
MQSeries® Everyplace

Programming Guide
Version 1

SC34-5845-00

IBM

MQSeries® Everyplace

Programming Guide
Version 1

SC34-5845-00

IBM

Take Note!

Before using this information and the product it supports, be sure to read the general information under “Appendix B.
Notices” on page 217

Licence warning
MQSeries Everyplace Version 1 is a toolkit that enables users to write MQSeries Everyplace applications and to
create an environment in which to run them.

The licence conditions under which the toolkit is purchased determine the environment in which it can be used:

If MQSeries Everyplace is purchased for use as a device (client) it may not be used to create an MQSeries Everyplace
channel manager, or an MQSeries Everyplace channel listener., or an MQSeries Everyplace bridge

The presence of an MQSeries Everyplace channel manager, or an MQSeries Everyplace channel listener, or an
MQSeries Everyplace bridge defines a gateway (server) environment, which requires a gateway licence.

First Edition (June 2000)

This edition applies to MQSeries Everyplace Version 1 and to all subsequent releases and modifications until
otherwise indicated in new editions.

This document is continually being updated with new and improved information. For the latest edition, please see
the MQSeries family library Web page at http://www.ibm.com/software/ts/mqseries/library/.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book v
Who should read this book v
Prerequisite knowledge v
Terms v

Chapter 1. Overview 1
MQSeries Everyplace client 1
MQSeries Everyplace queue manager 2
MQSeries Everyplace queues 4

Queue types in MQSeries Everyplace 4
MQSeries Everyplace server 7
MQSeries Everyplace bridge to MQSeries. 8
MQSeries Everyplace channels 9

Chapter 2. Getting Started 11
Development Environment 11
Deploying applications 12
Post install test 13
Examples 14
examples.application package 14
examples.administration.simple package. 15
examples.administration.console package 15
examples.attributes package 15
examples.awt package 16
examples.eventlog package 16
examples.install package 16
examples.native package 17
examples.queuemanager package 17
examples.rules package 18
examples.security package 18
examples.trace package 18
examples.mqbridge package 18

Chapter 3. MQeFields and
MQeMsgObject 19
Creating a Fields based ini file editor 21

Chapter 4. MQSeries Everyplace queue
manager 31
Message transmission 31
Assured message delivery 32
Security 32
MQeRegistry parameters for the queue manager . . 32

Registry type 32
File registry parameters 33
Private registry parameters 33
Common parameters 33

Creating and deleting queue managers 34
Creating a queue manager 34
Deleting a queue manager 38

Starting queue managers 39
Client 40
Server 43
Servlet 49

Configuring queue managers using base classes . . 52
Queue manager activation 52

Using queue managers 55
MQSeries Everyplace applications and the Java
Virtual Machine 55
Launching applications with RunList 57
Messages 59
Queues 63

Rules 74
Queue manager rules 75
Queue rules 81

Chapter 5. MQSeries Everyplace
administration 85
The basic administration request message 86

Administration of specific fields 87
Fields specific to the managed resource 88
Other useful fields 89

The basic administration reply message 91
Administration fields specific to a reply message 92

Administration of managed resources 94
Queue managers 94
Connections 95
Queues 100

Security and administration 114
Example administration console 114

The main console window 115
Queue browser 116
Action windows 118
Reply windows. 119

Chapter 6. MQSeries bridge 121
Installation 121

MQSeries Java client 121
Configuring the MQSeries bridge. 121

Configuring a basic installation 122
Sample configuration tool 125
Configuration example 125
Additional bridge configuration 130

Administration of the MQSeries bridge 130
The example administration GUI application 131
Bridge administration actions 131
Shutting down an MQSeries queue manager 133
Administered objects and their characteristics 134

How to send a test message from MQSeries to
MQSeries Everyplace 145
Dead-letter queues 146
putMessage() considerations for the MQSeries
bridge 146
Transformers 147

The
examples.mqbridge.transformers.MQeListTransformer
example transformer class 149
MQSeries style messages 150

MQSeries bridge rules 152

© Copyright IBM Corp. 2000 iii

MQeLoadBridgeRule 152
MQeUndeliveredMessageRule 153
MQeSyncQueuePurgerRule. 154
MQeStartupRule 154

National language support implications 155
Conclusion 156

Example files 157

Chapter 7. Security 159
Security features 159
Local security 160

Usage scenario 160
Usage guide 162

Queue-based security. 163
Usage scenario 164
Usage guide 166
Queue-based security - channel reuse 179

Message-level security 180
Usage scenario 180
Usage guide 182

Private registry service 184
Private registry and the concept of
authenticatable entity. 184
Usage scenario 186
Usage guide 186

Public registry service 187
Usage scenario 188
Usage guide 188

Mini-certificate issuance service 189
Configuring, starting and ending an instance of
mini-certificate issaunce service server 189

Using administration tools 191
Operation 195

Chapter 8. Tracing in MQSeries
Everyplace 197
Using trace 197

Trace message formats 198
Activating trace 199

Customizing trace 199
MQeTrace example 199
Graphical user interface for trace 200

Chapter 9. MQSeries Everyplace
adapters 205
An example of a simple communications adapter 205
An example of a simple message store adapter . . 211

Appendix A. Applying maintenance to
MQSeries Everyplace 215

Appendix B. Notices 217
Trademarks 218

Glossary 219

Bibliography 221

Index 223

iv MQSeries Everyplace Programming Guide

|
||

About this book

This book is a programming guide for the MQSeries Everyplace product and
contains information on how to use the MQSeries Everyplace class libraries that
are described in MQSeries Everyplace Programming Reference. Guidance is
provided to help with deciding which classes to use to perform common
messaging tasks, and in many cases example code is supplied.

The “Chapter 1. Overview” on page 1 provides a brief introduction for those who
are unfamiliar with the concepts and components of MQSeries Everyplace.
“Chapter 2. Getting Started” on page 11 provides help with setting up your
environment and using examples to create applications. The rest of the book
contains more detailed information about various aspects of programming with
MQSeries Everyplace.

This book is intended to be used in conjunction with the MQSeries Everyplace
Programming Reference and existing books or manuals on Java® programming.

This document is continually being updated with new and improved information.
For the latest edition, please see the MQSeries family library Web page at
http://www.ibm.com/software/ts/mqseries/library/.

Who should read this book
This book is intended for anyone wanting to write Java based MQSeries
Everyplace programs to exchange secure messages between MQSeries Everyplace
systems and other members of the MQSeries family of messaging and queueing
products.

For information on the availability of development kits for environments other
than Java, see the MQSeries Web site at
http://www.ibm.com/software/ts/mqseries/

Prerequisite knowledge
It is assumed that the reader has a working knowledge of Java and object oriented
programming techniques.

An initial understanding of the concepts of secure messaging is an advantage. If
you do not have this understanding, you may find it useful to read the following
MQSeries books:
v MQSeries An Introduction to Messaging and Queuing

v MQSeries for Windows NT® V5R1 Quick Beginnings

These books are available in softcopy form from Book section of the on-line
MQSeries library. This can be reached from the MQSeries Web site, URL address
http://www.ibm.com/software/ts/MQSeries/library/

Terms
The following are some of the MQSeries Everyplace and secure messaging specific
terms that are used in this book:

© Copyright IBM Corp. 2000 v

Queue manager:This MQSeries Everyplace component manages a set of queues and
a set of channels to other MQSeries Everyplace queue managers. The queue
manager publishes an interface which MQSeries Everyplace applications use to
perform messaging functions.

Client: The simplest MQSeries Everyplace configuration, consisting of a single
queue manager. A default client is not contactable, it is only able to connect to
other MQSeries Everyplace configurations. It ’pushes’ outgoing messages, and
’pulls’ in messages destined for itself, from its designated home-server. However, it
is possible to define a client to include a peer listener, which allows the client to
contacted directly by other MQSeries Everyplace configurations.

Channels: The mechanism used to transmit data between two MQSeries Everyplace
queue managers. The channel object is a logical wrapper around the underlying
transport protocol used by the network. The Channel remains open for as long as
the queue manager that activated it wishes. However, this is not necessarily true of
the underlying connection, this may well be opened and closed for each network
flow.

Channels have authenticator, cryptor, and compressor characteristics. Any data
transmitted over the channel will have these characteristics applied to it. For
example, if the channel is defined as having a DES cryptor and a RLE compressor,
then data passing through the channel will be DES encrypted and RLE
compressed.

Transporters: Transporters are the objects that handle the transfer of messages to
and from a channel and the target queue. They are attached to either end of the
channel. Many transporters can be attached to a channel. One transporter is
created per remote queue being accessed.

Note: Channels point to destination queue managers, whilst transporters point to
destination queues.

Server:This MQSeries Everyplace component allows multiple concurrent
connections from other MQSeries Everyplace configurations. The server has an
associated queue manager that services the incoming requests.

Peer channel: Standard MQSeries Everyplace channels are uni-directional, meaning
that, while data flows in both directions, only the queue manager that created the
channel can initiate the transfer of data. A typical example of this is a client
configuration that communicates to a server configuration. The server processes
the requests and returns the result. The server configuration cannot initiate a
communication to the client, it can only respond to its requests. A peer channel
operates in an identical manner to a standard channel, except that it allows
communication to be initiated by both parties. Rather than operating in a
client/server manner, the channel treats both parties as equals, or peers.

Peer listener: A peer listener detects an incoming connection request from another
MQSeries Everyplace configuration, and establishes the connection. The connection
must have been initiated using a peer channel. The difference between a peer
listener and a server is that the peer listener doesn’t require a channel manager
because only one connection is allowed to be active at a time.

Home-server: Many pervasive MQSeries Everyplace clients may not be directly
contactable by other MQSeries Everyplace configurations. However, each MQSeries
Everyplace configuration can define a home-server. A home-server is a normal

vi MQSeries Everyplace Programming Guide

MQSeries Everyplace server with the ablity to store messages destined for its
clients in special queues known as store-and-forward queues. These messages
remain on the home-server, until a client connects and requests any messages that
are destined for it.

About this book vii

viii MQSeries Everyplace Programming Guide

Chapter 1. Overview

This chapter gives a brief description of MQSeries Everyplace objects and how
they are used.

MQSeries Everyplace client
MQSeries Everyplace client is the code that runs on a pervasive or mobile device.
These programs can make use of any or all of the API’s or functions available on
the device, they are not restricted to just the MQSeries Everyplace programming
interfaces.

The styles of allowable connections are:
v Permanent connect, for example LAN, leased line
v Dial out connect, for example standard modem to connect to an Internet Service

Provider (ISP).
v Dial out and answering capability, for example CellPhone or ScreenPhone

The communications protocols are implemented as a set of adapters one for each
of the supported protocols. This enables new protocols to be added very simply,
and the memory footprint on a given client can be tailored to that client’s
configuration.

MQe ServerMQe client Network

Channel

MQ Series

server
MQe client

MQe client

Channel

Channel

Figure 1. MQSeries Everyplace client

© Copyright IBM Corp. 2000 1

MQSeries Everyplace queue manager
The MQSeries Everyplace queue manager is the focal point of the MQSeries
Everyplace system. It provides:
v A central point of access to a messaging and queueing network for MQSeries

Everyplace applications
v Optional client-side queuing
v Administration functions (optional)
v Once-only guaranteed delivery of messages
v Full recovery from failure conditions
v Extendable rules-based behavior

The MQSeries Everyplace queue manager is designed in an object-oriented style.
Objects can be inherited and, by providing sets of rules, the behavior of the queue
manager can be customized. The MQSeries Everyplace queue manager can run on
a client or as part of an MQSeries Everyplace Server.

The MQSeries Everyplace queue manager can optionally have control of its own
set of queues. The queues exist on the same machine/device as the queue
manager, and are known as local queues. The queue manager is also able to connect
to queues belonging to other queue managers in the MQSeries
Everyplace/MQSeries network. These queues are known as remote queues, and their
owning queue managers are known as remote queue managers. The MQSeries
Everyplace queue manager may have some knowledge of the attributes of the
remote queues, since it stores any information it discovers about them. This
information is known as a remote queue definition. The method of message
transmission to remote queues can be either synchronous or asynchronous. This is
defined in the remote queue definition that the queue manager holds for each
remote queue.

Asynchronous communication allows an MQSeries Everyplace application to send
messages even when the queue manager is off-line. Outgoing messages to queues
defined as asynchronous are stored within the local queue manager until it is
possible and/or deemed appropriate to transmit them. MQSeries Everyplace
applications are able to continue as normal. Deciding when to transmit messages is
one of the major tasks of the queue manager rules, and is especially relevant in
cases where the availability of communication is restricted, or there are cost
considerations.

Asynchronous communications require that the target queue manager and queue
are predefined on the originating queue manager. This is necessary because the
originating queue manager needs to establish that the target queue
manager/queue pair is valid before it is able to assure the delivery of message.

For synchronous communications both the originator and the target MQSeries
Everyplace queue managers must be available on the MQSeries
Everyplace/MQSeries network.

overview-MQe queue manager

2 MQSeries Everyplace Programming Guide

The flow of messages through MQSeries Everyplace is shown in Figure 2:

Figure 2. MQSeries Everyplace message flow

overview-MQe queue manager

Chapter 1. Overview 3

MQSeries Everyplace queues
If the client is configured to have local queues (that is, asynchronous ’off-line’
working is possible) then message objects are stored in the local queues. Queues
may have characteristics, (authentication, compression and encryption for example)
and these attributes are used when a message object is moved:

Queue types in MQSeries Everyplace
There are several different types of queue class that can be used in an MQSeries
Everyplace environment. The types that are available in the MQSeries Everyplace
development package are:

Local queue
This type of queue is used by local applications to store messages in a safe
(excluding hardware failures or loss of the device) and secure way. They have a
message store that is accessed through an adapter class, normally a disk adapter,
but by creating the appropriate adapter the messages could be stored anywhere
(such as DB2 database or writable CDs)

These queues can be used on-line or off-line (either connected to a network or not).

Access and security are owned by the queue and may be granted for use by a
remote queue manager (when connected to a network), allowing others to send or
receive messages to the queue. Local queues are always considered synchronous in
mode of operation.

TransporterTransporter

Channel

Transporter

Channel

Transporter Transporter

Authenticator

Compressor

Authenticator

Compressor

Queue
MsgObjectMsgObjectMsgObjectQueue

MsgObjectMsgObjectMsgObjectQueue
MsgObjectMsgObjectMsgObject

Communications layer

Cryptor Cryptor

Figure 3. MQSeries Everyplace queues

overview-MQe queues

4 MQSeries Everyplace Programming Guide

Remote queue
This type of queue does not reside in the local environment. Rather a definition
exists locally, this definition identifies the owning queue manager and the real
queue (that is local to its parent queue manager).

Remote queues may be accessed either synchronously or asynchronously. If there is
a definition of the remote queue held locally then the mode of access is based on
the definition and may be either synchronous or asynchronous. If however there is
not a definition held locally then ″queue discovery″ occurs, the characteristics
(authentication, cryptography and compression) are discovered and the mode of
access is forced to be synchronous.

Synchronous queues are queues that can only be accessed when connected to a
network that has a path to the owning queue manager. If the network is not
established then operations such as get, put, and browse cause an exception to be
raised. The owning queue controls the access permissions and security
requirements needed to access the queue. It is the application’s responsibility to
handle any errors or retries when sending or receiving the message; MQSeries
Everyplace is no longer responsible for once and once only guaranteed delivery of
the message

Asynchronous queues can have messages put to them, but messages cannot be
retrieved from remote asynchronous queues. If the network connection is
established then the messages are sent to the owning queue manager and queue. If
however the network is not connected the messages are stored locally until there is
a network connection and then the messages are transmitted. This allows
applications to operate on the queue when the client is off-line, it does however
require that there is a local message store in which to temporarily store the
message.

Store-and-forward queue
This type of queue stores messages until they can be forwarded to the next (not
necessarily the owning) queue manager. This type of queue is normally defined on
a server and a client would have to collect its messages when it is connected to the
network.

Store-and-forward queues can hold messages for many clients or there may be one
store-and-forward queue per client.

When one client wishes to send a message to another client that may be
disconnected the sender still puts a message to the receiving client’s queue
manager and local queue. The intermediate server detects that the client is not
connected and stores the message in its local message store. The sending
application does not require any changes to send a message to a connected or
disconnected client.

Home-server queue
This type of queue normally resides on a client and points to a store-and-forward
queue on a server known as the home-server. This queue pulls messages from the
home-server whenever the client connects on the network.

When this queue has pulled a message from the server, it gives it to the local
queue manager through the putMessage and the confirmPutMessage method calls. It
is then the responsibility of the queue manager to place the message in to the
correct local queue. The pull method of getting messages from the server can be
more efficient in terms of flows over the network than the server pushing the

overview-MQe queues

Chapter 1. Overview 5

message. This is because the home-server queue uses the acknowledgment of the
first message as the request for the next message (if any), whereas the server push
would have to have one request and response to send the message and a second
request and response for the confirmation flow.

Home-server queues normally have a polling interval set that causes them to check
for any pending messages on the server while the network is connected. The poll
interval is an administration configuration option.

MQSeries—bridge queue
This type of queue always resides on a server and provides a path from the
MQSeries Everyplace environment to the MQSeries environment.

overview-MQe queues

6 MQSeries Everyplace Programming Guide

MQSeries Everyplace server
The MQSeries Everyplace server needs to have the ability to forward the messages
from one MQSeries Everyplace server to another and there is no guarantee that the
same protocol (for example TCP/IP) is used throughout the entire network. This
implies that the MQSeries Everyplace server must be able to forward messages
from one communications layer to another, as shown in Figure 4:

MQ

MQe server MQe server

route data

MQe client

MQI

HTTP (TCP/IP)

Async

MQe server

route data

SNA

MQe client

HTTP (TCP/IP)

Figure 4. MQSeries Everyplace server

overview-MQe server

Chapter 1. Overview 7

MQSeries Everyplace bridge to MQSeries
The MQSeries Everyplace server can be an interface to an MQSeries server. The
transfer of messages between the two systems is handled by the MQSeries bridge.
This interface is described in detail in “Configuring the MQSeries bridge” on
page 121.

MQSeries Everyplace server

MQSeries-bridge
queue

MQ series server

MQSeries
Xmit queue

MQSeries-bridge
transmission Q

listener

Figure 5. MQSeries Everyplace interface to MQSeries

overview - bridge to MQSeries

8 MQSeries Everyplace Programming Guide

MQSeries Everyplace channels
MQSeries Everyplace supports a method of establishing connections between
queue managers, that is termed an MQSeries Everyplace ’channel’. The channel is
a logical connection between the two parties, and is established for the purposes of
sending or receiving data. Channels can have various attributes or characteristics;
for example, authentication, cryptography, compression or the protocol to be used,
and different versions can be used on different channels. Each channel can have its
own value set for each of the following attributes:

Authenticator
either null or an authenticator object that can perform user or channel
authentication.

Cryptor
either null or a cryptor object that can perform encryption/decryption.

Compressor
either ’null’ or a compressor object that can perform data
compression/decompression.

Destination
the target for this channel, for example ″server.xyz.com″.

The simplest type of cryptor is XorCryptor. This encrypts the data being sent by
performing an exclusive-OR of the data. This is not a secure encryption, but it
makes the data unviewable.

The simplest type of compressor is RleCompressor, which compresses the data by
replacing repeated characters with a count.

The authenticator is typically only used when setting up the channel. Compressors
and cryptors are typically used on all flows.

Note: Throughout the world there are varying government regulations concerning
levels and types of cryptography. The level and type of cryptography used
with MQSeries Everyplace must always comply with appropriate local
legislation. This is particularly relevant when it is used on a mobile device
that is moved from country to countryMQSeries Everyplace provides
facilities for this, but it is the responsibility of the application programmer to
implement it.

Figure 6. MQSeries Everyplace channel

overview - bridge to MQSeries

Chapter 1. Overview 9

overview - bridge to MQSeries

10 MQSeries Everyplace Programming Guide

Chapter 2. Getting Started

This section introduces version 1.0 of the MQSeries Everyplace Development Kit.
The Development Kit is a development environment for writing messaging and
queuing applications. based on Java 1.1.

Note: For information on the availability of development kits for environments
other than Java, see the MQSeries Web site at
http://www.ibm.com/software/ts/mqseries/

The code portion of the development kit comes in two sections:

Base MQSeries Everyplace classes
A set of Java classes that provide all of the necessary function to build
messaging and queuing applications

Examples
A set of Java source code and classes that demonstrate how to use many
features of MQSeries Everyplace

Development Environment
To develop programs in Java using the MQSeries Everyplace development kit, the
java environment must be set up :
v The Java Deveopment Kit (JDK) must be able to locate the MQSeries Everyplace

classes.
For example in a Windows® environment using a standard JDK the CLASSPATH
can be set as follows:
Set CLASSPATH=<MQeInstallDir>\Java;%CLASSPATH%

v If you are developing code that uses or extends the MQSeries bridge, the
MQSeries Java client must be installed and made available to the JDK. For
details on setting up the environment for the MQSeries Java client, see MQSeries
Using Java.

There are many different Java development environments and Java runtime
environments that can be used with MQSeries Everyplace. The system
configuration for both development and runtime is dependent on the environment
used. For Windows systems a batch file JavaEnv.bat, that shows how to set up a
development environment for different Java development kits, is provided with
MQSeries Everyplace. If JavaEnv.bat is used, it should be copied, and the copy
must be modified to match the environment of the machine that it is to be used
on. This file is used by a set of batch files that run some of the MQSeries
Everyplace examples and, if you wish to use the example batch files, JavaEnv.bat
must be modified as follows:
v Set the JDK environment variable to the base directory of the JDK
v Set the JavaCmd environment variable to the command used to run java

applications
v If the MQSeries Java Client is installed set the MQDIR environment variable to the

base directory of the MQSeries Java Client.

Note: If you are using a modified version of JavaEnv.bat it may be overwritten if
you reinstall MQSeries Everyplace.

© Copyright IBM Corp. 2000 11

When JavaEnv.bat is invoked, a parameter is passed that determines the type of
Java development kit to use.

Possible values are:

Sun - Sun

JB -Borland JBuilder

MS - Microsoft

IBM - IBM

If no parameter is passed, the default is IBM.

JavaEnv.bat must, by default, be run from the <MQeInstallDir>\java directory. It
can be modified to allow it to be run from other directories or to use other Java
development kits.

Deploying applications
When deploying MQSeries Everyplace applications, it is recommended that the
minimum set of classes required by the application are packaged into compressed
jar files to ensure that the application requires the minimum system resource.
MQSeries Everyplace provides the following examples of how MQSeries
Everyplace classes can be packaged into jar files, these are found in the
<MQeInstallDir>\Jars directory.

MQeDevice.jar
A full set of base classes that can be used in a device

MQeGateway.jar
A full set of base classes that can be used in a gateway

MQeMQBridge.jar
Classes that can be used to extend the MQeGateway.jar to build a gateway
that interoperates with MQSeries

MQeHighSecurity.jar *
A set of classes that can be used to extend both the MQeGateway.jar and
MQeDevice.jar to provide enhanced security

MQeMiniCertificateServer.jar *
A self contained jar file providing all the classes required to run the
mini-certificate server

MQeExamples.jar
A packaging of all the MQSeries Everyplace examples into one jar file

* These jar files are only included in the high security edition of MQSeries
Everyplace.

To run MQSeries Everyplace applications, the Java runtime environment must be
set up to include the required MQSeries Everyplace and application classes. Using
a standard Java runtime environment (JRE), the CLASSPATH must be set to
include any required jar files.

For example on a Windows system:
Set CLASSPATH=<MQeInstallDir>\Jars\MQeDevice.jar;%CLASSPATH%

getting started

12 MQSeries Everyplace Programming Guide

Post install test
Once MQSeries Everyplace has been installed you can use the following procedure
to run a set of examples that determine whether the installation of the
development kit was successful.
v Ensure that the Java environment is set up as described in “Development

Environment” on page 11. When running any of the batch files described below,
the first parameter of each is the name of the Java development kit to use, if
none is specified then a default of IBM is used.

v Change to the <MQeInstallDir>\Java directory.
v Create a queue manager.

Run batch file CreateExampleQM.bat <JDK> to create an example queue manager
called ’ExampleQM’.
Part of the creation process is to set up directories to hold queue manager
configuration information and queues. The example uses a directory called
ExampleQM that is relative to the current directory. Within this directory are two
other directories:
– Registry - holds files which contain queue manager configuration data
– Queues - for each queue there is a subdirectory that is available to hold the

queue’s messages. (The directory is not created until the queue is activated.)
v Run a simple application.

Once a queue manager has been created it can be started and used by
applications. Batch file ExamplesMQeClientTest.bat can be used by some of the
simple application examples.
By default examples.application.Example1 is run. This example puts a test
message to queue manager ExampleQM and then gets the message from the
same queue manager. If the two messages match, the application has run
successfully.
There are a set of applications in the examples.application package that
demonstrate different features of MQSeries Everyplace. These can be run by
passing parameters to the batch file ExamplesMQeClientTest <JDK> <ExampleNo>
where ExampleNo is the suffix of the example which can range from 1 to 6.

v Delete a Queue manager.
When a queue manager is no longer required it can be deleted. To delete the
example queue manager ExampleQM run the batch file DeleteExampleQM.bat
<JDK>.
Once deleted a queue manager can no longer be started.
It should be noted that deleting a queue manager does not delete any messages
that have not been retrieved from a queue or configuration data that was not
created as part of the base queue manger creation. Hence, if the queue manager
is recreated with the same creation parameters, then messages not previously
retrieved are available to the recreated queue manager.

Note: The examples use relative directories (.\) for ease of set up. It is strongly
recommended that absolute directories be used for anything other than
base development and demonstration. If relative directories are used,
problems can occur if the current directory is changed. When this occurs
the queue manager can no longer locate its configuration information and
queues.

deploying application

Chapter 2. Getting Started 13

Examples
The examples previously described form a small part of the set of examples
provided with MQSeries Everyplace. Each example demonstrates how to use or
extend a feature of MQSeries Everyplace. Most are described in the relevant section
of the programmers guide. They are all listed and briefly described in the
following sections

examples.application package
This package contains a set of examples that demonstrate various ways to interact
with a queue manager such as putting a message to and getting a message from a
queue. All the examples can work with either a local queue manager or a remote
queue manager. Before any of these applications can run, the queue managers that
are to be used must first be created. For example use the CreateExampleQM.bat
batch file to create queue manager ExampleQM.

Example1
Simple put and get of a message

Example2
Put several messages and then get the second one using a match field

Example3
Use a message listener to detect when new messages arrive

Example4
Use the WaitForMessage routine to get a message if it arrives within a
specified interval

Example5
Lock messages then get, unlock, delete them

Example6
Simple put and get of a message using assured message delivery

ExampleBase
The base class that all application examples inherit from

These examples can be run using batch file ExamplesMQeClientTest.bat as follows:
ExamplesMQeClient.Test <JDK> <example no> <remoteQMgrName> <localQMgr ini file>

where

<JDK>
is the name of the Java environment (see “Development Environment” on
page 11 for details). The default is IBM

<example no>
is the number of the example to run (suffix of the name of the example)
The default is 1 (Example1).

<remoteQMgrName>
is the name of the queue manager that the application should work with.
This can be the name of the local or a remote queue manager. If it is a
remote queue manager, a connection must be configured that defines how
the local queue manager can communicate with the remote queue
manager. By default the local queue manager is used (as defined in
ExamplesMQeClient.ini)

examples

14 MQSeries Everyplace Programming Guide

<localQMgrIniFile>
is an ini file containing startup parameters for a local queue manager. By
default ExamplesMQeClient.ini is used.

For more details on how to write applications that interact with a queue manager
see “Chapter 4. MQSeries Everyplace queue manager” on page 31.

examples.administration.simple package
This package contains a set of examples that show how to programmatically use
some of the administrative features of MQSeries Everyplace. As with the
application examples, these examples can work with either a local or a remote
queue manager.

Example1
Create and delete a queue

Example2
Add a connection definition for a remote queue manager

Example3
Inquire on the characteristics of a queue manager and the queues it owns

For details of administration see “Chapter 5. MQSeries Everyplace administration”
on page 85.

examples.administration.console package
This package contains a set of classes that implement a simple graphical user
interface for managing MQSeries Everyplace resources.

Admin
Front end to the example administration GUI

Additionally there is a suite of classes that provides the graphical user interface for
each MQSeries Everyplace managed resource.

The GUI can be invoked in any of the following ways:
v Using the batch file ExamplesAdminConsole.bat

v From the command line:
java examples.administration.console.Admin

v From a button on the example server examples.awt.AwtMQeServer

See “Chapter 5. MQSeries Everyplace administration” on page 85 for more details
on administration.

examples.attributes package
This package contains a set of classes that show how to write additional
components to extend MQSeries Everyplace security.

NTAuthenticator
An authenticator that authenticates a user to the Windows NT security
database. The NT authenticator uses the JNI interface to interact with
Windows NT security. The code for this can be found in the
examples.nativecode directory

examples

Chapter 2. Getting Started 15

TableCryptor
A very simple cryptor

See “Chapter 7. Security” on page 159 for more details on security.

examples.awt package
This package provides a toolkit for building applications requiring small graphical
interfaces together with some applications providing a graphical front end to
MQSeries Everyplace functions.

AwtMQeServer
A graphical front end to examples.queuemanager.MQeServer. example.
Class MQeTraceResourceGUI provides a resource bundle that contains
internationalized strings for use by the GUI. MQeTraceResourceGUI can be
found in package examples.trace.

Batch file ExamplesAwtMQeServer.bat can be used to run this application.

See “Server” on page 43 for more details on running a queue manager in a
server environment.

AwtMQeTrace
A graphical front end to examples.trace.MQeTrace.

See “Chapter 8. Tracing in MQSeries Everyplace” on page 197 for more
information on the MQSeries Everyplace trace facility.

Classes AwtDialog, AwtEvent, AwtFormat, AwtFrame, AwtLayout and
AwtOutputStream provide a toolkit for building small footprint awt based
graphical applications. These classes are used by many of the graphical MQSeries
Everyplace examples.

examples.eventlog package
This package contains some examples that demonstrate how to log events to
different facilities.

LogToDiskFile
Write events to a disk file

LogToNTEventLog
Write events to the Windows NT event log. This class uses the JNI
interface to interact with the Windows NT event log. The code for this can
be found in the examples.nativecode directory

examples.install package
This package contains a set of classes for creating and deleting queue managers.

DefineQueueManager
A GUI that allows the user to select options related to queue manager
creation. When all options have been selected it creates an ini file
containing queue manager startup parameters and creates the queue
manager.

CreateQueueManager
A GUI program that requests the name and directory of a queue manager
startup parameters ini file. When the name and directory are provided, a
queue manager is created.

examples

16 MQSeries Everyplace Programming Guide

SimpleCreateQM
A command line program that takes the name of a queue manager startup
parameters ini file as a parameter and optionally a directory that is the
root directory where queues are stored. Provided a valid ini file is found,
a queue manager is created.

DeleteQueueManager
A GUI program that takes the name of a queue manager startup
parameters ini file. When the ini file is entered, the queue manager is
deleted.

SimpledDeleteQM
A command line program that takes the name of a queue manager startup
parameters ini file as a parameter and then deletes the queue manager.

For more details, see “Chapter 4. MQSeries Everyplace queue manager” on page 31.

examples.native package
Several of the examples require access to Windows NT facilities. MQSeries
Everyplace accesses these functions using the java native interface (JNI). The code
in the examples\native directory provides the JNI implementation required by the
examples.attributes.NTAuthenticator and examples.eventlog.LogToNTEventLog.

examples.queuemanager package
A queue manager can run in many different types of environment. This package
contains a set of examples that allow a queue manager to run as a client, server
and servlet:

MQeClient
A simple client typically used on a device

MQePrivateClient
A client that can be used with secure queues and secure messaging

MQeServer
A server that can connect concurrently to multiple queue managers (clients
or servers), typically used on a gateway. Batch file
ExamplesAwtMQeServer.bat can be used to run the
examples.awt.AwtMQeServer example which provides a graphical front end
to this server

MQePrivateServer
Similar to MQeServer but allows the use of secure queues and secure
messaging

MQeServlet .
An example that shows how to run a queue manager in a servlet

For more details on running queue managers in different environments see
“Starting queue managers” on page 39. For details on queue managers
(MQePrivateClient and MQePrivateServer) that provide an environment for secure
queues and messaging, see “Chapter 7. Security” on page 159.

examples

Chapter 2. Getting Started 17

examples.rules package
Base MQSeries Everyplace functionality can be controlled and extended using
rules. Some components of MQSeries Everyplace allow rules classes to be applied
to them. These rules provide a means of changing the functionality of the
component. This package contains the following example rules classes:

ExamplesQueueManagerRules
Example queue manager rules class that regularly attempts to transmit any
held messages.

See “Rules” on page 74 for more details.

AttributeRule
Example attribute rules that control the usage of attributes.

examples.security package
This package contains an example that modifies MQSeries Everyplace security.

MQeSecurity
An example extension to the Java security manager that controls whether
permission is granted to use certain features of MQSeries Everyplace.

examples.trace package
This package contains an example trace handler that can be used for both
debugging an application during development and for tracing a completed
application.

MQeTrace
The base MQSeries Everyplace trace class.

AwtMQeTrace, which can be found in examples.awt package, provides a
graphical front end to this trace class.

MQeTraceResource
A resource bundle that contains trace messages that can be output by
MQSeries Everyplace

examples.mqbridge package
This package contains a set of classes that show how to use and extend the
MQSeries bridge. Some of the examples extend other MQSeries Everyplace
examples.

See “Chapter 6. MQSeries bridge” on page 121 for more details.

examples

18 MQSeries Everyplace Programming Guide

Chapter 3. MQeFields and MQeMsgObject

MQeFields is the fundamental class used to hold data items for sending, receiving,
or manipulating MQSeries Everyplace messages. An MQeFields object is
constructed as follows:

/* create a MQeFields object */
MQeFields fields = new MQeFields();

There are various put and get methods within the MQeFields object for storing
and retrieving items while maintaining the correct data type. Items are held in a
name, type and value form. The name must conform to the following rules:
v Be at least 1 character long
v Conform the ASCII character set, that is characters with values 20 < value < 128
v Must not include any of the characters { } [] # () : ; , ’ ″ =
v Be unique within the MQeFields object

The name is used to retrieve and update values. Because the names are included
with the item data when the MQeFields object is dumped, it is good practice to
keep names short.

The following example shows how to place values in an MQeFields object:
/* Place integer values in a fields object */
fields.putInt("Int1", 1234);
fields.putInt("Int2", 5678);
fields.putInt("Int3", 0);

To retrieve a value:
/* Retrieve an integer value from a fields object */
int Int2 = fields.getInt("Int2");

Methods are provided for storing and retrieving value types as shown in Table 1

Table 1. Store and retrieve methods

Value type Store method Retrieve method

byte putByte getByte

int putInt getInt

short putShort getShort

long putLong getLong

floating point putFloat getFloat

putDouble getDouble

boolean putBoolean getBoolean

string putAscii getAscii

putUnicode getUnicode

Arrays of values may be held within a fields object. There are two forms for
holding arrays:
v Fixed length arrays of byte, short, int, long, float and double are handled using

the putArrayOftype and getArrayOftype methods, where type is Byte, Short, Int,
Long, Float, or Double.

© Copyright IBM Corp. 2000 19

v Variable length arrays of byte, short, int, long, float, double and Strings are
handled using the puttypeArray/gettypeArray. Using this form, each element is
stored as a series of single items appending :nn to the name of the item (where
nn is the element number of item within the array, starting at 0). A separate item
is set containing the array length. This array length is an integer value and is
handled using putArrayLength/getArrayLength.

A fields object may be imbedded within another fields object by using the
putFields/getFields methods.

The class used for normal MQSeries Everyplace messages is MQeMsgObject or a
descendant of this class, MQeMsgObject is a descendant of the MQeFields class,
and hence has access to all the fields methods.

The contents of a fields object can be dumped in the following forms:

binary This is the form normally used to send a fields or MQeMsgObject through
the network. The method used to convert the data to binary is dump. It
returns a binary byte array containing an encoded form of the contents of
the object (Note: this is not Java serialization). The Dump method
optionally has a boolean parameter that specifies if the dumped data is to
be XOR’d with a previous copy of the fields data. This is an attempt to
increase the number of bytes in the output array that are 0x00 to help the
compressor make the data stream smaller when sending over the network.
There is little point in specifying this parameter unless the application
intends to write the byte array out to some other physical media

encoded string
There are various restrictions placed on the string form and it may not
always be possible to restore the fields object using the string. The String
form uses the dumpToString method of the fields object. It requires two
parameters, a template and a title. The template is a pattern string showing
how the fields item data should be translated, as shown in the following
example:
"(#0)#1=#2\r\n"

where

#0 is the data type (″ascii″ or ″short″ for example)

#1 is the field name

#2 is the string representation of the value

Any other characters are copied unchanged to the output string. The
method successfully dumps imbedded fields objects to string, but there is
no guarantee that the imbedded fields data can be restored using the
restoreFromString method.

A powerful feature of fields is the ability to read an ini file (an ASCII text file that
has sections and keywords with ASCII values) as in the following example:

[Section1]
Keyword1=value1
Keyword2=value2
[Section2]
Keyword1=value
...

MQeFields and MQeMsgObject

20 MQSeries Everyplace Programming Guide

This data can be read and parsed into a fields object as shown in the following
code example:
File diskFile = new File(fileName); /*access the file*/
byte data[] = new byte[(int) diskFile.length()]; /*file size*/
FileInputStream inputFile = new FileInputStream(diskFile);
inputFile.read(data); /*read the file*/
inputFile.close(); /*finish with file*/

MQeFields fields = new MQeFields(); /*new Fields Object*/
fields.restoreFromString("\r\n", /*end of line string*/

"[#0]", /*section pattern*/
"#1=#2", /*keyword pattern*/
byteToAscii(data));

A variation of the code allows different data types to be restored, for example:

[Section1]
(ascii)Keyword1=value1
(int)Keyword2=1234
[Section2]
(boolean)Keyword1=true
...

[
File diskFile = new File(fileName); /*access the file*/
byte data[] = new byte[(int) diskFile.length()]; /*size of file*/
FileInputStream inputFile = new FileInputStream(diskFile);
inputFile.read(data); /*read the file*/
inputFile.close(); /*finish with file*/

MQeFields fields = new MQeFields(); /*new Fields Object*/
fields.restoreFromString("\r\n", /*end of line string*/

"[#0]", /*section pattern*/
"(#0)#1=#2", /*keyword pattern*/
byteToAscii(data));

Note: The dumpToString does not dump imbedded fields objects in a format that
can be restored using the preceding technique

The use of ini files is optional, although it is recommended. Utilitites for handling
ini files are found in the examples supplied with MQSeries Everyplace, but users
may prefer to write their own, or touse MQeFields objects directly. If ini files are
used, they must be passed into MQeFields objects in order to create and manage
queue managers. Examples are provided to help with this process.

Creating a Fields based ini file editor
This example creates a ini file editor using the example components in the
MQSeries Everyplace examples.awt directory. It is not meant to encompass all
forms of MQeFields but is intended as an example or a starting point for a more
powerful editor.

The example treats each section as a separate imbedded fields object. The base
class creates a window with a Choice box listing all the sections found within the
ini file.

The example makes use of the java classes in the examples.awt directory. These
classes provide a simple way of creating and manipulating basic frames and
dialogs.

MQeFields and MQeMsgObject

Chapter 3. MQeFields and MQeMsgObject 21

To create a frame with a menu that application extends from
examples.awt.AwtFrame

public class Editor extends examples.awt.AwtFrame
/*---*/
public editor(String args[]) throws Exception
{
super("Editor - ");
format(Menu, new String[][][] {

{ { "File" },
{ " ", "Open" }, /* Index 0 */
{ " ", "Save" }, /* Index 1 */
{ "-" },
{ " ", "Exit" } }, /* Index 2 */
{ { "Help" },
{ " ", "Trace" } } }); /* Index 3 */

visible(true);
}

The super("Editor - "); assigns the title to the frame and initializes the
ancestor. The next statement assigns a menu bar to the frame and defines the items
that appear on the bar:
format(Menu, new String[][][] {

{ { "File" },
{ " ", "Open" }, /* Index 0 */
{ " ", "Save" }, /* Index 1 */
{ "-" },
{ " ", "Exit" } }, /* Index 2 */
{ { "Help" },
{ " ", "Trace" } } }); /* Index 3 */

The format method call has two parameters the first in this example is Menu the
second is a String array object.

The String array must be an array of array of array as follows:
v The first dimension defines the number of rows.
v The second dimension defines the number of columns
v The third dimension defines the components of the form

For example:
new String[][][] { type, Data {, Data, { ... } } }

where:

type is the component type

″ ″ normal menu item

″C″ CheckItem - unchecked, with a possible modifier ″!″ checked

″-″ seperator

Anything else is treated as a label

Data the text to be used by the component

Each item on the menu that can cause an action event has an index number based
on its position in the array in the preceding code fragment the comments show the
index number

Fields based ini editor

22 MQSeries Everyplace Programming Guide

The format method, the first parameter, can have the values of North, South, East,
West and Center which correcpond to the position of a panel within the frame. The
String array object in these cases has the following syntax:
new String[][][] { type, Data {, Data, { ... } } }

where:

type is the component type

″A″ TextArea, with a possible modifier

″P″ protected - not editable

″K″ give Key released action events

″B″ Button

″C″ Checkbox - unchecked, with a possible modifier

″!″ checked

″D″ Choice (drop down list)

″L″ Label

″S″ Selection list (list box)

″T″ TextField, with a possible modifier

″K″ give Key released action events

″P″ protected - not editable

″*″ masked input

Any thing else is treated as a label

Data the text to be used by the component

For more information on how these methods work, see the AwtDialog, AwtFormat,
and AwtFrame examples in the examples.awt directory.

Using the the examples.awt components to create the editor, the following code
defines three work variables and the constructor that creates a window with a
menu and a single Choice box .
public class Editor extends examples.awt.AwtFrame
{
protected Choice choiceBox = null;
protected MQeFields fields = null;
protected String currentFile = "";

/*---*/
public editor(String args[]) throws Exception
{
super("Editor - ");
format(Menu, new String[][][] {

{ { "File" },
{ " ", "Open" }, /* Index 0 */
{ " ", "Save" }, /* Index 1 */
{ "-" },
{ " ", "Exit" } }, /* Index 2 */
{ { "Help" },
{ " ", "Trace" } } }); /* Index 3 */

format(North, new String[][][] {
{ { "D", "< -- No File Loaded -- >" } } });

choiceBox = (Choice) getObject(North, 0);
visible(true);

Fields based ini editor

Chapter 3. MQeFields and MQeMsgObject 23

}

/*---*/
public static void main(String[] args)
{
try
{
new Editor(args);
}

catch (Exception e)
{
e.printStackTrace();
}

}

The next piece of code handles the events caused by the user interacting with the
Menu or the Choice box.

The Menu actions:

Open has an Action index of 0. This is used in a switch statement and calls a
Load method to read a disk file

Save. · has an Action index of 1. This is used in a switch statement and calls a
Save method to write a disk file

Exit has an Action index of 2. This is used in a switch statement and exits the
program

Trace has an Action index of 3. This is used in a switch statement and calls the
Examples.Awt.AwtMQeTrace class

The Choice box is the only component placed in the North, and therefore it has an
index of 0. Selecting an item in this list box activates the class used to display the
contents of a fields object.
public void action(Object e, int where, int index,
String choice, boolean state)
{
try
{
switch (where)
{
/* process Menu actions */
case Menu:
switch (index)
{
case 0: load(); break;
case 1: save(); break;
case 2: System.exit(0); break;
case 3: new examples.awt.AwtMQeTrace("Edit Trace", null);

break;
}

break;
/* process North events */
case North:
switch (index)
{
case 0:
String item = choiceBox.getSelectedItem();
new EditorFieldsDisplay("Editor - [" + Item + "]",

fields.getFields(Item));
break;

}
break;

}

Fields based ini editor

24 MQSeries Everyplace Programming Guide

}
/* exception occured - show error in a modal dialog window */
catch (Exception ex)
{
ex.printStackTrace();
new examples.awt.AwtDialog(this,

"Exception",
examples.awt.AwtDialog.Show_OK,
new String[][][] {

{ { "TP", ex.toString() } } });
}

}

The next piece of code processes the Save Menu request: A common file dialog is
created and displayed to allow the output file name to be specified. Once the file
path and name are set, each imbedded fields object is dumped in turn to a String
variable, creating a single String of the whole fields object. This String is written to
disk and the output file closed.
protected void save() throws Exception

{
if (fields == null) throw new Exception("No Fields object");
FileDialog fd = new FileDialog(this, "", FileDialog.SAVE);
fd.setFile(CurrentFile);
fd.show();
if ((fd.getDirectory() != null) && (fd.getFile() != null))
{
currentFile = fd.getDirectory() + fd.getFile();
File diskFile = new File(currentFile);
/* look for imbedded fields objects */
String buffer = ""; /*for imbedded_fields objects*/
String base = ""; /*non-imbedded_fields items*/
Enumeration keys = fields.fields(); /*get the names*/
while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();
if (fields.dataType(key) == MQeField.TypeFields)
buffer = buffer + "[" + key + "]\r\n" +

fields.getFields(key).dumpToString(
"(#0)#1=#2\r\n") + "\r\n";

else /*... no, normal item*/
base = base + fields.dumpToString("(#0)#1=#2\r\n", key);

}
buffer = base + buffer;
FileOutputStream outputFile = new FileOutputStream(diskFile);
outputFile.write(MQe.asciiToByte(buffer));
outputFile.close();
}

}

So far the controlling application window has been defined, together with the
process for loading and saving a disk file and a mechanism for activating
EditorFieldsDisplay class once a specific section has been selected.

The EditorFieldsDisplay class is where the actual editing is done.

This class creates the editor screen. The constructor of the class sets up the menu
(in this case is just Exit, in the North), a choice box containing any names of
imbedded fields objects and in the centre a list box to hold the dumped items.

The next piece of code positions the sub-window on the screen.
public class EditorFieldsDisplay extends AwtFrame
{
protected MQeFields fields = null; /* fields object */

Fields based ini editor

Chapter 3. MQeFields and MQeMsgObject 25

protected Choice choiceBox = null; /* Fields Choice */
protected List listBox = null; /* listbox object */
protected String newItem =
" <<<< Double click here to add new item >>>>";

/* constructor */
public EditorFieldsDisplay(String thisTitle,

MQeFields theseFields) throws Exception
{
super(thisTitle);
fields = theseFields;
format(Menu, new String[][][] {

{ { "Exit" },
{ " ", "Exit" } } });/* Index 0 */

format(North, new String[][][] {
{ { "D", "<none>" } } });/* Index 0 */

format(Center, new String[][][] {
{ { "S", "" } } }); /* Index 0 */

choiceBox = (Choice) getObject(North, 0);
listBox = (List) getObject(Center, 0);
listBox.setFont(new Font("Courier", 1, 12));
visible(true);
/* re-size/re-position the edit window */
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
setSize (screenSize.width / 3, screenSize.height / 3);
setLocation(screenSize.width / 3, screenSize.height / 3);
/* initialise the various component contents */
showFields(); /* show fields contents */
}

The showFields method call is a call to a common routine that refreshes the data in
the List box that contains the items within the fields object.
protected void showFields() throws Exception

{
listBox.removeAll(); /* clear all entries */
if (fields != null) /* fields object ? */
{ /* ... yes */
Enumeration keys = fields.Fields(); /* get the key names */
choiceBox.removeAll();
while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();
if (fields.dataType(key) == MQeField.TypeFields)
choiceBox.add(key); /* ... yes, add name */

else
listBox.add(format(fields.dumpToString("#1\t(#0)\t = #2",

Key), 10));
}

listBox.add(newItem); /* add information line */
}

}

The ListBox.add(format(fields.dumpToString("#1\t(#0)\t = #2", record in
the preceding code, causes the fields data to be dumped with tab (″\t″), carriage
returns (″\r″) and line feed (″\n″) characters. These need to be formatted before
displaying in the list box. The following piece of code shows a formatter.
public static String format(String data, int tabSize)

{
int l = 0; /*start line number*/
char c[] = new char[data.length()]; /*work array*/
data.getChars(0, data.length(), c, 0); /*convert to chars*/
StringBuffer result = new StringBuffer(512);
for (int i = 0; i < c.length; i = i + 1)
switch (c[i])

Fields based ini editor

26 MQSeries Everyplace Programming Guide

{
case '\r': /* ignore */
case '\n': /* new line */

l = 0; /* set space count */
result.append(c[i]); /*append to string*/
break;

case '\t': /*tab character*/
int m = l; /*current position*/
for (l = m; l < tabSize + 1; l = l + 1) /*fill tab*/
result.append(' '); /*pad*/

l = 0; /*reset*/
break;

default: /*all others*/
result.append(c[i]); /*append to string*/
l = (l + 1) % tabSize; /*increase the length*/
break;

}
return(result.toString());
}

The following code handles the events caused by the user interacting with the
menu, the choice box or the list box.

Exit is the only menu item, and this is handled by disposing of the edit window.
The choice box handles any imbedded fields items. Individual items are edited by
the selection of an item within the list box.

public void action(Object e, int where, int index,
String choice, boolean state)
{
try
{
switch (where)
{
/* process Menu events */
case Menu:
switch (index)
{
case 0: dispose(); break;
}

break;
/* process North events */
case North:
switch (index)
{
case 0: break;
}

break;
/* process Center events */
case Center:
switch (index)
{
case 0:
int i = listBox.getSelectedIndex();
if (i > -1) /* anything selected ? */

{
String editName = listBox.getItem(i);
if (editName.equals(newItem)) /* add new item ? */
editItem("", "ascii", ""); /* ... yes, */

else
{
editName = editName.substring(0,

editName.indexOf(' '));
editItem(editName,

fields.dumpToString("#0", editName),
fields.dumpToString("#2", editName));

Fields based ini editor

Chapter 3. MQeFields and MQeMsgObject 27

}
}

break;
}

break;
} /* end switch(Where) */

}
/* exception occured - show error in a modal dialog window */
catch (Exception ex)
{
ex.printStackTrace();
new AwtDialog(this,

"Exception",
AwtDialog.Show_OK,
new String[][][] { { { "TP", ex.toString() } } });

}
}

When an item in the list box is selected an Edit dialog is displayed. This allows the
name, type, and value to be edited. The item can also be deleted from the fields
object.

The same dialog is used to add a new item to the fields object. In this case the
item name and the value is blank, with a default type of ascii.
protected void editItem(String name, String type, String value)

throws Exception
{
if (fields == null) throw new Exception("No Fields object");
/* Dialog to set Field Item name type and value */
AwtDialog md = new AwtDialog(this,

getTitle() + " - edit item",
AwtDialog.Show_OK_Cancel,
new String[][][] {

{ { "L", "Field Item Name:" }, { "T", name } }, /* Index 1 */
{ { "L", " Data type:" }, { "D", type, /* Index 3 */

"ascii",
"boolean",
"byte",
"double",
"float",
"int",
"long",
"short",
"unicode" } },

{ { "L", " Value:" }, { "T", value } }, /* Index 5 */
{ { "L", " Remove item ?" }, { "C", "Delete" } } /* Index 7 */

});
/* process dialog response */
if (md.getActionIndex(South) == md.Button_OK)
{
name = md.GetText(Center, 1);
if (name.equals(""))
throw new Exception("Invalid Item name");

fields.delete(name);
if (! md.getCheckState(center, 7)) /* delete this item ? */

{ /* ... no */
String data = "(" + md.GetText(Center, 3) +

")" + name +
"=" + md.getText(Center, 5);

fields.restoreFromString("(#0)#1=#2", data);
}

showFields();
}

}

Fields based ini editor

28 MQSeries Everyplace Programming Guide

This completes a functional though some what primitive ini file editor. it can be
used to display or modify MQeMsgObjects (descendants of MQeFields) as long as
the data is not encoded using the MQeAttribute mechanism.

