempt has been made to start the
bridge monitor with AUTH=IDENTIFY or VERIFY_ but
security is not active for the CICS system.

System action: WMQ CICS Bridge monitor
terminated.

User response: Activate security, or choose a different
authentication option.

000721E WMQ CICS Bridge invalid MQCIH

Explanation: A message has been received by the
bridge with a MQMD format field of MQFMT_CICS
but the data does not begin with a valid MQCIH.
Either the StrucId Version, or StrucLength is incorrect.

System action: Bridge message rejected.

User response: Check the version of the header and
compare with the level supported by the bridge.
Correct the format or the user data as appropriate.

000722E WMQ CICS Bridge invalid message
removed from bridge queue

Explanation: This message is issued during monitor
initialization. The first message on the queue should be
a request to start a unit of work, that is, it should have
correlation identifier of MQCI_NEW_SESSION. The
monitor removes any messages preceding the first
MQCI_NEW_SESSION, copies them to the dead-letter
queue and issues this message.

System action: Message is moved to DLQ.

User response: If this is not caused by a failure for a
previous request within a unit of work that has already
been reported and actioned, correct the request
message and rerun the unit of work.

000723E WMQ CICS Bridge task no longer active

Explanation: An unexpected error has occurred in a
bridge task causing it to terminate without notifying
the monitor. The monitor has detected this and issue
this message during recovery processing.

System action: Bridge processing continues

User response: Investigate the cause of the bridge
failure by examining any error messages and dumps
for the failed task.

000724E WMQ CICS Bridge queue must be
defined as local

Explanation: The bridge queue specified is not
defined as a local queue.

System action: WMQ CICS Bridge terminated.

User response: Redefine the bridge request queue as a
local queue.

000725I WMQ CICS Bridge queue not persistent
by default

Explanation: The bridge queue is defined with
DEFPSIST(NO). Request messages should be persistent
to guarantee that they will be processed.

System action: WMQ CICS Bridge processing
continues.

000716E • 000725I

Appendix G. System messages 1023

User response: None.

000726I WMQ CICS Bridge queue backout
count not hardened

Explanation: The bridge queue is defined with
NOHARDENBO.

System action: WMQ CICS Bridge processing
continues.

User response: Alter the queue definition to set
HARDENBO. The queue should be defined with
HARDENBO to ensure that the bridge does not try to
process a unit of work a second time following a CICS
emergency restart.

000727I WMQ CICS Bridge queue should be
FIFO

Explanation: The bridge queue is defined with
PRIORITY message delivery sequence. Processing of
high priority messages could be delayed if they are
added to the queue ahead of the monitor's browse
cursor.

System action: WMQ CICS Bridge processing
continues.

User response: Alter the queue definition to set
MSGDLVSQ(FIFO)

000728E WMQ CICS Bridge queue already open

Explanation: An MQINQ call for the bridge queue
found that another process had the queue open for
input. This is not allowed when the monitor starts. the
queue ahead of the monitor's browse cursor.

System action: WMQ CICS Bridge terminated.

User response: Check that no monitor task is already
active for this queue. If no monitor is active check if
any bridge tasks that were started by a previous
monitor are still active.

000729I WMQ CICS Bridge no dead-letter queue
defined to queue manager

Explanation: There is no dead-letter queue defined to
the queue manager. The bridge will be terminated if
any error occurs that would result in a message being
sent to the dead-letter queue.

System action: WMQ CICS Bridge processing
continues.

User response: Alter the queue manager to define a
dead-letter queue if dead-letter processing is required.

000730I WMQ CICS Bridge unable to open
dead-letter queue

Explanation: The dead-letter queue defined to the
queue manager could not be opened. The bridge will
be terminated if any error occurs that would result in a
message being sent to the dead-letter queue

System action: WMQ CICS Bridge processing
continues.

User response: Check that the queue manager's
dead-letter queue is defined correctly and is available.

000731I WMQ CICS Bridge unable to inquire on
dead-letter queue

Explanation: An MQINQ call on the dead-letter queue
failed. The bridge will be terminated if any error occurs
that would result in a message being sent to the
dead-letter queue.

System action: WMQ CICS Bridge processing
continues.

User response: Check that the queue manager's
dead-letter queue is defined correctly and is available.

000732I WMQ CICS Bridge unable to put
message to dead-letter queue

Explanation: An MQPUT to the dead-letter queue
failed. If this error occurs in a bridge task, the unit of
work is backed out. If this error occurs in the monitor,
the monitor will be abnormally terminated.

System action: WMQ CICS Bridge processing
continues.

User response: Check that the queue manager's
dead-letter queue is defined correctly and is available.

000733I WMQ CICS Bridge dead-letter queue
not defined as usage normal

Explanation: The dead-letter queue is not defined
correctly. The bridge will be terminated if any error
occur that would result in a message being sent to the
dead-letter queue.

System action: WMQ CICS Bridge processing
continues.

User response: Check that the queue manager's
dead-letter queue is defined correctly and is available.

000734I WMQ CICS Bridge dead-letter queue
max message length too small

Explanation: The maximum message length allowed
for the dead-letter queue is less than the size of the
dead-letter header, MQDLH. The bridge will be
terminated if any error occurs that would result in a
message being sent to the dead-letter queue

000726I • 000734I

1024 WebSphere MQ for z/VSE System Management Guide

System action: WMQ CICS Bridge processing
continues.

User response: Check that the queue manager's
dead-letter queue is defined correctly.

000735I WMQ CICS Bridge detected CICS or
MQ quiesce

Explanation: The bridge task received a quiescing
return code from an MQOPEN call of the request
queue or an MQGET call for the first message within a
unit of work.

System action: The request will be processed when
CICS, WMQ, or the monitor are restarted.

User response: None.

000736I WMQ CICS Bridge quiesced before task
started

Explanation: The bridge quiesced before a bridge task
could get the first message within a unit of work.

System action: The request will be processed when
the monitor is restarted.

User response: None.

000737E WMQ CICS Bridge detected CICS or
MQ quiesce, task backed out

Explanation: The bridge task received a quiescing
return code from an MQGET for a second or
subsequent message within a unit of work.

System action: The unit of work is backed out and the
bridge task terminated.

User response: Rerun the unit of work.

000738E WMQ CICS Bridge quiesced, task
backed out

Explanation: The bridge task quiesced while a bridge
task was waiting to get a second or subsequent
message within a unit of work because the queue was
not enabled for getting messages.

System action: The unit of work is backed out and the
bridge task terminated.

User response: Rerun the unit of work.

000739E WMQ CICS Bridge terminated, timeout
interval expired

Explanation: The bridge task did not receive a second
or subsequent message for a unit of work within the
wait interval specified (or as overridden on the first
request for the unit of work) at monitor startup.

System action: The unit of work is backed out and the
bridge task terminated.

User response: Increase the WAIT parameter on
monitor startup, correct the program that failed to send
a subsequent request for a unit of work, or set the
UOWControl field correctly for the previous request.

000740E WMQ CICS Bridge client application
requested backout

Explanation: The bridge task backed out a unit of
work on receipt of a MQCUOWC_BACKOUT request.

System action: Unit of work is backed out.

User response: None.

000741E WMQ CICS Bridge waiting for bridge
tasks to complete

Explanation: This message is issued during monitor
quiesce if bridge tasks are found on the monitor's
started or active task lists.

System action: Bridge waits for bridge tasks to
complete.

User response: None.

000742I WMQ CICS Bridge message on queue
but task not yet started

Explanation: This message is issued at the end of
monitor quiesce. The monitor delayed to allow bridge
tasks time to quiesce and is now listing those still
outstanding.

System action: Bridge quiesce continues.

User response: None.

000743I WMQ CICS Bridge task active at
quiesce

Explanation: This message is issued at the end of
monitor quiesce. The monitor delayed to allow bridge
tasks time to quiesce. The bridge task is probably in a
wait in a user program or in a long MQGET wait for a
second or subsequent message within a unit of work.

System action: Bridge quiesce continues.

User response: Investigate why the bridge task is still
active.

000744E WMQ CICS Bridge monitor terminated
with bridge tasks active

Explanation: This message is issued at the end of
monitor quiesce. The monitor delayed to allow bridge
tasks time to quiesce but one or more bridge tasks are
still active.

System action: Bridge quiesce complete.

User response: If the bridge tasks are in MQGET
waits, consider reducing the WAIT interval on monitor

000735I • 000744E

Appendix G. System messages 1025

startup to avoid this situation in future. Note that the
monitor cannot be restarted until the bridge tasks
terminate.

000745E WMQ CICS Bridge unable to put
message to reply queue

Explanation: An MQPUT call to the reply-to queue
failed. The response message will be sent to the
dead-letter queue.

System action: Reply message sent to dead-letter
queue.

User response: Use CICS trace facilities to identify the
cause on the failure and refer to the WebSphere MQ
Application Programming manual for an explanation.
Take appropriate action. Also refer to the WMQ System
Log for associated messages.

000746E WMQ CICS Bridge invalid CCSID

Explanation: A request message was received with an
invalid value for the CCSID field in the MQMD.

System action: Request message rejected.

User response: Correct the MQMD and reissue the
request.

000747E WMQ CICS Bridge invalid encoding

Explanation: A request message was received with an
invalid value for the encoding field in the MQMD.

System action: Request message rejected.

User response: Correct the MQMD and reissue the
request.

000748E WMQ CICS Bridge request message
removed during backout processing

Explanation: The bridge has sent this request message
to the dead-letter queue during backout processing.

System action: Request removal backed out.

User response: See the associated messages to
determine the cause of the problem.

000749E WMQ CICS Bridge authentication error

Explanation: The monitor is being run with
AUTH=VERIFY_UOW or AUTH=VERIFY_ALL. An
EXEC CICS SIGNON or EXEC CICS VERIFY
PASSWORD command failed.

System action: Request is not processed.

User response: Use CICS trace facilities to identify the
cause on the failure and refer to the CICS Application
Programming manual for an explanation. Take
appropriate action.

000750E WMQ CICS Bridge monitor internal
logic error

Explanation: An unexpected condition was detected
by the bridge.

System action: Bridge task terminated.

User response: Contact your IBM support center if the
problem persists.

000751E WMQ CICS Bridge unable to LINK to
program

Explanation: An EXEC CICS LINK command for the
user requested program failed.

System action: Program is not parted.

User response: Check that the correct program is
requested, and that it is available and correctly defined
to CICS.

000752E WMQ CICS Bridge queue cannot be
used for reply-to queue

Explanation: The reply-to queue name in a request
message is the same as the bridge-request queue name.
This is not allowed.

System action: Request is not processed.

User response: Specify a different reply-to queue in
the request.

000753E WMQ CICS Bridge message already
processed

Explanation: The bridge already attempted to process
this request but the request failed and was backed out.
This could be because backout processing failed for a
bridge task that ended abnormally or because there
was a CICS failure while this request was in progress.
No attempt is made to process the request a second
time.

System action: Request is not processed.

User response: Look at previous error messages for
this message on the System Log to determine the cause
for the previous failure, and rerun the request.

000754E WMQ CICS Bridge task abend

Explanation: A bridge task terminated abnormally.

System action: Bridge task terminated.

User response: The associated transaction dump can
be used to assist problem determination. Correct the
problem and rerun the unit of work.

000745E • 000754E

1026 WebSphere MQ for z/VSE System Management Guide

000755E WMQ CICS Bridge queue is not
shareable

Explanation: The bridge request queue does not have
the SHARE attribute.

System action: Bridge monitor terminated.

User response: Alter the queue definition and restart
the monitor.

000756E WMQ CICS Bridge dead-letter queue
must be defined as local

Explanation: The bridge request queue does not have
the SHARE attribute.

System action: Bridge monitor processing continues.

User response: The dead-letter queue is not defined as
a local queue. The bridge will be terminated if any
error occurs that would result in a message being sent
to the dead-letter queue.

000757E WMQ CICS Bridge unable to open
reply-to queue

Explanation: The reply to queue specified is not
known to the queue manager.

System action: Request is not processed.

User response: Check that the reply-to queue is
correct, and it is available and correctly defined to the
queue manager.

000758E WMQ CICS Bridge unable to START
bridge task

Explanation: The monitor is being run with the
IDENTIFY or VERIFY authorization option. An EXEC
CICS START command for the bridge task failed with
NOTAUTH or USERIDERR because the user ID is not
authorized to start bridge transactions or has been
revoked.

System action: Request is not processed.

User response: Correct the security definitions if this
userid should be authorized to run requests using the
bridge.

000759E WMQ CICS Bridge transaction not
defined to CICS

Explanation: A request has been received to run the
transaction listed but it is not defined to this CICS
system.

System action: Request is not processed.

User response: Correct the request or define the
transaction.

000764I WMQ CICS Bridge invalid userid

Explanation: A user ID is required in all request
messages when AUTH=VERIFY_ALL is being used;
this must be the same for all requests within a unit of
work. This message is issued because the bridge task
detected a missing or changed user ID.

System action: UOW backed out.

User response: Correct the user ID and rerun the unit
of work.

000799E WMQ CICS Bridge unexpected error

Explanation: An unexpected error has occurred. This
message may be generated if an error occurs before the
bridge error processing logic is initialized.

System action: Bridge task is terminated.

User response: Use CICS trace facilities to identify the
cause on the failure and refer to the CICS Application
Programming manual for an explanation. Check the
MQ System Log for associated messages.

001000I Function completed

Explanation: The requested function has been
completed

System action: Function is completed.

User response: None.

001090E Function not completed

Explanation: The requested function was terminated
because of error. The function was not completed.

System action: Function is terminated with error.

User response: Review the associated message prior to
this one.

005000I Channel connected

Explanation: Channel connection is successful.

System action: platform negotiation will begin.

User response: None.

002000I System monitor has detected an
unowned connection

Explanation: The queue manager housekeeping task
has identified a MQI connection for a task that is no
longer active.

System action: The connection is ended, and
associated resources are freed.

User response: None.

000755E • 002000I

Appendix G. System messages 1027

002010I System monitor has detected an inactive
object handle

Explanation: The queue manager housekeeping task
has identified an object handle (HOBJ) for an MQI
connection that no longer exists.

System action: The object handle is closed, and
associated resources are freed.

User response: None.

005001I Channel negotiations accepted

Explanation: Channel has completed negotiation with
the other platform.

System action: Message queue will be opened.

User response: None.

005002I Channel queue opened

Explanation: Channel queue has been opened
successfully.

System action: Message transfer will begin.

User response: None.

005003I LU 6.2 connection established

Explanation: LU 6.2 connection established.

System action: LU 6.2 conversation will begin.

User response: None.

005004I Channel receiver allocated

Explanation: (Reserved)

005005I Channel queue empty

Explanation: Sender finds the queue is empty

System action: Transmission queue will be closed and
the Channel will be disconnected and shutdown after
number of get retries exhausted.

User response: None.

005006I Channel queue closed

Explanation: Channel has successfully closed queue.

System action: Channel will be disconnected.

User response: None.

005007I Channel disconnected

Explanation: Channel has been disconnected from the
other platform.

System action: Channel will be shutdown.

User response: None.

005008I Channel shutdown

Explanation: Channel has been completely shutdown.

System action: Channel is marked INACTIVE.

User response: None.

005009I Channel shutdown request sent

Explanation: (Reserved)

006003I TCP/IP channel connected

Explanation: TCP/IP connection established.

System action: TCP/IP conversation will begin.

User response: None.

006007I TCP/IP session started

Explanation: A communication session was started by
the MQI Receiver MCA.

System action: TCP/IP conversation will begin.

User response: None.

006010E TCP/IP connection broken

Explanation: A TCP/IP connection terminated
prematurely, possibly due to incomplete data from
remote partner, or the premature closure of an active
TCP/IP socket.

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message.

2. Check host TCP/IP services are active.

3. Check TCP/IP error log on remote system.

4. Correct problem and restart channel.

006013E TCP/IP storage allocation error For
Program MQPTCPSV -

Explanation: The MQ/Server program was unable to
allocate memory.

System action: Fatal error - Communication is
terminated.

User response: This error occurs when there is
insufficient memory resources available. Check that
other processes are not erroneously allocating memory,
or rerun the client/server conversation when the
z/VSE host is less busy.

002010I • 006013E

1028 WebSphere MQ for z/VSE System Management Guide

006015E TCP/IP connection error For Program
MQPSEND -

Explanation: As a Sender upon completion of a
CONNECT request, received an invalid return code.

System action: Fatal error - Communication is not
established.

User response:

1. Review System Log or error TD Queue for
messages prior to this message.

2. Check that the sender channel port number matches
the listener port of the receiver.

3. Check that the TCP Partner is a valid host or IP
address n.n.n.n of the receiving system.

4. Correct problem and restart communication.

006016E TCP/IP send error

Explanation: As a Sender or Server upon completion
of a data send request received an invalid return code.

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message.

2. Produce an auxiliary trace to determine the return
code returned from the send.

3. Correct problem and restart communication.

006017E TCP/IP receive/respond error

Explanation: An attempt to receive TCP/IP data failed
or the response from a remote system was other than
as expected.

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message.

2. Check the TCP/IP error log on the remote system
to see if the channel was closed prematurely.

3. Correct problem and restart communication.

006020E TCP/IP socket error

Explanation: An error occurred when opening or
setting the attributes of a TCP/IP socket.

System action: Fatal error - communication cannot
start.

User response:

1. Check that TCP/IP is installed and running.

2. Check that the TCP/IP phase is cataloged in a
library that is concatenated ahead of SCEEBASE in
the LIBDEF of the CICS startup deck.

006021E TCP/IP transport error

Explanation: A TCP/IP conversation ended due to a
transport protocol error, or the use of a conversation
was attempted before it was established.

System action: Fatal error - communication is
terminated.

User response:

1. Check that TCP/IP is running.

2. Attempt to restart the conversation.

006022C TCP/IP listener bind error

Explanation: The MQ Listener program attempted to
bind a port number to a TCP/IP socket and was
unsuccessful.

System action: Fatal error - Listener cannot start.

User response:

1. Check that the Listener is not already running.

2. Check that another application is not using the port
number configured for the Listener.

006023C TCP/IP listener accept error

Explanation: The MQ Listener program attempted to
accept a remote conversation and failed.

System action: Error - Listener is terminated.

User response:

1. This is not an error if the remote program
terminated before the conversation was accepted.

2. Check that TCP/IP is running.

3. Restart the Listener.

006024C TCP/IP listener error

Explanation: The MQ Listener program terminated
due to an unexpected error.

System action: Fatal error - Listener is terminated.

User response:

1. Check that TCP/IP is running.

2. Examine the system log for associated error
messages.

3. Restart the Listener.

006025I TCP/IP listener stopped

Explanation: The MQ Listener program terminated
normally or due to an error.

System action: Listener program terminates.

006015E • 006025I

Appendix G. System messages 1029

User response:

1. Check the previous log entries for error messages. If
no previous error messages then the Listener
terminated normally.

2. Restart the Listener when appropriate.

006026E TCP/IP invalid channel type

Explanation: The channel type value in a channel
definition is invalid.

System action: Error - Channel cannot be started.

User response:

1. Check channel definition documentation for valid
channel type values. Then update the channel
definition appropriately.

006027E TCP/IP channel negotiation failed

Explanation: The conversation initial negotiation
failed.

System action: Error - channel cannot be started.

User response:

1. Check that the local and remote channel definitions
are compatible.

006028E TCP/IP channel protocol error

Explanation: The protocol type value in a channel
definition is invalid.

System action: Error - Channel cannot be started.

User response:

1. Check channel definition documentation for valid
protocol type values. Then update the channel
definition appropriately.

006029E TCP/IP connect failed

Explanation: An attempt to establish a TCP/IP
connection failed.

System action: Fatal error - conversation cannot be
started.

User response:

1. Check channel definition to ensure the hostname or
IP address and port number are valid for the
intended remote host.

2. Check that the remote system's listener process if
active.

006030E TCP/IP unknown remote channel name

Explanation: The channel name used in a remote
conversation does not exist on the remote host.

System action: Error - communication is terminated.

User response:

1. Create the channel definition on the remote host.

006031E TCP/IP remote queue manager not
available

Explanation: The queue manager identified in for a
remote host is currently unavailable.

System action: Error - communication is terminated.

User response:

1. Start the remote queue manager on the remote host.
:

2. Retry the channel.

006032W TCP/IP channel stopped by
operator/application

Explanation: The channel being used in a remote
conversation has been disabled by an operator or
application.

System action: Error - communication is terminated.

User response:

1. Restart the channel when appropriate.

006033E TCP/IP channel not active

Explanation: An attempt was made to use a channel
that is not currently started.

System action: Error - communication is terminated.

User response:

1. Start the channel when appropriate.

006034I TCP/IP channel stopped

Explanation: The channel stopped normally or due to
an error.

System action: Channel activity is terminated.

User response:

1. Check previous log messages for errors. If there are
no errors, then the channel stopped normally.

2. Restart the channel when appropriate.

006035C TCP/IP syncpoint failed

Explanation: An attempt to perform a CICS
SYNCPOINT failed during a TCP/IP conversation.

System action: Transaction changes are rolled back to
the beginning of the current unit of work.

User response:

1. Check the system log for previous error messages. :

2. Check CICS logs for possible errors or insufficient
resources.

006026E • 006035C

1030 WebSphere MQ for z/VSE System Management Guide

006036W TCP/IP message put to DLQ

Explanation: A message could not be delivered and
was instead written to the system dead letter queue.

System action: Message written to system dead letter
queue.

User response:

1. Examine the dead letter queue for the undelivered
message.

006037E TCP/IP invalid remote channel type

Explanation: The channel type value in a channel
definition on a remote host is invalid.

System action: Error - Channel cannot be started.

User response:

1. Check channel definition documentation for valid
channel type values. Then update the channel
definition on the remote host appropriately.

006038W TCP/IP transmission queue get
inhibited

Explanation: The transmission queue identified by a
channel definition has GET INHIBIT enabled.

System action: Error - messages cannot be retrieved
and sent.

User response:

1. Disable GET INHIBIT on the transmission queue.

006039E TCP/IP remote channel unavailable

Explanation: The channel identified for a remote
conversation is unavailable.

System action: Error - channel cannot be started.

User response:

1. Start the channel on the remote host.

006040E TCP/IP channel abnormally ended

Explanation: The channel involved in a current
conversation was terminated with an error, possible
due a remote partner ending the conversation
prematurely.

System action: Fatal error - communication is
terminated.

User response:

1. Check the system log for previous error messages.

006041I TCP/IP listener started

Explanation: The MQ Listener program started.

System action: MQ Listener ready to accept remote
connections.

User response: None.

006042I TCP/IP server started

Explanation: An MQ Server program instance started
in response to a remote client connection.

System action: MQ Server ready to process client
requests.

User response: None.

006043I TCP/IP server stopped

Explanation: An MQ Server program instance stopped
normally or due to an error.

System action: Client conversation terminated.

User response:

1. Check previous system log messages to determine
whether this is a normal termination or due to an
error.

006044E TCP/IP bad server commarea

Explanation: An MQ Server program instance was
started with an invalid commarea.

System action: Fatal error - MQ Server program
terminated.

User response:

1. Check the MQ Server program is not being started
by an application other than the MQ Receiver MCA.

006045W TCP/IP server error

Explanation: An error occurred during an MQ client
conversation.

System action: Client conversation completed with
errors.

User response:

1. Check the system log for previous error messages
and respond to these.

006046C WMQ Server environment error

Explanation: An error occurred during an MQ server
activation. The MQ Server could not load relevant
program modules.

System action: Client conversation is terminated.

User response: Check the queue manager has been

006036W • 006046C

Appendix G. System messages 1031

installed correctly, and that MQ modules are correctly
defined to CICS.

006047W Data conversion code page error

Explanation: Data conversion from source code page
to target code page is not supported.

System action: The message data is not converted.

User response: Check the requested code pages are
compatible and change if necessary.

006050W Data conversion source code page error.

Explanation: The value in the source code page is an
unknown value.

System action: The message data is not converted.

User response: Check the source code page is valid.

006053W Data conversion target code page error

Explanation: The value in the target code page is an
unknown value.

System action: The message data is not converted.

User response: Check the target code page is valid.

006054W Default data conversion code page error

Explanation: Default data conversion between the
specified code pages is not supported.

System action: The message data is not converted.

User response: Check the default code pages specified
in the code page definition panel are compatible.

006055W Data conversion IMS string error

Explanation: The passed IMS string is the wrong
length for data conversion.

System action: The IMS message data is not
converted.

User response: Change the IMS string length.

006057W Data conversion PCF header bad length

Explanation: The passed PCF header is the wrong
length.

System action: The PCF message data is not
converted.

User response: Change the PCF header string length.
The buffer is too small for a complete PCF header.

006058E Data conversion bad ICONV return
code for LE conversion

Explanation: Data conversion failed.

System action: The message data is not converted.

User response:

1. Ensure LE/VSE code page is available.

2. Review LE ICONV family services and ensure
product features are installed and functional.

006059I Data conversion target code page set to
source code page

Explanation: The target code was set to null.

System action: Data conversion continues.

User response: Ensure the target code page is
correctly set.

006060W Data conversion is not supported

Explanation: Data conversion is not supported
between the specified code pages.

System action: Conversion fails.

User response: Change the code pages to a pair which
are supported for LE data conversion.

006063C Data conversion error finding MQ
internal control block

Explanation: WMQ for z/VSE is not initialized
correctly.

System action: Data conversion ends.

User response:

1. Stop and restart WebSphere MQ. Check WebSphere
MQ and CICS logs for possible errors such as SOS.

2. If product maintenance has been recently applied,
review cover letter for installation steps that may
have been missed.

006100E TCP/IP SSL initialization failed

Explanation: Attempt to establish a secure socket
connection using SSL failed.

System action: Channel will not initialize.

User response:

1. Check that remote system requesting the secure
socket connection uses standard SSL protocol and
valid PKI certificate.

2. For a sending system, check that local SSL services
are installed and configured correctly.

006047W • 006100E

1032 WebSphere MQ for z/VSE System Management Guide

006101E TCP/IP SSL cipher specification error

Explanation: Secure socket connection abandoned due
to channel cipher specification mismatch.

System action: Channel is terminated.

User response:

1. Check that the remote system requesting the secure
socket connection identifies a cipher specification
that matches the cipher specification of the local
receiver channel.

2. Check that local SSL services support the channel
cipher specification.

006102E TCP/IP SSL peer attribute error

Explanation: Secure socket connection abandoned due
to channel peer attribute mismatch with partner
certificate details.

System action: Channel is terminated.

User response:

1. Check that the SSLPEER specification of the local
channel identifies the certificate details of the
remote system communications partner. (Remember
that values are case sensitive).

2. Check that the remote client or sender MCA is an
authorized SSL partner.

006103E TCP/IP SSL client authentication error

Explanation: Secure socket connection abandoned due
to remote system failing to provide a valid certificate
during channel initialization.

System action: Channel is terminated.

User response:

1. If the receiver channel specifies SSLCAUTH is
REQUIRED, then the remote client or sender MCA
must provide a valid certificate during channel/SSL
initial negotiation.

2. If the receiver channel does not require a client
certificate, then the receiver channel can set the
SSLCAUTH to optional.

3. If the receiver channel requires a peer name match,
then the remote system must provide a certificate
during channel initialization.

006999E TCP/IP unexpected error

Explanation: An unexpected error has occurred.

System action: Unknown.

User response:

1. Check the system log for previous error messages.

2. Check the QCODE in this error message. This
should be a numeric code that will be meaningful
to MQ system support.

007000I PCF command server started

Explanation: The PCF command server has been
started.

System action: PCF command server ready to process
PCF commands from the system command queue.

User response: None.

007001W PCF command server not started

Explanation: The PCF command server could not be
started.

System action: PCF command server instance cannot
start.

User response: Check the following:

1. Queue manager is active.

2. Command server not already active.

3. System log for further error messages.

007002W PCF command server not started

Explanation: The PCF command server could not be
stopped because it is not running.

System action: None.

User response: None.

007003I PCF command server terminated by
request

Explanation: The PCF command server has
terminated due to an operational request.

System action: The PCF command server is nolonger
available to processes PCF commands from the
command queue.

User response: Restart the command server when
necessary.

007004I PCF command server termination
requested

Explanation: An operational request to terminate the
PCF command server has been received.

System action: The PCF command server will
terminate, and can be restarted when necessary.

User response: None.

007005W PCF command server already running

Explanation: An request to start the PCF command
server was received when the server is already
running.

System action: Only one instance of the command
server can be running at any time. The initial instance

006101E • 007005W

Appendix G. System messages 1033

will continue to process command messages until
terminated.

User response: None.

007006C Insufficient storage for PCF command
server

Explanation: An attempt to allocate CICS storage for
the PCF command server during initialization failed.

System action: The PCF command server cannot be
started.

User response: The command server attempts to
allocate approximately 2k of CICS storage during
initialization. Ensure the relevant CICS region has
sufficient storage resources.

007007C PCF command server cannot process
command queue

Explanation: An attempt by the PCF command server
to issue an MQGET from the system command queue
failed.

System action: The PCF command server is
terminated.

User response: Check the status of the system
command queue to ensure it is enabled and available
for processing.

007008C PCF command server cannot connect to
queue manager

Explanation: An attempt by the PCF command server
to issue an MQCONN to establish an MQI session with
the local queue manager failed.

System action: The PCF command server is
terminated.

User response: Check the status of the queue manager
to ensure it is active and available for MQI connectivity.

007009C PCF command server cannot open
command queue

Explanation: An attempt by the PCF command server
to issue an MQOPEN of the system command queue
failed.

System action: The PCF command server is
terminated.

User response: Check the status of the system
command queue to ensure it is enabled and available
for processing.

007010W PCF command server stopped due to
system quiescing

Explanation: The PCF command server has detected
that the queue manager is quiescing or stopping.

System action: The PCF command server is
terminated.

User response: No action is required if the queue
manager has been stopped intentionally. If not, the
cause of the queue manager stopping should be
investigated, and the PCF command server restarted if
a manual start is required.

007011E PCF command server stop request failed

Explanation: An attempt to stop the PCF command
server failed.

System action: The PCF command server will not
terminate.

User response: Check that the system command
queue is configured and able to accept command
messages. The queue should not be PUT inhibited or
full. Also, if MQ security is enabled, check that the stop
request was issued by a userid with sufficient authority.

007012C PCF command server cannot start
command processor

Explanation: The PCF command server received a
PCF command on the system command queue but was
unable to start the command processor to process the
command.

System action: The PCF command server is
terminated.

User response: Check that the command processor is
correctly defined to the CICS system. Also check that
the CICS system has sufficient resources to start new
transactions.

007013W PCF command server insufficient
authority to start processor

Explanation: The PCF command server received a
PCF command on the system command queue but was
unable to start the command processor to process the
command due to an authorization failure.

System action: The PCF command server rejects the
command.

User response: Check that the userid running the
command server has sufficient authority to start the
command processor transaction as any user with
authority to put messages to the system command
queue. If security is enabled, the command server user
must be a surrogate user for users that can put
messages to the command queue.

007006C • 007013W

1034 WebSphere MQ for z/VSE System Management Guide

007014W PCF command server could not put
reply to DLQ

Explanation: The PCF command server attempted to
put a PCF reply message to the system dead letter
queue and the attempt failed.

System action: The PCF reply message is lost.

User response: Check that the system dead letter
queue is properly configured for the queue manager.
Also check that the dead letter queue is not full or
inhibited.

007015W PCF command server could not be
auto-started

Explanation: An attempt to automatically start the
PCF command server failed during system
initialization.

System action: The PCF command server is not
auto-started.

User response: Check that the command server is not
already running and that the supplied MQ transactions
and programs have been installed correctly.

007016W Batch interface could not be auto-started

Explanation: An attempt to automatically start the
batch interface failed during system initialization.

System action: The batch interface is not auto-started.

User response: Check that the batch interface is not
already running and that the supplied MQ transactions
and programs have been installed correctly.

007017I PCF command server stopped

Explanation: The PCF command server has been
stopped.

System action: PCF command server is no longer
available to process PCF commands from the command
queue.

User response: The PCF command server may have
stopped due to an error or an operational request. In
case of an error, check the system Log for previous
error messages.

007020E PCF command processor could not
connect to queue manager

Explanation: An attempt to connect to the local queue
manager failed.

System action: The PCF command processor attempts
to connect to the local queue manager when it is ready
to send a PCF response message. The response message
is lost, and the result of the original PCF command
must be determined manually.

User response: Check that the queue manager is
active and is configured to accept a suitable number of
concurrent connection requests.

007021W PCF command processor could not open
reply queue

Explanation: An attempt to open a locally defined
queue for a PCF response message failed.

System action: If the PCF command processor is
configured to put undeliverable response message to
the system dead letter queue, then an attempt to do so
is made. Otherwise, the response message is lost and
the result of the original PCF command must be
checked manually.

User response: Check that the ReplyToQ and
ReplyToQMgr fields of the MQMD of the originating
PCF command message identify a valid and available
queue.

007022W PCF command processor could not send
response message

Explanation: An attempt to put a PCF response
message to the relevant ReplyToQ failed.

System action: If the PCF command processor is
configured to put undeliverable response message to
the system dead letter queue, then an attempt to do so
is made. Otherwise, the response message is lost and
the result of the original PCF command must be
checked manually.

User response: Check that the relevant queue is
available for the receipt of messages.

007023C PCF command processor could not
allocate storage

Explanation: An attempt by the PCF command
processor to allocate CICS storage failed.

System action: The PCF command processor cannot
allocate the necessary storage to generate a PCF
response message, and so the response message is lost.
The result of the original PCF command must be
checked manually.

User response: Check that the relevant CICS partition
has sufficient above the line storage to satisfy
GETMAIN requests.

007024E PCF command processor could not
divert to DLQ

Explanation: An attempt by the PCF command
processor to put an undeliverable PCF response
message to the system dead letter queue failed.

System action: The PCF response message is lost and
the result of the original PCF command must be
checked manually.

007014W • 007024E

Appendix G. System messages 1035

User response: Check that the system dead letter
queue is available and ready to receive messages.

007100I MQ SOAP listener started

Explanation: The MQ SOAP listener started on
request queue.

System action: MQ SOAP listener ready to process
MQ SOAP requests.

User response: None.

007101W MQ SOAP listener not started

Explanation: The MQ SOAP listener failed to start.

System action: MQ SOAP listener not started.

User response: Check for previous error messages.

007102E MQ SOAP listener not started due to
invalid parameter

Explanation: The Q= or SOAPPORT= parameter is not
valid.

System action: MQ SOAP listener is not started.

User response: Check that there is only one Q= and
specified request queue name is valid. The
SOAPPORT= specifies the CICS SOAP port number
and be in range 1 through 65535.

007104I MQ SOAP listener termination
requested

Explanation: An operational request to terminate the
MQ SOAP listener has been received.

System action: The MQ SOAP listener will terminate,
and can be restarted when necessary.

User response: None.

007106C Insufficient storage for MQ SOAP
listener

Explanation: An attempt to allocate CICS storage for
the MQ SOAP listener during initialization failed.

System action: The MQ SOAP listener cannot be
started.

User response: The MQ SOAP listener attempts to
allocate approximately 2k of CICS storage during
initialization. Ensure the relevant CICS region has
sufficient storage resources.

007107C MQ SOAP listener cannot process
request queue

Explanation: An attempt by the MQ SOAP listener to
issue an MQGET from the request queue failed.

System action: The MQ SOAP listener is terminated.

User response: Check the status of the MQ SOAP
request queue to ensure it is enabled and available for
processing.

007108C MQ SOAP listener cannot connect to
queue manager

Explanation: An attempt by the MQ SOAP listener to
issue an MQCONN to establish an MQI session with
the local queue manager failed.

System action: The MQ SOAP listener is terminated.

User response: Check the status of the queue manager
to ensure it is active and available for MQI connectivity.

007109C MQ SOAP listener cannot open request
queue

Explanation: An attempt by the MQ SOAP listener to
issue an MQOPEN of the request queue failed.

System action: The MQ SOAP listener is terminated.

User response: Check the status of the request queue
to ensure it is enabled and available for processing.

007110W MQ SOAP listener stopped due to
system quiescing

Explanation: The MQ SOAP listener has detected that
the queue manager is quiescing or stopping.

System action: The MQ SOAP listener is terminated.

User response: No action is required if the queue
manager has been stopped intentionally. If not, the
cause of the queue manager stopping should be
investigated, and the MQ SOAP listener restarted if a
manual start is required.

007111E MQ SOAP listener stop request failed

Explanation: An attempt to stop the MQ SOAP
listener failed.

System action: The MQ SOAP listener will not
terminate.

User response: Check that the request queue is
configured and able to accept messages. The queue
should not be PUT inhibited or full. Also, if WMQ
security is enabled, check that the stop request was
issued by a userid with sufficient authority.

007112C MQ SOAP listener cannot start SOAP
request processor

Explanation: The MQ SOAP listener received a MQ
SOAP request on the request queue but was unable to
start the SOAP request processor to process the request.

System action: The MQ SOAP request is placed on
dead letter queue.

007100I • 007112C

1036 WebSphere MQ for z/VSE System Management Guide

||

|
|

|
|

|

||

|

|

|

||
|

|
|

|

|
|
|
|

||
|

|
|

|
|

|

||
|

|
|

|
|

|
|
|
|

||
|

|
|

|

|
|
|

||
|

|
|
|

|

|
|

||
|

|
|

|

|
|

||
|

|
|

|

|
|
|
|
|

||

|
|

|
|

|
|
|
|
|

||
|

|
|
|

|
|

User response: Check that the MQ SOAP processor is
correctly defined to the CICS system. Also check that
the CICS system has sufficient resources to start new
transactions.

007113W MQ SOAP listener has insufficient
authority to start processor

Explanation: The MQ SOAP listener received a MQ
SOAP request on the request queue but was unable to
start the MQ SOAP processor to process the request
due to an authorization failure.

System action: The MQ SOAP listener rejects the
request.

User response: Check that the userid running the MQ
SOAP listener has sufficient authority to start the MQ
SOAP processor transaction as any user with authority
to put messages to the MQ SOAP request queue. If
security is enabled, the MQ SOAP listener user must be
a surrogate user for users that can put messages to the
request queue.

007114W MQ SOAP listener could not put
request to DLQ

Explanation: The MQ SOAP listener attempted to put
the request message to the system dead letter queue
and the attempt failed.

System action: The MQ SOAP request message is lost.

User response: Check that the system dead letter
queue is properly configured for the queue manager.
Also check that the dead letter queue is not full or
inhibited.

007117I MQ SOAP listener stopped

Explanation: The MQ SOAP listener has been
stopped.

System action: MQ SOAP requests put on the
specified request queue will not be processed.

User response: The MQ SOAP listener may have
stopped due to an error or an operational request. In
case of an error, check the system Log for previous
error messages.

007220E MQ SOAP handler cannot connect to
queue manager

Explanation: An attempt by the MQ SOAP handler to
issue an MQCONN to establish an MQI session with
the local queue manager failed.

System action: The MQ SOAP handler is terminated.

User response: Check the status of the queue manager
to ensure it is active and available for MQI connectivity.

007221W MQ SOAP handler could not open reply
queue

Explanation: An attempt to open a locally defined
queue for a MQ SOAP response message failed.

System action: The MQ SOAP handler terminates
task.

User response: Check that the ReplyToQ and
ReplyToQMgr fields of the MQMD of the originating
MQ SOAP request message identify a valid and
available queue.

007222W MQ SOAP handler could not send
response message

Explanation: An attempt to put a MQ SOAP response
message relevant ReplyToQ failed.

System action: The MQ SOAP handler terminates
task.

User response: Check that the relevant queue is
available for the receipt of messages.

007223C MQ SOAP handler could not allocate
storage

Explanation: An attempt by the MQ SOAP handler to
allocate CICS storage failed.

System action: The MQ SOAP handler task terminates

User response: Check that the relevant CICS partition
has sufficient above the line storage to satisfy
GETMAIN requests.

010000W System started with errors

Explanation: System being initialized but some Queue
/ Channel definitions had errors.

System action: Erroneous Queues / Channels are
marked as DISABLED.

User response:

1. Review System Log for prior error messages to
identify problem definition.

2. Correct definitions.

3. Shutdown and then reinitialize system.

010001W System started with file errors

Explanation: System being initialized but some
Queues files had errors.

System action: Erroneous Queues are marked
DISABLED.

User response:

1. Review System Log for prior error messages to
identify problem definition.

2. Correct definitions.

007113W • 010001W

Appendix G. System messages 1037

|
|
|
|

||
|

|
|
|
|

|
|

|
|
|
|
|
|
|

||
|

|
|
|

|

|
|
|
|

||

|
|

|
|

|
|
|
|

||
|

|
|
|

|

|
|

||
|

|
|

|
|

|
|
|
|

||
|

|
|

|
|

|
|

||
|

|
|

|

|
|
|

3. Shutdown and then reinitialize system.

010002W System started with channel errors

Explanation: System being initialized but some
channel definitions had errors.

