
MQSeries® Everyplace

Introduction
Version 1

GC34-5843-00

IBM

MQSeries® Everyplace

Introduction
Version 1

GC34-5843-00

IBM

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Appendix. Notices” on page 57

Licence warning
MQSeries Everyplace Version 1 is a toolkit that enables users to write MQSeries Everyplace applications
and to create an environment in which to run them.

The licence conditions under which the toolkit is purchased determine the environment in which it can be
used:

If MQSeries Everyplace is purchased for use as a device (client) it may not be used to create an MQSeries
Everyplace channel manager , or an MQSeries Everyplace channel listener. , or an MQSeries
Everyplace bridge

The presence of an MQSeries Everyplace channel manager , or an MQSeries Everyplace channel
listener , or an MQSeries Everyplace bridge defines a gateway (server) environment, which requires a
gateway licence.

First Edition (June 2000)

This edition applies to MQSeries Everyplace Version 1.0 and to all subsequent releases and modifications until
otherwise indicated in new editions.

This document is continually being updated with new and improved information. For the latest edition, please see the
MQSeries family library Web page at http://www.ibm.com/software/ts/mqseries/library/.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . v

Tables . vii

About this book . ix
Who should read this book . ix
Prerequisite knowledge . ix
Terms used in this book . ix

Chapter 1. Overview . 1
Notes for Version 1.0 . 1

Chapter 2. Prerequisites . 3

Chapter 3. The MQSeries family 5

Chapter 4. Requirements . 11
Capabilities . 11
Applications . 11
Customer requirements . 12

Chapter 5. Product concepts 13
Introduction . 13
Message objects . 14

Dump data format . 17
Queues . 18
Queue managers . 21

Queue manager operations 23
Administration . 24

Administration messages 25
Selective administration . 26
Monitoring and related actions. 27

Dynamic channels. 27
Adapters . 28
Dialup connection management 28
Trace . 29
Event log. 29
MQSeries Everyplace networks 29

Configurations and scalability 29
Asynchronous message delivery 31
Synchronous message delivery 31

Security . 32
MQSeries Everyplace local security 33
MQSeries Everyplace queue-based security 33
Message-level Security . 35
The registry . 36
MQSeries Everyplace Authenticatable entities 36

© Copyright IBM Corp. 2000 iii

Private Registry and credentials 36
Auto-registration . 37
Public registry and certificate replication 37
Application use of registry services 37
Default mini certificate issuance service 38
The security interface . 38

Configuration and customization 38
Rules . 38

Connection styles . 40
Peer-to-peer connection . 41
Client-server connection. 41
Multiple connection styles 41

Classes . 41
Application loading . 42

Chapter 6. MQSeries Everyplace and MQSeries networks 43
Interface to MQSeries . 43
Message conversion . 49
Function . 50
Compatibility . 50
Assured delivery . 51

Chapter 7. Applications and utilities 53
Postcard . 53
MQSeries Everyplace Explorer 53

Chapter 8. Programming interfaces 55

Appendix. Notices . 57
Trademarks . 58

Glossary . 59

Bibliography . 63

Index . 65

iv MQSeries Everyplace Introduction

Figures

1. The MQSeries family . 5
2. Simple host and distributed configurations 6
3. Typical workstation configurations . 7
4. Typical device configurations . 8
5. Simple MQSeries Everyplace networks . 30
6. A star MQSeries Everyplace network. 31
7. MQSeries Bridge object hierarchy. 44

© Copyright IBM Corp. 2000 v

vi MQSeries Everyplace Introduction

Tables

1. Version 1 supported software environments 3
2. MQSeries Everyplace and MQSeries elements 8
3. Fields objects and their constituent field properties 15
4. Attribute object properties . 15
5. Message object properties . 16
6. Message object fields for which provision is made 16
7. Queue properties . 20
8. Local queue manager properties . 23
9. Connection (remote queue manager) properties 23

10. Messaging operations on MQSeries Everyplace queues 24
11. Administration message classes . 25
12. Generic structure of an administration message 26
13. Authentication, encryption and compression support 33
14. Connection styles . 40
15. Class options . 42
16. Bridges object properties . 44
17. Bridge properties . 45
18. MQSeries queue manager proxy properties 45
19. Client connection service properties . 45
20. Listener properties . 47
21. MQSeries remote queue properties . 48

© Copyright IBM Corp. 2000 vii

viii MQSeries Everyplace Introduction

About this book

This book is a general introduction to MQSeries Everyplace. It covers the product
concepts and its relationship to other MQSeries products.

For detailed information on the MQSeries Everyplace API and how to use it to create
MQSeries Everyplace applications, see the MQSeries Everyplace Programming
Reference and the MQSeries Everyplace Programming Guide.

This document is continually being updated with new and improved information. For the
latest edition, please see the MQSeries family library Web page at
http://www.ibm.com/software/ts/mqseries/library/.