This program is not meant to encompass all forms of MQeFields but is intended as
an example or a starting point for a more powerful editor.

Fields based ini editor

Chapter 3. MQeFields and MQeMsgObject 29

30 MQSeries Everyplace Programming Guide

Chapter 4. MQSeries Everyplace queue manager

The MQSeries Everyplace queue manager is the focal point of the MQSeries
Everyplace system. It provides:
v A central point of access to the MQSeries Everyplace/MQSeries network for

MQSeries Everyplace applications
v Once-only assured delivery of messages
v Full recovery from failure conditions
v Extendable rules-based behavior

The MQSeries Everyplace queue manager is designed in an object-oriented style.
The queue manager can be inherited from, and its function extended. In addition,
by providing sets of rules the behavior of the queue manager can be customized.

The MQSeries Everyplace queue manager can run either on a client or as part of
an MQSeries Everyplace server.

The MQSeries Everyplace queue manager has control of two sets of queues, ’local’
queues and definitions of ’remote’ queues. Queues that exist on the local queue
manager are known as ’local queues’. Typically, local queues store their messages
on the persistent store of the local machine, but the actual location of the message
store is configurable.

Queue managers are able to connect to queues belonging to other queue managers
in the MQSeries /MQSeries Everyplace network. These queues are known as
’remote queues’, and belong to ’remote queue managers’. The local queue manager
has some knowledge of the attributes of those queues, because it stores locally any
information it discovers about that queue. This information is known as a remote
queue definition.

Message transmission
The style of message transmission to remote queues can be either synchronous or
asynchronous. The transmission style is defined for each remote queue in the
remote queue definition held by the originator queue manager.

For synchronous communications to take place, both originator and target
MQSeries Everyplace queue managers must be available simultaneously on the
MQSeries Everyplace network.

Asynchronous communication allows an MQSeries Everyplace application to send
messages even when the queue manager is off-line. Outgoing messages to queues
defined as asynchronous are stored within the local queue manager until it is
possible and deemed appropriate to transmit them. MQSeries Everyplace
applications are able to continue as normal. Deciding when to transmit messages is
one of the major tasks of the queue manager rules, and is especially relevant in
cases where the availability of communication is restricted, or there are cost
considerations.

Asynchronous communications require that the target queue manager and queue
are predefined on the originating queue manager. This is necessary because the

© Copyright IBM Corp. 2000 31

originating queue manager needs to establish that the target queue
manager/queue pair is valid before it is able to assure the delivery of message.

The assurance is rendered void if the target queue definition on the originating
queue manager is not kept up-to-date with the attributes of the real queue. The
real queue and its remote definition are kept in step using remote administration
(see Figure 18 on page 105).

Assured message delivery
MQSeries Everyplace can assure the once-only delivery of a message, provided
that he conditions previously described are met. This is not mandatory, since the
assurance requires an extra flow to be transmitted. MQSeries Everyplace
applications can specify whether or not to use assured delivery on a
message-by-message basis.

When assured delivery is used, the message is locked on the target queue until a
subsequent confirm is issued. The confirm should only be issued on the successful
receipt or transmission

Security
The queue manager fully supports the security functions supplied with MQSeries
Everyplace. Any messages stored in a queue defined with security characteristics
are encoded using those characteristics. Any communication channels set up
between a queue manager and a secure queue use the security characteristics of
the queue, or an existing channel with equal or higher security.

Messages can be individually protected by attaching security characteristics to
them directly. The correct characteristics must be presented whenever dealing with
a message protected in this manner.

See “Chapter 7. Security” on page 159 for a detailed discussion of MQSeries
Everyplace security.

MQeRegistry parameters for the queue manager
The registry is the primary store for queue manager-related information; one exists
for each queue manager. Every queue manager uses the registry to hold its:
v Queue manager configuration data
v Queue definitions
v Remote queue definitions
v Remote queue manager definitions
v User data (including configuration-dependent security information)

This section describes the queue manager start up parameters that are concerned
with the registry.

Registry type
The following parameter determines the type of registry being opened, file registry
and private registry are currently supported. A private registry is required for some
of the security features. See “Chapter 7. Security” on page 159.

MQeRegistry.LocalRegType (ascii)

message transmission

32 MQSeries Everyplace Programming Guide

For a file registry this parameter should be set to:
com.ibm.mqe.registry.MQeFileSession

For a private registry it should be set to:
com.ibm.mqe.registry.MQePrivateSession

Aliases can be used to represent these values.

File registry parameters
The following parameter is needed for a file registry:

MQeRegistry.DirName (ascii)
The name of the directory holding the registry files.

Private registry parameters
For a private registry, the following parameters can be used. The first three
parameters are always needed, the last two parameters are needed for
auto-registration of the registry if it wishes to obtain its credentials from the
mini-certificate issuing server.

MQeRegistry.DirName (ascii)
The name of the directory holding the registry files

MQeRegistry.PIN (ascii)
The PIN for the private registry

MQeRegistry.KeyRingPassword (ascii)
The password or phrase used to protect the registry’s private key

MQeRegistry.CAIPAddrPort (ascii)
The address and port number of a mini-certificate issuing server

MQeRegistry.CertReqPIN (ascii)
The certificate request number pre-allocated by the mini-certificate
administrator to allow the registry to obtain its credentials

Common parameters
For either type of registry, this parameter is also needed if a non-default separator
is used:

MQeRegistry.Separator (ascii)
The character to be used as a separator between the components of an
entry name, for example: <QueueManager><Separator><Queue>.

This parameter is specified as a string but it should contain a single
character. If it contains more than one only the first character is used.

The same separator character should be used every time a registry is
opened, it should not be changed once a registry is in use and contains
entries.

If this parameter is not specified it defaults to ″+″.

registry parameters

Chapter 4. MQSeries Everyplace queue manager 33

Creating and deleting queue managers
A queue manager requires at least the following:
v A registry
v A queue manager definition
v Local default queue definitions

Once these definitions are in place the queue manager can be run and any further
configuration, such as adding more queues, can be performed using the
administration interface.

Methods to create these initial objects are supplied in the
MQeQueueManagerConfigure class.

The example install programs examples.install.SimpleCreateQM and
examples.install.SimpleDeleteQM use this class.

This section provides more information on using the MQeQueueManagerConfigure
class.

Creating a queue manager
The basic steps required to create a queue manager are:
1. Create and activate an instance of MQeQueueManagerConfigure
2. Set queue manager properties
3. Create the queue manager definition
4. Create definitions for the default queues
5. Close the MQeQueueManagerConfigure instance

When these steps have completed successfully the queue manager can be activated
and run

Create and activate an instance of MQeQueueManagerConfigure
The MQeQueueManagerConfigure class can be activated either by calling the
empty constructor followed by activate():
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialise the parameters
...
qmConfig = new MQeQueueManagerConfigure();
qmConfig.activate(parms, "qmName\\Queues\\");

}
catch (Exception e)
{ ... }

or by calling the constructor with parameters:
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialise the parameters
...
qmConfig = new MQeQueueManagerConfigure(parms, "qmName\\Queues\\");

creating and deleting queue managers

34 MQSeries Everyplace Programming Guide

}
catch (Exception e)
{ ... }

The first parameter is an MQeFields object containing initialization parameters for
the queue manager. These are the minimal set required when the queue manager is
subsequently run. The parameters for MQeQueueManagerConfigure must contain:
v An embedded MQeFields object called ″QueueManager″, that contains the name

of the queue manager
v An embedded MQeFields object, called ’registry’, that contains the LocalRegType

and the DirName. If a base file registry is used these are all the parameters that
are required for it; if a private registry is used, a PIN and KeyRingPassword are
also required.

The second parameter is the location of the queue store, (the directory in the file
system under which the default queues are created). The directory name is stored
as part of the queue manager definition and used as a default value for the queue
store in any future queue definitions. As with the registry, the directory does not
have to exist and will be created when needed.

If any of the initialization parameters uses an alias, or if you wish to use an alias
to set the channel attribute rule name (see later), the aliases should be defined
before activating MQeQueueManagerConfigure .
import com.ibm.mqe.*;
import com.ibm.mqe.registry.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialise the parameters
MQeFields qmgrFields = new MQeFields();
MQeFields regFields = new MQeFields();

// Queue manager name is needed
qmgrFields.putAscii(MQeQueueManager.Name, "qmName");
// Registry information
regFields.putAscii(MQeRegistry.LocalRegType, "FileRegistry");
regFields.putAscii(MQeRegistry.DirName, "qmname\\Registry");

// add the embedded MQeFields objects
parms.putFields(MQeQueueManager.QueueManager, qmgrFields);
parms.putFields(MQeQueueManager.Registry, regFields);
// set aliases
MQe.alias("FileRegistry", "com.ibm.mqe.registry.MQeFileSession");
MQe.alias("ChannelAttrRules", "examples.rules.AttributeRule");
// activate the configure object
qmConfig = new MQeQueueManagerConfigure(parms, "qmName\\Queues\\");

}
catch (Exception e)
{ ... }

Set queue manager properties
When MQeQueueManagerConfigure has been activated, and before the queue
manager definition is created, some of the queue manager properties can be set:
v A description can be added to the queue manager with setDescription()

v A channel timeout value can be set with setChannelTimeout()

v The name of the channel attribute rule can be set with
setChnlAttributeRuleName()

creating a queue manager

Chapter 4. MQSeries Everyplace queue manager 35

Create the queue manager definition
This is done by calling defineQueueManager(). This creates a registry definition for
the queue manager that includes any of the properties previously set for it (which
is why they should be set before calling defineQueueManager()).
import com.ibm.mqe.*;
import com.ibm.mqe.registry.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialise the parameters
...
// set aliases
MQe.alias("FileRegistry", "com.ibm.mqe.registry.MQeFileSession");
MQe.alias("ChannelAttrRules", "examples.rules.AttributeRule");
// activate the configure object
qmConfig = new MQeQueueManagerConfigure(parms, "qmName\\Queues\\");
qmConfig.setDescription("a test queue manager");
qmConfig.setChnlAttributeRuleName("ChannelAttrRules");
qmConfig.defineQueueManager();

}
catch (Exception e)
{ ... }

At this point you can close MQeQueueManagerConfigure and run the queue
manager, however it cannot do much because it has no queues. You cannot even
add queues using the administration interface, because it does not have an
administration queue to service the administration messages.

The following sections show how to create queues and make the queue manager
useful.

Create definitions for the default queues
MQeQueueManagerConfigure allows you to define four standard queues for the
queue manager:
v An administration queue: defineDefaultAdminQueue()
v An administration reply queue: defineDefaultAdminReplyQueue()
v A dead letter queue: defineDefaultDeadLetterQueue()
v A default local queue: defineDefaultSystemQueue()

All of these methods will throw an exception if the queue already exists.

The administration and administration reply queues are needed to allow the queue
manager to respond to administration messages, for example to create new
connection definitions and queues.

The dead letter queue can be used (depending on the rules in force) for messages
that cannot be delivered to their correct destination.

The default local queue, SYSTEM.DEFAULT.LOCAL.QUEUE, has no special
significance within MQSeries Everyplace itself, but it is useful when MQSeries
Everyplace is used with MQSeries messaging because it exists on every MQSeries
messaging queue manager.
import com.ibm.mqe.*;
import com.ibm.mqe.registry.*;
import examples.queuemanager.MQeQueueManagerUtils;
try

creating a queue manager

36 MQSeries Everyplace Programming Guide

{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialise the parameters
...
qmConfig = new MQeQueueManagerConfigure(parms, "qmName\\Queues\\");
qmConfig.setDescription("a test queue manager");
qmConfig.setChnlAttributeRuleName("ChannelAttrRules");
qmconfig.defineDefaultAdminQueue();
qmconfig.defineDefaultAdminReplyQueue();
qmconfig.defineDefaultDeadLetterQueue();
qmconfig.defineDefaultSystemQueue();

}
catch (Exception e)
{ ... }

Close the MQeQueueManagerConfigure instance
When the queue manager and the required queues have been defined,
MQeQueueManagerConfigure can be closed and the queue manager can be run.
The complete example looks like this:
import com.ibm.mqe.*;
import com.ibm.mqe.registry.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialise the parameters
MQeFields qmgrFields = new MQeFields();
MQeFields regFields = new MQeFields();
// Queue manager name is needed
qmgrFields.putAscii(MQeQueueManager.Name, "qmName");

// Registry information
regFields.putAscii(MQeRegistry.LocalRegType, "FileRegistry");
regFields.putAscii(MQeRegistry.DirName, "qmname\\Registry");

// add the embedded MQeFields objects
parms.putFields(MQeQueueManager.QueueManager, qmgrFields);
parms.putFields(MQeQueueManager.Registry, regFields);

// set aliases
MQe.alias("FileRegistry", "com.ibm.mqe.registry.MQeFileSession");
MQe.alias("ChannelAttrRules", "examples.rules.AttributeRule");

// activate the configure object
qmConfig = new MQeQueueManagerConfigure(parms, "qmName\\Queues\\");
qmConfig.setDescription("a test queue manager");
qmConfig.setChnlAttributeRuleName("ChannelAttrRules");
qmConfig.defineQueueManager();
qmconfig.defineDefaultAdminQueue();
qmconfig.defineDefaultAdminReplyQueue();
qmconfig.defineDefaultDeadLetterQueue();
qmconfig.defineDefaultSystemQueue();
qmconfig.close();

}
catch (Exception e)
{ ... }

The registry definitions for the queue manager and the required queues have now
been created. The queues themselves are created when they are first activated.

creating a queue manager

Chapter 4. MQSeries Everyplace queue manager 37

Deleting a queue manager
The basic steps required to delete a queue manager are:
1. Use the administration interface to delete any definitions
2. Create and activate an instance of MQeQueueManagerConfigure
3. Delete definitions for the standard queues
4. Delete the queue manager definition
5. Close the MQeQueueManagerConfigure instance

When these steps have completed the queue manager is deleted and can no longer
be run. The queue definitions are deleted, but the queues themselves are not
deleted. Any messages remaining on the queues are inaccessible.

Note: If there are messages on the queues they are not automatically deleted. The
application program should include code to check for and handle remaining
messages before deleting the queue manager.

Delete any definitions
MQeQueueManagerConfigure can delete the standard queues that it created. Any
other queues should be deleted using the administration interface before
MQeQueueManagerConfigure is used.

Create and activate an instance of MQeQueueManagerConfigure
This process is the same as when creating a queue manager. See “Create and
activate an instance of MQeQueueManagerConfigure” on page 34.

Delete definitions for the standard queues
The default queues can be deleted by calling:
v deleteAdminQueueDefinition() to delete the administration queue
v deleteAdminReplyQueueDefinition() to delete the administration reply queue
v deleteDeadLetterQueueDefinition() to delete the dead letter queue
v deleteSystemQueueDefinition() to delete the default local queue

These methods will work successfully even if the queue does not exist.

Delete the queue manager definition
The queue manager definition is deleted by calling
deleteQueueManagerDefinition()

import com.ibm.mqe.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialise the parameters
...
// Establish any aliases defined by the .ini file
MQeQueueManagerUtils.processAlias(parms);
qmConfig = new MQeQueueManagerConfigure(parms);
qmConfig.deleteAdminQueueDefinition();
qmConfig.deleteAdminReplyQueueDefinition();
qmConfig.deleteDeadLetterQueueDefinition();
qmConfig.deleteSystemQueueDefinition();
qmConfig.deleteQueueManagerDefinition();

deleting a queue manager

38 MQSeries Everyplace Programming Guide

qmconfig.close();
}
catch (Exception e)
{ ... }

Delete the default queues and the queue manager together
The default queue and queue manager definitions can be deleted with one call,
deleteStandardQMDefinitions(). This method is provided for convenience and is
equivalent to:
deleteDeadLetterQueueDefinition();
deleteSystemQueueDefinition();
deleteAdminQueueDefinition();
deleteAdminReplyQueueDefinition();
deleteQueueManagerDefinition();

Close the MQeQueueManagerConfigure instance
When the queue and queue manager definitions have been deleted, the
MQeQueueManagerConfigure instance can be closed.
import com.ibm.mqe.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialise the parameters
...
// Establish any aliases defined by the .ini file
MQeQueueManagerUtils.processAlias(parms);
qmConfig = new MQeQueueManagerConfigure(parms);
qmConfig.deleteStandardQMDefinitions();
qmconfig.close();

}
catch (Exception e)
{ ... }

Starting queue managers
A queue manager can run:
v as a client
v in a server
v in a servlet

The following sections describe the example client, servers and servlet that can be
found in the examples.queuemanager package. They are basically constructed from
the same base MQSeries Everyplace components, with some additional ones that
give each its unique properties. As they share many features, a utility class
MQeQueueManagerUtils is provided that encapsulates many of the functions.

All the examples require parameters at startup. These parameters are stored in
standard ini files. The ini files can be read and the data in them is converted into
an MQeFields object. This is described in the “Chapter 3. MQeFields and
MQeMsgObject” on page 19. The loadConfigFile() method in
MQeQueueManagerUtils class performs this function.

deleting a queue manager

Chapter 4. MQSeries Everyplace queue manager 39

Client
A client typically runs on a device, providing a queue manager for use by
applications on the device. It can open many connections to other queue managers
typically servers and if configured with a peer channel can accept incoming
requests from other queue managers.

Unlike a server that typically runs for long periods of time, clients are started and
stopped on demand by the application using them. If a queue manager is to be
shared by multiple applications then the applications must coordinate the starting
and stopping of the client.

As discussed earlier parameters required to start the client are stored in ini files.
The startup parameters for a typical client looks like:
*
* ExamplesMQeClient.ini
* An example ini file for a simple MQe client
*
[Alias]
*
* Event log class
*
(ascii)EventLog=examples.log.LogToDiskFile
*
* Network adapter class
*
(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter
*
* Queue Manager class
*
(ascii)QueueManager=com.ibm.mqe.MQeQueueManager
*
* Trace handler (if any)
*
(ascii)Trace=examples.trace.MQeTrace
*
* Message Log file interface
*
(ascii)MsgLog=com.ibm.mqe.adapters.MQeDiskFieldsAdapter
*
* Class name for File registry
*
(ascii)FileRegistry=com.ibm.mqe.registry.MQeFileSession
*
* Class name for Private registry
*
(ascii)PrivateRegistry=com.ibm.mqe.registry.MQePrivateSession
*
* Default Channel class
*
(ascii)DefaultChannel=com.ibm.mqe.MQeChannel
*
* Default Transporter class
*
(ascii)DefaultTransporter=com.ibm.mqe.MQeTransporter
*
* Channel Attribute Rules
*
(ascii)ChannelAttrRules=examples.rules.AttributeRule
*
* Name of Base Key
*
(ascii)AttributeKey_1=com.ibm.mqe.MQeKey
*
* Name of Shared Key

client queue managers

40 MQSeries Everyplace Programming Guide

*
(ascii)AttributeKey_2=com.ibm.mqe.attributes.MQeSharedKey
--
*
* Registry (configuration data store)
*
[Registry]
*
* Type of registry for config data
*
(ascii)LocalRegType=FileRegistry
*
* Location of the registry
* (Only use relative directory for development/demo)
*
(ascii)DirName=.\ExampleQM\Registry\
--
*
* Queue manager details
*
[QueueManager]
*
* Name for this Queue Manager
*
(ascii)Name=ExampleQM

A detailed description of the QueueManager and Registry sections can be found in
“MQeRegistry parameters for the queue manager” on page 32. The alias section
provides a place where aliases can be set. Aliases are typically used to provide an
alias for class names. Aliases are used by MQSeries Everyplace and can be used by
application programs to provide a level of indirection between the application and
the real class name. Hence a class that an alias refers to can be changed without
the application needing to change. This allows a configuration to be easily
modified; for instance an alias is setup for Trace that specifies which trace handler
to use. MQSeries Everyplace provides several different trace handlers. Simply by
changing the Trace alias, the trace handler used by MQSeries Everyplace is altered.

The following section of code starts a client:
/*--*/
/* Init - first stage setup */
/*--*/
public void init(MQeFields parms) throws Exception
{
if (queueManager != null) /* One queue manager at a time */
{
throw new Exception("Client already running");

}
sections = parms; /* Remember startup parms */
MQeQueueManagerUtils.processAlias(sections); /* set any alias names */

// Uncomment the following line to start trace before the queue manager is started
// MQeQueueManagerUtils.traceOn("MQeClient Trace", null); /* Turn trace on */

/* Display the startup parameters */
System.out.println(sections.dumpToString("#1\t=\t#2\r\n"));

/* Start the queue manager */
queueManager = MQeQueueManagerUtils.processQueueManager(sections, null);

}

Starting a client involves:
1. Ensuring that there is no client already running. Only one client is allowed per

Java Virtual Machine.

client queue managers

Chapter 4. MQSeries Everyplace queue manager 41

2. Adding any aliases to the system
3. Enable trace if required
4. Starting the queue manager

Once the client has been started, a reference to the queue manager object can be
obtained either from the static class variable MQeClient.queueManager or by using
the static method MQeQueueManager.getReference(queueManagerName).

The following code fragmenr loads aliases into the system:
public static void processAlias(MQeFields sections) throws Exception
{
if (sections.contains(Section_Alias)) /* section present ? */
{ /* ... yes */
MQeFields section = sections.getFields(Section_Alias);
Enumeration keys = section.fields(); /* get all the keywords */
while (keys.hasMoreElements()) /* as long as there are keywords*/
{
String key = (String) keys.nextElement(); /* get the Keyword */
MQe.alias(key, section.getAscii(key).trim()); /* add */

}
}

}

For each alias the MQSeries Everyplace alias method is used to add an alias to the
system. Both MQSeries Everyplace and applications can use the aliases once they
have been loaded. Many of the aliases shown in the ini file above are required for
MQSeries Everyplace to function correctly and should not be removed.

The following code fragment starts a queue manager:
public static MQeQueueManager processQueueManager(MQeFields sections,
Hashtable ght) throws Exception

{ /* */
MQeQueueManager queueManager = null; /* work variable */
if (sections.contains(Section_QueueManager)) /* section present ? */
{ /* ... yes */
queueManager = (MQeQueueManager) MQe.loader.loadObject(Section_QueueManager);
if (queueManager != null) /* is there a Q manager ? */
{
queueManager.setGlobalHashTable(ght);
queueManager.activate(sections); /* ... yes, activate */

}
}
return(queueManager); /* return the alloated mgr */

}

Starting a queue manager involves:
1. Instantiating a queue manager. The name of the queue manager class to load is

specified in alias QueueManager. The MQSeries Everyplace class loader is used
to load the class and call the null constructor.

2. The queue manager is then activated using the activate method which is passed
the fields object representation of the ini file. The queue manager only makes
use of the QueueManager and Registry sections from the startup parameters.

Example MQePrivateClient
MQePrivateClient is an extension of MQeClient with the addition that it configures
the queue manager and registry to allow for secure queues. For a secure client, the
Registry section of the startup parameters has been extended as follows:
* Extract from MQePrivateClient.ini
*
[Registry]

client queue managers

42 MQSeries Everyplace Programming Guide

*
* Type of registry for config data
*
(ascii)LocalRegType=PrivateRegistry
*
* Location of the registry
*
(ascii)DirName=.\ExampleQM\PrivateRegistry
*
* PIN
*
(ascii)PIN=not set
*
* Certificate request pin
*
(ascii)CertReqPIN=not set
*
* Key ring password
*
(ascii)KeyRingPassword=not set
*
* Network address of certificate authority
*
(ascii)CAIPAddrPort=9.20.7.219:8081er

These fields are described in the ??″MQeRegistry parameters″ section of this
manual. More details on secure queues and MQePrivateClient can be found in the
??″security section″ of this manual.

If MQSeries Standard Edition is being used, not all security features are available.
For MQePrivateClient (and MQePrivateServer) to work, the startup parameters
must not contain parameters CertReqPIN, KeyRingPassword and CAIPAddrPort.
Hence the registry section for the an MQePrivateClient using the Standard Edition
of MQSeries Everyplace looks like:
[Registry]
*
* Type of registry for config data
*
(ascii)LocalRegType=PrivateRegistry
*
* Location of the registry
*
(ascii)DirName=.\ExampleQM\PrivateRegistry
*
* PIN
*
(ascii)PIN=not set

Server
A server typically runs on a gateway. A server can run server side applications but
can if required also run client side applications. As with clients, a server can open
connections to many other queue managers including servers, clients and
gateways. One of its main characteristics that differentiate it from a client is that it
can handle many concurrent incoming requests. Typically a server acts as an entry
point into an MQSeries Everyplace network for many clients. MQSeries Everyplace
provides several different servers as examples:

MQeServer
A simple console based server

MQePrivateServer
A simple console based server with enhanced security

client queue managers

Chapter 4. MQSeries Everyplace queue manager 43

AwtMQeServer
A graphical front end to MQeServer

MQBridgeServer
A server found in package examples.mqbridge.queuemanager that can in
addition to the other servers send and receive messages to and from other
members of the MQSeries family. This server is described in “Chapter 6.
MQSeries bridge” on page 121.

Example MQeServer
The simplest server implementation is MQeServer.

This server can be started with the following command:
<javaCommand> examples.queuemanger.awt.MQeServer <startupIniFile>

where:

javaCommand:
is the command used to start Java applications (java for example)

startupIniFile:
is an ini file containing startup parameters for the queue manager and
server (.\ExamplesMQeServer.ini for example)

The batch file ExamplesMQeServer.bat provides a shortcut for starting the server
with ini file .\ExamplesMQeServer.ini. As with the client, ini files are used to
hold parameters required to start the server. For use with a server, the standard
client ini file must be extended to include a ChannelManager and a Listener
section. A typical extension to the server startup parameters follows:
* Extract from ExamplesMQeServer.ini
*
[ChannelManager]
*
* Maximum number of channels allowed
*
(int)MaxChannels=0
--
[Listener]
*
* FileDescriptor for listening adapter
*
(ascii)Listen=Network::8081
*
* FileDescriptor for Network read/write
*
(ascii)Network=Network:
*
* Channel timeout interval in seconds
*
(int)TimeInterval=300

When two queue managers communicate with each other, MQSeries Everyplace
opens a channel between the two queue managers. The channel is a logical entity
that is used as a queue manager to queue manager pipe. Multiple channels may be
open at any time.

The new sections in the ini file control channel usage. In the ChannelManager
section, the MaxChannels parameter controls the maximum number of channels that
can be open at any time. The Listener section contains parameters pertaining to
how incoming network requests are handled:

server queue managers

44 MQSeries Everyplace Programming Guide

Listen The network adapter that is used to handle incoming network requests.
For example this could be an http adapter or a pure tcpip adapter. As well
as the adapter name, parameters that dictate how the adapter is to listen
can be passed. For instance ’Listen=Network::8081’ means use the Network
adapter where Network is an alias to listen on port 8081. (This assumes
that the Network alias is set to either an http or a tcpip adapter.)

Network
This parameter is used to specify the adapter that is used for network read
and write requests once the initial network request has been accepted.
Typically this is the same as the adapter used on the Listen parameter.

TimeInterval
The time in seconds before idle channels are timed out. As channels are
persistent logical entities that last longer than a single queue manager
request and can survive network breakages it may be necessary to time out
channels that have been inactive for a period of time.

The structure of MQeServer follows that of MQeClient. One time initialization is
performed in the init method and then the activate method is used for activating
and deactivating the server. The following code shows the init method that is
used when starting the server:
public void init(MQeFields parms) throws Exception
{
if (initialised) /* Only one server at a time */
throw new Exception("Server already running");

sections = parms; /* Remeber startup parms */
MQeQueueManagerUtils.processAlias(sections); /* set any alias names */

// Uncomment the following line to start trace before the queue manager is started
// MQeQueueManagerUtils.traceOn("MQeServer Trace", null); /* Turn trace on */

/* Display the startup parameters */
System.out.println(sections.dumpToString("#1\t=\t#2\r\n"));

}

1. The init method is passed the server startup parameters
2. A check is made to ensure that only one server can run per JVM
3. Any aliases are loaded and if necessary trace is enabled

Once the server has been initialized, it can be activated using the activate method
with a parameter of true. Once activated it can be de-activated by calling the
activate method with a parameter of false.
public void activate(boolean Start) throws Exception
{
if (Start) /* activate ? */
{ /* ... yes */
if (! initialised) /* been here before */
{ /* ... no */
/* allocate Chan Mgr */
channelManager = MQeQueueManagerUtils.processChannelManager(sections);

/* assign any class aliases */
MQeQueueManagerUtils.processAlias(sections);

/* check for any pre-loaded classes */
loadTable = MQeQueueManagerUtils.processPreLoad(sections);
initialised = true; /* only once */

} /* */
/* setup and activate the queue manager */
queueManager = MQeQueueManagerUtils.processQueueManager(sections,

channelManager.getGlobalHashtable());

server queue managers

Chapter 4. MQSeries Everyplace queue manager 45

/* setup and activate the listener for incomming connections */
channelListener = MQeQueueManagerUtils.processListener(

sections, channelManager);
}
else /* ... no */
{ /* */
if (channelListener != null) channelListener.stop();
if (queueManager != null) queueManager.close();
channelListener = null; /* release object */
queueManager = null; /* release object */

}
}

When activating a server the following occurs:
1. The channel manager is started
2. Any additional user specified classes are loaded and the null constructor is

called
3. The queue manager is started
4. The channel listener is started.

Once the listener is started, the server is up and running, ready to accept network
requests.

When de-activating a server:
1. The channel listener is stopped, preventing any new incoming requests
2. The queue manager is closed.

The following sections of code from the MQeQueueManagerUtils class process
each of the components. First the section that starts a channel manager:
public static MQeChannelManager processChannelManager(MQeFields sections)
throws Exception
{
MQeChannelManager channelManager = null; /* work variable */
if (sections.contains(Section_ChannelManager)) /* section present ? */
{ /* ... yes */
MQeFields section = sections.getFields(Section_ChannelManager);
channelManager = new MQeChannelManager(); /* load the manager */
channelManager.numberOfChannels(section.getInt("MaxChannels"));

} /* */
return(channelManager); /* return the allocated mgr */

}

This method instantiates a channel manager and then sets the maximum number
of channels that are permitted, using the MaxChannels parameter from the
ChannelManager section of the startup parameters.

It is also possible to specify a set of classes that can be loaded when the queue
manager is loaded. These can be added to a PreLoad section of the ini file where
the class to be loaded must have the form (ascii)uniqueName=class. For example:
[PreLoad]
*
* Classes to load at server startup
*
(ascii)StartClass1=test.ServerTest1
(ascii)StartClass2=test.ServerTest2

The following section of code is used to load the preload classes:

server queue managers

46 MQSeries Everyplace Programming Guide

public static Hashtable processPreLoad(MQeFields sections) throws Exception
{
Hashtable loadTable = new Hashtable(); /* allocate load table */
if (sections.contains(Section_PreLoad)) /* section present ? */
{ /* ... yes */
MQeFields section = sections.getFields(Section_PreLoad);
Enumeration keys = section.fields(); /* get all the keywords */
while (keys.hasMoreElements()) /* as long as there are keywords*/
try /* incase of error */
{ /* */
String key = section.getAscii((String) keys.nextElement()).trim();
loadTable.put(key, MQe.loader.loadObject(key));

}
catch (Exception e) /* error occured */
{
e.printStackTrace(); /* show the error */

}
}
return(loadTable); /* return the table */

}

For each class specified in the PreLoad section:
1. The class is loaded using the MQeLoader. This calls the null constructor of the

class, so any inialization or /startup code must be placed in this constructor
2. Once loaded, a reference to the class is placed in a hashtable. This table can

then be used by other methods in the server for instance, when the server
closes the close method of the server could be extended to execute the close
method of every preloaded class.

Example MQePrivateServer
MQePrivateServer is an extension of MQeServer with the addition that it
configures the queue manager and registry to allow for secure queues. See
“Chapter 7. Security” on page 159.

Example AwtMQeServer
AwtMQeServer located in package examples.awt provides a graphical front end to
the console based servers.

The server can be started with the following invocation:
<javaCommand> examples.awt.AwtMQeServer <startupIniFile>

Where:

javaCommand:
is the command used to start Java applications (java for example)

startupIniFile:
is an ini file containing startup parameters for the queue manager and
server (for example .\ExamplesAwtMQeServer.ini)

Batch file ExamplesAwtMQeServer.bat provides a shortcut for starting the server
with ini file .\ExamplesAwtMQeServer.ini.

The AwtMQeServer uses the following additional aliases:

Sever the server class for which this class provides a graphical front end

Admin
the name of a class that provides an administration console

The example ini file .\ExamplesAwtMQeServer.ini sets the aliases as follow:

server queue managers

Chapter 4. MQSeries Everyplace queue manager 47

*
* Admin console (if any)
*
(ascii)Admin=examples.administration.console.Admin
*
* Base Server class
*
(ascii)Server=examples.queuemanager.MQeServer

Once started the following window is displayed:

The buttons function as follows:

Exit Close the server and perform a System.exit()

Stop|Run
If the server is running then ’Stop’ stops it. If the server is stopped then
the button displays ’Run’. This is used to start the server.

The start is performed with the following code:
if (running) /* running ? */
{
setText(North, index, "Run"); /* ... yes, */
server.activate(false); /* stop server */

}
else
{
setText(North, index, "Stop"); /* ... no, i.e start */
if (server == null) /* initialized before ? */
{ /* yes, */
/* Load the startup parms and setup class aliases */
MQeFields sections
= MQeQueueManagerUtils.loadConfigFile(iniName);

MQeQueueManagerUtils.processAlias(sections);
/* Load the server and initialise if first pass */
server = (MQeServer)MQe.loader.loadObject("Server");
server.init(sections);

}
server.activate(true); /* Activate the server */

}
running = ! running; /* change state */

Trace If the Trace alias is set, Trace activates trace if it is not currently active and
deactivate if it is already running. This is achieved with the following
code:
/* Get current trace handler if any .. */
MQeTraceInterface trace = MQe.getTraceHandler();
if (trace == null) /* If trace is not on,start it */
MQeQueueManagerUtils.traceOn(this.getTitle() + " - Trace", null);

else /* otherwise stop it */
MQeQueueManagerUtils.traceOff();

l

Figure 7. AWT MQe server window

server queue managers

48 MQSeries Everyplace Programming Guide

Admin
If the Admin alias is set then an admin console is started if not already
started, and stopped if it is already running. The follow code implements
this function:
if (adminGUI != null && adminGUI.active)
{ /* GUI active so */
adminGUI.close(); /* close it */
adminGUI = null;

}
else if (adminGUI == null ||

(adminGUI != null && !adminGUI.active))
{ /* GUI not running or not active*/
adminGUI = (Admin)MQe.loader.loadObject("Admin");
adminGUI.activate(); /* so load and actiate it */

}

Help Displasy an about dialog

Additionally event logging can be turned on and off and the event logger to use
can be selected from the drop down list box. The following selections are possible:
v No logging,
v examples.eventlog.LogToDiskFile

v examples.eventlog.LogToNTEventLog

Servlet
As well as running as a standalone server, a queue manager can run inside a Web
server by encapsulating it in a servlet. When run as a servlet the queue manager
has nearly the same capabilities as when run as a server. MQeServlet provides an
example implementation of a servlet. As with the server, servlets use ini files to
hold start up parameters and a servlet can interchangeably use a server ini file.

A servlet uses many of the same MQSeries Everyplace components as the server,
the main component not required in a servlet is the channel listener, this function
is handled by the Web server itself. Web servers only handle http data streams so
any MQSeries Everyplace client that wishes to communicate with an MQSeries
Everyplace servlet must use the http adapter
(com.ibm.mqe.adapters.MQeTcpipHttpAdaper). When configuring connections to
queue managers running in servlets, the name of the servlet must be specified in
the parameters field of the connection. For exampl,e to communicate with queue
manager PayrollQM on servlet /servlet/MQSeries Everyplace a connection must
be configured like this:

Connection name:
PayrollQM

Channel:
com.ibm.mqe.MQe

Channel Adapter:
com.ibm.mqe.adapters.MQe

TcpipHttpAdaper:
192.168.0.10:80

Parameters:
/servelet/MQe

Options

server queue managers

Chapter 4. MQSeries Everyplace queue manager 49

Alternatively, if the relevant aliases have been set up, the connection can be
configured as:

Connection name:
PayrollQM

Channel:
DefaultChannel

Adapter:
Network:192.168.0.10:80

Parameters:
/servelet/MQe

Options:

Web servers can run multiple servlets. It is possible to run multiple different
MQSeries Everyplace servlets within a Web server, with the following restrictions:
v Each servlet must have a unique name
v Only one queue manager is allowed per servlet
v Each MQSeries Everyplace servlet must run in a different Java Virtual Machine

(JVM)

The MQSeries Everyplace sevlet extends javax.servlet..http.HttpServlet and
overrides methods for starting, stopping and handling new requests. The following
code fragmrnt starts a servlet:
/**
* Servlet Initialisation......
*/

public void init(ServletConfig sc) throws ServletException
{
// Ensure supers constructor is called.
super.init(sc);

try
{
// Get the the server startup ini file
String startupIni;
if ((startupIni = getInitParameter("Startup")) == null)
startupIni = defaultStartupInifile;

// Load it
MQeFields sections = MQeQueueManagerUtils.loadConfigFile(startupIni);

// assign any class aliases
MQeQueueManagerUtils.processAlias(sections);

// Uncomment the following line to start trace before the queue
// manager is started
// MQeQueueManagerUtils.traceOn("MQeServlet Trace", null);

// Start channel manager
channelManager = MQeQueueManagerUtils.processChannelManager(sections);

// check for any pre-loaded classes
loadTable = MQeQueueManagerUtils.processPreLoad(sections);

// setup and activate the queeu manager
queueManager = MQeQueueManagerUtils.processQueueManager(sections,

channelManager.getGlobalHashtable());

// Start ChannelTimer (convert timeout from secs to millsecs)
int tI =

servlet queue managers

50 MQSeries Everyplace Programming Guide

sections.getFields(MQeQueueManagerUtils.Section_Listener).getInt("TimeInterval");
long timeInterval = 1000 * tI;
channelTimer = new MQeChannelTimer(channelManager, timeInterval);

// Servlet initialisation complete
mqe.trace(1300, null);

}
catch (Exception e)
{
mqe.trace(1301, e.toString());
throw new ServletException(e.toString());

}
}

The main differences compared to a server startup are:
v The servlet overrides the superclasses init method. This method is called by the

Web server to start the servlet. Typically this occurs when the first request
arrives for the servlet.

v The name of the startup parameters ini file cannot be passed in from the
command line as with a server. The example expects to obtain the name using
the servlet method getInitParameter() which takes the name of a parameter
and returns a value. The MQSeries Everyplace servlet uses a parameter name of
Startup that it expects to contain an ini file name. The mechanism for
configuring parameters in a Web server is Web server dependant.

v A channel listener is not started as the Web server handles all network requests
on behalf of the servlet.

v As there is no channel listener a mechanism is required to timeout channels that
have been inactive for longer than the timeout period. A simple timer class
MQeChannelTimer is instantiated to perform this function. The TimeInterval
value is the only parameter used from the Listener section of the ini file.

As mentioned earlier, a servlet relies on the Web server for accepting and handling
incoming requests. Once the Web server has decided that the request is for an
MQSeries Everyplace servlet, it passes the request to MQSeries Everyplace using
the doPost() method. THe following code handles this request:
/**
* Handle POST......
*/

public void doPost(HttpServletRequest request,
HttpServletResponse response) throws IOException

{
// any request to process ?
if (request == null)
throw new IOException("Invalid request");

try
{
int max_length_of_data = request.getContentLength(); // data length
byte[] httpInData = new byte[max_length_of_data]; // allocate data area
ServletOutputStream httpOut = response.getOutputStream();// output stream
ServletInputStream httpIn = request.getInputStream(); // input stream

// get the request
read(httpIn, httpInData, max_length_of_data);

// process the request
byte[] httpOutData = channelManager.process(null, httpInData);

// appears to be an error in that content-length is not being set
// so we will set it here
response.setContentLength(httpOutData.length);
response.setIntHeader("content-length", httpOutData.length);

servlet queue managers

Chapter 4. MQSeries Everyplace queue manager 51

// Pass back the response
httpOut.write(httpOutData);

}
catch (Exception e)
{
// pass it on ...
throw new IOException("Request failed" + e);

}
}

This method:
1. Reads the http input data stream into a byte array. The input data stream may

be buffered so the read() method is used to ensure that the entire data stream
is read before continuing.

Note: MQSeries Everyplace only handles request with the doPost() method, it
does not accept requests using the doGet() method

2. The request is passed to MQSeries Everyplace through a channel manager.
From this point, all processing of the request is handled by core MQSeries
Everyplace classes such as the queue manager.

3. Once MQSeries Everyplace has completed processing of the request it returns
the result wrapped in HTTP headers as a byte array. This is passed to the Web
server for transmission back to the client originating the request.

Configuring queue managers using base classes
Although the use of MQeQueueManagerConfigure is the recommended way to
create and delete queue managers, this section describes how to create the same
function from base classes.

Queue manager activation
A queue manager requires two things to allow it to activate properly, a
pre-configured registry and a set of activation parameters that inform the queue
manager how to activate that registry. When a queue manager is activated the
activation parameters are passed to it. These parameters consist of MQeFields
objects embedded inside another MQeFields object.

The names of the embedded MQeFields objects to be used are defined in the
MQeQueueManager class:

Queue manager setup data
MQeQueueManager.QueueManager

The name of the queue manager being activated.

Registry location
MQeQueueManager.Registry.

The location of the queue manager’s predefined registry.

MQSeries Everyplace aliases
MQeQueueManagerUtils.Section_Aliases

The queue manager setup fields consist of the name of the queue manager being
activated. The registry location fields inform the queue manager of the location of
its predefined registry.

servlet queue managers

52 MQSeries Everyplace Programming Guide

The registry contains the definitions of the queues that the queue manager owns,
the definitions of any other queue managers known , and some configurable queue
manager setup data. This setup data is:

Queue manager description
A String containing a description for this queue manager

Queue manager rules
A String containing the name of the class to be used as the queue
manager’s Rules (see “Queue manager rules” on page 75).

Default queue store
A path name that is the location of the default queue store. This is only
used if a queue that does not already contain a Queue Store field is added
to the queue manager . In this case, the queue is assigned the default
queue store. The name of the queue is appended to the default string to
give the queue its own unique store path name.

Note: A queue store is the location of the queues store of messages.

Channel attribute rules
A String containing the name of the class to be used as the channel
attribute rules. These rules describe the required behavior when dealing
with remote queues that have non-null attributes.

Channel Timeout -
A long value that is the channel time-out (measured in milliseconds). If a
channel between two queue managers is idle for longer than this period,
then the channel is closed.

All these values can be updated using MQSeries Everyplace Administration and
they can also be configured when the queue manager is created.

The MQSeries Everyplace Aliases are alias names for standard and custom
MQSeries Everyplace classes. When referring to the class, the alias name can be
used instead of the full class name. A typical alias list would look something like
this (in ini file format):
[Alias]
*
* Channel manager & Commands class(s)
*
(ascii)Echo=Test.Echo
*
* Event log class
*
(ascii)EventLog=examples.eventlog.LogToDiskFile
*
* Network adapter class
*
(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter
*
* queue manager class
*
(ascii)QueueManager=com.ibm.mqe.MQeQueueManager
*
* Trace handler (if any)
*
(ascii)Trace=examples.awt.AwtMQeTrace
*
* Disk fields interface
*
(ascii)MsgLog=com.ibm.mqe.adapters.MQeDiskFieldsAdapter

servlet queue managers

Chapter 4. MQSeries Everyplace queue manager 53

*
* Admin console (if any)
*
(ascii)Admin=examples.administration.console.Admin
*
* Base Server class
*
(ascii)Server=examples.queuemanager.MQeServer
*
* Default Channel class
*
(ascii)DefaultChannel=com.ibm.mqe.MQeChannel
*
* Default Transporter class
*
(ascii)DefaultTransporter=com.ibm.mqe.MQeTransporter

The alias names are on the left of the equals sign, and the full class name is on the
right. For example, the name ’Trace’ can now be used instead of
examples.awt.AwtMQeTrace. The ″(ascii)″ before the alias names signifies the type of
the entry, in this case as ascii string.

The alias list can include a solution’s own classes.

The alias list is not processed by the queue manager itself. The queue manager
requires this list to have been processed prior to its activation as several of these
aliases are required to allow the queue manager to activate properly. For example,
queues must have a queue store adapter defined so that they have a storage area
in which to hold their messages (see “Queues” on page 63). MsgLog is the default
queue store adapter, if this is not present then a ’MsgLog not found’ exception is
thrown.

MQSeries Everyplace provides two classes that start the queue manager in
predefined configurations. (These classes are in the examples directory.)
v The MQeClient class starts the queue manager as a client
v MQeServer class starts the queue manager as part of an MQSeries Everyplace

server

Note: The MQeServer accepts multiple concurrent requests from other MQSeries
Everyplace configurations and these are serviced by the queue manager
associated with the server.

All required processing is handled by these classes before the queue manager is
started.

It is possible to process the alias list and activate the queue manager without using
either of these classes. The alias list is processed using the MQe.alias method. In
the example below, the alias name ’Trace’ is set to ’examples.awt.AwtMQeTrace’.
alias("Trace", "examples.awt.AwtMQeTrace");

Both MQeClient and MQeServer accept an .ini file containing the queue manager
parameters. The entries in the .ini file are converted to the required embedded
MQeFields object. This is done with the
examples.queuemanager.MQeQueueManagerUtils class which in turn makes use of
the MQe.alias method to process the alias list.

The following code fragment shows these procedures:

servlet queue managers

54 MQSeries Everyplace Programming Guide

public static void processAlias(MQeFields sections) throws Exception
{
if (sections.contains(Section_Alias)) /* section present ? */
{ /* ... yes */
MQeFields section = sections.getFields(Section_Alias);
Enumeration keys = section.fields(); /* get all the keywords */
while (keys.hasMoreElements()) /* as long as there are */

/* keywords */
{ /* */
/* get the Keyword */
String key = (String) keys.nextElement();
/* add alias */
MQe.alias(key, section.getAscii(key).trim());

} /* */
} /* */

}

The input to this method, the MQeFields object sections, is the .ini file in
MQeFields form. The ini file is converted to MQeFields object form in the
loadConfigFile() method of MQeQueueManagerUtils (this makes use of the
MQeFields.restoreFromString() method).

First of all, a test is made to see if sections contains an alias list. The alias list ini
file section name is defined in the constant, Section_Alias. If an alias list is
available, then a getFields() is performed on sections, to return the alias list (
this is also an MQeFields object). The contents of the alias list is then enumerated,
and the code loops through the enumeration, calling the alias command for each
alias.

Using queue managers

MQSeries Everyplace applications and the Java Virtual
Machine

The Java version of the MQSeries Everyplace queue manager runs inside an
instance of a Java Virtual Machine (JVM). Currently MQSeries Everyplace only
allows one queue manager to be invoked per JVM. However, it is possible to
invoke multiple instances of the JVM (every time the Java command is invoked a
new Java Virtual Machine is created), and hence multiple MQSeries Everyplace
queue managers on the same device. Each of these queue managers should have a
unique name, and if this is not the case then unexpected behavior may result.

Any Java MQSeries Everyplace applications must run inside the same JVM as the
queue manager they are using. An elegant way to do this is to use an application
launcher. This is a class that starts the queue manager and a number of MQSeries
Everyplace applications on separate threads. An example of such a class is shown
in the following code fragment:
/* extends from MQe base class */
public class appLauncher extends MQe implements Runnable
{
Thread[] threads = null; /* thread references */
String[] appList = null; /* list of MQSeries Everyplace apps */
int appCount = 0;
String lock = new String();
MQeQueueManager qmgr = null; /* reference to QMgr */

public static void main(String args[])
{

try

servlet queue managers

Chapter 4. MQSeries Everyplace queue manager 55

{
(new appLauncher()).startApplications();

}
catch (Exception e)
{
System.err.println("Exception on starting applications");
e.printStackTrace(System.err);

}
}

public void startApplications(String args[]) throws Exception
{
boolean active = false; /* any active threads? */
/* create an array of the thread references of the applications */
/* being launched */
threads = new Thread[args.length];
appList = args; /* keep the list of the applications to be launched */
/* loop through the list of apps being launched & start a new */
/* thread for each one */
for (int i = 0; i < appList.length; i++)
{
Thread th = new Thread(this); /* create a new thread */
threads[i] = th; /* keep reference */
th.start(); /* start new thread */
/* loop until queue manager is active then start rest of apps */
if (i == 0)
while(qmgr == null);

}
/* keep appLauncher thread alive until all other apps have finished */
while(active)
{
active = false;
/* loop through thread references, starting at element 1 */
/* remember first element in appList is QMgr ini file path name */
for(int j=1; j < appList.length; j++)
if (threads[j] != null)
active = true; /* thread still active */

}
if (qmgr != null)
qmgr.close(); /* close queue manager */

}

/* this method called for each application being launched, plus the */
/* queue manager */
public void run()
{
int currentApp; /* which element in threads table */
synchronized(lock)
{
currentApp = appCount;
appCount++; /* update count */

}
try
{
/* first element is QMgr ini file path name */
if (currentApp == 0) /* start queue manager */
{
MQeClient client = new MQeClient(appList[0]);
qmgr = client.queueManager; /* QMgr now active */

}
else /* load application */

/* (this invokes default constructor) */
loader.loadObject(appList[currentApp]);

}
catch (Exception e)
{
e.printStackTrace(System.err);

applications and the JVM

56 MQSeries Everyplace Programming Guide

}
finally
{ /* get thread reference for this app */
Thread th = threads[currentApp];
threads[currentApp] = null; /* nullify reference */
th.stop(); /* stop thread */

}
}

}

The arguments supplied to this class are the path name of the queue manager’s
ini file, followed by a list of MQSeries Everyplace applications to be invoked. All
of the applications are invoked using their default constructor.

The application launcher is invoked with the command
java appLauncher
<ini file path name><application class name><application class name>...

For example:
java appLauncher

e:\\MQe\\TestQMgr\\TestQMgr.ini examples.queuemanager.TestMQeApp

All the applications should use MQeQueueManager.getReference() to obtain the
object reference to the queue manager that is already running inside the JVM.

Launching applications with RunList
An alternative way of launching MQSeries Everyplace applications is to use the
RunList mechanism. Two lists of MQSeries Everyplace applications can be supplied
as part of the queue manager activation parameters. The first list contains
applications that are launched after the queue manager has been activated. The
second list contains applications that are launched once a queue manager has
received a close request.

If the applications contained in the queue manager parameters implement
MQeRunListInterface, then the queue manager calls the activate() method
defined in the interface to activate the application, and it passes any setup
information for the application that is contained in the queue manager parameters.