System action: Erroneous channels are marked
DISABLED.

User response:

1. Review System Log for prior error messages to
identify problem definition.

2. Correct definitions.

3. Shutdown and then reinitialize system.

010003W System started but system changed

Explanation: System being initialized but definitions
have been added / deleted while initialization was
being performed.

System action: If definitions were added then some
definitions may not be used.

User response: Do not perform configuration changes
while system is being initialized. Shutdown and then
reinitialize system.

010005I Reorganization process has disabled
queue <qname>

Explanation: The specified queue name has been
disabled for a scheduled reorganization of the VSAM
file.

System action: None.

User response: None required.

010007I Reorganization process has enabled
queue <qname>

Explanation: The specified queue name has been
enabled after the VSAM file has been reorganized.

System action: None.

User response: None required.

010010I Channel auto-defined

Explanation: A channel which did not previously exist
has been auto-defined.

System action: Channel auto-defined successfully.

User response: None.

010011E Channel auto-definition exit unavailable

Explanation: The queue manager's channel
auto-definition feature is enabled, but the exit program
is unavailable.

System action: Channel auto-definition is disabled.

User response: Define and enable the exit program to
your CICS system.

010012E Channel auto-definition model channel
unavailable

Explanation: The queue manager's channel
auto-definition feature is enabled, but the relevant
model channel is not available.

System action: The channel instance is not
auto-defined.

User response: Define and enable the relevant model
channel.

010013E Channel auto-definition failed

Explanation: The queue manager's channel
auto-definition feature is enabled, and an attempt to
auto-define a channel failed.

System action: The channel instance is not
auto-defined.

User response: Check VSE console and system log for
associated error messages.

010014W Channel auto-definition suppressed by
exit

Explanation: The queue manager's channel
auto-definition exit has returned a failure code.

System action: The channel instance is not
auto-defined.

User response: Check exit rules for auto-definition.

010015E Channel auto-definition exit returned
invalid values

Explanation: The queue manager's channel
auto-definition exit has returned values that are not
valid. The exit must not change the channel name,
channel type, or the MQCD version.

System action: The channel instance is not
auto-defined.

User response: Check exit program conforms to exit
rules.

010002W • 010015E

1038 WebSphere MQ for z/VSE System Management Guide

010018I WMQ API exits enabled

Explanation: The queue manager has detected that
WMQ API exits are configured and will invoke these
exits during normal MQI operation.

System action: WMQ API exits will be invoked
during MQI processing.

User response: None.

010020C Global lock error detected by
reorganization

Explanation: The global lock table is corrupt for the
queue currently being reorganized.

System action: Reorganization is terminated.

User response: Stop and restart WMQ for z/VSE.

010021W Reorganization target queue <qname> is
busy

Explanation: The queue is already in use. Automatic
Reorganization will stop and retry later.

System action: Reorganization is terminated, but will
be retried, if appropriate.

User response: You may wish to reschedule
reorganization if all the retries have failed.

010022E Redefine of reorganization file <fname>
failed

Explanation: The IDCAMS delete and redefine of the
reorganization dataset failed.

System action: Reorganization is terminated.

User response: See CICS console for any error
messages from IDCAMS.

010023W Reorganization deleted no records for
queue <qname>

Explanation: No records have been deleted from the
queue file during automatic reorganization.

System action: Reorganization continues and the
queue file will be reallocated.

User response: None.

010024I Reorganization successful for queue
<qname>

Explanation: The queue has been reorganized;
logically deleted messages have been removed, the
underlying VSAM file has been deleted and redefined,
and existing messages have been restored.

System action: Queue available for processing.

User response: None.

010025E File <fname> has multiple queues, so
reorganization failed for queue
<qname>

Explanation: During reorganization it has been
detected that the associated VSAM file contains records
for more than one queue. Automatic reorganization is
only possible for files that contain records for a single
queue.

System action: Reorganization terminates.

User response: Please ensure only one queue is
defined to this queue file. Alternatively you can
reorganize this type of file using the offline batch job
MQPREORG.

010026C Rename of file <fname> failed during
reorganization

Explanation: The IDCAMS rename for the
reorganization file to the queue file failed.

System action: Reorganization finishes.

User response:

1. See CICS console for any error messages from
IDCAMS.

2. Manually rename the reorganization file to the
queue file.

3. Open the queue file in CICS.

4. Restart the Queue via MQMT.

010027W Automatic reorganization already
running

Explanation: Reorganization already running. Only
one reorganization can run at one time.

System action: Reorganization is terminated.

User response: Change the scheduled time for
reorganization startup if possible.

010028E Reorganization file <fname> not
disabled

Explanation: The reorganization file is automatically
disabled before it is reallocated, however the attempt to
disable the file failed.

System action: Reorganization is terminated.

User response:

1. See CICS console for any error messages.

2. Use CICS to manually disable the file before
rescheduling the reorganization.

010018I • 010028E

Appendix G. System messages 1039

010029E Reorganization file <fname> not closed

Explanation: The reorganization file is automatically
closed before it is reallocated, however the attempt to
close the file failed.

System action: Reorganization is terminated.

User response:

1. See CICS console for any error messages

2. Use CICS to manually close the reorganization file
before rescheduling the reorganization.

010030E Reorganization file <fname> is not
defined to CICS

Explanation: The reorganization file must be defined
to CICS to automatically reorganize a queue.

System action: Reorganization is terminated.

User response: Define the reorganization file to CICS
as file MQFREOR.

010031E Reorganization cannot read queue file
<fname>

Explanation: The queue file must be readable to
enable automatic reorganization to take place.

System action: Reorganization is terminated.

User response: Ensure the queue file's CICS definition
is set to readable.

010032E Reorganization queue file <fname> not
defined

Explanation: The queue file must be defined to CICS
to automatically reorganize a queue.

System action: Reorganization is terminated.

User response: Define the queue file to CICS.

010033W Reorganization cannot open queue file
<fname>

Explanation: An attempt to open the queue file has
failed.

System action: Reorganization continues. See next
message.

User response:

1. See CICS console for any error messages.

2. Attempt to open the queue file manually in CICS.

010034E Reorganization file <fname> not open
or updateable

Explanation: An attempt to open the reorganization
file has failed. The reorganization file must be opened

and updateable to enable automatic reorganization to
take place.

System action: Reorganization is terminated.

User response:

1. See CICS console for any error messages. and
resolve the error opening the file.

2. Ensure the reorganization file's CICS definition is
set to updateable and can be opened in CICS.

010035W Reorganization cannot close queue file
<fname>

Explanation: An attempt to close the queue file has
failed.

System action: Reorganization ends, and the queue
file is started without being reorganized.

User response:

1. See CICS console for any error messages and
resolve the error closing the file.

010036E Reorganization file <fname> not closed

Explanation: An attempt to close the reorganization
file has failed.

System action: Reorganization ends.

User response:

1. See CICS console for any error messages. and
resolve the error closing the file.

2. Manually close the file in CICS.

3. Manually rename the IDCAMS reorganization file to
the queue file.

4. Open the Queue File in CICS.

5. Restart the queue via MQMT.

010037E Reorganization file <fname> not
allocated

Explanation: An attempt to find name of the
reorganization file has failed.

System action: Reorganization ends.

User response: Manually reallocate the reorganization
file and reschedule the reorganization.

010038E Reorganization failed to delete queue
file <fname>

Explanation: An attempt to delete the queue file has
failed during reorganization.

System action: Reorganization ends, and the queue
file is started without being reorganized.

User response: See CICS console for any error
messages from IDCAMS and resolve the error before
rescheduling the automatic reorganization.

010029E • 010038E

1040 WebSphere MQ for z/VSE System Management Guide

010039W Deletion of queue failed because queue
is not empty

Explanation: An attempt to delete a queue has failed.

System action: Queue is not deleted.

User response: Process queue messages before
attempting to delete the queue.

010040C Reorganization file <fname> contains
records for queue <qname>

Explanation: The requested reorganization is rejected
as the MQFREOR file contains messages for a queue
whose file does not exist. This can occur when previous
reorganization failed when trying to rename the
reorganization file to the queue file.

System action: Reorganization request is not
performed, and no further automatic reorganization can
take place until this problem is resolved.

User response: Manually rename the reorganization
file to the queue file.

010042E MQFREOR file is in different VSAM
catalog to <fname> file

Explanation: A reorganization request for a queue is
rejected as the file containing the queue is in a different
VSAM catalog to the MQFREOR file.

System action: Reorganization request is not
performed, and no further automatic reorganization can
take place until this problem is resolved.

User response: The queue file to be reorganized and
the MQFREOR file have to be in the same VSAM
catalog. DELETE/DEFINE the MQFREOR file to be in
the same VSAM catalog as the queue file and change
JCL or CSD to point to the correct VSAM catalog.

All queue files that are to use automatic reorganization
have to be in the same VSAM catalog.

010050E No storage for Accounting and Statistics
message generation

Explanation: There is insufficient storage available to
allocate the Accounting and Statistics message

System action: The Accounting and Statistics message
generation service is disabled.

User response: Check the storage resources available
to your CICS region and increase as appropriate.

010051E Cannot start statistics message
generation module

Explanation: An attempt to LINK the statistics
message generation module (MQPSTATS) has failed.

System action: The statistics message generation
service is disabled.

User response: Check EIB return codes that
accompany this message to determine the cause of the
failure and correct as appropriate.

010052E Accounting Message TDQ not defined
or unavailable

Explanation: The transient data queue used for
accounting message generation has not been defined, or
is unavailable to the WMQ startup user.

System action: Accounting message generation is
disabled.

User response: Check that the Accounting Message
TDQ has been defined and enabled, and is accessible
by the WMQ startup user.

010053E Error delivering Accounting message

Explanation: An attempt to generate an Accouninting
message failed.

System action: Accounting message generation is
disabled.

User response: Check that the Accounting Message
queue is defined and available.

100000W System stopped while in use

Explanation: The queue manager was stopped while
applications and/or channels were active.

System action: System stopped, and active
applications and channels are terminated.

User response: All applications and channels should
be terminated before the system is shutdown.

100010I System already active

Explanation: An attempt to initialize the queue
manager failed because the system is already active.

System action: System initialization not performed.

User response:

1. Ignore this message, as an initialization attempt was
made in error.

2. Stop and restart the queue manager.

100011W System started with no queues

Explanation: The queue manager has been started, but
it has no queue definitions.

System action: System initialized but inoperative.

User response: The queue manager can provide no
effective services without any queue definitions. Define
queues when possible.

010039W • 100011W

Appendix G. System messages 1041

||
|

|
|
|

|
|
|

|
|
|
|
|

|
|

100012W System started with too many queues.

Explanation: The queue manager has been started but
has more queue definitions than it can process.

System action: System initialized with some queue
definitions.

User response: Delete queue definitions as
appropriate.

100013W System started with too many channels

Explanation: The queue manager has been started but
has more channel definitions than it can process.

System action: System initialized with some channels.

User response: Delete channel definitions as
appropriate.

100090W System started with no queue manager
definition

Explanation: The system has been started, but the
queue manager definition cannot be found.

System action: System initialization is terminated.

User response: Check that the correct MQ
configuration file has been defined to the CICS region.
If the queue manager record has been intentionally
deleted from the configuration file, a new definition
can be created using the MQMT transaction.

100092E Message expiry subsystem failure

Explanation: The message expiry subsystem failed to
logically delete an expired message.

System action: Message is expired, but is not logically
deleted.

User response: Message expiry occurs when an
application attempts to get or browse a message that
has expired. At this point, the queue manager attempts
to logically delete the message. The queue manager
uses several internal transactions and programs to
remove expired messages. Ensure that all MQ
transactions and programs have been defined and are
available to CICS. If maintenance has been recently
applied, review any cover letters to ensure special
installation instructions have not been missed.

101000W Maximum queue depth reached

Explanation: The maximum queue depth for a given
queue has been reached, and a further PUT request has
been received.

System action: The PUT request is terminated and the
problem queue is marked as "MAX".

User response: Perform one of the following :

1. Process this queue either through an application or
the queue maintenance facility.

2. Increase the maximum queue depth for the queue.

101010E Queue concurrent update has occurred

Explanation: Two or more update requests were being
received at one time for the same QSN record.

System action: The first request is served while the
subsequent requests, deemed concurrent, are rejected.

User response:

1. Review all terminated requests.

2. Re-execute any legitimate requests.

101015W Queue not found

Explanation: An attempt to stop/start a queue has
failed because the identified queue does not exist.

System action: The request is terminated
unsuccessfully.

User response: Check the queue name matches a
queue defined to the queue manager.

101090I Operation rejected for stopped queue

Explanation: A request has been executed against a
STOPPED queue.

System action: Terminate the request.

User response: START the problem queue.

101091I Queue disabled and possible operation
failure

Explanation: The queue manager flagged a queue
disabled due to errors during system initialization, or
the queue has been flagged disabled due to an
operational failure.

System action: The problem queue is marked
STOPPED.

User response:

1. Examine queue definition and file allocation for
problems.

2. Check for related error messages in the system log.

3. Correct the queue definition, or resolve associated
error messages.

102090C Queue QSN number limit has been
reached

Explanation: Queue messages are internally organized
with an incremental numeric key field called a Queue
Sequence Number (QSN). Being a signed, 4-byte binary
field, the QSN is limited to 2,147,483,650 messages per
queue.

100012W • 102090C

1042 WebSphere MQ for z/VSE System Management Guide

System action: The PUT request for this queue is
rejected.

User response: The queue requires reorganization.

1. An offline reorganization can be achieved using the
MQ batch utility job MQPREORG.

2. An online reorganization can be achieved using the
automatic reorganization feature.

102091E No space available for PUT request

Explanation: Queue encounters NOSPACE condition
for a PUT request.

System action: Terminate the request and mark Queue
"FULL".

User response: Perform one of the following :

1. Do file maintenance on this problem queue such as
running the batch job MQPREORG.

2. Execute on/line QUEUE Maintenance to delete
messages via "Delete by Date/time".

102092E No space available for non-PUT request

Explanation: Queue encounters errors for an UPDATE
request, NOSPACE condition occurred.

System action: Terminate the request and mark queue
"FULL".

User response: Perform one of the following :

1. Do file maintenance on this problem queue such as
running the batch job MQPREORG.

2. Execute on/line QUEUE Maintenance to delete
messages via "Delete by Date/time".

104021E Dual queue unavailable

Explanation: Dual destination queue has been
STOPPED or was not initialized properly.

System action: Marked Dual Queue as "recovery
needed".

User response: Perform one of the following :

1. Try to re-START the Dual Queue.

2. Examine and fix the Queue and File definition for
this queue. Refresh Queue or reinitialize system.

104022E Dual queue file error

Explanation: Dual destination Queue had file error or
was not initialized properly.

System action: Marked Dual Queue as "recovery
needed".

User response: Perform one of the following:

1. Try to re-START the Dual Queue.

2. Examine and fix the Queue and File definition for
this queue. Refresh Queue or reinitialize system.

104023E Dual queue out of sequence

Explanation: Dual destination Queue does not match
Source Queue.

System action: Marked Dual Queue as "recovery
needed".

User response: Examine and fix the Queue and File
definition for this queue. Refresh Queue or reinitialize
system.

105090E Trigger start by queue start/stop failed

Explanation: MQPSSQ, a subroutine to start / stop a
Queue, encounters error to start MQ02, a transaction
that handles trigger function.

System action: The request is terminated
unsuccessfully.

User response: Examine CICS tables to fix the
problem.

105091E Trigger initialization failed due to
erroneous data

Explanation: MQPAIP2, a program handling trigger
function, receives erroneous data and cannot fulfill the
request.

System action: The request is terminated
unsuccessfully.

User response: Contact support for WMQ for z/VSE.

106000E Insufficient storage for MQ API exit
processing

Explanation: An attempt to allocate storage for WMQ
API exits failed.

System action: WMQ API exits are disabled for the
connection.

User response: Increase above the line storage
resources for the CICS region.

501068E Channel exit definition missing

Explanation: During channel activation, the channel is
defined as having exit parameters defined, but these
definitions cannot be found.

System action: Channel is terminated.

User response: Check the channel definition and it's
exit parameters.

109000E Action not authorized

Explanation: NOAUTH condition flagged by CICS
when a resource security check has failed, or MQ
security is active and an operation was attempted for
an unauthorized user.

102091E • 109000E

Appendix G. System messages 1043

System action: The request is terminated
unsuccessfully.

User response: Review security mechanism and logs.

300000E Action not supported

Explanation: Start/stop queue request started with
invalid data.

System action: Terminate the request.

User response: Review application for call format and
data.

300010E Program started incorrectly

Explanation: An MQ module has been started
incorrectly.

System action: MQ module terminates.

User response: Check related MQ documentation to
ensure the correct data and data format is being passed
to the MQ module.

300020E Master terminal or derivative incurred
map failure

Explanation: MAPFAIL condition raised in Master
Terminal panels (MQMT and its derivatives).

System action: Terminate the request.

User response: Review PPT for MAP modules
(MQM????) and fix the problem.

300030C Queue lock table is full

Explanation: Not enough queue lock entries present to
insert a new entry.

System action: Terminate the request.

User response: Review application for multiple
message retrieval without a SYNCPOINT. If no
application problem is present then increase queue lock
count to higher value. Note this value is used to
calculate an incore table, so caution should be used.

301000C Expected record is missing

Explanation: An expected message was found
missing. This is normally occurs under a Delete
request.

System action: Terminate the request.

User response: Restart the application.

301010E Duplicate record detected

Explanation: An duplicate message was found. This is
normally occurs under a PUT condition.

System action: Terminate the request.

User response: Restart the application.

309010E Queue checkpoint record missing

Explanation: A checkpoint of a Queue was requested
and no checkpoint record was found on this queue.

System action: Terminate the request.

User response: Re-initialize system and restart the
application.

400000E Internal operation not recognized

Explanation: A call to an MQ module requests an
operation that is not recognized.

System action: Terminate the request.

User response: If the MQ module is called by an
application, check that the correct data and data format
is passed to the MQ module. Otherwise, check that
WebSphere MQ has been installed correctly.

400001E Program started with incorrect data
length

Explanation: A call to an MQ module passed data that
did not match the expected length.

System action: Terminate the request.

User response: If the MQ module is called by an
application, check that the correct data and data format
is passed to the MQ module. Otherwise, check that
WebSphere MQ has been installed correctly, or, if
maintenance has been recently applied, check that the
maintenance has been applied correctly.

400002E Program started with incorrect data

Explanation: A call to an MQ module passed data that
was not recognized, or was not in an expected format.

System action: Terminate the request.

User response: If the MQ module is called by an
application, check that the correct data and data format
is passed to the MQ module. Otherwise, check that
WebSphere MQ has been installed correctly, or, if
maintenance has been recently applied, check that the
maintenance has been applied correctly.

400003E Internal call generated bad return code

Explanation: A call to an MQ internal module
produced an unexpected return code.

System action: Terminate the request.

User response: Check the System Log for related error
messages. Also check the z/VSE console and CICS logs
for possible related error messages.

300000E • 400003E

1044 WebSphere MQ for z/VSE System Management Guide

400010E Internal data corruption

Explanation: Internal MOVE of data has found
corrupt data.

System action: Terminate the request.

User response: Examine any prior messages for actual
problem.

402000C Internal data structure missing

Explanation: An internal data structure was not
initialized or has been deleted.

System action: Terminate the request.

User response: Check that the queue manager has not
been stopped while MQ applications are active. If the
queue manager is active, stop and restart the system. If
this problem persists, contact WMQ for z/VSE support.

402090C Internal data structure invalid

Explanation: An internal data structure did not
contain data as expected.

System action: Terminate the request.

User response: For an application program, check that
a valid HCONN parameter is passed in all MQI calls.
Otherwise, stop and restart the queue manager. If this
problem persists, contact WMQ for z/VSE support.

501001E Channel free error

Explanation: (Reserved)

501002E Channel EIB error

Explanation: (Reserved)

501003E Channel closed by remote MCA

Explanation: The remote MCA closed the channel due
to an error on the remote system.

System action: Fatal error - Communication is
terminated.

User response: This message indicates the general
cause of the channel closure. Error logs on the remote
system should be examined for additional information.
When the cause has been rectified, the channel can be
restarted.

501004E Channel allocation error

Explanation: (Reserved)

501005E Channel allocate retry error

Explanation: (Reserved)

501006E Channel connect error

Explanation: An attempt to connect a channel failed.

System action: Fatal error - Communication is
terminated.

User response: Check that the channel being
connected is correctly defined on both the local and
remote MQ systems, and that the channel is defined
with the correct channel type.

501008E Channel send error

Explanation: RECEIVER issued a SEND command
and its

System action: Fatal error - Communication is
terminated.

User response:

1. Review System Log or error TD Queue for
messages prior to this message. TRM in the error
message contains the EIBTRMID which is the
principal facility associated with this error. Locate
any messages associated with this principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They
contain information about the cause of the problem.
Refer to the CICS/ESA Application Programming
Reference manual for an explanation of these
values.

3. Correct problem and restart communication.

501009E Receiver responded with error

Explanation: The Sender MCA received an error
response from a remote Receiver MCA.

System action: Fatal error - Communication is
terminated.

User response: Review the error reason code to
determine the reason of the error response and restart
the communication after correction. Also check error
logs on remote system for additional information.

501010E Channel issued invalid response type

Explanation: Unsupported Message Segment Type
received.

System action: Fatal error - Communication is
terminated.

User response: Review the Segment type and restart
communication without the problem type.

400010E • 501010E

Appendix G. System messages 1045

501011E Channel response MSN error

Explanation: (Reserved)

501012E Channel response indicates fatal error

Explanation: (Reserved)

501013I Channel re-negotiation

Explanation: The Receiver MCA has rejected a channel
parameter during activation, and has requested that the
remote MCA provide a different parameter value.

System action: Reject this proposal and continue with
channel negotiation.

User response: No action is needed unless remote
platform can not provide an acceptable channel
parameter. If this happens then the conflicting
parameter must be changed on this or the remote
platform.

501014W Channel detected unknown integer
encoding

Explanation: The Receiver MCA received an integer
encoding parameter of an unknown type.

System action: Channel communication continues.

User response: Check for error messages on the
remote system and take action as necessary.

501015W Channel received invalid transmission
header

Explanation: The Message Channel Agent received
data that was not prepended with expected MCA data
structures.

System action: Channel communication continues.

User response: Check for errors on the remote system
and take action as necessary.

501016W Unsupported Coded Character Set ID
(CCSID)

Explanation: The Message Channel Agent received a
request to use a CCSID that is unknown to the queue
manager.

System action: Remote system can try a different
CCSID or terminate the channel.

User response: Define the CCSID to the local queue
manager, or configure the remote system to use a
known CCSID.

501017W Channel received invalid message
segment header

Explanation: The Receiver MCA received data that did
not have the embedded data structures that it expected.

System action: Channel communication is terminated.

User response: Check for errors on the remote system
and take action as necessary.

501018W Channel received invalid transmission
queue header

Explanation: The Receiver MCA received data that did
not have the embedded data structures that it expected.

System action: Channel communication is terminated.

User response: Check for errors on the remote system
and take action as necessary.

501019W Channel initiation failed

Explanation: The Receiver MCA could not initiate a
channel.

System action: Channel communication is terminated.

User response: Check for errors on the remote system
and take action as necessary.

501020W Unsupported FAP level

Explanation: In establishing a channel connection, a
remote MQ system is attempting to use a protocol level
that is not recognized by the local queue manager.

System action: Channel activation continues.

User response: The channel activation process should
negotiate a protocol level that is acceptable to both
queue managers.

501021W Message size too large

Explanation: During channel negotiation, a maximum
message size was requested, but was too large for one
of the queue managers.

System action: Channel negotiation continues.

User response: If channel activation fails, change the
channel definition to use a smaller maximum message
size.

501022W Message wrap mismatch

Explanation: During channel negotiation, a wrap
sequence number was requested, but did not match the
wrap value in the associated channel definition.

System action: Channel negotiation continues.

User response: If channel activation fails, ensure that

501011E • 501022W

1046 WebSphere MQ for z/VSE System Management Guide

sender and receiver channel pairs use the same wrap
sequence value.

501023E Undeliverable message lost

Explanation: An attempt to place an undeliverable
message to the system dead letter queue failed because
the dead letter queue was unavailable or the queue
manager was inactive.

System action: Process is terminated.

User response: Check that the system dead letter
queue is correctly defined and available. Determine the
intended target queue for the message from the channel
status, and verify that the target queue is correct and
available. Recreate the lost message if necessary.

501024E Queue manager unavailable for
communication

Explanation: A channel cannot be established because
one of the queue managers is unavailable.

System action: Process or communication is
terminated.

User response:

1. Check local queue manager and if necessary
initialize using MQIT or MQMT.

2. Check the queue manager is active on the remote
system.

501025E Unknown inbound channel name

Explanation: The communication cannot be
established because the channel name received from the
remote system is not defined locally.

System action: This communication session is
terminated.

User response: Check the channel name to see if it is
correct. Define this in the local definitions or correct the
remote system as necessary.

501026E Unknown outbound channel name

Explanation: The channel specified is not available on
the remote platform.

System action: This communication session is
terminated.

User response: Check on the remote system to see
why the channel is not available and define it if
necessary.

501027E Channel busy or stopped

Explanation: An attempt was made to use a channel
that is already in use, or has been stopped.

System action: Fatal error - Communication is
terminated.

User response:

1. Retry the channel later.

2. Start the channel for immediate use.

501028W Channel re-synchronization error

Explanation: During channel activation, the Receiver
MCA detected that the requested message sequence
number did not match the expected value.

System action: Channel activation continues.

User response: If the channel will not start, verify that
expected messages have been sent/received, and
manually reset the MSN for both the sender and the
receiver channels.

501029E Channel unavailable for use

Explanation: An attempt was made to use a channel
that is currently unavailable.

System action: The MCA is terminated without
further action.

User response: Check the Enable flag in the channel
definition and ensure that it is set to 'Y'. Enable the
channel or disable the transmission to prevent
unnecessary log messages.

501030E Transmission length error

Explanation: The Receiver MCA has detected a
mismatch between an explicit data length and the
length of data received over an active connection.

1. The length of the application portion of the message
specified in the header exceeds the maximum
length defined for this channel.

2. The length of the application portion of the message
received is not equal to the length specified in the
header.

System action: Fatal error - Communication is
terminated.

User response: For reason #1:

1. Review the MAX STA LEN and the MES LEN in the
detail portion of the message.

2. Check the configuration of the Receiver channel to
insure the maximum message size is set up
correctly.

3. Check the configuration of the Sender.

4. Reconfigure if necessary and restart communication.

For reason #2:

1. Review the HEAD MES LEN and the REC LEN in
the detail portion of the message.

501023E • 501030E

Appendix G. System messages 1047

2. Proper running should preclude this occurrence.
Investigate sender/server process for program error.

3. Correct problem and restart communication.

501031W Messages per batch too large

Explanation: During channel negotiation, a messages
per batch value was requested, but was too large for
one of the queue managers.

System action: Channel negotiation continues.

User response: If channel activation fails, change the
channel definition to use a smaller batch size.

501032W Maximum transmission size too large

Explanation: During channel negotiation, a maximum
transmission size was requested, but was too large for
one of the queue managers.

System action: Channel negotiation continues.

User response: If channel activation fails, change the
channel definition to use a smaller transmission size.

501050I Message sequence number has been
reset

Explanation: During channel activation, the Receiver
MCA has detected that the message sequence number
has been manually reset.

System action: Channel negotiation continues if the
MSN is valid.

User response: If the channel does not start, manually
reset the channel MSN to match the remote system.
Care should be taken that expected messages have been
transmitted, and transmitted messages are not
duplicated by being resent.

501060E Unexpected or invalid channel security
exit exchange

Explanation: During channel activation, a channel
security exit has been activated that returned an error
return code or did not receive an expected security
exchange from the remote system.

System action: Channel is terminated.

User response: Ensure that the correct exit programs
are configured to run at either end of the channel.
Ensure that the security requirements for the channel
are met before restarting the channel.

501061E Channel security exit program missing
or unavailable

Explanation: During channel activation, the
initialization of a channel security exit program failed
because it was unavailable to the CICS region.

System action: Channel is terminated.

User response: Ensure that the correct exit program is
specified in the channel definition. Check that the
program is defined to CICS and enabled.

501062E Unexpected or invalid channel message
exit response

Explanation: During channel processing, a channel
message exit returned an invalid response, or a request
to terminate the channel.

System action: Channel is terminated.

User response: Ensure that the correct exit programs
are configured to run at either end of the channel.
Determine the reason for the message exit response and
correct.

501063E Channel message exit program missing
or unavailable

Explanation: During channel activation, the
initialization of a channel message exit program failed
because it was unavailable to the CICS region.

System action: Channel is terminated.

User response: Ensure that the correct exit program is
specified in the channel definition. Check that the
program is defined to CICS and enabled.

501064E Unexpected or invalid channel send exit
response

Explanation: During channel processing, a channel
send exit returned an invalid response, or a request to
terminate the channel.

System action: Channel is terminated.

User response: Ensure that the correct exit programs
are configured to run at either end of the channel.
Determine the reason for the send exit response and
correct.

501065E Channel send exit program missing or
unavailable

Explanation: During channel activation, the
initialization of a channel send exit program failed
because it was unavailable to the CICS region.

System action: Channel is terminated.

User response: Ensure that the correct exit program is
specified in the channel definition. Check that the
program is defined to CICS and enabled.

501031W • 501065E

1048 WebSphere MQ for z/VSE System Management Guide

501066E Unexpected or invalid channel receive
exit response

Explanation: During channel processing, a channel
receive exit returned an invalid response, or a request
to terminate the channel.

System action: Channel is terminated.

User response: Ensure that the correct exit programs
are configured to run at either end of the channel.
Determine the reason for the receive exit response and
correct.

501067E Channel receive exit program missing or
unavailable

Explanation: During channel activation, the
initialization of a channel receive exit program failed
because it was unavailable to the CICS region.

System action: Channel is terminated.

User response: Ensure that the correct exit program is
specified in the channel definition. Check that the
program is defined to CICS and enabled.

501070E Channel exit returned invalid data
length

Explanation: A channel exit returned a data length
greater than the maximum transmission length.

System action: Channel is terminated.

User response: Check channel exit logic and ensure
that the data length returned by the exit does not
exceed the maximum transmission length.

501071E Channel exit returned bad exit buffer
address

Explanation: A channel exit returned a response code
to use an exit buffer, but the exit buffer address was
not valid.

System action: Channel is terminated.

User response: Check channel exit logic and ensure
that the exit buffer address is valid when the response
code indicates its use is required.

501072E Channel exit modified MCA
transmission header

Explanation: A send or receive channel exit modified
the first 8 bytes of the transmission data.

System action: Channel is terminated.

User response: Check channel exit logic and ensure
that the exit does not modify the first 8 bytes of the
transmission data.

501073E Unexpected or invalid channel exit
response

Explanation: During channel processing, a channel
exit returned an invalid response, or a request to
terminate the channel.

System action: Channel is terminated.

User response: Ensure that the correct exit programs
are configured to run at either end of the channel.
Determine the reason for the message exit response and
correct.

501074E Channel exit error

Explanation: During channel processing, a channel
exit returned an invalid response, or an invalid or
unexpected data exchange occurred.

System action: Channel is terminated.

User response: Ensure that the correct exit programs
are configured to run at either end of the channel.
Determine the reason for the exit error and correct.

501075E Channel exit data length error

Explanation: During channel processing, a channel
exit indicated that data was available for transmission,
but the data length was zero.

System action: Channel is terminated.

User response: Ensure that the exit program sets the
data length in accordance with data to be transmitted.

501076W Channel terminated by exit

Explanation: During channel processing, a channel
exit indicated that the channel should be closed.

System action: Channel is terminated.

User response: Check that the exits associated with
the channel are operating correctly. If so, determine the
reason for the exit response and correct.

501077E Security exchange not received

Explanation: During channel processing, a channel
security exit expected a security exchange but did not
receive one.

System action: Channel is terminated.

User response: Check that the exits associated with
the channel are operating correctly. If so, determine the
reason for the exit response and correct.

501066E • 501077E

Appendix G. System messages 1049

501078E Channel exit program missing or
unavailable

Explanation: During channel processing, the activation
of a channel exit program failed because it was
unavailable to the CICS region.

System action: Channel is terminated.

User response: Ensure that the correct exit program is
specified in the channel definition. Check that the
program is defined to CICS and enabled.

501080E Channel defined with invalid
transmission queue

Explanation: An attempt to start a sender or server
channel failed because the channel definition does not
name a valid transmission queue.

System action: Channel is terminated.

User response: Correct the channel definition so that
it names a valid transmission queue.

600001C Prog: xxxxxxxx Error detected. Contact
Support.

Explanation: CICS has detected an error condition not
handled by a specific routine.

Operator action: Report to IBM

System action: The dialog was ended.

600005C Prog: xxxxxxxx ABEND Code zzzz
Contact Support.

Explanation: The program ended due to a CICS
problem and the ABEND code zzzz was returned to a
HANDLE ABEND routine.

Operator action: Report to IBM

System action: The dialog was ended.

600007C Prog: xxxxxxxx File: yyyyyyy Not Found.
Contact Support.

Explanation: A request has been issued against the file
yyyyyyyy, but it was not defined in the FCT

Operator action: Contact your system administrator
and check whether all WebSphere MQ files were
defined in the CICS File Control Table (FCT), and
physically allocated by VSAM.

System action: The dialog was ended.

600009C Prog: xxxxxxxx File: yyyyyyy
DISABLED. Contact Support.

Explanation: CICS tried to access the file yyyyyyy
which was not enabled.

Operator action: Use “CEMT S DATA” to set the file

ENABLED. If the DISABLED status persists, check with
the System Administrator.

System action: The dialog was ended.

600011C Prog: xxxxxxxx File: yyyyyyy ILLOGIC
error. Contact Support.

Explanation: Usually this is related to file input and
output. This condition is returned by CICS when the
error does not fall within one of the other CICS
response categories.

Operator action: Report to IBM

System action: The dialog was ended.

600017C Prog: xxxxxxxx File: yyyyyyy I/O error.
Contact Support.

Explanation: Normally this is due to hardware errors.

Operator action: Check the System console for more
details.

System action: The dialog was ended.

600019C Prog: xxxxxxxx File: yyyyyyy Record not
found. Contact Support.

Explanation: The program tried to read a record but
the request failed.

Operator action: Report to IBM.

System action: The dialog was ended.

600021C Prog: xxxxxxxx File: yyyyyyy is not
open. Contact Support.

Explanation: CICS tried to access a file which had not
been opened, and was unable to open it. This can
happen when the file is already in use by another
partition.

Operator action: Use “CEMT I DATA” and try to
open it manually.

System action: The dialog was ended.

600023C Prog: xxxxxxxx INVREQ error Contact
Support.

Explanation: A request was received by CICS and
cannot be processed for various reasons.

Operator action: Report to IBM

System action: The dialog was ended.

600025C Prog: xxxxxxxx MAPFAIL error Contact
Support.

Explanation: CICS was unable to display a BMS map
on the terminal.

501078E • 600025C

1050 WebSphere MQ for z/VSE System Management Guide

Operator action: Report to IBM

System action: The dialog was ended.

600027C Prog: xxxxxxxx TRANSID error Contact
Support.

Explanation: WebSphere MQ tried to initiate a
transaction, but this transaction was not found in the
CICS tables.

Operator action: This is probably an installation error.
Check whether the WebSphere MQ group has been
correctly installed in the DFHCSD file, and activated.
Use CEMT I TRAN(MQ*) to verify this. If everything
appears to be correct, report the problem to IBM.

System action: The dialog was ended.

800000E Unexpected CICS condition

Explanation: An MQ module trapped a generically
handled error condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason.

800010E Unexpected CICS INVREQ condition
raised

Explanation: An MQ module trapped a CICS INVREQ
condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason.

800011C Unexpected CICS ILLOGIC condition
raised

Explanation: An MQ module trapped a CICS
ILLOGIC condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason.

800090E Checkpoint processing failed

Explanation: A general error occurred while
processing the checkpoint record of a Queue file.

System action: Terminate the request.

User response: Use LISTCAT to review the VSAM file
containing this Queue file.

800099E CICS abnormal end condition

Explanation: An MQ module trapped a CICS ABEND
condition.

System action: Terminate the request.

User response: Perform normal CICS application
abend analysis to determine the cause of the abend.

801012E Unexpected CICS NOTOPEN condition
raised

Explanation: An MQ module trapped a CICS
NOTOPEN condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason.

801019E Unexpected CICS DISABLE condition
raised

Explanation: An MQ module trapped a CICS
DISABLE condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason.

802000C Unexpected CICS NOSTG condition
raised

Explanation: An MQ module trapped a CICS NOSTG
condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason, and

1. check that you have not overestimated the
maximum size of messages in queue and channel
definitions

2. if you have large message sizes then increase the
amount of 31-bit storage in the partition that CICS
is running

803001C Unexpected CICS LENGERR condition
raised

Explanation: An MQ module trapped a CICS
LENGERR condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason. Check that MQ is installed correctly and that
recent maintenance has been applied correctly.

600027C • 803001C

Appendix G. System messages 1051

808000C Unexpected CICS MAPFAIL condition
raised

Explanation: An MQ module trapped a CICS
MAPFAIL condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason. Check that MQ is installed correctly and that
recent maintenance has been applied correctly.

809000C Unexpected CICS PGMIDERR condition
raised

Explanation: An MQ module trapped a CICS
PGMIDERR condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason. Check that MQ is installed correctly and that
recent maintenance has been applied correctly. If the
error is caused by a trigger event, check that the trigger
program is defined to CICS.

809010C Unexpected CICS FILEID condition
raised

Explanation: An MQ module trapped a CICS FILEID
condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason. Check that MQ is installed correctly and that
recent maintenance has been applied correctly.

809011C Unexpected CICS FILENOTFOUND
condition raised

Explanation: An MQ module trapped a CICS
FILENOTFOUND condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason. Check that MQ is installed correctly and that
recent maintenance has been applied correctly.

809012C Unexpected CICS IOERR condition
raised

Explanation: An MQ module trapped a CICS IOERR
condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason. Check that MQ is installed correctly and that
recent maintenance has been applied correctly.

809050C Unexpected CICS TRANIDERR
condition raised

Explanation: An MQ module trapped a CICS
TRANIDERR condition.

System action: Terminate the request.

User response: Produce a CICS auxiliary trace to
determine the CICS command failure and the error
reason. Check that MQ is installed correctly and that
recent maintenance has been applied correctly. If the
error is caused by a trigger event, check that the trigger
transaction and its associated program are defined to
CICS.

900000C Queue manager environment missing or
invalid

Explanation: An attempt to use queue manager
services was made without the system environment
being established.

System action: Terminate the request.

User response: Run transaction MQSE to establish the
queue manager environment. If the environment exists,
check that MQ is installed correctly and that recent
maintenance has been applied correctly.

Console Messages
The following messages may be generated by WebSphere MQ and displayed on
the z/VSE console during normal operation.

MQI0010I WMQ for z/VSE environment
initializing.

MQI0037W CICS SIT parameters may restrict
number of WMQ MCA or WMQ Client
connections.

808000C • MQI0037W

1052 WebSphere MQ for z/VSE System Management Guide

Batch Interface Console Messages
The following message may be generated by the WebSphere MQ batch interface, or
WebSphere MQ batch applications. For all messages, the symbol 'mqintfid' is
replaced by the batch interface identifier of the queue manager.

Messages MQB0001E to MQB0013E come from WebSphere MQ batch applications.
Messages MQI0100I to MQI0110W come from the WebSphere MQ batch interface.

MQB0001E MQS Batch Interface (mqintfid) XPCC
error RETC(rc) REAS(re)

Explanation: An XPCC operation failed when an MQI
batch application issued an MQI call. The XPCC call
issued returned code 'rc' and reason code 're'.

Operator response: Check that the WebSphere MQ
batch interface is running in the CICS region that hosts
WebSphere MQ. Review z/VSE System Macro
documentation for descriptions of the XPCC return and
reason codes.

MQB0008E MQS Batch Interface (mqintfid) XPCC
SENDR failed

Explanation: An XPCC SENDR operation failed. This
message should be accompanied by message
MQB0001E which describes the XPCC return and
reasons codes.