Who should read this book
This book is intended for anyone interested in using secure messaging on lightweight
devices such as sensors, phones, Personal Digital Assistants (PDAs) and laptop
computers.

Prerequisite knowledge
No previous knowledge is required to read this information, but an initial understanding
of the concepts of secure messaging is an advantage.

If you do not have this understanding, you may find it useful to read the following
MQSeries books:

v MQSeries An Introduction to Messaging and Queuing

v MQSeries for Windows NT® V5R1 Quick Beginnings

These books are available in softcopy form from Book section of the online MQSeries
library. This can be reached from the MQSeries Web site, URL address
http://www.ibm.com/software/ts/MQSeries/library/

Terms used in this book
The following terms are used throughout this book:

MQSeries family
refers to the collection of MQSeries products described in “Chapter 3. The
MQSeries family” on page 5.

MQSeries Messaging
refers to the four messaging product groups described in “Chapter 3. The
MQSeries family” on page 5.

MQSeries
refers to the following three MQSeries Messaging product groups:

v Distributed messaging

© Copyright IBM Corp. 2000 ix

v Host messaging

v Workstation messaging

MQSeries Everyplace
refers to the fourth MQSeries Messaging product group, pervasive messaging.

Device A computer of any size that is running MQSeries Everyplace programs but
does not have an MQSeries Everyplace channel manager or an MQSeries
Everyplace channel listener object installed.

Note: For licensing purposes device is synonymous with MQSeries
Everyplace client.

Gateway
A computer of any size that is running MQSeries Everyplace programs and
has an MQSeries Everyplace channel manager or an MQSeries Everyplace
channel listener object installed.

Note: For licensing purposes gateway is synonymous with MQSeries
Everyplace server.

x MQSeries Everyplace Introduction

Chapter 1. Overview

MQSeries Everyplace is a member of the MQSeries family of business quality
messaging products. It is designed to satisfy not only the messaging needs of
lightweight devices, such as sensors, phones, PDAs (Personal Digital Assistant) and
laptop computers, but also the demands of mobile attachment and the requirements
that arise from the use of fragile communication networks. It provides the standard
MQSeries once-only assured delivery, and exchanges messages with other family
members. Since many MQSeries Everyplace applications run outside the protection of
an Internet firewall, it also provides sophisticated security capabilities.

Lightweight devices require the messaging subsystem to be frugal in its use of system
resources and accordingly MQSeries Everyplace is optimized for system footprint and
protocol efficiency. It does not offer identical capabilities to the other messaging
members of the MQSeries family but does provide seamless inter-operation. MQSeries
Everyplace has extensive provision for mobility, roaming, local and remote message
access, security and support for messaging over unreliable networks.

MQSeries Everyplace is a member of the IBM® pervasive computing family and is
consequently designed to integrate well with other IBM pervasive and wireless products.

Notes for Version 1.0
v Version 1.0 of MQSeries Everyplace is a toolkit that allows users to write MQSeries

Everyplace applications and to create an environment where they can be run.

v In this release, the deployment of MQSeries Everyplace to pervasive devices is the
responsibility of the application and solution provider.

© Copyright IBM Corp. 2000 1

2 MQSeries Everyplace Introduction

Chapter 2. Prerequisites

Table 1 shows the software environments that can be used to run MQSeries Everyplace
Version 1.1

Table 1. Version 1 supported software environments

Operating system

Device EPOC

Palm OS

Windows CE

Windows® 95
Windows 98
Windows NT v4
Windows 2000

Gateway Windows NT v4
Windows 2000

Notes:

1. Version 1.0 is supplied in Java for use across all platforms that support Java.

2. A limited function client, that provides only synchronous access to remote queues, is available
as a C codebase for use on the Palm OS only.

3. Java 1.1, at the latest level available for the platform, is recommended. See the MQSeries
Everyplace Web site (www.ibm.com/software/mqseries/everyplace) for details of the levels of
Java that have been tested.

1. MQSeries Everyplace device code can be run on any device that runs Java®, but it has been tested only with the operating systems
listed in Table 1.

© Copyright IBM Corp. 2000 3

4 MQSeries Everyplace Introduction

Chapter 3. The MQSeries family

The MQSeries family includes many products, offering a range of capabilities, as
illustrated in Figure 1

v MQSeries Workflow simplifies integration across the whole enterprise by automating
business processes involving people and applications

v MQSeries Integrator is powerful message-brokering software that provides real-time,
intelligent rules-based message routing, and content transformation and formatting

v MQSeries Messaging provides any-to-any connectivity from desktop to mainframe,
through business quality messaging, with over 35 platforms supported

Both MQSeries Workflow and MQSeries Integrator products take advantage of the
connectivity provided by the MQSeries messaging layer.