The applications do not have to implement MQeRunListInterface, but if they do
not then the application is just invoked and no setup information is passed to it.

The section [AppRunList] in the ini file contains the names of the applications
that are to be launched at queue manager activation time. The symbolic name of
the application is on the left-hand side of the equals sign, with the full class name
of the application on the right , as shown in the queue manager ini file example.

Any setup data for the application can be provided in a section with the symbolic
name of the application.

Example queue manager ini file
* Sample queue manager ini file

* queue manager setup info
[QueueManager]
* Name for this queue manager
(ascii)Name=ServerQMgr8082

applications and the JVM

Chapter 4. MQSeries Everyplace queue manager 57

* Registry setup info
[Registry]
* QueueManager Registry type (ascii)LocalRegType=com.ibm.mqe.registry.MQePrivateSession
* Location of the registry
(ascii)DirName=d:\development\Rename\Classes\ServerQMgr8082\Registry
* Registry access PIN
(ascii)PIN=12345678

* List of applications to launched at queue manager activation-time
[AppRunList]
(ascii)App1=examples.queuemanager.TestMQeApp
(ascii)App2=examples.administration.AdminApp

* Setup info for App1 - the data in this section is passed to the application
[App1]
(ascii)DefaultMsgPriority = 7
(long)Timeout = 30000

* Setup info for App2 - the data in this section is passed to the application
[App1]
(ascii)DefaultQueueName=AdminReplyQueue

The applications invoked on queue manager activation should return from this
method as quickly as possible to allow the queue manager to continue its
activation. If the application is a long running task it shouldinitialize itself on a
different thread from the one on which it was called. The application is responsible
for the management of this thread.

The applications invoked on queue manager close can block the queue manager
from shutting down by not returning.

Example of an application being launched at queue manager activation time
public class ExampleApp extends MQe implements MQeRunListInterface,

Runnable,
MQeMessageListenerInterface

{
Thread th = null;
MQeQueueManager qmgr = null;
...
/*Called by the queue manager to activate the application */
public Object activate(Object owner, Hashtable loadTable,

MQeFields setupData)
{
qmgr = (MQeQueueManager)owner; /*QMgr is owner of the application*/
processSetupData(setupData); /*Process the setup information*/
th = new Thread(this); /*Create a new thread to listen*/
th.start(); /*for incoming messages*/
return (null); /*return control to the QMgr*/

}

public void run()
{
try
{

/*Create a message listener for incoming messages*/
qmgr.addMessageListener(this, "MyQueue", null);
/* Loop indefintely keeping application alive */
while(true);

}
catch (Exception e)
{
e.printStackTrace(System.err);

runlist

58 MQSeries Everyplace Programming Guide

}
}
...

}

In this example, the application is invoked using the activate() method. This
method processes its setup data, and creates a message listener on a separate
thread. The application returns control to the queue manager as soon as possible,
to allow the queue manager to continue its activation process. The thread that the
application created remains active.

Example of an application being launched when the queue manager receives a
close request
public class ExampleCloseApp extends MQe implements MQeRunListInterface
{
MQeQueueManager qmgr = null;
...
/* Called by the queue manager to activate the application */
public Object activate(Object owner, Hashtable loadTable,

MQeFields setupData)
{
qmgr = (MQeQueueManager)owner; /* QMgr is owner of the application */
performAction(); /* Perform some action */
/* don't return control to the QMgr until application has finished */
return (null);

}
}

In this example, the application is activated using its activate() method when the
queue manager receives a close request. The application should not return control
to the queue manager until it has finished its processing because once the queue
manager has control it continues its close-down process.

Messages
MQSeries Everyplace message objects are descendant objects of MQeFields, and so
inherit the power of the fields paradigm. Applications are able to place any data
into the message as a <name, data> pairing. MQSeries Everyplace defines some
constant field names that are useful to messaging applications. These are:

Unique ID
MQe.Msg_OriginQMgr + MQe.Msg_Time

MQSeries Message ID
MQe.Msg_ID

MQSeries Correlation ID
MQe.Msg_CorrelID

Priority
MQe.Msg_Priority

The Unique ID is a combination of a unique (per JVM) timestamp generated by the
message object when it is created, and the name of the queue manager to which
the message was first given. The Unique ID cannot be changed by an application,
however it can be used by applications to retrieve messages.

The Unique ID can be used to uniquely identify a message within an MQSeries
Everyplace network so long as all queue managers within a MQSeries Everyplace
network are named uniquely.

runlist

Chapter 4. MQSeries Everyplace queue manager 59

Note: MQSeries Everyplace does not enforce this requirement, it is the
responsibility of an individual solution to provide unique names for its
queue managers.

An application has no control over the Unique ID generated by a message,
however an application can access the unique ID and make use of it in message
filters (see below). The getMsgUIDFields() method accesses the Unique ID of a
message:
MQeFields msgUID = msgObj.getMsgUIDFields();

The MQeFields object returned by the getMsgUIDFields() method contains two
fields,
v MQe.Msg_OriginQMgr
v MQe.Msg_Time

These fields can be individually retrieved as follows:
long timeStamp = msgUID.getLong(MQe.Msg_Time);
String originQMgr = msgUID.getAscii(MQe.Msg_OriginQMgr);

The MQSeries Message ID and Correlation ID fields allow an application-specified
identity value to be provided. These two fields also facilitate inter-operability with
the rest of the MQSeries family.
MQeMsgObject msgObj = new MQeMsgObject;
msgObj.putArrayOfByte(MQe.Msg_ID, MQe.asciiToByte("1234"));

The Priority field contains message priority values. Message Priority is defined in
the same way as in other members of the MQSeries family. It ranges from 9
(highest) to 0 (lowest). Applications can use this field to deal with a message
appropriately according to its priority.
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putByte(MQe.Msg_Priority, (byte)8);

Applications can create fields within messages for their own data.
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putAscii("PartNo", "Z301");
msgObj.putAscii("Colour", "Blue");
msgObj.putInt("Size", 350);

An alternative approach is to extend MQeMsgObject, and include some methods to
assist with creating messages.
package messages.order;
import com.ibm.mqe.*;

/**
* This class defines the Order Request format
*/

public class OrderRequestMsg extends MQeMsgObject
{

public OrderRequestMsg() throws Exception
{
}

/**
* This method sets the client number
*/
public void setClientNo(long aClientNo) throws Exception
{
putLong("ClientNo", aClientNo);

messages

60 MQSeries Everyplace Programming Guide

}

/**
* This method returns the client number
*/
public long getClientNo() throws Exception
{
return getLong("ClientNo");

}

/**
* This method sets the name of the item to be ordered
*/
public void setItem(String anItem) throws Exception
{
putUnicode("Item", anItem);

}

/**
* This method returns the name of the item to be ordered
*/
public String getItem() throws Exception
{
return getUnicode("Item");

}

/**
* This method sets the quantity required
*/
public void setQuantity(int aQuantity) throws Exception
{
putInt("Quantity", aQuantity);

}

/**
* This method returns the quantity required
*/
public int getQuantity() throws Exception
{
return getInt("Quantity");

}

/**
* This method sets the name of the queue to which to send an order reply
*/
public void setReplyToQ(String aMyReplyToQ) throws Exception
{
putAscii("Msg_ReplyToQ", aMyReplyToQ);

}

/**
* This method returns the name of the queue to which an order reply
* will be sent
*/
public String getReplyToQ() throws Exception
{
return getAscii("Msg_ReplyToQ");

}

/**
* This method sets the name of the queue manager to which an order
* reply will be sent
*/
public void setReplyToQMgr(String aMyReplyToQMgr) throws Exception
{
putAscii("Msg_ReplyToQMgr", aMyReplyToQMgr);

}

messages

Chapter 4. MQSeries Everyplace queue manager 61

/**
* This method returns the name of the queue manager to which an order
* reply will be sent
*/
public String getReplyToQMgr() throws Exception
{
return getAscii("Msg_ReplyToQMgr");

}
}

The additional methods handle the puts and gets of the data in and out of the
message object. The application programmer doesn’t need to be involved with
either the type of the data being sent, or the field names being used inside the
message.
OrderRequestMsg orderRequest = new OrderRequestMsg();
orderRequest.setClientNo(1234); /* client ref. number */
orderRequest.setItem(" MQSeries Everyplace Programmers Guide"); /* item being ordered */
orderRequest.setQuantity(12); /* quantity */
/* send the order reply to QMgr1.OrderReplyQueue */
orderRequest.setReplyToQMgr("QMgr1");
orderRequest.setReplyToQ("OrderReplyQueue");

Filters
The concept of filters allows MQSeries Everyplace to perform powerful message
searches. Most of the major queue manager operations support the use of filters.
Filters are created by placing fields into MQeFields objects. For example a simple
get message operation can take a null filter. The result of this operation is the
return of the first available message on the queue.
qmgr.getMessage("myQMgr", "myQueue", null, null, 0);

The use of a filter allows an application to return the first available message that
contains the same fields and values as the filter. For example, if an application
wants to obtain the first message containing a message id of ’1234’, then it would
create a filter as follows:
MQeFields filter = new MQeFields();
filter.putArrayOfByte(MQe.Msg_MsgID, MQe.AsciiToByte("1234"));

And the filter would be passed into the get message operation:
qmgr.getMessage("myQMgr", "myQueue", filter, null, 0);

The result of the operation is to return the first available message on the queue
containing the message ID ’1234’.

Message index fields
MQSeries Everyplace stores its messages in the persistent store provided by each
queue, (unless the application is using a memory queue store adapter). It does not
hold the entire message in memory due to memory size constraints. However, it
does hold certain fields in each message in a message index, to allow faster
message searching. The fields that are cached are:

Unique ID
MQe.Msg_OriginQMgr + MQe.Msg_Time

MQSeries Message ID
MQe.Msg_ID

MQSeries Correlation ID
MQe.Msg_CorrelID

messages

62 MQSeries Everyplace Programming Guide

Priority
MQe.Msg_Priority

Using these fields in the filter supplied to messaging functions makes searching
more efficient, since MQSeries Everyplace may not have to load all messages into
memory.

Message Expiry
Queues can be defined with an expiry interval. If a message has remained on a
queue for a period of time longer than this interval then the message is marked as
expired. The queue rules then decide what happens to the message once it has
been marked as expired.

Messages can also have an expiry interval themselves. This is defined by adding
an MQe.Msg_ExpireTime field to the message. The expiry time is either relative
(expire 2 days after the message was created), or absolute (expire on November
25th 2000, at 08:00 hours).

In the example below, the message will expire 60 seconds after it is created. (60000
milliseconds == 60 seconds).
/* create a new message */
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData", getMsgData());
/* expiry time of sixty seconds after message was created */
msgObj.putInt(MQe.Msg_ExpireTime, 60000);
/* put message onto queue */
qmgr.putMessage(null, "MyQueue", msgObj, null, 0);

In the example below, the message will expire on 15th May 2001, at 15:25 hours.
/* create a new message */
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData", getMsgData());
/* create a Date object for 15th May 2001, 15:25 hours */
Calendar calendar = Calendar.getInstance();
calendar.set(2001, 04, 15, 15, 25);
Date expiryTime = calendar.getTime();
/* add expiry time to message */
msgObj.putLong(MQe.Msg_ExpireTime, expiryTime.getTime());
/* put message onto queue */
qmgr.putMessage(null, "MyQueue", msgObj, null, 0);

Queues
Queue managers manage queues that hold messages. Each queue manager has the
ability to have queues that it manages and owns. These queues are known as local
queues.

MQSeries Everyplace allows applications to access messages on queues that belong
to another queue manager. These queues are known as remote queues. The same
sets of operations are available on remote queues as for local queues, with the
exception of defining message listeners (see below).

The queue entities are not directly visible to an application. All interactions with
the queues take place through the queue manager.

messages

Chapter 4. MQSeries Everyplace queue manager 63

The messages on the queues are written to the queue’s persistent store. If the
backing store used by the queue allows the messages to be recovered in the event
of a system failure, then this allows MQSeries Everyplace to assure the delivery of
messages.

The queue accesses the persistent store through a queue store adapter. Adapters
are interfaces between MQSeries Everyplace and hardware devices, such as disks
or networks, or software such as a database. Adapters are designed to be
’pluggable’ components, allowing the protocol used to talk to the device to be
easily changed. (See “Chapter 9. MQSeries Everyplace adapters” on page 205).

The backing store used by a queue can be changed using an MQSeries Everyplace
administration message. However, changing the backing store is not allowed while
the queue is active or contains messages.

Queue ordering
The order of messages on a queue is primarily dependent on priority. Message
priority ranges from 9 (highest) to 0 (lowest). Messages with the same priority
value are ordered by the time at which they arrived on the queue, with messages
that have been on the queue for the longest, being at the head of the priority
group.

Get message
When a queue is empty, the queue throws an Except_Q_NoMatchingMsg exception if
a get message command is issued. This allows us to implement a way of reading
all the available messages on a queue.
try
{
while(true)
{ /* keep getting messages until an exception is thrown */
MQeMsgObject msg = qmgr.getMessage("myQMgr", "myQueue", null, null, 0);
processMessage(msg);

}
}
catch (Exception e)
{
if (e.code() != MQe.Except_Q_NoMatchingMsg)
throw e;

}

By encasing the getMessage() call inside a try..catch block, we can test the code
of the resulting exception. This is done using the code() method of the
MQeException class. The result from the code() method can be compared against a
list of exception constants published by the MQSeries Everyplace class. If the
exception is not of type Except_Q_NoMatchingMsg the exception is rethrown.

Note: This function is not supported on MQ-bridge queues.

Browse and Lock
Browsing a group of messages and locking them is a useful technique, since it
allows an application to assure that no other application is able to process the
messages while they are locked. The messages remain locked until they are
unlocked by the application. No other application can unlock the messages.
MQeEnumeration msgEnum = qmgr.browseMessagesAndLock(null, "MyQueue", null,

null, 0, false);

This command locks all the messages on the queue ″MyQueue″ which exists on the
local queue manager (null is an alias for the local queue manager). These messages

queues

64 MQSeries Everyplace Programming Guide

can now only be accessed by the application that locked them. (Remember that any
messages arriving on the queue after the Browse and Lock operation will not be
locked).

The MQeEnumeration object contains all of the messages that match the filter
supplied to the browse. The MQeEnumeration can be used in the same manner as
the standard Java Enumeration, so we can enumerate all of the browsed messages
as follows:
while(msgEnum.hasMoreElements())
{
MQeMsgObject msg = (MQeMsgObject)msgEnum.nextElement();
System.out.println("Message from queue manager: " +

msg.getAscii(MQe.Msg_OriginQMgr));
}

The application can perform either a get or delete operation on the messages to
remove them from the queue. To do this the application must supply the lock ID
that is returned with the enumeration of messages. Specifying the lock ID allows
applications to work with locked messages without having to unlock them
first.The following code performs a delete on all the messages returned in the
enumeration. The message’s Unique ID along with the lock ID is used as the filter
on the delete operation.
while(msgEnum.hasMoreElements())
{
MQeMsgObject msg = (MQeMsgObject)msgEnum.getNextMessage(null,0);

processMessage(msg);

MQeFields filter = msg.getMsgUIDFields();
filter.putLong(MQe.Msg_LockID, msgEnum.getLockId());

qmgr.deleteMessage(null, "MyQueue", filter);
}

As an alternative to using the standard java.util.Enumeration nextElement()
method, MQeEnumeration supplies a getNextMessage() method. This method
works differently depending upon the justUID parameter of the browseMessages()
method. This parameter determines whether the browse operation returns all the
fields contained within the messages that it matches, or just the Unique ID fields.

If the justUID parameter is set to ’false’, then the MQeEnumeration returned by the
browse contains all of the fields in the messages that it has matched. The
getNextMessage() method works like nextElement() in this case.

If the justUID parameter is set to ’true’, then the MQeEnumeration returned by the
browse contains only the Unique ID fields of the messages that it has matched (
MQe.Msg_OriginQMgr & MQe.Msg_TimeStamp). In this case, the
getNextMessage() method works differently to nextElement(). Using
getNextMessage() on an MQeEnumeration that has been created by a browse
command, with justUID set to ’true’, actually performs a get message for the
message being enumerated. This removes the message from the queue.

Assured message delivery can be used when getting the message, specifying a
nonzero confirm ID means that a confirmation of the get is required (for details of
assured message delivery, see “Synchronous assured message delivery” on page 68
).

queues

Chapter 4. MQSeries Everyplace queue manager 65

Instead of removing the messages from the queue, it is also possible just to unlock
them, this makes them visible once again to all MQSeries Everyplace applications.
This is achieved using the unlockMessage() method.

Note: This function is not supported on MQ-bridge queues.

Synchronous and asynchronous messaging
MQSeries Everyplace allows flexibility in the way that applications process their
messages. An application does not need to know how or when its messages are
transmitted, however it can take control of this process if it wishes, using
synchronous messaging. Synchronous messaging means that the message is
transmitted as soon as the put message command is issued. This type of messaging
can only take place when both local and target queue managers are online
simultaneously, and does not work if the queue manager is not connected to the
network. It offers the performance advantages of instant connection and the
knowledge that a message has reached its destination.

Asynchronous messaging allows the application to continue processing messages
whether or not the device is connected to a network. The application puts a
message to a remote queue, the message is stored by the queue manager, and
transmitted later when a connection is established to the remote queue manager.
The application does not need to be aware of when this happens. The classic
example of asynchronous messaging is an application for a field engineer or
salesman. They are able to send orders or inventories, that are queued until the
device is again physically connected to a network. At this point the orders can be
transmitted. For asynchronous transmission to occur, the queue manager must be
’triggered’, and this is done either by an application calling the queue manager’s
triggerTransmission() method, or using the queue manager’s transmission rules
(see “Transmission Rules” on page 76).

The use of synchronous or asynchronous messaging is dependent on how the
remote queue is defined. A queue manager that is sending a message to a remote
queue holds a definition of that queue. This definition is known as a remote queue
definition. Remote queue definitions can be defined as either synchronous or
asynchronous. When a message is put to a remote queue, the local queue manager
determines how to transmit the message using the remote queue definition.

queues

66 MQSeries Everyplace Programming Guide

Messages are transmitted from the local queue manager to the remote queue
manager using the authenticator, cryptor, and compressor that are defined on the
remote queue. To be able to create a message channel between the two queue
managers, the local queue manager needs to be able to find out the required
attributes prior to transmission. The local queue manager keeps this information as
part of its remote queue definition.

The two transmission styles handle this differently.

With synchronous-style transmission, because the target queue manager is online
and available, the local queue manager is able to request the attributes of the target
queue. Synchronous messaging also allows messages to be sent to queues for
which the local queue manager does not hold a remote queue definition. Before
sending the message the local queue manager requests the characteristics of the
remote queue from the remote queue manager. Then it is able to use the correct
attributes on the channel when it is sending the message. This process is known as
queue discovery. Any information that the local queue manager discovers is stored
in a new remote queue definition.

However, asynchronous-style transmission is not able to request information from
the target queue manager. This style of transmission therefore requires that a
remote queue definition must exist before asynchronous transmission can occur.
Remote queue definitions can be defined using MQSeries Everyplace
administration messages.

Asynchronous transmission also introduces the concept of ’assured message
delivery’. When delivering messages asynchronously MQSeries Everyplace
guarantees to deliver that message once and once-only to its destination queue.
However, this assurance is only valid if the definition of the remote queue and
remote queue manager match the current characteristics of the remote queue and
remote queue manager.

The combination of synchronous and asynchronous messaging allows MQSeries
Everyplace to cope with unreliable communications links. If a message cannot be
delivered immediately because a link is down, then the message can be queued for
delivery at a subsequent time.

Figure 8. MQSeries Everyplace message flow

queues

Chapter 4. MQSeries Everyplace queue manager 67

An example of this is shown below. By defining two queues the application can
handle a situation where synchronous transmission is not possible.
try
{
qmgr.putMessage("RemoteQMgr", "TransactionQueue", msgObj, null, 0);

}
catch (Exception e)
/* reset message UID */
msgObj.resetMsgUIDFields();
{ /* if connection cannot be made, put message on asynchronous queue */
if (e.getMessage().equals("Connection Refused")
qmgr.putMessage("RemoteQMgr", "AsynchTransactionQueue",

msgObj, null, 0);
}

Synchronous assured message delivery

Put message: It is possible to perform assured message delivery using
synchronous message transmission, however the application must take
responsibility for error handling.

The non-assured delivery of a message takes place in a single network flow. The
queue manager sending the message creates a channel to the destination queue
manager, and attaches a transporter to that channel, which points to the
destination queue. (A suitable channel and transporter may exist from a previous
operation, if so they are used instead).

The message to be sent is dumped to create a byte-stream, and this is given to the
channel for transmission. Once program control has returned from the channel the
sender queue manager knows that the message has been successfully given to the
target queue manager, that the target has logged the message on a queue, and that
the message has been made visible to MQSeries Everyplace applications.

However, a problem can occur if the sender receives an exception over the channel
from the target. The sender has no way of knowing if the exception occurred
before or after the message was logged and made visible. If the exception occurred
before the message was made visible it is safe for the sender to resend the
message, however if the exception occurred after the message was made visible,
there is a danger of introducing duplicate messages into the system since an
MQSeries Everyplace application could have processed the message before the
sender resends.

The solution to this problem involves transmitting an additional confirmation flow.
If the sender receives a successful response for this flow from the target, then it
knows that the message has been delivered once and once-only.

The confirmId parameter of the putMessage method dictates whether the confirm
flow is sent or not. A value of zero means that message transmission occurs in one
flow, while a nonzero value means that a confirm flow is expected. The target
queue manager logs the message to the destination queue as usual, but the
message is locked and invisible to MQSeries Everyplace applications, until the
confirm flow is received.

An MQSeries Everyplace application can issue a put message confirmation using
the confirmPutMessage method. Once the target queue manager receives the flow
generated by this command, it unlocks the message in question, and makes it

queues

68 MQSeries Everyplace Programming Guide

visible to MQSeries Everyplace applications. It is only possible to confirm one
message at a time, it is not possible to confirm a batch of messages.

The confirmPutMessage() method requires that the message’s UID be specified, not
the Confirm ID used in the prior put message command. (The Confirm ID is also
used to restore messages that remain locked after a transmission failure. this is
explained in detail on page 72.)

A skeleton version of the code required is shown below:
long confirmId = MQe.uniqueValue();

try
{
qmgr.putMessage("RemoteQMgr", "RemoteQueue", msg, null, confirmId);

}
catch(Exception e)
{
/* handle any exceptions */

}

try
{
qmgr.confirmPutMessage("RemoteQMgr", "RemoteQueue",

msg.getMsgUIDFields());
}
catch (Exception e)
{
/* handle any exceptions */

}

If a failure occurs during step 1 in Figure 9 the message should be retransmitted.
There is no danger of introducing duplicate messages into the MQSeries
Everyplace network since the message at the target queue manager is not made
visible to applications until the confirm flow has been successfully processed.

If the MQSeries Everyplace application retransmits the message, it should also
inform the target queue manager that this is happening. The target queue manager
deletes any duplicate copy of the message that it already has. The application sets
the MQe.Msg_Resend field to do this.

If a failure occurs during step 2 in Figure 9 the application should resend the
confirm flow, there is no danger in doing this since the target queue manager
ignores any confirm flows it receives for messages that it has already confirmed.

01. Application issues a Put Message (specifying a non-zero confirm Id)

T2.Msg state on persistent store
changed to ‘Unlocked’.
Msg is now visible to other
Mqe applications

T1.Logs msg to persistent store
Msg in state ‘Put_Unconfirmed’

01. Application now knows that the message has been successfully delivered

02. Application issues a Confirm Put Message (specifying message UID)

Figure 9. Assured put of synchronous messages

queues

Chapter 4. MQSeries Everyplace queue manager 69

The code below is taken from examples.application.example6

boolean msgPut = false; /* put successful? */
boolean msgConfirm = false; /* confirm successful? */
int maxRetry = 5; /* maximum number of retries */

long confirmId = MQe.uniqueValue();

int retry = 0;
while(!msgPut && retry < maxRetry)
{
try
{
qmgr.putMessage("RemoteQMgr", "RemoteQueue", msg, null, confirmId);

msgPut = true; /* message put successful */
}
catch(Exception e)
{
/* handle any exceptions */
/* set resend flag for retransmission of message */
msg.putBoolean(MQe.Msg_Resend, true);
retry ++;

}
}

if (!msgPut) /* was put message successful? */
/* Number of retries has exceeded the maximum allowed, so abort the put*/
/* message attempt */

return;

retry = 0;
while(!msgConfirm && retry < maxRetry)
{
try
{
qmgr.confirmPutMessage("RenoteQMgr", "RemoteQueue",

msg.getMsgUIDFields());
msgConfirm = true; /* message confirm successful */

}
catch (Exception e)
{
/* handle any exceptions */
/* An Except_NotFound exception means that the message has already */
/* been confirmed */
if (e instanceof MQeException &&

((MQeException)e).code() == Except_NotFound)
putConfirmed = true; /* confirm successful */

/* another type of exception - need to reconfirm message */
retry ++;

}
}

Get message:

The system of assured message delivery works similarly for get message
operations. If a get message command is issued with a confirmId parameter
greater than zero, the message is left locked on the queue on which it resided until
a confirm flow is processed by the target queue manager. The message is then
deleted from the queue.

queues

70 MQSeries Everyplace Programming Guide

The following code is taken from examples.application.example6

boolean msgGet = false; /* get successful? */
boolean msgConfirm = false; /* confirm successful? */
MQeMsgObject msg = null;
int maxRetry = 5; /* maximum number of retries */

long confirmId = MQe.uniqueValue();
int retry = 0;
while(!msgGet && retry < maxRetry)
{
try
{
msg = qmgr.getMessage("RemoteQMgr", "RemoteQueue", filter, null,

confirmId);
msgGet = true; /* get succeeded */

}
catch (Exception e)
{
/* handle any exceptions */
/* if the exception is of type Except_Q_NoMatchingMsg, meaning that */
/* the message is unavailable then throw the exception */
if (e instanceof MQeException)
if (((MQeException)e).code() == Except_Q_NoMatchingMsg)
throw e;

retry ++; /* increment retry count */
}

}

if (!msgGet) /* was the get successful? */
/* Number of retry attempts has exceeded the maximum allowed, so abort */
/* get message operation */

return;

while(!msgConfirm && retry < maxRetry)
{
try
{
qmgr.confirmGetMessage("RemoteQMgr", "RemoteQueue",

msg.getMsgUIDFields());
msgConfirm = true; /* confirm succeeded */

}
catch (Exception e)
{
/* handle any exceptions */

Figure 10. Assured get of synchronous messages

queues

Chapter 4. MQSeries Everyplace queue manager 71

retry ++; /* increment retry count */
}

}

The value passed as the confirmId parameter also has another use. This value is
added to identify the message while it is locked and awaiting confirmation. An
error occurring during the get operation can potentially leave the message locked
on the queue. This can occur because the message has been locked in response to
the get command, and the error occurs before the application receives the
messages. If the application reissues the get in response to the exception, then it
will be unable to obtain the same message because it is locked and invisible to
MQSeries Everyplace applications.

However, the application that issued the get command can ’restore’ the messages
using the undo() method. The application must supply the same confirmId value
that it supplied to the get message command. The undo command restores all
messages containing the supplied confirmId to the state they were in before the
get command.
boolean msgGet = false; /* get successful? */
boolean msgConfirm = false; /* confirm successful? */
MQeMsgObject msg = null;
int maxRetry = 5; /* maximum number of retries */

long confirmId = MQe.uniqueValue();
int retry = 0;
while(!msgGet && retry < maxRetry)
{
try
{
msg = qmgr.getMessage("RemoteQMgr", "RemoteQueue", filter, null,

confirmId);
msgGet = true; /* get succeeded */

}
catch (Exception e)
{
/* handle any exceptions */
/* if the exception is of type Except_Q_NoMatchingMsg, meaning that */
/* the message is unavailable then throw the exception */
if (e instanceof MQeException)
if (((MQeException)e).code() == Except_Q_NoMatchingMsg)
throw e;

retry ++; /* increment retry count */
/* As a precaution, undo the message on the queue. This will remove */
/* any lock that may have been put on the message prior to the */
/* exception occurring */
myQM.undo(qMgrName, queueName, confirmId);

}
}

if (!msgGet) /* was the get successful? */
/* Number of retry attempts has exceeded the maximum allowed, so abort */
/* get message operation */

return;

while(!msgConfirm && retry < maxRetry)
{
try
{
qmgr.confirmGetMessage("RemoteQMgr", "RemoteQueue",

msg.getMsgUIDFields());
msgConfirm = true; /* confirm succeeded */

}
catch (Exception e)

queues

72 MQSeries Everyplace Programming Guide

{
/* handle any exceptions */
retry ++; /* increment retry count */

}
}

The undo command also has relevance for the putMessage and
browseMessagesAndLock commands. As with get message, the undo command
restores any messages locked by the browseMessagesandLock command to their
previous state.

If the undo command is issued after a failed putMessage command then any
message locked on the target queue awaiting confirmation are deleted.

The undo command works for operations on both local and remote queues.

Message listeners
MQSeries Everyplace provides the ability for an application to ’listen’ for events
occurring on queues. The notification takes the form of a standard Java event, and
the listening application implements an interface that provides methods that are
called when an event occurs. The application is able to specify messages filters to
identify the messages in which it is interested.
/* Create a filter for "Order" messages of priority 7 */
MQeFields filter = new MQeFields();
filter.putAscii("MsgType", "Order");
filter.putByte(MQe.Msg_Priority, (byte)7);
/* activate a listener on "MyQueue" */
qmgr.addMessageListener("MyQueue", this, filter);

The parameters passed to the addMessageListener() method are:
v The name of the queue on which to listen out for message events
v A callback object that implements MQeMessageListenerInterface
v A fields object containing a message filter

When a message arrives on a queue with a listener attached, the queue manager
calls the callback object that it was given when the message listener was created.

An example of the way in which an application would normally handle message
events is given below.
public void messageArrived(MQeMsgEvent msgEvent)
{
String queueName = msgEvent.getQueueName()
if (queueName.equals("MyQueue"))
{
/* get message from queue */
MQeMsgObject msg = qmgr.getMessage(null, queueName,

msgEvent.getMsgUIDFields(), null, 0);
/* ...and process it */
processMessage(msg);

}
}

messageArrived() is one of the methods implemented in
MQeMessageListenerInterface. The msgEvent parameter contains information
about the message; this includes:
v The name of the queue on which the message arrived
v The UID of the message
v The message ID

queues

Chapter 4. MQSeries Everyplace queue manager 73

v The correlation ID
v Message priority

Message filters only work on local queues. A separate technique known as polling
allows messages to be obtained as soon as they arrive on remote queues.

Message polling
Message polling uses the waitForMessage() method. This command executes a
getMessage() command to the remote queue at regular intervals. As soon a
message that matches the supplied filter becomes available it is returned to the
calling application.

A wait for message call would typically look like this:
qmgr.waitForMessage("RemoteQMgr", "RemoteQueue", filter, null, 0, 60000);

The waitForMessage() method polls the remote queue for the length of time
specified in its final parameter. The time is specified in milliseconds, so in the
example above, the polling would last for 60 seconds. The thread on which the
command is executing is blocked for this length of time, unless a message is
returned before this.

Message polling works on both local and remote queues.

Note: Use of this technique results in multiple requests being sent over the
network.

Messaging operations

Operation Local queues Remote queues

Synchronous Asynchronous

Browse(&Lock) yes yes

delete yes yes

get yes yes

listen yes

put yes yes yes

wait yes yes

Rules
MQSeries Everyplace uses the concept of rules to govern the behavior of its major
components. Rules allow an application to have some control over the internal
workings of MQSeries Everyplace. Rules take the form of Java classes that are
loaded by MQSeries Everyplace components when they are initialized.

Each component’s rules are called at certain points during the component’s
execution cycle. The component expects a method of a particular signature to be
available so when producing an extension of the base rules, care must be taken to
use the correct method signatures.

Default or example rules are provided for all MQSeries Everyplace components,
however it is expected that a solution would provide its own rules to customize
MQSeries Everyplace behavior to fit the solution requirements.

queues

74 MQSeries Everyplace Programming Guide

Queue manager rules
Queue manager Rules are called when:
v The queue manager is activated
v The queue manager is closed
v A queue is added to the queue manager
v A queue is removed from the queue manager
v A put message operation occurs
v A get message operation occurs
v A delete message operation occurs
v An undo message operation occurs
v The queue manager is ’triggered’ to transmit any pending messages

(Transmission Rules)
v An incoming Peer connection is established

Using queue manager rules

Following are some examples of the usage of the queue manager rules.

The first example shows a put message rule that insists that any message being put
to a queue using this queue manager must contain an MQSeries message ID field.
/* Only allow msgs containing an ID field to be placed on the Queue */
public void putMessage(String destQMgr, String destQ, MQeMsgObject msg,

MQeAttribute attribute, long confirmId)
{
if (!(msg.Contains(MQe.Msg_MsgId)))
throw new MQeException(Except_Rule, "Msg must contain an ID");

}

The next example rule is a get message rule that insists that a password must be
supplied before allowing a get message request to processed on the queue called
″OutboundQueue″. The password is included as a field in the message filter
passed into the getMessage() method.
/* This rule only allows GETs from 'OutboundQueue', if a password is */
/* supplied as part of the filter */
public void getMessage(String destQMgr, String destQ, MQeFields filter,

MQeAttribute attr, long confirmId)
{
super.getMessage(destQMgr, destQ, filter, attr, confirmId);
if (destQMgr.equals(Owner.GetName() && destQ.equals("OutboundQueue"))
{
if (!(filter.Contains("Password"))
throw new MQeException(Except_Rule, "Password not supplied");

else
{
String pwd = filter.getAscii("Password");
if (!(pwd.equals("1234")))
throw new MQeException(Except_Rule, "Incorrect password");

}
}

}

This rule is a very simple example of protecting a queue. However, for more
comprehensive security, it is recommended than a solution makes use of an
authenticator. This allows the solution to create access control lists, and therefore
manage who is able to get messages from queues.

queue manager rules

Chapter 4. MQSeries Everyplace queue manager 75

The next example rule is called when a queue manager administration request tries
to remove a queue. The rule is passed the object reference to the queue in question.
In the following example, the rule checks the name of the queue that is passed,
and if the queue is named ″PayrollQueue″, then the request to remove the queue is
refused.
/* This rule prevents the removal of the Payroll Queue */
public void removeQueue(MQeQueue queue) throws Exception
{
if (queue.getQueueName().equals("PayrollQueue"))
throw new MQeException(Except_Rule, "Can't delete this queue");

}

A queue manager can define its own peer channel listener. The listener detects
incoming connection attempt from other queue managers made using a peer
channel. The rule shown below is called whenever a connection request is
detected. The rule is passed the name of the queue manager attempting to connect.
public void peerConnection(String qmgrName)
{
/* block any connection attempt from 'RogueQMgr' */
if (qmgrName.equals("RogueQMgr"))
throw new MQeException(Except_Rule, "Connection not allowed");

}

Transmission Rules
A message that is put to a remote queue and is defined as synchronous is
transmitted immediately. Messages put to remote queues defined as asynchronous
are stored within the local queue manager, until such time as the queue manager is
’triggered’ into transmitting them to their destination. The queue manager can be
triggered directly by an application, but the process is also controlled by the queue
manager’s transmission rules.

The transmission rules are a subset of the queue manager rules that control the
manner in which messages are transmitted from the queue manager.

There are two methods within the rules class that allow control over message
transmission:

triggerTransmission()
Determines whether to allow message transmission at the time when the
rule is called

transmit()
Makes a decision to allow transmission for each individual queue. For
example, this makes it possible only to transmit the messages from queues
deemed to be ’high priority’. The transmit() rule is only called if the
triggerTransmission() rule returns successfully

Trigger Transmission Rule: The triggerTransmission rule is called when a
message is put onto a remote asynchronous queue. The queue manager
triggerTransmission method overrides this rule and causes an attempt to be made
to transmit any pending messages
/* default transmission rule - always allow transmission */
public boolean triggerTransmission(int noOfMsgs, MQeFields msgFields)
{
return true;

}

The return code from this rule tells the queue manager whether or not to transmit
any pending messages. A return code of true means transmit, while a return code

queue manager rules

76 MQSeries Everyplace Programming Guide

of false means do not transmit at this time. So, the above rule would attempt to
transmit all messages immediately. This is the default triggerTransmission() rule
contained in the base queue manager rules, class
com.ibm.mqe.MQeQueueManagerRule. The rule attempts to transmit a message as
soon as it is put onto a queue. This near-synchronous mode of operation is not
desirable because it is inefficient, since it sends all messages individually. It is
usually advantageous to send groups of messages to utilize the network more
efficiently.

A more complex rule could decide whether or not to transmit immediately based
on the priority of the message. The following example shows a rule that triggers
the queue manager if a message arrives that has a priority greater than 5.

The following example allows the use of a trigger message that would be sent by
an application when it wishes to initiate message transmission.
/* Decide to transmit based on priority of message */
public boolean triggerTransmission(int noOfMsgs, MQeFields msgFields)
{
if (msgFields == null) /* msg fields may be null */
return false;

if (!(msgFields.contains(MQe.Msg_Priority)))
return false; /* no priority field in message */

byte priority = msg.GetByte(MQe.Msg_Priority);
if (priority > 5) /* if message priority greater than 5 */

return true; /* then transmit */
else
return false; /* else do not transmit */

}

The msgFields parameter contains selected fields from the message. These fields
are:
v Unique ID
v Message ID
v Correlation ID
v Priority

If the rule decides to allow transmission, then all pending messages are
transmitted, not just the message that was put to the asynchronous remote queue.

The noOfMsgs parameter contains the number of messages that are awaiting
transmission. A solution may decide to implement a rule that blocks transmission
until a certain number of messages are pending. A rule such as this would help to
make more efficient use of the network connection.

The rule below blocks until at least 10 messages are awaiting transmission.
public void triggerTransmission(int noOfMsgs, MQeFields msgFields)
{
if (noOfMsgs >= 10) /* if more than 10 msgs are waiting */
return true; /* then transmit */

else
return false;

}

Transmit rule: The transmit() rule is only called if the triggerTransmission() rule
allows transmission, (returns a value of true). The transmit() rule is called for every
remote queue definition that holds messages awaiting transmission. This means
that the rule can decide which messages to transmit on a queue-by-queue basis.

queue manager rules

Chapter 4. MQSeries Everyplace queue manager 77

The rule below only allows message transmission from a queue if the queue has a
default priority greater than 5. (If a message has not been assigned a priority
before being placed on a queue, then it is given the queue’s default priority).
public boolean transmit(MQeQueue queue)
{
if (queue.getDefaultPriority() > 5)

return (true);
else
return (false);

}

A sensible extension to this rule would be to allow all messages to be transmitted
at ’off-peak’ time, and only messages from high-priority queues would be
transmitted during ’peak’ periods. See the next section for some rules which
implement similar ideas.

This rule only allows messages to be transmitted if the queue contains more than
10 messages.
public boolean transmit(MQeQueue queue)
{
if (queue.getNumberOfMessages() >= 10)
return (true);

else
return (false);

}

The following more complex example assumes that the transmission of the
messages is occurring over a communications network that charges for the time
taken for transmission. It also assumes that there is a ’cheap rate’ period when the
cost per unit time is lower. The rules block any transmission of messages until the
’cheap rate’ period. During the cheap-rate period, the queue manager is triggered
regularly.
import com.ibm.mqe.*;
import java.util.*;

/**
* Example set of queue manager Rules which trigger the transmission
* of any messages waiting to be sent.
*
* These rules only trigger the transmission of messages if the current
* time is between the values defined in the variables cheapRatePeriodStart
* and cheapRatePeriodEnd

* (This example assumes that transmission will take place over a
* communication network which charges for the time taken to transmit)

*/

public class ExampleQueueManagerRules extends MQeQueueManagerRule
implements Runnable

{
/* default interval between triggers is 10 minutes */
public final int triggerInterval = 600000;
/* cheap rate transmission period start and end times */
public final int cheapRatePeriodStart = 18; /* 18:00 hrs */
public final int cheapRatePeriodEnd = 9; /* 09:00 hrs */

/* background thread reference */
protected Thread th = null;

}

The example rules extend from the base queue manager rule class,
com.ibm.mqe.MQeQueueManagerRule.

queue manager rules

78 MQSeries Everyplace Programming Guide

The constants cheapRatePeriodStart and cheapRatePeriodEnd define the extent of
this cheap rate period. In this example, the cheap rate is defined as being between
18:00 hours in the evening until 09:00 hours the following morning.
/* cheap rate transmission period start and end times */
public final int cheapRatePeriodStart = 18; /* 18:00 hrs */
public final int cheapRatePeriodEnd = 9; /* 09:00 hrs */

The constant triggerInterval defines the period of time (in milliseconds) between
each triggering of the queue manager.
public final int triggerInterval = 600000;

In this example, the trigger interval is defined to be 600,000 milliseconds, which is
equivalent to 600 seconds, or 10 minutes.

The triggering of the queue manager is handled by a background thread that
’wakes up’ at the end of the triggerInterval period and if the current time is inside
the cheap rate period, it then calls the MQeQueueManager.triggerTransmission()
rule to initiate an attempt to transmit all messages awaiting transmission.

The background thread is created in the queueManagerActivate() rule and stopped
in the queueManagerClose() rule. The queue manager calls these rules when it is
activated and closed respectively.
/**
* Overrides MQeQueueManagerRule.queueManagerActivate()
* Starts a timer thread
*/
public void queueManagerActivate()
{
/* background thread which triggers XmitQ */
th = new Thread(this);
th.start(); /* start timer thread */

}
/**
* Overrides MQeQueueManagerRule.queueManagerClose()
* Stops the timer thread
*/
public void queueManagerClose()
{
th.stop(); /* stop timer thread */

}

The code to handle the background thread looks like this:
/**
* Timer thread
* Triggers queue manager every interval until thread is stopped
*/
public void run()
{
try
{
while (true)
{ /* sleep for specified interval */
Thread.sleep(triggerInterval);
/* if cheap rate period call queue manager to trigger transmission */
if (timeToTransmit())
((MQeQueueManager)owner).triggerTransmission();

}
}
catch (Exception e)

queue manager rules

Chapter 4. MQSeries Everyplace queue manager 79

{
e.printStackTrace(System.err);

}
}

The variable owner is defined by the class MQeRule, which is the ancestor of
MQeQueueManagerRule. As part of its startup process, the queue manager
activates the queue manager rules and it passes a reference to itself to the rules
object. This is then stored in the variable owner.

The thread loops indefinitely (remember it is stopped by the queueManagerClose()
rule), and it sleeps until the end of the trigger interval period, then it checks to see
if the current time is in the cheap rate transmission period. It does this by calling
the timeToTransmit() method. If this method succeeds then the queue manager’s
triggerTransmission() rule is called.

The timeToTransmit method is shown in the following code:
protected boolean timeToTransmit()
{
/* get current time */
long currentTimeLong = System.currentTimeMillis();

Date date = new Date(currentTimeLong);
Calendar calendar = Calendar.getInstance();
calendar.setTime(date);

/* get hour */
int hour = calendar.get(Calendar.HOUR_OF_DAY);

if (hour >= cheapRatePeriodStart || hour < cheapRatePeriodEnd)
return true; /* cheap rate */

else
return false; /* not cheap rate */

}

Activating asynchronous remote queue definitions
The queue manager can activate its asynchronous remote queue definitions at
startup time. Activating the queues means that an attempt is made to transmit any
messages they contain. This behavior is configurable via the activateQueues()
rule.

The basic rule just returns true or false.
public boolean activateQueues()
{
return true; /* always transmit on activate */

}

Like other rules in the example in the previous section, a check can be made to see
if the current time is inside the cheap rate transmission period.
public boolean activateQueues()
{
if (timeToTransmit())
return true;

else
return false;

}

This rule also determines whether home-server and store-and-forward queues are
activated at startup time.

queue manager rules

80 MQSeries Everyplace Programming Guide

If activateQueues() returns false, then the remote queue definitions are only
activated when a message is put onto them. Home-server queues can be activated
by calling the queue manager’s triggerTransmission() rule.

Queue rules
Each queue has its own set of rules. A solution can extend the behavior of these
rules. All queue rules should descend from com.ibm.mqe.MQeQueueRule.

Queue rules are called when:
v The queue is activated
v The queue is closed
v A message is placed on the queue (Put)
v A message is removed from the queue (Get)
v A message is deleted from the queue (Delete)
v The queue is browsed
v An undo operation is performed upon a message on the queue
v A message listener is added to the queue
v A message listener is removed from the queue
v A message expires
v When the queue’s use count changes
v When an attempt is made to change a queue’s attributes (authenticator, cryptor,

compressor)
v An index entry is created for a message

Index entry rule
The queue does not hold all its messages in memory, they are saved into the queue
store, and restored to memory when required. The queue maintains an index entry
for each message held in its queue store. The index entry contains state
information for the message, such as whether it is locked or unlocked. Also, certain
fields from the message, known as index fields are stored in the index entry. The
default index fields are message unique ID, MQSeries Message ID, MQSeries
Correlation ID, and message priority. These fields are stored because they are
present in most messages, and storing these fields in memory allows for faster
message searching.

The indexEntry() rule is called whenever an index entry is created. This occurs
whenever a new message is put onto the queue, or at queue activation time, when
the queue reads any messages left in its queue store from a previous session. The
rule allows a solution to alter the index entry when it is created. One use for this
would be to add an extra commonly-used field or fields into the index, thus
improving message search times.
/* if the message contains a customer number field - then add this field */
/* to the message's index entry. */
/* This will enable faster message searching */
public void indexEntry(MQeFields entry,

MQeMsgObject msg) throws Exception
{
if (msg.contains("Cust_No"))
entry.copy(msg, true, "Cust_No");

}

queue manager rules

Chapter 4. MQSeries Everyplace queue manager 81

The parameter, entry contains the message’s blank index entry (the default index
fields are added by the queue, after the indexEntry rule returns). In the example
above, if the message contains a field named Cust_No this is added to the
message’s index entry.

In subsequent messaging operations, such as get or browse, the application can use
the Cust_No field as part of the filter supplied to the operation. Imagine that the
application wishes to find a message containing a Cust_No field with a value of
’75’, and an Order_No field with a value of ’115’. By checking its index the queue
now only has to load messages containing a Cust_No field with a value of ’75’ into
memory, to see if they contain an Order_No field with the correct value. If the
Cust_no field is not part of the index then starting at the first message on the
queue, every message is loaded into memory to check if it contains fields that
match the filter.

Of course, the use of index fields is a compromise, and whilst they can be used to
speed message search times, the index fields are held in memory, which may be at
a premium on a pervasive device.

Message Expired rule
Both queues and message can have an expiry interval set, and if this interval is
exceeded then the message is flagged as being ’expired’. At this point the
messageExpired() rule is called. This rule then determines what happens to the
message, typically the message would be either deleted, or placed on a dead-letter
queue. However, the rule can for example, decide to leave the message intact on
the queue, so that it remains visible to MQSeries Everyplace applications.
/* This rule puts a copy of any expired messages to a Dead Letter Queue */
public boolean messageExpired(MQeFields entry,

MQeMsgObject msg) throws Exception
{
/* Get the reference to the Queue Manager */
MQeQueueManager qmgr = MQeQueueManager.getReference(

((MQeQueue)owner).getQueueManagerName());
/* need to set re-send flag so that put of message to new queue isn't */
/* rejected */
msg.putBoolean(MQe.Msg_Resend, true);
/* if the message contains an expiry interval field - remove it */
if (msg.contains(MQe.Msg_ExpireTime)
msg.delete(MQe.Msg_ExpireTime);

/* put message onto dead letter queue */
qmgr.putMessage(null, MQe.DeadLetter_Queue_Name, msg, null, 0);
/* return true & the message will be deleted from the queue */
return (true);

}

The previous example sends any expired messages to the queue manager’s
dead-letter queue, the name of which is defined by the constant,
MQe.DeadLetter_Queue_Name. A couple of points are worth noting here, the queue
manager rejects a put of a message that has previously been put onto another
queue (this is to protect against duplicate message being introduced into the
MQSeries Everyplace network). So, before moving the message to the dead-letter
queue, its resend flag must be set. This is done by adding the MQe.Msg_Resend field
to the message. Also the message’s expiry time field must be deleted before
moving the message to the dead-letter queue.

Returning a value of ’true’ informs the queue that the rule has decided that the
message has expired.

queue rules

82 MQSeries Everyplace Programming Guide

Logging an add message listener event: The following example shows how to
log an event that occurs on the queue. In the example the event that occurs is the
creation of a message listener, but the principal can be used for any other queue
event such as a put message, or browse message request.

In the example, the queue has its own log file, but it is equally as valid to have a
central log file that is used by all queues. The queue needs to open the log file
when it is activated, and close the log file when the queue is closed. The queue
rules, queueActivate and queueClose can be used to do this. The variable logFile
needs to be a class variable so that both rules can access the log file
/* This rule logs the activation of the queue */
public void queueActivate()
{
try
{
logFile = new LogToDiskFile(\\log.txt);
log(MQe_Log_Information, Event_Queue_Activate, "Queue " +

((MQeQueue)owner).getQueueManagerName() + " + " +
((MQeQueue)owner).getQueueName() + " active");

}
catch(Exception e)
{
e.printStackTrace(System.err);

}
}
/* This rule logs the closure of the queue */
public void queueClose()
{
try
{
log(MQe_Log_Information, Event_Queue_Closed, "Queue " +

((MQeQueue)owner).getQueueManagerName() + " + " +
((MQeQueue)owner).getQueueName() + " closed");

/* close log file */
logFile.close();

}
catch (Exception e)
{
e.printStackTrace(System.err);

}
}

The addListener rule is shown in the following code. It uses the MQe.log method
to add an Event_Queue_AddMsgListener event.
/* This rule logs the addition of a message listener */
public void addListener(MQeMessageListenerInterface listener,

MQeFields filter) throws Exception
{
log(MQe_Log_Information, Event_Queue_AddMsgListener,

"Added listener on queue " +
((MQeQueue)owner).getQueueManagerName() + "+" +
((MQeQueue)owner).getQueueName());

}

queue rules

Chapter 4. MQSeries Everyplace queue manager 83

queue rules

84 MQSeries Everyplace Programming Guide

Chapter 5. MQSeries Everyplace administration

The administration of MQSeries Everyplace resources such as queue managers and
queues is performed using specialized MQSeries Everyplace messages. Using
messages to perform administration allows for transparent local and remote
administration of MQSeries Everyplace resources.

Before any administration can be performed on a queue manager or its resources,
the queue manager must have been successfully started and have a special
administration queue configured on it. The administration queue’s role is to
process administration messages in the sequence that they arrive on the queue.
Only one request is processed at a time. The queue can be created using the
defineDefaultAdminQueue() method of the MQeQueueManagerConfigure class. The
name of the queue is AdminQ and can be referenced programmatically using the
constant MQe.Admin_Queue_Name.

A typical administration application instantiates a subclass of MQeAdminMsg,
configures it with the required administration request and passes it to the AdminQ
on the target queue manager. If the outcome of the action is required then a reply
can be requested. Once the request has been processed the result of the request is
returned in a message to the reply-to queue/queue manager specified in the
request message.