Operator response: Examine MQB0001E message and
follow operator action instructions.

MQB0009E MQS Batch Interface (mqintfid) XPCC
CONNECT failed

Explanation: An XPCC CONNECT operation failed.
This message should be accompanied by message
MQB0001E which describes the XPCC return and
reasons codes.

Operator response: Examine MQB0001E message and
follow operator action instructions.

MQB0010E MQS Batch Interface (mqintfid) XPCC
IDENTIFY failed

Explanation: An XPCC IDENTIFY operation failed.
This message should be accompanied by message
MQB0001E which describes the XPCC return and
reasons codes.

Operator response: Examine MQB0001E message and
follow operator action instructions.

MQB0013E MQS Batch Interface (mqintfid)
GETVIS failed

Explanation: An attempt to obtain GETVIS storage
failed.

Operator response: Increase the available GETVIS
storage for the batch partition.

MQI0100I MQS Batch Interface (mqintfid) started.

Explanation: The WebSphere MQ batch interface has
started.

Operator response: None.

MQI0101E MQS Batch Interface (mqintfid)
GETVIS failed

Explanation: The WebSphere MQ batch interface
failed to obtain sufficient GETVIS storage to start the
batch interface. Batch interface cannot be started.

Operator response: Increase the amount of 31 bit
GETVIS storage resources available to the CICS region.

MQI0102I MQS Batch Interface (mqintfid) stop
requested

Explanation: A request to stop the WebSphere MQ
batch interface has been registered.

Operator response: None.

MQI0103E MQS Batch Interface (mqintfid) userid
error

Explanation: The WebSphere MQ batch interface
cannot start a mirror transaction (MQBX) for a batch
program because the user associated with the interface
is not a surrogate for the batch user, or the user is
invalid.

Operator response: Check that the batch job includes
a valid // ID card that identifies a valid userid and
password, and that the interface user is a surrogate for
that userid.

MQI0104I MQS Batch Interface (mqintfid) ended

Explanation: The WebSphere MQ batch interface has
stopped.

Operator response: None.

MQI0105E MQS Batch Interface (mqintfid)
abending

Explanation: The WebSphere MQ batch interface has
encountered an abend condition and is terminating.

Operator response: Wait for the interface to abend,

MQB0001E • MQI0105E

Appendix G. System messages 1053

check accompanying console messages. Examine
relevant dumps.

MQI0107E MQS Batch Interface (mqintfid) init
failed

Explanation: The WebSphere MQ batch interface
could not establish an XPCC identity for batch
connections.

Operator response: Check that the queue manager is
configured with a valid batch interface identifier.

MQI0108I MQS Batch Interface (mqintfid) system
inactive

Explanation: An attempt to start the WebSphere MQ
batch interface was made when the WebSphere MQ
queue manager was inactive.

Operator response: Start the WebSphere MQ queue

manager before starting the batch interface.

MQI0109I MQS Batch Interface (mqintfid) not
started

Explanation: An attempt to stop the WebSphere MQ
batch interface was made when the interface was not
active.

Operator response: None.

MQI0110W MQS Batch Interface (mqintfid)
GETVIS failed

Explanation: The WebSphere MQ batch interface
failed to obtain sufficient GETVIS storage to handle the
next batch job connecting while current batch job(s) are
active.

Operator response: Increase the amount of 31 bit
GETVIS storage resources available to the CICS region.

Automatic reorganization console messages
Messages prefixed by “MQPVSAM:” are only displayed when an error occurs.
Refer to the MQ SYSTEM.LOG for more details.

The WMQ for z/VSE automatic reorganization feature can also generate the follow
message:

MQPIDCMS Insufficient below line GETVIS for
reorg

Explanation: There is not enough GETVIS-24 to
perform the automatic reorganization.

Operator action: Refer to CICS system programmer to
allocate more GETVIS-24 to this partition.

System action: The automatic reorganization is not
performed.

MQI0107E • MQPIDCMS

1054 WebSphere MQ for z/VSE System Management Guide

Appendix H. Security implementation

This appendix provides a sample security configuration. The sample includes
configuration for:
v WebSphere MQ datasets
v WebSphere MQ transactions
v WebSphere MQ system users
v Application users
v Connections
v Queues
v Namelists
v Batch users
v Clients
v Commands
v Command resources
v WebSphere MQ startup
v WebSphere MQ shutdown

The examples in this appendix use CA-Top Secret as the External Security Manager
(ESM), or the Basic Security Manager (BSM) when the queue manager is running
on z/VSE 4.3 or later system.

Note: The examples in this appendix are only a sample security configuration, and
are not intended to define how you should secure your VSE or CICS TS systems.

Before you install
Before installation, you need to make several decisions regarding security. The first
is whether to install security or not. If you do want to install security, as this
appendix assumes, you need to:
v Modify the MQCICDCT sample JCL.
v Modify the SYSIN installation parameter file.

These two steps are described in Chapter 2, “Installation,” on page 13.

The MQCICDCT.A sample DCT definition file must be modified if you want a user
other than the CICS default user to log messages to the SYSTEM.LOG or manage
message expiry. Remember that logging messages requires CONNECT and QUEUE
authority, and message expiry involves CONNECT and authority to put messages
to reply queues.

In addition, the generation of instrumentation events requires that the IE processor
transaction triggered by requests arriving on the MQIE transient data queue
require CONNECT and OPEN access for the event queues.

This example uses a user (MQADMUSR) other than the CICS default user. The
DCT definitions should be changed as follows:

MQER DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQER,
DESTFAC=FILE,
USERID=MQADMUSR, <--- Note insertion
TRANSID=MQER,

© Copyright IBM Corp. 2008, 2013 1055

TRIGLEV=1
MQXP DFHDCT TYPE=INTRA,

RSL=PUBLIC,
DESTID=MQXP,
DESTFAC=FILE,
USERID=MQADMUSR, <---Note insertion
TRANSID=MQXP,
TRIGLEV=1

MQIE DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQIE,
DESTFAC=FILE,
USERID=MQADMUSR, <---Note insertion
TRANSID=MQIE,
TRIGLEV=1

MQAC DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQAC,
DESTFAC=FILE,
USERID=MQADMUSR, <--- Note insertion
TRANSID=MQAC,
TRIGLEV=1

If using BSM, these surrogate definitions are required where cicsjob is the userid on
the CICS job // ID statement:

ADD SURROGAT MQADMUSR.DFHINSTL UACC(NONE)
PERMIT SURROGAT MQADMUSR.DFHINSTL ID(cicsjob) ACCESS(READ)

In addition, this surrogate should be defined for the default CICS userid
(CICSUSER in example below):

ADD SURROGAT CICSUSER.DFHINSTL UACC(NONE)
PERMIT SURROGAT CICSUSER.DFHINSTL ID(cicsjob) ACCESS(READ)

The SYSIN.Z installation configuration file contains default settings for security,
where the default is DISABLED. You must change this default to ENABLED before
installation. However, you cannot do this until you have installed the WebSphere
MQ library from tape. With the PTF for PM02556 applied, you can either edit the
SYSIN.Z member or simply use the new SET input statement to override the data
from the SYSIN.Z member which follows the SET input.

The relevant entries in the SYSIN parameter file follow the QMDEF heading and
should be changed from:

QM-STATUS-SECURITY DISABLED
QM-AUDIT-SECURITY DISABLED

To:
QM-STATUS-SECURITY ENABLED
QM-AUDIT-SECURITY ENABLED

Note that the AUDIT parameter is not implemented in Version 3.0.0, but is
reserved for future expansion. It is enabled in this example for consistency.

The configuration file can either be updated by running the MQJSETUP job and
then the CICS transaction MQSU, or by using the UPDATE function of the batch
MQPUTIL program. See example below.

In addition, WebSphere MQ for z/VSE security uses the queue manager's
subsystem identifier (SSID) when building resource profiles to check permissions.
For example:

Before you install

1056 WebSphere MQ for z/VSE System Management Guide

ssid.resource_name

The SSID is also listed as one of the QMDEF default values. Specifically:
QM-SUBSYSID MQV1

You should set the identifier to a 4-character value that uniquely identifies you
queue manager. If you set the SSID to blanks (spaces), the queue manager name is
used instead of the SSID when checking resource profiles.

You can change your SSID after installation if necessary by changing the SYSIN.Z
installation file to have the QM-SUBSYSID value you require, and then rerun the
MQJSETUP.Z job followed by the MQSU transaction in CICS.

Again with the PTF for PM02556 applied, you can also specify SET QM-SUBSYSID
xxxx before the SYSIN.Z statements to override the default MQV1 value without
having to edit the SYSIN.Z member.

For example, the JCL shown here overrides the SYSIN,Z member value in
MQJSETUP:

// DLBL LOADFL,’wmqzvse.msfsset’,,VSAM,CAT=VSESPUC
// EXEC IESVSMLD,SIZE=AUTO
80,E,LOADFL
SET QM-STATUS-SECURITY ENABLED
SET QM-AUDIT-SECURITY ENABLED
* $$ SLI MEM=SYSIN.Z,S=prd2.wmqzvse
/*

External security manager configuration
For WebSphere MQ security to work, certain facilities must be available with your
ESM. For CA-Top Secret, you need to ensure these settings exist in the system
parameter file:

FACILITY(CICSPROD=MODE=FAIL)
FACILITY(CICSPROD=FACMATRX=YES)
FACILITY(CICSPROD=EXTSEC=YES)
FACILITY(CICSPROD=XFCT=YES)
FACILITY(CICSPROD=XDEF)
FACILITY(CICSPROD=XUSER=YES)
FACILITY(CICSPROD=RES)

These parameters assume that the facility of the WebSphere MQ CICS region will
be CICSPROD. If you are using CICSTEST, or a different facility, you should make
the appropriate changes to the parameter file.

The CICSPROD=RES parameter ensures the standard WebSphere MQ classes are
available. If you change the parameter file, you also need to stop and restart your
CA-Top Secret system.

Basic Security Manager (BSM) configuration
If you are running on z/VSE 4.3 or later, then you can use BSM for WebSphere
MQ security.

Running following batch BSTADMIN STATUS job
// JOB MQBSM000
// ID USER=FORSEC,PWD=FORSEC
// DLBL BSTCNTL,’VSE.BSTCNTL.FILE’,,VSAM,CAT=VSESPUC

Before you install

Appendix H. Security implementation 1057

// EXEC BSTADMIN,OS390
STATUS
/*
/&

reports
// JOB MQBSM000
// DLBL BSTCNTL,’VSE.BSTCNTL.FILE’,,VSAM,CAT=VSESPUC
// EXEC BSTADMIN,OS390
1S54I PHASE BSTADMIN IS TO BE FETCHED FROM IJSYSRS.SYSLIB
STATUS
CLASS ACTIVE CMDAUDIT
----- ------ --------
USER YES NO
GROUP YES NO
DATASET YES NO
VSELIB YES NO
VSESLIB YES NO
VSEMEM YES NO
TCICSTRN YES NO
ACICSPCT YES NO
DCICSDCT YES NO
FCICSFCT YES NO
JCICSJCT YES NO
MCICSPPT YES NO
SCICSTST YES NO
APPL YES NO
FACILITY YES NO
MQADMIN NO NO
MQCMDS NO NO
MQCONN NO NO
MQNLIST NO NO
MQQUEUE NO NO
SURROGAT NO NO

You should run a BSTADMIN job to set the WebSphere MQ classes MQADMIN
MQCMDS MQCONN MQNLIST MQQUEUE and SURROGAT active.

CICS should also be started with XUSER=YES if SURROGAT class is to be active.

System and application users
This example uses the following system users:

CICSP1
CICS region user

CICSP1DF
CICS default user

MQM Owner of all WebSphere MQ resources

MQADMUSR
WebSphere MQ Startup and Administrative user

The example also uses the following application users:

JOHNS
Application user

JANED
Application user

Basic Security Manager (BSM) configuration

1058 WebSphere MQ for z/VSE System Management Guide

SHELLYS
Client user

STEVEJ
Batch user

To create these users, you might use the following TSS commands:
-- CICS & MQ Departments
TSS CREATE(CICSP1G) NAME(’CICSP1 GROUP’) TYPE(DEPARTMENT)
TSS CREATE(MQ) NAME(’WebSphere MQ 3.0.0 GROUP’) TYPE(DEPARTMENT)

-- CICS System Users
TSS CREATE(CICSP1) NAME(’CICSP1 REGION’) TYPE(USER) FAC(BATCH) +

DEPT(CICSP1G) PAS(P1CICS,0) +
MASTFAC(CICSPROD) NORESCHK NOLCFCHK NODSNCHK

TSS CREATE(CICSP1DF) NAME(’CICSP1 DEFAULT USER’) TYPE(USER) +
DEPT(CICSP1G) PAS(NOPW,0) FAC(CICSPROD)

-- MQ System Users
TSS CREATE(MQM) NAME(’MQM OWNER’) TYPE(USER) +

DEPT(MQ) PAS(MQSER1ES,0) FAC(CICSPROD)
TSS CREATE(MQADMUSR) NAME(’WebSphere MQ ADMIN USER’) TYPE(USER) +

DEPT(CICSP1G) PAS(ADM1N,0) FAC(CICSPROD)

-- MQ Application Users
TSS CREATE(JOHNS) NAME(’JOHN SMITH’) TYPE(USER) +

DEPT(MQ) PAS(SM1TH,0) FAC(CICSPROD)
TSS CREATE(JANED) NAME(’JANE DOE’) TYPE(USER) +

DEPT(MQ) PAS(D0E,0) FAC(CICSPROD)
TSS CREATE(SHELLYS) NAME(’SHELLY SIMPSON’) TYPE(USER) +

DEPT(MQ) PAS(SIMPS0N,0) FAC(CICSPROD)
TSS CREATE(STEVEJ) NAME(’STEVEN JONES’) TYPE(USER) +

DEPT(MQ) PAS(J0NES,0) FAC(BATCH,CICSPROD)

For BSM define user with user type Programmer or General. Do not use
Administrator as this type is allowed access to all resources. Define a group WMQ
and CONNECT the users to this group.

For example, to define a group and connect users to it, use these BSTADMIN
commands:

ADDGROUP MQ DATA(’WebSphere MQ user’)
CONNECT MQ JOHNS
CONNECT MQ JANED

CONNECT MQ SHELLYS
CONNECT MQ STEVEJ

* Activate the changes of the BSM control file
PERFORM DATASPACE REFRESH

WebSphere MQ datasets
Before you start up your CICS and WebSphere MQ systems, you should consider
WebSphere MQ dataset security. There is little point in protecting WebSphere MQ
resources, but then allowing unrestricted access to the WebSphere MQ datasets in
which such objects reside.

To protect your datasets in CICS, assuming they use the default names provided
with the sample JCL, you could use the following TSS commands:

-- Assign ownership
TSS ADD(MQM) FCT(MQFCNFG)
TSS ADD(MQM) FCT(MQFLOG)
TSS ADD(MQM) FCT(MQFMON)
TSS ADD(MQM) FCT(MQFERR)

System and application users

Appendix H. Security implementation 1059

TSS ADD(MQM) FCT(MQFREOR)
TSS ADD(MQM) FCT(MQFSSET)
TSS ADD(MQM) FCT(MQFI001)
TSS ADD(MQM) FCT(MQFI002)
TSS ADD(MQM) FCT(MQFI003)
TSS ADD(MQM) FCT(MQFO001)
TSS ADD(MQM) FCT(MQFO002)
TSS ADD(MQM) FCT(MQFO003)

-- Assign permissions to Admin user
TSS PER(MQADMUSR) FCT(MQFCNFG) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFLOG) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFMON) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFERR) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFREOR) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFSSET) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFI001) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFI002) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFI003) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFO001) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFO002) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFO003) ACC(ALL)

The equivalent BSM BSTADMIN commands are:
ADD FCICSFCT MQFSSET UACC(NONE)
ADD FCICSFCT MQFCNFG UACC(NONE)
ADD FCICSFCT MQFACMD UACC(NONE)
ADD FCICSFCT MQFARPY UACC(NONE)
ADD FCICSFCT MQFIECE UACC(NONE)
ADD FCICSFCT MQFIEPE UACC(NONE)
ADD FCICSFCT MQFIEQE UACC(NONE)
ADD FCICSFCT MQFERR UACC(NONE)
ADD FCICSFCT MQFLOG UACC(NONE)
ADD FCICSFCT MQFMON UACC(NONE)
ADD FCICSFCT MQFREOR UACC(NONE)
ADD FCICSFCT MQFI001 UACC(NONE)
ADD FCICSFCT MQFI002 UACC(NONE)
ADD FCICSFCT MQFI003 UACC(NONE)
ADD FCICSFCT MQFO001 UACC(NONE)
ADD FCICSFCT MQFO002 UACC(NONE)
ADD FCICSFCT MQFO003 UACC(NONE)

Set DFHSIT parameter XFCT=YES to protect the files defined above in resource
class FCICSFCT.

If the Programmable Command Formats (PCF) and WebSphere MQ Command
(MQSC) features are required, the following datasets should also be protected:

TSS PER(MQADMUSR) FCT(MQFACMD) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFARPY) ACC(ALL)

Similarly, if the Instrumentation Events feature is required, the following datasets
should also be protected:

TSS PER(MQADMUSR) FCT(MQFIEQE) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFIECE) ACC(ALL)
TSS PER(MQADMUSR) FCT(MQFIEPE) ACC(ALL)

At this point, because the facilities matrix for CICSPROD has XFCT= YES, no users
other than MQM and MQADMUSR have access to the WebSphere MQ datasets
under CICS. Appropriate permissions for other users are described later.

You should also protect your datasets outside CICS. To do this, you might use the
following:

WebSphere MQ datasets

1060 WebSphere MQ for z/VSE System Management Guide

TSS ADD(MQM) DSN(WMQZVSE)

This command establishes generic ownership of all datasets that are prefixed with
WMQZVSE.

Protecting transactions
The CICSPROD=XDEF facility matrix setting ensures that users cannot run transactions
without explicit permission. In this example, you grant full access to the
MQADMUSR user, and restricted access to application users:

TSS ADD(MQADMUSR) TRANS(CICSPROD,MQ(G),TST(G))

By default, with CA-Top Secret, transactions beginning with TS are in the
protection bypass list. Because WebSphere MQ uses TST1, TST2, and TST3
transactions, to introduce protection, you should issue the following command:

TSS MODIFY FAC(CICSPROD=PROTADD(TRANID=TST))

You should also consider protecting programs. In this example, restricting access to
transactions in CICS should be sufficient, and the protection of programs is
omitted.

Regardless of whether the WebSphere MQ transactions are protected, if security is
active, the use of the transactions should be further restricted by command and
command resource security.

Command and command resource security not only restrict the use of the
WebSphere MQ transactions, but also PCF and MQSC commands.

Resource ownership
The ESM classes that are relevant to WebSphere MQ for z/VSE are:
v MQADMIN
v MQCONN
v MQNLIST
v MQQUEUE
v MQCMDS

Resources defined to these classes must first have ownership. For this example, all
such resources will be owned by user MQM. You can assign ownership as follows:

TSS ADD(MQM) MQADMIN(MQV1)
TSS ADD(MQM) MQCONN(MQV1)
TSS ADD(MQM) MQQUEUE(MQV1)
TSS ADD(MQM) MQCMDS(MQV1)
TSS ADD(MQM) MQNLIST(MQV1)

Because these classes are generic, all resources prefixed MQV1 are owned
automatically by user MQM. At this point, no specific resources have been defined.
Appropriate user permissions for class resources are described later.

Resource protection
At this point, WebSphere MQ datasets and transactions are protected. You are now
ready to grant users access to WebSphere MQ resources. These include:
v Connections
v Queues
v Namelists

WebSphere MQ datasets

Appendix H. Security implementation 1061

This example makes the following assumptions:
v All application users have authority to connect to the WebSphere MQ queue

manager.
v Queue TEST.Q1 is defined in file MQFI001.
v Queue TEST.Q2 is defined in file MQFI002.
v Queue TEST.Q3 is defined in file MQFI003.
v Application user JOHNS requires read/write authority to all three application

queues.
v Application user JANED requires read/write authority to TEST.Q1 and TEST.Q2.
v Application user SHELLYS is a client user and requires authority to read/write

to TEST.Q3.
v Application user STEVEJ is a batch user and requires authority to browse

TEST.Q3.

To grant authority to all users to connect to the WebSphere MQ queue manager,
issue the following commands:

TSS PER(MQADMUSR) MQCONN(MQV1.CICS) ACC(READ)
TSS PER(JOHNS) MQCONN(MQV1.CICS) ACC(READ)
TSS PER(JANED) MQCONN(MQV1.CICS) ACC(READ)
TSS PER(SHELLYS) MQCONN(MQV1.CICS) ACC(READ)
TSS PER(STEVEJ) MQCONN(MQV1.CICS) ACC(READ)

For BSM, the BSTADMIN commands are:
PERMIT MQCONN MQV1.CICS UID(MQADMUSR) ACC(READ)
PERMIT MQCONN MQV1.CICS UID(JOHNS) ACC(READ)
PERMIT MQCONN MQV1.CICS UID(JANED) ACC(READ)
PERMIT MQCONN MQV1.CICS UID(SHELLYS) ACC(READ)
PERMIT MQCONN MQV1.CICS UID(STEVEJ) ACC(READ)
PERFORM DATASPACE REFRESH

Note that the MQADMUSR user is also the user assigned to the MQER DCT entry.
This user must have CONNECT authority and must be able to write to the
SYSTEM.LOG queue.

To grant authority to each user to access specific queues, using the assumptions
listed earlier, issue the following commands:

TSS PER(MQADMUSR) MQQUEUE(MQV1) ACC(ALL)

TSS PER(JOHNS) MQQUEUE(MQV1.TEST.Q1) ACC(READ,UPDATE)
TSS PER(JOHNS) MQQUEUE(MQV1.TEST.Q2) ACC(READ,UPDATE)
TSS PER(JOHNS) MQQUEUE(MQV1.TEST.Q3) ACC(READ,UPDATE)

TSS PER(JANED) MQQUEUE(MQV1.TEST.Q1) ACC(READ,UPDATE)
TSS PER(JANED) MQQUEUE(MQV1.TEST.Q2) ACC(READ,UPDATE)

TSS PER(SHELLYS) MQQUEUE(MQV1.TEST.Q3) ACC(READ,UPDATE)

TSS PER(STEVEJ) MQQUEUE(MQV1.TEST.Q3) ACC(READ)

For BSM, the BSTADMIN commands are:
PERMIT MQQUEUE ’MQV1’ UID(MQADMUSR) ACC(UPDATE)
PERMIT MQQUEUE ’MQV1.TEST.Q1’ UID(JOHNS) ACC(UPDATE)
PERMIT MQQUEUE ’MQV1.TEST.Q2’ UID(JOHNS) ACC(UPDATE)
PERMIT MQQUEUE ’MQV1.TEST.Q3’ UID(JOHNS) ACC(UPDATE)
PERMIT MQQUEUE ’MQV1.TEST.Q1’ UID(JANED) ACC(UPDATE)

Resource protection

1062 WebSphere MQ for z/VSE System Management Guide

PERMIT MQQUEUE ’MQV1.TEST.Q2’ UID(JANED) ACC(UPDATE)
PERMIT MQQUEUE ’MQV1.TEST.Q3’ UID(SHELLYS) ACC(UPDATE)
PERMIT MQQUEUE ’MQV1.TEST.Q3’ UID(STEVEJ) ACC(READ)
PERFORM DATASPACE REFRESH

Access to underlying WebSphere MQ datasets must also be granted. Following the
listed assumptions, you need to issue the following commands:

TSS PER(JOHNS) FCT(MQFI001) ACC(INQUIRE,READ,WRITE)
TSS PER(JOHNS) FCT(MQFI002) ACC(INQUIRE,READ,WRITE)
TSS PER(JOHNS) FCT(MQFI003) ACC(INQUIRE,READ,WRITE)

TSS PER(JANED) FCT(MQFI001) ACC(INQUIRE,READ,WRITE)
TSS PER(JANED) FCT(MQFI002) ACC(INQUIRE,READ,WRITE)

TSS PER(SHELLYS) FCT(MQFI003) ACC(INQUIRE,READ,WRITE)

TSS PER(STEVEJ) FCT(MQFI003) ACC(INQUIRE,READ)

For testing purposes, you can use the TST2 transaction, which allows users to read
and write messages to queues. To allow users to use this transaction, issue the
following commands:

TSS ADD(JOHNS) TRANS(CICSPROD,TST2)
TSS ADD(JANED) TRANS(CICSPROD,TST2)

Note that SHELLYS and STEVEJ do not need the TST2 transaction. SHELLYS is a
client user and can issue MQI calls directly from a remote MQI client program.
STEVEJ is a batch user and similarly can issue MQI calls from a batch partition.

Namelist permissions
Permissions for namelist objects is similar to queues. To grant authority to a user
to access a specific namelist, for example user STEVEJ to access namelist
A.NAMELIST, issue the following commands:

TSS PER(MQADMUSR) MQNLIST(MQV1) ACC(ALL)

TSS PER (STEVEJ) MQNLIST(MQV1.A.NAMELIST) ACC(READ)

For BSM, the BSTADMIN commands are:
PERMIT MQNLIST ’MQV1’ UID(MQADMUSR) ACC(ALTER)
PERMIT MQNLIST ’MQV1.A.NAMELIST’ UID(STEVEJ) ACC(READ)
PERFORM DATASPACE REFRESH

The only permission that is relevant is READ, because namelists can only be
opened using the MQOO_INQUIRE open option.

Unlike queues, namelists are not associated with different datasets. Instead, all
namelists and their details are stored in the WebSphere MQ configuration file
MQFCNFG. Consequently, for STEVEJ to be able to open the namelist, he will also
need read access to the WebSphere MQ configuration file. For example:

TSS PER (STEVE) FCT(MQFCNFG) ACC(READ)

Batch user permissions
Batch users identify themselves to the External Security Manager via the // ID
card. For example:

// ID USER=STEVEJ,PWD=J0NES

Resource protection

Appendix H. Security implementation 1063

WebSphere MQ security uses the user name from the ID card and passes it to the
WebSphere MQ Batch Interface transaction running under CICS. The user that
starts the batch interface must be a surrogate for batch users who want to use the
batch interface.

In this example, you use the MQADMUSR user to start the batch interface and act
as surrogate to any batch users (that is, STEVEJ). To register MQADMUSR as a
surrogate, you can issue the following command:

TSS ADD(MQADMUSR) SURROGAT(STEVEJ)

Note: For the surrogate feature to be active, the facility matrix option XUSER=YES
must be set.

When the batch user attempts to establish a connection to the queue manager, the
batch interface user (MQADMUSR) starts the partner transaction (MQBX) as the
batch user. This is why the batch interface user must be a surrogate for the batch
user.

For BSM, the BSTADMIN commands are:
ADD SURROGAT STEVEJ.DFHSTART UACC(NONE)
PERMIT SURROGAT STEVEJ.DFHSTART ID(MQADMUSR) ACCESS(READ)
PERFORM DATASPACE REFRESH

From this point on, all WebSphere MQ API calls issued by the batch user will be
treated as if they were issued by the batch user under CICS. Therefore, the batch
user should be granted the appropriate MQCONN and MQQUEUE privileges.

The batch user also needs authority to execute the MQBX transaction, for example:
TSS ADD(STEVEJ) TRANS(CICSPROD,MQBX)

Client user permissions
Client users should be treated the same as CICS application users. For security
purposes, they are the same. WebSphere MQ API calls issued by client programs
are treated as if they were issued by the client user under CICS.

In this example, the client user SHELLYS has already been granted the necessary
authority to get and put messages to the TEST.Q3 queue.

Java program clients are a special case for client user permissions. Existing
WebSphere MQ Java classes may attempt to open the queue manager as an object
during an MQCONN request. This means, for such clients, the client user must
have READ access to the queue manager object. For example:

TSS PER(SHELLYS) MQQUEUE(MQV1.MQV1) ACC(READ)

For BSM, the BSTADMIN command is:
PERMIT MQQUEUE ’MQV1.MQV1’ ID(SHELLYS) ACCESS(READ)

Command permissions
Authority to issue commands is required when command or command resource
security is active. Command authority is required to create, modify, delete and
display WebSphere MQ objects such as the queue manager, channels and queues.

Batch user permissions

1064 WebSphere MQ for z/VSE System Management Guide

Commands can be issued via the WebSphere MQ master terminal transaction (for
example, MQMT), via PCF messages, and the MQSC command utility.

Command permissions involve resources belonging to the MQCMDS class. For a
full list of these resources, and the permissions required for each command, refer
to section “Resource definitions for command security” on page 666.

Full command authority can be granted to the MQADMUSR user by issuing the
following TSS command:

TSS PER(MQADMUSR) MQCMDS(MQV1) ACC(ALL)

For BSM, the BSTADMIN command is:
PERMIT MQCMDS MQV1 GEN ID(MQADMUSR) ACCESS(ALTER)

Since all command resources are prefixed with the queue manager name (system
identifier), the MQADMUSR user will have ACC(ALL) to any and all of these
resources.

Permissions for commands can also be granted by command type or for each
individual command. For example, to grant permissions by command type to user
JOHNS to issue DISPLAY commands, issue the following:

TSS PER(JOHNS) MQCMDS(MQV1.DISPLAY) ACC(READ)

For BSM, the BSTADMIN command is:
PERMIT MQCMDS MQV1.DISPLAY ID(JOHNS) ACCESS(READ)

User JOHNS can now issue DISPLAY commands to examine the queue manager,
channels and queues.Alternatively, to restrict JOHNS to DISPLAY commands for
queues only, that is to restrict user JOHNS to individual commands rather than
commands by type, issue the following:

TSS PER(JOHNS) MQCMDS(MQV1.DISPLAY.QALIAS) ACC(READ)
TSS PER(JOHNS) MQCMDS(MQV1.DISPLAY.QLOCAL) ACC(READ)
TSS PER(JOHNS) MQCMDS(MQV1.DISPLAY.QREMOTE) ACC(READ)

For BSM, the BSTADMIN commands are:
PERMIT MQCMDS ’MQV1.DISPLAY.QALIAS’ ID(JOHNS) ACCESS(READ)
PERMIT MQCMDS ’MQV1.DISPLAY.QLOCAL’ ID(JOHNS) ACCESS(READ)
PERMIT MQCMDS ’MQV1.DISPLAY.QREMOTE’ ID(JOHNS) ACCESS(READ)

Note: As no mixed case character or %, _, or / symbols are used in the MQ object
names in the above example, the profile name could have been specified without
quotes.

User JOHNS can now issue DISPLAY commands for any type of queue, but not for
the queue manager or channels.

Command resource permissions
If command resource security is active, command permissions are insufficient to
issue commands against specific resources. A user must also be granted command
resource permissions to those specific resources.

Command resource security should not be confused with command security.
Command security restricts access to commands, whereas command resource

Command permissions

Appendix H. Security implementation 1065

security restricts issuing commands against specific resources. Consequently,
command resource security is only relevant for commands that affect specific
objects (that is, queues and channels).

Resources for command resource security are defined to the MQADMIN class.

Full command resource authority can be granted the MQADMUSR user by issuing
the following TSS command:

TSS PER(MQADMUSR) MQADMIN(MQV1) ACC(ALL)

For BSM, the BSTADMIN command is:
PERMIT MQADMIN MQV1 GEN ID(MQADMUSR) ACCESS(ALTER)

Once again, since all command resources are prefixed with the queue manager's
SSID, the MQADMUSR user will have ACC(ALL) to any and all of the command
resources defined to the MQADMIN class.

Alternatively, since command resource types are limited to channels and queues,
the MQADMUSR user could be granted full command resource authority by
issuing the following commands:

TSS PER(MQADMUSR) MQADMIN(MQV1.CHANNEL) ACC(ALL)
TSS PER(MQADMUSR) MQADMIN(MQV1.QUEUE) ACC(ALL)

For BSM, the BSTADMIN commands are:
PERMIT MQADMIN MQV1.CHANNEL ID(MQADMUSR) ACCESS(ALTER)
PERMIT MQADMIN MQV1.QUEUE ID(MQADMUSR) ACCESS(ALTER)

Like command security, permissions can be granted by object type or for each
individual object. For example, to grant permissions by command resource type to
user JOHNS to issue ALTER commands for any queue object, issue the following:

TSS PER(JOHNS) MQADMIN(MQV1.QUEUE) ACC(ALTER)

For BSM, the BSTADMIN command is:
PERMIT MQADMIN MQV1.QUEUE ID(JOHNS) ACCESS(ALTER)

User JOHNS can now issue ALTER commands to modify any queue providing he
also has command authority to issue ALTER commands (assuming command
security is active).

Alternatively, to restrict JOHNS to ALTER commands for queues TEST.Q1 and
TEST.Q2, that is to restrict user JOHNS to individual objects rather than commands
by type, issue the following:

TSS PER(JOHNS) MQADMIN(MQV1.QUEUE.TEST.Q1) ACC(ALTER)
TSS PER(JOHNS) MQADMIN(MQV1.QUEUE.TEST.Q2) ACC(ALTER)

For BSM, the BSTADMIN commands are:
PERMIT MQADMIN ’MQV1.QUEUE.TEST.Q1’ ID(JOHNS) ACCESS(ALTER)
PERMIT MQADMIN ’MQV1.QUEUE.TEST.Q2’ ID(JOHNS) ACCESS(ALTER)

User JOHNS can now issue ALTER commands for TEST.Q1 and TEST.Q2, but not
for any other queue.

Command resource permissions are not required for DISPLAY commands.

Command resource permissions

1066 WebSphere MQ for z/VSE System Management Guide

Trigger permissions
Trigger programs and transactions are started automatically when an application
program puts a message to a queue that is defined to start a trigger. The
invocation and control of trigger instances is handled by WebSphere MQ
transaction MQ02.

Therefore, if an application user puts messages to a queue that may start a trigger
instance, that user must have authority to run the MQ02 transaction.

In this example, you could define TEST.Q1 to start a trigger program every time a
message is put to the queue. For example, the trigger program may get a message
from TEST.Q1 and put a message on TEST.Q2. To enable application user JANED
to put messages to TEST.Q1 and successfully start the trigger instance, you need to
grant authority to the MQ02 transaction. For example:

TSS ADD(JANED) TRANS(CICSPROD,MQ02)

If you do not grant this authority, JANED can successfully put messages to the
target queue, but the trigger instance will ABEND.

If you trigger a transaction, the application user must also have authority to run
the trigger transaction. If you use program security, the application user needs
authority to run the trigger program and a range of WebSphere MQ programs (the
exact programs are beyond the scope of this Appendix).

If you use the trigger option Allow Restart of Trigger in a queue definition,
transaction MQSM will, when appropriate, attempt to run the MQ02 transaction.
MQSM runs as the WebSphere MQ startup user. Therefore, for security purposes,
you should be careful when using the Allow Restart of Trigger feature. For details
about this option, see “Trigger Information” on page 102.

CICS startup
Your CICS startup deck should include a // ID card. For the example user
CICSP1, the // ID card would appear as follows:

// JOB jobname
// ID USER=CICSP1,PWD=P1CICS

You also need to identify the CICS default user as a SIT parameter. For the
example user CICSP1DF, the SIT parameter would appear as follows:

DFLTUSER=CICSP1DF

Starting WebSphere MQ
It is important that WebSphere MQ is started by a user with sufficient authority. In
this example, the user MQADMUSR has full access to the WebSphere MQ datasets,
transactions, and WebSphere MQ resources, including connection authority.

To start WebSphere MQ, log on to CICS as MQADMUSR and run the following
transactions:
v MQSE
v MQIT

Another way to start WebSphere MQ is to run 'MQSE I', or use the MQMT
transaction, option 2.4.

Trigger permissions

Appendix H. Security implementation 1067

A further option is to use the PLTPI program. The DFHPLT macro does not allow
you to specify a userid with a PLTPI program. However, you can specify a SIT
parameter for PLTPIUSR. For example:

PLTPIUSR=PLTUSER

In such a case, the PLTPIUSR (that is, PLTUSER) must be authorized to the
appropriate resources defined by PLTPISEC.

Remember that your PLTPIUSR may run programs that are not relevant to
WebSphere MQ for z/VSE, so, in this example implementation, it may not be
appropriate to use user MQADMUSR. Therefore, you can define a special
PLTPIUSR as follows:

-- Create the PLTPIUSR
TSS CREATE(PLTUSER) NAME(’CICS PLTPI USER’) TYPE(USER) +

DEPT(CICSP1G) PAS(PLTP1,0) FAC(CICSPROD)

-- Grant surrogate authority to CICS region user
TSS ADD(CICSP1) SURROGAT(PLTUSER)

-- Grant access to MQ File Control entries
TSS PER(PLTUSER) FCT(MQFCNFG) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFLOG) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFMON) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFERR) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFREOR) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFSSET) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFI001) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFI002) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFI003) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFO001) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFO002) ACC(ALL)
TSS PER(PLTUSER) FCT(MQFO003) ACC(ALL)

-- Grant authority to necessary transactions
TSS ADD(PLTUSER) TRANS(CICSPROD,INWL,IESO,IESN,MQIT,MQSM,MQTL)

Note that the CICS partition user must be a surrogate for the PLTPIUSR (that is,
PLTUSER). Once again, to activate the surrogate user feature, you should include
the following facilities matrix option:

FACILITY(CICSPROD=XUSER=YES)

If using BSM, then the SURROGAT class must be active and CICS started with
XUSER=YES.

Also, take care that you do not grant NORESCHK to the PLTPIUSR. This is
because resource checking for security switches will always result in success.
Success indicates that the switch is present, and security features are deactivated.
In other words, if the WebSphere MQ startup user, PLTPI or otherwise, has
NORESCHK authority, WebSphere MQ resource security will be deactivated.

If you do not identify a SIT parameter for a PLTPIUSR, CICS TS uses the CICS
default user. Although it may not be appropriate to authorize the CICS default
user to WebSphere MQ resources, it is possible to use the default user for
WebSphere MQ activation during CICS initialization.

Stopping WebSphere MQ
The MQADMUSR user has the authority to stop WebSphere MQ by running the
MQST transaction (because it has authority to all WebSphere MQ transactions).

Starting WebSphere MQ

1068 WebSphere MQ for z/VSE System Management Guide

If you want to shut down WebSphere MQ via the PLTSD, you must ensure that the
shutdown user is authorized to the appropriate resources relevant to the PLTSD
phase (these may be other than WebSphere MQ resources).

The shutdown user is the user who issues the shutdown command, for example:
CEMT P SHUT

If this command is issued from the console, the console user must have authority
similar to the PLTPIUSR user described earlier. Also, the shutdown user should
have authority to execute the CEMT transaction.

Stopping WebSphere MQ

Appendix H. Security implementation 1069

1070 WebSphere MQ for z/VSE System Management Guide

Appendix I. WMQZVSE SOAP transport to z/VSE SOAP server

The WebSphere MQ transport for SOAP provides a JMS transport for SOAP.

A SOAP client using the Apache Axis 1.4 platform can send a web service request
in a SOAP envelope to a z/VSE SOAP server using WebSphere MQ.

A SOAP listener program (MQPSOAPL) can be started as a service using start
command MQSL. The service must specify the SOAP request queue and port
number if the CICS running the web service does not have 8080 as its
TCPIPService port number.

In the following example, the MQ SOAP listener is started when the queue
manager is started and stopped when the queue manager is stopped.

The following sections describe how to create a web service from a CICS
application and a sample client to use it. The sample is based on the WebSphere
MQ transport for SOAP installation verification test described in the WebSphere
MQ Web Services manual. This was run on the Windows platform.

Create web service from a CICS application
Refer to “How to use Web Services with z/VSE” on the IBM: z/VSE -
Documentation - Documents - e-business web page.

The following example uses a web service created by using the CICS2WS toolkit
available from the IBM: z/VSE - Downloads - Connectors page.

2012/11/14 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:14:21 Service Record DISPLAY CIC1
MQWMSYS A001

Service name. : MQSOAP.REQUESTS
Description : HANDLE SOAP REQUESTS PUT TO

: "SOAP.REQUEST" QUEUE

Service type : C (S=Server, C=Command)
Control : M (M=Manual, Q=QMgr start/stop, S=QMgr start)
Start command : MQSL
Start args : Q=SOAP.REQUEST,SOAPPORT=8080

:
Stop command : MQSL
Stop args : Q=SOAP.REQUEST

:

Service status. . . . :
Alteration date . . . : 2012-11-14
Alteration time . . . : 05:49:57

Requested record displayed.
PF2=Return PF3=Quit PF4=Read PF5=Add PF6=Update PF9=List

PF10=Start PF11=Stop PF12=Delete

Figure 89. Add MQ SOAP service

© Copyright IBM Corp. 2008, 2013 1071

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|

|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

http://www-03.ibm.com/systems/z/os/zvse/documentation/ebusiness.html
http://www-03.ibm.com/systems/z/os/zvse/documentation/ebusiness.html
http://www-03.ibm.com/systems/z/os/zvse/downloads/

This was used to create a web service “MQCLservice” to link to the WebSphere
MQ for z/VSE programmable interface to query the status of a queue. The
following COBOL copybook is a simplified version of MQICMD.C and was used
in the CICS2WS toolkit process.