MQSeries family messaging is supplied by both MQSeries (MQS) and MQSeries
Everyplace products; each being designed to support one or more hardware server
platforms and/or associated operating systems. Given the wide variety in platform
capabilities, these individual products are organized into product groups, reflecting
common function and design. Four such product groups exist:

v Distributed messaging: MQSeries for Windows NT, AIX®, AS/400®, HP-UX, Sun
Solaris, and other platforms

v Host messaging: MQSeries for OS/390®

v Workstation messaging: MQSeries for Windows 3.1, 95, 98

v Pervasive messaging: MQSeries Everyplace

Figure 1. The MQSeries family

© Copyright IBM Corp. 2000 5

Messaging itself, irrespective of the particular product or product group, is based on
queue managers. Queue managers manage queues that can each store messages.
Applications communicate with a local queue manager, and get or put messages to
queues. If a message is put to a remote queue, that is one owned by a remote queue
manager, the message is transmitted over channels to the remote queue manager. In
this way messages can hop through one or more intermediate queue managers before
reaching their destination. The essence of messaging is to decouple the sending
application from the receiving application, queuing messages en route if necessary. All
MQSeries messaging products are concerned with the same basic elements of queue
managers, queues, messages and channels, though there are many differences in
detail.

MQSeries host and distributed messaging products are used to support many different
network configurations, all of which involve clients and servers2some examples of which
are illustrated in Figure 2.

In the simplest case a standalone server is configured, running a queue manager. One
or more applications run on that server, exchanging messages via queues. An
alternative configuration is client-server. Here the queue manager only exists on the
server, but the clients each have access to it via a client channel. The client channel is
a bidirectional communications link that flows a unique MQSeries protocol implementing
something similar to a remote procedure call (RPC). Applications can run on the clients,
accessing server queues. One advantage of the client-server configuration is that the
client-messaging infrastructure is lightweight, being dependent on the server queue
manager. A disadvantage is that clients and their associated server operate
synchronously and therefore require the client channel to be always available.

The distributed client-server configuration shows a more complex case, with multiple
servers involved. In these configurations servers exchange messages through message
channels. Message channels are unidirectional, with a protocol designed for the safe,
asynchronous exchange of message data. These message channels need not be
available for the clients to continue processing, though no messages can flow between
servers when communications are not available.

2. Note that these terms have very specific meanings within MQSeries that do not always correspond to their more common usage. In
this document they are always used with their MQSeries semantics.

Figure 2. Simple host and distributed configurations

6 MQSeries Everyplace Introduction

MQSeries workstation messaging products offer a subset of these configuration options.
Instead of servers, they support workstations that have a queue manager but do not
support the attachment of clients. However, workstations can attach to other
workstations, and also to servers, through MQSeries message channels. Thus
workstations are typically regarded as lightweight servers, and are used in place of
clients where an asynchronous capability is required.

Two typical workstation configurations are shown in Figure 3. In (b) the workstation
applications can run independently of the servers and clients:

The pervasive messaging product MQSeries Everyplace supports configurations
through the provision of devices and gateways.

The MQSeries Everyplace device is a computer running MQSeries Everyplace code
without a channel manager. This means that a device is restricted to communicating
with only one other device or gateway at a time. MQSeries Everyplace devices can
range from the very small (such as a sensor on an oil pipeline), through larger devices
(such as a telephone, personal data assistant (PDA), or laptop computer), up to
desktop machines and workstations. Frequently such device computers are known as
pervasive devices, though this implies size and capability restriction that is not present
in the product.

A gateway is a computer running the MQSeries Everyplace code with an MQSeries
Everyplace channel manager, or MQSeries Everyplace channel listener, configured.
This offers all the capabilities of the device code plus the ability to communicate with
multiple devices gateways concurrently.. Gateways also provide the mechanism for
exchanging messages between an MQSeries Everyplace network and an MQSeries
network.

To a first approximation, devices combine many of the attributes of clients and servers.
They can be configured with a full queueing capability making them capable of
asynchronous operation. They can also access queues held remotely, a feature that
has some similarities with client access to server queues. Unlike servers, devices
cannot attach clients. Devices can communicate directly with each other, through
peer-to-peer messaging capability. Devices also communicate through channels but
these channels are unique to MQSeries Everyplace and are called dynamic channels in
order to distinguish them from the MQSeries client channels and MQSeries message

Figure 3. Typical workstation configurations

Chapter 3. The MQSeries family 7

channels. Dynamic channels are bidirectional and support the full range of functions
provided by MQSeries Everyplace, including both synchronous and asynchronous
messaging.

Gateways necessarily support MQSeries Everyplace dynamic channels in order to
communicate with devices. They can optionally support MQSeries client channels in
order to communicate with servers. Like servers, gateways have queue managers, and
can therefore support local messaging applications.