The reply can be sent to any queue manager or queue but a default reply-to queue
can be configured that is used solely for administration reply messages. It can be
created using the defineDefaultAdminReplyQueue() method of the
MQeQueueManagerConfigure class. The name of the queue is ″AdminReplyQ″ and
can be referenced programmatically using the constant
MQe.Admin_Reply_Queue_Name

Figure 11. MQSeries Everyplace administration

© Copyright IBM Corp. 2000 85

The administration queue does not understand how to perform administration of
individual resources; this knowledge is encapsulated in each resource and its
corresponding administration message. The following messages are provided for
administration of MQSeries Everyplace resources:

Message name purpose

MQeAdminMsg an abstract class that acts as the
base class for all administration
messages

MQeAdminQueueAdminMsg provides support for administering
the administration queue

MQeConnectionAdminMsg provides support for administering
connections between queue
managers

MQeHomeServerQueueAdminMsg provides support for administering
home-server queues

MQeQueueAdminMsg provides support for administering
local queues

MQeQueueMangerAdminMsg provides support for administering
queue managers

MQeRemoteQueueAdminMsg provides support for administering
remote queues

MQeStoreAndForwardQueueAdminMsg provides support for administering
store-and-forward queues

MQeMQBridgeQueueAdminMsg provides support for administering
a queue that connects to an
MQSeries system

Each of these base administration messages can be found in the
com.ibm.mqe.administration package. Each type of resource to be managed has its
own administration message. Additional types or resource can be managed by
subclassing either MQeAdminMsg or one of the existing administration messages.
For instance an additional set of administration messages are provided for
managing the MQSeries Bridge in the com.ibm.mqe.mqbridge package.

The basic administration request message
Every request to administer an MQSeries Everyplace resource takes the same basic
form. The basic implementation being provided by the MQeAdminMsg class. The
following diagram shows the basic structure for all administration request
messages:

A request is made up of:
1. Administration specific fields, which are common to all administration requests
2. Administration fields, which are specific to the resource being managed
3. Optional fields which make processing of administration messages easier

administration

86 MQSeries Everyplace Programming Guide

Administration of specific fields
An administration request must provide details of the target queue manager
(Admin_TargetQMgr) for the request (the queue manager that the request is to be
actioned on). This can be either a local or a remote queue manager. As only one
queue manager can be active at a time in a Java Virtual Machine, the message
must be put to the target queue manager.

Each managed resource provides a set of administrative actions that it can
perform. An administration message can only request that one action be
performed. The action is specified by setting the Admin_Action field. A set of
common actions is defined:

Action_Create Create a new instance of a managed
resource.

Action_Delete Delete an existing managed resource

Action_Inquire Inquire one or more characteristics of a
managed resource

Action_InquireAll Inquire on all characteristics of a managed
resource

Action_Update Update one or more characteristics of a
managed resource

All resources do not necessarily implement these actions, for instance it is not
possible to create a queue manager using an administration message. Specific
administration messages can extend the base set to provide additional actions that
are specific to the resource. For each of the common actions, a method is provided

base admin field items:
Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:

characteristics of managed
resource required for the action.

Admin_Name
others ...

...

Optional fields: (commonly used)
MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

1

2

3

Figure 12. Administration request message

administration request message

Chapter 5. MQSeries Everyplace administration 87

that sets the Admin_Action field:

Action_Create create (MQeFields parms)

Action_Delete delete(MQeFields parms)

Action_Inquire inquire(MQeFields parms)

Action_InquireAll inquireAll(MQeFields parms)

Action_Update update(MQeFields parms)

When an action is performed it may succeed or fail. In the case where it fails
because the resource is not in the required state, for instance a delete is issued
against a queue but the queue is in use, then the action can be automatically
retried by setting the Admin_MaxAttempts to a value greater than 1. The retry
occurs either the next time that the queue manager restarts or at the next interval
set on the administration queue.

For most failures further information is available in the reply message. It is the
responsibility of the requesting application to read and handle failure information.

A set of methods are available for setting and getting some of the request fields:

Admin_Parms MQeFields MQeFields getInputFields()

Admin_Action int setAction (int action)

int getAction()

Action_TargetQMgr ascii setTargetQMgr(String qmgr)

String getTargetQMgr()

Action_MaxAttempts int setMaxAttempts(int attempts)

int getMaxAttempts()

Fields specific to the managed resource
Every resource has a set of characteristics that are unique to it. Each characteristic
has a name, type and value. The name of each is defined by a constant in the
administration message. There is one characteristic that is common to all managed
resources, that is the name of the resource. The field name for the resource’s name
is Admin_Name and it is of type ascii. The full set of characteristics can be
determined by using the characteristics() method against an instance of an
administration message. This method returns an MQeFields object that contains
one field for each characteristic. MQeFields methods can be used for enumerating
over the set of characteristics to obtain the name, type and default value of each
characteristic.

The action requested determines the set of characteristics that can be passed as
parameters to the action. In all cases, at least the name of the resource
Admin_Name must be passed. In the case of Action_InquireAll this is the only
parameter that is required.

Parameters are specified by putting them in an imbedded MQeFields object in the
administration message. The name of the field is Admin_Parms. For instance to set
the name of the resource to be managed in an administration message, the
following code could be used:

administration request message

88 MQSeries Everyplace Programming Guide

SetResourceName(MQeAdminMsg msg, String name)
{
MQeFields parms;
if (msg.contains(Admin_Parms))
parms = msg.getFields(Admin_Parms);

else
parms = new MQeFields();

parms.putAscii(Admin_Name, name);
msg.putFields(Admin_Parms, name);

}

Alternatively the code can be simplified by using the getInputFields() method to
return the Admin_Parms field from the message or setName() which will set the
Admin_Name field into the message. Hence the above code can be replaced with:
SetResourceName(MQeAdminMsg msg, String name)
{
msg.SetName(name);

}

Other useful fields
By default, when an administration request is processed, no reply is generated. If
the result of the request is required, then the request message must be setup to ask
for a reply message. Several fields are involved in requesting a reply, all of which
are defined in class MQSeries Everyplace:

Msg_Style
A field of type int that can take one of three values:

Msg_Style_Datagram
A command not requiring a reply

Msg_Style_Request
A request that would like a reply

Msg_Style_Reply
A reply to a request

If Msg_Style is set to Msg_Style_Request (a reply is required) then the location that
the reply is to be sent to must be set into the request message. The two fields used
to set the location are:

Msg_ReplyToQ
An ascii field used to hold the name of the queue the reply is to be put in

Msg_ReplyToQMgr
An ascii field used to hold the name of the queue manager that the reply is
to be sent to

If the reply-to queue manager is not the queue manager that processes the request
then the queue manager that processes the request must have a connection defined
to the reply-to queue manager.

For an administration request message to be correlated to its reply message the
request message needs to contain fields that uniquely identify the request, and that
can then be copied into the reply message. MQSeries Everyplace provides two
fields that can be used for this purpose, Msg_MsgID and Msg_CorrelID. Any other
fields can be used but these two have the added benefit that they are used by the
queue manager to optimize searching of queues and message retrieval. Both fields
must contain data of type byte array. The following code fragment provides an
example of how to prime a request message:

administration request message

Chapter 5. MQSeries Everyplace administration 89

public class LocalQueueAdmin extends MQe
{
public String targetQMgr = "ExampleQM"; // target queue manager

public MQeFields primeAdminMsg(MQeAdminMsg msg) throws Exception
{
/*
* Set the target queue manager that will process this message
*/

msg.setTargetQMgr(targetQMgr);

/*
* Ask for a reply message to be sent to the queue
* manager that processes the admin request
*/

msg.putInt (MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);
msg.putAscii(MQe.Msg_ReplyToQMgr, targetQMgr);

/*
* Setup the correl id so we can match the reply to the request.
* - Use a value that is unique to the this queue manager.
*/

byte[] correlID = Long.toHexString((MQe.uniqueValue()).getBytes());
msg.putArrayOfByte(MQe.Msg_CorrelID, correlID);

/*
* Ensure matching response message is retrieved
* - set up a fields object that can be used as a match parameter
* when searching and retrieving messages.
*/

MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID, correlID);

/*
* Return the unique filter for this message
*/

return msgTest;
}

Once the administration request message has been created it can be sent to the
target queue manger using standard MQSeries Everyplace message processing
APIs. Depending on how the destination administration queue is defined, delivery
of the message can be either synchronous or asynchronous.

Standard MQSeries Everyplace message processing APIs can then be used to wait
for, or await notification of, a reply message. Being a message queuing system,
there is a time lag between sending the request and receiving the reply message.
The time lag may be small if the request is being processed locally or may be long
if both the request and reply messages are delivered asynchronously. For example
the following code fragment could be used to send a request message and then
wait for a reply:
public class LocalQueueAdmin extends MQe
{
public String targetQMgr = "ExampleQM"; // target queue manager
public int waitFor = 10000; // millsecs to wait for reply

/*
* Send a completed admin message.
* Uses the simple putMessage method which is not assured if the
* the queue is defined for synchronous operation.
*/

public void sendRequest(MQeAdminMsg msg) throws Exception
{

administration request message

90 MQSeries Everyplace Programming Guide

myQM.putMessage(targetQMgr,
MQe.Admin_Queue_Name,
msg,
null,
0);

}

/*
* Wait a while for a reply message. This method will wait for
* a limited time on either a local or a remote reply to queue.
* Parameters:
* msgTest: a filter for the reply message to wait for
* Returns:
* respMsg: a reply message matching the msgTest filter.
*/

public MQeAdminMsg waitForReply(MQeFields msgTest) throws Exception
{
MQeAdminMsg respMsg = null;
respMsg = (MQeAdminMsg)myQM.waitForMessage(targetQMgr,

MQe.Admin_Reply_Queue_Name,
msgTest,
null,
0,
waitFor);

return respMsg;
}

The basic administration reply message
Once an administration request has been processed, a reply, if requested, is sent to
the reply to queue manager/queue. The reply message has the same basic format
as the request message with some additional fields.

A reply is made up of:

base admin field items:
Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:
characteristics of managed
resource required for the action.

Admin_Name
others ...

...

Optional fields: (commonly used)
MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

1

2

3

error field items: 1 per
characteristic in error.

field in error
...

reply admin field items:
Admin_RC
Admin_Reason
Admin_Errors:

4

6

5

Figure 13. Administration reply message

administration request message

Chapter 5. MQSeries Everyplace administration 91

1. Administration specific fields. These are copied from the request message
2. Administration fields
3. Optional fields that make processing of administration messages easier. These

are copied from the request message
4. Administration fields detailing outcome of request
5. Administration fields providing detailed results of the request that are specific

to the resource being managed
6. Administration fields detailing errors that are specific to the resource being

managed

Administration fields specific to a reply message
The overall outcome of the request can be determined by checking the Admin_RC
field. This is a field of type int that will be set to one of:
v MQeAdminMsg.RC_Success
v MQeAdminMsg.RC_Failed
v MQeAdminMsg.RC_Mixed

’Success’ means that the action completed successfully. ’Failed’ means the request
failed and ’Mixed’ that the request was partially successful. For example a mixed
return code could result if a request was made to update four attributes of a queue
and three succeed and one fails. In the case of Mixed and Failed, the overall reason
for the failure is available in field Admin_Reason that is of type Unicode.

A set of methods are available for getting some of the reply fields:

Admin_RC int int getAction()

Action_Reason unicode String getReason()

Action_Parms MQeFields MQeFields getOutputFields()

Action_Errors MQeFields MQeFields getErrorFields()

Depending on the action performed, the only fields of interest may be the return
code and reason, this is the case for delete. For other actions such as inquire the
request is for more details to be returned in the reply message. These details are
returned in the Action_Parms field which can be retrieved with the
getOutputFields() method. Action_arms is of type MQeFields which contains, for
each characteristic of a managed resource, one field item. For instance, if an
inquire request is made for fields Queue_Description and Queue_FileDesc, the
resultant MQeFields object would contain an entry for both fields with their values
being those of the actual queue. The following table shows the Admin_Parms
fields of a request and a reply message for an inquire on several parameters of a
queue:

Request Message: Admin_Parms field Reply Message: Admin_Parms field

Field Name Type Value Field Name Type Value

Admin_Name Ascii ″TestQ″ Admin_Name Ascii ″TestQ″

Queue_QMgrName Ascii ″ExampleQM″ Queue_QMgrName Ascii ″ExampleQM″

Queue_Description Unicode null Queue_Description Unicode ″A test queue″

Queue_FileDesc Ascii null Queue_FileDesc Ascii ″c:\queues\″

administration reply message

92 MQSeries Everyplace Programming Guide

For actions where no additional data is expected on the reply, the Admin_Parms
field in the reply matches that of the request message. This is the case for create
and update actions.

Some actions such as create and update may request that more that one
characteristic of a managed resource be set or updated. In this case, it is possible
that some of the updates will succeed and others will fail. If any of the updates fail
but the overall action does not fail, a return code of RC_Mixed is returned.
Additional details indicating why each update fails are available from the
Action_Errors field which can be retrieved with the getErrorFields() method. The
Action_Errors field is of type MQeFields and contains one field for each update that
failed. Each entry contained in the Action_Errors fields is of type ascii or
asciiArray. The following table shows an example of the Admin_Parms field for a
request to update a queue and the resultant Admin_Errors field:

Table 2. Request message to update a queue

Request Message: Admin_Parms field

Field Name Type Value

Admin_Name Ascii ″TestQ″

Queue_QMgrName Ascii ″ExampleQM″

Queue_Description Unicode null

Queue_FileDesc Ascii null

Table 3. Reply message for an update to a queue

Field Name Type Value

Reply Message: Admin_Parms field

Admin_Name Ascii ″TestQ″

Queue_QMgrName Ascii

Queue_Description Unicode ″ExampleQM″ ″A new description″

Queue_FileDesc Unicode ″D:\queues″

Reply Message: Admin_Errors field

Queue_FileDesc Ascii Value ″Code=4;com.ibm.mqe.MQeException:
wrong field type″

For fields where the update or set is successful there is no entry in the
Admin_Errors field.

For each error an ascii string is returned that provides a detailed description of
the error. The value is the exception that occurred when the set or update was
attempted. If the exception was an MQeException, the actual exception code is
returned along with the toString representation of the exception. So, for an
MQeException, the format of the value is:
"Code=nnnn;toString representation of the exception"

The following code fragment shows how to check the outcome of an
administration request and to send any errors to System.out.
/**
* Check to see if a good reply was received.
* If not detail the error(s) that occurred
* @return boolean true if good
* @param replyMsg reply message to check

administration reply message

Chapter 5. MQSeries Everyplace administration 93

* Throws an Exception if the request failed.
*/

public boolean checkReply(MQeAdminMsg replyMsg) throws Exception
{
// Was a reply received ?
if (replyMsg == null)
{
System.out.println("..No response received to the request");
throw new Exception("No response message received");

}
// If the reply was not successful output details for failure
if (replyMsg.getRC() != MQeAdminMsg.RC_Success)
{
System.out.println("..Action Failed: "+replyMsg.getReason());

// If mixed then detail each error that occurred
if (replyMsg.getRC() == MQeAdminMsg.RC_Mixed)
{
MQeFields errors = replyMsg.getErrorFields();
Enumeration en = errors.fields();
// process each error
while(en.hasMoreElements())
{
String value[];
String name = (String)en.nextElement();
// Field in error may be an array
if (errors.dataType(name) == MQeField.TypeArrayElements)
value = errors.getAsciiArray(name);

else
value = new String[] { errors.getAscii(name) };

for (int j=0; j<value.length; j++)
System.out.println("Field in error: "+name+" "+value[j]);

}
}
// Request failed so throw exception
throw new MQeException(replyMsg.getReason());

}
return true; // All is OK

}

Administration of managed resources
As described in the previous section, MQSeries Everyplace has a set of resources
that can be administered with administration messages. These resources are known
as managed resources. The following sections provide information on how to
manage some of these resources. For detailed description of the application
programming interface for each resource see the MQSeries Everyplace Programming
Reference.

Queue managers
The complete management life-cycle for managed resources can be controlled with
administration messages. This means that the managed resource can be brought
into existence, managed and then deleted with administration messages. This is not
the case for queue managers, before a queue manager can be managed it must be
created and started. See “Creating and deleting queue managers” on page 34 for
information on creating and starting a queue manager.

The queue manager has very few characteristics itself, but it controls other
MQSeries Everyplace resources. When inquiring on a queue manager it is possible
to obtain a list of connections to other queue managers and a list of queues that
the queue manager can work with. Each list item is the name of either a
connection or a queue. Once a resource name is known, the relevant administration

administration reply message

94 MQSeries Everyplace Programming Guide

message can be used for managing the resource, for instance an
MQeConnectionAdmin message for managing connections.

Connections
Connections define how to connect one queue manager to another queue manager
(otherwise known as the destination queue manager). Once a connection has been
defined, it is possible for a queue manager to put messages to queues on a remote
queue manager. The following diagram shows the constituent parts that are
required for a remote queue on one queue manager to communicate with a queue
on a different queue manager:

Communication happens at different levels:

Transporter:
Logical connection between two queues

Channel:
Logical connection between two systems

Adapter:
Protocol specific communication

The channel and adapter are specified when creating a connection definition. The
transporter is specified when creating a remote queue definition. The following
example code shows a method which instantiates and primes an
MQeConnectionAdminMsg ready to create a connection:
/**
* Setup an admin msg to create a connection definition
*/

public MQeConnectionAdminMsg addConnection(remoteQMgr
adapter,

parms,
options,
channel,
desc) throws Exception

{
String remoteQMgr = "ServerQM";
/*
* Create an empty queue manager admin message and parameters field
*/

MQeConnectionAdminMsg msg = new MQeConnectionAdminMsg();

/*

Figure 14. Queue manager connections

administration of queue managers

Chapter 5. MQSeries Everyplace administration 95

* Prime message with who to reply to and a unique identifier
*/

MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of queue manager to add routes to
*/

msg.setName(remoteQMgr);

/*
* Set the admin action to create a new queue
* The connection is setup to use a default channel. This is an alias
* which must have be setup on the queue manager for the connection to
* work.
*/

msg.create(adapter,
parms,
options,
channel,
desc);

return msg;
}

MQSeries Everyplace provides as standard one or more choices for both channel
and adapter. Depending on the selection, queue managers can be connected in
several ways:
v Client to server
v Peer to peer

Client to server
In a client server configuration, one queue manager acts as a client and one runs in
a server environment. A server allows multiple simultaneous incoming connections
(channels). To accomplish this the server must have components that can handle
multiple incoming requests. See “Server” on page 43 for a description of how to
run a queue manager in a server.

Figure 15. Client to server connections

administration of connections

96 MQSeries Everyplace Programming Guide

Figure 15 on page 96 shows the typical connection related components in a client
server configuration.

To configure the client portion of a connection an MQeConnectionAdminMsg is
used. The type of channel is com.ibm.mqe.MQeChannel. Normally an alias of
DefaultChannel is configured for MQeChannel. The following is a code fragment
that shows how to configure a connection on a client which can communicate with
a server using the HTTP protocol.
/**
* Create a connection admin message which will create a connection
* definition to a remote queue manager using the HTTP protocol. Then
* send the message to the client queue manager.
*/

public addClientConnection(MQeQueueManager myQM,
String targetQMgr) throws Exception

{
String remoteQMgr = "ServerQM";
String adapter = "Network:127.0.0.1:80";

// This assumes that an alias called Network has been setup for
// network adapter com.ibm.mqe.adapters.MQeTcpipHttpAdapter
String parameters = null;
String options = null;
String channel = "DefaultChannel";
String description = "client connection to ServerQM";

/*
* Setup the admin msg
*/

MQeConnectionAdminMsg msg = addConnection(remoteQMgr,
adapter,
parameters,
options,
channel,
desc);

/*
* Put the admin message to the admin queue (not using assured flows)
*/

myQM.putMessage(targetQMgr,
MQe.Admin_Queue_Name,
msg,
null,
0);

}

Peer to peer
In a peer to peer configuration a queue manager running as a peer can talk to
many other peers simultaneously but can only have one other peer talk to it at any
time. One peer is configured as a master or initiator, the other as a slave or
receiver.

The master is configured in much the same way as a client connection definition,
the only difference being the type of channel used. The channel type must be set to
com.ibm.mqe.adapters.MQePeerChannel (or an alias).

administration of connections

Chapter 5. MQSeries Everyplace administration 97

The slave or receiver is configured in a similar way but has the following
differences:
v The name of the connection definition must match the name of the queue

manager it is defined on
v The channel type must be com.ibm.mqe.adapters.MQePeerChannel
v The adapter must be configured as a listener

The following code fragment configures a queue manager called ″PeerQM1″ as a
peer receiver, listening on port 8081 using the HTTP protocol.
/**
* Create a connection admin message which will create a connection
* definition to a remote queue manager using the HTTP protocol. Then
* send the message to the client queue manager.
*/

public addClientConnection(MQeQueueManager myQM,
String targetQMgr) throws Exception

{
String remoteQMgr = "PeerQM1";

// To be a receiver the connection definition called "PeerQM1" must
// be configured on queue manager "PeerQM1"
String adapter = "Network::8081";

// This assumes that an alias called Network has been setup for
// network adapter com.ibm.mqe.adapters.MQeTcpipHttpAdapter
String parameters = null;
String options = null;
String channel = "com.ibm.mqe.adapters.MQePeerChannel";
String description = "peer receiver on PeerQM";

/*
* Setup the admin msg
*/

MQeConnectionAdminMsg msg = addConnection(remoteQMgr,
adapter,

parameters,
options,
channel,
desc);

/*
* Put the admin message to the admin queue (not using assured flows)
*/

myQM.putMessage(targetQMgr,
MQe.Admin_Queue_Name,

Figure 16. Peer to peer connections

administration of connections

98 MQSeries Everyplace Programming Guide

msg,
null,
0);

}

The following table shows the connection definition parameters for a receiver on
″PeerQM1″ and for any other peer queue manager that would like to communicate
with it.

Master (Initiator) Slave (Receiver)

On Queue Manager Any ″PeerQM1″

Connection name ″PeerQM1″ ″PeerQM1″

Channel com.ibm.mqe.MQePeerChannel com.ibm.mqe.MQePeer

Adapter Network:192.168.0.10:8081 Channel Network::8081

Parameters

Options

Adapters
For details on the various adapters supplied with MQSeries Everyplace see the
“Chapter 9. MQSeries Everyplace adapters” on page 205.

It is possible to setup a connection so that a queue manager can route messages
through an intermediate queue manager. This requires two connections, a
connection must be created to the intermediate queue manager as described earlier
in this section, and, a connection must be created to the target queue manager.
Rather than specifying a network adapter the name of the intermediate queue
manager is specified. With this configuration an application can put messages to
the target queue manager but have them go through one or more intermediate
queue managers.

Aliases
A connection can be assigned multiple names or aliases. When an application calls
methods on the MQeQueueManager class that require a queue manager name be
specified, an alias can also be used. This feature can be used to provide a level of
indirection between the application program and the real queue manager name.
For instance a queue manager called ’QM12A26’1 may have an alias of
’PAYROLLQM’. An application program can perform a put message request to
’PAYROLLQM’ that gets translated to a put message request to ’QM12A345’
automatically. The translation from alias to real name occurs on the requesting
queue manager.

Both local and remote queue managers can be aliased. To alias a local queue
manager, a connection definition with the same name as the local queue manager
must be established. This is a logical connection that can have all parameters set to
null.

Adding and removing aliases is facilitated with actions Action_AddAlias and
Action_RemoveAlias on the MQeConnectionAdminMsg class. Multiple aliases can
be added or removed in one message. The aliases that are to be manipulated can
be put in the message directly by setting field Con_Aliases which is of type ascii
array. Alternatively two methods addAlias() or removeAlias() can be used. Each
method takes one alias name but the method can be called repeatedly to add
multiple aliases to a message. The following snippet of code shows how to add
connection aliases to a message:

administration of connections

Chapter 5. MQSeries Everyplace administration 99

/**
* Setup an admin msg to add aliases to a queue manager (connection)
*/

public MQeConnectionAdminMsg addAliases(String queueManagerName
String aliases[]) throws Exception

{
/*
* Create an empty connection admin message
*/

MQeConnectionAdminMsg msg = new MQeConnectionAdminMsg();

/*
* Prime message with who to reply to and a unique identifier
*/

MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of the connection to add aliases to
*/

msg.setName(queueManagerName);

/*
* Use the addAlias method to add aliases to the message.
*/

for (int i=0; i<aliases.length; i++)
{
msg.addAlias(aliases[i]);

}

return msg;
}

Queues
MQSeries Everyplace provides several types of queue. The simplest of these is a
local queue that is implemented in class MQeQueue and managed by class Inherit
from MQeQueueAdminMsg. All other types of queue inherit from MQeQueue. For
each type of queue there is a corresponding administration message that inherits
from MQeQueueAdminMsg. The following sections describe the various types of
queues.

Local queue
The simplest type of queue is a local queue. These are real queues that are the final
destination for all messages. This type of queue is local to, and owned by, a
specific queue manager. Applications on the owning queue manager can interact
directly with the queue to store messages in safe (excluding hardware failures or
loss of the device) and secure way. These queues can be used online or offline, that
is connected to a network or not connected to a network. Local queues when
accessed from the local queue manager always operate in synchronous mode.

Standard administration actions are used to create, update, delete and inquire on
local queues and their descendents. The basic administration mechanism used is
the inherited from MQeAdminMsg.

The name of a queue is formed from the target queue manager name (for a local
queue this is the name of the queue manager that owns the queue) and a unique
name for the queue on that queue manager. Two fields in the administration
message are used to uniquely identify the queue, these are Admin_Name and
Queue_QMgrName, both of which are of type ascii. Method setName(
queueManagerName, queueName) can be used to set these two fields in the
administration message.

administration of connections

100 MQSeries Everyplace Programming Guide

The diagram below shows an example of a queue manager configured with a local
queue. Queue manager ’qm1’ has a local queue named ’invQ’. Note the queue
manager name characteristic of the queue is ’qm1’, which matches the queue
manager name.

Message Store: Local queues require a message store to store their messages. The
message store can be altered on a queue by queue basis. The queue characteristic
Queue_FileDesc is used to specify the type of message store to use and to provide
parameters for it. The field is of type ascii and the value must be a file descriptor
of the form:

adapter class:adapter parameters
or
adapter alias:adapter parameters

For example:
MsgLog:d:\QueueManager\ServerQM12\Queues

MQSeries Everyplace version 1 provides two adapters, one for writing to disk and
one for using memory for storage. By creating an appropriate adapter messages
can be stored in any suitable place or medium (such as DB2 data base or writable
CDs).

The choice of adapter determines the persistence and resilience of messages. For
instance if a memory adapter is used then the messages are only as resilient as the
memory. Memory may be a much faster medium than disk but is highly volatile
compared to disk. Hence the choice of adapter is an important one.

Figure 17. Local queue

administration of queues

Chapter 5. MQSeries Everyplace administration 101

If no message store is provided when creating a queue, then it defaults to the
message store specified when the queue manager was created. See “Chapter 4.
MQSeries Everyplace queue manager” on page 31 for more details.

The following should be taken into consideration when setting the Queue_FileDesc
field:
v Ensure that the correct syntax is used for the system that the queue resides on.

For instance if on a windows system use ″\″ as a file separator on UNIX®

systems use ″/″ as a file separator. In some cases it is possible to use either BUT
this is dependent on the support provided by the JVM (Java Virtual Machine)
that the queue manager runs in. As well as file separator differences, some
systems use drive letters like Windows NT whereas others like UNIX do not.

v On some systems it is possible to specify relative directories i.e. ″.\″ on others it
is not. Even on those where relative directories can be specified, they should be
used with great caution as the current directory can be changed during the
lifetime of the JVM, which will cause problems when interacting with queues
using relative directories.

Creating a local queue: The following code fragment demonstrates how to create
a local queue:
/**
* Create a new local queue
*/

protected void createQueue(MQeQueueManager localQM,
String qMgrName,
String queueName,

String description,
String queueStore

) throws Exception
{
/*
* Create an empty queue admin message and parameters field
*/

MQeQueueAdminMsg msg = new MQeQueueAdminMsg();
MQeFields parms = new MQeFields();

/*
* Prime message with who to reply to and a unique identifier
*/

MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of queue to manage
*/

msg.setName(qMgrName, queueName);

/*
* Add any characteristics of queue here, otherwise
* charateristics will be left to default values.
/

if (description != null) // set the description ?
parms.putUnicode(MQeQueueAdminMsg.Queue_Description,

description);

if (queueStore != null) // Set the queue store ?
// If queue store includes directory and file info then it
// must be set to the correct style for the system that the
// queue will reside on e.g \ or /
parms.putAscii(MQeQueueAdminMsg.Queue_FileDesc,

queueStore);
/*
* Other queue characteristics like queue depth, message expiry

administration of queues

102 MQSeries Everyplace Programming Guide

* can be set here à
*/

/*
* Set the admin action to create a new queue
*/

msg.create(parms);

/*
* Put the admin message to the admin queue (not assured delivery)
*/

localQM.putMessage(qMgrName,
MQe.Admin_Queue_Name,
msg,
null,
0);

}

Queue security: Access and security are owned by the queue and may be granted
for use by a remote queue manager (when connected to a network), allowing these
other queue managers to send or receive messages to the queue. The following
characteristics are used in setting up queue security:
v Queue_Cryptor
v Queue_Authenticator
v Queue_Compressor
v Queue_TargetRegistry
v Queue_AttrRule

For more detailed information on setting up queue based security see “Chapter 7.
Security” on page 159.

Other queue characteristics: Queues can be configured with many other
characteristics such as the maximum number of messages that are permitted on the
queue. For a description of these, see the MQeQueueAdminMsg section of the
MQSeries Everyplace Programming Reference.

Aliases: Queue names can be aliased in a way similar to that described for
connections in “Aliases” on page 99. The code fragment in the connections section
alias example shows how to setup aliases on a connection, setting up aliases on a
queue is the same except that the an MQeQueueAdminMsg is used instead of an
MQeConnectionAdminMsg.

Action restrictions: Certain administrative actions can only be performed when
the queue is in the required state, as follows:

Action_Update

v If the queue is in use, characteristics of the queue cannot be changed
v The security characteristics of the queue cannot be altered if the queue is

in use or there are messages on the queue
v The queue message store cannot be changed once it has been set

Action_Delete
The queue cannot be deleted if the queue is in use or if there are messages
on the queue

If the request requires that the queue is not in use or that it has zero messages, the
administration request can be retried, either when the queue manager restarts or at

administration of queues

Chapter 5. MQSeries Everyplace administration 103

regular time intervals. See “The basic administration request message” on page 86
for details on setting up administration request retry.

Remote queue
This type of queue, as its name implies, does not reside in the local environment.
A definition exists locally that identifies the owning queue manager and the real
queue (that is local to the remote queue manager). Remote queues can be accessed
either synchronously or asynchronously. If there is a definition of the remote queue
held locally then the mode of access is based on the definition and may be either
synchronous or asynchronous. If there is no definition held locally then queue
discovery occurs (see “Discovery” on page 107), queue characteristics are
discovered and the mode of access is forced to synchronous.

Remote queues are implemented by the MQeRemoteQueue class and are managed
with the MQeRemoteQueueAdminMsg class which is a subclass of
MQeAdminMsg.

The name of a queue is formed from the target queue manager name (for a remote
queue this is the name of the queue manager where the queue is local) and the
real name of the queue on that queue manager. Two fields in the administration
message are used to uniquely identify the queue, these are Admin_Name and
Queue_QMgrName, both of which are of type ascii. Method setName(
queueManagerName, queueName) can be used to set these two fields in the
administration message. For a remote queue definition the queue manager name of
the queue never matches the name of the queue manager where the definition
resides.

The remote definition of the queue should, in most cases, match that of the real
queue. If this is not the case different results may be seen when interacting with
the queue. For instance:
v For asynchronous queues if max message size on the remote definition is greater

than that on the real queue it is accepted for storage on the remote queue but is
rejected when moved to the real queue. The message is not lost, it remains on
the remote queue but cannot be delivered.

v For a synchronous queue, if the security characteristics do not match then
MQSeries Everyplace negotiates with the real queue to decide what security
characteristics should be used. In some cases the message put is successful, in
others an attribute mismatch exception is returned.

Synchronous queues: Synchronous queues can only be accessed when connected
to a network that has a path to the owning queue manager. If a connection cannot
be established then operations such as get, put, and browse cause an exception to
be raised. The owning queue controls the access permissions and security
requirements needed to access the queue. It is the applications responsibility to
handle any errors or retries when sending or receiving the message, that is
MQSeries Everyplace is no longer responsible for once and once only assured
delivery of the message.

To set a queue for synchronous operation, set the Queue_Mode field to
Queue_Synchronous.

Asynchronous queues: Asynchronous queues can have messages put into them
but not retrieved from them. If the network connection is established, the messages
are sent to the owning queue manager and queue. If the network is not connected,
the messages are stored locally until there is a network connection and then the
messages are transmitted. This allows applications to operate on the queue when

administration of queues

104 MQSeries Everyplace Programming Guide

the client is offline, it does however require that asynchronous queues have a
message store to temporarily store the message. Definition of the message store is
the same as for local queues.

To set a queue for asynchronous operation, set the Queue_Mode field to
Queue_Asynchronous.

Figure 18 shows an example of a remote queue set up for synchronous operation
and a remote queue setup for asynchronous operation.

v In both the synchronous and asynchronous examples queue manager qm2 has a
local queue qm2

v In the synchronous example, queue manager qm1 has a remote queue definition
of queue invQ that resides on queue manager qm2 and is set for synchronous
operation. An application using queue manager qm1 and putting messages to
queue qm2.invQ causes a network connection to be established to queue manager
qm2 (if it does not already exist) and the message is immediately put on the real
queue. If the network connection cannot be established then the application
receives an exception that it must handle.

v In the asynchronous example, queue manager qm1 has a remote queue definition
of queue invQ that resides on queue manager qm2 and is set for asynchronous
operation. An application using queue manager qm1 and putting messages to
queue qm2.invQ will store messages temporarily on the remote queue on qm1.
When the transmission rules allow, the message is moved to the real queue on
queue manager qm2. Until successful transmission has occurred, the message
remains on the remote queue.

Creating a remote queue: The following code fragment shows how to setup an
administration message to create a remote queue.

qm1

RemoteQ
qm2.invQ

mode:asynchronous

putMessage(
 qm2, invQ, msg, ...)

qm2

Queue
qm2.invQ

qm2

Queue
qm2.invQ

qm1

putMessage(
 qm2, invQ, msg,...)

getMessage(qm2, invQ,
..)

Remote
Synchronous

Remote
Asynchronous

RemoteQ
qm2.invQ

mode:synchronous

getMessage(qm2, invQ, ..
)

Figure 18. Remote queue

administration of queues

Chapter 5. MQSeries Everyplace administration 105

/**
* Create a remote queue
*/

protected void createQueue(MQeQueueManager localQM,
String targetQMgr,
String qMgrName,
String queueName,

String description,
String queueStore,

byte queueMode
) throws Exception

{
/*
* Create an empty queue admin message and parameters field
*/

MQeRemoteQueueAdminMsg msg = new MQeRemoteQueueAdminMsg();
MQeFields parms = new MQeFields();

/*
* Prime message with who to reply to and a unique identifier
*/

MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of queue to manage
*/

msg.setName(qMgrName, queueName);

/*
* Add any characteristics of queue here, otherwise
* charateristics will be left to default values.
/

if (description != null) // set the description ?
parms.putUnicode(MQeQueueAdminMsg.Queue_Description,

description);

// set the queue access mode if mode is valid
if (queueStore != MQeQueueAdminMsg.Queue_Asynchronous &&

queueStore != MQeQueueAdminMsg.Queue_Synchronous)
throw new Exception ("Invalid queue store");

parms.putByte(MQeQueueAdminMsg.Queue_Mode,
queueMode);

if (queueStore != null) // Set the queue store ?
// If queue store includes directory and file info then it
// must be set to the correct style for the system that the
// queue will reside on e.g \ or /
parms.putAscii(MQeQueueAdminMsg.Queue_FileDesc,

queueStore);
/*
* Other queue characteristics like queue depth, message expiry
* can be set here à
*/

/*
* Set the admin action to create a new queue
*/

msg.create(parms);

/*
* Put the admin message to the admin queue (not assured delivery)
* on the target queue manager
*/

localQM.putMessage(targetQMgr,
MQe.Admin_Queue_Name,

administration of queues

106 MQSeries Everyplace Programming Guide

msg,
null,
0);

}

Discovery: If an application puts a message to a remote queue and a definition of
the remote queue is held locally then the remote queue definition is used to
determine characteristics of the queue. If a definition is not held locally, queue
discovery occurs. This local queue manager synchronously contacts the remote
queue manager in an attempt to ascertain characteristics of the queue. The
following characteristics are discovered:
v Queue_Description
v Queue_Expiry
v Queue_MaxQSize
v Queue_MaxMsgSize
v Queue_Priority
v Queue_Cryptor
v Queue_Authenticator
v Queue_Compressor
v Queue_TargetRegistry
v Queue_AttrRule

After successful discovery of a queue, the definition of the queue is stored as a
remote queue definition on the queue manager that initiated the discovery. This
discovered queue definition is treated like a normal remote queue definition. The
Queue_Mode is not discovered as all discovered queues are set for synchronous
operation.

Store-and-forward queue
This type of queue, as its name implies, stores messages until they can be
forwarded to the next (not necessarily the target) queue manager. This type of
queue is normally defined on a server and can be configured in the following
ways:
v Forward messages to the next queue manager. The next queue manager may not

be the target queue manager. This approach pushes messages to the next hop.
v Hold messages until the target queue manager can collect the messages from the

store-and-forward queue. This can be accomplished using a home-server queue
(see “Home-server queue” on page 110). Using this approach messages are
pulled from the store-and-forward queue.

Store-and-forward queues may hold messages for many target queue managers or
there may be one store-and-forward queue per target queue manager.

Store-and-forward queues are implemented by the MQeStoreAndForwardQueue
class and managed with the MQeStoreAndForwardQueueAdminMsg class which is
a subclass of MQeRemoteQueueAdminMsg. The main additional administration
function is the ability to add and remove the names of queue managers for which
the store-and-forward queue can hold messages. This is achieved with actions
Action_AddQueueManager and Action_RemoveQueueManager. Multiple queue manager
names can be added or removed in one message. The names can be put in the
message directly by setting the field Queue_QMgrNameList, which is of type ascii
array. Alternatively the two methods addQueueManager() and

administration of queues

Chapter 5. MQSeries Everyplace administration 107

removeQueueManager() can be used. Each method takes one queue manager name
but the method can be called repeatedly to add multiple queue managers to a
message.

The following code fragment shows how to add target queue manager names to a
message:
/**
* Setup an admin msg to add target queue managers to
* a store and forward queue.
*/

public MQeStoreAndForwardQueueAdminMsg addQueueManager(String queueName
String queueManagerName
String qMgrNames[])
throws Exception

{
/*
* Create an empty admin message
*/

MQeStoreAndForwardQueueAdminMsg msg =
new MQeStoreAndForwardQueueAdminMsg();

/*
* Prime message with who to reply to and a unique identifier
*/

MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of the store and forward queue
*/

msg.setName(queueManagerName, queueName);

/*
* Use the addAlias method to add aliases to the message.
*/

for (int i=0; i<qMgrNames.length; i++)
{
msg.addQueueManager(qMgrNames[i]);

}

return msg;
}

administration of queues

108 MQSeries Everyplace Programming Guide

If the store-and-forward queue is to forward messages to the next queue manager,
then the queue manager name attribute of the store-and-forward queue must be
the name of the next queue manager. A connection to the next queue manager
must be configured.

If the store-and-forward queue waits for messages to be collected (pulled) then the
queue manager name attribute of the store-and-forward queue has no meaning. It
can even be the name of the queue manager that the store-and-forward queue
resides on. There must be no connection with the same name as the queue
manager name attribute of the queue, otherwise the queue tries use the connection
to forward messages.

Figure 19 shows an example of two store and forward queues on different queue
managers, one setup to push messages to the next queue manager, the other setup
to wait for messages to be collected:
v Queue manager qm2 has a connection configured to queue manager qm3

v Queue manager qm2 has a store-and-forward queue configuration that pushes
messages using connection qm3, to queue manager qm3. Note that the queue
manager name portion of the store-and-forward queue is qm3 which matches the
connection name

v Store-and-forward queue qm3.SFQ and qm2 has been configured to handle
messages that are destined for queue managers qma, qmb and qmc.

v Queue manager qm3 has a store-and-forward queue qm3.SFQ. The queue manager
name portion of the queue name qm3 does not have a corresponding connection
called qm3, so all messages are stored on the queue until they are collected.

v Store-and-forward queue qm3.SFQ on qm3 holds messages on behalf of queue
managers qma, qmb and qmc. Messages are stored until they are collected or they
expire.

qma
qm1

MQeRemoteQueue
qma.invQ

mode:asynchronous

put(qma, invQ, msg)

qm2

MQeStoreAndForwardQueue
qm3.SFQ

hold messages for:
qma, qmb and qmc

Connection to
qma via qm2

qm3

MQeStoreAndForwardQueue
qm3.SFQ

hold messages for:
qma, qmb and qmc

Connection
to qm3

qmb qmc

Gateway

Connection to
qmb via qm2

Figure 19. Store-and-forward queue

administration of queues

Chapter 5. MQSeries Everyplace administration 109

When a queue manager wishes to send a message to another queue manager using
a store-and-forward queue on an intermediate queue manager, the queue manager
where the message is initially put must have:
v A connection configured to the intermediate queue manager
v A connection configured to the target queue manager that goes through the

intermediate queue manager
v A remote queue definition for the target queue

When these conditions are fulfilled, an application can put a message to the target
queue on the target queue manager without having to understand the layout of the
queue manager network. This allows the underlying queue manager network to be
changed without the need to change application programs.

In Figure 19 on page 109 queue manager qm1 has been configured to allow
messages to be put to queue invQ on queue manager qma. The configuration
consists of:
v A connection to the intermediate queue manager qm2

v A connection to the target queue manager qma

v A remote asynchronous queue invQ on qma

If an application program uses queue manager qm1 to put a message to queue invQ
on queue manager qma the message flows as follows:
1. The application puts message to asynchronous queue qma.invQ. The message is

stored locally on qm1 until transmission rules allow the message to be moved to
the next hop

2. When transmission rules allow, the message is moved. Based on the connection
definition for qma, the message is routed to queue manager qm2

3. The only queue configured to handle messages for queue invQ on queue
manager qma is store-and-forward queue SFQ on qm3. The message is
temporarily stored in this queue

4. The stored and forward queue has a connection that allows it to push messages
to its next hop which is queue manager qm3

5. Queue manager qm3 has a store-and-forward queue qm3.SFQ that can hold
messages destined for queue manager qma so the message is stored on that
queue

6. Messages for qma remain on the store-and-forward queue until they are
collected by queue manager qma. See the “Home-server queue” for how to set
this up.

Home-server queue
This type of queue normally resides on a client and points to a store-and-forward
queue on a server known as the home server. This queue pulls messages from the
home server when the queue manager on which it resides is activated and
optionally checks for messages at regular polling intervals. When this queue pulls
a message from the server, it uses assured message delivery to put the message to
the local queue manager. The message is then stored on the target queue.

Home-server queues are implemented by the MQeHomeServerQueue class and
managed with the MQeHomeServerQueueAdminMsg class which is a subclass of
MQeRemoteQueueAdminMsg. The only additional characteristic is the field
Queue_QTimerInterval. This field is of type int and is set to a millisecond timer
interval. If this field is set to a value greater than zero, the home-server queue

administration of queues

110 MQSeries Everyplace Programming Guide

checks every n milliseconds to see if there are any queues waiting for collection on
the home server. Any messages that are waiting are delivered to the target queue.

The name of the home-server queue is set as follows:
v The queue name must match the name of the store-and-forward queue
v The queue manager name must match the name of the home-server queue

manager

The queue manager where the home-server queue resides must have a connection
configured to the home-server queue manager.

Figure 20 shows an example of a queue manager qm3 that has a home-server queue
SFQ configured to collect messages from its home-server queue manager qm2.

The configuration consists of:
v A home server queue manager qm2

v A store and forward queue SFQ on queue manager qm2 that holds messages for
queue manager qm3

v A queue manager qm3 that normally runs disconnected and cannot accept
connections from queue manager qm2

v Queue manager qm3 has a connection configured to qm2

v A home server queue SFQ that uses queue manager qm2 as its home server

Any messages that are directed to queue manager qm3 through qm2 are stored on
the store-and-forward queue SFQ on qm2 until the home-server queue on qm3
collects them.

qm3

MQeQueue

qm3.invQ

msg = get(qm3, invQ)

qm1

MQeRemoteQueue
qm3.invQ

mode:asynchronous

put(qm3, invQ, msg)

qm2

MQeStoreAndForwardQueue
qm2.SFQ

hold messages for: qm3

MQeHomeServerQueue

qm2.SFQ

Connection to
qm3 via qm2 Connection to

qm2

push pull

qm2 is the
homeserver queue
manager for qm3

Figure 20. Home-server queue

administration of queues

Chapter 5. MQSeries Everyplace administration 111

MQSeries bridge queue
An MQSeries bridge queue is a remote queue definition that refers to a queue
residing on an MQSeries queue manager. The queue holding the messages resides
on the MQSeries queue manager, not on the local queue manager.

v The MQeSaturnQM MQSeries queue manager can have a local queue defined
(MQSaturnQ).

v The MQeEarthQM must have an MQSeries Bridge queue defined called
MQSaturnQ on the MQSaturnQM queue manager.

v Applications attached to the MQeEarthQM queue manager put messages to the
MQSaturnQ MQSeries bridge queue, and the bridge queue delivers the message
to the MQSaturnQ on the MQSaturnQM queue manager.

The definition of the bridge queue requires that bridge, MQSeries queue manager
proxy, and client connection names are specified to uniquely identify a client
connection object in the bridge object hierarchy (see Figure 26 on page 122). This
information identifies how the MQSeries bridge accesses the MQSeries queue
manager, to manipulate an MQSeries queue.

The MQSeries bridge queue provides the facility to put to a queue on the
MQSeries queue manager whose name is NOT the same name as the MQSeries
bridge queue on the MQSeries Everyplace system. (This is similar to the RNAME
on an MQSeries remote queue definition). Similarly, the queue manager name in
the MQSeries bridge queue definition is the name of the target queue manager to
which the MQSeries message is put on the MQSeries network; this need not be the
MQSeries queue manager to which the bridge queue is connected. This allows a
message to be sent to an MQSeries queue manager (the target) routed through
another MQSeries queue manager (the one named by the MQSeries queue
manager proxy).

For a complete list of the characteristics used by the MQSeries bridge queue, see
MQeMQBridgeQueueAdminMsg in the com.ibm.mqe.bridge section ofMQSeries
Everyplace Programming ReferenceTable 4 details the list of operations supported by
the MQbridge queue, once it has been configured:

Table 4. Message operations supported by MQSeries—bridge queue

Type of operation Supported by MQSeries—bridge queue

getMessage() no

putMessage() yes

MQeEarthQM MQSaturnQM

MQe
application

MQSeries
local queue

MQ bridge
queue

MQe queue manager
Windows 2000
I/P address 20.8.9.50

MQSeries queue manager
Windows NT
I/P address 20.8.9.51

Figure 21. MQSeries bridge queue

administration of queues

112 MQSeries Everyplace Programming Guide

Table 4. Message operations supported by MQSeries—bridge queue (continued)

Type of operation Supported by MQSeries—bridge queue

browseMessage() no

browseAndLockMessage no

.

If an application attempts to use one of the unsupported operations, an
MQeException of Except_NotSupported is returned.

When an application puts a message to the bridge queue, the bridge queue takes a
logical connection to the MQSeries queue manager from the pool of connections
maintained by the bridge’s client connection object. The logical connection to
MQSeries is supplied by either the MQSeries Java Bindings classes, or the
MQSeries Java Client classes, depending on the value of the hostname field in the
MQSeries queue manager proxy settings. Once the MQSeries bridge queue has a
connection to the MQSeries queue manager, it attempts to put the message to the
MQSeries queue.

An MQSeries bridge queue cannot be configured as an asynchronous queue. It
must always have an access mode of synchronous. As a result, if your put
operation is directly manipulating an MQSeries bridge queue and returns success,
your message has passed to the MQSeries system in the time your process was
waiting for the put operation to complete.

If your application does not wish to use synchronous operations against the bridge
queue, you may set up an asynchronous remote queue definition (see
“Asynchronous queues” on page 104) which refers to the MQSeries bridge queue,
or set up a store-and-forward queue, and home-server queue. Such configurations
provide the application with a queue to which it can put messages in an
asynchronous manner. With this configuration, when your putMessage() method
returns, the message may not necessarily have passed to the MQSeries queue
manager.

An example of MQSeries bridge queue usage is described in “Configuration
example” on page 125.

Administration queue
The administration queue is a specialized queue that understands how to process
administration messages. It is implemented in class MQeAdminQueue and is a
subclass of MQeQueue so it has the same features as a local queue. It is managed
using administration class MQeAdminQueueAdminMsg.

Messages put to the administration queue are processed internally. Because of this
applications cannot get messages directly from the administration queue. Only one
message is processed at a time, other messages that arrive while a message is
being processed are queued up and processed in the sequence in which they
arrive.

If a message fails because the resource to be administered is in use, it is possible to
request that the message be retried. “The basic administration request message” on
page 86 provides details on setting up the maximum number attempts count. If the
message fails due to the managed resource not being available and the maximum
number of attempts has not been reached, the message is left on the queue for
processing at a later date. If the maximum number of attempts has been reached,

administration of queues

Chapter 5. MQSeries Everyplace administration 113

the request fails. By default the message is retried the next time the queue manager
is restarted. Alternatively a timer can be set on the queue that processes messages
on the queue at specified intervals. The timer interval is specified by setting the
Queue_QTimerInterval field in the administration message. The interval field is of
type long and the value specified is in milliseconds.

Security and administration
By default, administration of managed resources is available to any MQSeries
Everyplace application. The application can be running as a local application to the
queue manager that is being managed, or it can be running on a different queue
manager. When deploying a solution that includes MQSeries Everyplace it is
important that the security of administration is provided for, otherwise there is
potential for the system to be misused. MQSeries Everyplace provides the basic
facilities for securing administration. “Chapter 7. Security” on page 159 describes
how to apply security to queues. The information found in that section can be
used to secure the administration queue.

If synchronous security is used then the administration queue can be secured by
setting security characteristics on the queue. For example an authenticator can be
set so that the user must be authenticated to Windows NT before administration
actions are permitted. This can be extended to only allow a specific user to
perform administration.

The administration queue does not allow applications direct access to messages on
the queue, the messages are processed internally. This means that messages put to
the queue that have been secured with message level security cannot be
unwrapped using the normal mechanism of providing an attribute on a get or
browse request. A queue rule class can be applied to the administration queue that
unwraps any secured messages before they are processed by the administration
queue. The queue rule browseMessage() rule must be coded to unwrap the
message so that administration can take place.

Additional information on implementing queue rules can be found in “Queue
rules” on page 81.