01 MQI-COMMAND-LINE.
02 MQI-CMD PIC X(56).
02 MQI-REPLY-RC PIC 9(4) COMP.
02 MQI-REPLY PIC X(99).
02 MQI-REPLY-STATUS PIC X(16).

Also specified in CICS2WS were
Service name: MQCLservice
Service URL: http://n.n.n.n:8080/cics/CWBA/IESSOAPS

Proxy Name: MQCLPRX
User Program Name: MQPCMD

Operation Name: QUERY

A MQCLPRX.WSDL file and proxy assembler program were also generated. The
WSDL file is generated for the client connecting to the web service using HTTP. In
order to use WebSphere MQ to transport, the request had to be edited to change
the address location from HTTP to JMS/SOAP transport bindings. This changes
from

<wsdlsoap:address location="http://n.nnn.nnn.nn:8080/cics/CWBA/IESSOAPS"/>

to
<wsdlsoap:address location="jms:/queue?destination=SOAP.REQUEST@TEST.QM&
connectionFactory=(connectQueueManager(TEST.QM))&
initialContextFactory=com.ibm.mq.jms.Nojndi&
targetService=MQCLservice&replyDestination=SOAPJ.RESP"/>

The “connectQueueManager” is the queue manager name to which the SOAP
client connects in order to put the SOAP request to the “destination” queue and
gets the response from the “replyDestination queue”. In the above example
TEST.QM is WebSphere MQ running on the Windows platform. It has a remote
queue SOAP.REQUEST which puts a SOAP request to the transmission queue. It
has the remote queue name of “SOAP.REQUEST”. This is the WebSphere MQ for
z/VSE local queue which the SOAP listener is monitoring.

Channels have to be defined to send a SOAP request message to z/VSE and
receive a SOAP response from z/VSE.

An alias queue manager should be defined with the reply queue manager name to
allow the response to be returned

For example, a response will be put to RESP.XQ which is the transmission queue
from the z/VSE system back to the Windows MQ reply destination queue.

Create web service from a CICS application

1072 WebSphere MQ for z/VSE System Management Guide

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

Verifying the WebSphere MQ transport for SOAP
WebSphere MQ 7.1 was used on the Windows platform. The supplied sample
assumes that the verification for Axis 1.4 has been run.

The ./tools/soap/samples is assumed to have been copied to the C:\TempSOAP
directory. Refer to WebSphere MQ 7.1 documentation Verifying the WebSphere MQ
transport for SOAP.

Running the WebSphere MQ for z/VSE sample java client
using Axis

1. Catalog the MQ SOAP samples in MQSOAPEX.Z into a sublibrary
* $$ JOB JNM=MQSOAP,CLASS=0
* $$ LST CLASS=A,DISP=H
// JOB MQSOAP
// EXEC LIBR
ACC S=mylib.mysublib
* $$ SLI MEM=MQSOAPEX.Z,S=prd2.wmqzvse
/*
/&
* $$ EOJ

This should catalog the following:
MQCLPRX.JCL
MQCLPRX.A
MQCLPRX.WSDL
RUNMQCL.CMD
RUNMQCL.JAVA
MQCLCLNT.JAVA

2. Customize the MQCLPRX.JCL to assemble and link the MQCLPRX proxy
program.

3. Define the MQCLPRX assembler program to CICS.
4. Create folders

2012/11/14 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
07:22:57 Queue Definition Record CIC1
MQWMQUE Alias Queue Manager Definition A001

Object Name. : TEST.QM
Description line 1 :
Description line 2 :

Alias Queue Manager Name . : TEST.QM
Transmission Queue Name. . : RESP.XQ

Record updated OK.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF12=Delete

Figure 90. Add Alias Queue Manager for MQ SOAP

Verifying the WebSphere MQ transport for SOAP

Appendix I. WMQZVSE SOAP transport to z/VSE SOAP server 1073

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|
|

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/index.jsp?topic=%2Fcom.ibm.mq.doc%2Fts20390_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/index.jsp?topic=%2Fcom.ibm.mq.doc%2Fts20390_.htm

C:\SOAP
C:\SOAP\JAVA
C:\SOAP\WSDL

5. From the mylib.mysublib download the
RUNMQCL.CMD to C:\SOAP
RUNMQCL.JAVA to C:\SOAP\JAVA
MQCLCLNT.JAVA to C:\SOAP\JAVA
MQCLPRX.WSDL to C:\SOAP\WSDL

The java programs stored in the sublibrary use square brackets coded in code
page 1047, that is “[” is X’AB and “]” is X’DD. After downloading to PC, check
that they have been converted correctly. This may require you to change your
mainframe code page for the download.

6. In the MQCLPRX.WSDL file, the “wsdlsoap:address location=” line has been
split into many lines for storing in the sublibrary. You have to edit the file and
delete the ### characters (including the CR/LF). You need to have
wsdlsoap:address location=’ ... ’/> as one line.
Customize to required object names the

destination=SOAP.REQUEST@TEST.QM
connectQueueManager(TEST.QM)
replyDestination=SOAPJ.RESP

7. The WebSphere MQ queue manager on Windows (TEST.QM in our example)
has to have the remote queue defined (SOAP.REQUEST in our example), a
response queue (SOAPJ.RESP in our example), a channel to send message to
the WebSphere MQ for z/VSE and receiver channel to receive the SOAP
response message.

8. In the z/VSE system, ensure CICS TS has TCPIPService open. If the port
number is not 8080 then it has to be specified in the WebSphere MQ for
z/VSE service definition for the SOAP listener using the SOAPPORT=keyword
(refer example above).
Any number of SOAP listener services may be defined, as long as each has a
unique request queue.

9. Start the MQ SOAP listener service (if not already started).
10. Start the WebSphere MQ for Windows sender channel to WebSphere MQ for

z/VSE.
11. In the Windows command prompt change to the C:\SOAP directory and run

the RUNMQCL command.
This should result in following being displayed:

MQCLCLNT: Response = ’MQM001000 QUEUE STATUS: IN=IDLE ,OUT=IDLE
SYSTEM.LOG ’

where the query was for status of SYSTEM.LOG queue.
The following directories are assumed to exist following the running of the
WebSphere MQ SOAP runivt.cmd to verify installation of WebSphere MQ
SOAP on Windows.

C:\TempSOAP\soap\samples\java\clients
C:\TempSOAP\soap\samples\generated
C:\TempSOAP\soap\samples\classes\soap\clients

Running the WebSphere MQ for z/VSE sample java client using Axis

1074 WebSphere MQ for z/VSE System Management Guide

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|

|
|

|

|
|

|

|
|
|

|
|
|

Appendix J. Publish/Subscribe

Publish/subscribe messaging allows you to decouple the provider of information,
from the consumers of that information. The sending application and receiving
application do not need to know anything about each other for the information to
be sent and received. Before a point-to-point WebSphere MQ application can send
a message to another application, it needs to know something about that
application. For example, it needs to know the name of the queue to which to send
the information, and might also specify a queue manager name.

WebSphere MQ publish/subscribe removes the need for your application to know
anything about the target application. All the sending application has to do, is put
a WebSphere MQ message, containing the information that it wants, and assign it a
topic, that denotes the subject of the information, and let WebSphere MQ handle
the distribution of that information.

Similarly, the target application does not have to know anything about the source
of the information it receives.

Figure 91 shows the simplest publish/subscribe system. There is one publisher,
queue manager, and one subscriber. A subscription request is sent from the
subscriber to the queue manager, a publication is sent from the publisher to the
queue manager, and the publication is then forwarded by the queue manager to
the subscriber.

A typical publish/subscribe system has more than one publisher and more than
one subscriber. An application can be both a publisher and a subscriber.

Refer to Publish/Subscribe entries in the IBM WebSphere MQ Information Center.
WebSphere MQ for z/VSE supports a subset of what is described. Differences are
described below.

Topics
A topic is the subject of the information that is published in a publish/subscribe
message.

Messages in point-to-point systems are sent to a specific destination address.
Messages in subject-based publish/subscribe systems are sent to subscribers based
on the subject that describes the contents of the message.

The WebSphere MQ publish/subscribe system is a subject-based publish/subscribe
system. A publisher creates a message, and publishes it with a topic string that
best fits the subject of the publication. To receive publications, a subscriber creates
a subscription with a pattern matching topic string to select publication topics. The

Publisher Queue
Manager Subscriber

Publication

Publication

Subscription

Figure 91. Simple publish/subscribe configuration

© Copyright IBM Corp. 2008, 2013 1075

|

|
|
|

|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

queue manager delivers publications to subscribers that have subscriptions that
match the publication topic, and are authorized to receive the publications. Refer to
"Topic strings" for description syntax of topic strings that identify the subject of a
publication. Subscribers also create topic strings to select which topics to receive.
The topic strings that subscribers create can contain the wildcard character “#” as
the last node of a topic string.

In subject-based publish/subscribe, publishers, or administrators, are responsible
for classifying subjects into topics. Typically subjects are organized hierarchically,
into topic trees, using the “/” character to create subtopics in the topic string. See
"Topic trees" for examples of topic trees. Topics are nodes in the topic tree. Topics
can be leaf-nodes with no further subtopics, or intermediate nodes with subtopics.

In parallel with organizing subjects into a hierarchical topic tree, you can associate
topics with administrative topic objects. You assign attributes to a topic by
associating it with an administrative topic object. The association is made by
naming the topic using the TOPICSTR attribute of the administrative topic object.
If you do not explicitly associate an administrative topic object to a topic, the topic
inherits the attributes of its closest ancestor in the topic tree that you have
associated with an administrative topic object. If you have not defined any parent
topics at all, it inherits from SYSTEM.BASE.TOPIC. Administrative topic objects are
described in “Administrative topic objects” on page 1078.

Note: Even if you inherit all the attributes of a topic from SYSTEM.BASE.TOPIC,
define a root topic for your topics that directly inherits from SYSTEM.BASE.TOPIC.
For example, in the topic space of US states, USA/Alabama USA/Alaska, and so
on, USA is the root topic. The main purpose of the root topic is to create discrete,
non-overlapping topic spaces to avoid publications matching the wrong
subscriptions. It also means you can change the attributes of your root topic to
affect your whole topic space.

When you refer to a topic as a publisher or subscriber, you have a choice of
supplying a topic string, referring to a topic object or you can do both, in which
case the topic string you supply defines a subtopic of the topic object. The queue
manager identifies the topic by appending the topic string to the topic string prefix
named in the topic object, inserting an additional “/” in between the two topic
strings, for example, topic string/object string. "Constructing topic names"
describes this further. The resulting topic string is used to identify the topic and
associate it with an administrative topic object.

The administrative topic object is not necessarily the same topic object as the topic
object corresponding to the master topic.

Note: In z/VSE the maximum length of the resolved topic string is 256.

Topic strings
Label the information you publish as a topic using a topic string. Subscribe to
groups of topics using either character- or topic-based wildcard topic strings.

A topic string is a character string that identifies the topic of a publish/subscribe
message. You can use any characters you like when you construct a topic string.

Syntax

Topics

1076 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|
|

|
|

|

|

�� � Any Unicode character ��

Two characters have special meaning in WebSphere MQ for z/VSE
publish/subscribe.

A forward slash (/)
The topic level separator. Use the “/” character to structure the topic into a
topic tree.

Avoid empty topic levels, “//” if you can. These correspond to nodes in
the topic hierarchy with no topic string. A leading or trailing “/” in a topic
string corresponds to a leading or trailing empty node and should be
avoided too.

The hash sign (#)
Used in combination with “/” to construct a wildcard in subscriptions.

“#” is only supported as the final node, for example, IBM/AUSTRALIA/#,
which matches any subscription with IBM and AUSTRALIA as the first
two nodes of the topic tree. These topic strings would match for this
example:
IBM/AUSTRALIA
IBM/AUSTRALIA/Perth
IBM/AUSTRALIA/Sydney/CBD

Using topic strings
When you refer to a topic as a publisher or subscriber, you have a choice of
supplying a topic string, referring to a topic object or you can do both, in which
case the topic string you supply defines a subtopic of the topic object. The queue
manager identifies the topic by appending the topic string to the topic string prefix
named in the topic object, inserting an additional “/” in between the two topic
strings, for example, topic string/object string. The resulting topic string is
used to identify the topic and associate it with an administrative topic object

Topic trees
Each topic that you define is an element, or node, in the topic tree. The topic tree
can either be empty to start with or contain topics that have been defined
previously using the admin panels, MQSC or PCF commands. You can define a
new topic either by using the create topic commands or by specifying the topic for
the first time in a publication or subscription.

Although you can use any character string to define a topic's topic string, it is
advisable to choose a topic string that fits into a hierarchical tree structure.
Thoughtful design of topic stings and topic trees can help you with the following
operations:
v Subscribing to multiple topics
v Establishing security policies

Although you can construct a topic tree as a flat, linear structure, it is better to
build a topic tree in a hierarchical structure with one or more root topics. For more
information about security planning and topics, see "Publish/subscribe security".

Here is an example of a topic tree with one root topic.

Topic strings

Appendix J. Publish/Subscribe 1077

|||||||||||||

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

Each character string in the figure represents a node in the topic tree. A complete
topic string is created by aggregating nodes from one or more levels in the topic
tree. Levels are separated by the “/” character. The format of a fully specified topic
string is root/level2/level3.

The valid topics in this topic tree are:
“AUSTRALIA”
“AUSTRALIA/Victoria”
“AUSTRALIA/Queensland”
“AUSTRALIA/Victoria/Melbourne”
“AUSTRALIA/Victoria/Geelong”
“AUSTRALIA/Victoria/Ararat”
“AUSTRALIA/Queensland/Brisbane”

When you design topic strings and topic trees, remember that the queue manager
does not interpret, or attempt to derive meaning from, the topic string itself. It
simply uses the topic string to send selected messages to subscribers of that topic.

The following principles apply to the construction and content of a topic tree:
v The number of levels in a topic tree has to fit in the topic string z/VSE limit of

256 bytes.
v The length of the name of a level in a topic tree has to fit in the topic string

z/VSE limit of 256 bytes.
v There can be any number of "root" nodes; that is, there can be any number of

topic trees.

Administrative topic objects
An administrative topic object is a WebSphere MQ object that allows you to assign
specific, non-default attributes to topics. A topic is defined by an application
publishing or subscribing to a particular topic string. A topic string can specify a
hierarchy of topics by separating them with a forward slash character (/). This can
be visualized by a topic tree. For example, if an application publishes to the topic
strings "Sport/American Football" and "Sport/Soccer", a topic tree is created that
has a parent node Sport with two children, "American Football", and "Soccer".

Topics inherit their attributes from the first parent administrative node found in
their topic tree. If there are no administrative topic nodes in a particular topic tree,
then all topics inherit their attributes from the base topic object,
"SYSTEM.BASE.TOPIC".

Victoria

AUSTRALIA

Queensland

GeelongMelbourne Ararat Brisbane

Figure 92. Example of a topic tree

Topic trees

1078 WebSphere MQ for z/VSE System Management Guide

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|

You can create an administrative topic object at any node in a topic tree by
specifying that node's topic string in the TOPICSTR attribute of the administrative
topic object. You can also define other attributes for the administrative topic node.
For more information about these attributes, see the admin panel, MQSC or PCF
commands. Each administrative topic object, by default, inherits its attributes from
its closest parent administrative topic node.

Administrative topic objects can also be used to hide the full topic tree from
application developers. If an administrative topic object named FOOTBALL.US is
created for the topic "Sport/American Football", an application can publish or
subscribe to the object named FOOTBALL.US instead of the string
"Sport/American Football" with the same result.

If you enter a # character within a topic string on a topic object, the character is
treated as a normal character within the string, and is considered to be part of the
topic string associated with an administrative topic object.

Administrative panels
The Configuration Main Menu includes the Topic and Subscription functions.

To maintain a TOPIC select option 6, to display TOPIC select option 13. If you
wish to secure the transactions for TOPICs, MQM1 is used for maintenance and
MQD1 for display only.

To maintain an administrative SUBSCRIPTION select option 7, to display select
option 14. If you wish to secure the transactions for SUBSCRIPTIONs, MQM2 is
used for maintenance and MQD2 for display only.

2012/11/26 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
12:59:55 *** Configuration Main Menu *** CIC1
MQWMCFG A001

SYSTEM IS ACTIVE

Maintenance/Display Options
1 / 8 Global System Definitions
2 / 9 Queue Definitions
3 / 10 Channel Definitions
4 / 11 Code Page Definitions
5 / 12 Namelist Definitions
6 / 13 Topic Definitions
7 / 14 Subscription Definitions

Option:

Please enter one of the options listed.
5655-U97 Copyright IBM Corp. 2008. All rights reserved.

Enter=Process PF2=Return PF3=Exit

Figure 93. Configuration Main Menu

Administrative topic objects

Appendix J. Publish/Subscribe 1079

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|

|
|
|
|

Key the topic name to update/add or PF9 to list topics. The topic name has to be
standard MQ object name consisting of alphanumerics (upper and lower case) and
characters . / _ %

Key any character to select a listed topic and press Enter.

2012/11/26 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:01:50 Topic Name Definition CIC1
MQWMTOP A001

Queue manager active

Topic Name :

Key topic name or PF9 to list topics

PF2=Return PF3=Quit PF4/Enter=Read PF5=Add
PF9=List PF12=Delete

Figure 94. Topic Name Definition

2012/11/26 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:03:57 Topic Name List CIC1
MQWMTOP A001
S Topic name

AIRLINES
CARS
FRUIT
SYSTEM.BASE.TOPIC
SYSTEM.DEFAULT.TOPIC

List scrolled.
PF2=Return PF3=Quit PF4/Enter=Read

PF7=Backward PF8=Forward

Figure 95. Topic Name List

Administrative panels

1080 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|

|
|

The Topic String field specifies the topic string to be associated with this topic.

Key the subscription name to update or add, or press PF9 to list topics.

2012/11/26 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:05:58 Topic Name Definition CIC1
MQWMTOP A001

Topic name : CARS
Description line 1 . . . : Cars topic root
Description line 2 . . . :

Topic String : Cars

Inhibit Publication. . . : P (P=ASPARENT, N=NO, Y=YES)
Inhibit Subscription . . : P (P=ASPARENT, N=NO, Y=YES)
Durable : P (P=ASPARENT, N=NO, Y=YES)
Model durable queue. . . :
Model non-durable queue. :

Message Delivery : P P=ASPARENT,V=ALL AVAIL,D=ALL DUR,A=ALL)

Topic record displayed.
PF2=Return PF3=Quit PF4/Enter=Read

PF9=List

Figure 96. Maintain Topic Name

2012/11/26 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:42:34 Sub Name Definition CIC1
MQWMSUB A001

Queue manager active

Sub Name :

Key SubName or PF9 to list SubNames

PF2=Return PF3=Quit PF4/Enter=Read PF5=Add
PF9=List PF12=Delete

Figure 97. Subscription Name Definition

Administrative panels

Appendix J. Publish/Subscribe 1081

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|

|
|

Key any character to select listed subscription and press Enter.

Adding subscription "BANANA" the resolved topic string is "Price/Banana". The
PRICE topic string is concatenated with “/” and the entered topic string of
“Banana”.

2012/11/26 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:46:42 Sub Name List CIC1
MQWMSUB A001
S Topic name

CHERRY
SYSTEM.DEFAULT.SUB

SubName(s) listed - select a topic
PF2=Return PF3=Quit PF4/Enter=Read

PF7=Backward PF8=Forward

Figure 98. Subscription Name List

2012/11/26 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:53:00 Sub Name - General CIC1
MQWMSUB A001

Subscription Name. . . . : BANANA

TOPIC
Topic Name : PRICE

Topic String : Banana

DESTINATION
Destination Class. . . . : m M=Managed P=Provided
Destination Queue Manager:
Destination Queue. . . . :

Properties : N

SubName record being added - press PF5 to complete ADD
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF9=List

PF10=Extended

Figure 99. Maintain Subscription General

Administrative panels

1082 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|

|
|
|
|

Post PTF application
v Customize the durable and non-durable model queues for message size and

number of messages. Sample definitions are provided in MQJINSG.Z. The
default model names are SYSTEM.DURABLE.MODEL.QUEUE with file name
MQFDUR and SYSTEM.NDURABLE.MODEL.QUEUE with file name
MQFNDUR.

v For retained publications, queue name SYSTEM.RETAINED.PUB.QUEUE with
file name MQFPUBR has to be defined. This is not configurable. Customize the
sample in MQJINSG.Z for maximum message size.

v Regardless of the durable and non-durable model queue names specified, the
dynamic queue name used is always SYSTEM.MANAGED.DURABLE.* or
SYSTEM.MANAGED.NDURABLE.*.

v CSD definitions have to be updated. Refer MQJCSD24.Z.
v Customize MQJSETUP.Z to load configuration file updates to the work file and

then run MQSU before starting MQ.
v If using CICS Web Support in place of the admin panels then you need to load

the updated html files to the DFHDOC sublibrary.

Notes
v The subscription name is limited to 48 characters.
v The resolved topic string is limited to 256 characters.
v The messages are published outside the unit of work of the publisher, that is, as

if using MQPMO_NO_SYNCPOINT.
v If using MQ Explorer then some options are not supported. For example only

QMGR is supported for Publication scope or Subscription scope. Generally
options not supported (if selected) are ignored.

v When using the MQSC utility program, names and topic strings should be
enclosed in apostrophes if the case is to be maintained. For example,
TOPICSTR(Price/Fruit/Apples) results in the topic string “PRICE/FRUIT/
APPLES”.

2012/11/26 IBM WebSphere MQ for z/VSE Version 3.0.0 TSMQ300
13:55:05 Sub Name - Extended CIC1
MQWMSUB A001

Subscription Name. . . . : BANANA

Variable user ID : A (A = Any, F=Fixed)

User :

Application Identity . . :

Expiry : 99999999

Request Only : A A=All or O=On Request

SubName record being added - press PF5 to complete ADD
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF9=List

PF10=General

Figure 100. Maintain Subscription Extended

Post PTF application

Appendix J. Publish/Subscribe 1083

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
||
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|

|

|

|
|

|
|
|

|
|
|
|

To maintain the lowercase characters use TOPICSTR(’Price/Fruit/Apples’).

Security
To use BSM to secure publish or subscribe you need to have one of the following
ptfs applied:
z/VSE 4.3

UD53859
z/VSE 5.1

UD53860

Table 78 shows, for each WebSphere MQ PCF command, the profiles required for
command security checking to be carried out, and the corresponding access level
for each profile in the MQCMDS class.

Table 79 shows, for each WebSphere MQ MQSC command, the profiles required for
command security checking to be carried out, and the corresponding access level
for each profile in the MQCMDS class.

Table 78. PCF commands, profiles, and their access levels

Command
Command profile for
MQCMDS

Access level
MQCMDS

Resource profile for
MQADMIN

Access level
for
MQADMIN

change SUB hlq.ALTER.SUB ALTER No check -

change TOPIC hlq.ALTER.TOPIC ALTER hlq.TOPIC.topic ALTER

copy SUB hlq.DEFINE.SUB ALTER No check -

copy TOPIC hlq.DEFINE.TOPIC ALTER hlq.TOPIC.topic ALTER

create SUB hlq.DEFINE.SUB ALTER No check -

create TOPIC hlq.DEFINE.TOPIC ALTER hlq.TOPIC.topic ALTER

delete SUB hlq.DELETE.SUB ALTER No check -

delete TOPIC hlq.DELETE.TOPIC ALTER hlq.TOPIC.topic ALTER

inquire PUBSUB hlq.DISPLAY.PUBSUB READ No check -

inquire SBSTATUS hlq.DISPLAY.SBSTATUS READ No check -

inquire SUB hlq.DISPLAY.SUB READ No check -

inquire TOPIC hlq.DISPLAY.TOPIC READ No check -

inquire TOPIC names hlq.DISPLAY.TOPIC READ No check -

DISPLAY TPSTATUS hlq.DISPLAY.TPSTATUS READ No check -

Table 79. MQSC commands, profiles, and their access levels

Command
Command profile for
MQCMDS

Access level
MQCMDS

Resource profile for
MQADMIN

Access level
for
MQADMIN

change SUB hlq.ALTER.SUB ALTER No check -

change TOPIC hlq.ALTER.TOPIC ALTER hlq.TOPIC.topic ALTER

copy SUB hlq.DEFINE.SUB ALTER No check -

copy TOPIC hlq.DEFINE.TOPIC ALTER hlq.TOPIC.topic ALTER

create SUB hlq.DEFINE.SUB ALTER No check -

create TOPIC hlq.DEFINE.TOPIC ALTER hlq.TOPIC.topic ALTER

Notes

1084 WebSphere MQ for z/VSE System Management Guide

|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

||

|
|
|
|
|
|
|

|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

||

|
|
|
|
|
|
|

|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

Table 79. MQSC commands, profiles, and their access levels (continued)

Command
Command profile for
MQCMDS

Access level
MQCMDS

Resource profile for
MQADMIN

Access level
for
MQADMIN

delete SUB hlq.DELETE.SUB ALTER No check -

delete TOPIC hlq.DELETE.TOPIC ALTER hlq.TOPIC.topic ALTER

inquire PUBSUB hlq.DISPLAY.PUBSUB READ No check -

inquire SBSTATUS hlq.DISPLAY.SBSTATUS READ No check -

inquire SUB hlq.DISPLAY.SUB READ No check -

inquire TOPIC hlq.DISPLAY.TOPIC READ No check -

inquire TOPIC names hlq.DISPLAY.TOPIC READ No check -

DISPLAY TPSTATUS hlq.DISPLAY.TPSTATUS READ No check -

Grant access to a user to publish to a topic
An application can publish to a topic by providing a topic object, or a topic string,
or a combination of both. Whichever way the application selects, the effect is to
publish at a certain point in the topic tree. If this point in the topic tree is
represented by an administrative topic object, a security profile is checked based
on the name of that topic object.

If no topic object is provided then the queue manager goes up the topic tree to
find an administrative topic. If none is found then the base topic
SYSTEM.BASE.TOPIC is used.

For example, on the queue manager with Subsystem id MQV1, allow user MQU1
to publish on the topic "Apples":
ADD MQADMIN ’MQV1.TOPIC.Apples’ UACC(NONE)
PERMIT MXTOPIC ’MQV1.PUBLISH.Apples’ ID(MQU1) ACCESS(UPDATE)

Grant access for subscribe
To subscribe to a topic, you need access to both the topic you are trying to
subscribe to, and the target queue for the publications. When you issue an MQSUB
request, the following security checks take place:
v Whether you have the appropriate level of access to subscribe to that topic, and

also that the target queue (if specified) is opened for output.
v Whether you have the appropriate level of access to that target queue.

Table 80. Access level required for topic security to subscribe

Action Access level required

MQSUB to topic hlq.SUBSCRIBE.topicname profile in MXTOPIC class

MQSO_CREATE ALTER

MQSO_RESUME READ

For example:
ADD MXTOPIC ’MQV1.SUBSCRIBE.Apples’ UACC(NONE)
PERMIT MXTOPIC ’MQV1.SUBSCRIBE.Apples’ ID(MQU1) ACCESS(UPDATE)

Security

Appendix J. Publish/Subscribe 1085

|

|
|
|
|
|
|
|

|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

|

|
|
|
|
|

|
|
|

|
|

|
|

|

|
|
|

|
|

|

||

||

||

||

||
|

|

|
|

Table 81. Access level required to profiles for topic security for closure of a subscribe
operation

Action Access level required

MQCLOSE sub hlq.SUBSCRIBE.topicname profile in MXTOPIC class

MQCO_REMOVE_SUB ALTER

Considerations for managed queues for subscriptions
A security check is carried out to see if you are allowed to subscribe to the topic.
However, no security checks are carried out when the managed queue is created,
or to determine if you have access to put messages to this destination queue. You
cannot close delete a managed queue. The default model queues used
are:SYSTEM.DURABLE.MODEL.QUEUE and
SYSTEM.NDURABLE.MODEL.QUEUE.

The managed queues created from these model queues are of the form
SYSTEM.MANAGED.DURABLE.A346EF00367849A0 and
SYSTEM.MANAGED.NDURABLE.A346EF0036785EA0 where the last qualifier is
unpredictable.

Do not give any user access to these queues. The queues can be protected using
generic profiles of the form SYSTEM.MANAGED.DURABLE.* and
SYSTEM.MANAGED.NDURABLE.* with no authorities granted.

Messages can be retrieved from these queues using the handle returned on the
MQSUB request.

Grant access for subscribe

1086 WebSphere MQ for z/VSE System Management Guide

||
|

||

||

||
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

Appendix K. Channel authentication records

To exercise more precise control over the access granted to connecting systems at a
channel level, you can use channel authentication records.

You might find that clients attempt to connect to your queue manager using a
blank user ID or a high-level user ID that would allow the client to perform
undesirable actions. You can block access to these clients using channel
authentication records. Alternatively, a client might assert a user ID that is valid on
the client platform but is unknown or of an invalid format on the server platform.
You can use a channel authentication record to map the asserted user ID to a valid
user ID.

You might find a client application that connects to your queue manager and
behaves badly in some way. To protect the server from the issues this application is
causing, it needs to be temporarily blocked using the IP address the client
application is on until such time as the firewall rules are updated or the client
application is corrected. You can use a channel authentication record to block the
IP address from which the client application connects.

If you have set up an administration tool such as the WebSphere MQ Explorer, and
a channel for that specific use, you might want to ensure that only specific client
computers can use it. You can use a channel authentication record to allow the
channel to be used only from certain IP addresses.

Use of channel authentication records to control inbound channels is enabled using
the ALTER QMGR CHLAUTH(ENABLED) switch or using the admin panel Global
System Definition.

Channel authentication records can be created to perform the following functions:
v To block connections from specific IP addresses.
v To block connections from specific user IDs.
v To set an MCAUSER value to be used for any channel connecting from a specific

IP address.
v To set an MCAUSER value to be used for any channel asserting a specific user

ID.
v To set an MCAUSER value to be used for any channel connecting from a specific

queue manager.
v To block connections claiming to be from a certain queue manager unless the

connection is from a specific IP address.

These uses are explained further in the following sections.

You create, modify, or remove channel authentication records using the MQSC
command SET CHLAUTH or the PCF command Set Channel Authentication
Record.

Blocking IP addresses
It is normally the role of a firewall to prevent access from certain IP addresses.
However, there might be occasions where you experience connection attempts from
an IP address that should not have access to your WebSphere MQ system and
must temporarily block the address before the firewall can be updated. These

© Copyright IBM Corp. 2008, 2013 1087

|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|

connection attempts might not even be coming from WebSphere MQ channels, but
from other socket applications that are misconfigured to target your WebSphere
MQ listener. Block IP addresses by setting a channel authentication record of type
BLOCKADDR. You can specify one or more single addresses, ranges of addresses,
or patterns including wildcards.

Whenever an inbound connection is refused because the IP address is blocked in
this manner, an event message MQRC_CHANNEL_BLOCKED with reason
qualifier MQRQ_CHANNEL_BLOCKED_ADDRESS is issued, provided that
channel events are enabled and the queue manager is running. Additionally, the
connection is held open for 30 seconds prior to returning the error to ensure the
listener is not flooded with repeated attempts to connect that are blocked.

To block IP addresses only on specific channels, or to avoid the delay before the
error is reported, set a channel authentication record of type ADDRESSMAP with
the USERSRC(NOACCESS) parameter.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier
MQRQ_CHANNEL_BLOCKED_NOACCESS is issued, provided that channel
events are enabled and the queue manager is running.

Blocking user IDs
To prevent certain user IDs from connecting over a client channel, set a channel
authentication record of type BLOCKUSER. This type of channel authentication
record applies only to client channels, not to message channels. You can specify
one or more individual user IDs to be blocked, but you cannot use wildcards.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier
MQRQ_CHANNEL_BLOCKED_USERID is issued, provided that channel events
are enabled.

You can also block any access for specified user IDs on certain channels by setting
a channel authentication record of type USERMAP with the
USERSRC(NOACCESS) parameter.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier
MQRQ_CHANNEL_BLOCKED_NOACCESS is issued, provided that channel
events are enabled and the queue manager is running.

Blocking queue manager names
To specify that any channel connecting from a specified queue manager is to have
no access, set a channel authentication record of type QMGRMAP with the
USERSRC(NOACCESS) parameter. You can specify a single queue manager name
or a pattern including a trailing wildcard (“*”). There is no equivalent of the
BLOCKUSER function to block access from queue managers.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier
MQRQ_CHANNEL_BLOCKED_NOACCESS is issued, provided that channel
events are enabled and the queue manager is running.

Channel authentication records

1088 WebSphere MQ for z/VSE System Management Guide

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

Mapping IP addresses to user IDs to be used
To specify that any channel connecting from a specified IP address is to use a
specific MCAUSER, set a channel authentication record of type ADDRESSMAP.
You can specify a single address, a range of addresses, or a pattern including
wildcards.

Mapping queue manager names to user IDs to be used
To specify that any channel connecting from a specified queue manager is to use a
specific MCAUSER, set a channel authentication record of type QMGRMAP. You
can specify a single queue manager name or a pattern including wildcards.

Mapping user IDs asserted by a client to user IDs to be used
To specify that if a certain user ID is used by a connection from a WebSphere MQ
MQI client, a different, specified MCAUSER is to be used, set a channel
authentication record of type USERMAP. User ID mapping does not use wildcards.

Interaction between channel authentication records
It is possible that a channel attempting to make a connection matches more than
one channel authentication record, and that these have contradictory effects. For
example, the IP address 192.0.2.6 matches the patterns 192.0.2.0-24, 192.0.2.*, and
192.0.*.6. The action taken is determined as follows.
v The channel authentication record used is selected as follows:

– A channel authentication record explicitly matching the channel name takes
priority over a channel authentication record matching the channel name by
using a wildcard.

– A channel authentication record using a user ID or queue manager name
takes priority over a record using an IP address.

v If a matching channel authentication record is found and it specifies an
MCAUSER, this MCAUSER is assigned to the channel.

v If a matching channel authentication record is found and it specifies that the
channel has no access, an MCAUSER value of *NOACCESS is assigned to the
channel. This value can later be changed by a security exit program.

v If no matching channel authentication record is found, or a matching channel
authentication record is found and it specifies that the user ID of the channel is
to be used, the MCAUSER field is inspected.
– If the MCAUSER field is blank, the client user ID is assigned to the channel.
– If the MCAUSER field is not blank, it is assigned to the channel.

v Any security exit program is run. This exit program might set the channel user
ID or determine that access is to be blocked.

v If the connection is blocked or the MCAUSER is set to *NOACCESS, the channel
ends.

v If the connection is not blocked, for any channel except a client channel, the
channel user ID determined in the previous steps is checked against the list of
blocked users.
– If the user ID is in the list of blocked users, the channel ends.
– If the user ID is not in the list of blocked users, the channel runs.

Channel authentication records

Appendix K. Channel authentication records 1089

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|

|

|
|

|
|

|
|
|

|

|

Where a number of channel authentication records match a channel name, IP
address or queue manager name, the most specific match is used. The match
considered to be most specific is determined as follows:
v For a channel name:

– The most specific match is a name without wildcards, for example A.B.C.
– The most generic match is a single asterisk (*), which matches all channel

names.
v For an IP address:

– The most specific match is a name without wildcards, for example 192.0.2.6.
– The most generic match is a single asterisk (*), which matches all channel

names.
– A pattern with an asterisk in the left-most position is more generic than a

pattern with a defined value in the left-most position. Thus *.0.2.6 is more
generic than 192.*.

– A pattern with an asterisk in the second position is more generic than a
pattern with a defined value in the second position, and similarly for each
subsequent position. Thus 192.*.2.6 is more generic than 192.0.*.

– Where two or more patterns have an asterisk in the same position, the one
with fewer nodes following the asterisk is more generic. Thus 192.* is more
generic than 192.*.2.*.

– A range indicated with a hyphen (-), is more specific than an asterisk. Thus
192.0.2.0-24 is more specific than 192.0.2.*.

– A pattern cannot have fewer than the required number of parts, unless the
pattern ends with a single trailing asterisk. For example 192.0.2 is invalid, but
192.0.2.* is valid.

– A trailing asterisk must be separated from the rest of the address by the dot
part separator . For example, 192.0* is not valid because the asterisk is not in
a part of its own.

– A pattern may contain additional asterisks provided that no asterisk is
adjacent to the trailing asterisk. For example, 192.*.2.* is valid, but 192.0.*.* is
not valid.

v For a queue manager name:
– The most specific match is a name without wildcard, for example PTHVSEC
– A name with trailing asterisk is not a specifc as one without, for example,

“PTHVSEC” is more specific than “PTHVSE*”.
– The most generic match is a single asterisk (*), which matches all manager

names.

WebSphere MQ Explorer
When using MQ Explorer connected to WebSphere MQ for z/VSE to create a new
channel authentication record then you cannot use the identity match option
"SSL/TLS subject's Distinguished Name". This is not supported in WebSphere MQ
for z/VSE.

Channel authentication records

1090 WebSphere MQ for z/VSE System Management Guide

|
|
|

|

|

|
|

|

|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|

|

|
|

|
|

|
|

|
|
|
|

Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM documentation or non-IBM Web
sites are provided for convenience only and do not in any manner serve as an
endorsement of those documents or Web sites. The materials for those documents
or Web sites are not part of the materials for this IBM product and use of those
documents or Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2008, 2013 1091

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories, Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Copyright license
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe is a trademark of Adobe Systems Incorporated in the United States, and/or
other countries.

Intel is a trademark of Intel Corporation or its subsidiaries in the United States and
other countries.

Java is a trademark of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices

1092 WebSphere MQ for z/VSE System Management Guide

Glossary of terms and abbreviations

This glossary defines WebSphere MQ terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

�A�

adapter
An interface between WebSphere MQ for
z/OS and TSO, IMS, CICS, or batch
address spaces. An adapter is an
attachment facility that enables
applications to access WebSphere MQ
services.

address space
The area of virtual storage available for a
particular job.

address space identifier (ASID)
A unique, system-assigned identifier for
an address space.

Adopt MCA
An WebSphere MQ feature that allows an
MCA instance to “adopt” the function of
an existing MCA when it is deemed to
have stalled.

alert A message sent to a management services
focal point in a network to identify a
problem or an impending problem.

alert monitor
In WebSphere MQ for z/OS, a component
of the CICS adapter that handles
unscheduled events occurring as a result
of connection requests to WebSphere MQ
for z/OS.

alias queue object
An WebSphere MQ object, the name of
which is an alias for a base queue defined
to the local queue manager. When an
application or a queue manager uses an

alias queue, the alias name is resolved
and the requested operation is performed
on the associated base queue.

ally An MVS address space that is connected
to WebSphere MQ for z/OS.

APAR Authorized program analysis report.

API exit
A user-written program called by the
queue manager before and after MQI calls
are processed.

application environment
The software facilities that are accessible
by an application program. On the z/OS
platform, CICS and IMS are examples of
application environments.

application queue
A queue used by an application.

ASID Address space identifier.

asynchronous messaging
A method of communication between
programs in which programs place
messages on message queues. With
asynchronous messaging, the sending
program proceeds with its own
processing without waiting for a reply to
its message. Contrast with synchronous
messaging.

attribute
One of a set of properties that defines the
characteristics of an WebSphere MQ
object.

authorization checks
Security checks that are performed when
a user tries to open an WebSphere MQ
object.

authorized program analysis report (APAR)
A report of a problem caused by a
suspected defect in a current, unaltered
release of a program.

auto-definition
See channel auto-definition.

auto-definition event
Seechannel auto-definition event.

auto-definition exit
Seechannel auto-definition exit.

© Copyright IBM Corp. 2008, 2013 1093

�B�

backout
An operation that reverses all the changes
made during the current unit of recovery
or unit of work. After the operation is
complete, a new unit of recovery or unit
of work begins. Contrast with commit.

basic mapping support (BMS)
An interface between CICS and
application programs that formats input
and output display data and routes
multiple-page output messages without
regard for control characters used by
various terminals.

batch auto-start
A queue manager parameter used to
indicate whether or not the WebSphere
MQ batch interface should be started
automatically during system initialization.

batch identifier
An XPCC identifier used to uniquely
identify a queue manager to batch
applications.

batch interval
An interval in milliseconds for a batch of
messages to stay active before the queue
manager deems the batch is complete and
commits the transmitted messages.

BMS Basic mapping support.

browse
In message queuing, to use the MQGET
call to copy a message without removing
it from the queue. See also get.

browse cursor
In message queuing, an indicator used
when browsing a queue to identify the
message that is next in sequence.

Bullet-proof
A feature of WebSphere MQ channels that
allows for a channel to wait no longer
than a configurable period of time to
receive data.

�C�

call back
In WebSphere MQ, a requester message
channel initiates a transfer from a sender
channel by first calling the sender, then
closing down and awaiting a call back.

CCSID
Coded character set identifier.

chained exit
A user-written exit program called in a
chain of exit programs.

channel auto-definition
An WebSphere MQ feature that facilitates
the automatic creation of message channel
definitions as they are needed.

channel auto-definition event
An event message generated when a
channel auto-definition occurs or fails.

channel auto-definition exit
A user-written exit that controls the
automatic creation of message channel
definitions.

CDF Channel definition file.

channel
See message channel.

channel definition file (CDF)
In WebSphere MQ, a file containing
communication channel definitions that
associate transmission queues with
communication links.

channel event
An event indicating that a channel
instance has become available or
unavailable. Channel events are generated
on the queue managers at both ends of
the channel.

checkpoint
A time when significant information is
written on the log. Contrast with
syncpoint.

CI Control interval.

class For security, a class associates a group of
resources. WebSphere MQ uses the
security classes MQADMIN, MQCONN
and MQQUEUE.

client A run-time component that provides
access to queuing services on a server for
local user applications. The queues used
by the applications reside on the server.
See also WebSphere MQ client.

client application
An application, running on a workstation
and linked to a client, that gives the
application access to queuing services on
a server.

client bridge
A component of the WebSphere MQ

1094 WebSphere MQ for z/VSE System Management Guide

client, unique to z/VSE, that allows
applications running in a non-LE
environment to use the client MQI.

client connection channel type
The type of MQI channel definition
associated with an WebSphere MQ client.
See also server connection channel type.

COA Confirm-on-arrival. In reply queue
processing, a reply message can be
generated when a message is initially put
to a queue by using the COA report
option in the message descriptor of an
object message.

COD Confirm-on-delivery. In reply queue
processing, a reply message can be
generated when a message is initially
read from a queue by using the COD
report option in the message descriptor of
an object message.

coded character set identifier (CCSID)
The name of a coded set of characters and
their code point assignments.

command
In WebSphere MQ, an instruction that can
be carried out by the queue manager.

command processor
An WebSphere MQ program responsible
for processing PCF messages. The
command processor validates and
executes PCF commands, and generates
response messages to the issuer.

command resource security
Security pertaining to WebSphere MQ
commands issued against WebSphere MQ
resources.

command server
An WebSphere MQ program responsible
for processing the system command
queue. The command server reads PCF
message from the command queue and
starts an instance of the WebSphere MQ
command processor to process the PCF
message.

command server auto-start
A queue manager parameter used to
indicate whether or not theWebSphere
MQ command server should be started
automatically during system initialization.

commit
An operation that applies all the changes
made during the current unit of recovery

or unit of work. After the operation is
complete, a new unit of recovery or unit
of work begins. Contrast with backout.

completion code
A return code indicating how an MQI call
has ended.

connect
To provide a queue manager connection
handle, which an application uses on
subsequent MQI calls. The connection is
made either by the MQCONN call, or
automatically by the MQOPEN call.

connection handle
The identifier or token by which a
program accesses the queue manager to
which it is connected.

context
Information about the origin of a
message.

control interval (CI)
A fixed-length area of direct access
storage in which VSAM stores records
and creates distributed free spaces. The
control interval is the unit of information
that VSAM transmits to or from direct
access storage.

CWS CICS Web Support. A feature of CICS TS
that allows CICS transactions to be run
from a web browser.

�D�

DAE Dump analysis and elimination.

DBCS In data conversion, a Double Byte
Character Set.

DCT In CICS, the Destination Control Table.

dead-letter queue (DLQ)
A queue to which a queue manager or
application sends messages that it cannot
deliver to their correct destination.

default object
A definition of an object (for example, a
queue) with all attributes defined.

disconnection interval
An interval in seconds that a channel will
remain active once the transmission
queue is empty.

distributed application
In message queuing, a set of application
programs that can each be connected to a

Glossary of terms and abbreviations 1095

different queue manager, but that
collectively constitute a single application.

distribution list
A list of queues to which a message can
be put using a single MQPUT or
MQPUT1 statement

distributed queue management (DQM)
In message queuing, the setup and
control of message channels to queue
managers on other systems.

DLQ Dead-letter queue.

DQM Distributed queue management.

dump analysis and elimination (DAE)
A z/OS service that enables an
installation to suppress SVC dumps and
ABEND SYSUDUMP dumps that are not
needed because they duplicate previously
written dumps.

dynamic queue
A queue created dynamically by an
application program using MQOPEN to
open a model queue. Dynamic queues can
be permanent or temporary.

�E�

environment
See application environment.

ESM External security manager.

event See instrumentation event.

event data
In an event message, the part of the
message data that contains information
about the event (such as the queue
manager name, and the application that
gave rise to the event). See also event
header.

event header
In an event message, the part of the
message data that identifies the event
type of the reason code for the event.

event log
See event queue.

event message
Contains information (such as the
category of event, the name of the
application that caused the event, and
queue manager statistics) relating to the
origin of an instrumentation event in a
network of WebSphere MQ systems.

event queue
The queue onto which the queue manager
puts an event message after it detects an
event. Each category of event (queue
manager, performance, or channel event)
has its own event queue.

exit A program called at defined places in the
processing carried out by the queue
manager or MCA programs.

Explorer
See WebSphere MQ Explorer.

external security manager (ESM)
A security product that is invoked by the
z/OS System Authorization Facility.
RACF® is an example of an ESM.

�F�

FCT In CICS, the File Control Table.

FIFO First-in-first-out.

first-in-first-out (FIFO)
A queuing technique in which the next
item to be retrieved is the item that has
been in the queue for the longest time.
(A)

forced shutdown
A type of shutdown of the CICS adapter
where the adapter immediately
disconnects from WebSphere MQ for
z/OS, regardless of the state of any
currently active tasks. Contrast with
quiesced shutdown.

FRR Functional recovery routine.

functional recovery routine (FRR)
A z/OS recovery/termination manager
facility that enables a recovery routine to
gain control in the event of a program
interrupt.

�G�

get In message queuing, to use the MQGET
call to remove a message from a queue.
See also browse.

group See message group.

�H�

handle
See connection handle and object handle.

�I�

immediate shutdown
In WebSphere MQ, a shutdown of a

1096 WebSphere MQ for z/VSE System Management Guide

queue manager that does not wait for
applications to disconnect. Current MQI
calls are allowed to complete, but new
MQI calls fail after an immediate
shutdown has been requested. Contrast
with quiesced shutdown and preemptive
shutdown.

initiation queue
A local queue on which the queue
manager puts trigger messages.

input/output parameter
A parameter of an MQI call in which you
supply information when you make the
call, and in which the queue manager
changes the information when the call
completes or fails.

instrumentation event
In WebSphere MQ, an event is a logical
combination of conditions that is detected
by a queue manager or channel instance.

IP Address
Internet Protocol address. Usually a
four-part dotted decimal value that
uniquely identifies a remote host, for
example, 1.20.33.444.

ISO International Standards Organization. In
data conversion, ISO code pages are those
that conform to ISO definitions.

�L�

listener
A communications program that runs
while WebSphere MQ is active. The
Listener program waits for connection
requests from Sender MCAs or from
client programs. For WebSphere MQ for
z/VSE V3.1, the Listener exclusively waits
for TCP/IP connection requests and starts
the Receiver MCA.

local definition
An WebSphere MQ object belonging to a
local queue manager.

local definition of a remote queue
An WebSphere MQ object belonging to a
local queue manager. This object defines
the attributes of a queue that is owned by
another queue manager. In addition, it is
used for queue-manager aliasing and
reply-to-queue aliasing.

local queue
A queue that belongs to the local queue
manager. A local queue can contain a list

of messages waiting to be processed.
Contrast with remote queue.

local queue manager
The queue manager to which a program
is connected and that provides message
queuing services to the program. Queue
managers to which a program is not
connected are called remote queue
managers, even if they are running on the
same system as the program.

log In WebSphere MQ, a file recording the
work done by queue managers while they
receive, transmit, and deliver messages.

logical message
A single unit of application information.
In the absence of system constraints, a
logical message would be the same as a
physical message.

�M�

machine check interrupt
An interruption that occurs as a result of
an equipment malfunction or error. A
machine check interrupt can be either
hardware recoverable, software
recoverable, or non-recoverable.

MCA Message channel agent.

message
In message queuing applications, a
communication sent between programs.
See also persistent message and
nonpersistent message. In system
programming, information intended for
the terminal operator or system
administrator.

message channel
In distributed message queuing, a
mechanism for moving messages from
one queue manager to another. A message
channel comprises two message channel
agents (a sender and a receiver) and a
communication link. Contrast with MQI
channel.

message channel agent (MCA)
A program that transmits prepared
messages from a transmission queue to a
communication link, or from a
communication link to a destination
queue.

message descriptor
Control information describing the
message format and presentation that is

Glossary of terms and abbreviations 1097

carried as part of an WebSphere MQ
message. The format of the message
descriptor is defined by the MQMD
structure.

message exit
An exit program called during channel
operation following the retrieval of a
message from a queue and prior to a
message being placed on a queue.

message expiry
Message attribute identifying a period of
time expressed in tenths of a second. The
message becomes eligible to be discarded
if it has not been removed from the
destination queue before this period of
time elapses.

message group
A group of logical messages. Logical
grouping of messages allows applications
to group messages that are similar and to
ensure the sequence of the messages.

message priority
In WebSphere MQ, an attribute of a
message that can affect the order in which
messages on a queue are retrieved, and
whether a trigger event is generated.

message queue
Synonym for queue.

message queue interface (MQI)
The programming interface provided by
the WebSphere MQ queue managers. This
programming interface allows application
programs to access message queuing
services.

message queuing
A programming technique in which each
program within an application
communicates with the other programs
by putting messages on queues.

message segment
One of a number of segments of a
message that is too large either for the
application or for the queue manager to
handle.

messaging
See synchronous messaging and
asynchronous messaging.

model queue
A template of a queue definition, used to
create a dynamic queue. When a model
queue is opened using MQOPEN, a

dynamic queue is created with the
attributes of the model queue.

MQI Message queue interface.

MQI channel
Connects an WebSphere MQ client to a
queue manager on a server system, and
transfers only MQI calls and responses in
a bidirectional manner. Contrast with
message channel.

MQMD
WebSphere MQ Message Descriptor. The
MQMD is a data structure that is prefixed
to all WebSphere MQ messages.

MQSC
WebSphere MQ Command. MQSC
commands are verb-based text commands
that manipulate or display WebSphere
MQ objects.

WebSphere MQ
A family of IBM licensed programs that
provides message queuing services.

WebSphere MQ client
Part of an WebSphere MQ product that
can be installed on a system without
installing the full queue manager. The
WebSphere MQ client accepts MQI calls
from applications and communicates with
a queue manager on a server system.

�N�

namelist
An WebSphere MQ object that contains a
list of names, such as queue names.

null character
The character that is represented by X'00'.

�O�

object In WebSphere MQ, an object is a queue
manager, a queue, a process definition, a
channel, a namelist (z/OS only), or a
storage class (z/OS only).

object descriptor
A data structure that identifies a
particular WebSphere MQ object. Included
in the descriptor are the name of the
object and the object type.

object handle
The identifier or token by which a
program accesses the WebSphere MQ
object with which it is working.

1098 WebSphere MQ for z/VSE System Management Guide

output parameter
A parameter of an MQI call in which the
queue manager returns information when
the call completes or fails.

�P�

page set
A VSAM data set used when WebSphere
MQ for z/OS moves data (for example,
queues and messages) from buffers in
main storage to permanent backing
storage (DASD).

PCF Programmable Command Format. A data
message containing an WebSphere MQ
command and associated parameters. PCF
messages are written to the system
command queue.

PCT In CICS, the Program Control Table.

pending event
An unscheduled event that occurs as a
result of a connect request from a CICS
adapter.

performance event
A category of event indicating that a limit
condition has occurred.

permanent dynamic queue
A dynamic queue that retains messages
when the queue manager is stopped and
restarted, and remains until it is explicitly
deleted.

persistent message
A message that survives a restart of the
queue manager.

physical message
The smallest unit of information that can
be placed on or removed from a queue; it
often corresponds to the information
specified or retrieved on a single MQPUT,
MQPUT1, or MQGET call.

ping In distributed queuing, a diagnostic aid
that uses the exchange of a test message
to confirm that a message channel or a
TCP/IP connection is functioning.

PKI Public Key Infrastructure. The PKI
infrastructure includes X.509 digital
certificates used by SSL services.

platform
In WebSphere MQ, the operating system
under which a queue manager is running.

preemptive shutdown
In WebSphere MQ, a shutdown of a
queue manager that does not wait for
connected applications to disconnect, nor
for current MQI calls to complete.
Contrast with immediate shutdown and
quiesced shutdown.

port A unique communications identifier used
by TCP/IP programs to establish a
conversation with a specific application.
The target application binds a TCP/IP
socket to the unique port number and
then waits for connection requests for the
port from remote hosts.

PPT In CICS, the Processing Program Table.

program temporary fix (PTF)
A solution or by-pass of a problem
diagnosed by IBM field engineering as the
result of a defect in a current, unaltered
release of a program.

PTF Program temporary fix.

�Q�

queue An WebSphere MQ object. Message
queuing applications can put messages
on, and get messages from, a queue. A
queue is owned and maintained by a
queue manager. Local queues can contain
a list of messages waiting to be processed.
Queues of other types cannot contain
messages—they point to other queues, or
can be used as models for dynamic
queues.

queue manager
A system program that provides queuing
services to applications. It provides an
application programming interface so that
programs can access messages on the
queues that the queue manager owns. See
also local queue manager and remote queue
manager. An WebSphere MQ object that
defines the attributes of a particular
queue manager.

queue manager event
An event that indicates:
v An error condition has occurred in

relation to the resources used by a
queue manager. For example, a queue
is unavailable.

v A significant change has occurred in
the queue manager. For example, a
queue manager has stopped or started.

Glossary of terms and abbreviations 1099

queuing
See message queuing.

quiesced shutdown
In WebSphere MQ, a shutdown of a
queue manager that allows all connected
applications to disconnect. Contrast with
immediate shutdown and preemptive
shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects
from WebSphere MQ, but only after all
the currently active tasks have been
completed. Contrast with forced shutdown.

quiescing
In WebSphere MQ, the state of a queue
manager prior to it being stopped. In this
state, programs are allowed to finish
processing, but no new programs are
allowed to start.

�R�

reason code
A return code that describes the reason
for the failure or partial success of an
MQI call.

receive exit
An exit program called immediately
following the receipt of data over an
active channel.

receiver channel
In message queuing, a channel that
responds to a sender channel, takes
messages from a communication link, and
puts them on a local queue.

remote queue
A queue belonging to a remote queue
manager. Programs can put messages on
remote queues, but they cannot get
messages from remote queues. Contrast
with local queue.

remote queue manager
To a program, a queue manager that is
not the one to which the program is
connected.

remote queue object
See local definition of a remote queue.

remote queuing
In message queuing, the provision of
services to enable applications to put
messages on queues belonging to other
queue managers.

reply message
A type of message used for replies to
request messages.

reply-to queue
The name of a queue to which the
program that issued an MQPUT call
wants a reply message or report message
sent.

report message
A type of message that gives information
about another message. A report message
can indicate that a message has been
delivered, has arrived at its destination,
has expired, or could not be processed for
some reason.

requester channel
In message queuing, a receiver-type
channel that can activate a remote sender
or server channel. Following channel
activation, the requester channel acts as a
receiver channel. See also server channel.

request message
A type of message used to request a reply
from another program.

resolution path
The set of queues that are opened when
an application specifies an alias or a
remote queue on input to an MQOPEN
call.

resource
Any facility of the computing system or
operating system required by a job or
task.

resource manager
An application, program, or transaction
that manages and controls access to
shared resources such as memory buffers
and data sets. WebSphere MQ, CICS, and
IMS are resource managers.

return codes
The collective name for completion codes
and reason codes.

rollback
Synonym for back out.

�S�

SAF System Authorization Facility. SAF is an
interface between the z/VSE operating
system and external security managers.
The SAF interface is used for security
purposes.

1100 WebSphere MQ for z/VSE System Management Guide

SBCS In data conversion, a Single Byte
Character Set.

security exit
An exit program called during the
establishment of a channel.

segment
See message segment.

segmentation
A function where messages can be broken
down into segments, or reassembled into
a complete message automatically by the
queue manager.

sender channel
In message queuing, a channel that
initiates transfers, removes messages from
a transmission queue, and moves them
over a communication link to a receiver
or requester channel.

Send exit
An exit program called prior to the
transmission of data over an active
channel.

sequential number wrap value
In WebSphere MQ, a method of ensuring
that both ends of a communication link
reset their current message sequence
numbers at the same time. Transmitting
messages with a sequence number
ensures that the receiving channel can
reestablish the message sequence when
storing the messages.

server (1) In WebSphere MQ, a queue manager
that provides queue services to client
applications running on a remote
workstation. (2) The program that
responds to requests for information in
the particular two-program,
information-flow model of client/server.
See also client.

server channel
In message queuing, a channel that acts
as a sender-type channel after it has been
activated by a remote requester channel.
Following channel activation, the server
channel acts as a sender channel. See also
requester channel.

server connection channel type
The type of MQI channel definition
associated with the server that runs a
queue manager. See also client connection
channel type.

session ID
In WebSphere MQ for z/OS, the
CICS-unique identifier that defines the
communication link to be used by a
message channel agent when moving
messages from a transmission queue to a
link.

shutdown
See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

single-phase commit
A method in which a program can
commit updates to a queue without
coordinating those updates with updates
the program has made to resources
controlled by another resource manager.
Contrast with two-phase commit.

socket A communications handle used by
TCP/IP programs to send data to, and
receive data from, a remote host.

SSID Subsystem Identifier. An SSID is usually
synonymous with an WebSphere MQ
queue manager name.

SSL Secure Sockets Layer. A integrated feature
of the TCP/IP product that provides a set
of services to secure e-business
transactions, including data encryptions
and X.509 certificate exchange.

subsystem
In z/OS, a group of modules that
provides function that is dependent on
z/OS. For example, WebSphere MQ for
z/OS is a z/OS subsystem.

supportpac
An IBM delivery package for providing
licensed product features. Available
supportpacs can generally be downloaded
from the IBM website. Each supportpac
has its own license agreement.

synchronous messaging
A method of communication between
programs in which programs place
messages on message queues. With
synchronous messaging, the sending
program waits for a reply to its message
before resuming its own processing.
Contrast with asynchronous messaging.

syncpoint
An intermediate or end point during
processing of a transaction at which the
transaction’s protected resources are

Glossary of terms and abbreviations 1101

consistent. At a syncpoint, changes to the
resources can safely be committed, or
they can be backed out to the previous
syncpoint.

system command queue
The system command queue is a
communication parameter of the global
system definition and identifies the target
queue for PCF command messages.

system reply queue
The system reply queue is a
communication parameter of the global
system definition and identifies the target
queue for MQSC response messages.

system initialization table (SIT)
A table containing parameters used by
CICS on start up.

�T�

target library high-level qualifier (thlqual)
High-level qualifier for z/OS target data
set names.

TCP/IP
Transmission Control Protocol, Internet
Protocol. TCP/IP is a family of
communications protocols.

temporary dynamic queue
A dynamic queue that does not retain
messages when the queue manager is
stopped and restarted, and is deleted
when the application that created it closes
the queue or terminates.

thlqual
Target library high-level qualifier.

thread In WebSphere MQ, the lowest level of
parallel execution available on an
operating system platform.

trace In WebSphere MQ, a facility for recording
WebSphere MQ activity. The destinations
for trace entries can include GTF and the
system management facility (SMF).

tranid See transaction identifier.

transaction identifier
In CICS, a name that is specified when
the transaction is defined, and that is
used to invoke the transaction.

transmission queue
A local queue on which prepared
messages destined for a remote queue
manager are temporarily stored.

triggering
In WebSphere MQ, a facility allowing a
queue manager to start an application
automatically when predetermined
conditions on a queue are satisfied.

trigger message
A message containing information about
the program that a trigger monitor is to
start.

trigger monitor
A continuously-running application
serving one or more initiation queues.
When a trigger message arrives on an
initiation queue, the trigger monitor
retrieves the message. It uses the
information in the trigger message to start
a process that serves the queue on which
a trigger event occurred.

two-phase commit
A protocol for the coordination of changes
to recoverable resources when more than
one resource manager is used by a single
transaction. Contrast with single-phase
commit.

�U�

undelivered-message queue
See dead-letter queue.

Unicode
Codepage UCS-2 is the Universal
Multiple-Octet Coded Character Set
defined by ISO/IEC 10646-1:1993(EE).

unit of recovery
A recoverable sequence of operations
within a single resource manager.
Contrast with unit of work.

unit of work
A recoverable sequence of operations
performed by an application between two
points of consistency. A unit of work
begins when a transaction starts or after a
user-requested syncpoint. It ends either at
a user-requested syncpoint or at the end
of a transaction. Contrast with unit of
recovery.

utility In WebSphere MQ, a supplied set of
programs that provide the system
operator or system administrator with
facilities in addition to those provided by
the WebSphere MQ commands. Some
utilities invoke more than one function.

�W�

1102 WebSphere MQ for z/VSE System Management Guide

WebSphere MQ Explorer
A GUI interface available on Windows
and Linux (x86) that facilitates
administration and monitoring of remote
queue managers.

�X�

X.509 X.509 is the standard used for the
generation and interpretation of PKI
certificates.

Glossary of terms and abbreviations 1103

1104 WebSphere MQ for z/VSE System Management Guide

Bibliography

This bibliography describes the documentation available for all current WebSphere
MQ products.

WebSphere MQ cross-platform publications
For each WebSphere MQ cross-platform publication you will find the title and
order number, followed by a brief description of the content of the publication and
the intended audience, to help you decide whether you need that document.

These cross-platform publications apply to these WebSphere MQ products, unless
otherwise stated in the book:
v WebSphere MQ for AIX
v WebSphere MQ for HP-UX
v WebSphere MQ for i5/OS
v WebSphere MQ for Linux for Intel
v WebSphere MQ for Linux for zSeries
v WebSphere MQ for Solaris
v WebSphere MQ for Windows
v WebSphere MQ for z/OS

An Introduction to Messaging and Queuing
An Introduction to Messaging and Queuing, GC33-0805, defines the problems solved
by WebSphere MQ products, explains how messaging and queuing works,
examines its chief benefits, provides a small amount of technical detail about
messages and message queues, and examines some typical real world uses.

This book is for anyone new to the subject of messaging and queuing.

WebSphere MQ Application Programming Guide
WebSphere MQ Application Programming Guide, SC34-6939, introduces the concepts
of messages and queues, and shows you in detail how to design and write
applications that use the services that WebSphere MQ provides.

This book is for the designers of applications that will use message queuing
techniques, and for programmers who have to implement these designs. To write
message queuing applications using WebSphere MQ, you need to know how to
write programs in at least one of the programming languages that WebSphere MQ
supports. However, to understand this book, you do not need to have written
message queuing programs before.

WebSphere MQ Application Programming Reference
WebSphere MQ Application Programming Reference, SC34-6940, introduces the
concepts of messages and queues, and gives a full description of the WebSphere
MQ programming interface, including data types, function calls, attributes, return
codes, and constants.

This book is for the designers of applications that will use message queuing
techniques, and for programmers who have to implement these designs. To write
message queuing applications using WebSphere MQ, you need to know how to

© Copyright IBM Corp. 2008, 2013 1105

write programs in at least one of the programming languages that WebSphere MQ
supports. However, to understand this book, you do not need to have written
message queuing programs before.

WebSphere MQ Clients
WebSphere MQ Clients, GC34-6934, describes the WebSphere MQ client/server
environment. It describes how to install WebSphere MQ clients on different
platforms, how to configure communications for different protocols, and how to
define WebSphere MQ channels for client and server connections, in step-by-step
instructions, complete with examples. It goes on to show you how to use
WebSphere MQ applications in a WebSphere MQ client/server environment,
including how WebSphere MQ applications connect to a queue manager.

This book is for anyone who installs and configures WebSphere MQ clients and
WebSphere MQ servers, for system administrators, and for application
programmers who write programs that use the Message Queue Interface (MQI). To
understand this book, you should have experience in installing and configuring the
system you use for the server, experience with any client platforms that you will
be using, an understanding of the purpose of the Message Queue Interface (MQI),
and experience of WebSphere MQ programs in general, or familiarity with the
content of the other WebSphere MQ publications.

WebSphere MQ Constants
WebSphere MQ Constants, SC34-6951, provides a full description of the constants
used by WebSphere MQ.

This book is for the designers of applications that use message queuing techniques,
and for programmers who have to implement these designs. To write message
queuing applications using WebSphere MQ, you need to know how to write
programs in one of the supported programming languages. To understand this
book, you do not need to have written message queuing programs before.

Monitoring WebSphere MQ
Monitoring WebSphere MQ, SC34-6937, describes how to use instrumentation events,
activity reports, and the trace route facility, in a network of connected systems that
use WebSphere MQ products in different operating system environments.

This book is for system programmers who write programs to monitor and
administer WebSphere MQ products. To understand it, you need experience in
writing systems management applications, an understanding of the Message
Queue Interface (MQI), and experience of WebSphere MQ programs in general, or
familiarity with the content of the other books in the WebSphere MQ library.

WebSphere MQ Intercommunication
WebSphere MQ Intercommunication, SC34-6931, describes intercommunication
between WebSphere MQ products. It introduces the concepts of
intercommunication (transmission queues, message channel agent programs, and
communication links) that are brought together to form message channels. It
describes how geographically-separated queue managers are linked together by
message channels to form a network of queue managers. It discusses the
distributed-queuing management (DQM) facility of WebSphere MQ, which
provides the services that enable applications to communicate using queue
managers.

WebSphere MQ cross-platform publications

1106 WebSphere MQ for z/VSE System Management Guide

This book is for anyone who needs to use WebSphere MQ intercommunication
facilities including:
v Network planners responsible for designing the overall queue manager network.
v Local channel planners responsible for implementing the network plan on one

node.
v Application programmers responsible for designing applications that include

processes, queues, and channels.
v Systems administrators responsible for monitoring the local system, controlling

exception situations, and implementing some of the planning details.
v System programmers responsible for designing and programming user exits.

To use and control DQM you need a good knowledge of WebSphere MQ in
general. You also need to understand the WebSphere MQ products for the
platforms you will be using, and the communications protocols used on those
platforms.

WebSphere MQ Messages
WebSphere MQ Messages, GC34-6945, describes the user messages returned by
WebSphere MQ, with explanations and suggested actions. It is designed for use as
a quick reference.

This book is for system operators, system programmers, and anyone who needs to
understand and take action in response to WebSphere MQ user messages.

WebSphere MQ Migration Information
WebSphere MQ Migration Information, SC34-6948, is for experienced users of
WebSphere MQ who want to migrate their WebSphere MQ V5.3 systems to
WebSphere MQ V6.0. It is specifically intended for system analysts, system
programmers, system administrators, security administrators, network
administrators, database administrators, and other users who have experience
installing and managing WebSphere MQ. This book should be read with other
publications in the WebSphere MQ V6.0 library describing specific tasks (installing,
administering, and so on).

WebSphere MQ Programmable Command Formats and
Administration Interface

WebSphere MQ Programmable Command Formats and Administration Interface,
SC34-6942, starts by describing the facilities available in WebSphere MQ products
for writing programs using the Programmable Command Formats (PCFs) to
administer WebSphere MQ systems either locally or remotely. The second part of
this book describes the administration interface for WebSphere MQ, known as the
WebSphere MQ Administration Interface (MQAI). The MQAI is a programming
interface that simplifies the use of PCF messages to configure WebSphere MQ.

This book is for system programmers who write programs to monitor and
administer WebSphere MQ products. To understand the part about PCFs, you need
experience in writing systems management applications, an understanding of the
Message Queue Interface (MQI), and experience of WebSphere MQ programs in
general, or familiarity with the content of the other books in the WebSphere MQ
library. To understand the part about the MQAI, you need to understand the
general concepts of WebSphere MQ and how to write programs in the C
programming language or in Visual Basic for Windows.

WebSphere MQ cross-platform publications

Bibliography 1107

WebSphere MQ Publish/Subscribe User's Guide
WebSphere MQ Publish/Subscribe User's Guide, SC34-6950, describes how to use
WebSphere MQ Publish/Subscribe, which allows you to decouple the provider of
information from the consumers of that information. WebSphere MQ
Publish/Subscribe removes the need for your application to know anything about
the target application. Similarly, the target application does not have to know
anything about the source of the information it receives.

This book is for experienced users of WebSphere MQ who have a good knowledge
of WebSphere MQ and want to use WebSphere MQ Publish/Subscribe. All the
sample programs and header files are in the C programming language.

WebSphere MQ Queue Manager Clusters
WebSphere MQ Queue Manager Clusters, SC34-6933, describes how to organize, use
and manage queue managers in virtual groups known as clusters. Clustering
ensures that each queue manager within a given cluster knows about all the other
queue managers in the same cluster. Clustering also makes the management of
complex queue manager networks simpler.

This book is intended for:
v Network planners responsible for designing WebSphere MQ queue manager

networks.
v Application programmers responsible for designing applications that access

queues and queue managers within clusters.
v Systems administrators responsible for monitoring the local system and

implementing planning details.
v System programmers responsible for designing and programming user exits.

You should understand the basic concepts of message queuing, for example the
purpose of queues, queue managers, and channels. You should also be familiar
with the WebSphere MQ products for the platforms you will be using, and the
communications protocols used on those platforms. It will also be helpful if you
understand how distributed queue management works.

WebSphere MQ Script (MQSC) Command Reference
WebSphere MQ Script (MQSC) Command Reference, SC34-6941, describes the MQSC
commands, used by system operators and administrators to manage queue
managers. It introduces the commands and tells you how to use them, before
describing the commands in detail, in alphabetic order.

This book is intended for system programmers, system administrators, and system
operators. To understand this book, you need to be familiar with the system
facilities for the platform on which you are using WebSphere MQ product, and to
understand the basic concepts of messaging and queuing.

WebSphere MQ Security
WebSphere MQ Security, SC34-6932, describes the factors you need to consider when
planning to meet your security requirements in a WebSphere MQ environment. It
provides the background information for you to evaluate the security provisions
offered by WebSphere MQ and related products. This book also describes the
Secure Sockets Layer (SSL) support in WebSphere MQ.

WebSphere MQ cross-platform publications

1108 WebSphere MQ for z/VSE System Management Guide

This book is for anyone responsible for planning or implementing security
provisions to protect WebSphere MQ objects.

To understand this book, you do not need to have worked with message queuing
products before, but you should understand the basic concepts of message
queuing.

WebSphere MQ System Administration Guide
WebSphere MQ System Administration Guide, SC34-6928, describes the day-to-day
management of local and remote WebSphere MQ objects. It includes topics such as
security, recovery and restart, problem determination, and the dead-letter queue
handler. It also includes the syntax of the WebSphere MQ control commands and
tells you how to use installable services and exits to tailor your WebSphere MQ
system.

This book is for system administrators and system programmers who manage the
configuration and administration tasks for WebSphere MQ. It is also useful to
application programmers who need to understand WebSphere MQ administration
tasks. To understand this book, you need a good understanding of the operating
systems it describes and of the utilities associated with them. You do not need to
have worked with message queuing products before, but you should understand
the basic concepts of message queuing.

WebSphere MQ Using C++
WebSphere MQ Using C++, SC34-6936, describes the C++ programming-language
binding to the WebSphere MQ Message Queue Interface (MQI). It introduces the
binding, describes considerations associated with using C++ with WebSphere MQ,
and describes the WebSphere MQ C++ classes.

The book is for application programmers who write C++ programs that use the
MQI. To understand this book, you need to know the C and C++ programming
languages, understand the Booch methodology, understand the purpose of the
Message Queue Interface (MQI), and have experience of WebSphere MQ programs
in general, or familiarity with the content of other WebSphere MQ publications.

WebSphere MQ Using Java
WebSphere MQ Using Java, SC34-6935, is about WebSphere MQ classes for Java,
which is also known as WebSphere MQ base Java, and WebSphere MQ classes for
Java Message Service (JMS), which is also known as WebSphere MQ JMS. Both sets
of classes are supplied with WebSphere MQ and are collectively known as
WebSphere MQ Java.

WebSphere MQ JMS provides an implementation of Version 1.1 of Sun's JMS API
specification. WebSphere MQ base Java, however, is a different set of classes and is
not an implementation of the JMS API.

Using WebSphere MQ base Java or WebSphere MQ JMS, a Java application can
connect to a WebSphere MQ queue manager and access its resources. A WebSphere
MQ JMS publish/subscribe application can also connect directly to a WebSphere
Business Integration Event Broker or WebSphere Business Integration Message
Broker broker.

The book describes how to perform these tasks:
v Configuring WebSphere MQ Java after installation.

WebSphere MQ cross-platform publications

Bibliography 1109

v Verifying the installation of WebSphere MQ Java.
v Administering WebSphere MQ JMS using the administration tool.
v Writing WebSphere MQ base Java and WebSphere MQ JMS applications.

The book also contains a reference sections that define the WebSphere MQ base
Java and WebSphere MQ JMS classes and interfaces.

WebSphere MQ platform-specific publications
Each WebSphere MQ product is documented in at least one platform-specific
publication, in addition to the WebSphere MQ family books. This section describes
those publications, organized by platform.

For each WebSphere MQ cross-platform publication you will find the title and
order number, followed by a brief description of the content of the publication and
the intended audience, to help you decide whether you need that publication.

WebSphere MQ for AIX

WebSphere MQ for AIX Quick Beginnings
WebSphere MQ for AIX, V7.0 Quick Beginnings, GC34-6922, tells you how to plan for
WebSphere MQ for AIX, how to install it, and how to verify that the product has
installed correctly. It contains information about both the WebSphere MQ for AIX
server and the WebSphere MQ for AIX client.

This book is for anyone responsible for installing WebSphere MQ for AIX. To
understand this book you need a general understanding of the basic concepts of
WebSphere MQ.

WebSphere MQ for HP-UX

WebSphere MQ for HP-UX Quick Beginnings
WebSphere MQ for HP-UX, V7.0 Quick Beginnings, GC34-6923, tells you how to plan
for WebSphere MQ for HP-UX, how to install it and how to verify that the product
has installed correctly. It contains information about both the WebSphere MQ for
HP-UX server and the WebSphere MQ for HP-UX client.

This book is for anyone responsible for installing WebSphere MQ for HP-UX. To
understand this book you need an understanding of the basic concepts of
WebSphere MQ.

WebSphere MQ for i5/OS

WebSphere MQ for i5/OS Quick Beginnings
WebSphere MQ for i5/OS Quick Beginnings, GC34-6925, tells you how to plan for
WebSphere MQ for i5/OS, and then how to install it and verify that the
installation has worked.

This book is for anyone responsible for installing WebSphere MQ for i5/OS. To
understand this book you need a general understanding of the basic concepts of
WebSphere MQ.

WebSphere MQ cross-platform publications

1110 WebSphere MQ for z/VSE System Management Guide

WebSphere MQ for i5/OS System Administration Guide V7.0
WebSphere MQ for i5/OS System Administration Guide V7.0, SC34-6930, describes the
system administration aspects of WebSphere MQ for i5/OS, and the services
provided to support commercial messaging. This includes managing the queues
that applications use to receive their messages, and ensuring that applications have
access to the queues that they require.

This book is for system administrators and system programmers who manage the
configuration and administration tasks for WebSphere MQ. It is also useful to
application programmers who must have some understanding of WebSphere MQ
administration tasks. To use this book, you need a good understanding of the IBM
operating system for the i5/OS system, and of the utilities associated with it. You
do not need to have worked with message queuing products before, but you need
to understand the basic concepts of message queuing.

WebSphere MQ for i5/OS Application Programming Reference
(ILE RPG) V7.0
WebSphere MQ for i5/OS Application Programming Reference (ILE RPG) V7.0,
SC34-6943, describes in full the WebSphere MQ for i5/OS programming interface
in the RPG-ILE programming language. It shows you how to design and develop
executable applications for WebSphere MQ, and it describes the sample programs
available to help you write your RPG programs.

This book is intended for:
v Designers of applications that use message queuing techniques.
v Programmers who implement these application designs.

To understand this book, you should know how to write programs in the RPG
programming language. You do not need to understand how to develop message
queuing applications.

WebSphere MQ for Linux

WebSphere MQ for Linux Quick Beginnings
WebSphere MQ for Linux, V7.0 Quick Beginnings, GC34-6924, tells you how to plan
for WebSphere MQ for Linux, how to install it and how to verify that the product
has installed correctly. It contains information about both the WebSphere MQ for
Linux server and the WebSphere MQ for Linux client.

This book is for anyone responsible for installing WebSphere MQ for Linux. To
understand this book you need an understanding of the basic concepts of
WebSphere MQ.

WebSphere MQ for Solaris

WebSphere MQ for Solaris Quick Beginnings
WebSphere MQ for Solaris, V7.0 Quick Beginnings, GC34-6921, tells you how to plan
for WebSphere MQ for Solaris, how to install it and how to verify that the product
has installed correctly. It contains information about both the WebSphere MQ for
Solaris server and the WebSphere MQ for Solaris client.

WebSphere MQ platform-specific publications

Bibliography 1111

This book is for anyone responsible for installing WebSphere MQ for Solaris. To
understand this book you need an understanding of the basic concepts of
WebSphere MQ.

WebSphere MQ for Windows

WebSphere MQ for Windows Quick Beginnings
WebSphere MQ for Windows, V7.0 Quick Beginnings, GC34-6920, shows you how to
plan for WebSphere MQ for Windows, how to install it and how to verify that the
product has installed correctly. It contains information about both the WebSphere
MQ for Windows server and the WebSphere MQ for Windows client.

This book is for anyone responsible for installing WebSphere MQ for Windows. To
understand this book you need an understanding of the basic concepts of
WebSphere MQ.

WebSphere MQ for Windows Using .NET
WebSphere MQ Using .NET, GC34-6949, describes the WebSphere MQ classes for
.NET, which can be used to access WebSphere MQ systems. It shows how to
transfer this knowledge to become productive with the WebSphere MQ classes for
.NET programming interfaces.

This book is for application programmers who want to send and receive messages
in the .NET environment and are already familiar with the procedural WebSphere
MQ application programming interface described in the WebSphere MQ
Application Programming Guide.

To understand this book, you need some knowledge of the .NET programming
environment, understand the purpose of the Message Queue Interface (MQI), and
have experience of WebSphere MQ programs in general, or familiarity with the
content of other WebSphere MQ publications.

WebSphere MQ for Windows Using the Component Object Model
Interface
WebSphere MQ for Windows, Using the Component Object Model Interface, SC34-6938
describes the WebSphere MQ Automation Classes for ActiveX. It tells you how to
design and program your applications using the WebSphere MQ ActiveX
components, and how to resolve problems using trace and reason codes. It
describes in detail each of the automation classes, the ActiveX interface to the
WebSphere MQ Administration interface, and the support provided by WebSphere
MQ for the Microsoft Active Directory Service Interfaces (ADSI).

This book is for designers and programmers who want to use the WebSphere MQ
component interfaces to develop WebSphere MQ applications that run under
Windows applications, using ActiveX components.

To understand this book, you need some experience of using ActiveX components
and some experience or knowledge of WebSphere MQ.

WebSphere MQ for z/OS

WebSphere MQ platform-specific publications

1112 WebSphere MQ for z/VSE System Management Guide

WebSphere MQ for z/OS Concepts and Planning Guide
WebSphere MQ for z/OS Concepts and Planning Guide V7.0, GC34-6926, describes the
concepts of WebSphere MQ for z/OS and tells you how to plan your WebSphere
MQ for z/OS systems.

This book is for planners of z/OS systems that will use WebSphere MQ message
queuing techniques and system Programmers who have to install, customize, and
operate WebSphere MQ for z/OS. To understand this his book, you need to be
familiar with the basic concepts of CICS, IMS, and WebSphere MQ. If you are
going to use queue-sharing groups, you will also need to know DB2® and the
zSeries Coupling Facility.