Example administration console
One of the examples provided with MQSeries Everyplace is an administration
graphical user interface. This utilizes many of the techniques and features
described in previous parts of the administration section of this manual. All classes
are contained in package examples.administration.console. This example
demonstrates many MQSeries Everyplace administration features:
v Management of both local and remote queue managers
v Administration of all MQSeries Everyplace managed resources
v Access to all actions of each managed resource
v Utilization of most base MQeAdminMsg features
v A queue browser
v A specialization of the queue browser for the administration reply queue.

This is provided solely as a programming example, it is not expected to be used
outside a development and test environment. It should be noted that this example
functions in conjunction with other examples such as trace and the client queue

administration of queues

114 MQSeries Everyplace Programming Guide

manager and it is also subclassed to provide an administration example for the
MQSeries bridge. (See “The example administration GUI application” on page 131.)

The main console window
To start the console use the command:
java examples.administration.console.Admin

This brings up the following window:

This is the central window from which all other interactions are initiated. It is split
into three sections:

1. Type of resource to manage
The set of buttons on the left side of the window control the selection of
the resource that is to be managed. There is one button for each type of
MQSeries Everyplace managed resource and one special button called
’Setup’. The Setup buttons provides access to a set of base administration
functions such as browsing the reply-to queue and turning trace on and
off.

2. Base administration parameters
The central section of the window allows base administration parameters
to be altered.

Mode: Whether the queue manager to be managed is local or remote.

Local queue manager:
The name of the local queue manager that administration features
are being accessed through. This is set automatically when a queue
manager is started with the Start QM button.

Remote queue manager:
If mode has been set to remote then the name of the queue

Figure 22. Administration console window

example adminisration console

Chapter 5. MQSeries Everyplace administration 115

manager to be managed is set here. If the mode is local then the
queue manager name is always the same as the local queue
manager.

Reply-to queue manager:
The name of the queue manager where administration reply-to
messages are to be sent.

Reply-to queue:
The name of the queue where administration reply-to messages are
to be sent.

3. Managed resource specific action
Each managed resource has a set of actions that can be performed on it.
The set of buttons on the right of the main window show the available
actions for the resource that was selected using the ’resource to manage’
buttons on the left of the window. Selecting one of the action buttons
drives the function for that action. Normally this causes the display of
another window related to the action.

If the selected queue manager is not already running in the JVM that the console is
executing in it needs to be started. This can be achieved using the ’Start QM’
button that requests the name and path of an ini file containing queue manager
startup parameters. If the queue manager has already been started then the
’Connect QM’ button can be selected (this is the case if administration is started
from the example server - ExampleAwtMQeServer).

Once the queue manager has been started then any of the resources can be selected
and managed.

Queue browser
A simple example queue browser (AdminQueueBrowser) has been provided that
shows how to browse a queue and display the contents of messages on the queue.
Only queues that can be accessed synchronously and that the user has the
necessary authority to access can be browsed. If the messages on the queue are
secured using message level security then the example code is not able to show the
messages.

The basic queue browser has been subclassed to provide a queue browser with
enhanced function for browsing the administration reply-to queue. This is
implemented in class AdminLogBrowser. One method of accessing it is to select
the ’Browse reply queue’ button after selecting the Setup button. The following
figure shows what the administration reply-to queue window looks like.

example adminisration console

116 MQSeries Everyplace Programming Guide

The window has several sections:

1. The name of the administration reply to queue manager and queue

2. Message filter
It is possible to provide a filter to limit the set of messages displayed. This
example allows a filter on the MsgID and CorrelID fields of a message.
The example also makes the assumption that the fields contain strings
which have been encoded in a byte array.

When administration messages are sent from the example console, the
MsgID is set to the name of the queue manager to be managed. Hence it is
possible to display administration messages only for a specific queue
manager.

3. Display message in view type
Messages in the message display panel can be viewed in one of several
different ways:

List: A one line summary of the message on the queue.

Full: The contents of all messages in one panel.

Both: Two panels, one displays a list with a summary line for each
message, the other panel displays the contents of a message that
has been selected in the message panel.

The number of messages currently being viewed is also displayed
here.

4. Message display panel
As described in 3, this panel displays messages in various forms. It is
possible to double click a message in the list view to display a detailed
view of the message in a new window

5. Actions
Several buttons provide actions specific to the queue browser:

Refresh:
Clears the display and then displays the current contents of the
queue. If the queue being browsed is a local queue, a monitor is
automatically started. This monitor refreshes the display when new
messages are added to it. If the queue being browsed is remote
then it is not possible to automatically refresh the window when

Figure 23. Reply-to queue window

example adminisration console

Chapter 5. MQSeries Everyplace administration 117

new messages are added. In this case, the refresh button can be
used to get the latest contents of the queue.

Empty Queue:
Deletes all messages from the queue.

Cancel:
Closes the queue browser window.

6. Message
Error and status messages are displayed here.

Action windows
Once a type of resource to manage has been selected and an action button has
been selected, a window opens that displays a list of possible parameters for the
action. Some parameters are mandatory, others are optional. The following figure
shows an example of selecting the add action on a connection:

The action window is the same for most actions. It consists of the following parts:

1. Message area
Error and status messages are displayed here.

2. Name of parameter

3. Value of parameter
For each parameter (field), its name is displayed together with an input
field where its value can be changed. The initial value displayed in the
input field is the default value for the field.

4. Send field
The check box for each field is automatically selected when a value has
been changed. When this field is selected, it denotes that the field should
be included in the administration message. By default the administration
message only contains values that have changed, it does not contain
default values. Default values are understood by the administration
message and are not included in the message to ensure that the message

Figure 24. Action window

example adminisration console

118 MQSeries Everyplace Programming Guide

size is kept as small as possible. If the request is to change a value back to
its default, then the send field check box must be manually selected.

5. Action buttons
For each action there are three buttons:

Action button:
The administration message is created and sent to the destination
queue manager. The action window is closed.

Apply:
The administration message is created and sent to the destination
queue manager. The action window remains open allowing the
same message to be sent multiple times or it can be modified and
then sent.

Cancel:
Close the action window without sending the administration
message.

Reply windows
The outcome of an administration request can be viewed with the administration
log browser as described previously. To get a detailed view of the result of the
request, double click on the reply message in the list view.

The window has the same basic structure as an administration request action
window but has the following differences:

1. Message:
Displays the return code and result of the action

2. Detailed errors:
If the return code was RC_Mixed then any errors relating to a particular
field are displayed alongside the field.

3. Action buttons OK:
Close the action reply window

Figure 25. Reply window

example adminisration console

Chapter 5. MQSeries Everyplace administration 119

example adminisration console

120 MQSeries Everyplace Programming Guide

Chapter 6. MQSeries bridge

The MQSeries bridge is a piece of software that allows an MQSeries Everyplace
network and an MQSeries network to exchange messages and inter-work. Due to
the different requirements each aims to satisfy, there are differences in the way the
two systems pass messages. The bridge is there to resolve these differences and
allow messages to flow between the different systems.

Installation
The bridge code is packaged into the MQeMQBridge.jar file, though the class files
are also available in the com\ibm\mqe\mqbridge directory. The classpath must be set
up such that when the MQSeries Everyplace server is started up, the bridge classes
are accessible. Bridge code runs only on the MQSeries Everyplace gateway
platform, not on a device.

MQSeries Java client
The bridge requires that the MQSeries Java Client (version 5.1 or greater) is
installed on the MQSeries Everyplace system. The Java client is available as
supportpac MA88 for download free from the Web at http://www-
4.ibm.com/software/ts/mqseries/txppacs/ma88.html. (The NT client is shipped
with MQSeries Version 5.1 for NT.)

Configuring the MQSeries bridge
The configuration of the gateway requires that some actions be performed on the
MQSeries queue manager, and some on the MQSeries Everyplace queue manager.
The gateway is logically broken into two pieces, one for each direction of the
message (MQSeries Everyplace to MQSeries and MQSeries to MQSeries
Everyplace)

The bridge objects are defined in a hierarchy as shown in Figure 26 on page 122

The following rules govern the relationship between the various objects:
v An MQSeries bridge is associated with a single MQSeries Everyplace queue

manager
v A single MQSeries Everyplace queue manager may have more than one bridge

object associated with it. You may wish to configure several MQSeries bridge
instances with different routings.

v Each bridge can have a number of MQSeries queue manager definitions
v Each MQSeries queue manager definition can have a number of client

connections that allow communication with MQSeries Everyplace
v Each client connection connects to a single MQSeries queue manager, although

each service may use a different ″server connection″ on the MQSeries queue
manager , or a different set of security, send, and receive exits, ports or other
parameters

v A gateway client connection may have a number of ″listeners″ that use that
gateway service to connect to the MQSeries queue manager.

v A listener uses only one client connection to establish its connection.
v Each listener connects to a single transmission queue on the MQSeries system.

© Copyright IBM Corp. 2000 121

v Each listener moves messages from a single MQSeries transmission queue to
anywhere on the MQSeries Everyplace network, (using the MQSeries Everyplace
queue manager its gateway is associated with). So a gateway can funnel
multiple MQSeries message sources through one MQSeries Everyplace queue
manager onto the MQSeries Everyplace network.

v When moving MQSeries Everyplace messages to the MQSeries network, the
MQSeries Everyplace queue manager creates a number of ″adapter″ objects.
Each adapter object can connect to any MQSeries queue manager directly
(providing it is configured) and send it’s messages to any queue. So a gateway
can dispatch MQSeries Everyplace messages routed through a single MQSeries
Everyplace queue manager to any MQSeries queue manager.

Configuring a basic installation
To configure a very basic installation of the MQSeries bridge you need to complete
the following steps:

1. Make sure you have an MQSeries system installed and that you understand
local routing conventions, and how to configure the system.

2. Install MQSeries Everyplace on a system (It can be the same system as your
MQSeries system is located on if you wish)

3. If the MQSeries Java client is not already installed, download it from the web
and install it.(See “MQSeries Java client” on page 121.)

4. Set up your MQSeries Everyplace system and verify that it is working
properly before you try to connect it to MQSeries.

5. Update the MQe_java\Classes\JavaEnv.bat file so that it points to the java
classes that are part of the MQSeries java client, and to the classpath to your
JRE (Java Runtime Environment). You need to make sure the
″com.ibm.mqbind.jar″ and the ″com.ibm.mq.jar″ classes are in the classpath,
and that the ’java\lib’ and ’\bin’ directories are on your path.

MQe Queue
Manager

MQe Queue
Manager

MQe ServerMQe Server

Bridges

Bridge

MQ Queue
Manager Proxy

MQ Queue
Manager Proxy

Client
Connection

Client
Connection

Transmission
Queue Listener
Transmission

Queue Listener

Only one queue manager
is allowed on each MQe
server in version 1.0

Only one Bridges object
is allowed on each MQe
server

Figure 26. Bridge object hierarchy

bridge configuration

122 MQSeries Everyplace Programming Guide

6. Plan the routing you intend to implement. You need to decide which
MQSeries queue managers are going to talk to which MQSeries Everyplace
queue managers.

7. Decide on a naming convention for MQSeries Everyplace objects and
MQSeries objects and document it for future use.

8. Modify your MQSeries Everyplace system to define a bridge on your chosen
MQSeries Everyplace server. You can use the Administration GUI
(examples.mqbridge.awt.AwtMQBridgeServer) to define a bridge.

9. Connect the chosen MQSeries queue manager and the bridge on the MQSeries
Everyplace server.
On the MQSeries queue manager, define one or more java server connection
channel so that MQSeries Everyplace can use the java client/bindings to talk
to this queue manager. This involves the following steps:
a. Define the server connection channels
b. Define a ″sync queue″ for MQSeries Everyplace use to allow MQSeries

Everyplace to provide assured delivery to the MQSeries system. You need
one of these per server connection channel that the MQSeries Everyplace
system will use.

On the MQSeries Everyplace server, define an MQSeries queue manager proxy
object which holds information about the MQSeries queue manager. Collect
the Hostname of the MQSeries queue manager and put it in the MQSeries
queue manager proxy object.

On the MQSeries Everyplace server, define a Client Connection object which
holds information about how to use the java client/bindings to connect to the
server connection channel on the MQSeries system. Collect the Port number,
and all other server connection channel parameters so they match the
definition on the MQSeries queue manager.

10. Modify your configuration on both MQSeries Everyplace and MQSeries to
allow messages to pass from MQSeries to MQSeries Everyplace.
a. Decide on the number of routes from MQSeries to your MQSeries

Everyplace network. The number of routes you need depends on the
amount of message traffic (load) you will be using across each route. If
your message load is high you may wish to split your traffic into multiple
routes.

b. Define your routes:
v Each route requires a transmission queue defined on your MQSeries

system. DO NOT define a channel for these transmission queues.
v Each route requires a matching ″transmission queue listener″ on your

MQSeries Everyplace system.
v Define a selection of remote queue definitions, (such as remote queue

manager aliases and queue aliases) to allow MQSeries message to be
routed onto the various MQSeries Everyplace-bound transmission
queues you have defined.

11. Modify your configuration on MQSeries Everyplace to allow messages to pass
from MQSeries Everyplace to MQSeries:
a. Publish details about all the MQSeries queue managers on your MQSeries

network you need to send messages to from the MQSeries Everyplace
network. Each MQSeries queue manager requires a ″Connections″
definition on your MQSeries Everyplace server. All fields except the Queue
manager name should be null, to indicate that the normal network is not
used to talk to this MQSeries queue manager.

bridge configuration

Chapter 6. MQSeries bridge 123

b. Publish details about all the MQSeries queues on your MQSeries network
you need to send messages to from the MQSeries Everyplace network.
Each MQSeries queue requires an ″MQSeries bridge queue″ definition on
your MQSeries Everyplace server. (This is the MQSeries Everyplace
equivalent of a DEFINE QREMOTE).
v The queue name is the name of the MQSeries queue to which the bridge

will send any messages arriving on this MQSeries bridge queue
v The queue manager name is the name of the MQSeries queue manager

on which the queue is eventually located.
v The bridge name indicates which bridge should be used to send

messages to the MQSeries network
v The MQSeries queue manager proxy name is the name of the MQSeries

queue manager proxy object in the MQSeries Everyplace configuration
which can connect to an MQSeries queue manager. The MQSeries queue
manager should have a route defined to allow messages to be posted to
the ″Queue Name″ on ″Queue Manager Name″ to eventually deliver the
message to its final destination.

12. Start your MQSeries and MQSeries Everyplace systems to allow messages to
flow. The MQSeries system should have its client channel listener started. The
MQSeries Everyplace system should have all the objects you have defined
started. These can be started explicitly using the Administration GUI, by
configuring the rules class to indicate the start-up state (running/stopped) and
restarting the MQSeries Everyplace server, or a mixture of the two. The
simplest way to manually get objects going is to send the relevant bridge
object a ″start″ command, indicating that all its children and children’s
children should be started also.
v To allow messages to pass from MQSeries Everyplace to MQSeries, you

need to start the client connection objects in MQSeries Everyplace.
v To allow messages to pass from MQSeries to MQSeries Everyplace, you

need to start both the client connection objects, and the relevant
transmission queue listeners.

13. Create transformer classes, and modify your MQSeries Everyplace
configuration to use them. A transformer class will convert from a specific
MQSeries message format into an MQSeries Everyplace message format, and
vice-versa. These format-converters need to be written in java and configured
in several places throughout the bridge configuration.
a. Create java transformer classes
v Talk to your application developers and find out the message formats of

the MQSeries messages which need to pass over the bridge.
v Write a set of small transformer classes to convert each MQSeries

message format into an MQSeries Everyplace message. (See the example
transformer for details) OR Write a huge transformer which understands
all of the message formats, and can convert between MQSeries and
MQSeries Everyplace formats OR Write a transformer class which
understands how to recognize an MQSeries message format, and can
load and invoke a small transformer to do the conversion of that
message. See “Transformers” on page 147.

b. You may wish to replace the default transformer class. Use the
administration GUI to ″update″ the Default transformer class parameter in
the bridge object’s configuration.

bridge configuration

124 MQSeries Everyplace Programming Guide

c. You may wish to specify a non-default transformer for each MQSeries
bridge queue definition. Use the administration GUI to ″update″ the
″transformer″ field of each MQSeries bridge queue you have in the
configuration

d. You may wish to specify a non-default transformer for each MQSeries
transmission queue listener. Use the administration GUI to ″update″ the
″transformer″ field of each listener you have in the configuration

e. Restart the bridge, and listeners.

Sample configuration tool
MQSeries Everyplace systems and the MQSeries bridge are complex environments
and they can be difficult to configure. A sample configuration tool that helps to
create an initial configuration is included with the MQSeries bridge. The source
code for the tool is provided and you can subclass it, modify it, and change its
behavior as you wish.

This documentation explains what this sample tool does and how to use it.

Limitations
The sample configuration tool cannot be used on a server that has a large number
of MQSeries Everyplace queue manager connections defined. For instance, if you
have a large number of mobile phones, each with a separate queue manager, and
the server had a ’connection’ defined for each, then the tool would not work, as it
sometimes queries the list of connections. In such situations, the tool stalls and the
JVM the wizard runs in fails due to a lack of memory. If you are trying to
administer a server that has many connections to other MQSeries Everyplace
queue managers, we recommend you use the
examples.mqbridge.administration.console.AdminGateway application instead.

Steps required to configure the bridge
To configure a very basic installation of the MQSeries bridge you need to complete
the steps in “Configuring a basic installation” on page 122. The sample tool aims to
provide a simple way of doing the steps 8-12 in this list.

Configuration example
This section describes an example configuration of 4 systems.

The four systems are:

MQeMoonQM
This is an MQSeries Everyplace client queue manager, sited on a handheld
PC. The user periodically attaches the handheld PC to the network, to
inter-work with the MQeEarthQM MQSeries Everyplace gateway.

MQeMoonQM MQJupiterQMMQSaturn QMMQeEarthQM

MQe queue manager
Handheld PC

MQ queue manager
OS/390

MQ queue manager
Windows NT
I/P address: 20.8.9.51

MQe queue manager
Windows/2000
I/P address: 20.8.9.50

Figure 27. Configuration example

bridge configuration

Chapter 6. MQSeries bridge 125

MQeEarthQM
This is on a Windows/2000 machine, with an I/P address of 20.8.9.50 This
is an MQSeries Everyplace gateway (server) queue manager.

MQSaturnQM
This is an MQSeries queue manager, installed on a Windows/NT platform.
The I/P address is 20.8.9.51

MQJupiterQM
This is an MQSeries queue manager, installed on a System/390 platform.

Requirement
The requirement for this example is that all machines are able to post a message to
a queue on any of the other machines.

It is assumed that all machines are permanently connected to the network, except
the MQeMoonQM machine, which is only occasionally connected.

Initial setup
For this example, it is assumed that there are local queues, to which messages can
be put, on all the queue managers. These queues are called:
v MQeMoonQ on the MQeMoonQM
v MQeEarthQ on the MQeEarthQM
v MQSaturnQ on the MQSaturnQM
v MQJupiterQ on the MQJupiterQM

Enabling MQeMoonQM to put and get messages to and from the
MQeEarthQM queue manager
On MQeMoonQM:

Define a connection:

Target queue manager name: MQeEarthQM
Adapter: Network:20.8.9.50

Applications are now be able to use any queue defined on the
MQeEarthQM queue manager directly, when the MQeMoonQM is
connected to the network. The requirement states that applications on
MQeMoonQM should be able to send messages to MQeEarthQ in an
asynchronous manner... so we need to define a remote queue definition
(rather than rely on auto-descovery) in order to set up the asynchronous
linkeage to the MQeEarthQ queue.

Define a remote queue:

Queue name: MQeEarthQ
Queue manager name: MQeEarthQM
Access mode: Asynchronous

Application on MQeMoonQM now have access to the MQeMoonQ (a local
queue) in a synchronous manner, and the MQeEarthQ in an asynchronous
manner.

sample configuration tool

126 MQSeries Everyplace Programming Guide

Enabling the MQeEarthQM to send messages to the
MQeMoonQM queue manager
Since the MQeMoonQM is not be attached to the network for most of the time, we
will use a store-and-forward queue on the MQeEarthQM to collect messages
destined for the MQeMoonQM queue manager.

On MQeEarthQM:

Define a store-and-forward-queue

Queue name: TO.HANDHELDS
Queue Manager Name: MQeEarthQM

(as th
MQ

Add a queue manager to the store-and-forward queue:

Queue Name: TO.HANDHELDS
Queue manager: MQeMoonQM

We also need to set up a (similarly named) home-server queue on the
MQeMoonQM queueue manager, which ″pulls″ messages out of the
store-and-forward queue and puts them to a queue on the MQeMoonQM queue
manager.

On MQeMoonQM:

Define a home-server queue:

Queue Name: TO.HANDHELDS
Queue manager name: MQeEarthQM

(as the

Any messages arriving at MQeEarthQM that are destined for MQeMoonQM are
stored temporarily in the store-and-forward queue TO.HANDHELDS. When
MQeMoonQM next connects to the network, it’s home-server queue
TO.HANDHELDS gets any messages currently on the store-and-forward queue,
and deliver them to the MQeMoonQM queue manager, for storeage on local
queues.

Applications on MQeEarthQM can now send a message to MQeMoonQ in an
asynchronous manner.

Enabling MQeEarthQM to send a message to MQSaturnQ
On MQeEarthQM:

Define a bridge:

Bridge name: MQeEarthQMBridge

Define an MQ queue manager proxy:

Bridge Name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
Hostname: 20.8.9.51

Define a client connection:

Bridge Name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM

sample configuration tool

Chapter 6. MQSeries bridge 127

ClientConnectionName: MQeEarth.CHANNEL
SyncQName: MQeEarth.SYNC.QUEUE

Define a connection:

ConnectionName: MQeSaturnQM
Channel: null
Adapter: null

Define an MQBridge queue:

Queue Name: MQSaturnQ
MQ Queue manager name: MQSaturnQM
Bridge name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

Define a server connection channel:

Name: MQeEarth.CHANNEL

Define a local ″sync″ queue:

Name: MQeEarth.SYNC.QUEUE

The sync queue is needed for assured delivery.

Applications on MQeEarthQM can now send a message to the MQSaturnQ on
MQSaturnQM.

Enabling MQeEarthQM to send a message to MQJupiterQ
On MQeEarthQM:

Define a connection:

ConnectionName: MQeJupiterQM
Channel: null
Adapter: null

Define an MQBridge queue:

Queue Name: MQJupiterQ
MQ Queue manager name: MQJupiterQM
Bridge name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

Define a remote queue definition:

Queue Name: MQJupiterQ
Transmission Queue: MQJupiterQM.XMITQ

On both MQSaturnQM and MQJupiterQM:
Define a channel to move the message from the MQJupiterQM.XMITQ on
MQSaturnQM to MQJupiterQM.

sample configuration tool

128 MQSeries Everyplace Programming Guide

Now applictions on MQeEarthQM can send a message to MQJuputerQ on
MQJupiterQM, via MQSaturnQM.

Enabling MQeMoonQM to send a message to MQJupiterQ and
MQSaturnQ
On MQeMoonQM:

Define a connection:

Target Queue manager name: MQSaturnQM
Adapter: MQeEarthQM

Define a remote queue definition:

Queue name: MQSaturnQ
Queue manager name: MQSaturnQM
Access mode: Asynchronous

The connection indicates that any message bound for the MQSaturnQM
queue manager should go through the MQeEarthQM queue manager.

Define a connection:

Target Queue manager name: MQJupiterQM
Adapter: MQeEarthQM

Define a remote queue definition:

Queue name: MQJupiterQ
Queue manager name: MQJupiterQM
Access mode: Asynchronous

Applications connected to MQeMoonQM can now issue messages to MQeMoonQ,
MQeEarthQ, MQSaturnQ, and MQJupiterQ, even when the handheld PC is
disconnected from the network.

Enabling MQSaturnQM to send messages to the MQeEarthQ
On MQSaturnQM:

Define a local queue:

Queue name: MQeEarth.XMITQ
Queue type: transmission queue

Define a queue manager alias (remote queue definition):

Queue name: MQeEarthQM
Remote queue manager name: MQeEarthQM
Transmission queue: MQeEarth.XMITQ

On MQeEarthQM:

Define a Transmission queue listener:

Bridge name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL
Listener Name: MQeEarth.XMITQ

sample configuration tool

Chapter 6. MQSeries bridge 129

Applications on MQSaturnQM can now send messages using the MQeEarthQM
queue manager alias to the MQeEarthQ. This routes each message onto the
MQeEarth.XMITQ, where the MQe transmission queue listener MQeEarth.XMITQ
gets them, and moves them onto the MQSeries Everyplace network.

Enabling MQSaturnQM to send messages to the MQeMoonQ
On MQSaturnQM:

Define a queue manager alias (remote queue definition):

Queue name: MQeMoonQM
Remote queue manager name: MQeMoonQM
Transmission queue: MQeEarth.XMITQ

Applications on MQSaturnQM can now send messages using the MQeMoonQM
queue manager alias to the MQeMoonQ. This routes each message to the
MQeEarth.XMITQ, where the MQe transmission queue listener MQeEarth.XMITQ
gets them, and posts them onto the MQSeries Everyplace network.

The store-and-forward queue TO.HANDHELDS collects the message, and when
the MQeMoonQM next connects to the network, the home-server queue retrieves
the message from the store-and-forward queue, and delivers the message to the
MQeMoonQ.

Enabling the MQJupiterQM to send messages to the MQeMoonQ
On MQJupiterQM:

Set up remote queue manager aliases for the MQeEarthQM and
MQeMoonQM to route messages to MQSaturnQM using normal MQSeries
routing techniques.

Now any application connected to any of the queue managers can post a message
to any of the MQeMoonQ, MQeEarthQ, MQSaturnQ or MQJupiterQ.

Additional bridge configuration
Trace of the base MQSeries Java Classes is not usually needed, and so is disabled
by default. However it is the responsibility of the active trace handler class to
initialize MQSeries trace, and an example of how to do this is shipped with the
MQSeries Everyplace classes. The example bridge trace class is
examples.mqbridge.awt.AwtBridgeTrace. This class is automatically instantiated by
the bridge administration GUI bridge trace messages are supplied in several
languages in examples.mqbridge.trace..

In addition, MQExceptions are logged to the OutputStreamWriter defined in
com.ibm.mq.MQException.log. (System.err by default). Consult the ″MQSeries
Using Java″ manual for more information on initializing and configuring base
MQSeries trace.

Administration of the MQSeries bridge
This section contains information on the tasks associated with the administration of
the MQSeries bridge

sample configuration tool

130 MQSeries Everyplace Programming Guide

The example administration GUI application
An example administration GUI is provided with the MQSeries bridge. It is a
subclass of the examples.administration.console.Admin example described in
“Example administration console” on page 114.

The subclass is called examples.mqbridge.administration.console.AdminGateway.

Bridge function cannot execute on a client queue manager, so using this class in
conjunction with a client queue manager does not allow the administration of
bridge objects on that client queue manager, but it does enable administration of a
remote MQSeries Everyplace bridge-enabled server queue manager.

To administer a bridge attached to a local queue manager, use the example server
program <java> examples.mqbridge.awt.AwtMQBridgeServer <server_ini_file> to
start an MQSeries Everyplace server.

From the server window either of the following options can be used:
v Click the ’Admin’ button to use the

examples.mqbridge.administration.console.AdminGateway class to administer
the local server queue manager, and it’s bridge objects.

v Click on the ″MQBridge setup″ button to invoke the
examples.mqbridge.setup.MQBridgeWizard example class, as described in
“Sample configuration tool” on page 125.

Both examples demonstrate how to programmatically manipulate bridge
configuration objects using the bridge-specific administration message sub-classes;
MQeMQBridgesAdminMsg, MQeMQBridgeAdminMsg,
MQeMQQMgrProxyAdminMsg, MQeClientConnectionAdminMsg,
MQeListenerAdminMsg, and MQeMQBridgeQueueAdminMsg.

Bridge administration actions

Run state
Each administered object has a ’run state’. This can be ’running’ or ’stopped’
indicating whether the administered object is active or not.

When an administered object is ’stopped’, it cannot be used, but its configuration
parameters can be queries or updated.

If the MQSeries bridge queue references a bridge administered object that is
’stopped’, it is unable to convey an MQSeries Everyplace message onto the
MQSeries network until the bridge, MQSeries queue manager proxy, and client
connection administered objects are all ’started’.

Figure 28. MQSeries bridge administration GUI server window

bridge administration

Chapter 6. MQSeries bridge 131

The ’run state’ of the administered objects can be changed using the start/stop
actions from the MQeMQBridgeAdminMsg, MQeMQQMgrProxyAdminMsg,
MQeClientConnectionAdminMsg or MQeListenerAdminMsg administration
message classes.

The actions supported by the bridge administration objects are described in the
following sections.

Start action
An administrator can send a ’start’ action to any of the administered objects.

The ’affect children’ boolean flag affects the results of this action. The ’start’ action
starts the administered object and all it’s children (and children’s children) if the
″affect children″ boolean field is in the message and is set to ’true’. If the flag is not
in the message or is set to ’false’, only the administered object receiving the start
action changes it’s run-state. For example, sending ’start’ to the bridge and
specifying ’effect children’ as true causes all proxy, client connection, and listeners
that are ancestors, to start. If ’affect children’ is not specified, only the bridge is
started. An administered object cannot be started unless it’s parent administered
object has already been started, therefore sending a start event to an administered
object causes all the objects higher in the hierarchy to be started if they are not
already running.

Stop action
An administered object can be ’stopped’ by sending it a stop action. The receiving
administered object always makes sure all the objects below it in the hierarchy are
stopped before it is stopped itself.

Inquire action
The inquire action queries values from the administered object it is sent to.

If the administered object is in the ’running’ state, the values returned on the
inquire are those that are currently in-use. The values returned from a ’stopped’
object reflect any recent changes to values made by an ’update’ action. Thus, a
sequence of start, update, inquire returns the values configured before the update,
while start, update, stop, inquire returns the values configured after the update.

You may find it less confusing if you stop any administered object before updating
variable values.

Update action
The update action updates one or more values for characteristics for an
administered object. The values set by an ’update’ action do not become current
until the administered object is next stopped. (See “Inquire action”.)

Delete action
The delete action permanently removes all current and persistent information
about the administered object. The ’affect children’ boolean flag affects the outcome
of this action. If the ’affect children’ flag is present and set to ’true’ the
administered object receiving this action issues a ’stop’ action, and then a ’delete’
action to all the objects below it in the hierarchy, removing a whole piece of the
hierarchy with one action. If the flag is not present, or it is set to false, then the
administered object deletes only itself, but this action cannot take place unless all
the objects in the hierarchy below the current one have already been deleted.

bridge administration

132 MQSeries Everyplace Programming Guide

Create action
The create action creates an administered object. The ’run state’ of the administered
object created is initially set to ’stopped’.

Shutting down an MQSeries queue manager
We recommend that before you stop the MQSeries queue manager, you issue a
STOP administration message to all the MQSeries queue-manager-proxy
administered bridge objects, to stop the MQSeries Everyplace network using the
MQSeries queue manager. Stopping the MQSeries queue-manager-proxy bridge
object prevents any MQSeries Everyplace activity from interfering with the
shutdown of the MQSeries queue manager. (This can also be done by issuing a
single STOP admin message to the MQSeries Everyplace bridges object.)

If you do not stop the MQSeries queue-manager-proxy bridge object before you
shut the MQSeries queue manager, the behavior of the MQSeries shutdown and
the MQSeries bridge depends on the type of MQSeries queue manager shutdown
you choose, immediate shutdown or controlled shutdown.

Immediate shutdown
Stopping an MQSeries queue manager using immediate shutdown severs (by
force) any connections that the bridge has to the MQSeries queue manager (this
applies to connections formed using either the Java bindings, or Java client
channels). The MQSeries the system shuts down as normal.

This causes all the bridge transmission queue listeners to stop immediately, each
one warning that it has shut down due to the MQSeries queue manager stopping
immediately.

Any MQSeries bridge queues that are active retain a (broken) connection to the
MQSeries queue manager until:
v The connection times-out, after being idle for an idle timeout period (as

specified on the client-connection bridge object), at which point the broken
connection is closed.

v The MQSeries bridge queue is told to perform some action, such as put a
message to MQSeries, that attempts to use the broken connection. The
putMessage operation fails and the broken connection is closed.

When an MQSeries bridge queue has no connection, the next operation on that
queue causes a new connection to be obtained. If the MQSeries queue manager is
not available, the operation on the queue fails synchronously. If the MQSeries
queue manager has been re-started after the shutdown, and a queue operation,
such as putMessage, acts on the bridge queue, then a new connection to the active
MQSeries queue manager is established, and the operation executes as expected.

Controlled shutdown
Stopping an MQSeries queue manager using the controlled shutdown does not
sever any connections by force, it waits until all connections are closed (this applies
to connections formed using the Java bindings, or Java client channels). Any active
bridge transmission queue listeners notice that the MQSeries system is quiescing,
and stop with a relevent warning.

Any MQSeries bridge queues that are active retain a connection to the MQSeries
queue manager until:

bridge administration

Chapter 6. MQSeries bridge 133

v The connection times-out, after being idle for an idle timeout period (as
specified on the client connection bridge object), at which point the broken
connection is closed, and the controlled shutdown of the MQSeries queue
manager completes.

v The MQSeries bridge queue is told to perform some action, such as put a
message to MQSeries, that attempts to use the (broken) connection. The
putMessage operation fails, the broken connection is closed, and the controlled
shutdown of the MQSeries queue manager completes.

The bridge client-connection object maintains a pool of connections, that are
awaiting use. If there is no bridge activity, the pool retains MQSeries client channel
connections until the connection idle time exceeds the idle timeout period (as
specified on the client connection object configuration), at which point the channels
in the pool are closed.

When the last client channel connection to the MQSeries queue manager is closed,
the MQSeries controlled shutdown completes.

Administered objects and their characteristics
This section describes the characteristics of the different types of administered
objects associated with the MQSeries Everyplace to MQSeries bridge.
Characteristics are object attributes that can be queried using an inquireAll()
administration message. The results can be read and used by the application, or
they can be sent in an update or create administration messages to set the values
of the characteristics. Some characteristics can also be set using the create and
update administration messages. Each characteristic has a unique label associated
with it and this label is used to set and get the characteristic value.

The following lists show the attributes that apply to each administered object. The
attributes are described in detail in alphabetical order in “Attribute details” on
page 135. The label constants are defined in
com.ibm.mqe.mqbridge.MQeCharacteristicLabels

Characteristics of bridges objects

v Run-state
v Children
v Child

Characteristics of bridge objects

v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v HeartBeatInterval
v DefaultTransformer

Characteristics of MQSeries queue manager proxy objects

v Run-state
v Children
v Child
v AdministerObjectClass

MQSeries queue manager shutdown

134 MQSeries Everyplace Programming Guide

v StartupRuleClass
v BridgeName
v MQQMgrProxyName
v HostName

Characteristics of client connection objects

v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v MQQMgrProxyName
v ClientConnectionName
v Port
v AdapterClass
v MQUserID
v MQPassword
v SendExit
v ReceiveExit
v SecurityExit
v CCSID
v SyncQName
v SyncQPurgerRulesClass
v MaxConnectionIdleTime
v SyncQPurgeInterval

Characteristics of MQSeries transmission queue listener objects

v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v MQQMgrProxyName
v ClientConnectionName
v ListenerName
v DeadLetterQName
v ListenerStateStoreAdapter
v UndeliveredMessageRuleClass
v TransformerClass

Attribute details
Attribute:

AdapterClass

Type: Unicode

Label:

bridge administered objects

Chapter 6. MQSeries bridge 135

Valid actions
Inquire, create, update

Description
This is either a java class name, or an alias that can be resolved into a java
class name. It is used by the gateway slave.

If not specified, a default of com.ibm.mqe.mqbridge.MQeMQAdapter is
used. This parameter is not validated.

Attribute:
AdministeredObjectClass

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The name of the bridge.

Valid characters are: ’0–9’ ’A-Z’ ’a-z’ - . % /

Attribute:
BridgeName

Type: Unicode

Label:

Valid actions
Inquire, create, update, delete, start, stop

Description
If you use a symbolic name, it may take longer to detect that this machine
is not switched on, or that the name server is not working. If this causes a
problem, you can use the dotted decimal I/P address in this field instead.

Note: This characteristic is settable only once, when the create
administration message is used. Thereafter it is used to identify
which bridge administered object should be inquired on, updated,
deleted, started, or stopped.

Attribute:
CCSID

Type: Int

Label:

Valid actions
Inquire, create, update

Description
See the MQSeries Using Java documentation for a description of this
parameter.

Valid values are: 0..MAXINT, default is 0.

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_ADAPTER_CLASS

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_ADMINISTERED_OBJECT_CLASS

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_BRIDGE_NAME

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_CCSID

bridge administered objects

136 MQSeries Everyplace Programming Guide

Attribute:
Child

Type: Unicode

Label:

Valid actions
Inquire

Description
A field containing the name of an MQSeries bridge administered object.

Attribute:
Children

Type: MQeFields array

Label:

Valid actions
Inquire

Description
An array of Child fields, each element containing a Child attribute.

Attribute:
ClientConnectionName

Type: Unicode

Label:

Valid actions
Inquire, create, update, delete, start, stop

Description

Note: This characteristic is settable only once, when the create
administration message is used. Thereafter it is used to identify
which bridge administered object should be inquired on, updated,
deleted, started, or stopped.

Attribute:
DeadLetterQName

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
If the gateway finds it cannot deliver a message from MQSeries to
MQSeries Everyplace (possibly due to a size restriction on the target
MQSeries Everyplace queue) then the message cannot be processed by the
gateway, and it is placed on a dead letter queue on the MQSeries system.
This parameter defines which queue the erroneous message is delivered to.

If not specified, the value of ″SYSTEM.DEAD.LETTER.QUEUE″ is used.

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_CHILD

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_CHILDREN

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_CLIENT_CONNECTION_NAME

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_DEAD_LETTER_Q_NAME

bridge administered objects

Chapter 6. MQSeries bridge 137

Attribute:
DefaultTransformer

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The classname specified here is used as the ″default transformer class″.
When a message is sent from MQSeries to MQSeries Everyplace, the target
queue may have a transformer class defined. If it is NOT defined, then this
class is used to transform the MQSeries message into MQSeries Everyplace
format.

When a message is sent from MQSeries Everyplace to MQSeries, again, the
transmission queue listener moving the message onto MQSeries Everyplace
may have a transformer class defined. If it is NOT defined, then this class
is used to transform the MQSeries message into the MQSeries Everyplace
format.

No validation of the value in this field is performed.

Default value is com.ibm.mqebridge.MQeBaseTransformer

Attribute:
HeartBeatInterval

Type: Int

Label:

Valid actions
Inquire, create, update

Description
A time interval, expressed in units of 1 minute. 1<=value<=60. The bridge
uses a ″heartbeat″ internally to provide a regular stimulus to other
administered objects. The administered objects perform small tasks when
the heartbeat event arrives, such as ’The client connection will reap old or
stale MQSeries connections’ or ’the sync queue will be purged’. The
heartbeat provides a ″granularity″ of timers which is indivisible, that is, the
lower this value is set, the more accurate any actions which compare
against the current time will be. For instance, if you say ″reap all MQSeries
connections if they have been idle for more than 10 minutes″, but set the
heartbeat interval for 3 minute intervals, then an idle MQSeries connection
will be checked after 3,6,9 and 12 minutes, but will only be ″reaped″ on the
12th minute. Setting this value lower increases the accuracy of the
timer-related heartbeat events, but does so at the cost of efficiency. The
more heartbeat events created, the more work is done.

The default value is 5 minutes.

Attribute:
Hostname

Type: Unicode

Label:

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_DEFAULT_TRANSFORMER

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_HEARTBEAT_INTERVAL

bridge administered objects

138 MQSeries Everyplace Programming Guide

Valid actions
Inquire, create, update

Description
Used to create connections to this MQSeries queue manager using the
MQSeries Java classes. If not specified, then the MQSeries queue manager
is assumed to be on the same machine as the JVM, so the java bindings are
used to talk to the MQSeries system.

Note: A blank value is NOT the same as specifying ″localhost″. If a blank
value is used, then the bridge uses the MQSeries java bindings
which talk to MQSeries directly (which is faster). If you specify
″localhost″, although it has exactly the same effect, it causes the
bridge to use the MQSeries java client classes, which means all talk
to MQSeries is through the network (TCP/IP) stack communication.

The value specified here is not validated at all. If you use a symbolic
name, it may take longer to detect that this machine is not switched on, or
if the name server is not working. You can instead use the dotted decimal
I/P address notation in this field if this causes problems.

Attribute:
ListenerName

Type: Unicode

Label:

Valid actions
Inquire, create, update, delete, start, stop

Description
The name of this listener. The listener name is the name of the
transmission queue on MQSeries that the listener takes messages from. The
combination of MQ_queue_manager_name and
MQ_transmission_queue_name pair must be unique across all the
gateways that exist.

Note: This characteristic is settable only once, when the create
administration message is used. Thereafter it is used to identify
which bridge administered object should be inquired on, updated,
deleted, started, or stopped.

Attribute:
ListenerStateStoreAdapter

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
In order to provide assured message delivery of persistent messages, the
listener class uses an adapter to store state information. This is the class
name (or alias of the classname) of the adapter that is loaded to manage
the storing and recovery of the state information to and from disk. Two

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_HOST_NAME

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_LISTENER_NAME

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_LISTENER_STATE_STORE_ADAPTER

bridge administered objects

Chapter 6. MQSeries bridge 139

adapters are currently supported-
com.ibm.mqe.adapters.MQeDiskFieldsAdapter (which stores state
information on the local filesystem) and
com.ibm.mqe.mqbridge.MQeMQAdapter (which stores state information
on the MQSeries server). The disk adapter is generally quicker than using
the MQSeries-based adapter. The classname can be followed by a colon
separated list of arguments, although only the MQeDiskFieldsAdapter uses
them. In this case MQeDiskFieldsAdapter can be followed by a colon and a
fully qualified path name to a file that contains the state information. For
example, in order to use the disk fields adapter to store the listener’s state
information in the file c:\folder\state.sta, the listener-state-store-adapter
field should contain the value
″com.ibm.mqe.Adapters.MQeDiskFieldsAdapter:c:\folder\state.sta″. A file
specified by this parameter need not exist already. If the supplied path
name ends in a folder separator (for example. ’\’ in DOS) then it is
assumed that the supplied parameter is a directory, and a state file called
’<ListenerName>-listener.sta’ is created inside it (where <ListenerName> is
the name of the listener, from the registry entry). If no path name is
supplied, the listener uses a file called ’<ListenerName>-listener.sta’ inside
the current Java working directory If the MQeMQAdapter is being used,
no additional arguments are required.

The default value of the ListenerStateStoreAdapter field is
″com.ibm.mqe.Adapters.MQeDiskFieldsAdapter″.

Attribute:
MaxConnectionIdleTime

Type: Int

Label:

Valid actions
Inquire, create, update

Description
Each client connection object in the bridge maintains a ″pool″ of MQSeries
Java client connections to its MQSeries system.

When an MQSeries connection becomes idle, through lack of use, whether
it is in the pool or not, a timer is started. If the timer reaches the current
value of this parameter, then the idle connection is thrown away. This is
known asreaping the connection. This is done inorder to save resources
when the connection is idle. The connection pool is an efficiency device
used within the MQSeries bridge. Creation of new MQSeries client
connections is an expensive operation. If there are idle connections in the
pool, one of these is reused, thus saving time and cpu in an expensive ″get
new connection″ operation. The higher the MaxConnectionIdleTime value,
the more likely there is going to be an idle connection waiting in the
connection pool, but the more client connections there are doing nothing,
and consuming resources in the JVM. Setting this value lower, decreases
the likelihood of an idle connection being available, but also decreases the
number of idle connections , so less resources are consumed.

The time is expressed in units of 1 minute.

The Valid range: 0 <= value <= 720 (12 hours) and the default is 5
(minutes).

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_MAX_CONNECTION_IDLE_TIME

bridge administered objects

140 MQSeries Everyplace Programming Guide

Setting this value to 0 effectively means ″don’t use a connection pool″ and
whenever an MQSeries client connection is idle, it is reaped or discarded.
This is an inefficient way of using this parameter.

The granularity of any timeouts specified in the bridge are only checked
with a timer granularity equal to the heartbeatInterval bridge parameter.

MaxConnectionIdleTime can have a direct effect on the length of time it
takes to shut down an MQSeries Everyplace system. See for more details
“Shutting down an MQSeries queue manager” on page 133.

Attribute:
MQPassword

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
Used by the java client. The password field on the MQSeries calls is set to
″″ if this is not specified. The value you specify here overrides any defaults
used. This parameter is not validated.

Attribute:
MQQMgrProxyName

Type: Int

Label:

Valid actions
Inquire, create, update, delete, start, stop

Description

Note: This characteristic is settable only once, when the create
administration message is used. Thereafter it is used to identify
which bridge administered object should be inquired on, updated,
deleted, started, or stopped.

Attribute:
MQUserID

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
Used by the java client. The user-id field on the MQSeries calls is set to ″″
if this is not specified. The value you specify here overrides any defaults
used. This parameter is not validated.

Attribute:
Port

Type: Int

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_PASSWORD

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_MQ_Q_MGR_PROXY_NAME

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_USER_ID

bridge administered objects

Chapter 6. MQSeries bridge 141

Label:

Valid actions
Inquire, create, update

Description
Used to create connections to this MQSeries queue manager using the
MQSeries Java classes. If not specified, then the MQSeries queue manager
is assumed to be on the same machine as the JVM, so the java bindings are
used to talk to the MQSeries system.

Valid range 0..MAXINT.

Attribute:
ReceiveExit

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
Used to match the exit used at the other end of the Client channel.

This parameter is not validated.

Attribute:
Run-state

Type: Int

Label:

Valid actions
Inquire

Description
Indicates whether the administered object is ’running’ (value=1) and hence
in-use, or ’stopped’ (value=0) and hence not in use. When an object is
stopped it can have its properties changed dynamically.

Attribute:
SecurityExit

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
Used to match the exit used at the other end of the Client channel.

This parameter is not validated.

Attribute:
SendExit

Type: Unicode

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_PORT

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_RECEIVE_EXIT

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_RUN_STATE

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SECURITY_EXIT

bridge administered objects

142 MQSeries Everyplace Programming Guide

Label:

Valid actions
Inquire, create, update

Description
Used to match the exit used at the other end of the Client channel.

This parameter is not validated.

Attribute:
StartupRuleClass

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
* This is a rule class that is used when the administered object is loaded at
system start-up, or when it is first created. The rule class name is not
validated. The rule class specified dictates whether the administered object
is started, and whether or not its children are started. The default rule is
com.ibm.mqe.mqbridge .MQeStartupRule This default causes the
administered object to start, and all its parents to start up. Setting this field
to ″″ (blank) causes the administered object not to be started. See
“MQeStartupRule” on page 154

Attribute:
SyncQName

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The name of the sync queue that is used by the MQSeries bridge on this
MQSeries queue manager. Valid characters forming the name are: ’0’-’9’
’A’-’Z’ ’a’-’z’ ’_’ ’.’ ’%’ ’/’ The sync queue is an MQSeries queue that is
used to keep track of which messages are in the process of moving from
MQSeries Everyplace to MQSeries. If a message is part way through the
logic that assures the once-only delivery of a message, then there will be
another message on the sync queue, indicating how far through the logic
the message has progressed. If the MQSeries Everyplace system is shut
down cleanly, then the sync queue should be empty. If the MQSeries
Everyplace system crashes, then some persistent state information is left in
the sync queue. This information is used when the MQSeries Everyplace
system restarts so that it continues from where it left off. The name of the
sync queue can be the same for client connections on the same bridge, or
on different bridges, providing the send, receive and security exits used
when talking to that sync queue are the same. The sync queues must exist
on the MQSeries queue manager for MQSeries Everyplace->MQSeries
message transfer to work. If the listener state class is the MQeMQAdapter,
it means that this sync queue is used for storing persistent state

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SEND_EXIT

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_STARTUP_RULE_CLASS

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SYNC_Q_NAME

bridge administered objects

Chapter 6. MQSeries bridge 143

information about the listeners also, so it must exist on MQSeries for the
listeners, in order to move MQSeries messages to MQSeries Everyplace.
The listener does not use this parameter if the state information is being
stored by an MQeDiskFieldsAdapter. We recommended a naming scheme
of: MQE.SYNCQ.<ClientConnectionName> so that you know which client
connection is using which sync queue.

The default is ″MQE.SYNCQ.DEFAULT″.

Attribute:
SyncQPurgeInterval

Type: int

Label:

Valid actions
Inquire, create, update

Description

Attribute:
SyncQPurgerRulesClass

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The name of the rules class used when a message on the sync queue
indicates a failure of MQSeries Everyplace to confirm a message.

The default is a classname that just reports the condition in the MQSeries
Everyplace trace.

This parameter is not validated.

Attribute:
TransformerClass

Type: Unicode

Label:

Valid actions
Inquire, ceeate, update

Description
This is the name of the java class that is used to convert the MQSeries
message into an MQSeries Everyplace message. When a message is taken
from MQSeries by the listener, it is transformed into an MQSeries
Everyplace format message using the specified transformer. If the
transformer class is specified as ″null″ or a blank string, then the
DefaultTransformerClass parameter provided on the bridge configuration
parameters is used as the transformer. If the default is also set to
null/blank, then messages cannot be transferred.

The default value is ″″

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SYNC_Q_PURGE_INTERVAL

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SYNC_Q_PURGER_RULES_CLASS

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_TRANSFORMER

bridge administered objects

144 MQSeries Everyplace Programming Guide

See “Transformers” on page 147 for more details.

Attribute:
UndelivedMessageRuleClass

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The name of the MQeUndeliveredMessageRule class. When a message
moving from MQSeries to MQSeries Everyplace cannot be delivered, this
rule class is consulted to decide what action the listener should take. The
rule tells the listener to wait and retry, shut down or deal with the message
as defined in the MQMessage report options.

The default value is: com.ibm.mqe.mqbridge.MQeUndeliveredMessageRule.
See “MQeUndeliveredMessageRule” on page 153.

How to send a test message from MQSeries to MQSeries Everyplace
There are many ways of arranging your routing on the MQSeries system to test the
transmission of a message. One method is to use the bridge setup wizard tool to
define queue manager aliases for each MQSeries Everyplace queue manager that it
knows about. This document describes how to use the resultant configuration to
send a message to the MQSeries Everyplace queue.
1. Select the MQSeries First Steps program from the MQSeries Client v 5.1
2. Select the API exerciser from the First Steps screen
3. In the API Exerciser Queue Managers screen:
v Select the MQSeries queue manager to which the bridge is connected. (The

example is called MQA)
v Select the ’Advanced mode’ checkbox
v Select MQCONN button
v Select the ’Queues’ tab to display the Queues screen
v Select MQOPEN to display the ’MQOPEN Selectable Options’ screen

4. In the MQOPEN Selectable Options screen:
v Make sure the MQOO_INPUT_AS_Q_DEF is NOT selected
v Make sure the MQO_OUTPUT is selected
v Fill in the ObjectName field with the name of the queue, on the MQSeries

Everyplace queue manager that you wish the message to go to. (The example
is called Q1)

v Fill in the ObjectQMgrName field with the name of the MQSeries Everyplace
queue manager you wish the message to go to. (The example is called
ExampleQM)

v Click on OK to open a route to the queue.
5. In the API Exerciser Queues screen:
v Select the MQPUT button to display the ’MQPUT -Argument Options’ screen

6. In the MQPUT - Argument Options screen:
v Type in your message

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_UNDELIVERED_MESSAGE_RULE_CLASS

bridge administered objects

Chapter 6. MQSeries bridge 145

v Click on OK to send the message to Q1 on ExampleQM on the MQSeries
Everyplace system

Dead-letter queues
MQSeries Everyplace has a similar concept of dead-letter queues to MQSeries.
Such queues store message that cannot be delivered. However, there are important
differences in the manner they are used.