WebSphere MQ for z/OS Licensed Program Specifications
WebSphere MQ for z/OS Licensed Program Specifications, GC33-1350, provides a
summary of the function available in WebSphere MQ for z/OS, together with
detailed information about hardware and software requirements and the license
under which the product is available.

WebSphere MQ for z/OS Problem Determination Guide
WebSphere MQ for z/OS Problem Determination Guide V7.0, GC34-6944, helps you to
determine the causes of WebSphere MQ for z/OS problems, resolve those
problems, deal with the IBM support center, and handle APARs.

This book is for those responsible for solving problems with WebSphere MQ for
z/OS systems and application programs. To understand this book, you need to be
familiar with system programming concepts, z/OS diagnostic procedures, and the
structure and function of the WebSphere MQ for z/OS subsystems at your site.
You should also be familiar with the other systems used with WebSphere MQ for
z/OS at your site, for example, CICS and IMS.

WebSphere MQ for z/OS V7.0 Program Directory
WebSphere MQ for z/OS Program Directory, GI13-0529, includes the installation
instructions for WebSphere MQ for z/OS. It also identifies hardware, software and
storage requirements, and lists prerequisite APARs. It is for system programmers
responsible for installing and maintaining WebSphere MQ for z/OS.

WebSphere MQ for z/OS System Administration Guide
WebSphere MQ for z/OS System Administration Guide V7.0, SC34-6929, tells you how
to operate WebSphere MQ for z/OS using commands, panels, and utilities, and
how to write applications to administer WebSphere MQ. The latter part of the book
deals with termination, recovery, and restart.

This book is for system programmers and system administrators. To understand
this book, you need to be familiar with the basic concepts of CICS, IMS, the z/OS
job control language (JCL), and the z/OS Time Sharing Option (TSO). If you intend
to use queue-sharing groups, you also need to know DB2 and the z/OS Coupling
Facility. If you want to write programs to administer WebSphere MQ, you need to
know how to write programs in one of the supported languages: COBOL, C, C++,
Assembler, or PL/I. You do not need to have written message-queuing programs
previously.

WebSphere MQ for z/OS System Setup Guide
WebSphere MQ for z/OS System Setup Guide V7.0, SC34-6927, tells you how to
customize WebSphere MQ for z/OS after you have installed it. It also tells you
how to monitor system use and performance, and how to set up security.

WebSphere MQ platform-specific publications

Bibliography 1113

This book is for system programmers, system administrators, and security
administrators. To understand this book, you need to be familiar with the basic
concepts of CICS, IMS, the z/OS job control language (JCL), and the z/OS Time
Sharing Option (TSO). If you intend to use queue-sharing groups, you also need to
know DB2 and the z/OS Coupling Facility.

WebSphere MQ for z/OS Messages and Codes
WebSphere MQ for z/OS Messages and Codes V7.0, GC34-6946, lists all the user
messages and abend reason codes returned by WebSphere MQ for z/OS, with
explanations and suggested responses. It is designed for use as a quick reference,
and is linked with the WebSphere MQ for z/OS Problem Determination Guide
which you should also consult if a message indicates that there is a WebSphere
MQ problem.

This book is for system operators, system programmers, and anybody else who
needs to understand and respond to WebSphere MQ user messages. To understand
this book, you need to understand the types of message WebSphere MQ produces,
the different places to which it sends these messages, and the different audiences
they are intended to reach.

Softcopy books
The WebSphere MQ books are supplied in two softcopy formats. These are
supplied with the WebSphere MQ product on all platforms.

IBM Eclipse Help System
You can view all of the books in the library through the help system in
WebSphere MQ Explorer. They are also available as a stand-alone IBM
Eclipse Help System which you can install separately from the WebSphere
MQ Explorer.

Portable Document Format (PDF)
You can view and print PDF files using the Adobe Acrobat Reader. If you
need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site at: http://
www.adobe.com

Product family Web site
The WebSphere MQ books are also available from the product family Web site at:
http://www.ibm.com/software/integration/mqfamily/

By following links from this Web site you can:
v Obtain latest information about the product family.
v Access the books in HTML and PDF formats.
v Download a WebSphere MQ SupportPac.

WebSphere MQ platform-specific publications

1114 WebSphere MQ for z/VSE System Management Guide

Index

A
access

control, WebSphere MQ client 630
levels, queue security 660
protecting from unauthorized 651

accounting
interval, queue accounting setting 91
message data 437, 441, 445, 453
messages 434
statistics message MQCFH 443
statistics message MQMD 443

AccountingConnOverride 268, 407
AccountingInterval 269, 408
AccountingToken 775
ACCTCONO

DISPLAY QMGR parameter 584
ACCTCONO(ENABLED/DISABLED)

ALTER QMGR parameter 577
ACCTINT

DISPLAY QMGR parameter 585
ACCTINT(integer)

ALTER QMGR parameter 578
ACCTMQI

DISPLAY QMGR parameter 585
ACCTMQI(ON/OFF)

ALTER QMGR parameter 578
ACCTQ

DISPLAY QMGR parameter 585
ACCTQ(ON/OFF/NONE)

ALTER QMGR parameter 578
ACCTQ(QMGR/OFF/ON)

ALTER QLOCAL parameter 552
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 560
DISPLAY QLOCAL parameter 565
DISPLAY QMODEL parameter 568

Action 827
action keys 81
active

MQ listener task 627
queue manager 626
TCP/IP subsystem 627

ACTIVE
DISPLAY CONN parameter 546
DISPLAY QSTATUS parameter 576

administration
See system administration

Adopt MCA
check 74
features 72
parameters 73

Adopt MCA Check, TCP/IP setting 86
Adopt MCA, TCP/IP setting 86
ADOPTCHK

DISPLAY QMGR parameter 585
ADOPTCHK(NONE/NETADDR)

ALTER QMGR parameter 578
AdoptMCA 269
ADOPTMCA

DISPLAY QMGR parameter 585

ADOPTMCA(NO/RCVR)
ALTER QMGR parameter 578

AdoptMCACheck 269
AgentBuffer 69
AgentBufferLength 69
alert

monitor
application to access Explorer 161

alias
queue

attributes, displaying 564
manager, creating 108

queues
altering parameters 551
creating 108
defining 557
deleting definition 563
description 6
security 660

reply queues, creating 109
Alias Queue Manager Name 109, 110
Alias Queue Name 108, 110
allow

internal dump, queue system
value 85

TDQ write on errors, queue system
value 84

ALTDATE
DISPLAY CHANNEL parameter 519
DISPLAY NAMELIST parameter 550
DISPLAY QALIAS parameter 564
DISPLAY QLOCAL parameter 565
DISPLAY QMGR parameter 585
DISPLAY QMODEL parameter 568
DISPLAY QREMOTE parameter 571

ALTER CHANNEL command 512
ALTER LISTENER command 539
ALTER NAMELIST command 548
ALTER QALIAS command 551
ALTER QLOCAL command 551
ALTER QMGR command 577
ALTER QMODEL command 554
ALTER QREMOTE command 556
ALTER SERVICE command 589
ALTER SUB command 595
ALTER TOPIC command 607
AlterationDate 382, 400, 401, 408
AlterationTime 382, 400, 401, 408
AlternateUserId 813
ALTTIME

DISPLAY CHANNEL parameter 519
DISPLAY NAMELIST parameter 550
DISPLAY QALIAS parameter 565
DISPLAY QLOCAL parameter 565
DISPLAY QMGR parameter 585
DISPLAY QMODEL parameter 568
DISPLAY QREMOTE parameter 571

AMQERR01.FDC 213
AMQERR01.LOG 213
API exits

chain header 683

API exits (continued)
close object 699
commit changes 700
compiling 681
configuring 677
connect queue manager

(extended) 701
context 685
disconnect queue manager 702
general usage notes 682
get message 703
how

they work 678
to write 679

initialize exit environment 704
inquire object attributes 705
linking 681
messages 677
open object 706
parameter 689
put message 707
reasons for using 677
reference information 681
register entry point 696
set object attributes 708
terminate exit environment 709

APICallerType 693
APPC

See LU 6.2
application

programming for WebSphere MQ
clients 634

segmentation 962
ApplicationName 446, 455
ApplicationPid 446, 455
applications

See also time-independent applications
building

for both environments 636
for WebSphere MQ client 636

C programming language 942
data 2
design

considerations 206
guidelines 943

examples of programming errors 199
linking 637
MQI administration support 941
PL/I programming language 942
running WebSphere MQ client 638
synchronous 1
syncpoints 943

ApplicationTid 447, 455
ApplId 864
ApplIdentityData 776
ApplName 688
ApplOriginData 776
ApplTag 397, 418
APPLTAG

DISPLAY QSTATUS parameter 575

© Copyright IBM Corp. 2008, 2013 1115

APPLTAG(string)
DISPLAY CONN parameter 545

ApplType 397, 418, 688, 864
APPLTYPE

DISPLAY QSTATUS parameter 575
APPLTYPE(integer)

DISPLAY CONN parameter 545
attributes

alias queues 564
local queues 565
model queues 568
MQ_INQ_EXIT API exit 705
MQ_SET_EXIT API exit 708
MQINQ function call 893
MQSET function call 925
queue

events 103
trigger 102

queues 5
remote queues 571
SSL

peer 648
peers 118

authentication, WebSphere MQ
client 630

AUTHOREV
DISPLAY QMGR parameter 585

AUTHOREV(ENABLED/DISABLED)
ALTER QMGR parameter 578

authority
events 223
Qmgr event 94

AuthorityEvent 269, 408
authorization

to use Explorer 158
Auto-define, channel event 95
auto-definition

channel auto-definition setting 88
configuring with MQSC 66
exit, channel auto-definition

setting 88
auto-start parameter, batch interface

status 180
automatic

enabling of queue service interval
events 232

reorganization 99
AvgTimeOnQ 473

B
back out changes function call 871
BackCount 452, 470
BackoutCount 776
BaseQName 258, 401
Basic Security Manager (BSM)

configuration 1057
batch

connections, security 658
interface

auto-start 180
auto-start indicator, batch interface

setting 88
client bridge 638
how to use 181
identifier 179

batch (continued)
interface (continued)

identifier, batch interface
setting 88

restrictions on use 182
settings 88
starting 180
stopping 180
testing for data integrity 181
using 178
verifying 182

interface, security 658, 1063
interval

sender and server channels 114
users, permissions 1063
utilities, described 173

BATCH
DISPLAY CONN parameter 545
DISPLAY QSTATUS parameter 575

Batches 391
BATCHES

DISPLAY CHSTATUS parameter 526
BATCHID

DISPLAY QMGR parameter 585
BATCHID(string)

ALTER QMGR parameter 578
BATCHINT(integer)

ALTER CHANNEL parameter 512
DEFINE CHANNEL parameter 515
DISPLAY CHANNEL parameter 519

BatchInterfaceAutoStart 269, 408
BatchInterfaceId 270, 408
BatchInterval 245, 382
BatchSize 246, 382, 391
BatchSizeIndicator 391
BATCHSZ

DISPLAY CHANNEL parameter 519
DISPLAY CHSTATUS parameter 526

BATCHSZ(integer)
ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 515

BIAUTO
ALTER QMGR parameter 579
DISPLAY QMGR parameter 585

bibliography 1105
BINDING

DISPLAY CHSTATUS parameter 526
browse

function 152
BROWSE

DISPLAY QSTATUS parameter 575
BrowseBytes 451, 462, 469, 476
BrowseCount 451, 461, 469, 475
BrowseFailCount 451, 462, 469, 475
BrowseMaxBytes 462
BrowseMinBytes 462
buffer to message handle options

structure 718
BuffersReceived 391
BuffersSent 391
BUFSRCVD

DISPLAY CHSTATUS parameter 527
BUFSSENT

DISPLAY CHSTATUS parameter 527
built-in formats, data conversion 217

bullet-proof
channels

feature 74
parameters 75

BytesReceived 391
BytesSent 391
BYTSRCVD

DISPLAY CHSTATUS parameter 527
BYTSSENT

DISPLAY CHSTATUS parameter 527

C
C/VSE Samples 626
CCSID

See also coded character set identifiers
(CCSID)

DISPLAY QMGR parameter 585
CCSID(integer)

ALTER QMGR parameter 579
CHAD 66

DISPLAY QMGR parameter 585
CHAD(ENABLED/DISABLED)

ALTER QMGR parameter 579
CHADEV

DISPLAY QMGR parameter 585
CHADEV(ENABLED/DISABLED)

ALTER QMGR parameter 579
CHADEXIT

DISPLAY CHSTATUS parameter 529
DISPLAY DISPLAY QMGR

parameter 585
CHADEXIT(string)

ALTER QMGR parameter 579
configuring auto-definition 66

ChainAreaLength 684
Change Channel Listener PCF

command 256
Change Channel PCF command 244
Change Namelist PCF command 256
Change Queue Manager PCF

command 268
Change Queue PCF command 257
Change Service PCF command 285
Change Subscription PCF command 354
Change Topic PCF command 368
channel

altering parameters 512
auto-definition

configuring 62
data structures 71
events 224
exit 59
settings 88

batch interval
alter channel 512
change channel 245
define channel 515
display channel 519
inquire channel 307, 382

commands 512
configuration

description 996
guidelines 48

definition
table, WebSphere MQ client 632

1116 WebSphere MQ for z/VSE System Management Guide

channel (continued)
definitions

creating 112
deleting 115, 518
displaying 134, 518
modifying 115

description 7
events 93, 94, 224
exit

parameters 119
sample 72

exits
configuring 60
WebSphere MQ client 632
WebSphere MQ server 1011

monitoring 51, 115, 147
name 53, 103, 113, 116, 138, 140, 647
security exits 630
SSL parameters, setting 117
statistics 51, 115
statistics messages 438, 442, 444
status 136, 140, 142, 148
system 138, 143

CHANNEL
DISPLAY QSTATUS parameter 575

channel authentication
commands 532

channel exits
See also exits
See exits, channel

CHANNEL ID 1020
channel listener

commands 539
channel listener commands

parameters, altering 539
parameters, defining 539
parameters, deleting 540
parameters, displaying 540
parameters, displaying status 542
parameters, starting 543
parameters, stopping 544

channel-exit
calls, writing channel-exit

programs 67
programs

compiling 66
writing 66

channel-name
ALTER CHANNEL parameter 512
DEFINE CHANNEL parameter 515
DELETE CHANNEL parameter 518
DISPLAY CHANNEL parameter 518
RESET CHANNEL parameter 531
START parameter 531
STOP CHANNEL parameter 532

channel-type
ALTER CHANNEL parameter 512
DEFINE CHANNEL parameter 515

CHANNEL(string)
DISPLAY CONN parameter 545

ChannelAttrs 306
ChannelAutoDef 64, 270, 408
ChannelAutoDefEvent 270, 409
ChannelAutoDefExit 64, 270, 409
ChannelDefinition 68
ChannelDesc 247, 382
ChannelEvent 270

ChannelExitParms 68
ChannelInstanceAttrs 317
ChannelInstanceType 320, 391
ChannelMonitoring 246, 271, 383, 391,

409
ChannelName 245, 293, 300, 305, 314,

317, 344, 349, 351, 383, 391, 398, 418, 448
ChannelNames 390
channels

See also MQI channels
bullet-proof

See bullet-proof channels
closing 138
configuring for SSL 646
default object definitions 37
defining new 515
opening 138
requester-sender 8
requester-server 8
resetting message sequence

number 531
sender-receiver 7
server-receiver 9
starting 531
stopping 531
types 631

ChannelStartDate 392
ChannelStartTime 392
ChannelStatistics 246, 271, 383, 409
ChannelStatus 351, 392
ChannelType 245, 286, 293, 305, 314,

383, 392
checklist security 666
checkpoint

Channel list panel 117
CHLAUTH

DISPLAY DISPLAY QMGR
parameter 585

CHLEV
DISPLAY QMGR parameter 586

CHLEV(ENABLED/DISABLED)
ALTER QMGR parameter 579

CHLTYPE
DISPLAY CHANNEL parameter 519

CHSTADA
DISPLAY CHSTATUS parameter 527

CHSTATI
DISPLAY CHSTATUS parameter 527

CICS
bridge

customizing 189
description 186
security 192
shutting down 192
starting 190
system configuration 187
when to use 187
writing applications 193

connection definition 45
DISPLAY CONN parameter 545
DISPLAY QSTATUS parameter 575
file management 26
initialization PLT (PLTPI) list 38
installing table entries for WebSphere

MQ 25
journal control table 27
modifying start-up deck 26

CICS (continued)
Program List Table Post Initialization

(PLTPI) 38
Program List Table Shut Down

(PLTSD) 39
recovery and restart 26
running

3270 transactions 188
DPL programs 187

session definition 46
shutdown 38
starting security 1067
startup 38

deck 1067
JCL 715

system definition 716
web support 161

CICSFILE
DISPLAY QLOCAL parameter 565
DISPLAY QMODEL parameter 569

CICSFileName 258, 297, 401
CICSP1 1058
CICSP1DF 1058
Clear Topic String PCF command 376
CLEAR TOPICSTR command 618
client

bridge
application programming 634
batch interface 182, 638
building applications 637
client components 626
description 637
Language Environment for

VSE 624
security 638

channel, definition table for
WebSphere MQ client 632

configuration support 10
connection

security 659
WebSphere MQ client 631

error messages on DOS and
Windows 213

Java program 659
problem determination 212
security example 1064
trace 641

client-connection
channel 632
channel definition 627

CloseCount 449, 466
CloseDate 458
CloseFailCount 449, 466
CloseTime 458
clusters

membership 157
showing and hiding using

Explorer 160
WebSphere MQ Explorer 156

CMDEV
DISPLAY QMGR parameter 585

COBOL/VSE Samples 625
code page

conversion
tables, creating for WebSphere MQ

server 1011
WebSphere MQ server 1011

Index 1117

code page (continued)
definitions

displaying 134
maintaining 120

number 122
code pages

See user-defined code pages
setting

code page numbers for WebSphere
MQ server 1012

up translation tables for
WebSphere MQ server 1012

coded character set identifier (CCSID)
WebSphere MQ client 635

CodedCharSetId 272, 410, 495, 499, 727,
732, 776, 808

Collecting MQI accounting
information 435

command
line function 169
messages

See PCF command messages
permissions 1064
resource

permissions 1065
security 654

resource security, resource
definitions 671

security 653
for WebSphere MQ

commands 668
MQMT options 670
PCF messages 666

server
auto-start, PCF parameter 87
convert, PCF parameter 87
DLQ store, PCF parameter 87
PCF 236

system, queue 236
Command 486
COMMAND command 620
CommandInputQName 272, 410
CommandLevel 410, 446, 454, 465, 471,

477
COMMANDQ

DISPLAY QMGR parameter 585
COMMANDQ(string)

ALTER QMGR parameter 579
CommandReplyQName 272, 410
commands

See also MQSC commands
See PCF commands

CommandServerAutoStart 273, 410
CommandServerDataConversion 273,

411
CommandServerDeadLetterQ 273, 411
commit

changes function call 878
CommitCount 451, 469
CommitFailCount 452, 470
Common status

DISPLAY CHSTATUS parameter 524
communication

links, configuring 626
process 164
trace setting 90

CompCode 488, 851, 871, 877, 879, 880,
890, 903, 919, 922

configuration
file, backing up 96
guidelines

channel 48
example of 54
overview 46
queue 51
queue manager 47

using
MQMT 60
MQSC 65
PCF 63

WebSphere MQ
client 627
server 626

worksheet 991
Configuration File, global queue/file

name 85
configuration functions

channel definitions, creating 112
creating queue definitions

alias queue 108
alias queue manager 108
alias reply 109
local queue 97
local queue extended

definition 100
main screen 96
remote queue 106

creating user-defined code pages 122
deleting queue definitions 110
display options

channel definitions 134
code page definitions 134
global system definitions 133
queue definitions 134

global system definition 83
main menu 81
maintaining code page

definitions 120
modifying

channel definitions 115
queue definitions 110

security 1055
Configuration Main Menu 81
ConfigurationEvent 411
confirm security

on arrival message 664
on delivery message 664

CONN
DISPLAY CONN parameter 545

Conname 418
CONNAME

DISPLAY CHANNEL parameter 519
DISPLAY QSTATUS parameter 575

CONNAME(connection-name)
DISPLAY CHSTATUS parameter 522

CONNAME(string)
ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 515
DISPLAY CONN parameter 545

ConnCount 465
ConnDate 447
connect

queue manager function call 880

connection
attributes 545
breaking 547
client 659
commands 544
configuring a channel 49
failure 640
information, displaying 544
security 652, 657

connection-identifier 548
ConnectionAttrs 323
ConnectionId 322, 353, 398, 446, 454
ConnectionName 247, 321, 384, 392, 398,

687
ConnectionOptions 398
connections

See batch connections
ConnFailCount 465
ConnInfoType 324, 398
ConnName 447
CONNOPTS(integer-list)

DISPLAY CONN parameter 545
ConnsMax 465
ConnTime 447
ConsCommsMsgs 273
ConsCritMsgs 274
ConsErrMsgs 274
ConsInfoMsgs 274
console

messages 1052
optional logging 89

ConsReorgMsgs 274
ConsSystemMsgs 275
ConsWarnMsgs 275
content view 156
Context 831
Control 487
control, message properties 113
conversion error, channel event 94
CONVERT

DISPLAY CHANNEL parameter 519
Convert EBCDIC newline 121
convert msgs

channel configuration 51
parameter 113

CONVERT(NO/YES)
ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516

Copy Channel Listener PCF
command 288

Copy Channel PCF command 285
Copy Namelist PCF command 289
Copy Queue PCF command 290
Copy Service PCF command 292
Copy Subscription PCF command 357
Copy Topic PCF command 370
CorrelId 777
CorrelId, performance considerations

when using 206
Count 498, 500, 504
Create Channel Listener PCF

command 295
Create Channel PCF command 292
create message handle options

structure 723
Create Namelist PCF command 296
Create Queue PCF command 297

1118 WebSphere MQ for z/VSE System Management Guide

Create Service PCF command 299
Create Subscription PCF command 360
Create Topic PCF command 373
CreationDate 401
CreationTime 401
CSAUTO

ALTER QMGR parameter 579
DISPLAY QMGR parameter 585

CSCNVRT
ALTER QMGR parameter 579
DISPLAY QMGR parameter 586

CSD definitions 1013
CSDLQ

ALTER QMGR parameter 579
DISPLAY QMGR parameter 586

CSMTError 275
CURDEPTH The current depth of the

queue, that is, the
DISPLAY QSTATUS parameter 573

current
channels 316, 522
Next-MSN 141

CURRENT
DISPLAY CHSTATUS parameter 523

current-only status
DISPLAY CHSTATUS parameter 526

CurrentLUWID 392
CurrentMsgs 393
CurrentQDepth 416
CurrentSequenceNumber 393
CurrentSharingConversations 393
CURSHCNV

DISPLAY CHSTATUS parameter 527
CWS

converter program 162
using with WebSphere MQ 163
WebSphere MQ modules 162

D
data

See also user data
conversion

built-in formats 217
exit program 218, 219
LE/VSE 218
required by Explorer 159

conversion, trace setting 90
converting formats

built-in formats 217, 218
exit program 218, 219
LE/VSE 218

local API exit 96
responses to commands 381
structures, writing channel-exit

programs 67
type 478
types

MQBMHO structure 718
MQCHARV structure 720
MQCMHO structure 723
MQDH structure 730
MQDLH structure 726
MQDMHO structure 736
MQDMPO structure 738
MQGMO structure 740
MQIMPO structure 764

data (continued)
types (continued)

MQMD structure 774
MQMDE structure 806
MQMHBO structure 810
MQOD structure 813
MQPD structure 821
MQPMO structure 826
MQPMR structure 843
MQRFH2 structure 843
MQRR structure 851
MQSD structure 852
MQSMPO structure 859
MQSRO structure 862
MQTM structure 863
MQXQH structure 866

DataConversion 247, 384
DataLength 68
dataset security

description 654
example 1059

DCHFMT4 sample program 219
DCT

installation 26
sample entries 714

dead letter
global queue/file name 85
store 115

dead-letter
header structure 726
queue

description 6
overview 210
security 663
specifying 83

DeadLetterQName 276, 411
DEADQ

DISPLAY QMGR parameter 586
DEADQ(string)

ALTER QMGR parameter 580
debugging, preliminary checks 195
Def. type 106
default

ASCII code page 121
EBCDIC code page 121
flags 791

DEFINE CHANNEL command 515
DEFINE commands, producing with

SDEFS command 619
DEFINE LISTENER command 539
DEFINE NAMELIST command 549
DEFINE QALIAS command 557
DEFINE QLOCAL command 558
DEFINE QMODEL command 560
DEFINE QREMOTE command 562
DEFINE SERVICE command 589
DEFINE SUB command 597
DEFINE TOPIC command 609
definition types, for queues 958
definitions

See also channel definitions
See queue definitions

DefinitionType 258, 401
DefPersistence 402
DEFPSIST

DISPLAY QLOCAL parameter 565
DISPLAY QMODEL parameter 569

DEFTYPE
DISPLAY QALIAS parameter 565
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

DEFTYPE(TEMPDYN/PERMDYN)
ALTER QMODEL parameter 555
DEFINE QMODEL parameter 560

Delete
All function 183
Channel PCF command 300
Namelist PCF command 301
Queue PCF command 302

DELETE CHANNEL command 518
Delete Channel Listener PCF

command 301
DELETE LISTENER command 540
delete message properties options

structure 738
DELETE NAMELIST command 549
DELETE QALIAS command 563
DELETE QLOCAL command 563
DELETE QMODEL command 563
DELETE QREMOTE command 564
DELETE SERVICE command 591
Delete Service PCF command 303
Delete Subscription PCF command 362,

600
DELETE TOPIC command 612
Delete Topic PCF command 377
depth of queues 948
DESCR

DISPLAY CHANNEL parameter 519
DISPLAY NAMELIST parameter 550
DISPLAY QALIAS parameter 565
DISPLAY QLOCAL parameter 566
DISPLAY QMGR parameter 586
DISPLAY QMODEL parameter 569
DISPLAY QREMOTE parameter 571

DESCR(string)
ALTER CHANNEL parameter 513
ALTER NAMELIST parameter 549
ALTER QALIAS parameter 551
ALTER QLOCAL parameter 552
ALTER QMGR parameter 580
ALTER QMODEL parameter 555
DEFINE CHANNEL parameter 516
DEFINE QALIAS parameter 557
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 560
DEFINE QREMOTE parameter 562
DFINE NAMELIST CHANNEL

parameter 549
destination control table

See DCT
DestQMgrName 727
DestQName 727
DISABLED

ALTER QMGR parameter 578
DISCINT

DISPLAY CHANNEL parameter 520
DISCINT(integer)

ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516

DiscInterval 247, 384
disconnect queue manager function

call 883
DiscRetryCount 247, 384

Index 1119

DISCRTY
DISPLAY CHANNEL parameter 520

DISCRTY(integer)
ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516

DiscTime 448
DiscType 448
DISPLAY CHANNEL command 518
DISPLAY CHLAUTH command 532
DISPLAY CHSTATUS command 521
DISPLAY CONN command 544
DISPLAY LISTENER command 540
DISPLAY LSSTATUS command 542, 592
DISPLAY NAMELIST command 550
DISPLAY QALIAS command 564
DISPLAY QLOCAL command 565
DISPLAY QMGR command 584
DISPLAY QMODEL command 568
DISPLAY QREMOTE command 571
DISPLAY QSTATUS command 572
DISPLAY SBSTATUS command 604
DISPLAY SERVICE command 591
DISPLAY SUB command 601
DISPLAY TOPIC command 612
DISPLAY TPSTATUS command 614
displaying status of channels 521
DistLists 411, 953, 954
distributed

queues, incorrect output 208
queuing

dead-letter queue 6
undelivered-message queue 6

distribution
header 730
lists

closing 953
configuring 953
creation of 948
header 730
opening 949
overview 948, 952
putting messages 952

DLQSTORE 178
DOS clients error messages 213
dual

source queue 98
update queue 98

dynamic
queue

creation of 955
permanent 3, 106, 164, 662, 876,

955, 957
temporary 164, 876, 955, 957

queues 3
dynamically defined

permanent queues 958
temporary queues 959

DynamicQName 813

E
earlier release, migrating from 39
Enable 113
ENABLE 178
ENABLED

ALTER QMGR parameter 578

enabling
channel events 230
performance events 231
queue depth events 231
queue service interval events 231

Encoding 727, 732, 778, 808
ENDBATCH

DISPLAY CHSTATUS parameter 529
EntryPoint 698
EnvData 864
environment

variables 630
variables, WebSphere MQ client 633

Environment 686
error

codes, common to all PCF
commands 241

logs, viewing 167
messages, WebSphere MQ client 641

Escape
command response 381
PCF command 304

EscapeText 304, 382
EscapeType 304, 382
event

data 234
header 233
messages, format 233
queue configuration 54
queues

described 6
types of 93, 232

event-driven processing 1
events

channel 94, 224
disabling 230
enabling 230
performance 95
Qmgr 94
queue manager 222
queues 232
service interval 226

examples
client trace 641
programming errors 199

EXCL
DISPLAY QSTATUS parameter 576

exit
programs in CICS 67

ExitBufferAddr 70
ExitBufferLength 70
ExitChainAreaPtr 694
ExitData 694
ExitId 690
ExitInfoName 684, 694
ExitPDArea 694
ExitReason 690, 697
ExitResponse 691
ExitResponse2 692
exits

See channel exits
See also channel-exit calls
channel

message 58
programs 55
receive 56
security 55

exits (continued)
channel (continued)

send 56
conversion

exit program 218
sample 219

entry point 68
ExitTime 393
EXITTIME

DISPLAY CHSTATUS parameter 527
ExitUserArea 693
ExpiredMsgCount 470, 476
Expiry 778
Explorer

administrative interface 154
alert monitor application 161
authorization to use 158
capabilities 155
cluster membership 157
connecting via another queue

manager 159
data conversion 159
evaluating whether to use 156
prerequisite software 157
remote queue managers 156
required definitions for

administration 157
security

connecting to remote queue
managers 158

using 158
setting up 157
showing and hiding queue managers

and clusters 160
using

a security exit 159
description 160
SSL security 159
WebSphere MQ Taskbar

application 160
EXTCONN

DISPLAY CONN parameter 545
STOP CONN parameter 548

external security manager
configuration 1057
features 651

F
f-name

DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 560

FCT
event entries 713
PCF entries 713
sample entries 711

Feedback 693, 779
file control table

See FCT
Flags 732, 808
Format 727, 733, 781, 808
FromChannelName 286
FromNamelistName 289
FromQName 290
Function 695, 697
function calls

MQBACK 871

1120 WebSphere MQ for z/VSE System Management Guide

function calls (continued)
MQBUFMH 872
MQCLOSE 875
MQCMIT 878
MQCONN 880
MQCRTMH 881
MQDISC 883
MQDLTMH 885
MQDLTMP 886
MQGET 888
MQINQ 893
MQINQMP 905
MQMHBUF 910
MQOPEN 914
MQPUT 918
MQPUT1 921
MQSET 925
MQSETMP 931
MQSUB 934
MQSUBRQ 937

functions, action keys 81

G
generic-channel-name

DISPLAY CHSTATUS parameter 522
generic-connid

DISPLAY CONN parameter 544
generic-qname

DISPLAY QSTATUS parameter 572
GenericConnectionId 322
GENXLT utility 1013
get

enabled 105, 107, 108
retry delay, channel configuration 50
retry delay, parameter 113
retry number, channel

configuration 50
retry number, parameter 113

GET
DISPLAY QALIAS parameter 565
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

get message options
structure 736

GET(ENABLED/DISABLED)
ALTER QALIAS parameter 551
ALTER QLOCAL parameter 552
ALTER QMODEL parameter 555
DEFINE QALIAS parameter 557
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 560

global system definitions
displaying 133
entry fields 83
guidelines

backing up configuration file 96
queue manager name 82
specifying a dead-letter queue 83

GroupId 786, 809
grouping

See message grouping
groups, within message group

hierarchy 960
GroupStatus 741
guidelines

See also configuration guidelines

guidelines (continued)
product configuration 46
queue configuration 51

H
handle

attributes, DISPLAY CONN
parameter 546

HANDLE
DISPLAY CONN parameter 545

HandleState 398, 418
Hconfig 695, 696
Hconn 871, 875, 879, 880, 889, 893, 914,

918, 921, 925
HEARTBEAT

DISPLAY CHSTATUS parameter 529
hierarchy, message groups 960
HIGH

ALTER QMGR parameter 581, 583
high depth

event 104
limit 104

Hobj 893, 916, 918, 925
HSTATE

DISPLAY QSTATUS parameter 576
HSTATE(integer)

DISPLAY CONN parameter 546
HTML source file 162

I
IBM Eclipse Help System 1114
identifier, batch interface 179
INACTIVE

DISPLAY CONN parameter 546
DISPLAY QSTATUS parameter 576

inactive channels 316, 522
INBOUND status 137
Included in PCF group 456, 457, 458,

459, 460, 461, 462, 463, 473, 474, 475,
476, 479, 480, 481

incorrect output 207
InDoubtStatus 393
inhibit

events 223
Qmgr event 94

InhibitEvent 276, 411
InhibitGet 258, 402
InhibitPut 258, 402
INHIBTEV

DISPLAY QMGR parameter 586
INHIBTEV(ENABLED/DISABLED)

ALTER QMGR parameter 580
INITIALIZING

DISPLAY CHSTATUS parameter 526
INPUT

DISPLAY QSTATUS parameter 576
InqCount 452, 466
InqFailCount 452, 467
INQUIRE

DISPLAY QSTATUS parameter 576
Inquire Channel Authentication Records

PCF command 308
Inquire Channel command response 382

Inquire Channel Listener command
response 387

Inquire Channel Listener PCF
command 311

Inquire Channel Listener Status
command response 388

Inquire Channel Listener Status PCF
command 312

Inquire Channel Names command
response 390

Inquire Channel Names PCF
command 314

Inquire Channel PCF command 305
Inquire Channel Status command

response 390
Inquire Channel Status PCF

command 315
Inquire Connection command

response 397
Inquire Connection PCF command 322
inquire message property options

structure 764
Inquire Namelist command

response 399
Inquire Namelist Names command

response 400
Inquire Namelist Names PCF

command 326
Inquire Namelist PCF command 324
inquire object attributes function

call 893
Inquire Queue command response 400
Inquire Queue Manager command

response 407
Inquire Queue Manager PCF

command 332
Inquire Queue Names command

response 416
Inquire Queue Names PCF

command 335
Inquire Queue PCF command 327
Inquire Queue Status command

response 416
Inquire Queue Status PCF

command 337
Inquire Service command response 420
Inquire Service PCF command 341
Inquire Service Status command

response 421
Inquire Service Status PCF

command 342
Inquire Subscription command

response 423
Inquire Subscription PCF command 363
Inquire Subscription Status command

response 426
Inquire Subscription Status PCF

command 366
Inquire Topic command response 427
Inquire Topic Names command

response 429
Inquire Topic Names PCF command 379
Inquire Topic PCF command 377
Inquire Topic Status command

response 430
Inquire Topic Status PCF command 379

Index 1121

installation
allocating WebSphere MQ files 18
CICS startup and shutdown 38
defining

local queues 30
system log 29

defining SYSTEM.LOG queue 31
initializing the system 28
local queue verification test 32
migration procedure 39
modifying CICS start-up deck 26
preparing CICS table entries for

WebSphere MQ 25
procedures for new users 18
product 16
restoring WebSphere MQ library 17
samples 13
security 19
specify the queue manager name 28
starting WebSphere MQ for

z/VSE 27
tape contents 13
target installation library 16
uppercase translation 27
verification test 32
verifying 627
VSAM installation catalog 16

installation procedures for new users 18
instrumentation

events 221
intercommunication example 991, 1009
InternalDump 276
IntervalEndDate 445, 454, 464, 471, 477
IntervalEndTime 445, 454, 464, 471, 477
IntervalStartDate 445, 453, 464, 470, 476
IntervalStartTime 445, 453, 464, 471, 477
InvalidDestCount 814, 831
IPPROCS The number of handles that are

currently open for
DISPLAY QSTATUS parameter 573

J
Java program clients

security 659
security example 1064

JCL
See also sample JCL
CICS JCL 715
sample for

MQPMQSC 509
running MQPUTIL, MQPEXCIC,

MQPMQSC utility
programs 977

K
key-ring

member 86
sublibrary 86

KnownDestCount 814, 831

L
large queue managers 156
Last line of error message 1020

LastGetDate 416
LastGetTime 417
LastLUWID 394
LastMsgDate 394
LastMsgTime 394
LastPutDate 417
LastPutTime 417
LastSequenceNumber 394
LE/VSE data conversion 218
LGETDATE The date on which the last

message was retrieved
DISPLAY QSTATUS parameter 573

LGETTIME
DISPLAY QSTATUS parameter 573

library tape 13
licensed

clients 645
clients, TCP/IP setting 86

listener
definitions

Configuration menu 124
ListenerName 350, 353
ListenerPortNumber 276, 411
listeners

description 10
LISTPORT

DISPLAY QMGR parameter 586
LISTPORT(integer)

ALTER QMGR parameter 580
lists

See distribution lists
local

events 223
Local Code Page, queue system

value 85
local queue

definitions, deleting 563
Qmgr event 94

local queues
altering

parameters 551
queue manager parameters 577

creating 97
creating extended definition 100
dead-letter 6
defining 558
defining during installation 30
deleting definitions 563
description 5
displaying attributes 565
displaying queue manager

parameters 584
testing queue manager

responsiveness 588
transmission 6
undelivered-message 6

LocalAddress 394
LOCALEV

DISPLAY QMGR parameter 586
LOCALEV(ENABLED/DISABLED)

ALTER QMGR parameter 580
LocalEvent 276, 412
LOCLADDR

DISPLAY CHSTATUS parameter 527
log

See system log
LOG FROMQ system.log 174

LOG Queue Name, global queue/file
name 85

LogCommsMsgs 276
LogCritMsgs 277
LogErrMsgs 277
logging

See optional logging
logical message

application segmentation 963
definition 960
grouping 965
grouping, segmentation 960
within message group hierarchy 960

LogInfoMsgs 277
LOGQ

DISPLAY QMGR parameter 586
LOGQ(string)

ALTER QMGR parameter 580
LogReorgMsgs 277
logs

See error logs
LogSystemMsgs 278
LogWarnMsgs 278
long retry interval

channel configuration 50
parameter 114

LongMCAUserIdLength 687
LongMCAUserIdPtr 687
LongRemoteUserIdLength 687
LongRemoteUserIdPtr 687
LongRetriesLeft 394
LongRetryCount 248, 384
LongRetryInterval 248, 384
LONGRTS

DISPLAY CHSTATUS parameter 527
LONGRTY(integer)

ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516
DISPLAY CHANNEL parameter 520

LONGTMR(integer)
ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516
DISPLAY CHANNEL parameter 520

LOW
ALTER QMGR parameter 580, 581,

583
low depth

event 104
limit 104

LPUTDATE
DISPLAY QSTATUS parameter 573

LPUTTIME
DISPLAY QSTATUS parameter 574

LSTMSGDA
DISPLAY CHSTATUS parameter 527

LSTMSGTI
DISPLAY CHSTATUS parameter 527

LU 6.2
connections 43, 45, 991
DEFINE CHANNEL parameter 515
sessions 46

M
master terminal

displays 77
invoking 79

1122 WebSphere MQ for z/VSE System Management Guide

master terminal (continued)
transactions 80

MatchOptions 742
max

message size, channel
configuration 51

messages per batch, channel
configuration 50

TCP/IP wait, channel
configuration 51

transmission size, channel
configuration 51

Max. gbl locks 102
max. gbl locks, queue configuration 53
Max. lcl locks 102
max. lcl locks, queue configuration 53
Max. msg length 102
max. msg length, queue

configuration 52
Max. Q depth 102
max. Q depth, queue configuration 52
Max. Q users 102
max. Q users, queue configuration 53
Max. Recovery Tasks, queue system

value 84
max. starts, queue configuration 53
MaxClients 278
MAXCLNTS

DISPLAY QMGR parameter 586
MAXCLNTS(integer)

ALTER QMGR parameter 580
MAXDEPTH

DISPLAY QLOCAL parameter 566
DISPLAY QMGR parameter 586
DISPLAY QMODEL parameter 569

MAXDEPTH(integer)
ALTER QLOCAL parameter 552
ALTER QMGR parameter 580
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 561

MaxGlobalLocks 259, 278, 402, 412
MAXGLOCK

DISPLAY QLOCAL parameter 566
DISPLAY QMGR parameter 586
DISPLAY QMODEL parameter 569

MAXGLOCK(integer)
ALTER QLOCAL parameter 552
ALTER QMGR parameter 580
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 561

MaxHandles 278, 412
MAXHANDS

DISPLAY QMGR parameter 586
MAXHANDS(integer)

ALTER QMGR parameter 580
maximum

Concurrent Queues 47
concurrent queues, queue system

value 84
connection handles 47
connection handles, queue system

value 84
global locks 48
global locks, queue maximum

value 85

maximum (continued)
length of property data 85
local locks 48
local locks, queue maximum

value 85
message size 47
message size, queue maximum

value 85
Q depth 47
Q depth, queue maximum value 85
single Q access 48, 85

MAXLLOCK
DISPLAY QLOCAL parameter 566
DISPLAY QMGR parameter 586
DISPLAY QMODEL parameter 569

MAXLLOCK(integer)
ALTER QLOCAL parameter 552
ALTER QMGR parameter 580
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 561

MaxLocalLocks 259, 278, 402, 412
MAXMSGL

DISPLAY CHANNEL parameter 520
DISPLAY QLOCAL parameter 566
DISPLAY QMGR parameter 586
DISPLAY QMODEL parameter 569

MAXMSGL(integer)
ALTER CHANNEL parameter 513
ALTER QLOCAL parameter 552
ALTER QMGR parameter 580
ALTER QMODEL parameter 555
DEFINE CHANNEL parameter 516
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 561

MaxMsgLength 248, 259, 279, 384, 402,
412

MaxOpenQ 412
MaxPropertiesLength 279, 412
MAXPROPL(integer)

ALTER QMGR parameter 580
DISPLAY QMGR parameter 586

MaxQDepth 259, 279, 402, 412
MaxQOpen 279, 953
MAXQOPEN

DISPLAY QMGR parameter 586
MAXQOPEN(integer)

ALTER QMGR parameter 580
MaxQTriggers 259, 402
MAXQUSER

DISPLAY QLOCAL parameter 566
DISPLAY QMGR parameter 586
DISPLAY QMODEL parameter 569

MAXQUSER(integer)
ALTER QLOCAL parameter 552
ALTER QMGR parameter 580
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 561

MaxQUsers 259, 279, 403, 412
MAXRTASK

DISPLAY QMGR parameter 586
MAXRTASK(integer)

ALTER QMGR parameter 580
MaxSharingConversations 394
MAXSHCNV

DISPLAY CHSTATUS parameter 528

MAXTRIGS
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

MAXTRIGS(integer)
ALTER QLOCAL parameter 552
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 561

MaxWait 248
MAXXMIT(integer)

ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516
DISPLAY CHANNEL parameter 520

MCASTAT
DISPLAY CHSTATUS parameter 528

MCAStatus 394
MCAUSER

DISPLAY CHSTATUS parameter 528
MCAUserIdentifier 394
MEDIUM

ALTER QMGR parameter 580, 581,
583

message
channels 7, 631
data 442
data in event messages 233
descriptor

accounting message format 437
accounting/statistics message

format 442
statistics message format 441

group 959
grouping 959
groups, multiple units of work 966
monitoring 149
name 444, 453, 470, 476
options structure, get with

MQGMO 740
properties 971
queue interface (MQI), WebSphere

MQ client 634, 959
queuing, message-driven

processing 1
segment 960
segmentation 959, 961
sequence numbers

resetting 139
resetting for a channel 531

sequence wrap 50
Message Channel Agent (MCA)

Adopt MCA 72
Message descriptor 233
message handle to buffer options

structure 810
message queue interface

See MQI
messages

See also error messages
See also event messages
See also logical messages
accounting 434
application segmentation 962
channel agent 164
containing unexpected

information 208
data conversion 217, 218, 219
description 2

Index 1123

messages (continued)
descriptor

description 2
for 238
structure 774
structure of extension 806

errors on DOS and Windows
clients 213

expiry 165
get using MQGET function call 888
group

definition 959
description 960
hierarchy 960

information 1016
lengths of 2
limiting size of 634
logical

definition 960
grouping 965

logical ordering 963
not appearing on queues 207
performance affected by length 206
persistence 164
physical ordering 963
physical, definition 960
retrieval algorithms 3
searching for particular 206
security 653
segment

definition 960
description 961
reassembly by queue

manager 961
segmentation

application-generated reports 969
back-level queue managers 971
retrieval of reports 970
WebSphere MQ-generated

reports 969
sequence number, resetting for

channel 531
statistics 438
undelivered 210
variable length 206

meta commands
COMMAND 620
SDEFS 619
supported 619

model queues
altering parameters 554
attributes, displaying 568
considerations 661
creating 104
defining 560
deleting definition 563
displaying attributes 568
dynamic

MQOPEN call 955
queue name 814
replies to messages 956

extended definition 105
MQOO_INPUT_EXCLUSIVE

option 915
MQPUT1 call 921, 923

module, local API exit 96

MONC
DISPLAY CHANNEL parameter 520

MONC(QMGR/OFF/LOW/MEDIUM/
HIGH)

ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516

MONCHL
DISPLAY CHSTATUS parameter 528
DISPLAY QMGR parameter 586

MONCHL(NONE/OFF/LOW/
MEDIUM/HIGH)

ALTER QMGR parameter 580
MONINTVL

DISPLAY QMGR parameter 586
MONINTVL(integer)

ALTER QMGR parameter 581
monitor

functions
main menu 144
monitoring channels 147
monitoring queues 145

restarting 192
MONITOR

DISPLAY CHSTATUS parameter 524
DISPLAY QSTATUS parameter 572

MONITOR FROMQ 175
Monitor Queue Name, global queue/file

name 85
Monitor Status 136
monitoring, real-time 482
MonitorInterval 279, 412
MONITORQ

DISPLAY QMGR parameter 587
MONITORQ(string)

ALTER QMGR parameter 581
MonitorQName 280, 412
MONQ

DISPLAY QMGR parameter 587
DISPLAY QSTATUS parameter 574

MONQ(NONE/OFF/LOW/MEDIUM/
HIGH)

ALTER QMGR parameter 581
MONQ(QMGR

ALTER QLOCAL parameter 552
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 561
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

MQ_CMIT_EXIT 700
MQ_DISC_EXIT 702
MQAC TDQ definition, changing 24
MQACH_LENGTH_1 684
MQACH_VERSION_1 684
MQAXC_VERSION_1 686
MQAXP_VERSION_1 689
MQBACK call 871
MQBMHO

declaration 719
description 718
fields 718

MQBUFMH call 872
MQCA_ALTERATION_DATE 325
MQCA_ALTERATION_TIME 325
MQCA_TRIGGER_TERM_ID 926
MQCA_TRIGGER_TRANS_ID 926
MQCD - channel data structure 71

MQCFBS structure 501
MQCFH structure 486
MQCFH_VERSION_1 486
MQCFH_VERSION_3 444
MQCFIF structure 489
MQCFIL structure 497
MQCFIL64 structure 503
MQCFIN structure 491
MQCFSF structure 492
MQCFSL structure 499
MQCFST structure 495
MQCFT_INTEGER64_LIST 503
MQCHAD_DISABLED 64
MQCHAD_ENABLED 64
MQCHARV

declaration 722
description 720
fields 720

MQCICDCT.A - Destination Control Table
(DCT) 26

MQCICFCT.A - File Control Table
(FCT) 26

MQCLOSE call 875
MQCMHO

declaration 725
description 723
fields 723

MQCMIT call 878
MQCNO structure 639
MQCONN call 880
MQCONNX call 636
MQCRTMH call 881
MQCXP - channel exit parameter

structure 71
MQDH

declaration 735
description 730
fields 731

MQDH_VERSION_1 734
MQDISC call 883
MQDLH

declaration 729
description 726
fields 726

MQDLH_VERSION_1 729
MQDLTMH call 885
MQDLTMP call 886
MQDMHO

declaration 737
description 736
fields 736

MQDMPO
declaration 740
description 738
fields 738

MQFMT_COMMAND_1 782
MQFMT_COMMAND_2 782
MQFMT_RF_HEADER_2 785
MQGET

DISPLAY CHSTATUS parameter 530
MQGET call 888

security issues 661
MQGMO

declaration 762
description 740
fields 741

MQGMO_VERSION_1 761

1124 WebSphere MQ for z/VSE System Management Guide

MQGMO_VERSION_2 761
MQGMO_VERSION_3 761
MQGMO_VERSION_4 761
MQGMO-CONVERT option 217
MQI

See also message queue interface
accounting message 435, 437, 444
calls supported for WebSphere MQ

server 1009
calls, trace setting 90
channels 631
channels, defining 632
description 1
local administration support 941
monitor 201
queue manager calls 5
statistics message 438, 442

MQIAccounting 280, 412
MQICALL

DISPLAY CHSTATUS parameter 530
MQIMPO

declaration 772
description 764
fields 764

MQINQ
call 893
WebSphere MQ client 635

MQINQMP call 905
MQIStatistics 280, 413
MQIT transaction 28
MQMD

declaration 803
description 774
fields 774

MQMD_VERSION_1 803
MQMD_VERSION_2 803
MQMDE

declaration 810
description 806
fields 807

MQMDE_LENGTH_2 809
MQMDE_VERSION_2 809
MQMHBO

declaration 812
description 810
fields 811

MQMHBUF call 910
MQMT

command security 653
configuring auto-definition 62
invoking 79
options, command security 670

MQOD
declaration 818
description 813
fields 813
structure, using 950

MQOD_VERSION_1 818
MQOD_VERSION_2 818
MQOO_BROWSE

DISPLAY CONN parameter 547
MQOO_FAIL_IF_QUIESCING

DISPLAY CONN parameter 547
MQOO_INPUT_EXCLUSIVE

DISPLAY CONN parameter 547
MQOO_INPUT_SHARED

DISPLAY CONN parameter 547

MQOO_INQUIRE
DISPLAY CONN parameter 547

MQOO_OUTPUT
DISPLAY CONN parameter 547

MQOO_SET
DISPLAY CONN parameter 547

MQOPEN
call 914
options, using 952

MQOR
declaration 821
fields 820
structure, using 950

MQPCMD utility program 170
MQPD

declaration 825
description 821
fields 821

MQPEXCIC
batch utility, description 177
utility program, sample JCL 978

MQPMO
declaration 841
description 826
fields 826

MQPMO_VERSION_1 841
MQPMO_VERSION_2 841
MQPMQSC

program, description 508
sample JCL 509
utility program, sample JCL 978

MQPMR
description 843
structure, using 952

MQPREORG function 184
MQPUT

DISPLAY CHSTATUS parameter 530
MQPUT call

performance considerations 207
security issues 661
syntax 918

MQPUT1 871, 1009
call

performance considerations 207
syntax 921

using 953
MQPUTIL

batch utility, description 173
utility program, sample JCL 977

MQQDT_PERMANENT_DYNAMIC 402
MQRC_EXIT_REASON_ERROR 698
MQRC_FUNCTION_ERROR 698
MQRC_HCONFIG_ERROR 698
MQRC_NONE 698
MQRC_RESERVED_VALUE_ERROR 698
MQRC_RESOURCE_PROBLEM 698
MQRC_SELECTOR_ERROR 326
MQRC_UNEXPECTED_ERROR 698
MQRC_UNKNOWN_OBJECT_NAME 326
MQRCCF_CFIL_LENGTH_ERROR 326
MQRFH2

declaration 850
description 843
fields 844

MQRR
description 851
fields 851

MQRR (continued)
structure, using 952

MQSC
utility program, description 508
WebSphere MQ commands,

description 507
MQSC commands

alias
ALTER QALIAS 551
DEFINE QALIAS 557
DELETE QALIAS 563
DISPLAY QALIAS 564

channel
ALTER CHANNEL 512
DEFINE CHANNEL 515
DELETE CHANNEL 518
DISPLAY CHANNEL 518
DISPLAY CHLAUTH 532
DISPLAY CHSTATUS 521
RESET CHSTATUS 531
SET CHLAUTH 535
START CHSTATUS 531
STOP CHSTATUS 531

connection
DISPLAY CONN 544
STOP CONN 547

listener
ALTER LISTENER 539
DEFINE LISTENER 539
DELETE LISTENER 540
DISPLAY LISTENER 540
DISPLAY LSSTATUS 542
START LISTENER 543
STOP LISTENER 544

local
ALTER QLOCAL 551
DEFINE QLOCAL 558
DELETE QLOCAL 563
DISPLAY QLOCAL 565

manager
ALTER QMGR 577
DISPLAY QMGR 584
PING QMGR 588

model
ALTER QMODEL 554
DEFINE QMODEL 560
DELETE QMODEL 563
DISPLAY QMODEL 568

namelist
ALTER NAMELIST 548
DEFINE NAMELIST 549
DELETE NAMELIST 549
DISPLAY NAMELIST 550

remote
ALTER QREMOTE 556
DEFINE QREMOTE 562
DELETE QREMOTE 564
DISPLAY QREMOTE 571

service
ALTER SERVICE 589
ALTER SUB 595
ALTER TOPIC 607
CLEAR TOPICSTR 618
DEFINE SERVICE 589
DEFINE SUB 597
DEFINE TOPIC 609
DELETE SERVICE 591

Index 1125

MQSC commands (continued)
service (continued)

DELETE TOPIC 612
DISPLAY LSSTATUS 592
DISPLAY SERVICE 591
DISPLAY SUB 601
DISPLAY TOPIC 612
DISPLAY TPSTATUS 614
START SERVICE 594
STOP SERVICE 594, 604

status
DISPLAY CHSTATUS 521
DISPLAY QSTATUS 572

MQSD
description 852
fields 852

MQSE transaction 28
MQSERVER, using 639
MQSET call 925
MQSETMP call 931
MQSMPO

declaration 861
description 859
fields 859

MQSRO
description 862
fields 862

MQSU transaction 28
MQSUB call 934
MQSUBRQ call 937
MQTM

declaration 865
description 863
fields 863

MQTM_VERSION_1 865
MQXP TDQ definition

changing 22
MQXPT_LU62 254, 387
MQXQH

declaration 869
description 866
fields 867

MQXQH_VERSION_1 868
MQXR2_CONTINUE_CHAIN 693
MQXR2_SUPPRESS_CHAIN 693
MREXIT

DISPLAY CHSTATUS parameter 529
MSGAGE

DISPLAY QSTATUS parameter 574
MSGDATA 65

DISPLAY CHANNEL parameter 520
MSGDATA (string)

ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516

MsgDesc 868
MsgExit 63, 249, 384
MSGEXIT 65

DISPLAY CHANNEL parameter 520
DISPLAY CHSTATUS parameter 529

MSGEXIT (string)
ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516

MsgFlags 787, 809
MsgId 791
MsgId, performance considerations when

using 206
Msgs 394

MSGS
DISPLAY CHSTATUS parameter 528

MsgsAvailable 394
MsgSeqNumber 344, 487, 793, 809
MsgType 793
MsgUserData 64, 249, 384

N
NAMCOUNT

DISPLAY NAMELIST parameter 550
name, local API exit 95
NameCount 400
namelist

altering parameters 548
commands 548
creating 131
default object definitions 37
defining 549
definitions

Configuration menu 131
deleting 549
displaying 550

deleting 133
description 9
displaying 132
interface, security 1063
modifying 133
security 653, 665

NAMELIST
DISPLAY CONN parameter 547

namelist-name
ALTER NAMELIST parameter 548

NamelistAttrs 325
NamelistDesc 256, 289, 296, 400
NamelistName 256, 296, 301, 325, 327,

400
Names 257, 289, 296, 400
NAMES

ALTER NAMELIST parameter 549
DEFINE NAMELIST parameter 549
DISPLAY NAMELIST parameter 550

names of objects 3
NAMESERVER

DISPLAY CHSTATUS parameter 530
NETCONNECT

DISPLAY CHSTATUS parameter 529
NetTime 395
NETTIME

DISPLAY CHSTATUS parameter 528
network configuration 43
new users

installation procedures 18
NewMsgHandle 832
NextChainAreaPtr 685
NO

DISPLAY QSTATUS parameter 575,
576

NOBIAUTO
ALTER QMGR parameter 581
DISPLAY QMGR parameter 587

NOCSAUTO
ALTER QMGR parameter 581
DISPLAY QMGR parameter 587

NOCSCNVRT
ALTER QMGR parameter 581
DISPLAY QMGR parameter 587

NOCSDLQ
ALTER QMGR parameter 581
DISPLAY QMGR parameter 587

NONE
ALTER QMGR parameter 578, 580,

581, 583, 584
DISPLAY CONN parameter 546

NOSHARE
ALTER QLOCAL parameter 552
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 561
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

NOTRIGGER
ALTER QLOCAL parameter 552
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

NOTRIGREST
ALTER QLOCAL parameter 552
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

O
object

configuration 953
descriptor structure 813
name 105
type 97

Object Name 97, 101, 107, 108, 109, 110,
131

object names 156
ObjectCount 455, 472, 477
ObjectName 398, 814, 820
ObjectQMgrName 815, 821
ObjectRecOffset 733, 815
ObjectRecPtr 816
objects

administering using web
browser 161

names 3
queue manager in MQI calls 5
types 3

ObjectType 398, 816
OBJNAME(string)

DISPLAY CONN parameter 547
OBJTYPE(integer)

DISPLAY CONN parameter 547
OFF

ALTER QMGR parameter 578, 580,
581, 583, 584

Offset 794, 809
OldestMsgAge 417
ON

ALTER QMGR parameter 578, 584
OnQTime 417
open object function call 914
OpenBrowse 419
OpenCount 448, 457, 466
OpenDate 457

1126 WebSphere MQ for z/VSE System Management Guide

OpenFailCount 449, 466
OpenInputCount 417
OpenInputType 419
OpenInquire 419
OpenOptions 398, 419
OPENOPTS(integer)

DISPLAY CONN parameter 547
OpenOutput 419
OpenOutputCount 417
OpenSet 419
OpenTime 458
OpenType 337
OPENTYPE

DISPLAY QSTATUS parameter 573
operations functions

close channels 138
initialization of system 141
open channels 138
queue maintenance 142
resetting message sequence

numbers 139
starting queues 135
stopping queues 135

operator function keys 81
OPPROCS

DISPLAY QSTATUS parameter 574
OPTCCOMM

DISPLAY QMGR parameter 587
OPTCCOMM(ENABLED/DISABLED/

REPLY)
ALTER QMGR parameter 581

OPTCCRIT
DISPLAY QMGR parameter 587

OPTCCRIT(ENABLED/DISABLED/
REPLY)

ALTER QMGR parameter 581
OPTCERR

DISPLAY QMGR parameter 587
OPTCERR(ENABLED/DISABLED/

REPLY)
ALTER QMGR parameter 582

OPTCINFO
DISPLAY QMGR parameter 587

OPTCINFO(ENABLED/DISABLED)
ALTER QMGR parameter 582

OPTCORG
DISPLAY QMGR parameter 587

OPTCORG(ENABLED/DISABLED/
REPLY)

ALTER QMGR parameter 582
OPTCSYS

DISPLAY QMGR parameter 587
OPTCSYS(ENABLED/DISABLED/

REPLY)
ALTER QMGR parameter 582

OPTCWARN
DISPLAY QMGR parameter 587

OPTCWARN(ENABLED/DISABLED)
ALTER QMGR parameter 582

OPTECSMT
DISPLAY QMGR parameter 587

OPTECSMT(ENABLED/DISABLED)
ALTER QMGR parameter 582

OPTIDUMP
DISPLAY QMGR parameter 587

OPTIDUMP(ENABLED/DISABLED)
ALTER QMGR parameter 582

optional logging, console, setting 90
optional tracing

See tracing
Options 718, 745, 832, 876, 914
OPTLCOMM

DISPLAY QMGR parameter 587
OPTLCOMM(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTLCRIT

DISPLAY QMGR parameter 587
OPTLCRIT(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTLERR

DISPLAY QMGR parameter 587
OPTLERR(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTLINFO

DISPLAY QMGR parameter 587
OPTLINFO(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTLORG

DISPLAY QMGR parameter 588
OPTLORG(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTLSYS

DISPLAY QMGR parameter 588
OPTLSYS(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTLWARN

DISPLAY QMGR parameter 588
OPTLWARN(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTTCOMM

DISPLAY QMGR parameter 588
OPTTCOMM(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTTCONV

DISPLAY QMGR parameter 588
OPTTCONV(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTTMQI

DISPLAY QMGR parameter 588
OPTTMQI(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTTORG

DISPLAY QMGR parameter 588
OPTTORG(ENABLED/DISABLED)

ALTER QMGR parameter 582
OPTTSYS

DISPLAY QMGR parameter 588
OPTTSYS(ENABLED/DISABLED)

ALTER QMGR parameter 582
OriginalLength 794, 809
OriginalMsgHandle 836
OUTBOUND status 137
output

incorrect 207
OUTPUT

DISPLAY QSTATUS parameter 576

P
panel layout 78
Panel-Id 79
Parameter 491, 495, 498, 499, 502, 504
ParameterCount 488

parameters
breaking a connection 547
channel listener, altering 539
channel listener, defining 539
channel listener, deleting 540
channel listener, displaying 540
channel listener, displaying

status 542
channel listener, starting 543
channel listener, stopping 544
displaying connection

information 544
service, altering 589
service, defining 589
service, deleting 591
service, displaying 591
service, displaying status 592
service, starting 594
service, stopping 594, 604

parameters, altering for
alias queue 551
channel 512
local

queue 551
queue manager 577

model queue 554
namelist 548
remote queue 556

PAUSED
DISPLAY CHSTATUS parameter 526

pBufferLength 703, 707
PCF

command
messages 238
messages, issuing 238
server, activating 236
server, stopping 237

configuring auto-definition 64
description 235
introduced 235
messages

command security 666
header 486

parameters 87
preparing for 235
system command queue 236
using for remote administration 237

PCF commands
authority checking 241
channel

Change Channel 244
Change Subscription 354
Change Topic 368
Clear Topic String 376
Copy Channel 285
Copy Subscription 357
Copy Topic 370
Create Channel 292
Create Subscription 360
Create Topic 373
Delete Channel 300
Delete Subscription 362, 600
Delete Topic 377
Inquire Channel 305
Inquire Channel Authentication

Records 308
Inquire Channel Names 314

Index 1127

PCF commands (continued)
channel (continued)

Inquire Channel Status 315
Inquire Subscription 363
Inquire Subscription Status 366
Inquire Topic 377
Inquire Topic Names 379
Inquire Topic Status 379
Reset Channel 344
Set Channel Authentication

Record 345
Start Channel 349
Start Channel Listener 350
Start Service 351
Stop Channel 351
Stop Channel Listener 353
Stop Service 354

channel listener
Change Channel Listener 256
Copy Channel Listener 288
Create Channel Listener PCF 295
Delete Channel Listener PCF 301
Inquire Channel Listener 311
Inquire Channel Listener

Status 312
common error codes 241
connection

Inquire Connection 322
Stop Connection 353

data responses 381
Escape PCF command 304
individual definitions 242
message descriptor 238
namelist

Change Namelist 256
Copy Namelist 289
Create Namelist 296
Delete Namelist 301
Inquire Namelist 324
Inquire Namelist Names 326

queue
Change Queue 257
Copy Queue 290
Create Queue 297
Delete Queue 302
Inquire Queue 327
Inquire Queue Names 335
Inquire Queue Status 337

queue manager
Change Queue Manager 268
Inquire Queue Manager 332
Ping Queue Manager 343

response 239
Inquire Channel 382
Inquire Channel Listener 387
Inquire Channel Listener

Status 388
Inquire Channel Names 390
Inquire Channel Status 390
Inquire Connection 397
Inquire Namelist 399
Inquire Namelist Names 400
Inquire Queue 400
Inquire Queue Manager 407
Inquire Queue Names 416
Inquire Queue Status 416
Inquire Service 420

PCF commands (continued)
response (continued)

Inquire Service Status 421
Inquire Subscription 423
Inquire Subscription Status 426
Inquire Topic 427
Inquire Topic Names 429
Inquire Topic Status 430

security 666
service

Change Service 285
Copy Service 292
Create Service 299
Delete Service 303
Inquire Service PCF 341
Inquire Service Status PCF 342

structure 485
pCharAttrLength 705, 708
pCompCode 698, 699, 700, 701, 702, 703,

704, 706, 707, 708, 709
PERFMEV

DISPLAY QMGR parameter 588
PERFMEV(ENABLED/DISABLED)

ALTER QMGR parameter 582
performance

considerations
advantages of MQPUT1 207
application design 206
CorrelId 206
message length 206
MsgId 206
variable message length 206
when using trace 212

events 93, 95, 224
PerformanceEvent 280, 413
permanent

queues 2
queues, dynamically defined 958
queues, predefined 958

permissions, batch users 1063
Persistence 795
pExitContext 699, 700, 701, 702, 703, 704,

705, 706, 707, 708, 709
pExitParms 699, 700, 701, 702, 703, 704,

705, 706, 707, 708, 709
pHconn 699, 700, 703, 705, 706, 707, 708
pHobj 703, 705, 707, 708
physical message

message grouping, segmentation 960
Physical message 960
PING QMGR command 588
Ping Queue Manager PCF

command 343
pIntAttrCount 705, 708
Platform 413
PLI/VSE Samples 626
pOptions 700, 706
Portable Document Format (PDF) 1114
PORTNUM

DISPLAY CHANNEL parameter 520
PORTNUM(integer)

ALTER CHANNEL parameter 513
DEFINE CHANNEL parameter 516

PortNumber 249, 385
ppBuffer 703, 707
ppCharAttrs 705, 708
ppConnectOpts 701

ppDataLength 703
ppGetMsgOpts 703
ppHconn 701, 702
ppHobj 700, 706
ppIntAttrs 705, 708
ppMsgDesc 703, 707
ppObjDesc 706
ppPutMsgOpts 707
ppSelectors 705, 708
pQMgrName 701
pReason 698, 699, 700, 701, 702, 703,

704, 706, 707, 708, 709
predefined

permanent queues 958
queues 2

prerequisites for batch processing,
WebSphere MQ commands 510

Priority 796
problem determination

clients 212
incorrect output

messages containing unexpected
information 208

messages not appearing on
queues 207

with distributed queuing 208
network operation

SNA problems 196
TCP/IP problems 197

programming errors 199
trace 212
with local queue operation 195

problems, solving 640
procedures

for new users 18
ProcessId 688
processing

See event-driven processing
product configuration 46
program

ID 53
programmable

command formats 235
system management 221

Programmable Command Formats
See PCF

programming errors
debugging common 199
examples of 199

programs
See sample programs

PROPCTL
ALTER CHANNEL parameter 513,

516
DISPLAY CHANNEL parameter 520

PROPCTL(
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

properties, messages 971
property control, parameter 113
property descriptor

structure 821
property dialogs 156
PropertyControl 250, 260
pSelectorCount 705, 708

1128 WebSphere MQ for z/VSE System Management Guide

PubLevel 836
publications, WebSphere MQ 1105
Purge 302
PURGE

DELETE QLOCAL parameter 563
put

enabled 105, 107, 108
message, function call 918
message, options structure 826
one message function call 921

PUT
DISPLAY QALIAS parameter 565
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569
DISPLAY QREMOTE parameter 571

PUT(ENABLED/DISABLED)
ALTER QALIAS parameter 551
ALTER QLOCAL parameter 553
ALTER QMODEL parameter 555
ALTER QREMOTE parameter 557
DEFINE QALIAS parameter 557
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561
DEFINE QREMOTE parameter 562

Put1Count 450, 459, 468, 474
Put1FailCount 450, 459, 468, 474
PutApplName 727, 796
PutApplType 728, 796
PutBytes 450, 459, 468, 474
PutCount 449, 458, 467, 473
PutDate 728, 796
PutFailCount 449, 459, 467, 474
PutMaxBytes 460
PutMinBytes 460
PutMsgRecFields 733, 836
PutMsgRecOffset 733, 837
PutMsgRecPtr 838
PutTime 728, 797

Q
Q-Manager 79
q-name

ALTER LOCAL parameter 552
ALTER QALIAS parameter 551
ALTER QMODEL parameter 554
ALTER QREMOTE parameter 556
DEFINE QALIAS parameter 557
DEFINE QLOCAL parameter 558
DEFINE QMODEL parameter 560
DEFINE QREMOTE parameter 562
DELETE QALIAS parameter 563
DELETE QLOCAL parameter 563
DELETE QMODEL parameter 564
DELETE QREMOTE parameter 564
DISPLAY QALIAS parameter 564
DISPLAY QLOCAL parameter 565
DISPLAY QMODEL parameter 568
DISPLAY QREMOTE parameter 571

QAccountingData 456
QAttrs 328
QDefinitionType 457
QDepth 146
QDEPTHHI

DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

QDEPTHHI(integer)
ALTER QLOCAL parameter 553
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561

QDepthHighEvent 260, 403
QDepthHighLimit 261, 403
QDEPTHLO

DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

QDEPTHLO(integer)
ALTER QLOCAL parameter 553
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561

QDepthLowEvent 261, 403
QDepthLowLimit 261, 403
QDepthMaxEvent 261, 403
QDesc 262, 403
QDPHIEV

DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

QDPHIEV(ENABLED/DISABLED)
ALTER QLOCAL parameter 553
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561

QDPLOEV
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 569

QDPLOEV(ENABLED/DISABLED)
ALTER QLOCAL parameter 553
ALTER QMODEL parameter 555
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561

QDPMAXEV
DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 570

QDPMAXEV(ENABLED/DISABLED)
ALTER QLOCAL parameter 553
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561

QMaxDepth 473
QMGR

DISPLAY CONN parameter 547
Qmgr events 94
qmgr-attrs

ALTER QMGR parameter 577
QMgrAttrs 332
QmgrDesc 413
QMgrDesc 280
QMgrName 395, 413, 694
QMinDepth 473
Qname 456, 471
QName 257, 297, 302, 328, 336, 337, 403,

417, 419, 864
QNames 416
QServiceInterval 262, 404
QServiceIntervalEvent 262, 404
QStatisticsData 472
QStatusAttrs 338
QSVCIEV

DISPLAY QLOCAL parameter 566
DISPLAY QMODEL parameter 570

QSVCIEV(HIGH/OK/NONE)
ALTER QLOCAL parameter 553

QSVCIEV(HIGH/OK/NONE) (continued)
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561

QSVCINT
DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

QSVCINT(integer)
ALTER QLOCAL parameter 553
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 561

QTIME
DISPLAY QSTATUS parameter 574

Qtype 457
QType 257, 290, 297, 302, 328, 336, 404
queue

accounting
local queue definition screen 99
messages 435, 438, 444
Model queue definition

screen 105
definitions

deleting 110, 112
displaying 134
main screen 96
modifying 110, 111
queue definitions 110
selecting 110

depth events 226
files, reorganizing 185
manager

API exit settings 95
back-level 971
backing up configuration file 96
commands 577
communications settings 85
configuring for SSL 644
creating 82
description 4
event settings 92
events 93, 222
events, enabling 230
Explorer security issues when

connecting to remote
queues 158

hiding using Explorer 160
log settings 88
maximums 85
messages 1015
object configuration 953
object in MQI calls 5
security, authenticating and

controlling WebSphere MQ
server 1010

segmentation and reassembly 961
showing using Explorer 160
specifying name during

installation 28
SSL parameters 645
status 136
subsystem ID 85
system queue manager information

screen 84
TCP/IP settings 644
trace settings 88
unique name 82

Index 1129

queue (continued)
monitoring

local queue definition screen 99
model queue definition

screen 105
online monitoring setting 91

name 136
objects

remote 5
using 5

objects, alias 6
service interval events 226
statistics

local queue definition screen 99
message 438, 442, 444
model queue definition

screen 105
status 143

displaying 572
system information 136

QUEUE
DISPLAY CONN parameter 547

Queue depth, performance event 95
QUEUE ID 1020
queue management

See also queue manager
See queues

Queue Name 143
Queue Status 136, 138, 140, 142
QueueAccounting 262, 280, 404, 413
QueueManager 445, 453, 470, 476
QueueMonitoring 263, 281, 404, 414, 418
queues 954

See also alias queues
See also alias reply queues
See also dead-letter queue
See also distributed queues
See also dynamic queues
See also event queues
See also local queues
See also model queues
See also permanent queues
See also predefined queues
See also remote queues
See also temporary queues
See also transmission queues
alias 6
attributes 5
commands 550
configuration 51
defining 5
definition types 958
depth 948
description 2
dynamic 955
event attributes 103
for WebSphere MQ applications 941
inbound status 146
local, altering parameters 551
maintenance 142
monitoring 145
objects, local 5
outbound status 146
security

access levels 660
alias queues 660

queues (continued)
security (continued)

implementing WebSphere MQ
security 653

resource definitions 660
simplifying management 235
specifying dead-letter 83
starting 135
stopping 135
trigger attributes 102

QueueStatistics 263, 281, 405, 414
Quiesce 351

R
RCVDATA 65

DISPLAY CHANNEL parameter 520
RCVDATA (string)

ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517

RCVEXIT 65
DISPLAY CHANNEL parameter 520
DISPLAY CHSTATUS parameter 529

RCVEXIT (string)
ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517

RCVR
ALTER CHANNEL parameter 512
DEFINE CHANNEL parameter 515
DISPLAY CHSTATUS parameter 525

RCVTIME(integer)
ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517
DISPLAY CHANNEL parameter 520

real-time monitoring 482
Reason 488, 729, 852, 872, 877, 879, 890,

903, 919, 923, 929
RECEIVE

DISPLAY CHSTATUS parameter 529
ReceiveExit 64, 250, 385
ReceiveUserData 64, 251, 385
RecoveryTasks 281
RecsPresent 734, 816, 838
relevant

for common status 317
for current-only status 318

remote
administration, using PCFs 237
events 223
queue

attributes, displaying 571
manager name 107
managers, connecting to using

Explorer 156
managers, Explorer security issues

when connecting to 158
name 107

queues
altering parameters 556
creating 106
defining 562
deleting definitions 564
description 5
security 662

TCP/IP port
channel configuration 49
parameter 113

Remote, Qmgr event 94
REMOTEEV

DISPLAY QMGR parameter 588
REMOTEEV(ENABLED/DISABLED)

ALTER QMGR parameter 582
RemoteEvent 282, 414
RemoteQMgrName 264, 395, 405, 868
RemoteQName 263, 405, 868
REORG

DISPLAY QLOCAL parameter 567
REORG(ENABLED/DISABLED)

ALTER QLOCAL parameter 553
DEFINE QLOCAL parameter 559

reorganization
automatic 99
trace setting 90

Reorganization 264
REORGCAT

DISPLAY QLOCAL parameter 567
REORGCAT(string)

ALTER QLOCAL parameter 554
DEFINE QLOCAL parameter 559

ReorgCatalog 264
REORGINT

DISPLAY QLOCAL parameter 567
REORGINT(integer)

ALTER QLOCAL parameter 554
DEFINE QLOCAL parameter 559

ReorgInterval 264
ReorgStartTime 264
REORGTI

DISPLAY QLOCAL parameter 567
REORGTI(string)

ALTER QLOCAL parameter 553
DEFINE QLOCAL parameter 559

reply
queue security 664

REPLYQ
DISPLAY QMGR parameter 588

REPLYQ(string)
ALTER QMGR parameter 583

ReplyToQ 797
ReplyToQMgr 798
Report 799
reports

application-generated 969
retrieval 970
WebSphere MQ-generated 969

requester-sender channels 8
requester-server channels 8
REQUESTING,

DISPLAY CHSTATUS parameter 526
requirements

hardware 15
software 15

Reserved 698
Reserved1 759
reset

count, SSL 87, 645
key, SSL 16

RESET CHANNEL command 531
Reset Channel PCF command 344
ResolvedQMgrName 838
ResolvedQName 759, 838, 840
resource

definitions, command resource
security 671

1130 WebSphere MQ for z/VSE System Management Guide

resources
security 652, 655
security example 1061
switch 656

ResponseRecOffset 817, 839
ResponseRecPtr 817, 840
responses, to PCF commands 239
RESYNCH

DISPLAY CHSTATUS parameter 529
retrieval algorithms for messages 3
RETRYING

DISPLAY CHSTATUS parameter 526
return codes

applications 199
Returned Results 142
RNAME

DISPLAY QREMOTE parameter 571
RNAME(string)

ALTER QREMOTE parameter 557
DEFINE QREMOTE parameter 563

RQMNAME
DISPLAY CHSTATUS parameter 528
DISPLAY QREMOTE parameter 571

RQMNAME(string)
ALTER QREMOTE parameter 557
DEFINE QREMOTE parameter 563

RQSTR
ALTER CHANNEL parameter 512
DEFINE CHANNEL parameter 515
DISPLAY CHSTATUS parameter 525

rules and formatting header 2
structure 843

RUNNING
DISPLAY CHSTATUS parameter 526

S
sample

code 942
JCL

MQPMQSC 509
MQPREORG 185
WebSphere MQ utility

programs 977
programs 13, 979
security configuration 1055

SAVED
DISPLAY CHSTATUS parameter 523

SCYDATA 65
DISPLAY CHANNEL parameter 520

SCYDATA (string)
ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517

SCYEXIT 65
DISPLAY CHANNEL parameter 520
DISPLAY CHSTATUS parameter 529

SCYEXIT (string)
ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517

SDEFS command 619
SDR

ALTER CHANNEL parameter 512
DEFINE CHANNEL parameter 515
DISPLAY CHSTATUS parameter 524

secret key
ALTER QMGR parameter 583
DISPLAY CHSTATUS parameter 529

secret key (continued)
DISPLAY QMGR parameter 588
SSL reset count 87, 645
SSLKeyResetCount 282
SSLKeyResetDate 395

Secure Sockets Layer services
See SSL services

security 651
See also checklist security
See also command, resource security,

resource definitions
See also namelist security
See also reply queue security
Basic Security Manager (BSM) 1057
batch

connections 658
interface 1063

checklist for implementing 674
classes 655
client connection 659
command

description 653
resource 654

connection 652
resource definitions 657

considerations in implementing for
WebSphere MQ server 1010

dataset
description 654
example 1059

dead-letter queue 663
example implementation 1055
exit

data 119
name 119
using in Explorer 159

external security manager 1057
installing 19
messages 653
namelist 653
namelist, interface example 1063
queue

alias queues 660
resource definitions 660
system queues 663

queues 653
remote queues 662
resource definitions 665, 666
resources

description 655
example 1061
protecting 652
switch resources 656

starting WebSphere MQ 1067
stopping WebSphere MQ 1068
transaction example 1061
trigger program example 1067
WebSphere MQ client 630
when using Explorer 158

SecurityExit 63, 251, 386
SecurityId 687
SecurityUserData 64, 251, 386
segmentation

See also message segmentation
flags 787

Segmentation 760

segments
See also message segments
within message group hierarchy 961

SegmentStatus 760
selectors for

alias queues 902, 928
all types of queue 926
local definitions of remote

queues 902
local queues 900, 926
namelists 902
remote queues 928

SEND
DISPLAY CHSTATUS parameter 529

SENDDATA 65
DISPLAY CHANNEL parameter 520

SENDDATA (string)
ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517

sender-receiver channels 7
SendExit 64, 251, 386
SENDEXIT 65

DISPLAY CHANNEL parameter 520
DISPLAY CHSTATUS parameter 529

SENDEXIT (string)
ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517

SendUserData 64, 252, 386
SEQNUM(integer)

RESET CHANNEL parameter 531
SeqNumber 446, 454
SeqNumberWrap 252, 386
sequence numbers

See message sequence numbers
SEQWRAP

DISPLAY CHANNEL parameter 520
SEQWRAP(integer)

ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517

server
configuration, WebSphere MQ

client 626
WebSphere MQ client connection 631

server-connection
channel 632
channel definition 627

server-receiver channels 9
service

commands 589, 594, 606
definitions

Configuration menu 127
service commands

parameters, altering 589
parameters, defining 589
parameters, deleting 591
parameters, displaying 591
parameters, displaying status 592
parameters, starting 594
parameters, stopping 594, 604

service interval
event Information 104
performance event 95
timer 227

ServiceName 351, 354
services

description 10

Index 1131

SET
DISPLAY QSTATUS parameter 576

Set Channel Authentication Record PCF
command 345

SET CHLAUTH command 535
set message property options

structure 859
set object attributes function call 925
SetCount 452, 467
SetFailCount 453, 467
SHARE

ALTER QLOCAL parameter 554
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 562
DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

Shareability 265, 405
SHARED

DISPLAY QSTATUS parameter 576
short retry interval

channel configuration 50
parameter 114

short/long retry count
channel configuration 50
parameter 114

ShortRetriesLeft 395
ShortRetryCount 252, 386
ShortRetryInterval 252, 386
SHORTRTS