In MQSeries, if a message is being moved from queue manager A to queue
manager B, then if the channel connecting A to B cannot deliver the message, the
message can be placed on the receiving queue manager’s (B’s) dead-letter queue.

Due to the nature of the MQSeries Everyplace architecture, if a message is being
sent from queue manager A to queue manager B, but it cannot be delivered, the
message can be placed on the sending queue manager’s (A’s) dead letter queue. The
behaviour is controlled by customizeable rules, see
“MQeUndeliveredMessageRule” on page 153 for more details.

The MQSeries bridge’s transmission queue listener is analogous to an MQSeries
channel, pulling messages from an MQSeries transmission queue, and delivering
them to the MQSeries Everyplace network. It follows the MQSeries Everyplace
convention in that if a message cannot be delivered, an undelivered message rule is
consulted to determine how the transmission queue listener should react. If the
rule indicates the report options in the message header, and these indicate that the
message should be put onto a dead-letter queue, the message is placed on the
MQSeries queue (on the sending queue manager).

putMessage() considerations for the MQSeries bridge
If an application uses putMessage, specifying that a confirmputMessage() should
not be used to confirm this message (confirm parameter==false), the MQSeries
bridge does not used assured delivery logic to pass the message to MQSeries. It
does a simple ″MQPut″ to the MQSeries queue to which the message is being
routed. If the MQSeries system, bridge, or any of the MQSeries Everyplace systems
between the caller of the message, and the MQSeries system fail, then the
application is unable to determine whether the message has been sent or not. The
application may wish to then resend the message, possibly resulting in two
identical messages arriving on the MQSeries queue.

If this causes a problem, the application programmer should choose to use the
putMessage() and confirmputMessage() calls instead.Using the putMessage() with
the confirm parameter=true causes the bridge to use assured delivery logic to put
the message to the MQSeries system.

If any component of the path between the MQSeries system and the sending
application fails, the application programmer is unable to determine whether the
message got to it’s destination or not. In this case, the application should take the
original message, and add a boolean MQeField to it. For example:
msg.putBoolean(MQe.Qos_Retry)

To indicate that this message has been sent in the past. The message is can then be
issued (again) using the putMessage() method. The MQSeries bridge uses it’s
assured delivery logic to assure that only one of the two putMessage() calls
actually put a message to MQSeries.

sending a bridge test message

146 MQSeries Everyplace Programming Guide

If the second putMessage() is issued without the MQe.Qos_Retry, then either one
or two messages containing the same data may end up in the target queue. Thus,
you must always use the Qos_Retry boolean field if you may have ever attempted
to send the message in the past.

If the putMessage() is used, without the confirm flag being set, and a successful
return code is received, the application can be assured that the message has been
passed to the MQSeries queue.

If the putMessage() is used, with the confirm flag being set, and a successful return
code is received, the application can be assured that the message has been passed
to the MQSeries queue, but the bridge retains some information about the message
(on it’s ″sync queue″) so that it is able to prevent duplicate messages being sent by
the application. The bridge only prevents duplicate messages being sent if they
have the Qos_Retry bit set. The confirmputMessage() flushes this ″memory″ of the
message from the bridge (from the ″sync queue″).

The following procedure causes four messages to arrive on the MQSeries queue.

create a new message

(1) putMessage(Confirm=Yes) - Causes the message to be delivered to
MQ, but some note made on the sync Q

set the retry bit on the message

putMessage(Confirm=Yes) - Supressed, as the message is already
noted in the sync Q

putMessage(Conirm=Yes) - Supressed, as the message is already
noted in the sync Q

(2) putMessage(Confirm=No) - NOT supressed, only puts using
confirm=yes will be supressed using the
sync Q. Msg delivered to the MQSeries
Queue.

remove the retry bit from the message

(3) putMessage(Confirm=Yes) - Causes the message to be sent to MQ,
the retry bit was not set, so the bridge did
not look at it’s sync Q

ConfirmputMessage() - Causes the bridge to clear it’s memory of
the message

set the retry bit on the message

(4) putMessage() - Causes the message to be sent

Transformers
A transformer is a Java class that is capable of converting an MQSeries Everyplace
message into an MQSeries message, and is capable of converting an MQSeries
message into an MQSeries Everyplace message. Transformers are derived from the
MQeBaseTransformer class.

The transformer can be specified in several ways during the MQSeries bridge
configuration.
v A ″Default transformer″ can be specified for each MQSeries bridge
v A transformer can be specified for each MQSeries bridge queue
v A transformer can be specified for each MQSeries transmission queue listener

bridge - putMessage considerations

Chapter 6. MQSeries bridge 147

In each case the MQSeries bridge configuration expects a java class name, or an
MQSeries Everyplace alias that resolves into a java class. The resulting java class
must be derived from the MQeBaseTransformer class.

The transformer is responsible for all aspects of message conversion so it must be
written by the end-user programmer to provide a method of converting between
the MQSeries-native message format, and the MQSeries Everyplace-native message
format. This means that whenever you create a new format for messages that flow
between MQSeries and MQSeries Everyplace, you need to create or modify a
transformer class for the new message format.

These changes can be handled in a variety of ways:
v Write a huge transformer which can convert all your message formats.

This could be implemented using the inheritance model of Java, where one
transformer inherits from another, which inherits from another thus forming a
chain of transformers, or it could be implemented as one huge java class.
Positive aspects of this approach are:
– You can change the ″default transformer″ specified for an MQSeries bridge.

This requires only one point of configuration to determine the transformer to
use for all operations. (Leave the MQSeries-transmission-queue-listener and
the MQSeries bridge queue definitions blank/null where the transformer
name is specified)

– This a very simple approach

Negative aspects of this approach are:
– When formats of an application change, or when a new format is invented,

this large transformer has to be changes and redeployed everywhere.
– It may not be possible to create one transformer that understands all the

message formats in your system
v Write a series of medium-sized transformers, each being capable of

understanding and transforming various groups of message formats.
Each transformer may be responsible for working with a specific application and
the MQSeries Everyplace routing may be set up such that each application has
exclusive use of a set of MQSeries bridge queues, and MQSeries-transmission-
queue-listeners. The transformer name on the MQSeries bridge queues and
transmission-queue-listeners are then set to be application-specific.
Positive aspects of this approach are:
– The programmer has complete control of where messages are routed, and can

make sure that the correct transformer is used.
– The approach is simple
– If you add or change a message format the transformer only need to be

changed along the path that the changed or new message formats can flow
v Write a separate transformer for every message format in your system.

This requires that a higher-level transformer is created (see
examples.mqbridge.transformers.MQeListTransformer)that uses a list of these
very small transformers, invoking each in turn until the a transformer that can
use the message is found.
Each transformer has knowledge of a single message format.
Care must be taken with each message format, and transformer to make sure
each small transformer is able to uniquely identify the format of the messages
that it transforms. Do not allow an instance of a message to be transformable by

transformers

148 MQSeries Everyplace Programming Guide

more than one transformer. Each transformer must be able to examine each
message to determine whether the message is in the format that the transformer
was designed to work on.
Various list transformers may be used at different points in the MQSeries bridge
configuration. At the most basic level, creating a list transformer with a huge list
of all the small transformers available, and setting this to be the default. At the
most complex level, creating a list transformer with a very small list of
transformers, and setting MQSeries bridge queue and MQSeries-transmission-
queue-listener transformer parameters.
The list transformer may obtain its list from hard-coded literal string constants
within the java source code itself, from the system environment variables of the
JVM, from the underlying operating system environment, from an ASCII data
file that is loaded when the list transformer class is loaded, or simply by looking
at which transformer classes are available in the file system when it is loaded.
The choice of methods is left to the end-user programmer. The example list
transformer uses the method of hard-coding the transformer list in its java
source code.
Positive aspects of this approach
– This approach is more object oriented, allowing the knowledge about a

particular message format to be completely encapsulated within a single small
transformer, while the ″list″ transformer only understands which transformers
are available.

– Adding a new small transformer need not cause a list transformer to change.
For example, if the list transformer looks at the file system to see which
transformers are available, then simply adding the transformer to the correct
location in the file system may be enough to cause the transformer to be
used.

v Use a mixture of all of the above methods.

The examples.mqbridge.transformers.MQeListTransformer
example transformer class

This example transformer demonstrates how a higher-level transformer class can
use a list of very small transformers in order to perform message transformation,
without itself having any knowledge of the format of the message.

The source file is examples\mqbridge\transformers\MQeListTransformer.java and
is a simple MQSeries to MQSeries Everyplace transformer class.

This transformer does not actually understand the format of any messages that is
passed to it. It has an ordered list of smaller transformers. When a message needs
to be transformed, this class works through its list of transformers one by one,
presenting the message to each transformer. The results of the first transformer to
successfully return a converted message are returned to the user of this class.

This style of transformer could be used in conjunctions with a collection of smaller
transformers, where each ″small″ transformer understands a limited number of
message formats.

This class keeps its list of transformers in a static ordered list (array) but it could
easily have read the list from a file when the activate method is called, or obtained
a list through some other method (possibly using the user-defined parameters
passed on the activate method to do so).

transformers

Chapter 6. MQSeries bridge 149

To use the example, write a series of small transformers, and put their class names
into the static list at the top of the example file. Compile, and set the resulting
(high-level) transformer into the required places in the bridge configuration.

Transformers and expiry time considerations
Special care needs to be taken when converting the expiry times between MQSeries
and MQSeries Everyplace.

MQSeries Everyplace expiry times are specified as either an explicit time after
which the message expires, or a delta in units of 1 millisecond of how long after
the message creation time the message will expire.

MQSeries units are in 1/10ths of a second.

Failure to convert these expiry times in your transformer can result in messages
expiring, and apparently being ″lost″.

MQSeries style messages
MQeMQMsgObject is a subclass of MQeMsgObject that supports MQSeries style
messages within MQSeries Everyplace. It is typically used to exchange messages
with MQSeries applications using the default transformer in the MQSeries bridge.
This generates an MQeMQMsgObject when it receives a standard MQSeries
message. Similarly, if an MQSeries Everyplace application generates an
MQeMQMsgObject and sends it to MQSeries, the default transformer in the bridge
knows how to transform it into a standard MQSeries message.

If the MQeMQMsgObject class does not meet your requirements, you can write a
transformer for the bridge that uses another type of message object more suited to
your application.

To save space, this class can be removed from systems that do not intend to use it.

Reading an MQSeries style message
When an application receives a message, it can check whether the message belongs
to the MQeMQMsgObject class as follows:
import com.ibm.mqe.mqemqmessage.MQeMQMsgObject;
...
MQeMsgObject msg = MyQM.getMessage(qmgr, queue, null, null, 0);
if (msg instanceof MQeMQMsgObject)
{
MQeMQMsgObject mqeMsg = (MQeMQMsgObject) msg;
...

}

If the message does belong to this class, all the information from the MQSeries
message header can be accessed as well as the message data by using the
appropriate get methods on the message object. The header information can be
obtained using methods of the form getxxx() where xxx is the name of the header
field. For consistency, the names and types of the header fields follow those of the
MQSeries Java Client. The application data is obtained using the getData()
method.
import com.ibm.mqe.mqemqmessage.MQeMQMsgObject;
...
if (msg instanceof MQeMQMsgObject)
{
MQeMQMsgObject mqeMsg = (MQeMQMsgObject) msg;
String replyQMgr = mqeMsg.getReplyToQueueManagerName();
String replyQueue = mqeMsg.getReplyToQueueName();

transformers

150 MQSeries Everyplace Programming Guide

byte [] correlId = mqeMsg.getCorrelationId();
String msgFormat = mqeMsg.getFormat();
...

byte [] data = mqeMsg.getData();
...

}

The data can then be processed by the application. The MQeMQMsgObject returns
the data as a byte array, and the application must understand the structure of the
data within the byte array. If the data is required in a more structured format, you
can write your own transformer that understands the application data and
transforms it into the required format.

Creating an MQSeries style message
To create an MQSeries style message that is understood by the default transformer,
create a new MQeMQMsgObject and set the required values for the header fields
and data and send the message in the normal way.

To create a new message object invoke the constructor, which has no paramaters.
import com.ibm.mqe.mqemqmessage.MQeMQMsgObject;
...

try
{
MQeMQMsgObject mqeMsg = new MQeMQMsgObject()
...

}

Set the MQSeries header information in the message using methods of the form
setxxx() where xxx is the name of the header field. For consistency, the names and
types of the header fields follow those of the MQSeries Java Client. Any header
fields which are not set explicitly assume their MQSeries default value.

The application data is set using the setData() method.
import com.ibm.mqe.mqemqmessage.MQeMQMsgObject;
...

try
{
MQeMQMsgObject mqeMsg = new MQeMQMsgObject()
mqeMsg.setPutApplicationName("myApp");
mqeMsg.setFormat(...);
mqeMsg.setData(...);
MyQM.putMessage(qmgr, queue, mqeMsg, null, 0);

}

Before it is passed to setData(), the data must be formatted into a byte array that
the receiving application understands.

Writing a transformer
MQeMQMsgObject is used by the default base transformer in the MQSeries
Bridge. An alternative to using this is to write a transformer that uses
MQeMsgObject or a subclass of it.

Using the default transformer is a low-cost option when you want a MQSeries
Everyplace application to exchange messages with an existing MQSeries
application. The main advantage of this approach is its simplicity - the default
transformer is already available so the application only has to include code for the
MQe application.

This approach becomes less attractive when, for instance:

MQSeries style messages

Chapter 6. MQSeries bridge 151

More than one MQSeries Everyplace application needs to understand the
message

The format of the data in the byte array must be understood by all the
applications. With a customized transformer the data format would only
have to be understood by the code in the transformer.

Code size in the MQSeries Everyplace application is important
If you must keep the size of the code for the application to a minimum, all
the data formatting code can be put into a transformer. The application can
then send and receive the data without having to format it into a byte
array. This also removes the need to have the MQeMQMsgObject class on
the client device.

Another consideration is that the MQSeries Java Client code is available to the
transformer on the MQSeries bridge to help pack and unpack data into the byte
array.

MQSeries bridge rules
The MQSeries bridge uses the following rule classes which can be used to alter the
behavior of the bridge.

MQeLoadBridgeRule
This rule class decides which bridges can be loaded when the server starts
up.

MQeUndeliveredMessageRule
This rule class decides how to handle an MQSeries message that cannot be
put to MQSeries Everyplace

MQeSyncQueuePurgerRule
This rule class decides on the action to take against old unconfirmed
MQSeries Everyplace to MQSeries messages

MQeStartupRule
This rule class decides whether an administered object should be started
when it is first loaded

These classes are described in more detail in the following sections. As a
programmer, you can subclass these rules classes, to create rules to alter the
behavior of MQSeries Everyplace, then change your MQSeries Everyplace
configuration to use your rule classes instead of the default rule classes.

MQeLoadBridgeRule
This class defines which bridge objects can be loaded when the server starts up.
When the server uses the MQeMQBridge.activate() method, the bridge loader starts
up. The bridge loader reads all entries in the registry and for each name of a
bridge in the registry, it asks this rules class whether that bridge name should be
loaded or not. The basic MQeLoadBridgeRule class allows all bridges in the
registry to be loaded. This is acceptable as long as the registry is used by a single
MQSeries Everyplace queue manager.

If the registry is shared by two or more MQSeries Everyplace queue managers they
could each try to load the same bridge object, which is not valid. The first server to
start up is given access to all the bridges and their queue managers and queues,
locking out all subsequent servers. For this reason, it is desirable to select the
bridges that should be loaded by each server, by writing a customized version of

MQSeries style messages

152 MQSeries Everyplace Programming Guide

the MQeLoadBridgeRule. Using a naming convention for the bridges that has some
correspondence to the servers that need to load them, simplifies the writing of the
customized rule.

The class examples.mqbridge.rules.ExampleLoadBridgeRule demonstrates how a
naming convention can be applied to bridge objects, and used in conjunction with
a LoadBridgeRule, can be used to dictate which bridges may be loaded by the
server.

MQeUndeliveredMessageRule
MQeUndeliveredMessageRule

A bridge may have a number of MQSeries transmission queue listener objects
defined, and running, each moving a series of messages from an MQSeries
transmission queue onto the MQSeries Everyplace network.

When an MQSeries message cannot be delivered to the MQSeries Everyplace
network, the transmission queue listener thread consults the
UndeliveredMessageRule class in the listener’s configuration parameters, by
invoking the permit method. The return value from this method dictates what
action should be taken.
v If the result is the ″MQeUndeliveredMessageRule.STOP_LISTENER″ value, the

listener should stop as a result of this message being undeliverable. The message
remains on the transmission queue on the MQSeries system.

v If the result is the ″MQeUndeliveredMessageRule.USE_MQ_REPORT_OPTIONS″
value, the message should either be discarded or moved to the dead letter queue
on the MQSeries Everyplace system, depending on the value of the original
’report’ field of the original MQSeries message. The name of the MQSeries
queue managers’ dead letter queue is a configuration parameter on the
transmission queue listener bridge object. If this value is returned, and the
message report options contain MQRO_DISCARD, then the undelivered message
is discarded.

v If the result is an integer, with a value greater than 0, the value returned equates
to the number of seconds for which the listener should wait before retrying the
MQSeries to MQSeries Everyplace transfer operation.

If the value returned is none of the above, or if the rule throws an exception, then
the listener acts as if the STOP_LISTENER result was returned.

The examples.mqbridge.rules.MQeUndeliveredMessageRule class shows the
behavior of the default rule used by the MQSeries Everyplace bridge configuration:
When called, it returns values on successive failures to create the following
behavior:
v Waits 5 second between retries for the first minute
v Waits 10 seconds between retries for the second minute
v Waits 60 seconds between retries for the third to ninth minute inclusive
v ’STOP_LISTENER’ is applied after retries have failed for 10 minutes

examples.mqbridge.rules.UndeliveredMQMessageToDLQRule is another example
class used to tailor the transmission queue listener behavior. The value of
’MQeUndeliveredMessageRule.USE_MQ_REPORT_OPTIONS’ is always returned
by the permit() method.

bridge rules

Chapter 6. MQSeries bridge 153

MQeSyncQueuePurgerRule
The ″sync queue″ is a locally defined queue on the MQSeries queue manager and
is used exclusively by the MQSeries bridge. It is used to assist assured message
delivery; for MQSeries Everyplace messages bound for MQSeries it contains one
record for each unconfirmed message. Over time, on an unstable system,
unconfirmed message records can build up on the sync queue resulting in a
degradation of bridge performance.

At an interval specified by the client-connection’s sync queue purge interval
parameter, the client connection’s defined sync queue purger rule class is invoked
for each old unconfirmed message record. This rule is asked to return a Boolean
’true’ if the supplied message can be deleted or ’false’ if it should remain. The
administrator can also use this rule to, for example, issue an alert and take
appropriate action if a message has not been confirmed after a certain length of
time.

See the examples.mqbridge.rules.MQeSyncQueuePurgerRules for more information.

Note: If the sync queue is being used to store the MQSeries transmission queue
listener state messages, these messages are not affected by this rule.

MQeStartupRule
When a bridge, proxy, client connection, or listener object is loaded, at server
start-up, this rule class is consulted for each administered object in turn to see
whether that administered object should be started, or left in the stopped state, and
whether the administered objects’ children should also be started or not.

The return value from the MQeStartupRule.permit(...) method dictates whether
the administered object is started or not. Possible return values, and their effects
are :
v START_NOTHING - Do not start this administered object. Has the same effect as

sending the administered object a ″stop″ administration message.
v START_PARENTS_AND_ME - Start this administered object, and all it’s parents.

Has the same effect as sending the administered object a ″start″ message, with
the ″affect-children″ flag value of false.

v START_PARENTS_AND_ME_AND_CHILDREN - Starts this administered
objects, all its’ parents, and all it’s children. Has the same effect as sending the
administered object a ″start″ message, with the ″affect-children″ flag value of
true.

As the returned value is controllable programmatically, you could, for example,
implement an intelligent rule that only started an MQSeries transmission queue
listener if the MQSeries system it needed to connect to was active.

The com.ibm.mqe.mqbridge.MQeStartupRule used in the default configuration for
all administered objects is similar to the examples.mqbridge.rules.MQeStartupRule
class (for which the source code is provided). These classes always return the
START_PARENTS_AND_ME value.

bridge rules

154 MQSeries Everyplace Programming Guide

National language support implications
This section uses the diagram in Figure 29 to describe the flow of a message from
an MQSeries Everyplace client application over to an MQSeries application.

1. Client application

a. The client application builds an MQSeries Everyplace message object
containing the following data:

A Unicode field
This string is generated using appropriate libraries available on the
client machine (if he is using C/C++).

A byte field
This field should never be translated

An Ascii field
This string has a very limited range of valid characters, conforming
to the ASCII standard. The only valid characters are those that are
invariant over all ASCII codepages.

b. The message is put to the palm queue manager. No translation is done
during this put.

2. Client queue manager puts to the server queue manager

The message is not translated at all through this step.
3. MQSeries Everyplace server puts the message onto the MQSeries bridge

queue

The message is not translated at all through this step.
4. MQSeries bridge passes the MQSeries Everyplace message to the

user-written ″transformer″

Palm
queue

manager

MQ Bridge

Transformer

MQ queue
manager

M
Q

 J
av

a

 C
lie

nt
/B

in
di

ng
s

MQe server
queue

manager

MQe Server

Palm
application

Palm
Pilot

MQ server

1

2 3

4

55

MQ
application

6

Figure 29. Message flow from MQSeries Everyplace to MQSeries

bridge - national language considerations

Chapter 6. MQSeries bridge 155

The transformer copies information into an MQSeries message. The transformer
creates an MQSeries message. The Unicode field in the MQSeries Everyplace
message is retrieved using String value = MQemsg.GetUnicode(fieldname) and
copied to the MQSeries message using MQmsg.writeChars(value) The byte
field in the MQSeries Everyplace message is retrieved using Byte value =
MQemsg.getByte(fieldName) and copied to the MQSeries message using
MQmsg.writeByte(value) The ASCII field in the MQSeries Everyplace message
is retrieved using either MQmsg.writeChars(value) or MQmsg.writeString(
value) depending on whether the programmer wishes to create a unicode value
(writeChars) or a code-set-dependent value (writeString) in the MQSeries
message. If using writeString(), the character set of the string may be set also
(it’s a member variable of the message). The transformer returns the resultant
MQSeries message to the calling MQSeries bridge code.

5. The MQSeries bridge passes the message to MQSeries using the MQSeries
java client/bindings classes

Unicode values in the MQSeries message are translated from big-endian to
little-endian, and vice-versa, as required. Byte values in the MQSeries message
are translated from big-endian to little-endian, and vice-versa, as required. A
field which was created using writeString() will be translated as the message is
put to MQSeries, using conversion routines inside the MQSeries java client
code. ASCII data should remain ASCII data regardless of the character set
conversions performed. The translations done during this step depend on the
code page of the message, the CCSID of the sending MQSeries java client
connection, and the CCSID of the receiving MQSeries server connection
channel.

6. The message is ″got″ by an MQSeries application

If the message contains a unicode string, the application must deal with that
string as a unicode string, or else convert it itself (or using support libraries)
into some other format (UTF8 for example). If the message contains a byte
string, then the application may use the bytes as-is. (raw data). If the message
contains a ″string″, then it is read from the message, and may be converted to a
different data format as required by the application (Unicode for example)
dependent on the codeset value in the ″characterSet″ header field. Java classes
provide this automatically.

Conclusion
If you have an MQSeries Everyplace application, and wish to convey
character-related data from MQSeries Everyplace to MQSeries, your choice of
method is determined largely by the data you wish to convey:
v If your data contains characters in the variant ranges of the ASCII character

codepages, (the glpyh for a codepoint changes as you change between the
various ASCII codepages) then you can either use putUnicode (which will never
be subject to translation between codepages), or putArrayOfByte (in which case
you have to handle the translation between the senders’ codepage and the
receivers’ codepage.

Note: DO NOT USE putAscii() as the characters in the variant parts of the
ASCII codepages are subject to translation.

v If your data contains only characters in the invariant ranges of the ASCII
character codepages, then you can use putUnicode (which will never be subject
to translation between codepages) or putAscii (which will never be subject to
translation between codepages, as all your data lies within the invariant range of
the ASCII codepages)

bridge - national language considerations

156 MQSeries Everyplace Programming Guide

Example files
The following example files are provided to show how to write and use an
MQSeries Everyplace program that supports MQSeries bridge functionality.

examples.mqbridge.awt.AwtMQBridgeServer class
This shows an example of a graphical interface to the underlying
examples.mqbridge.queuemanager.MQBridgeServer class.

The MQBridgeServer class source code demonstrates how to add bridge
functionality to your MQSeries Everyplace server program, following these
guidelines.

To start the bridge enabled server:
1. Instantiate the base MQSeries Everyplace queue manager, and start it

running.
2. Instantiate a com.ibm.mqe.mqbridge.MQeMQBridges object, and use

it’s activate() method, passing the same .ini file information as you
passed to the base MQSeries Everyplace queue manager.

The bridge function is then usable.

To stop the bridge-enabled server:
1. Disable the bridge function by calling the MQeMQBridges.close()

method. This stops all the in-flight bridge operations cleanly, and shuts
down all the bridge function.

2. Null-out your reference to the MQeMQBridges object, allowing it to be
garbage-collected.

3. Stop and close the base MQSeries Everyplace queue manager.

ExamplesAwtMQBridgeServer.bat
This file provides an example of how to invoke the MQBridgeServer using
the Awt server, and how to control the initial settings of the
AwtMQBridgeTrace module.

ExamplesAwtMQBridgeServer.ini
This file provides an example configuration file for a queue manager that
supports bridge functionality.

bridge examples

Chapter 6. MQSeries bridge 157

bridge examples

158 MQSeries Everyplace Programming Guide

Chapter 7. Security

This section contains information about the security function provided by
MQSeries Everyplace. The different levels of security are described together with
typical usage scenarios and usage guidance.

Security features
MQSeries Everyplace provides an integrated set of security features that enable the
protection of message data when held locally and when it is being transferred.
There are three different categories of security:

Local security
Local security provides protection for MQSeries Everyplace messages while
they are held by a local queue manager.

Queue-based security
Queue-based security automatically protects MQSeries Everyplace message
data between an initiating queue manager and a target queue, so long as
the target queue is defined with an attribute. This protection is
independent of whether the target queue is owned by a local or a remote
queue manager.

Message-level security
Message-level security provides protection for message data between an
initiating and receiving MQSeries Everyplace application.

MQSeries Everyplace local and message-level security are made available to
applications. MQSeries Everyplace queue-based security is an internal service.

All three categories protect Message data by the application of an attribute
(MQeAttribute or descendent). Depending on the category, the attribute is either
explicitly or implicitly applied.

Every attribute can contain any or all of the following objects:
v Authenticator
v Cryptor
v Compressor
v Key
v Target Entity Name

The way these objects are used depends on the category of MQSeries Everyplace
security. The following sections describe each category of security in detail.

MQSeries Everyplace also provides the following services to assist with security:

Private registry services
MQSeries Everyplace private registry provides a repository in which public
and private objects can be stored, it provides (login) PIN protected access
so that access to a private registry is restricted to the authorized user and
provides additional services so that when functions that use the entity’s
private key, (digital signature, and RSA decryption) are invoked, they are
supported without the private credentials leaving the PrivateRegistry
instance.

© Copyright IBM Corp. 2000 159

These services are used by queue-based security with and message-level
security using MQeTrustAttribute.

Public registry services
MQSeries Everyplace public registry provides a publicly accessible
repository for mini-certificates.

These services can be used by queue-based and message-level security.

Mini-certificate issuance service
MQSeries Everyplace includes a default mini-certificate issuance service that
can be configured to issue mini-certificates to a carefully controlled set of
entity names.

These services can be used by queue-based and message-level security.

Note: This service is available only in the high security version of
MQSeries Everyplace Version 1.0.

Local security
Local security facilitates the protection of MQSeries Everyplace messages
(MQeFields descendants) when it is held by a local queue manager. This is
achieved by creating an attribute with an appropriate Authenticator, Cryptor and
Compressor, setting up an appropriate Key (by providing a password or
passphrase seed) and explicitly attaching the Key to the Attribute and the Attribute
to the MQeMsgObject. The qualities of the attribute are applied to locally held
message data.

The authenticator chosen determines how access to the data is controlled, the
choice of cryptor determines the cryptographic strength protecting the data
confidentiality, and the choice of compressor determines the size efficiency in
storage.

MQSeries Everyplace provides the MQeLocalSecure class to assist with the use of
local security, but in all cases it is the responsibility of the local security user to
setup an appropriate attribute and provide the password or passphrase secret.
MQeLocalSecure provides the function to protect the data and to save and restore
it from backing storage. If an application chooses to attach an attribute to a
message (MQeFields object descendent) without using MQeLocalSecure it also
needs to save the data after using ’dump’ and retrieve the data before using
’restore’. An example of this approach would be an application that wants to use a
secure token as backing storage.

The MQSeries Everyplace Programming Reference provides a simple example of
the use of MQeLocalSecure. .

Usage scenario
Consider a solution where mobile agents working on many different customer sites
want to ensure that the confidential data of one customer is not accidentally shared
with another. Local security features provide a simple method for protecting
different customer data held on a given machine (PDA or Laptop for example)
using different keys, and possibly different cryptographic strengths.

A simple extension of this scenario could be that protected local data is accessed
using a key that is ’pulled’ from a queue (with secure attribute) on an area office

security features

160 MQSeries Everyplace Programming Guide

MQSeries Everyplace server node. The PDA or Laptop user has to authenticate
itself to access the server queue and ’pull’ the local key data, but never knows the
key that was used.

One of the advantages of taking this approach is that an audit trail is easily
accumulated for all access to customer specific data.

Secure feature choices
When using MQeLocalSecure, the following attribute choices are available:

Authenticator
Example NTAuthenticator or UserIdAuthenticator

Cryptor
One of the symmetric cryptors MQeDESCryptor, MQe3DESCryptor,
MQeRC4Cryptor, MQeRC6Cryptor or MQeMARSCryptor

Compressor
MQeLZWCompressor or MQeRleCompressor or MQeGZIP compressor

Note: The following cryptors are available only in the high security version of
MQSeries Everyplace Version 1.0:
v MQe3DESCryptor
v MQeRC4Cryptor
v MQeRC6Cryptor
v MQeMARSCryptor

Selection criteria
The option to use an authenticator is driven by the need to provide additional
controls to prevent access to the local data by unauthorized users. In some ways
using an authenticator is unnecessary since providing the key password or
passphrase automatically limits access to those who know this secret.

The choice of cryptor is driven by the strength of protection required, that is, the
degree of difficulty that an attacker would face when cryptographically attacking
the protected text to get illegal access to the data. Data protected with symmetric
ciphers that use 128bit keys is acknowledged as more difficult to attack than data
protected using ciphers that use shorter keys. However, in addition to
cryptographic strength, the selection of a cryptor may also be driven by many
other factors. An example is that some financial solutions require the use of triple
DES in order to get audit approval.

The option to use a compressor is driven by the need to optimize the size of the
protected data. However, the effectiveness of the compressor depends on the
content of the data. The MQeRleCompressor performs run length encoding ; that
is, the compressor routine compress and/or expand repeated bytes. Hence it is
effective in compressing/decompressing data with many repeated bytes.
MQeLZWCompressor uses the LZW scheme. The simplest form of the LZW
algorithm uses a dictionary data structure in which various words (data patterns)
are stored against different codes. This compressor is likely to be most effective
where the data has a significant number of repeating words (data patterns).

local security

Chapter 7. Security 161

Usage guide
1. The following program fragments protect an MQeFields object using

MQeLocalSecure:
try

{
.../* SIMPLE PROTECT FRAGMENT */
.../* instantiate a DES cryptor */

MQeDESCryptor desC = new MQeDESCryptor();
.../* instantiate an Attribute using the DES cryptor */

MQeAttribute desA = new MQeAttribute(null, desC, null);
.../* instantiate a (helper) LocalSecure object */

MQeLocalSecure ls = new MQeLocalSecure();
.../* open LocalSecure obj identifying target file and directory*/

ls.open(".\\", "TestSecureData.txt");
.../* use LocalSecure write to encode data and dump to target */

trace ("i: test data in = " + "0123456789abcdef...");
ls.write(asciiToByte("0123456789abcdef..."),

desA, "It_is_a_secret");
...
}

catch (Exception e)
{
e.printStackTrace();à /* show exception */

}
try

{
.../* SIMPLE UNPROTECT FRAGMENT */
.../* instantiate a DES cryptor */

MQeDESCryptor des2C = new MQeDESCryptor();
.../* instantiate an attribute using the DES cryptor */

MQeAttribute des2A = new MQeAttribute(null, des2C, null);
.../* instantiate a (a helper) LocalSecure object */

MQeLocalSecure ls2 = new MQeLocalSecure();
.../* open LocalSecure obj identifying target file and directory */

ls2.open(".\\", "TestSecureData.txt");
.../* use LocalSecure read to restore from target and decode data*/

String outData = byteToAscii(ls2.read(desA2,
"It_is_a_secret"));

.../* show resultsà. */
trace ("i: test data out = " + outData);
...
}

catch (Exception e)
{
e.printStackTrace(); /* show exception */
}

2. The following program fragment protects an MQeMsgObject locally without
using MQeLocalSecure:
try

{
.../* SIMPLE PROTECT FRAGMENT */
.../* instantiate a DES cryptor */

MQeDESCryptor desC = new MQeDESCryptor();
.../* instantiate an Attribute using the DES cryptor */

MQeAttribute desA = new MQeAttribute(null, desC, null);
.../* instantiate a base Key object */

MQeKey mylocalkey = new MQeKey();
.../* set the base Key object local key */

mylocalkey.setLocalKey("It_is_a_secret");
.../* attach the key to the attribute */

desA.setKey(mylocalkey);
.../* activate the attribute */

desA.activateMaster(null, new MQeFields());
/* instantiate a Message object */

local security

162 MQSeries Everyplace Programming Guide

MQeMsgObject myMsg = new MQeMsgObject();
/* attach the attribute to the message object */
myMsg.setAttribute(desA);
/* add some test message data */
myMsg.putAscii("testdata", "0123456789abcdef....");
trace ("i: test data in = " + myMsg.getAscii("testdata"));
/* encode the message */
byte[] protectedData = myMsg.dump();
trace ("i: protected test data = byteToAscii(protectedData));
}

catch (Exception e)
{
e.printStackTrace(); /* show exception */
}

try
{

.../* SIMPLE UNPROTECT FRAGMENT */

.../* instantiate a DES cryptor */
MQeDESCryptor des2C = new MQeDESCryptor();

.../* instantiate an Attribute using the DES cryptor */
MQeAttribute des2A = new MQeAttribute(null, des2C, null);

.../* instantiate a base Key object */
MQeKey mylocalkey2 = new MQeKey();

.../* set the base Key object local key */
mylocalkey2.setLocalKey("It_is_a_secret");

.../* attach the key to the attribute */
des2A.setKey(mylocalkey2);
/ instantiate a new msg object */
MQeMsgObject myMsg2 = new MQeMsgObject();

.../* activate the attribute */
des2A.activateMaster(null, new MQeFields());
/* attach the attribute to the message object */
myMsg2.setAttribute(des2A);
/* decode the message data */
myMsg2.restore(protectedData);
/* show the unprotected test data */
trace ("i: test data out = " + myMsg2.getAscii("testdata"));
}

catch (Exception e)
{
e.printStackTrace(); /* show exception */
}

Queue-based security
Queue-based security automatically protects MQSeries Everyplace message data
between an initiating queue manager and a target queue, so long as the target
queue is defined with an attribute. This protection is independent of whether the
target queue is owned by a local or a remote queue manager.

A simple example of this is a target queue defined with an attribute that has an
NTAuthenticator, an MQe3DESCryptor and an MQeRleCompressor. When such a
target queue is accessed (either locally or remotely), using putMessage, getMessage
or browseMessages, the queue attribute is automatically applied. In this example
the application initiating the access has to satisfy the requirements of the
NTAuthenticator before the operation is permitted, and, if permitted, the message
data is automatically encoded and decoded using the attribute’s
MQe3DESCrryptor and MQeRleCompressor. This means that, when the example
target queue is remotely accessed, for example using putMessage, queue-based
security automatically ensures that the message data is protected at the level
defined by the queue attribute, both during transfer between the initiating and
remote queue manager and in the target queue backing storage.

local security

Chapter 7. Security 163

Usage scenario
MQSeries Everyplace queue-based security can be used by all solutions that need
to protect the confidentiality of message data being transferred between an
initiating queue manager and a target queue manager queue.

A typical scenario would be that a solution service is delivered over an open
network, for example the internet, where an initiating application makes requests,
using the PDA or Laptop resident queue manager, to access a service provided by
a server queue manager application.

This can be implemented as follows:
1. The initiating client queue manager application encapsulates the request in an

MQSeries Everyplace message
2. putMessage is used to reliably transfer the message to a particular remote

server queue manager owned ’XXX_service_request’ queue
3. waitForMessage is used , to wait for a reply message to arrive in the local

’XXX_service_reply’ queue
4. A server queue manager application is setup to listen for messages on the

’XXX_service_request’ queue
5. When a message event occurs, a local getMessage is performed, to get the

service request message
6. The request is processed (for example by invocation of a CICS transaction on a

backend system)
7. The response(transaction result) is encapsulated in a message
8. putMessage is used to return the response to the remote ’XXX_service_reply’

queue owned by the initiating client queue manager.

One way to support this simple example would be to define the following queues:

Owned by the initiating client queue manager (ClientQMgr for example)
v TestClient_HomeServerQ
v XXX_service_reply

While a number of choices exist, setting the TestClient_HomeServerQ
TimerInterval option, to 5000 for example, sets a 5sec poll interval and
triggers the client queue manager to poll the server queue manager. This
poll ’pulls’ any messages on the server queue manager’s
StoreAndForwardQ that have been directed to the client queue manager.
Also, before running any ClientQMgr application, the AddQueueManager
option must be used to add a reference to the ServerQMgr.

Owned by the server queue manager (ServerQMgr for example)

v TestServer_StoreAndForwardQ
v XXX_service_request

Defining the TestServer_StoreAndForwardQ for use in this scenario
requires two steps.
1. Create the queue
2. setAction

MQeStoreAndForwardQueueAdminMsg.Action_AddQueueManager,
with name ″ClientQMgr″

queue-based security

164 MQSeries Everyplace Programming Guide

Secure feature choices
When using queue-based security all the choices for attribute are available:

Authenticator
NTAuthenticator or UserIdAuthenticator (or other descendant of
examples.attributes.LogonAuthenticator), or MQeWTLSCertAuthenticator

Cryptor
MQeXORCryptor or one of the symmetric crytors MQeDESCryptor,
MQe3DESCryptor, MQeRC4Cryptor, MQeRC6Cryptor or
MQeMARSCryptor

Compressor
QeLZWCompressor or MQeRleCompressor

Selection criteria
Queue-based security is appropriate for solutions designed to use synchronous
queues. In this case, the selection criteria is really concerned with the selection of
the (synchronous) queue attribute’s authenticator, cryptor and compressor.

The option to use an Authenticator is driven by the need to provide additional
controls to prevent access to the local data by unauthorized users. This is equally
relevant when the queue data is accessed locally or remotely.

Using a descendant of LogonAuthenticator (NTAuthenticator or
UserIdAuthenticator), when the attribute is activated, for example when an
application is performing a putMessage, getMessage or browseMessages of data on
the queue, the requirements of the authenticator have to be satisfied before the
operation is permitted. In the queue-based “Usage scenario” on page 164, if the
XXX_service_request queue is defined with an attribute including the
NTAuthenticator, then access to the server XXX_service_request queue (for example
when attempting to putMessage requests to this queue from a client) queue
manager), is restricted to the set of users defined as valid NT users in the target
server’s domain. The NTAuthenticator is provided as an example, enabling
descendents that enable a finer granularity of control to smaller sets of users to be
easily created.

Using MQeWTLSCertAuthenticator ensures that all remote accesses to a queue
protected with an attribute using this authenticator have completed mutual
authentication before the operation can be executed. The mutual authentication of
the mini-certificates exchanged consists of each participant validating the
mini-certificate it receives. This validation checks the mini-certificate received is a
valid signed entity, signed by the same mini-certificate server as the requestor’s
own mini-certificate, and that it is valid with respect to date, that is the current
date is not prior to its from-date or after its to-date. An administration option
enables the solution creator to choose whether a target queue manager queue has
its own credentials (that it is an authenticatable entity in its own right, with its
own mini-certificate and associated private key) or shares the credentials of its
owning queue manager. In the queue-based “Usage scenario” on page 164, if the
XXX_service_request queue is defined with an attribute containing the
MQeWTLSCertAuthenticator, then access to the server XXX_service_request queue,
for example when the initiating client queue manager application performs a
remote putMessage, depends on the credentials of the initiating client queue
manager and the target XXX_service_request queue being successfully mutually
authenticated.

The choice of cryptor is driven by the strength of protection required, that is, the
degree of difficulty that an attacker would face when cryptographically attacking

queue-based security

Chapter 7. Security 165

the protected data to get illegal access. Data protected with symmetric ciphers
which use 128bit keys is acknowledged as being more difficult to attack than data
protected using ciphers that use shorter keys. But in addition to cryptographic
strength. the selection of a cipher may also be driven by many other factors. An
example of this is some financial solutions require the use of triple DES in order to
get audit approval.

The option to use a compressor is driven by the need to optimize the size of the
protected data. However, the effectiveness of the compressor depends on the
content of the data. The MQeRleCompressor performs run length encoding ; that
is, the compressor routine compress and/or expand repeated bytes. Hence it is
effective in compressing/decompressing data with many repeated bytes.
MQeLZWCompressor uses the LZW scheme. The simplest form of the LZW
algorithm uses a dictionary data structure in which various words (data patterns)
are stored against different codes. This compressor is likely to be most effective
where the data has a significant number of repeating words (data patterns).

Note: The following cryptors and authenticators are available only in the high
security version of MQSeries Everyplace Version 1.0:
v MQe3DESCryptor
v MQeRC4Cryptor
v MQeRC6Cryptor
v MQeMARSCryptor
v MQeWTLSCertAuthenticator

Usage guide
The following code fragments provide an example of how to create queue manager
instances and define the queues identified for the queue-based scenario described
in “Usage scenario” on page 164. Fragments for the client queue manager initiating
application and server queue manager AppRunList started application are also
provided.

Using SimpleCreateQM to create ClientQMgr and ServerQMgr
instances

SimpleCreateQM assists users to create queue manager instances that have private
registries. The class uses parameters found in the Registry Section of
MQePrivateClient1.ini and MQePrivateServer1.ini.

The particular instances can be created as follows:
1. Reset the private registry related parameters in the registry section of

MQePrivateClient1.ini and MQePrivateServer1.ini from their defaults to a
desired setting:
(ascii)LocalRegType=PrivateRegistry
(ascii)DirName=.\\MQeNode_PrivateRegistry
(ascii)PIN=12345678
< change PIN from '12345678' to the PIN to be provided subsequently at

queue manager start-up time to enable the queue manager to access its
own private registry >

Include the next three keywords (CertReqPIN, KeyRingPassword and
CAIPAddrPort only if MQeWTLSCertAuthenticator is to be used:
(ascii)CertReqPIN=12345678
< change CertReqPIN from '12345678' to a new value that matches the value

set value defined by Mini Certertificate Server's Administrator when the

queue-based security

166 MQSeries Everyplace Programming Guide

queuemanager instance is defined >
(ascii)KeyRingPassword=It_is_a_secret
< change the KeyRingPassword from 'It_is_a_secret' to the password that

to be subsequently provided at queuemanager start-up time to enable
the queuemanager instance to access its protected private credentials
within its Private Registry. >

(ascii)CAIPAddrPort=9.20.X.YYY:8081
< change this to the IP address and port of the solution's

MiniCertificateServer

2. If the last three keywords are supplied auto-registration is be triggered, so,
before adding the queue manager instances it is necessary to start the
MiniCerificateServerGUI, and, using ’Administration’ mode, to define the
queue manager instances (ClientQMgr and ServerQMgr) as valid
authenticatable entities with their certificate request PIN set to the same value
as that defined in the registry section CertReqPIN= line in the
MQePrivateClient1.ini and MQePrivateServer1.ini files in the previous step.

3. Start a MiniCertificateServerGUI instance and select ’Server’ mode.
4. Run the TestCreate program (shown in the following code fragment) to create

the queue manager instances.
package test;
import com.ibm.mqe.*;
import examples.install.*;
public class TestCreate extends MQe
{
public void createQMs()
{
/* start traceà */
try{

MQeTraceInterface trace =
(MQeTraceInterface) MQe.loader.loadObject(

"examples.awt.AwtMQeTrace");
trace.activate("TestCreate...", null);
}

catch(Exception e) {e.printStackTrace(); }
try{

String INI_FileName = ".\MQePrivateClient1.ini";
String QueueDir = ".\ClientQMgr\Queues\";
SimpleCreateQM c_QMgr = new SimpleCreateQM();
if (c_QMgr.createQMgr(INI_FileName, QueueDir))
trace (">>>> ClientQMgr created OK...");

else
trace (">>>> error creating ClientQMgr...");

INI_FileName = ".\MQePrivateServer1.ini";
QueueDir = ".\ServerQMgr\Queues\";
SimpleCreateQM s_QMgr = new SimpleCreateQM();
if (s_QMgr.createQMgr(INI_FileName, QueueDir))
trace (">>>> ServerQMgr created OK...");

else
trace (">>>> error creating ServerQMgr...");

}
catch (Exception e)
{
trace (">>>> SimpleCreateQM eception = "+ e.getMessage());
e.printStackTrace();
}

}
public static void main(String args[])
{
TestCreate testc = new TestCreate();
testc.createQMs();
}

}

queue-based security

Chapter 7. Security 167

Defining the queues identified for the queue-based scenario
described above

There are several ways add queue definitions to a queue manager instance. The
method described here starts the queue manager instance locally, adds the new
queue definitions by creating the relevant administration messages and sending
them to the queue manager’s own administration queue, and then waits for
confirmation of success in an AdminReply queue.

ClientQMgr queues -adding TestClient_HomeServerQ:

Start the ClientQMgr locally using the MQePrivateClient class, (using a different
version, MQePrivateClient2.ini, that deliberately does not hold hard coded values
for PIN, KeyRingPassword and CertReqPIN) then create and use an administration
messages to add the queue and set the poll interval.

{
try{

/* start ClientQMgrà */
String QMgrName = "ClientQMgr";
String QName = "TestClient_HomeServerQ"
MQeAttribute qattr = new MQeAttribute(null,

new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateClient2.ini",
"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;
/* create and use Admin msg to add HomeServerQà */
MQeHomeServerQueueAdminMsg msg =
new MQeHomeServerQueueAdminMsg("ServerQMgr",

"ServerTestQ_StoreAndForward");
MQeFields parms = new MQeFields();
parms.putLong(MQeHomeServerQueueAdmin.Queue_QTmerInterval, 5000);
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, "ServerQMgr");
parms.putAscii(msg.Queue_FileDesc, FileDesc);

if (qattr.getAuthenticator() != null) /*add qattr auth details*/
{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())
{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
}

}
if (qattr.getCryptor() != null)
{
parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))

queue-based security

168 MQSeries Everyplace Programming Guide

parms.putAscii(msg.Queue_AttrRule,
"examples.rules.AttributeRule");

}
if (qattr.getCompressor() != null)
parms.putAscii(msg.Queue_Compressor,

qattr.getCompressor().type());
parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(">>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add HomeServerQà */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(">>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(">>> Admin Msg processed OK...");
/* process Admin msg response à */
if (respMsg == null)
trace ("i: create Queue failed, no response message received");

else
{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)
trace("i: create Queue added queue OK...");

else
trace("i: create Queue failed: " + respMsg.getReason());

}
newQM.close();
}

catch (Exception e)
{
trace (">>>> add HomeServerQ exception = "+ e.getMessage());
e.printStackTrace();
}

}

ClientQMgr queues -adding XXX_service_reply queue:

Start the ClientQMgr locally using the MQePrivateClient class, (using a different
version, MQePrivateClient2.ini, that deliberately does not hold hard coded values
for PIN, KeyRingPassword and CertReqPIN) then create and use an administration
messages to add the queue.
{

try{
/* start ClientQMgrà */
String QMgrName = "ClientQMgr";
String QName = "XXX_service_reply"
MQeAttribute qattr = new MQeAttribute(null,

new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateClient2.ini",
"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;
/* create and use Admin msg to add XXX_service_reply queue */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();
MQeFields parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());

queue-based security

Chapter 7. Security 169

MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, "ServerQMgr");
parms.putAscii(msg.Queue_FileDesc, FileDesc);
if (qattr.getAuthenticator() != null)
{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())
{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
}

}
if (qattr.getCryptor() != null)
{
parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
}

if (qattr.getCompressor() != null)
parms.putAscii(msg.Queue_Compressor,

qattr.getCompressor().type());
parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(">>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add queue à */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(">>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(">>> Admin Msg processed OK...");
/* process Admin msg response à */
if (respMsg == null)
trace ("i: create Queue failed, no response message received");

else
{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)
trace("i: create Queue added queue OK...");

else
trace("i: create Queue failed: " + respMsg.getReason());

}
newQM.close();
}

catch (Exception e)
{
trace (" >>> add XXX_service_reply Q excep = "+ e.getMessage());
e.printStackTrace();
}

}

ServerQMgr queues -adding TestServer_StoreAndForwardQ:

Start the ServerQMgr locally using the MQePrivateClient class, (using a different
version, MQePrivateServer2.ini, that deliberately does not hold hard coded values
for PIN, KeyRingPassword and CertReqPIN), create and use an administration
messages to add the queue, and then add a remote queue manager reference.
{

try{
/* start ServerQMgr, locally */
String QMgrName = "ServerQMgr";

queue-based security

170 MQSeries Everyplace Programming Guide

String QName = "TestServer_StoreAndForwardQ"
MQeAttribute qattr = new MQeAttribute(null,

new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateServer2.ini",
"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;
/* create and use Admin msg to add StoreAndForwardQ */
MQeStoreAndForwardQueueAdminMsg() msg =

new MQeStoreAndForwardQueueAdminMsg();
MQeFields parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, QMgrName);
parms.putAscii(msg.Queue_FileDesc, FileDesc);
if (qattr.getAuthenticator() != null)
{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())
{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
}

}
if (qattr.getCryptor() != null)
{
parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
}

if (qattr.getCompressor() != null)
parms.putAscii(msg.Queue_Compressor,

qattr.getCompressor().type());
parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(" >>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add queue à */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(" >>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(" >>> Admin Msg processed OK...");
/* process Admin msg response à */
if (respMsg == null)
trace ("i: create Queue failed, no response message received");

else
{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)
trace("i: create Queue added queue OK...");

else
trace("i: create Queue failed: " + respMsg.getReason());

queue-based security

Chapter 7. Security 171

}
/* use Admin msg to StoreAndForwardQ AddQueueManager reference */
msg = new MQeStoreAndForwardQueueAdminMsg();
msg.addQueueManager("ClientQMgr");
parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, QMgrName);
parms.putAscii(msg.Queue_FileDesc, FileDesc);
msg.setAction(

MQeStoreAndForwardQueueAdminMsg.Action_AddQueueManager);
trace(" >>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(" >>> Waiting for a response to update Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(" >>> Admin Msg processed OK...");
/* process Admin msg response à */
if (respMsg == null)
trace ("i: create Queue failed, no response message received");

else
{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)
trace("i: create Queue added queue OK...");

else
trace("i: create Queue failed: " + respMsg.getReason());

}
trace(" >>> StoreAndForwardQ AddQueueManager reference OK...");
newQM.close();
}

catch (Exception e)
{
trace (" >>> add StoreAndForwardQ exception = "+ e.getMessage());
e.printStackTrace();
}

ServerQMgr queues -adding XXX_service_request queue:

Start the ServerQMgr locally using the MQePrivateClient class, (using a different
version, MQePrivateServer2.ini, that deliberately does not hold hard coded values
for PIN, KeyRingPassword and CertReqPIN) then create and use an administration
messages to add the queue.
{

try{
/* start ServerQMgrà */
String QMgrName = "ServerQMgr";
String QName = "XXX_service_request"
MQeAttribute qattr = new MQeAttribute(null,

new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateServer2.ini",
"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;

queue-based security

172 MQSeries Everyplace Programming Guide

/* create and use Admin msg to add XXX_service_request queue */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();
MQeFields parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, QMgrName);
parms.putAscii(msg.Queue_FileDesc, FileDesc);

if (qattr.getAuthenticator() != null) /*add qattr auth details*/
{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())
{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
}

}
if (qattr.getCryptor() != null)
{
parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
}

if (qattr.getCompressor() != null)
parms.putAscii(msg.Queue_Compressor,

qattr.getCompressor().type());
parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(">>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add XXX_service_request queue */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(">>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(">>> Admin Msg processed OK...");
/* process Admin msg response à */
if (respMsg == null)
trace ("i: create Queue failed, no response message received");

else
{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)
trace("i: create Queue added queue OK...");

else
trace("i: create Queue failed: " + respMsg.getReason());

}
newQM.close();
}

catch (Exception e)
{
trace (" >>> add XXX_service_request excep = "+ e.getMessage());

queue-based security

Chapter 7. Security 173

e.printStackTrace();
}

}

Server queue manager AppRunList started application.:

This section provides an example extension to MQePrivateServer2.ini showing
how to add an AppRunList application that is automatically started when the
ServerQMgr starts. It also provides an example TestService application.