DISPLAY CHSTATUS parameter 529
SHORTRTY(integer)

ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517
DISPLAY CHANNEL parameter 520

SHORTTMR(integer)
ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517
DISPLAY CHANNEL parameter 520

Signal1 761
Signal2 761
SOAP transport 1071
special characters, MQSC 508
specified operating environment 15
split msg, channel configuration 51
SSL

channels
parameters 647
problems with cipher specification

support 214
problems with client authentication

failure 215
problems with enabled 213
problems with general channel

failure 215
problems with SSL

availability 213
cipher specification 117, 647
client authentication 118, 647
configuring channel 646
feature, installing 643
key reset 16, 282, 319, 333, 415, 529,

646, 899
parameters 86
peer attributes 118, 648
problems

investigating 198

SSL (continued)
queue manager, configuring 644
reset count 645
reset count, SSL parameter 87
security, using in Explorer 159
services

activating 648
description 643

SSL error, channel event 95
SSL parameters

See channel SSL parameters
SSLCAUTH

DISPLAY CHANNEL parameter 521
SSLCAUTH(REQUIRED/OPTIONAL)

ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517

SSLCERTI
DISPLAY CHSTATUS parameter 529

SSLCertRemoteIssuerName 395
SSLCIPH

DISPLAY CHANNEL parameter 520
SSLCIPH(string)

ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 517

SSLCipherSpec 253, 386
SSLClientAuth 253, 386
SSLHANDSHK

DISPLAY CHSTATUS parameter 530
SSLKEYDA

DISPLAY CHSTATUS parameter 529
SSLKEYL

DISPLAY QMGR parameter 588
SSLKEYL(string)

ALTER QMGR parameter 583
SSLKeyLibraryMember 282, 415
SSLKeyLibraryName 282, 415
SSLKEYM

DISPLAY QMGR parameter 588
SSLKEYM(string)

ALTER QMGR parameter 583
SSLKeyResetCount 282, 415
SSLKeyResetDate 395
SSLKeyResets 395
SSLKeyResetTime 395
SSLKEYTI

DISPLAY CHSTATUS parameter 529
SSLPEER

DISPLAY CHANNEL parameter 521
DISPLAY CHSTATUS parameter 529

SSLPEER(string)
ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 518

SSLPeerName 253, 386
SSLRKEYC

DISPLAY QMGR parameter 588
SSLRKEYC(integer)

ALTER QMGR parameter 583
SSLRKEYS

DISPLAY CHSTATUS parameter 529
SSLShortPeerName 395
start and stop events 224
START CHANNEL command 531
Start Channel Listener PCF

command 350
Start Channel PCF command 349
START LISTENER command 543
START SERVICE command 594

Start Service PCF command 351
Start/Stop 94
Started, channel event 94
STARTING

DISPLAY CHSTATUS parameter 526
StartStopEvent 283, 415
STATC

DISPLAY CHANNEL parameter 521
STATCHL

DISPLAY QMGR parameter 588
STATCHL(NONE/OFF/LOW/

MEDIUM/HIGH)
ALTER QMGR parameter 583

STATCHL(QMGR/OFF/LOW/
MEDIUM/HIGH)

ALTER CHANNEL parameter 514
DEFINE CHANNEL parameter 518

STATINT
DISPLAY QMGR parameter 588

STATINT(integer)
ALTER QMGR parameter 584

statistics
interval 91
message data 463, 470, 476
messages 434, 438
queue 37

StatisticsInterval 283, 415
STATMQI(ON/OFF)

ALTER QMGR parameter 584
STATQ

DISPLAY QMGR parameter 588
STATQ(NONE/ON/OFF)

ALTER QMGR parameter 584
status

flags 789
of channels, displaying 521
of queues 572

STATUS(INACTIVE/STOPPED)
STOP CHANNEL parameter 532

StatusType 339, 418, 419
STOP CHANNEL command 531
Stop Channel Listener PCF

command 353
Stop Channel PCF command 351
STOP CONN command 547
Stop Connection PCF command 353
STOP LISTENER command 544
STOP SERVICE command 594
Stop Service PCF command 354
STOPPED

DISPLAY CHSTATUS parameter 526
Stopped, channel event 94
STOPPING

DISPLAY CHSTATUS parameter 526
STOPREQ

DISPLAY CHSTATUS parameter 529
StopRequested 396
String 496, 502
StringLength 496, 500, 502
Strings 500
STRSTPEV

DISPLAY QMGR parameter 588
STRSTPEV(ENABLED/DISABLED)

ALTER QMGR parameter 584
StrucId 683, 686, 689, 718, 729, 734, 761,

803, 809, 818, 840, 864, 868

1132 WebSphere MQ for z/VSE System Management Guide

StrucLength 486, 491, 495, 497, 499, 502,
503, 684, 734, 809

structure, PCF commands and
responses 485

subscription
register 934
request 937

subscription request options
structure 862

SubState 396
SUBSTATE

DISPLAY CHSTATUS parameter 529
Subsystem id, queue system value 85
SVR

ALTER CHANNEL parameter 512
DEFINE CHANNEL parameter 515
DISPLAY CHSTATUS parameter 525

SVRCONN
ALTER CHANNEL parameter 512
DEFINE CHANNEL parameter 515
DISPLAY CHSTATUS parameter 525

synchronous
applications 1

syncpoint
coordination, for applications 943
coordination, WebSphere MQ

client 635
SyncPoint 415
system

administration
control interface 169
using Explorer 154
WebSphere MQ client 630

command
queue 236
queue, PCF parameter 87

initialization 141
log

defining during installation 29
defining queue 31
description 209

messages 1015
operation 77
queue 453, 470, 476
queue security 663
queue, MQI accounting message

data 444
reply queue, PCF parameter 87
status

initialization of system screen 142
maintain queue message records

screen 143
open/close Channel screen 138
reset channel message sequence

screen 140
start/stop queue control

screen 136
trace setting 90
wait interval 47

configuration guidelines 47
queue system value 84

SystemLogQName 283, 415

T
TAKEOVER dual_queue_name 175
tape contents 13

target
installation library 16

TARGQ(string)
ALTER QALIAS parameter 551
DEFINE QALIAS parameter 557
DISPLAY QALIAS parameter 565

Taskbar application 160
TASKNO

DISPLAY QSTATUS parameter 576
TASKNO(string)

DISPLAY CONN parameter 546
TaskNumber 399, 420
TCP

DEFINE CHANNEL parameter 515
TCP/IP

defining
receiver channel 1007
sender channel 1006

establishing a connection 995
installation requirements 43
selecting 113

temporary
queues 959

Termid 79
terminal id, queue configuration 53
ThreadId 688
time-independent applications 1
TimeOnQAvg 463
TimeOnQMax 463
TimeOnQMin 462
Timeout 840
ToChannelName 286
ToNamelistName 289
ToQName 290
TP name, channel configuration 51
TP name, parameter 114
TpName 253, 387
TPNAME

DISPLAY CHANNEL parameter 521
TPNAME(string)

ALTER CHANNEL parameter 515
DEFINE CHANNEL parameter 518

trace
See also client trace
performance considerations 212
problem determination 212

TraceComms 283
TraceConversion 283
TraceMQICalls 283
TraceReorg 284
TraceSystem 284
transaction

ID 53
transactional interface 169
TransactionId 399, 420
TRANSID

DISPLAY QSTATUS parameter 576
TRANSID(string)

DISPLAY CONN parameter 546
transient data queues

MQER 21
MQIE 23
MQXP 22

transmission
protocols, selecting 113
queue name 107, 109
queue name, parameter 114

transmission (continued)
queues 6

transmission-queue header
MQXQH structure 866

TransportType 253, 387
TRIGCHAN

DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

TRIGCHAN(string)
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 559
DEFINE QMODEL parameter 562

TRIGDATA
DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

TRIGDATA(string)
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 560
DEFINE QMODEL parameter 562

trigger
type, queue configuration 53

TRIGGER
ALTER QLOCAL parameter 554
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 560
DEFINE QMODEL parameter 562
DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

TriggerChannelName 265, 405
TriggerControl 265, 406
TriggerData 265, 406
triggering

description 945
TriggerProgramName 265, 406
TriggerRestart 265, 406
TriggerTerminalId 266, 406
TriggerTransactionId 266, 406
TriggerType 266, 406
TRIGPROG

DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

TRIGPROG(string)
ALTER QLOCAL parameter 554
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 560
DEFINE QMODEL parameter 562

TRIGREST
ALTER QLOCAL parameter 554
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 560
DEFINE QMODEL parameter 562
DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

TRIGTERM
DISPLAY QLOCAL parameter 567

TRIGTERM(string)
ALTER QLOCAL parameter 554
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 560
DEFINE QMODEL parameter 562
DISPLAY QMODEL parameter 570

TRIGTRAN
DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

TRIGTRAN(string)
ALTER QLOCAL parameter 554
ALTER QMODEL parameter 556

Index 1133

TRIGTRAN(string) (continued)
DEFINE QLOCAL parameter 560
DEFINE QMODEL parameter 562

TRIGTYPE
DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

TRIGTYPE(FIRST/EVERY)
ALTER QLOCAL parameter 554
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 560
DEFINE QMODEL parameter 562

trptype
DEFINE CHANNEL parameter 515

TRPTYPE
DISPLAY CHANNEL parameter 521

TRPTYPE(LU62/TCP)
ALTER CHANNEL parameter 515

Type 486, 491, 495, 497, 499, 502, 503
TYPE

DISPLAY CONN parameter 545
DISPLAY QSTATUS parameter 573

types of objects 3

U
UNCOM

DISPLAY QSTATUS parameter 575
UncommittedMsgs 418
undelivered message queue

See dead-letter queue
unit

of work
syncpoint considerations 943

UnknownDestCount 818, 840
UOWStartDate 399
UOWStartTime 399
UOWState 399
UOWSTATE(integer)

DISPLAY CONN parameter 546
UOWSTDA(string)

DISPLAY CONN parameter 546
UOWSTTI(string)

DISPLAY CONN parameter 546
UOWType 399, 420
UPDATE FROM MQFSSET 176
UPDATE FROM MQFSSET

UPPERCASE 176
UPDATE UPPERCASE 176
uppercase translation 27
URTYPE

DISPLAY QSTATUS parameter 576
URTYPE(integer)

DISPLAY CONN parameter 546
Usage 266, 406
USAGE

DISPLAY QLOCAL parameter 567
DISPLAY QMODEL parameter 570

USAGE(NORMAL/XMIT)
ALTER QLOCAL parameter 554
ALTER QMODEL parameter 556
DEFINE QLOCAL parameter 560
DEFINE QMODEL parameter 562

user
authority

for COA (confirm on arrival) 664
for COD (confirm on

delivery) 664

user (continued)
authority (continued)

for EXPIRY 664
data

queue configuration 54
sending 239

user-defined code pages
creating 122
deleting 123
modifying 123

UserData 865
UserId 399, 447, 455, 686
USERID

DISPLAY QSTATUS parameter 576
USERID(string)

DISPLAY CONN parameter 546
UserIdentifier 420, 803
users

See new users
utility

program MQSC 508

V
Value 491
Values 498, 504
variable-length string

structure 720
verification, installation 32
Version 486, 684, 686, 689, 719, 729, 734,

761, 803, 809, 818, 841, 868
VSAM file maintenance

automatic reorganization 99
creating space 183
delete all function 183
MQPREORG function

description of 184
sample JCL 185

reorganizing queue files 185
VSAM installation catalog 16
VSBufSize 720

W
WaitInterval 761
web

browser, administering objects 161
support for CICS 161

WebSphere MQ
allocating files when installing 18
channel

configuration 996
definition 48

CICS bridge 186
client bridge 637
command line function 169
commands

channel 512
channel authentication 532
channel listener 539
connection 544
individually described 510
issuing 508
MQSC, purpose 507
prerequisites before batch

processing 510

WebSphere MQ (continued)
commands (continued)

queue commands 550
queue manager commands 577
rules for use 507
security 668
service 589
special characters 508
ssubscription 594, 606
structure 507

configuration
description 996
worksheet 991

definition in CICS 43
example of starting 1067
initializing 28
LU 6.2 connection 991
meta commands 619
prerequisites 15
publications 1105
starting 27

WebSphere MQ client
See also MQI channels
access control 630
application programming for

clients 634
applications

building 636
for both environments 636
running 638

authentication of client user 630
building applications for 636
CCSID (coded character set

identifiers) 635
channel

definition table 632
exits 632

channel definition table 632
channel exits 632
channels

client/server connection 631
types of 631

client
bridge applications 637
trace example 641

client/server connection
channels 631

coded character set identifiers
(CCSID) 635

configuration 627
configuring

communication links 626
server 626

connection
client/server channels 631
failure 640

differences 628
environment

building applications 636
variables 633

error messages 641
failure to make a connection 640
installing

clients 624
components 625

introduction 623
limiting size of message 634

1134 WebSphere MQ for z/VSE System Management Guide

WebSphere MQ client (continued)
linking applications 637
message

limiting size of 634
queue interface (MQI) 634

MQCNO structure 639
MQI 634
overview 623
prerequisites 624
problems

connection failure 640
error messages 641
stopping 640
tracing 641

problems, solving 640
purpose 624
security 630
server configuration 626
solving problems 640
stopping 640
syncpoint coordination 635
system administration 630
trace example 641
tracing 641
triggering in client environment 636
using

MQCONNX 636
MQINQ 635
MQSERVER 639

verifying installation 627
WebSphere MQ commands

See MQSC
WebSphere MQ Explorer

See Explorer
WebSphere MQ server

channel exits 1011
code page

conversion 1011
conversion tables 1011
numbers 1012
translation tables 1012

creating code page conversion
tables 1011

CSD definitions 1013
description 1009
GENXLT utility 1013
MQI support 1009
queue manager security 1010
security considerations 1010

Windows
clients error messages 213

X
XBATCHSZ

DISPLAY CHSTATUS parameter 530
XMITQ

DISPLAY CHANNEL parameter 521
DISPLAY QREMOTE parameter 571

XMITQ(q-name)
DISPLAY CHSTATUS parameter 524

XMITQ(string)
ALTER CHANNEL parameter 515
ALTER QREMOTE parameter 557
DEFINE CHANNEL parameter 518
DEFINE QREMOTE parameter 563

XmitQName 254, 266, 321, 387, 397, 407

XmitSize 254
XQMSGSA

DISPLAY CHSTATUS parameter 530
XQTime 397
XQTIME

DISPLAY CHSTATUS parameter 530

Y
YES

DISPLAY QSTATUS parameter 575,
576

Z
z/VSE system requirements 15

Index 1135

1136 WebSphere MQ for z/VSE System Management Guide

����

Printed in USA

GC34-6981-04

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book

	Summary of changes
	Changes in this edition (GC34-6981-04)
	Changes in GC34-6981-03
	Changes in GC34-6981-02
	Changes in GC34-6981-01
	Changes in GC34-6981-00

	Chapter 1. Introduction
	WebSphere MQ and message queuing
	Time-independent applications
	Message-driven processing
	Synchronous applications

	Messages and queues
	What messages are
	Message lengths

	What queues are
	Retrieving messages from queues

	Objects
	Object names
	Managing objects
	Local and remote administration
	Object attributes

	WebSphere MQ queue managers
	MQI calls

	WebSphere MQ queues
	Using queue objects
	Specific local queues used by WebSphere MQ

	Channels
	Message channels

	Namelists
	Listeners
	Services

	Clients and servers
	WebSphere MQ applications in a client-server environment

	WebSphere MQ and CICS

	Chapter 2. Installation
	Contents of the library tape
	Prerequisites
	Program number
	Hardware requirements
	Software requirements
	Features
	Connectivity
	Compilers supported for WebSphere MQ for z/VSE applications
	Delivery

	Installing WebSphere MQ for z/VSE - all users
	Installation checkpoint (WebSphere MQ installation)

	Procedures for new users
	Allocate and initialize the required WebSphere MQ files
	Installing security
	Changing the MQER TDQ definition
	Changing the MQXP TDQ definition
	Changing the MQIE TDQ definition
	Changing the MQAC TDQ definition
	Other considerations for installing security
	Preparing CICS for WebSphere MQ
	Modify CICS start-up deck
	Recovery and restart
	CICS journal control table

	Uppercase translation
	Installation checkpoint (CICS)

	Starting WebSphere MQ
	WebSphere MQ initialization
	Checking MQ is active

	WebSphere MQ installation verification test
	Local queue verification test
	Installation checkpoint (installation verification test)
	Remote queue verification test
	Default object definitions

	Post installation verification test CICS modifications
	Migration procedures for existing users

	Chapter 3. Configuring network communications
	WebSphere MQ system definitions required for ACF/VTAM
	Definitions in CICS for LU 6.2 connections
	Connection definition
	Session definition

	WebSphere MQ for z/VSE configuration guidelines
	Queue manager configuration guidelines
	Channel configuration guidelines
	Queue configuration guidelines

	Permitted number of channels
	Example configuration
	Channel exits
	Channel security exits
	Channel send and receive exits
	Channel message exits
	Channel auto-definition exit
	Configuring channel exits
	Configuration using MQMT
	Configuring auto-definition with MQMT
	Configuration using PCF
	Configuring auto-definition with PCF
	Configuration using MQSC
	Configuring auto-definition with MQSC

	Configuration using WebSphere MQ Explorer
	Writing and compiling channel-exit programs
	Exit programs in CICS
	Channel-exit calls and data structures
	MQ_CHANNEL_EXIT - Channel exit
	MQCD - Channel data structure
	MQCXP - Channel exit parameter structure

	Auto-definition exit and data structures
	MQCXP - Channel exit parameter structure

	Channel exit sample

	Adopt MCA
	Adopt MCA parameters
	Adopt MCA
	Adopt MCA Check

	Bullet-proof channels
	Bullet-proof channel parameters

	Chapter 4. System operation
	WebSphere MQ master terminal displays
	General panel layout
	WebSphere MQ master terminal (MQMT) – main menu
	Master Terminal transactions
	Operator screen action keys

	Configuration functions
	Global system definition
	Guidelines for configuring queue managers
	Configuring the queue manager
	Backing up the configuration file after creating the queue manager

	Queue definitions
	Creating local queues
	Create model queue
	Create remote queue
	Create alias queue
	Create alias queue manager
	Creating alias reply queues
	Modifying and deleting queue definitions

	Channel definitions
	General
	Sender and Server channels
	Sender, Server, Receiver and Requester channels
	Modifying and deleting channel definitions
	Selecting an existing channel definition
	Modifying an existing channel definition
	Deleting an existing channel definition
	Setting channel SSL parameters
	Setting channel exit parameters

	Code page definitions
	Create a user-defined code page
	Modifying and deleting user-defined code pages
	Modifying an existing code page definition
	Deleting an existing code page definition.

	Listener definitions
	Service definitions
	List all service objects
	Start service object
	Stop service object

	Namelist definitions
	Create a namelist
	Displaying existing namelists
	Modifying and deleting namelists

	Global system definition display
	Queue definition display
	Channel definition display
	Code page definition display

	Operations functions
	Start/Stop queue
	Open / Close channel
	Reset message sequence number
	Initialization of system
	Queue maintenance

	Monitor functions
	Monitor queues
	Monitor queues - detail

	Monitor channel
	Monitor channel - detail

	Message monitoring
	Controlling queue managers for activity recording
	Controlling queue managers for trace-route messaging

	Browse function
	Administration using the WebSphere MQ Explorer
	What you can do with the WebSphere MQ Explorer
	Remote queue managers
	Deciding whether to use the WebSphere MQ Explorer

	Setting up the WebSphere MQ Explorer
	Prerequisite software
	Required definitions for administration
	Cluster membership
	Security
	Data conversion

	Using the WebSphere MQ Explorer
	Showing and hiding queue managers and clusters
	Using the WebSphere MQ Taskbar application (Windows only)

	Administration via a web browser
	CICS Web Support
	CWS WebSphere MQ modules
	HTML source file
	CWS converter program

	Using CWS with WebSphere MQ

	Communications processes
	Message persistence
	MQPER_PERSISTENT
	MQPER_NOT_PERSISTENT
	MQPER_PERSISTENCE_AS_Q_DEF

	Message expiry
	Viewing error logs

	Chapter 5. Utilities and interfaces
	System Administration Control Interface
	Transactional interface (MQCL)
	Programmable interface (MQPCMD)

	Batch utilities
	MQPUTIL program
	PRINT
	RESET
	DUALQ
	UPDATE

	MQPEXCIC program

	Using the batch interface
	Batch interface identifier
	Batch interface auto-start
	Starting the batch interface
	Stopping the batch interface
	How to use the batch interface
	Data integrity
	Verifying the batch interface
	Restrictions on using the batch interface
	Batch interface and the client bridge

	VSAM file maintenance
	Delete all function
	Operation

	MQPREORG function
	Multiple queues sharing a VSAM cluster
	Reorganizing queue files
	Sample JCL to run MQPREORG

	WebSphere MQ-CICS Bridge
	When to use the CICS bridge
	System configuration for the CICS bridge
	Running CICS DPL programs
	Running CICS 3270 transactions
	Customizing the CICS bridge
	Starting the CICS bridge
	Shutting down the CICS bridge
	Restarting the monitor
	Security considerations for the CICS bridge
	Using and writing WebSphere MQ-CICS bridge applications

	Chapter 6. Problem determination
	WebSphere MQ setup and local queue operation
	Has WebSphere MQ run successfully before?
	Is local queue operation working?

	Network problems
	Investigating SNA problems
	Investigating TCP/IP problems
	Investigating SSL problems
	Does the problem affect specific parts of the network?

	Applications
	Are there any error messages?
	Are there any return codes explaining the problem?
	Can you reproduce the problem?
	Have any changes been made since the last successful run?
	Has the application run successfully before?
	If the application has not run successfully before

	Using the WebSphere MQ API monitor

	Other areas of investigation
	Have you obtained incorrect output?
	Does the problem occur at specific times of the day?
	Is the problem intermittent?
	Have you applied any service updates?
	Does the problem affect only remote queues?
	Is your application or WebSphere MQ for z/VSE running slowly?

	Application design considerations
	Effect of message length
	Searching for a particular message
	Queues that contain messages of different lengths
	Use of the MQPUT1 call

	Incorrect output
	Messages that do not appear on the queue
	Messages that contain unexpected or corrupted information
	Problems with incorrect output when using distributed queues

	System log
	Dead-letter queue
	Using WebSphere MQ trace
	Problem determination with clients
	Terminating clients
	Error messages with clients
	OS/2 and UNIX systems clients
	DOS and Windows clients

	Problems with SSL enabled channels
	SSL availability
	Cipher specification support
	Client authentication failure
	General channel failure

	Chapter 7. Message data conversion
	Data conversion exit programs
	Using LE/VSE for conversion
	Building a conversion exit program

	Chapter 8. Programmable system management
	Instrumentation events
	Queue manager events
	Channel events
	Performance events
	Command events
	Command event generation
	Command event usage

	Configuration events
	Configuration event generation
	Configuration event usage

	Enabling and disabling events
	Event queues
	Format of event messages
	Event messages

	Programmable command formats
	Introduction to Programmable Command Formats (PCFs)
	The problem PCF commands solve
	What PCFs are

	Preparing WebSphere MQ for PCF
	System command queue
	PCF command server

	Using PCFs
	PCF command messages
	Responses
	Authority checking for PCF commands

	Error codes applicable to all commands
	Definitions of the PCFs
	Change Channel
	Change Channel Listener
	Change Namelist
	Change Queue
	Change Queue Manager
	Change Service
	Copy Channel
	Copy Channel Listener
	Copy Namelist
	Copy Queue
	Copy Service
	Create Channel
	Create Channel Listener
	Create Namelist
	Create Queue
	Create Service
	Delete Channel
	Delete Channel Listener
	Delete Namelist
	Delete Queue
	Delete Service
	Escape
	Inquire Channel
	Inquire Channel Authentication Records
	Inquire Channel Listener
	Inquire Channel Listener Status
	Inquire Channel Names
	Inquire Channel Status
	Inquire Connection
	Inquire Namelist
	Inquire Namelist Names
	Inquire Queue
	Inquire Queue Manager
	Inquire Queue Names
	Inquire Queue Status
	Inquire Service
	Inquire Service Status
	Ping Queue Manager
	Reset Channel
	Set Channel Authentication Record
	Start Channel
	Start Channel Listener
	Start Service
	Stop Channel
	Stop Channel Listener
	Stop Connection
	Stop Service
	Change Subscription
	Copy Subscription
	Create Subscription
	Delete Subscription
	Inquire Subscription
	Inquire Subscription Status
	Change Topic
	Copy Topic
	Create Topic
	Clear Topic String
	Delete Topic
	Inquire Topic
	Inquire Topic Names
	Inquire Topic Status

	Data responses to commands
	Escape (Response)
	Inquire Channel (Response)
	Inquire Channel Listener (Response)
	Inquire Channel Listener Status (Response)
	Inquire Channel Names (Response)
	Inquire Channel Status (Response)
	Inquire Connection (Response)
	Inquire Namelist (Response)
	Inquire Namelist Names (Response)
	Inquire Queue (Response)
	Inquire Queue Manager (Response)
	Inquire Queue Names (Response)
	Inquire Queue Status (Response)
	Inquire Service (Response)
	Inquire Service Status (Response)
	Inquire Subscription (Response)
	Inquire Subscription Status (Response)
	Inquire Topic (Response)
	Inquire Topic Names (Response)
	Inquire Topic Status (Response)

	Accounting and statistics messages
	Accounting messages
	Accounting messages types
	Controlling accounting messages
	Collecting queue accounting information
	Controlling accounting information collection using MQCONNX
	Generating accounting messages
	Format of accounting messages

	Statistics messages
	Statistics message types
	Collecting MQI statistics information
	Collecting queue statistics information
	Collecting channel statistics information
	Generating statistics messages
	Format of statistics messages

	Accounting and statistics message reference
	Accounting and statistics message format
	Message data in accounting and statistics messages
	Accounting and statistics message data
	MQI accounting message data
	Queue accounting message data
	MQI statistics message data
	Queue statistics message data
	Channel statistics message data
	Notes about the message data structures

	Real-time monitoring
	Attributes that control real-time monitoring
	Examples

	Displaying queue and channel monitoring data
	Examples

	Structures used for commands and responses
	MQCFH - PCF header
	MQCFIF - PCF integer filter parameter
	MQCFIN - PCF integer parameter
	MQCFSF - PCF string filter parameter
	MQCFST - PCF string parameter
	MQCFIL - PCF integer list parameter
	MQCFSL - PCF string list parameter
	MQCFBS - PCF byte string parameter
	MQCFIL64 - PCF 64-bit integer list parameter

	Chapter 9. WebSphere MQ commands
	Rules for using WebSphere MQ commands
	Issuing WebSphere MQ commands
	MQSC utility program
	MQPMQSC sample JCL
	WebSphere MQ command prerequisites

	Descriptions of the WebSphere MQ commands
	WHERE
	WebSphere MQ channel commands
	ALTER CHANNEL
	DEFINE CHANNEL
	DELETE CHANNEL
	DISPLAY CHANNEL
	DISPLAY CHSTATUS
	RESET CHANNEL
	START CHANNEL
	STOP CHANNEL

	WebSphere MQ channel authentication
	DISPLAY CHLAUTH
	SET CHLAUTH

	WebSphere MQ channel listener
	ALTER LISTENER
	DEFINE LISTENER
	DELETE LISTENER
	DISPLAY LISTENER
	DISPLAY LSSTATUS
	START LISTENER
	STOP LISTENER

	WebSphere MQ connection commands
	DISPLAY CONN
	STOP CONN

	WebSphere MQ namelist commands
	ALTER NAMELIST
	DEFINE NAMELIST
	DELETE NAMELIST
	DISPLAY NAMELIST

	WebSphere MQ queue commands
	ALTER QALIAS
	ALTER QLOCAL
	ALTER QMODEL
	ALTER QREMOTE
	DEFINE QALIAS
	DEFINE QLOCAL
	DEFINE QMODEL
	DEFINE QREMOTE
	DELETE QALIAS
	DELETE QLOCAL
	DELETE QMODEL
	DELETE QREMOTE
	DISPLAY QALIAS
	DISPLAY QLOCAL
	DISPLAY QMODEL
	DISPLAY QREMOTE
	DISPLAY QSTATUS

	WebSphere MQ queue manager commands
	ALTER QMGR
	DISPLAY QMGR
	PING QMGR

	WebSphere MQ Service
	ALTER SERVICE
	DEFINE SERVICE
	DELETE SERVICE
	DISPLAY SERVICE
	DISPLAY LSSTATUS
	START SERVICE
	STOP SERVICE

	WebSphere MQ Subscription
	ALTER SUB
	DEFINE SUB
	Delete Subscription
	DISPLAY SUB
	DISPLAY SBSTATUS

	WebSphere MQ Topic
	ALTER TOPIC
	DEFINE TOPIC
	DELETE TOPIC
	DISPLAY TOPIC
	DISPLAY TPSTATUS
	CLEAR TOPICSTR

	WebSphere MQ meta commands
	The SDEFS command
	The COMMAND command

	Chapter 10. WebSphere MQ clients
	Introduction to WebSphere MQ clients
	WebSphere MQ client overview
	Purpose of WebSphere MQ clients

	Installing WebSphere MQ clients
	Prerequisites for the WebSphere MQ client
	Installing WebSphere MQ client components
	Configuring communication links
	WebSphere MQ server configuration
	WebSphere MQ client configuration

	Verifying the installation
	WebSphere MQ for z/VSE client differences

	System administration for clients
	WebSphere MQ client security
	Authentication
	Access control

	Client and server connection channels
	Types of channels
	Defining MQI channels
	Client channel definition table
	Channel exits

	WebSphere MQ client environment variables

	Application programming for clients
	Using the message queue interface (MQI)
	Limiting the size of a message
	Coded character set identifiers (CCSID)
	Using MQINQ
	Using syncpoint coordination
	Using MQCONNX

	Building applications for WebSphere MQ clients
	Building applications for both environments
	Triggering in the client environment
	Linking applications with the WebSphere MQ client

	The WebSphere MQ client bridge
	Building client bridge applications
	WebSphere MQ client bridge security
	The client bridge and batch interface

	Running applications on WebSphere MQ clients
	Using the MQCNO structure
	Using MQSERVER

	Solving WebSphere MQ client problems
	WebSphere MQ client fails to make a connection
	Stopping WebSphere MQ clients
	Error messages with WebSphere MQ clients
	Tracing WebSphere MQ clients

	Chapter 11. Secure Sockets Layer services
	Installing the SSL feature
	Configuring the queue manager for SSL
	TCP/IP settings
	TCP/IP listener port
	Licensed clients

	SSL parameters
	Key-ring sublibrary
	Key-ring member
	SSL reset count

	Configuring a channel for SSL
	SSL channel parameters

	Activating SSL services

	Chapter 12. Security
	Why you need to protect WebSphere MQ resources
	Implementing WebSphere MQ security
	Resources you can protect
	Connection security
	Queue and message security
	Namelist security
	Command security
	Command resource security
	Dataset security

	Using security classes and resources
	Resources
	Switch resources
	How switches work

	Protecting WebSphere MQ resources
	Resource definitions for connection security
	Batch connections
	Client connections

	Resource definitions for queue security
	Considerations for alias queues
	Using alias queues with MQGET and MQPUT
	Considerations for model queues
	Close options on permanent dynamic queues
	Security and remote queues
	Dead-letter queue security
	System queue security
	Reply queue security

	Resource definitions for namelist security
	Resource definitions for command security
	Command security for PCF messages
	Command security for WebSphere MQ commands
	Command security for MQMT options

	Resource definitions for command resource security
	Security implementation checklist

	Chapter 13. API exits
	Why you would use API exits
	Configuring API exits
	How API exits work
	How to write an API exit
	Compiling API exits
	Linking API exits

	API Exit reference information
	General usage notes
	MQACH - API exit chain header
	MQAXC - API exit context
	MQAXP - API exit parameter
	MQXEP - Register entry point
	MQ_BACK_EXIT - Back out changes
	MQ_CLOSE_EXIT - Close object
	MQ_CMIT_EXIT - Commit changes
	MQ_CONNX_EXIT - Connect queue manager (extended)
	MQ_DISC_EXIT - Disconnect queue manager
	MQ_GET_EXIT - Get message
	MQ_INIT_EXIT - Initialize exit environment
	MQ_INQ_EXIT - Inquire object attributes
	MQ_OPEN_EXIT - Open object
	MQ_PUT_EXIT - Put message
	MQ_SET_EXIT - Set object attributes
	MQ_TERM_EXIT - Terminate exit environment

	Appendix A. CICS control table definitions
	Sample file control table entries
	Sample destination control table entry
	Sample JCL file definition for CICS deck
	Sample JCL to create CICS CSD group

	Appendix B. Application Programming Reference
	Structure data types
	MQBMHO – Buffer to message handle options
	MQCHARV – Variable-length string
	MQCMHO – Create message handle options
	MQDLH – Dead-letter header
	MQDH – Distribution Header
	MQDMHO – Delete message handle options
	MQDMPO – Delete message properties options
	MQGMO – Get message options
	MQIMPO – Inquire message property options
	MQMD – Message descriptor
	MQMDE – Message descriptor extension
	MQMHBO – Message handle to buffer options
	MQOD – Object descriptor
	MQOR - Object Record
	MQPD – Property descriptor
	MQPMO – Put message options
	MQPMR – Put message record
	MQRFH2 - Rules and formatting header 2
	MQRR – Response record
	MQSD – Subscription descriptor
	MQSMPO – Set message property options
	MQSRO - Subscription request options
	MQTM – Trigger message
	MQXQH – Transmission-queue header

	MQI calls
	MQBACK - Back out changes
	MQBUFMH - Convert buffer into message handle
	MQCLOSE - Close object
	MQCMIT - Commit changes
	MQCONN - Connect queue manager
	MQCRTMH - Create message handle
	MQDISC - Disconnect queue manager
	MQDLTMH - Delete message handle
	MQDLTMP - Delete message property
	MQGET - Get message
	MQINQ - Inquire about object attributes
	MQINQMP - Inquire message property
	MQMHBUF - Convert message handle into buffer
	MQOPEN - Open object
	MQPUT - Put message
	MQPUT1 - Put one message
	MQSET - Set object attributes
	MQSETMP - Set message property
	MQSUB - Register subscription
	MQSUBRQ - Subscription request

	Attributes of WebSphere MQ objects
	Reason codes

	Appendix C. Application Programming Guidance
	Application environment overview
	Sample source code overview
	Compiling your application program
	Compilation

	Developing applications in the C and PL/I programming languages

	Application design guidelines
	Application syncpoint
	Syncpoint considerations

	Application rollback
	Triggering
	Overview of triggering
	Trigger conditions
	Defining a sender channel component
	Defining a program to be triggered
	Defining a transaction to be triggered

	Queue depth

	Distribution lists
	Opening distribution lists
	Using the MQOD structure
	Using the MQOR structure
	Using the MQRR structure
	Using the MQOPEN options

	Putting messages to a distribution list
	Using the MQPMR structure
	Using MQPUT1

	Closing distribution lists
	Object configuration
	Queue Manager
	Queues

	Dynamic queues
	Properties of temporary dynamic queues
	Properties of permanent dynamic queues
	Uses of dynamic queues
	Recommendations for uses of dynamic queues
	Creating dynamic queues
	Closing dynamic queues
	Queue definition types
	Dynamic queue name

	Message grouping and segmentation
	Key concepts and definitions
	Message groups
	Message segmentation
	Segmentation and reassembly by queue manager
	Application segmentation
	Application segmentation of logical messages

	Logical and physical ordering
	Grouping logical messages
	Putting and getting a group that spans units of work

	Reports and segmented messages
	WebSphere MQ-generated reports
	Application-generated reports
	Retrieval of reports
	Back-level queue managers

	Message properties
	Message properties and message length
	Property names
	Property name restrictions
	Message descriptor fields as properties
	Property data types and values

	Appendix D. Sample JCL and programs
	Sample JCL
	Sample JCL for MQPUTIL
	Sample JCL for MQPEXCIC
	Sample JCL for MQPMQSC

	Sample programs
	Sample COBOL MQI program
	Sample C MQI program
	Sample PL/I MQI program

	Appendix E. Example configuration - WebSphere MQ for z/VSE Version 3.0.0
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing an LU 6.2 connection
	Defining a connection
	Defining a session
	Installing the new group definition
	What next?

	Establishing a TCP/IP connection
	WebSphere MQ for z/VSE configuration
	Configuring channels
	WebSphere MQ for z/VSE sender-channel definitions
	WebSphere MQ for z/VSE receiver-channel definitions

	Defining a local queue
	Defining a remote queue
	Defining a SNA LU 6.2 sender channel
	Defining a SNA LU 6.2 receiver channel
	Defining a TCP/IP sender channel
	Defining a TCP/IP receiver channel

	Appendix F. WebSphere MQ server
	Server MQI support
	Security considerations
	Queue manager security
	Channel exits

	Code page conversion
	Creating code page conversion tables
	Code page numbers
	Code page translation tables
	The GENXLT utility
	CSD definitions

	Appendix G. System messages
	API system messages
	WebSphere MQ message definitions
	WebSphere MQ messages

	WebSphere MQ message codes
	Console Messages
	Batch Interface Console Messages
	Automatic reorganization console messages

	Appendix H. Security implementation
	Before you install
	External security manager configuration
	Basic Security Manager (BSM) configuration
	System and application users
	WebSphere MQ datasets
	Protecting transactions
	Resource ownership
	Resource protection
	Namelist permissions
	Batch user permissions
	Client user permissions
	Command permissions
	Command resource permissions
	Trigger permissions
	CICS startup
	Starting WebSphere MQ
	Stopping WebSphere MQ

	Appendix I. WMQZVSE SOAP transport to z/VSE SOAP server
	Create web service from a CICS application
	Verifying the WebSphere MQ transport for SOAP
	Running the WebSphere MQ for z/VSE sample java client using Axis

	Appendix J. Publish/Subscribe
	Topics
	Topic strings
	Using topic strings

	Topic trees
	Administrative topic objects
	Administrative panels

	Post PTF application
	Notes
	Security
	Grant access to a user to publish to a topic
	Grant access for subscribe
	Considerations for managed queues for subscriptions

	Appendix K. Channel authentication records
	Blocking IP addresses
	Blocking user IDs
	Blocking queue manager names
	Mapping IP addresses to user IDs to be used
	Mapping queue manager names to user IDs to be used
	Mapping user IDs asserted by a client to user IDs to be used
	Interaction between channel authentication records
	WebSphere MQ Explorer

	Notices
	Copyright license
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	WebSphere MQ cross-platform publications
	An Introduction to Messaging and Queuing
	WebSphere MQ Application Programming Guide
	WebSphere MQ Application Programming Reference
	WebSphere MQ Clients
	WebSphere MQ Constants
	Monitoring WebSphere MQ
	WebSphere MQ Intercommunication
	WebSphere MQ Messages
	WebSphere MQ Migration Information
	WebSphere MQ Programmable Command Formats and Administration Interface
	WebSphere MQ Publish/Subscribe User's Guide
	WebSphere MQ Queue Manager Clusters
	WebSphere MQ Script (MQSC) Command Reference
	WebSphere MQ Security
	WebSphere MQ System Administration Guide
	WebSphere MQ Using C++
	WebSphere MQ Using Java

	WebSphere MQ platform-specific publications
	WebSphere MQ for AIX
	WebSphere MQ for AIX Quick Beginnings

	WebSphere MQ for HP-UX
	WebSphere MQ for HP-UX Quick Beginnings

	WebSphere MQ for i5/OS
	WebSphere MQ for i5/OS Quick Beginnings
	WebSphere MQ for i5/OS System Administration Guide V7.0
	WebSphere MQ for i5/OS Application Programming Reference (ILE RPG) V7.0

	WebSphere MQ for Linux
	WebSphere MQ for Linux Quick Beginnings

	WebSphere MQ for Solaris
	WebSphere MQ for Solaris Quick Beginnings

	WebSphere MQ for Windows
	WebSphere MQ for Windows Quick Beginnings
	WebSphere MQ for Windows Using .NET
	WebSphere MQ for Windows Using the Component Object Model Interface

	WebSphere MQ for z/OS
	WebSphere MQ for z/OS Concepts and Planning Guide
	WebSphere MQ for z/OS Licensed Program Specifications
	WebSphere MQ for z/OS Problem Determination Guide
	WebSphere MQ for z/OS V7.0 Program Directory
	WebSphere MQ for z/OS System Administration Guide
	WebSphere MQ for z/OS System Setup Guide
	WebSphere MQ for z/OS Messages and Codes

	Softcopy books
	Product family Web site

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