Example MQePrivateServer2.ini
MQePrivateServer2.ini - with AppRunList extensionà
[Alias]
(ascii)EventLog=examples.log.LogToDiskFile
(ascii)Network=com.ibm.mqe.adapters.MqeTcpipHttpAdapter
(ascii)QueueManager=com.ibm.mqe.MqeQueueManager
(ascii)Trace=examples.awt.AwtMQeTrace
(ascii)MsgLog=com.ibm.mqe.adapters.MqeDiskFieldsAdapter
(ascii)FileRegistry=com.ibm.mqe.registry.MqeFileSession
(ascii)PrivateRegistry=com.ibm.mqe.registry.MqePrivateSession
(ascii)ChannelAttrRules=examples.rules.AttributeRule
(ascii)AttributeKey_1=com.ibm.mqe.MQeKey
(ascii)AttributeKey_2=com.ibm.mqe.attributes.MqeSharedKey
[ChannelManager]
(int)MaxChannels=0
[Listener]
(ascii)Listen=Network::8081
(ascii)Network=Network:
(int)TimeInterval=300
[QueueManager]
(ascii)Name=ServerQMgr
(ascii)QueueStore=MsgLog:.\MQeNode_PrivateRegistry
[Registry]
(ascii)LocalRegType=PrivateRegistry
(ascii)DirName=.\\MQeNode_PrivateRegistry
(ascii)PIN=not set
(ascii)CertReqPIN=not set
(ascii)KeyRingPassword=not set
(ascii)CAIPAddrPort=9.20.X.YYY:8081
[AppRunList]
(ascii)App1=test.TestService

Example Server TestSevice application
package test;
import com.ibm.mqe.*;
import com.ibm.mqe.attributes.*;
import java.util.*;
public class TestService extends MQe

implements MQeRunListInterface, MQeMessageListenerInterface, Runnable
{
protected Thread applicationThread = null;
protected MQeQueueManager thisQMgr = null;

/* constructor */
public TestService() throws Exception
{
}

/* activate method */
public Object activate(Object owner,

Hashtable loadTable,
MQeFields setupData) throws Exception

queue-based security

174 MQSeries Everyplace Programming Guide

{
System.out.println(" TestService, activate, owner objref = " + owner);
thisQMgr = (MQeQueueManager)owner; /* save QMgr objref */
applicationThread = new Thread(

this, "applicationThread"); /* create svr app thread */
System.out.println(" TestService, activate no of active threads = " +

Thread.activeCount());
Thread t[] = new Thread[Thread.activeCount()];
int i = Thread.enumerate(t);
for (int j = 0; j < i; j++) /* look at svr threads */

System.out.println("TestService activate, active thread name = "
+ t[j].getName());

applicationThread.start(); /* start appl'n Thread. */
return this;
}

/* run method */
public void run()
{
System.out.println("TestService, Run...");
/* add listener for XXX_service_request queue */
try {

thisQMgr.addMessageListener(this, "XXX_service_request",
new MQeFields());

}
catch(Exception e)

{
e.printStackTrace();
}

}

/* MessageArrived event handler */
/* MsgArrived event is generated when a message arrives on a queue */
public void messageArrived(MQeMessageEvent msgEvent)
{
try {

System.out.println(" TestService, msgEvent, messageArrived ");
System.out.println(" TestService, msgEvent getQueueManagerName = " +

msgEvent.getQueueManagerName());
System.out.println(" TestService, msgEvent getQueueName = " +

msgEvent.getQueueName());
/* get XXX service request message */
MQeMsgObject reqmsg = thisQMgr.getMessage(

msgEvent.getQueueManagerName(),
msgEvent.getQueueName(),
msgEvent.getMsgFields(),
null,
0);

/* process service request here */
String reqdata = reqmsg.getAscii("XXX_service_request_data");
String replydata = reqdata + "_reply";
/* build XXX_service reply message here */
MQeMsgObject replymsg = new MQeMsgObject();
replymsg. putArrayOfByte(MQe.Msg_CorrelID,

reqmsg.getArrayOfByte(MQe.Msg_CorrelID));
replymsg.putAscii("XXX_service_reply_data", replydata);
System.out.println(" TestService, msgEvent putting service reply " +

"to ClientQMgr XXX_service_reply queue");
/* put reply to ClientQMgr XXX_service reply queue */
thisQMgr.putMessage("ClientQMgr", "XXX_service_reply",

replymsg, null, 1);
}

catch(Exception e)
{
e.printStackTrace();
}

queue-based security

Chapter 7. Security 175

}
/* finalize method */
protected void finalize()
{
System.out.println("TestService, finalize...");
applicationThread.stop();
applicationThread.destroy();
}

Client queue manager application initiating XXX_service_request.:

The example queue-based security scenario in “Usage scenario” on page 164
describes a client queue manager application that initiates XXX_service_request
messages by encapsulating the request in a MQeMsgObject and using putMessage
to reliably deliver the request to the server queue manager’s XXX_sevice_request
queue. It then waits for the reply to the service request by using waitForReply on
its own XXX_service_reply queue.

In the scenario, the TestService application on the server processes the service
request by using getMessage to get the service request from the
XXX_service_request queue, processes the request (for example by invocation of a
backend transaction), builds the reply MQeMsgObject, and uses the server queue
manager putMessage to return the reply to the (remote) initiating Client queue
manager.

The server queue manager internally puts the message onto its
TestServer_StoreAndForwardQ. The client queue manager pulls the message from
the TestServer_StoreAndForwardQ and receives it in its ClientTest_HomeServerQ
before putting it on the intended target XXX_service_reply queue.

The client application below provides a simple example of invoking a service
request and processing the resulting reply.
package test;
import com.ibm.mqe.*;
import examples.queuemanager.*;
public class UseTestService extends MQe
{
protected MQeQueueManager thisQMgr = null;
/* serviceRequest method */
public void serviceRequest()
{
/* start traceà */
try{

MQeTraceInterface trace =
(MQeTraceInterface) MQe.loader.loadObject(

"examples.awt.AwtMQeTrace");
trace.activate("UseTestService...", null);
}

catch(Exception e) {e.printStackTrace();
/* start and use Client queuemanager to put request & process reply */
try {

/* start Client queue manager */
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateClient2.ini",
"12345678",
"It_is_a_secret",
null);

MQeQueueManager newQM = newC.queueManager;
/* build svc request and use putMessage to put it to server */
MQeMsgObject msgreq = new MQeMsgObject();
long thisReq_CorrelID = newQM.uniqueValue();

queue-based security

176 MQSeries Everyplace Programming Guide

msgreq.putArrayOfByte(MQe.Msg_CorrelID,
longToByte(thisReq_CorrelID));

String reqdata = "0123456789abcdef";
msgreq.putArrayOfByte("XXX_service_request_data",

asciiToByte(reqdata));
newQM.putMessage("ServerQMgr","XXX_service_reqest",msgreq,null,1);
trace(" >>> request put to ClientQMgr,XXX_service_request q OK");
/* field and process reply to service request */
trace(" >>> waiting for reply message...");
MQeFields msgreq_filter = new MQeFields();
msgreq_filter.putArrayOfByte(MQe.Msg_CorrelID,

longToByte(thisReq_CorrelID));
MQeMsgObject msgreply = newQM.waitForMessage(newQM.getName(),

"XXX_service_reply", msgreq_filter, null, 0, 3000);
trace(" >>> service request reply = " +
byteToAscii(msgreply.getArrayOfByte("XXX_service_reply_data")));

}
catch(Exception e2) { e2.printStackTrace();}
}

}
public static void main(String args[])
{
UseTestService testsvc = new UseTestService();
testsvc.serviceRequest();
}

}

Queue-based security and triggering auto-registration

When a queue manager accesses a remote queue or any local queue that is defined
with an attribute including the MQeWTLSCertAuthenticator, then the queue
manager and queues are authenticatable entities and require their own credentials.

A queue manager’s credentials are created by triggering auto-registration. The
simplest way of triggering auto-registration is to include the relevant keywords in
the registry section of the ini file used when the queue manager is created: The
keywords needed in the registry section of the ini file are:
(ascii)CertReqPIN=12345678
< change CertReqPIN the default '12345678' to a new value that matches the value

set value defined by Mini Certertificate Server's Administrator when the
QueueManager instance is defined >

(ascii)KeyRingPassword=It_is_a_secret
< change the default KeyRingPassword from 'It_is_a_secret' to the password that

is to be subsequently provided at QueueManager start-up time to enable
the QueueManager instance to access its protected private credentials
within its Private Registry. >

(ascii)CAIPAddrPort=9.20.X.YYY:8081
< change this to the IP address and port of the solution's MiniCertificateServer

The credentials of queues (with an attribute including
MQeWTLSCertAuthenticator) are also created by triggering auto-registration. This
happens automatically when an administration message adding the queue is
processed providing that:
v The owning queue manager has already auto-registered, and been started with

parameters necessary to access its own credentials and the solutions’s
mini-certificate server

v The owning queue manager name and queue name have been predefined by the
mini-certificate server administrator, with the mini-certificate request PIN set to
the same value as the CertReqPIN value used to start the owning queue
manager

v The mini-certificate server is available, started, and is in ’Server’ mode

queue-based security

Chapter 7. Security 177

When adding a queue (with an attribute including MQeWTLSCertAuthenticator)
the queue can have its own credentials or it can share its owning queue manager’s
credentials. This choice is determined when the ’create queue’ administration
message is constructed. The following code fragment shows the relevant
parameters and their meaning.

ServerQMgr queues -adding ServerTestQWTLS2:

The following code fragment:
v Assumes that the mini-certificate server administrator has added

ServerQMgr+ServerTesTQWTLS2 with Certificate Request PIN = 12345678, and
has started the mini-certificate server in ’Server’ mode

v Starts the ServerQMgr locally using the MQePrivateClient class, (using the
different version, MQePrivateServer2.ini, that deliberately does not hold hard
coded values for PIN, KeyRingPassword and CertReqPIN) then create and use
an administration message to add the ServerTestQWTLS2 queue

{
try{

/* start ServerQMgrà */
String QMgrName = "ServerQMgr";
String QName = "ServerTestQWTLS2"
MQeAttribute qattr = new MQeAttribute(

new MQeWTLSCertAuthenticator(), new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateServer2.ini",
"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;
/* create and use Admin msg to add ServerTestQWTLS2 queue */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();
MQeFields parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, QMgrName);
parms.putAscii(msg.Queue_FileDesc, FileDesc);
if (qattr.getAuthenticator() != null) /*add qattr auth details*/
{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())
{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
/* for the Queue to have its own credentials */
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
/* for the Queue to share its host QMgr's cresdentials */

// parms.putByte(msg.Queue_TargetRegistry,
// msg.Queue_RegistryQMgr);

}
}

if (qattr.getCryptor() != null)
{

queue-based security

178 MQSeries Everyplace Programming Guide

parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
}

if (qattr.getCompressor() != null)
parms.putAscii(msg.Queue_Compressor,

qattr.getCompressor().type());
parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(">>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add ServerTestQWTLS2 */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(">>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(">>> Admin Msg processed OK...");
/* process Admin msg response à */
if (respMsg == null)
trace ("i: create Queue failed, no response message received");

else
{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)
trace("i: create Queue added queue OK...");

else
trace("i: create Queue failed: " + respMsg.getReason());

}
newQM.close();
}

catch (Exception e) { e.printStackTrace(); }
}

Queue-based security, starting queue managers with private
registries
Whenever a queue manager and any of its queues are authenticatable entities, that
is, have their own credentials, then, in order to access these credentials, the
appropriate parameters are needed when the queue manager is started.

While hard coding these parameters in the registry section of the appropriate ini
file is a convenient mechanism during solution development, it is inappropriate for
a production system. Whenever possible, these parameters should be collected
interactively and used to start a queue manager instance without storing them in a
file.

An example of starting an MQSeries Everyplace client queue manager using the
MQePrivateClient class, and passing the parameters (instead of hard coding them
in keywords of the MQePrivateClient2.ini file) is found in the example
“ClientQMgr queues -adding XXX_service_reply queue” on page 169.

Queue-based security - channel reuse
When protecting data between an initiating queue manager and target queues
(owned by the same remote queue manager), the initiating queue manager opens
one or more channels and applies the level of protection (MQeAttribute) to the
channel that matches the level of protection (MQeAttribute) defined for the target
queue. In order to minimize the opening of multiple channels, (for example one
per target queue), the initiating queue manager attempts channel reuse according
to the selected channel attribute rules.

The rules used depend on the setting of the ″ChannelAttrRules″ keyword in the
configuration file used at queue manager creation, (for example in

queue-based security

Chapter 7. Security 179

MQePrivateClient.ini or MQePrivateServer.ini before SimpleCreateQM was
used). By default, this is set to use a supplied example:
ChannelAttrRules=examples.rules.AttributeRule

Before reusing a channel, the initiating queue manager determines whether the
current channel attribute is sufficient to protect a message to the given target
queue. To do this, it uses the current AttributeRule equals method. This method
checks if the channel attribute is equal or better than the target queue attribute. If
equal or better it reuses the channel, if not, it attempts to dynamically upgrade the
channel to the relevant level of protection by upgrading the channel attribute. If
this is successful, it reuses the channel, if not successful, it opens and uses a new
channel with the required level of protection.

The upgrade mechanism uses the current AttributeRule permit method to
determine if channel attribute upgrade is permitted. The
examples.rules.AttributeRule permit method allows upgrade from weaker to
stronger or equivalent levels of protection, but not vice versa.

Before allowing channel reuse, the target queue manager uses its current
AttributeRule equals method to determine if the current channel attribute can
provide an appropriate level of protection for the target queue.

While the examples.attributes.AttributeRule provides practical defaults, there may
be many solution specific reasons why different behavior is required. The
MQSeries Everyplace based solution creator can achieve this by extending or
replacing the default examples.attribute.AttributeRule with rules defining the
desired behavior.

It is possible, but not recommended, to run without setting ChannelAttrRules.

Message-level security
Message-level security facilitates the protection of message data between an
initiating and receiving MQSeries Everyplace application. Message-level security is
an application layer service. It requires the initiating MQSeries Everyplace
application to create a message-level attribute and provide it when using
putMessage to put a message to a target queue. The receiving application must
setup an appropriate, ’matching’, message-level attribute and pass it to the
receiving queue manager so that the attribute is available when getMessage is used
to get the message from the target queue.

Like local security, message-level security exploits the application of an attribute on
a message (MQeFields object descendent). The initiating application’s queue
manager handles the application’s putMessage with the message dump method,
which invokes the (attached) attribute’s ’encodeData’ method to protect the
message data. The receiving application’s queue manager handles the application’s
getMessage with the message’s ’restore’ method which in turn uses the supplied
attribute’s ’decodeData’ method to recover the original message data.

Usage scenario
Message-level security is typically most useful for:
v Solutions that are designed to use predominantly asynchronous queues
v Solutions for which application level security is important, that is solutions

whose normal message paths include flows over multiple nodes perhaps

queue-based security

180 MQSeries Everyplace Programming Guide

connected with different protocols. Message-level security classically manages
trust at the application level, which means security in other layers becomes
unnecessary.

A typical scenario is a solution service that is delivered over multiple open
networks. For example over a mobile network and the internet, where, from outset
asynchronous operation is anticipated. In this scenario, it is also likely that
message data is flowed over multiple links that may have different security
features, but whose security features are not necessarily controlled or trusted by
the solution owner. In this case it is very likely the solution owner does not wish
to delegate trust for the confidentiality of message data to any intermediate, but
would prefer to manage and control trust management directly.

MQSeries Everyplace message-level security provides solution designers with the
features that enable the strong protection of message data in a way that is under
the direct control of the initiating and recipient applications, and that ensures the
confidentiality of the message data throughout its transfer, end to end, application
to application.

Secure feature choices
MQSeries Everyplace supplies two alternative attributes for message-level security.

MQeMAttribute
This suits business-to-business communications where mutual trust is
tightly managed in the application layer and requires no trusted third
party. It allows use of all available MQSeries Everyplace symmetric cryptor
and compressor choices. Like local security it requires the attribute’s key to
be preset before it is supplied as a parameters on putMessage and
getMessage. This provides a simple and powerful method for
message-level protection that enables use of strong encryption to protect
message confidentiality, without the overhead of any public key
infrastructure (PKI).

MQeMTrustAttribute

Note: This class is available only in the high security version of MQSeries
Everyplace Version 1.0.

Provides a more advanced solution using digital signatures and exploiting
the default public key infrastructure to provide a digital envelope style of
protection. It uses ISO9796 digital signature/validation so the receiving
application can establish proof that the message came from the purported
sender. The supplied attribute’s cryptor protects message confidentiality.
SHA1 digest guarantees message integrity and RSA encryption/decryption
ensures that the message can only be restored by the intended recipient. As
with MQeMAttribute, it allows use of all available MQSeries Everyplace
symmetric cryptor and compressor choices. Chosen for size optimization,
the certificates used are mini-certificates based on the WTLS certificate
proposed by the WAP forum WTLS Specification. The mutual availability
of the information necessary to authenticate (validate signatures) is
provided through the MQSeries Everyplace default PKI infrastructure.

A typical MQeMTrustAtribute protected message has the format:
RSA-enc{SymKey}, SymKey-enc {Data, DataDigest, DataSignature}

where:

message-level security

Chapter 7. Security 181

RSA-enc:
RSA encrypted with the intended recipient’s public key, from his
mini-certificate

SymKey:
Generated pseudo-random symmetric key

SymKey-enc:
Symmetrically encrypted with the SymKey

Data: Message data

DataDigest:
Digest of message data

DigSignature:
Initiator’s digital signature of message data

Selection Criteria
MQeMAttribute relies totally on the solution owner to manage the content of the
key seed that is used to derive the symmetric key used to protect the
confidentiality of the data. This key seed must be provided to both the initiating
and recipient applications. While it provides a simple mechanism for the strong
protection of message data without the need of any PKI, it clearly depends of the
effective operational management of the key seed.

MQeMTrustAttribute exploits the advantages of the MQSeries Everyplace default
PKI to provide a digital envelope style of message-level protection. This not only
protects the confidentiality of the message data flowed, but checks its integrity and
enables the initiator to ensure that only the intended recipient can access the data,
and enables the recipient to validate the originator of the data, providing effective
non-repudiation.

Solutions that wish to simply protect the end-to-end confidentiality of message
data will probably that MQeMAttrribute suits their needs, while solutions for
which one to one (authenticable entity to authenticable entity) transfer and
non-repudiation of the message originator are important may find
MQeMTrustAttribute is the correct choice.

Usage guide
The following code fragments provide examples of how to protect and unprotect a
message using MQeMAttribute and MQeMTrustAttribute

MQSeries Everyplace message-level security using MAttribute

/* SIMPLE PROTECT FRAGMENT */
MQeMsgObject msgObj = null;
MQeMAttribute msgA = null;
long confirmId = MQe.uniqueValue();
try{

trace(">>> putMessage to target Q using MQeMAttribute"
+ " with 3DES Cryptor and key=It_is_a_secret");

MQe3DESCryptor tdes = new MQe3DESCryptor();
msgA = new MQeMAttribute(null, tdes, null);
MQeKey localkey = new MQeKey();
localkey.setLocalKey("It_is_a_secret");
msgA.setKey(localkey);
msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData","0123456789abcdef....");
newQM.putMessage(targetQMgrName, targetQName,

message-level security

182 MQSeries Everyplace Programming Guide

msgObj, msgA, confirmId);
trace(">>> MAttribute protected msg put OK...");
}

catch (Exception e)
{
trace(">>> on exception try resend exactly once.à");
msgObj.putBoolean(MQe.Msg_Resend, true);
newQM..putMessage(targetQMgrName, targetQName,

msgObj, null, confirmId);
}

/* SIMPLE UNPROTECT FRAGMENT */
{
MQeMsgObject msgObj2 = null;
MQeMAttribute msgA = null;
long confirmId = MQe.uniqueValue();
try{

trace(">>> getMessage from target Q using MQeMAttribute" +
" with 3DES Cryptor and key=It_is_a_secret");

msgA = new MQeMAttribute(null, null, null);
MQeKey localkey = new MQeKey();
localkey.setLocalKey("It_is_a_secret");
msgA.setKey(localkey);
msgObj2 = newQM.getMessage(targetQMgrName,

targetQName, null, msgA, confirmId);
trace(">>> unprotected MsgData = "

+ msgObj2.getAscii(("MsgData"));
}

catch (Exception e)
{ /* exception may have left */
newQM.undo(targetQMgrName, /* message locked on queue */

targetQName, confirmId); /* undo just in case */
e.printStackTrace(); /* show exception reason */
}

...}

MQSeries Everyplace message-level security using
MTustAttribute

/* SIMPLE PROTECT FRAGMENT */
{
MQeMsgObject msgObj = null;
MQeMTrustAttribute msgA = null;
long confirmId = MQe.uniqueValue();
try {

trace(">>> putMessage from Bruce1 intended for Bruce8
to target Q using MQeMTrustAttribute with MARSCryptor ");

MQeMARSCryptor mars = new MQeMARSCryptor();
msgA = new MQeMTrustAttribute(

null, mars, null);
String EntityName = "Bruce1";
String PIN = "12345678";
Object Passwd = "It_is_a_secret";
MQePrivateRegistry sendreg = new MQePrivateRegistry();
sendreg.activate(EntityName, ".//MQeNode_PrivateRegistry",

PIN, Passwd, null, null);
sendreg.setTargetRegistryName("Bruce8");
msgA.setPrivateRegistry(sendreg);
MQePublicRegistry pr = new MQePublicRegistry();
pr.activate("MQeNode_PublicRegistry", ".//");
msgA.setPublicRegistry(pr);
msgA.setHomeServer(MyHomeServer + ":8081");
msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData","0123456789abcdef....");
newQM.putMessage(targetQMgrName, targetQName,

msgObj, msgA, confirmId);
trace(">>> MTrustAttribute protected msg put OK...");
}

message-level security

Chapter 7. Security 183

catch (Exception e)
{
trace(">>> on exception try resend exactly once....");
msgObj.putBoolean(MQe.Msg_Resend, true);
newQM..putMessage(targetQMgrName, targetQName,

msgObj, msgA, confirmId);
}

}

/* SIMPLE UNPROTECT FRAGMENT */
{
MQeMsgObject msgObj2 = null;
MQeMTrustAttribute msgA = null;
long confirmId = MQe.uniqueValue();
try {

trace(">>> getMessage from Bruce1 intended for Bruce8
from target Q using MQeMTrustAttribute with MARSCryptor ");

MQeMARSCryptor mars = new MQeMARSCryptor();
msgA = new MQeMTrustAttribute(

null, mars, null);
String EntityName = "Bruce8";
String PIN = "12345678";
Object Passwd = "It_is_a_secret";
MQePrivateRegistry sendreg = new MQePrivateRegistry();
sendreg.activate(EntityName, ".//MQeNode_PrivateRegistry",

PIN, Passwd, null, null);
msgA.setPrivateRegistry(sendreg);
MQePublicRegistry pr = new MQePublicRegistry();
pr.activate("MQeNode_PublicRegistry", ".//");
msgA.setPublicRegistry(pr);
msgA.setHomeServer(MyHomeServer + ":8081");
msgObj2 = newQM.getMessage(targetQMgrName,

targetQName, null, msgA, confirmId);
trace(">>> MTrustAttribute protected msg =

msgObj2.getAscii("MsgData"));
}

catch (Exception e)
{ /* exception may have left */
newQM.undo(targetQMgrName, /* message locked on queue */

targetQName, confirmId); /* undo just in case */
e.printStackTrace(); /* show exception reason */
}

}

Private registry service
This section describes the private registry service provided by MQSeries
Everyplace.

Private registry and the concept of authenticatable entity
Queue-based security, that uses mini-certificate based mutual authentication and
message-level security, that uses digital signature, have triggered the concept of
authenticatable entity. In the case of mutual authentication it is normal to think
about the authentication between two users but, messaging generally has no
concept of users. The normal users of messaging services are applications and they
handle the user concept.

MQSeries Everyplace abstracts the concept of target of authentication from user
(person) to authenticatable entity. This does not exclude the possibility of
authenticatable entities being people, but this would be an application selected
mapping.

message-level security

184 MQSeries Everyplace Programming Guide

Internally, MQSeries Everyplace defines all queue managers that can either
originate or be the target of mini-certificate dependent services as an
authenticatable entities. MQSeries Everyplace also defines queues defined to use
mini-certificate based authenticators as authenticable entities. So queue managers
that support these services can have one (the queue manager only), or a set (the
queue manager and every queue that uses certificate based authenticator) of
authenticatable entities.

MQSeries Everyplace provides configurable options to enable queue managers and
queues to auto-register as an autenticatable entity. MQSeries Everyplace private
registry service (MQePrivateRegistry) provides services that enable an MQSeries
Everyplace application to auto-register authenticatable entities and manage the
resulting credentials.

All application registered authenticatable entities can be used as the initiator or
recipient of message-level services protected using MQeMTrustAttribute.

Private registry and authenticatable entity credentials
To be useful every authenticable entity needs its own credentials. This provides
two challenges, firstly how to execute registration to get the credentials, and
secondly where to manage the credentials in a secure manner. MQSeries
Everyplace private registry services help to solve these two problems. These
services can be used to trigger auto-registration of an authenticatable entity
creating its credentials in a secure manner and they can also be used to provide a
secure repository.

Private registry (a descendent of base registry) adds to base registry many of the
qualities of a secure or cryptographic token. For example, it can be a secure
repository for public objects (mini-certificates) and private objects (private keys). It
provides a mechanism to limit access to the private objects to the authorized user.
It provides support for services (for example digital signature, RSA decryption) in
such a way that the private objects never leave the private registry. Also, by
providing a common interface, it hides the underlying device support.

Auto-registration
MQSeries Everyplace provides default services that support auto-registration.
These services are automatically triggered when an authenticatable entity is
configured; for example when a queue manager is started, or when a new queue is
defined, or when an MQSeries Everyplace application uses MQePrvateRegistry
directly to create a new authenticatable entity. When registration is triggered, new
credentials are created and stored in the authenticatable entity’s private registry.
Auto-registration steps include generating a new RSA key pair, protecting and
saving the private key in the private registry; and packaging the public key in a
new-certificate request to the default mini-certificate server. Assuming the
mini-certificate server is configured and available, and the authenticatable entity
has been pre-registered by the mini-certificate server (is authorized to have a
certificate), the mini-certificate server returns the authenticatable entity’s new
mini-certificate, along with its own mini-certificate and these, together with the
protected private key, are stored in the authenticatable entity’s private registry as
the entity’s new credentials.

While auto-registration provides a simple mechanism to establish an
authenticatable entity’s credentials, in order to support message-level protection,
the entity requires access to its own credentials (facilitating digital signature) and
to the intended recipient’s ublic key (mini-certificate).

private registry service

Chapter 7. Security 185

Usage scenario
The primary purpose of MQSeries Everyplace’s private registry is to provide a
private repository for MQSeries Everyplace authenticatable entity credentials. An
authenticatable entity’s credentials consist of the entity’s mini-certificate
(encapsulating the entity’s public key), and the entity’s (keyring protected) private
key.

Typical usage scenarios need to be considered in relation to other MQSeries
Everyplace security features:

Queue-based security with MQeWTLSCertAuthenticator
Whenever queue-based security is used, where a queue attribute is defined
with MQeWTLSCertAuthenticator, (Mini Cerificate based mutual
authentication) the authenticatable entities involved are MQSeries
Everyplace owned. Any queue manager that is to be used to access
messages in such a queue, any queue manager that owns such a queue
and the queue itself are all authenticatable entities and need to have their
own credentials. By using the correct configuration options and setting up
and using an instance of MQSeries Everyplace mini-certificate issuance
service, auto-registration can be triggered when the queue managers and
queues are created, creating new credentials and saving them in the
entities’ own private registries.

Message-level security with MQeMTrustAttribute
Whenever message-level security is used with MQeMTrustAttribute, the
initiator and recipient of the MQeMTrustAttribute protected message are
application owned authenticatable entities that must have their own
credentials. In this case, the application must use the services of
MQePrivateRegistry (and an instance of MQSeries Everyplace
mini-certificate issuance service) to trigger auto-registration to create the
entities’ credentials and to save them in the entities’ own private registries.

Secure feature choices
MQSeries Everyplace Version 1 provides no support for any alternative secure
repository for an authenticatable entity’s credentials. If queue-based security with
MQeWTLSCertAuthenticator or message-level security using MQeMTrustAttribute
are used, private registry services must be used.

Selection criteria
The selection criteria for private registry are the same as those for queue-based and
message-level security.

Usage guide
Prior to using queue-based security, MQSeries Everyplace owned authenticabale
entities must have credentials. This is achieved by completing the correct
configuration so that auto-registration of queue managers is triggered. This
requires the following steps:
1. Setup and start an instance of MQSeries Everyplace mini-certificate issuance

service.
2. In administration mode, add the name of the queue manager as a valid

authenticatable entity, and the entity’s one-time-use certificate request PIN.
3. Start the mini-certificate server in server mode.
4. Configure MQePrivateClient1.ini and MQePrivateServer1.inias described in

″Using SimpleCreateQM to create ClientQMgr and ServerQMgr instances″ so
that when queue managers are created using SimpleCreateQM,

private registry service

186 MQSeries Everyplace Programming Guide

auto-registration is triggered. This section explains which keywords are
required in the registry section of the ini files, and where to use the entity’s
one-time-use certificate request PIN.

Prior to using message-level security to protect messages using
MQeMTrustAttribute, the application must used private registry services to ensure
that the initiating and recipient entities have credentials. This requires the
following steps:
1. Setup and start an instance of MQSeries Everyplace mini-certificate issuance

service.
2. In administration mode, add the name of the application entity, and allocate the

entity a one-time-use certificate request PIN.
3. Start the mini-certificate server in server Mode.
4. Use a program similar to the program fragment below to trigger

auto-registration of the application entity . This creates the entity’s credentials
and saves them in its private registry.
/* SIMPLE MQePrivateRegistry FRAGMENT */
try

{
/* setup PrivateRegistry parameters */
String EntityName = "Bruce";
String EntityPIN = "11111111";
Object KeyRingPassword = "It_is_a_secret";
Object CertReqPIN = "12345678";
Object CAIPAddrPort = "9.20.X.YYY:8081";
/* instantiate and activate a Private Registry. */
MQePrivateRegistry preg = new MQePrivateRegistry();
preg.activate(EntityName, /* entity name */

".//MQeNode_PrivateRegistry", /* directory root */
EntityPIN, /* private reg access PIN */
KeyRingPassword, /* private credential keyseed */
CertReqPIN, /* on-time-use Cert Req PIN */
CAIPAddrPort); /* addr and port MiniCertSvr */

trace(">>> PrivateRegistry activated OK ...");
}

catch (Exception e)
{
e.printStackTrace();
}

Public registry service
This section describes the public registry service provided by MQSeries Everyplace.

MQSeries Everyplace provides default services facilitating the sharing of
authenticatable entity public credentials (mini-certificates) between MQSeries
Everyplace nodes. Access to these mini-certificates is a prerequisite for
message-level security. MQSeries Everyplace public registry (also a descendent of
base registry) provides a publicly accessible repository for mini-certificates. This is
analogous to the personal telephone directory service on a mobile phone, the
difference being that it is a set of mini-certificates of the authenticatable entities
instead of phone numbers. MQSeries Everyplace public registry is not a purely
passive service. If accessed to provide a mini-certificate that is does not hold, and
if the public registry is configured with a valid home server, the public registry
automatically attempts to get the requested mini-certificate from the public registry
of the home server. It also provides a mechanism to share a mini-certificate with
the public registry of other MQSeries Everyplace nodes. Together these services

private registry service

Chapter 7. Security 187

provide the building blocks for an intelligent automated mini-certificate replication
service that can facilitates the availability of the right mini-certificate at the right
time.

Usage scenario
A typical scenario for the use of the public registry would be to use these services
so that the public registry of a particular MQSeries Everyplace node builds up a
store of the most frequently needed mini-certificates as they are used.

A simple example of this is to setup an MQSeries Everyplace client node to
automatically get, from its MQSeries Everyplace home server, the mini-certificates
of other authenticable entities that it needs, and then save them in its public
registry.

Secure feature choices
It is the Solution creator’s choice whether to use the public registry active features
for sharing and getting mini-certificates between the public registries of different
MQSeries Everyplace nodes.

The alternative to this intelligent replication may be to have an out-of-band utility
to initialize an MQSeries Everyplace node’s public registry with all required
mini-certificates before enabling any secure services that uses them.

Selection criteria
Out-of-band initialization of the set of mini-certificates available in an MQSeries
Everyplace node’s public registry may have advantages over using the public
registry active features in the case where the solution is predominantly
asynchronous. and the synchronous connection to the MQSeries Everyplace node’s
home server may be difficult. But in the case where this connection is more likely
to be available, the public registry’s active mini-certificate replication services are
useful tools to automatically maintain the most useful set of mini-certificates on
any MQSeries Everyplace node public registry.

Usage guide
/* SIMPLE MQePublicRegistry shareCertificate FRAGMENT */
try {

String EntityName = "Bruce";
String EntityPIN = "12345678";
Object KeyRingPassword = "It_is_a_secret";
Object CertReqPIN = "12345678";
Object CAIPAddrPort = "9.20.X.YYY:8081";
/* auto-register Bruce1, Bruce2...Bruce8 */
int i = 1;
for (i = 1; i < 9; i++)
{
EntityName = "Bruce" + (new Integer(i)).toString();
MQePrivateRegistry preg = new MQePrivateRegistry();
preg.activate(EntityName, ".\\MQeNode_PrivateRegistry" ,
EntityPIN, KeyRingPassword, CertReqPIN, CAIPAddrPort);
/* inst'ate and activate PublicReg & save MiniCert from PrivReg */
MQePublicRegistry pubreg = new MQePublicRegistry();
pubreg.activate("MQeNode_PublicRegistry", ".\\");
pubreg.putCertificate(EntityName,

preg.getCertificate(EntityName));
/* before share of MiniCert */
pubreg.shareCertificate(EntityName,

preg.getCertificate(EntityName), "9.20.X.YYY:8081");
preg.close();
pubreg.close();
}

public registry service

188 MQSeries Everyplace Programming Guide

}
catch (Exception e)

{
e.printStackTrace();
}

Note: It is not possible to activate a public registry instance more than once, hence
the example above demonstrates the recommended practice of accessing a
public registry by creating a new instance of MQePublicRegistry, activating
the instance, performing the required operations and closing the instance.

Mini-certificate issuance service
MQSeries Everyplace includes a default mini-certificate issuance service that can be
configured to satisfy private registry auto-registration requests. With the tools
provided, a solution can setup and manage a mini-certificate issuance service so
that it issues mini-certificates to a carefully controlled set of entity names. The
characteristics of this issuance service are:
v Management of the set of registered authenticatable entities
v Issuance of mini-certificates (the mini-certificate is based on the WAP WTLS

mini-certificate)
v Management of the mini-certificate repository

The tools provided enable a mini-certificate issuance service administrator to
authorize mini-certificate issuance to an entity by registering its entity name and
registered address and defining a one-time-use certificate request PIN. This would
normally be done after off-line checking to validate the authenticity of the
requestor. The certificate request PIN can be posted to the intended user (as bank
card PINs are posted when a new card is issued). The user of the private registry
(for example the MQSeries Everyplace application or MQSeries Everyplace queue
manager) can then be configured to provide this certificate request PIN at start-up
time. When the private registry triggers auto-registration, the mini-certificate
issuance service validates the resulting new certificate request , issues the new
mini-certificate and then resets the registered certificate request PIN so it cannot be
reused. All auto-registration of new mini-certificate requests is processed on a
secure channel.

The mini-certificates that have been issued by a mini-certificate issuance service are
held in the issuance service’s own registry. When a mini-certificate is reissued (for
example as the result of expiry), the expired mini-certificate is archived.

Configuring, starting and ending an instance of
mini-certificate issaunce service server

Configuration using MQSeries
EveryplaceMiniCertificateServer.ini
MQeMiniCertificateServer.ini is an example configuration file. Instances of
MQeMiniCertificateServer can be created by modifying this example, and using it
at MQeMiniCertificateServer start-up time. MQeMiniCertificateServer.ini includes
Alias, ChannelManager,Listener and MiniCertSvrRegistry sections. An instance of
MQeMiniCertificateServer uses the contents of these sections at start-up to
auto-configure its behavior.

MQeMiniCertificateServer.ini is an extension of ExamplesMQeServer.ini. The
extensions are described here, for all other options, please refer to the description
of ExamplesMQeServer.ini.

public registry service

Chapter 7. Security 189

Extension to [Alias] Section
Two mandatory keywords are added:

MiniCertSvrRegistry
This setting identifies the class name of the registry to be used

MiniCertIssuanceManager
This setting identifies the name of the class that implements the
MQeMiniCertIssuanceInterface

Additional [MiniCertServerRegistry] Section
This section contains two optional keywords:

PIN This identifies the valid MQeMiniCertificateServer Administrator’s
PIN, used by the MQeMiniCertificateServer to activate and gain
access to its private Registry

KeyRingPassword
This identifies the password or passphrase used to protect private
objects stored in the MiniCertificateServer’s private registry

Starting MQeMiniCertificateServerGUI
MQeMiniCertificateServerGUI.bat is a simple example start-up file. An instance of
MQeMiniCertificateServer can be started by modifying and using this example.
The example uses the command:
java com.ibm.mqe.server.MQeMiniCertificateServer <parameter1> <parameter2>

where:

<parameter1> = com.ibm.MQe.Server.MCSMessageBundle
(or translated versions of MQeMiniCertificateServer messages ListR

<parameter2> = Examples.Trace.MQeTraceResource
(or translated versions of MQSeries Everyplace base messages List

Using the GUI to start the mini-certificate issuance service for
the first time
Invocation of MQeMiniCertificateServerGUI.bat results in the following being
displayed:

Figure 30. Mini-certificate server GUI

mini-certificate issuance service

190 MQSeries Everyplace Programming Guide

In order to start the mini-certificate server for the first time the administrator needs
to:
1. Enter the PIN that is planned for access to this instance of the mini-certificate

server in the input ’ServerAdministrator’s PIN’ field (shown here as ’12345678’)
2. Enter the password or passphrase that the administrator plans to use to protect

the private objects in the mini-certificate server’s registry in the ServerKey Ring
Password field (shown here as ’It_is_a_secret’)

3. Enter the path and filename of the start-up configuration file in the Server
Config File Path field (shown here as ’./MQeMiniCertificateServer.ini’)

4. Click the Start Server button

Note: The Mode indicator in the bottom left of the GUI indicates that the server is
started showing ’Server_Monitor’. The Context output to the right of the
mode indicator shows the contextual help for the start server button. The
Monitor output above the Mode and Context is an example of valid monitor
output.

Using administration tools

Starting administration mode
In order to use the administration tools, the MQeMiniCertificateServerGUI must be
invoked and Administration mode started. This can be achieved by invoking
MQeMiniCertificateServerGUI.bat, filling in the ’Server Administrator’s PIN’, the
’ServerKey Ring Password’ and ’Server Config File Path’ input fields, and then
selecting the ’Start Admin’ button. An example of the visual feedback from this
task is:

Figure 31. Mini-certificate server started

mini-certificate issuance service

Chapter 7. Security 191

Adding a new authenticatable entity
Having started administration mode, adding a new authenticatable entity consists
of supplying the entity’s name and address in the appropriate input fields, and
then setting the one-time-use certificate request PIN and clicking the ’Add’ button.
An example of the visual feedback from this task is:

Updating an authenticatable entity
Updating a registered authenticatable entity’s details is similar to adding an entity.
Having entered administration mode, the authenticatable entity’s updated details
are provided This can include a new certificate request PIN, if apropriate. Then to
update click the Update button. An example of the visual feedback from this task
is:

Figure 32. Mini-certificate server administration mode

Figure 33. Adding a new authenticatable entitiy

mini-certificate issuance service

192 MQSeries Everyplace Programming Guide

Deleting an authenticatable entity
Deleting a registered authenticatable entity’s details is achieved by entering the
authenticatable entity’s name in the input field and then clicking the ’Delete’
button.

Reading an authenticatable entity’s details
To read a registered authenticatable entity’s details, enter the authenticatable
entity’s name in the input field and then click the ’Read’ button. An example of the
visual feedback from this task is:

Figure 34. Updating an authenticatable entitiy

Figure 35. Deleting an authenticatable entitiy

mini-certificate issuance service

Chapter 7. Security 193

This provides a method for displaying the details of any registered authenticatable
entity. The visual feedback displays the registered address and mini-certificate, if
available and the status of the one-time-use certificate request PIN. In normal use,
after an authenticatable entity is registered but before a mini-certificate has been
issued, the registered address is displayed, the status of the certificate request PIN
is set, and the mini-certificate status is not found. After a mini-certificate has been
issued, the registered address and current mini-certificate are displayed and the
request PIN status is not set.

Use of File menu Open option
In addition to Read, the Open option is provided to select an authenticatable entity
that does not require a name to be entered. To use this option, in administration
mode:
1. From the ’File’ pull down menu, select the ’Open’ option

Figure 36. Reading an authenticatable entitiy

Figure 37. MQSeries Everyplace authenticatable entity details display

mini-certificate issuance service

194 MQSeries Everyplace Programming Guide

2. Select the ’EntityAddr’ folder from the displayed list and click on the ’Open’
button

3. Select the name of the entity that you want to query from the displayed list
and click on the ’Open’ button

The entity details are displayed as shown in Figure 39.

Operation

Starting and stopping
Starting an instance of MQeMiniCertificateServerGUI, and using the GUI to either
start the server, or to start Administration Mode is described in “Starting
MQeMiniCertificateServerGUI” on page 190 and “Starting administration mode” on
page 191. In both cases, to terminate the MQeMiniCertificateServerGUI instance, on

Figure 38. MQSeries Everyplace authenticatable entity details display

Figure 39. MQSeries Everyplace authenticatable entity details display

mini-certificate issuance service

Chapter 7. Security 195

the ’File’ pull down menu select the ’Exit’ option. select ’yes’ in the confirmation
dialog to complete the shutdown of the min-certificate server.

Monitor and logging
When running the server in Server_Monitor mode or in Admin_Monitor mode, the
significant events are monitored and visual feedback is provided in the Monitor
listbox, with the ’>>> ’ prefix.

An additional option is available in both Server_Monitor mode and
Admin_Monitor mode to log these events to a designated file. Operational
solutions are likely to use this option to provide an audit trail. To start this option,
in either mode, select the ’Log’ option from the File pull down menu. This task
results in a file selection dialog box being displayed:

To select a log file name (in which subsequent monitor events are recorded) the
administrator must either accept the MQSeries Everyplace generated log file name
that appears in the ’File Name’ input field, (in this example
’949679065895_MCSlog’) or overwrite it with a preferred Log filename, then click
the ’Save’ button.

An example of the visual feedback from this task is shown in Figure 40.

An example of the Log file created using administration to add an authenticatable
entity named ’Bruce’ is:

>>> Log file set = E:\MQLite\betaBSF0202\Classes\949682538438_MCSlog.txt
>>> Admin Mode started OK
>>> opening MiniCertificateServer Registry
>>> MiniCertificateServer Registry opened OK
>>> Entity added OK = Bruce
>>> Entity Registered Address added OK

Figure 40. Mini-certificate server log file name display

mini-certificate issuance service

196 MQSeries Everyplace Programming Guide

Chapter 8. Tracing in MQSeries Everyplace

This section provides assistance with using and customizing the MQSeries
Everyplace trace program.

MQSeries Everyplace provides a simple, but useful, tracing facility. This facility can
be used to follow the course of execution of a program either when it is running,
or later by inspecting the trail of execution recorded in a file. Trace messages are
sent from the running code to a trace window, where they are displayed.

The trace facility is just a trace, it does not contain some features found in
debuggers, such as the ability to set and release break points.

The following MQSeries Everyplace example trace classes can be found in the
examples.trace subdirectory:

MQeTrace
This class is a simple trace handler that displays trace messages on the
Java console.

MQeTraceResource
This class contains the templates for all the MQSeries messages

MQeTraceResourceGUI
This class contains all the translatable text for the trace window controls

The following MQSeries Everyplace trace classes can be found in the examples.awt
subdirectory. These classes can be used to create a graphical user interface to view
the trace output.

AwtDialog
This class creates and handles simple dialog style windows

AwtFormat
This class creates and manages the various graphical user interface
components within a dialog window or within an Application Windowing
Toolkit frame

AwtFrame
This class creates and handles a very simple frame style window

These classes can be used to handle and display trace from a running MQSeries
Everyplace environment. Tracing would not normally be used in a production
environment, except for diagnosis of problems, as any form of tracing affects the
performance of MQSeries Everyplace.

Using trace
To trace the execution of an application program you must put a statement in an
appropriate place in the code using the MQe.trace method as shown in the
following example:

...
/* */
trace("We got here");
...

© Copyright IBM Corp. 2000 197

When executed, this results in the text ″We got here″ being displayed in the
MQSeries Everyplace Trace window.

Trace message formats
There are several types of message (information, warning, error, security and
debug) and the type is denoted by the first characters as shown in Table 5.

Table 5. Trace message types

Initial character Meaning

I or i Information

W or w Warning

E or e Error

S or s Security

D or d Debug

Upper case prefixes are used for application trace messages and lower case
prefixes are used for system trace messages. System trace messages are usually
only generated from within MQSeries Everyplace.

The message is sent to the MQSeries Everyplace trace facility, which checks the
level of the message and, if required, outputs it to the trace window. Trace
messages that have a recognizable prefix are written to System.err, others are
written to System.out

The examples.trace.MQeTrace file in the examples.trace directory contains the
various message templates for the messages issued by MQSeries Everyplace
internal routines. The messages are of the form:
/* common messages */

{ "1", "d;[00001]:Created" },
{ "2", "d;[00002]:Destroyed" },
{ "3", "d:[00003]:Close" },
{ "4", "w:[00004]:Warning:#0" },
{ "5", "e:[00005]:Error:#0" },
{ "6", "i:[00006]:Command:#0" },
{ "7", "i:[00007]:Waiting" },
{ "8", "i:[00008]:#0 input byte count=#1" },
...,

where the first character string is the message number and the second string is the
message template.

examples.trace.MQeTraceResource contains the message strings in English. Various
other language versions are also provided in this directory.

The template has the following format:
v The message type as described in Table 5
v A modifier character, this modifier has the following meanings:

Table 6. Trace message modifiers

Modifier Meaning

: no modification applied

; RESERVED for create/destroy object

+ log this message via the Log interface

¬ ignore - Do not display this message

using trace

198 MQSeries Everyplace Programming Guide

v The message number in the format ’[nnnnn]:’
v The message text. This can include inserts of the form ’#n’ where ’n’ is an

integer from 0 to 9

By modifying this source file you can change the classification of a message. For
example, you can change from a Warning to an Error, or by changing the modifier
character from ’:’ to ’+’, you can cause the message to be copied to the Event log.

New trace messages can be added at runtime using the addMessage or
addMessageBundle calls. For example, to add a single new message :

...
MQeTraceInterface MyTrace = MQe.GetTraceHandler();
myTrace.addMessage(" :[11111]:My Application - #0 = #1");
...
trace(11111, new String[] { "Magic word", "xyzzy" });
...

Activating trace
Trace, which is not active by default, can be activated using the
MQe.setTraceHandler as shown in the following code:
...
/* give the trace object to MQe */
setTraceHandler(new myTraceHandler());
trace("I:Starting...");
...

The example trace handler that is shipped as part of the MQSeries Everyplace
toolkit, includes the trace activation code.

Customizing trace
The trace classes provided in the examples directory can be used as a basis for
custom trace handlers.

MQeTrace example
The MQeTrace example class provides a simple, tracing facility that by default
outputs the trace messages to System.out and/or to System.err.

To activate the trace window specify the following code:
...
/* Start the example version of MQeTrace */
new examples.trace.MQeTrace("Trace", null));
...
trace("I:Starting...");
trace(123456, "Insert");
...

The second parameter on the constructor is the language to be used for the trace
messages, if null is specified, the default language is used. Alternatively a different
resource file may be specified that changes the classification of the messages, for
example:

...
/* Start the example version of MQeTrace */
new examples.trace.MQeTrace("Trace", "MyMessageResourceFile"));

trace message formats

Chapter 8. Tracing in MQSeries Everyplace 199

...
trace("I:Starting...");
trace(123456, "Insert");
...

The currently active trace handler object can be found by issuing an
MQe.getTraceHandler method call. Using this reference the behavior of the trace
can be modified, that is selecting or deselecting the types of trace messages to be
written.
...
/* Start the example version of MQeTrace */
MQeTraceInterface trace = MQe.getTraceHandler();
if (trace instanceof MQeTrace)
{
((MQeTrace) trace).MsgInf = true;
((MQeTrace) trace).MsgDebug = true;
((MQeTrace) trace).MsgTime = true;
}

...
trace("I:Starting...");
...

The variables (and their defaults) in MQeTrace that may be modified are :
public boolean MsgInf = false; /* Informaton msgs */
public boolean MsgWarn = true; /* warning msgs */
public boolean MsgErr = true; /* error msgs */
public boolean MsgSecurity = false; /* Security msgs */
public boolean MsgSys = true; /* System modifier */
public boolean MsgDebug = false; /* Debug modifier */
public boolean MsgLog = false; /* Trace message to log */
public boolean MsgTime = false; /* add Time stamp */
public boolean MsgPrefix = false; /* add object prefix */
public boolean MsgThread = false; /* add Thread ID */

More details can be found by examining the source code for MQeTrace in the
examples.trace directory:

This trace example can be used as the basis for a more sophisticated trace program
or a completely new one could be created.

The application program could even be the trace handler as well as its normal
function just by implementing the MQeTraceInterface and issuing the
MQe.setTraceHandler method call.

Graphical user interface for trace
The basic trace function provided in the examples.trace directory just displays the
trace messages on System.out and System.err in the console window associated
with the application.

There is another trace handler supplied in the examples.awt directory that uses a
subset of the Java AWT to provide a graphical user interface to the Trace, this
enables the various tracing options to be modified dynamically.
...
/* Start the example GUI version of MQeTrace */
new examples.awt.AwtMQeTrace("My Trace title", null));
...
trace("I:Starting...");

This code starts the trace window with the title ’My Trace’ and displays the
information message ″I:Starting″. The trace window has pull-down menus that

customizing trace

200 MQSeries Everyplace Programming Guide

enable the user to modify the level of tracing, the format of the messages, and
other properties, as shown in Figure 41. Note that an MQSeries Everyplace object is
required to perform tracing. The examples above assumed that the code is part of
a class that extends the base MQSeries Everyplace class. It is possible to output
MQSeries Everyplace trace messages from objects that do not themselves extend
MQSeries Everyplace. In this case, you need to create an MQSeries Everyplace
object, and then specify the tracing by using the methods of this object. For
example:

...
/* create a MQe object */
MQe dbg = new MQe();
dbg.Message("D:We got here");
...

MQSeries Everyplace tracing is Java virtual machine wide, so that all messages
from MQSeries Everyplace objects executed on any thread in the current Java
Virtual Machine are handled by the same trace facility, and displayed in the same
trace window. This can be a big advantage as it shows the order in which events
actually occurred. However it can be a disadvantage if you wish to separate out
totally independent events occurring on different threads.

Note: Terminating the MQSeries Everyplace Trace window does not terminate the
Java program.

Example AWT trace window layout
Note that you need a MyMessageResourceFileGUI file that specifies the text to be
used in any graphical user interface components associated with trace.

The example trace program in examples.awt produces a window with the layout
shown in Figure 41.

The Menu items are:
v File Menu:

Clear clears the trace window

Save As...
Save the contents of the trace window to a disk file

Trace to Log
Copy Trace messages to the event log

Figure 41. Example trace GUI window

trace GUI

Chapter 8. Tracing in MQSeries Everyplace 201

Trap I/O
Output to System.out and System.err is displayed in the window. If this
option is unchecked output goes to the Java console

Kill Terminate both trace and the owning application. Clicking on the
window frame exit button only terminates the Trace

v View Menu:

View Options
Show the trace message display options

System.out
Show the System.out window

System.err
Show the System.err window

The various trace message display options control how, and which, trace messages
are to be displayed in the System.err.println window:

Information
Display information messages

Warning
Display warning messages

Error Display error messages

Security
Display security messages

Debug
Display debugging information messages

System
Controls whether messages with the System characteristics are displayed.
This affects Information, Warning, Error, Security and Debug style
messages

Timestamp
Prefixes the messages with the current time stamp

Object names
Prefixes the messages with the object type and instance that originated the
message

Thread names
Prefixes the messages with the name of the thread that is running at the
time

Exceptions
Causes a stack trace to be displayed whenever an MQeException is thrown

Calls to Debug
Causes a stack trace to be displayed whenever an application or MQSeries
Everyplace issues the MQe.Debug call

The ’System.err.println and Trace message filter’ is a string that is used to match
anything within the output. If the match is successful the output is displayed, if
the match was unsuccessful the output is not displayed.

trace GUI

202 MQSeries Everyplace Programming Guide

Using this feature it is possible to selectively display messages from a specific
thread (assuming that the Thread name checkbox is checked).

Setting trace options
The various trace options can be preset on start-up of the AwtMQeTrace program
by creating a new GUI resource file that prechecks any of the checkable
components for example:
public class MQeTraceResourceGUI extends java.util.ListResourceBundle
{
static final Object[][] contents = {
/* Check items can be pre-checked by replacing the blank with an "!" */

{ "File", "File" },
{ "Clear", "Clear" },
{ "Save", "Save As..." },
{ "Log", " Trace to Log" }, /* check item */
{ "Trap", "!Trap I/O" }, /* check item */
{ "Halt", "Kill" },
{ "View", "View" },
{ "Options", "!View Options" }, /* check item */
{ "SystemOut", "!System.out" }, /* check item */
{ "SystemErr", " System.err" }, /* check item */
{ "Help", "Help" },
{ "About", "About..." },

/* checkbox labels */
{ "Information", " Information" }, /* check item */
{ "Warning", "!Warning" }, /* check item */
{ "Error", "!Error" }, /* check item */
{ "Debug", " Debug" }, /* check item */
{ "Security", " Security" }, /* check item */
{ "System", "!System" }, /* check item */

{ "Timestamp", " Timestamp" }, /* check item */
{ "Objects", " Object names" }, /* check item */
{ "Threads", " Thread names" }, /* check item */
{ "Exceptions", " Exceptions" }, /* check item */
{ "CallStack", " Calls to Debug" }, /* check item */

/* About dialog */
{ "AboutTitle", "About MQe Trace" },
{ "AboutVersion", "MQe version" },
{ "AboutProduct", "Product number 5639-I47" },
{ "AboutCopyright", "(C) Copyright IBM Corp. 1999 All Rights Reserved" },
{ "AboutCopyright2", "Licensed Materials - Property of IBM" },
{ "AboutTrace", "Trace version" },
{ "AboutComments", " " },
{ "OK", "OK" },

};

public Object[][] getContents()
{
return(contents);
}

Note: If trace options are modified programmatically for MQeTrace, as shown in
the following code, the corresponding components on the AwtMQeTrace
window WILL NOT be updated

...
/* Start the example version of MQeTrace */
MQeTraceInterface trace = MQe.getTraceHandler();
if (trace instanceof MQeTrace)
((MQeTrace) trace).MsgDebug = true;

...

trace GUI

Chapter 8. Tracing in MQSeries Everyplace 203

trace GUI

204 MQSeries Everyplace Programming Guide

Chapter 9. MQSeries Everyplace adapters

This section provides information on the creation of MQSeries Everyplace adapters.
The coding of two adapters is described, one for communications and one for
storing a message.

An example of a simple communications adapter
This example uses the standard java classes to manipulate TCPIP and adds a
protocol of its own on top. This protocol has a header consisting of a four byte
length of the data in the data packet followed by the actual data. This is so that the
receiving end knows how much data to expect.

This example is not meant as a replacement for the adapters that are supplied with
MQSeries Everyplace but rather as a simple introduction into how to create
communications adapters. In reality, much more care should be taken with error
handling, recovery, and parameter checking. Depending on the MQSeries
Everyplace configuration used, the supplied adapters may be sufficient.

A new class file is constructed, inheriting from MQeAdapter. Some variables are
defined to hold this adapter’s instance information, that is the name of the host,
port number and the output stream objects.

The MQeAdapter constructor is used for the object, so no additional code needs to
be added for the constructor.
public class MyTcpipAdapter extends MQeAdapter
{
protected String host = "";
protected int port = 80;
protected Object readLock = new Object();
protected ServerSocket serversocket = null;
protected Socket socket = null;
protected BufferedInputStream stream_in = null;
protected BufferedOutputStream stream_out = null;
protected Object writeLock = new Object();

Next the activate method is coded. This is the method that extracts from the file
descriptor the name of the target network address if a connector, or the listening
port if a listener. The fileDesc parameter contains the adapter class name or alias
name, and any network address data for the adapter for example
MyTcpipAdapter:127.0.0.1:80. The thisParam parameter contains any parameter
data that was set when the connection was defined by administration, the normal
value would be ″?Channel″. The thisOpt parameter contains the adapter setup
options that were set by administration, for example MQe_Adapter_LISTEN if this
adapter is to listen for incoming connections.

public void activate(String fileDesc,
Object thisParam,
Object thisOpt,
int thisValue1,
int thisValue2) throws Exception

{
super.activate(fileDesc,

thisParam,
thisOpt,
thisValue1,
thisValue2);

© Copyright IBM Corp. 2000 205

/* isolate the TCP/IP address - "MyTcpipAdapter:127.0.0.1:80" */
host = fileId.substring(fileId.indexOf(':') + 1);
i = host.indexOf(':'); /* find delimiter */
if (i > -1) /* find it ? */

{
port = (new Integer(host.substring(i + 1))).intValue();
host = host.substring(0, i);
}

}

The close method needs to be defined to close the output streams and flush any
remaining data from the stream buffers. Close is called many time during a session
between a client and a server, however, when the channel has completely finished
with the adapter it calls MQSeries Everyplace with the option MQe_Adapter_FINAL.
If the adapter is to have one socket connection for the life of the channel then the
call with MQe_Adapter_FINAL set, is the one to use to actually close the socket, other
calls should just flush the buffers. If however a new socket is to be used on each
request, then each call to MQSeries Everyplace should close the socket, subsequent
open calls should allocate a new socket:

public void close(Object opt) throws Exception
{
if (stream_out != null) /* output stream ? */
{
stream_out.flush(); /* empty the buffers */
stream_out.close(); /* close it */
stream_out = null; /* clear */
}

if (stream_in != null) /* input stream ? */
{
stream_in.close(); /* close it */
stream_in = null; /* clear */
}

if (socket != null) /* socket ? */
{
socket.close(); /* close it */
socket = null; /* clear */
}

if (serversocket != null) /* serversocket ? */
{
serversocket.close(); /* close it */
serversocket = null; /* clear */
}

host = "";
port = 80;
}

The control method needs to be coded to handle an MQe_Adapter_ACCEPT request,
to accept an incoming connect request. This is only allowed if the socket is a
listener (a server socket). Any options that were specified for the listen socket
(excluding MQe_Adapter_LISTEN) are copied to the socket created as a result of the
accept. This is accomplished by the use of another control option
MQe_Adapter_SETSOCKET this allows a socket object to be passed to the adapter that
was just instantiated.
public Object control(Object opt, Object ctrlObj) throws Exception

{
if (checkOption(opt, MQe.MQe_Adapter_LISTEN) &&

checkOption(opt, MQe.MQe_Adapter_ACCEPT))
{
/* CtrlObj - is a string representing the file descriptor of the */
/* MQeAdapter object to be returned e.g. "MyTcpip:" */
Socket ClientSocket = serversocket.accept(); /* wait connect */
String Destination = (String) ctrlObj; /* re-type object*/
int i = Destination.indexOf(':');

adapters

206 MQSeries Everyplace Programming Guide

if (i < 0)
throw new MQeException(MQe.Except_Syntax,

"Syntax:" + Destination);
/* remove the Listen option */
String NewOpt = (String) options; /* re-type to string */
int j = NewOpt.indexOf(MQe.MQe_Adapter_LISTEN);
NewOpt = NewOpt.substring(0, j) +

NewOpt.substring(j + MQe.MQe_Adapter_LISTEN.length());
MQeAdapter Adapter = MQe.newAdapter(Destination.substring(0,i+1),

parameter,
NewOpt + MQe_Adapter_ACCEPT,
-1,
-1);

/* assign the new socket to this new adapater */
Adapter.control(MQe.MQe_Adapter_SETSOCKET, ClientSocket);
return(Adapter);
}

else
if (checkOption(opt, MQe.MQe_Adapter_SETSOCKET))
{
if (stream_out != null) stream_out.close();
if (stream_in != null) stream_in .close();
if (ctrlObj != null) /* socket supplied ? */
{
socket = (Socket) ctrlObj; /* save the socket */
stream_in = new BufferedInputStream (socket.getInputStream ());
stream_out = new BufferedOutputStream(socket.getOutputStream());
}

else
return(super.control(opt, ctrlObj));

}

The open method needs to check for a listening socket or a connector socket and
create the appropriate socket object. Reinitialization of the input and output
streams is achieved by using the control method, passing it a new socket object.
The opt parameter may be set to MQe_Adapter_RESET, this means that any previous
operations are now complete any new reads or writes constitute a new request.

public void open(Object opt) throws Exception
{
if (checkOption(MQe.MQe_Adapter_LISTEN))
serversocket = new ServerSocket(port, 32);

else
control(MQe.MQe_Adapter_SETSOCKET, new Socket(host, port));

}

The read method can take a parameter specifying the maximum record size to be
read.

This examples calls internal routines to read the data bytes and do error recovery
(if appropriate) then return the correct length byte array for the number of bytes
read. Care needs to be taken to ensure that only one read at a time occurs on this
socket. The opt parameter may be set to:

MQe_Adapter_CONTENT
read any message content

MQe_Adapter_HEADER
read any header information

{ public byte[] read(Object opt, int recordSize) throws Exception

int Count = 0; /* number bytes read */
synchronized (readLock) /* only one at a time */
{
if (checkOption(opt, MQe.MQe_Adapter_HEADER))

adapters

Chapter 9. MQSeries Everyplace adapters 207

{
byte lreclBytes[] = new byte[4]; /* for the data length */
readBytes(lreclBytes, 0, 4); /* read the length */
int recordSize = byteToInt(lreclBytes, 0, 4);
}

if (checkOption(opt, MQe.MQe_Adapter_CONTENT))
{
byte Temp[] = new byte[recordSize]; /* allocate work array */
Count = readBytes(Temp, 0, recordSize);/* read data */
}

}
if (Count < Temp.length) /* read all length ? */
Temp = MQe.sliceByteArray(Temp, 0, Count);

return (Temp); /* Return the data */
}

The readByte method is an internal routine designed to read a single byte of data
from the socket and to attempt to retry any errors a specific number of times, or
throw an end of file exception if there is no more data to be read.

protected int readByte() throws Exception
{
int intChar = -1; /* input characater */
int RetryValue = 3; /* error retry count */
int Retry = RetryValue + 1; /* reset retry count */
do{ /* possible retry */
try /* catch io errors */
{
intChar = stream_in.read(); /* read a character */
Retry = 0; /* dont retry */
}

catch (IOException e) /* IO error occured */
{
Retry = Retry - 1; /* decrement */
if (Retry == 0) throw e; /* more attempts ? */
}

} while (Retry != 0); /* more attempts ? */
if (intChar == -1) /* end of file ? */
throw new EOFException(); /* ... yes, EOF */

return(intChar); /* return the byte */
}

The readBytes method is an internal routine designed to read a number of bytes of
data from the socket and to attempt to retry any errors a specific number of times,
or throw an end of file exception if there is no more data to be read.

protected int readBytes(byte buffer[], int offset, int recordSize)
throws Exception
{
int RetryValue = 3;
int i = 0; /* start index */
while (i < recordSize) /* got it all in yet ? */

{ /* ... no */
int NumBytes = 0; /* read count */
/* retry any errors based on the QoS Retry value */
int Retry = RetryValue + 1; /* error retry count */
do{ /* possible retry */
try /* catch io errors */
{
NumBytes = stream_in.read(buffer, offset + i, recordSize - i);
Retry = 0; /* no retry */
}

catch (IOException e) /* IO error occured */
{
Retry = Retry - 1; /* decrement */
if (Retry == 0) throw e; /* more attempts ? */
}

adapters

208 MQSeries Everyplace Programming Guide

} while (Retry != 0); /* more attempts ? */
/* check for possible end of file */
if (NumBytes < 0) /* errors ? */

throw new EOFException(); /* ... yes */
i = i + NumBytes; /* accumulate */
} return (i); /* Return the count */

}

The readln method reads a string of bytes terminated by a 0x0A character it will
ignore 0x0D characters.

{
synchronized (readLock) /* only one at a time */
{
/* ignore the 4 byte length */
byte lreclBytes[] = new byte[4]; /* for the data length */
readBytes(lreclBytes, 0, 4); /* read the length */

int intChar = -1; /* input characater */
StringBuffer Result = new StringBuffer(256);
/* read Header from input stream */
while (true) /* until "newline" */
{
intChar = readByte(); /* read a single byte */
switch (intChar) /* what character */
{ /* */
case -1: /* ... no character */
throw new EOFException(); /* ... yes, EOF */

case 10: /* eod of line */
return(Result.toString()); /* all done */

case 13: /* ignore */
break;

default: /* real data */
Result.append((char) intChar); /* append to string */

} /* end of line ? */
}

}
}

The status method returns status information about the adapter. In this example it
returns for the option MQe_Adapter_NETWORK the network type (TCPIP), for the
option MQe_Adapter_LOCALHOST it returns the tcpip local host address.
public String status(Object opt) throws Exception

{
if (checkOption(opt, MQe.MQe_Adapter_NETWORK))
return("TCPIP");

else
if (checkOption(opt, MQe.MQe_Adapter_LOCALHOST))
return(InetAddress.getLocalHost().toString());

else
return(super.status(opt));
}

The write method writes a block of data to the socket. It needs to ensure that only
one write at a time can be issued to the socket. In this example it calls an internal
routine writeBytes to write the actual data and perform any appropriate error
recovery.

The opt parameter may be set to:

MQe_Adapter_FLUSH
flush any data in the buffers

MQe_Adapter_HEADER
write any header records

adapters

Chapter 9. MQSeries Everyplace adapters 209

MQe_Adapter_HEADERRSP
write any header response records

public void write(Object opt, int recordSize, byte data[])
throws Exception
{
synchronized (writeLock) /* only one at a time */
{
if (checkOption(opt, MQe.MQe_Adapter_HEADER) ||

checkOption(opt, MQe.MQe_Adapter_HEADERRSP))
writeBytes(intToByte(recordSize), 0, 4); /* write length*/

writeBytes(data, 0, recordSize); /* write the data */
if (checkOption(opt, MQe.MQe_Adapter_FLUSH))
stream_out.flush(); /* make sure it is sent */

} /* */
}

The writeBytes is an internal method that writes an array (or partial array) of
bytes to a socket, and attempt a simple error recovery if errors occur.
protected void writeBytes(byte buffer[], int offset, int recordSize)

throws Exception
{
if (buffer != null) /* any data ? */
{
/* break the data up into manageable chuncks */
int i = 0; /* Data index */
int j = recordSize; /* Data length */
int MaxSize = 4096; /* small buffer */
int RetryValue = 3; /* error retry count */
do{ /* as long as data */
if (j < MaxSize) /* smallbuffer ? */
MaxSize = j;

int Retry = RetryValue + 1; /* error retry count */
do{ /* possible retry */

try /* catch io errors */
{
stream_out.write(buffer, offset + i, MaxSize);
Retry = 0; /* don't retry */
}

catch (IOException e) /* IO error occured */
{
Retry = Retry - 1; /* decrement */
if (Retry == 0) throw e; /* more attempts ? */
}

} while (Retry != 0); /* more attempts ? */

i = i + MaxSize; /* update index */
j = j - MaxSize; /* data left */
} while (j > 0); /* till all data sent */

}
}

The writeLn method writes a string of characters to the socket, terminating with
0x0A and 0x0D characters.

The opt parameter may be set to:

MQe_Adapter_FLUSH
flush any data in the buffers

MQe_Adapter_HEADER
write any header records

MQe_Adapter_HEADERRSP
write any header response records

adapters

210 MQSeries Everyplace Programming Guide

public void writeln(Object opt, String data) throws Exception
{
if (data == null) /* any data ? */
data = "";

write(opt, -1, MQe.asciiToByte(data + "\r\n")); /* write data */
}

This is now a complete (though very simple) tcpip adapter that will communicate
to another copy of itself one of which was started as a listener and the other
started as a connector.

An example of a simple message store adapter
This example creates an adapter for use as an interface to a message store. It uses
the standard java i/o classes to manipulate files in the store.

This example is not meant as a replacement for the adapters that are supplied with
MQSeries Everyplace but rather as a simple introduction into how to create a
message store adapter.

A new class file is constructed, inheriting from MQeAdapter. Some variables are
defined to hold this adapter’s instance information, such as the name of the
file/message and the location of the message store.

The MQeAdapter constructor is used for the object, so no additional code needs to
be added for the constructor.
public class MyMsgStoreAdapter extends MQeAdapter

implements FilenameFilter
{
protected String filter = ""; /* file type filter */
protected String fileName = ""; /* disk file name */
protected String filePath = ""; /* drive and directory */
protected boolean reading = false; /* open'd for reading */
protected boolean writing = false;

Because this adapter implements FilenameFilter the following method must be
coded. This is the flittering mechanism that is used to select files of a certain type
within the message store.

public boolean accept(File dir, String name)
{
return(name.endsWith(filter));
}

Next the activate method is coded. This is the method that extracts, from the file
descriptor, the name of the directory to be used to hold all the messages.

The Object parameter on the method call may be an attribute object. If it is, this is
the attribute that is used to encode and/or decode the messages in the message
store.

The Object options for this adapter are:
v MQe_Adapter_READ
v MQe_Adapter_WRITE
v MQe_Adapter_UPDATE

Any other options should be ignored.

adapters

Chapter 9. MQSeries Everyplace adapters 211

public void activate(String fileDesc,
Object param,
Object options,
int value1,
int value2) throws Exception

{
super.activate(fileDesc, param, options, lrecl, noRec);
filePath = fileId.substring(fileId.indexOf(':') + 1);
String Temp = filePath; /* copy the path data */
if (filePath.endsWith(File.separator)) /* ending separator ? */
Temp = Temp.substring(0, Temp.length() -

File.separator.length());
else
filePath = filePath + File.separator; /* add separator */

File diskFile = new File(Temp);
if (! diskFile.isDirectory()) /* directory ? */
if (! diskFile.mkdirs()) /* does mkDirs work ? */
throw new MQeException(MQe.Except_NotAllowed,

"mkdirs '" + filePath + "' failed");
filePath = diskFile.getAbsolutePath() + File.separator;
this.open(null);
}

The close method disallows reading or writing.
public void close(Object opt) throws Exception

{
reading = false; /* not open for reading*/
writing = false; /* not open for writing*/
}

The control method needs to be coded to handle an MQe_Adapter_LIST that is, a
request to list all the files in the directory that satisfy the filter. Also to handle an
MQe_Adapter_FILTER that is a request to set a filter to control how the files are
listed.
public Object control(Object opt, Object ctrlObj) throws Exception

{
if (checkOption(opt, MQe.MQe_Adapter_LIST))
return(new File(filePath).list(this));

else
if (checkOption(opt, MQe.MQe_Adapter_FILTER))
{
filter = (String) ctrlObj; /* set the filter */
return(null); /* nothing to return */
}

else
return(super.control(opt, ctrlObj)); /* try ancestor */
}

The erase method is used to remove a message from the message store.
public void erase(Object opt) throws Exception
{
if (opt instanceof String) /* select file ? */
{
String FN = (String) opt; /* re-type the option */
if (FN.indexOf(File.separator) > -1) /* directory ? */
throw new MQeException(MQe.Except_Syntax, "Not allowed");

if (! new File(filePath + FN).delete())
throw new MQeException(MQe.Except_NotAllowed, "Erase failed");

}
else
throw new MQeException(MQe.Except_NotSupported, "Not supported");

}

adapters

212 MQSeries Everyplace Programming Guide

The open method sets the Boolean values that permit either reading of messages or
writing of messages.
public void open(Object opt) throws Exception

{
this.close(null); /* close any open file */
fileName = null; /* clear the filename */
if (opt instanceof String) /* select new file ? */
fileName = (String) opt; /* retype the name */

reading = checkOption(opt, MQe.MQe_Adapter_READ) ||
checkOption(opt, MQe.MQe_Adapter_UPDATE);

writing = checkOption(opt, MQe.MQe_Adapter_WRITE) ||
checkOption(opt, MQe.MQe_Adapter_UPDATE);

}

The readObject method reads a message from the message store and recreates an
object of the correct type. It also decrypts and decompresses the data if an attribute
is supplied on the activate call. This is a special function in that a request to read
a file that satisfies the matching criteria specified in the parameter of the read,
returns the first message it encounters that satisfies the match.
public Object readObject(Object opt) throws Exception

{
if (reading)
{
if (opt instanceof MQeFields)
{
/* 1. list all files in the directory */
/* 2. read each file in turn and restore as a Fields object */
/* 3. try an equality check - if equal then return that object */
String List[] = new File(filePath).list(this);
MQeFields Fields = null;
for (int i = 0; i < List.length; i = i + 1)
try
{
fileName = List[i]; /* remember the name */
open(fileName); /* try this file */
Fields = (MQeFields) readObject(null);
if (Fields.equals((MQeFields) opt)) /* match ? */
return(Fields);

}
catch (Exception e) /* error occured */
{
} /* ignore error */

throw new MQeException(Except_NotFound, "No match");
}

/* read the bytes from disk */
File diskFile = new File(filePath + fileName);
byte data[] = new byte[(int) diskFile.length()];
FileInputStream InputFile = new FileInputStream(diskFile);
InputFile.read(data); /* read the file data */
InputFile.close(); /* finish with file */
/* possible Attribute decode of the data */
if (parameter instanceof MQeAttribute) /* Attribute encoding ?*/
data = ((MQeAttribute) parameter).decodeData(null,

data,
0,
data.length);

MQeFields FieldsObject = MQeFields.reMake(data, null);
return(FieldsObject);
}

else
throw new MQeException(MQe.Except_NotSupported, "Not supported");

}

adapters

Chapter 9. MQSeries Everyplace adapters 213

The status method returns status information about the adapter. In this examples
it can return the filter type or the file name.
public String status(Object opt) throws Exception

{
if (checkOption(opt, MQe.MQe_Adapter_FILTER))
return(filter);

if (checkOption(opt, MQe.MQe_Adapter_FILENAME))
return(fileName);

return(super.status(opt));
}

The writeObject method writes a message to the message store. It compresses and
encrypts the message object if an attribute is supplied on the activate method call.
public void writeObject(Object opt,

Object data) throws Exception
{
if (writing && (data instanceof MQeFields))
{
byte dump[] = ((MQeFields) data).dump(); /* dump object */
/* possible Attribute encode of the data */
if (parameter instanceof MQeAttribute)
dump = ((MQeAttribute) parameter).encodeData(null,

dump,
0,
dump.length);

/* write out the object bytes */
File diskFile = new File(filePath + fileName);
FileOutputStream OutputFile = new FileOutputStream(diskFile);
OutputFile.write(dump); /* write the data */
OutputFile.getFD().sync(); /* synchronize disk */
OutputFile.close(); /* finish with file */
}

else
throw new MQeException(MQe.Except_NotSupported, "Not supported");

}

This is now a complete (though very simple) message store adapter that reads and
writes message objects to a message store.

Variations of this adapter could be coded for example to store messages in a
database or in nonvolatile memory.

adapters

214 MQSeries Everyplace Programming Guide

Appendix A. Applying maintenance to MQSeries Everyplace

To apply a maintenance update follow the instructions provided with the update.

For more general information on maintenance updates and their availability see
the MQSeries family Web page at http://www.software.ibm.com/ts/mqseries/.

© Copyright IBM Corp. 2000 215

|

|

|

|
|

216 MQSeries Everyplace Programming Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,

© Copyright IBM Corp. 2000 217

Winchester,
Hampshire
England
SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of International Business machines
Corporation in the United States, or other countries, or both.

IBM
MQSeries

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark of X/Open in the United States and other
countries.

Windows and Windows NT are registered trademark of Microsoft Corporation in
the United States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

notices

218 MQSeries Everyplace Programming Guide

Glossary

This glossary describes terms used in this book
and words used with other than their everyday
meaning. In some cases, a definition may not be
the only one applicable to a term, but it gives the
particular sense in which the word is used in this
book.

If you do not find the term you are looking for,
see the index or the IBM Dictionary of Computing,
New York:. McGraw-Hill, 1994.

Application Programming Interface (API). An
Application Programming Interface consists of the
functions and variables that programmers are allowed
to use in their applications.

asynchronous messaging. A method of
communicating between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

authenticator. A program that checks that verifies the
senders and receivers of messages.

bridge. An MQSeries Everyplace object that allows
messages to flow between MQSeries Everyplace and
other messaging systems, including MQSeries.

channel. See dynamic channel and MQI channell.

channel manager. An MQSeries Everyplace object that
supports logical multiple concurrent communication
pipes between end points.

class. A class is an encapsulated collection of data and
methods to operate on the data. A class may be
instantiated to produce an object that is an instance of
the class.

client. In MQSeries, a client is a run-time component
that provides access to queuing services on a server for
local user applications.

compressor. A program that compacts a message to
reduce the volume of data to be transmitted.

cryptor. A program that encrypts a message to
provide security during transmission.

dynamic channel. A dynamic channel connects
MQSeries Everyplace devices and transfers
synchronous and asynchronous messages and
responses in a bidirectional manner.

encapsulation. Encapsulation is an object-oriented
programming technique that makes an object’s data
private or protected and allows programmers to access
and manipulate the data only through method calls.

gateway. An MQSeries Everyplace gateway (or server)
is a computer running the MQSeries Everyplace code
including a channel manager.

Hypertext Markup Language (HTML). A language
used to define information that is to be displayed on
the World Wide Web.

instance. An instance is an object. When a class is
instantiated to produce an object, we say that the object
is an instance of the class.

interface. An interface is a class that contains only
abstract methods and no instance variables. An
interface provides a common set of methods that can
be implemented by subclasses of a number of different
classes.

Internet. The Internet is a cooperative public network
of shared information. Physically, the Internet uses a
subset of the total resources of all the currently existing
public telecommunication networks. Technically, what
distinguishes the Internet as a cooperative public
network is its use of a set of protocols called TCP/IP
(Transport Control Protocol/Internet Protocol).

Java Developers Kit (JDK). A package of software
distributed by Sun Microsystems for Java developers. It
includes the Java interpreter, Java classes and Java
development tools: compiler, debugger, disassembler,
appletviewer, stub file generator, and documentation
generator.

Java Naming and Directory Service (JNDI). An API
specified in the Java programming language. It
provides naming and directory functions to
applications written in the Java programming language.

Lightweight Directory Access Protocol (LDAP).
LDAP is a client-server protocol for accessing a
directory service.

Local area network (LAN). A computer network
located on a user’s premises within a limited
geographical area.

message. In message queuing applications, a message
is a communication sent between programs.

message queue. See queue

© Copyright IBM Corp. 2000 219

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

method. Method is the object-oriented programming
term for a function or procedure.

MQI channel. An MQI channel connects an MQSeries
client to a queue manager on a server system and
transfers MQI calls and responses in a bidirectional
manner.

MQSeries. MQSeries is a family of IBM licensed
programs that provide message queuing services.

object. (1) In Java, an object is an instance of a class. A
class models a group of things; an object models a
particular member of that group. (2) In MQSeries, an
object is a queue manager, a queue, or a channel.

package. A package in Java is a way of giving a piece
of Java code access to a specific set of classes. Java code
that is part of a particular package has access to all the
classes in the package and to all non-private methods
and fields in the classes.

personal digital addistant (PDA). A pocket sized
personal computer.

private. A private field is not visible outside its own
class.

protected. A protected field is visible only within its
own class, within a subclass, or within packages of
which the class is a part

public. A public class or interface is visible
everywhere. A public method or variable is visible
everywhere that its class is visible

queue. A queue is an MQSeries object. Message
queueing applications can put messages on, and get
messages from, a queue

queue manager. A queue manager is a system
program the provides message queuing services to
applications.

server. (1) An MQSeries Everyplace server is a device
that has an MQSeries Everyplace channel manager
configured. (2) An MQSeries server is a queue manager
that provides message queuing services to client
applications running on a remote workstation. (3) More
generally, a server is a program that responds to
requests for information in the particular two-program
information flow model of client/server. (3) The
computer on which a server program runs.

servlet. A Java program which is designed to run only
on a web server.

subclass. A subclass is a class that extends another.
The subclass inherits the public and protected methods
and variables of its superclass.

superclass. A superclass is a class that is extended by
some other class. The superclass’s public and protected
methods and variables are available to the subclass.

synchronous messaging. A method of communicating
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing . Contrast with
asynchronous messaging.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

Web. See World Wide Web.

Web browser. A program that formats and displays
information that is distributed on the World Wide Web.

World Wide Web (Web). The World Wide Web is an
Internet service, based on a common set of protocols,
which allows a particularly configured server computer
to distribute documents across the Internet in a
standard way.

220 MQSeries Everyplace Programming Guide

Bibliography

Related publications:
v MQSeries Everyplace Introduction, GC34-5843-00
v MQSeries Everyplace Programming Reference,

SC34-5846-00
v MQSeries An Introduction to Messaging and

Queuing, GC33-0805-01
v MQSeries for Windows NT V5R1 Quick

Beginnings, GC34-5389-00

© Copyright IBM Corp. 2000 221

222 MQSeries Everyplace Programming Guide

Index

A
action restrictions on queues 103
activating

asynchronous remote queue
definitions 80

queue managers 52
trace 199

adapters
communications example 205
message store example 211
MQSeries Everyplace 99, 205

administered objects characteristics,
MQSeries bridge 134

administering
actons for the bridge 131
connections 95
fields 87
home-server queues 110
local queues 100
managed resources 94
MQSeries bridge 130
MQSeries Everyplace resources 85
MQSeries—bridge queue 112
queue managers 94
queues 100
remote queues 104
store-and-forward queues 107
the bridge, example GUI 131

administration
console, example 114
queue 113
reply message 91
reply message fields 92
request message 86

aliases
class 53
connection 99
queue 103
queue manager 41

applications,
deploying 12
launching 55
launching with RunList 57

ascii characters 156
invariant 156
variant 156

assured delivery of synchronous
messages 68

assured message delivery 32
asynchronous

communication 31
messaging 66
queues 104
remote queue definitions,

activating 80
authenticatable entities and

auto-registration 185
authenticatable entity 184
authenticatable entity credentials 185
auto-registration of authenticatable

entities 185

AwtMQeServer, example 47

B
behavior of components, controlling with

rules 74
bibliography 221
bridge

administration 130
administration actions 131
and putMessage 146
codepage considerations 155
configuration, sample tool 125
configuration example 125
configuring 121
example administration GUI 131
example files 157
installation 121
national language considerations 155
object hierarchy 122
objects characteristics 134
queue, administering 112
rules 152
run state 131
test message 145
to MQSeries 8

Browse and Lock 64

C
channel

MQSeries Everyplace vi, 9
reuse with queue-based security 179

characteristics
of MQSeries bridge objects 134
of resources 88

class, aliases 53
client

MQSeries Everyplace vi, 1, 40
client connection object 122
client to server connections 96
closing MQeQueueManagerConfigure

instance 37
codepages and MQSeries bridge 155
common registry parameters 33
communication, synchronous and

asynchronous 31
communications adapter example 205
component behavior, controlling with

rules 74
components, administering 85
configuring

queue managers 52
the MQSeries bridge 121

connection aliases 99
connections

administration of 95
client to server 96
peer-to-peer 97

converting MQSeries Everyplace
messages to MQSeries 147

creating
an ini file editor 21
default queue definitions 36
local queues 102
MQSeries style message 151
queue manager definition 36
queue managers 34

creating remote queues 105
credentials of authenticatable entity 185
customizing trace 199

D
dead-letter queues MQSeries

Everyplace 146
default queues, creating definitions 36
definition

asynchronous remote queue,
activating 80

default queues, creating 36
queue, deleting 38
queue manager, creating 36
queue manager, deleting 38

deleting
queue definitions 38
queue manager definitions 38
queue managers 38
standard queue definitions 38

deploying applications 12
detecting queue events 73
development environment 11
discovery of remote queues 107

E
environment, development 11
example

administration console 114
AwtMQeServer 47
bridge administration GUI 131
communications adapter 205
files 14
files, bridge 157
message store adapter 211
mini-certificate server GUI 190
MQePrivateClient 42
MQePrivateServer 47
MQeServer 44
MQeTrace 199
MQSeries bridge configuration 125
queue browser 116
trace GUI 200
transformer class 149

examples.administration.console 15
examples.administration.simple 15
examples.application 14
examples.attributes 15
examples.awt 16
examples.eventlog 16
examples.install 16

© Copyright IBM Corp. 2000 223

examples.mqbridge.transformers.MQeListTransformer 149
examples.mqseries 18
examples.native 17
examples.queuemanager 17
examples.rules 18
examples.security 18
examples.trace 18
expiry of messages 63
expiry times, transforming 150

F
fields, administration of 87
file registry parameters 33
files

bridge, example 157
example 14

filters, message 62
flow of messages 67
for bridge administration 131

for mini-certificate server 190
trace 200

format, trace message 198

G
get message 64
getting started 11
glossary 219

H
hierarchy of bridge objects 122
home-server vi

queues 5
queues, administering 110

I
index entry rule 81
index fields, message 62
index terms v
installation of MQSeries bridge 121
installation test 13
interface to MQSeries 8
invariant characters, ascii 156

J
jar files 12
Java client, MQSeries 121
Java development kit (JDK) 11
Java Virtual Machine (JVM) 55
JDK 11
justUID 65
JVM 55

K
knowledge, prerequisite v

L
launching

applications 55

launching (continued)
applications with RunList 57

listeners, message 73
local queue 4

administering 100
creating 102
message store 101

local security
secure feature choices 161
selection criteria 161
usage guide 162
usage scenario 160

lock ID 65
locking messages 64

M
message

expiry 63
filters 62
flow 2, 67
format of trace 198
index fields 62
listeners 73
polling 74
store adapter example 211
store on local queue 101
transmission 31

message expired rule 82
message-level security 180

secure feature choices 181
selection criteria 182
usage guide 182
usage scenario 180

message operations supported by
MQSeries—bridge queue 112

messages
assured delivery 32
browse and lock 64
locking 64
MQSeries Everyplace 59
MQSeries style 150
MQSeries style, creating 151
MQSeries style, reading 150
operations on 74
reading all on queue 64

messaging
synchronous and asynchronous 66
synchronous assured delivery 68

mini-certificate issuance service 189
mini-certificate server

example GUI 190
using 189

mini-certificates 187
MQeDevice.jar 12
MQeExamples.jar 12
MQeFields 19
MQeFields, using 21
MQeGateway.jar 12
MQeHighSecurity.jar 12
MQeLoadBridgeRule 152
MQeMAttribute 181
MQeMiniCertificate.jar 12
MQeMQBridge.jar 12
MQeMQMsgObject 150
MQeMsgObject 19
MQeMTrustAttribute 181
MQePrivateClient example 42

MQePrivateServer, example 47
MQeQueueManagerConfigure 34
MQeQueueManagerConfigure instance,

closing 37
MQeRegistry.CAIPAddrPort 33
MQeRegistry.CertReqPIN 33
MQeRegistry.DirName 33
MQeRegistry.KeyRingPassword 33
MQeRegistry.LocalRegType 33
MQeRegistry parameters for queue

manager 32
MQeRegistry.PIN 33
MQeRegistry.Separator 33
MQeServer, example 44
MQeStartupRule 154
MQeSyncQueuePurgerRule 154
MQeTrace 199
MQSeries

Java client 121
messages, converting to MQSeries

Everyplace 147
queue manager, shutting down 133
queue manager proxy object 122

MQSeries, interface to 8
MQSeries bridge 8

administration 130
and putMessage 146
codepage considerations 155
configuration, sample tool 125
configuration example 125
configuring 121
example administration GUI 131
installation 121
national language considerations 155
object 122
objects characteristics 134
queue, administering 112
rules 152
run state 131
testing 145
to MQSeries 121

MQSeries bridges object 122
MQSeries Everyplace

client 40
messages, converting to

MQSeries 147
server 43
trace, using 197

MQSeries—bridge queues 6
MQSeries style message 150

creating 151
reading 150

MQSeries to MQSeries Everyplace test
message 145

Msg_ReplyToQ 89
Msg_Style 89
MsgReplyToQMgr 89

N
national language considerations for

MQSeries bridge 155
notices 217

O
objects

administering 85

224 MQSeries Everyplace Programming Guide

objects (continued)
MQSeries bridge, characteristics 134
storing and retrieving 19

operations on messages 74
ordering queues 64

P
packages example

packages 14
parameters

file registry 33
private registry 33
queue manager startup 40

peer listener vi
peer-to-peer connections 97
polling messages 74
post install test 13
prerequisite knowledge v
private registry

parameters for queue manager 33
secure feature choices 186
selection criteria 186
service 184
usage guide 186
usage scenario 186

properties, queue manager, setting 35
public registry 188

secure feature choices 188
selection criteria 188
service 187
usage guide 188
usage scenario 188

putMessage and MQSeries bridge 146

Q
queue

action restrictions 103
administration 113
aliases 103
behavior, controlling with rules 81
browser, example 116
definitions, asynchronous remote,

activating 80
definitions deleting 38
events, detecting 73
index entry rule 81
local creating 102
message store 101
MQSeries bridge, administering 112
ordering 64
rules 81
security 103

queue-based security 163
channel reuse 179
secure feature choices 165
selection criteria 165
starting queue managers with private

registry 179
usage guide 166
usage scenario 164

queue manager vi, 2, 31
activating 52
administration of 94
aliases 41
behavior, controlling with rules 75

queue manager vi, 2, 31 (continued)
configuring 52
creating and deleting 34
definition, creating 36
definitions, deleting 38
deleting 38
properties, setting 35
registry parameters 32
rules 75
running in a Web server 49
servlet 49
starting 39
startup parameters 40
using 55

queues 4, 63
administering 100
asynchronous 104
dead-letter, MQSeries Everyplace 146
default, creating definitions 36
home-server 5
home-server, administering 110
local 4
local, administering 100
MQSeries bridge 6
remote 5, 66
remote, administering 104
remote, creating 105
remote, discovery 107
store-and-forward 5
store-and-forward, administering 107

queues, synchronous 104

R
reading

all messages on a queue 64
MQSeries style message 150

registry
private 184
public 187
queue manager parameters 32
types 32

related publications 221
remote queues 5, 66

administering 104
asynchronous, activating

definitions 80
creating 105
discovery 107

resource characteristics 88
resources, administering 85, 94
restrictions on queue actions 103
retrieving objects 19
rule

index entry 81
message expired 82
transmit 77
trigger transmission 76

rules
MQSeries bridge 152
MQSeries Everyplace 74
queues 81
rules, queue manager 75
transmission 76

run state of MQSeries bridge 131
RunList, launching applications 57

S
sample MQSeries bridge configuration

tool 125
secure feature choices

local security 161
message-level security 181
private registry 186
queue-based 165

security 114, 159
features 159
local 160
message level 180
mimi-certificate issuance service 189
MQSeries Everyplace 32
of administration 114
of queues 103
private registry service 184
public registry service 187
queue-based 163

selection criteria
local security 161
message-level security 182
private registry 186
public registry 188
queue-based security 165

server
mini-certificate, using 189
MQSeries Everyplace vi, 7
MQSeriesEveryplace 43

server to client connections 96
servlet queue manager 49
setting queue manager properties 35
shutting down and MQSeries queue

manager 133
standard queue definitions, deleting 38
starting queue managers 39
startup parameters, queue manager 40
store-and-forward queues 5

administering 107
storing objects 19
synchronous

assured message delivery 68
communication 31
queues 104
synchronous messaging 66

SYSTEM.DEFAULT.LOCAL.Queue 36

T
terms, special v
test, post install 13
test message, MQSeries to MQSeries

Everyplace 145
testing MQSeries bridge 145
tool, MQSeries bridge, sample

coonfiguraiton tool 125
trace 199

activating 199
customizing 199
example GUI 200

trace message format 198
tracing in MQSeries Everyplace 197
trademarks 218
transformer 147

example class 149
writing 151

transformers and expiry times 150

Index 225

transmission queue listener object 122

transmission rules 76

transmit rule 77

transmitting messages 31

transporter vi

trigger transmission rule 76

U
usage guide

local security 162
message-level security 182
private registry 186
public registry 188
queue-based security 166

usage scenario

local security 160
message-level security 180
private registry 186
public registry 188
queue-based 164

using

mini-certificate server 189
MQeFields 21
MQSeries Everyplace trace 197
queue managers 55

V
variant characters, ascii 156

W
Web server, running a queue

manager 49

writing a transformer 151

226 MQSeries Everyplace Programming Guide

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5845-00

	Contents
	About this book
	Who should read this book
	Prerequisite knowledge
	Terms

	Chapter 1. Overview
	MQSeries Everyplace client
	MQSeries Everyplace queue manager
	MQSeries Everyplace queues
	Queue types in MQSeries Everyplace
	Local queue
	Remote queue
	Store-and-forward queue
	Home-server queue
	MQSeries—bridge queue

	MQSeries Everyplace server
	MQSeries Everyplace bridge to MQSeries
	MQSeries Everyplace channels

	Chapter 2. Getting Started
	Development Environment
	Deploying applications
	Post install test
	Examples
	examples.application package
	examples.administration.simple package
	examples.administration.console package
	examples.attributes package
	examples.awt package
	examples.eventlog package
	examples.install package
	examples.native package
	examples.queuemanager package
	examples.rules package
	examples.security package
	examples.trace package
	examples.mqbridge package

	Chapter 3. MQeFields and MQeMsgObject
	Creating a Fields based ini file editor

	Chapter 4. MQSeries Everyplace queue manager
	Message transmission
	Assured message delivery
	Security
	MQeRegistry parameters for the queue manager
	Registry type
	File registry parameters
	Private registry parameters
	Common parameters

	Creating and deleting queue managers
	Creating a queue manager
	Create and activate an instance of MQeQueueManagerConfigure
	Set queue manager properties
	Create the queue manager definition
	Create definitions for the default queues
	Close the MQeQueueManagerConfigure instance

	Deleting a queue manager
	Delete any definitions
	Create and activate an instance of MQeQueueManagerConfigure
	Delete definitions for the standard queues
	Delete the queue manager definition
	Delete the default queues and the queue manager together
	Close the MQeQueueManagerConfigure instance

	Starting queue managers
	Client
	Example MQePrivateClient

	Server
	Example MQeServer
	Example MQePrivateServer
	Example AwtMQeServer

	Servlet

	Configuring queue managers using base classes
	Queue manager activation

	Using queue managers
	MQSeries Everyplace applications and the Java VirtualMachine
	Launching applications with RunList
	Messages
	Filters
	Message index fields
	Message Expiry

	Queues
	Queue ordering
	Get message
	Browse and Lock
	Synchronous and asynchronous messaging
	Synchronous assured message delivery
	Message listeners
	Message polling
	Messaging operations

	Rules
	Queue manager rules
	Using queue manager rules
	Transmission Rules
	Activating asynchronous remote queue definitions

	Queue rules
	Index entry rule
	Message Expired rule

	Chapter 5. MQSeries Everyplace administration
	The basic administration request message
	Administration of specific fields
	Fields specific to the managed resource
	Other useful fields

	The basic administration reply message
	Administration fields specific to a reply message

	Administration of managed resources
	Queue managers
	Connections
	Client to server
	Peer to peer
	Adapters
	Aliases

	Queues
	Local queue
	Remote queue
	Store-and-forward queue
	Home-server queue
	MQSeries bridge queue
	Administration queue

	Security and administration
	Example administration console
	The main console window
	Queue browser
	Action windows
	Reply windows

	Chapter 6. MQSeries bridge
	Installation
	MQSeries Java client

	Configuring the MQSeries bridge
	Configuring a basic installation
	Sample configuration tool
	Limitations
	Steps required to configure the bridge

	Configuration example
	Requirement
	Initial setup
	Enabling MQeMoonQM to put and get messages to and from theMQeEarthQM queue manager
	Enabling the MQeEarthQM to send messages to theMQeMoonQM queue manager
	Enabling MQeEarthQM to send a message to MQSaturnQ
	Enabling MQeEarthQM to send a message to MQJupiterQ
	Enabling MQeMoonQM to send a message to MQJupiterQ andMQSaturnQ
	Enabling MQSaturnQM to send messages to the MQeEarthQ
	Enabling MQSaturnQM to send messages to the MQeMoonQ
	Enabling the MQJupiterQM to send messages to the MQeMoonQ

	Additional bridge configuration

	Administration of the MQSeries bridge
	The example administration GUI application
	Bridge administration actions
	Run state
	Start action
	Stop action
	Inquire action
	Update action
	Delete action
	Create action

	Shutting down an MQSeries queue manager
	Immediate shutdown
	Controlled shutdown

	Administered objects and their characteristics
	Attribute details

	How to send a test message from MQSeries to MQSeries Everyplace
	Dead-letter queues
	putMessage() considerations for the MQSeries bridge
	Transformers
	The examples.mqbridge.transformers.MQeListTransformerexample transformer class
	Transformers and expiry time considerations

	MQSeries style messages
	Reading an MQSeries style message
	Creating an MQSeries style message
	Writing a transformer

	MQSeries bridge rules
	MQeLoadBridgeRule
	MQeUndeliveredMessageRule
	MQeSyncQueuePurgerRule
	MQeStartupRule

	National language support implications
	Conclusion

	Example files

	Chapter 7. Security
	Security features
	Local security
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	Queue-based security
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide
	Using SimpleCreateQM to create ClientQMgr and ServerQMgrinstances
	Defining the queues identified for the queue-based scenariodescribed above
	Queue-based security and triggering auto-registration
	Queue-based security, starting queue managers with privateregistries

	Queue-based security - channel reuse

	Message-level security
	Usage scenario
	Secure feature choices
	Selection Criteria

	Usage guide
	MQSeries Everyplace message-level security using MAttribute
	MQSeries Everyplace message-level security usingMTustAttribute

	Private registry service
	Private registry and the concept of authenticatable entity
	Private registry and authenticatable entity credentials
	Auto-registration

	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	Public registry service
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	Mini-certificate issuance service
	Configuring, starting and ending an instance ofmini-certificate issaunce service server
	Configuration using MQSeriesEveryplaceMiniCertificateServer.ini
	Starting MQeMiniCertificateServerGUI
	Using the GUI to start the mini-certificate issuance service forthe first time

	Using administration tools
	Starting administration mode
	Adding a new authenticatable entity
	Updating an authenticatable entity
	Deleting an authenticatable entity
	Reading an authenticatable entity's details
	Use of File menu Open option

	Operation
	Starting and stopping
	Monitor and logging

	Chapter 8. Tracing in MQSeries Everyplace
	Using trace
	Trace message formats
	Activating trace

	Customizing trace
	MQeTrace example
	Graphical user interface for trace
	Example AWT trace window layout
	Setting trace options

	Chapter 9. MQSeries Everyplace adapters
	An example of a simple communications adapter
	An example of a simple message store adapter

	Appendix A. Applying maintenance to MQSeries Everyplace
	Appendix B. Notices
	Trademarks

	Glossary
	Bibliography
	Index