Some typical pervasive configurations are shown in Figure 4

In Figure 4 (b) a gateway is used to connect devices together. A feature of gateways is
that they can handle multiple simultaneous incoming connection requests, as opposed
to devices that can only handle one such request at a time. Both gateways and devices
can make multiple simultaneous outgoing requests. If in configuration (b) a device had
been used in place of the gateway, then the two terminal devices would have had to
take turns in contacting this intermediate device, though it could have contacted them
simultaneously. In (d) a device and a gateway are both used to link devices. In (e) a
gateway is used to link a network of devices to an MQSeries server, a configuration in
which messages can flow between all constituents, devices, gateways, servers,
workstations and clients. The most important characteristics of these components are
shown in Table 2 on page 9.

Figure 4. Typical device configurations

8 MQSeries Everyplace Introduction

Table 2. MQSeries Everyplace and MQSeries elements

Component Characteristics Offered by

Device (MQSeries
Everyplace)

Provides assured messaging for applications
through dynamic channels

allows both synchronous local and remote
queue access

allows asynchronous delivery to remote
queues

restricted to handling one incoming request at
a time

Pervasive

Client (MQS) Provides assured messaging for local applications

requires a synchronous client channel
connection to a server

allows synchronous access to queues on the
attached server only

allows asynchronous delivery to remote
queues via the attached server

Distributed Host

Gateway (MQSeries
Everyplace)

Provides assured messaging for applications
through dynamic channels

allows both synchronous local & remote
queue access

allows asynchronous delivery to remote
queues

can handle multiple incoming requests at a
time

Supports the attachment of multiple MQSeries
servers through client channels

Pervasive

Server (MQS) Provides assured messaging for applications
through message channels

allows synchronous local queue access

allows asynchronous delivery to remote
queues

Supports the attachment of multiple MQSeries
clients through client channels

Distributed Host

Workstation (MQS) Provides assured messaging for applications
through message channels

allows synchronous local queue access

allows asynchronous delivery to remote
queues

Workstation

Chapter 3. The MQSeries family 9

10 MQSeries Everyplace Introduction

Chapter 4. Requirements

This chapter describes the requirements that have shaped the MQSeries Everyplace
design and implementation.

Capabilities
MQSeries Everyplace extends the messaging scope of the MQSeries family:

v By supporting low-end devices, such as PDAs, telephones, and sensors, allowing
them to participate in an MQSeries messaging network. It also supports intermediate
devices such as laptops, workstations and certain distributed platforms. MQSeries
Everyplace offers the same quality of service, once only assured delivery of
messages, and permits the exchange of messages with other family members.

v By providing extensive security features to protect messages, queues and related
data, whether in storage or in transmission.

v By operating efficiently in hostile communications environments where networks are
unstable, or where bandwidth is tightly constrained. It has an efficient wire protocol
and automated recovery from communication link failures.

v By supporting the mobile user, allowing network connectivity points to change as
devices roam. It also allows control of behavior in conditions where battery resources
and networks are failing or constrained.

v By operating through suitably configured firewalls

v By minimizing administration tasks for the user, so that the presence of MQSeries
Everyplace on a device can be substantially hidden. This makes MQSeries
Everyplace a suitable base on which to build utility-style applications.

v By being easily customized and extended, through the use of application-supplied
rules and other classes that modify behavior, or through the sub-classing of the base
object classes, for example, to represent different message types.

Applications
There is no restrictive list of possible MQSeries Everyplace applications since the
choices are many and varied, but a substantial number may be expected to be custom
applications developed for particular user groups. The following list gives some
examples of those that have been considered:

v Consumer applications: supermarket shopping from home using a PDA, gathering
of travellers preferences on airlines, financial transactions from a mobile phone

v Control applications: collection and integration of data from oil pipeline sensors
transmitted via satellite, remote operation of equipment (such as valves) with security
to guarantee the validity of the operator

v Mobile workforce: visiting professional (insurance agent), rapid publication of proof
of customer receipt for parcel delivery companies, fast-food waiter exchanging
information with the kitchen, golf tournament scoring, mobile secure systems
messaging systems for the police, job information to utility workers in situations
where communication is frequently lost, domestic meter reading.

© Copyright IBM Corp. 2000 11

v Personal productivity: mail/calendar replication, database replication, laptop
downsizing

Customer requirements
Requirements that have influenced the design of MQSeries Everyplace include:

v Administration: minimal setup and maintenance; support of both local and remote
administration; an ability to extend and customize the administration functions to
meet the needs of particular applications; an emphasis on automatic discovery and
recovery; the provision of independent administration elements that can be
selectively used.

v Communications: a very efficient wire protocol; minimal headers; no compulsory
fields in messages (excepting a unique identifier); the ability to change the data
encoding; compression, encryption and authentication support; end-to-end
negotiation of compression and security characteristics; an ability to easily pass
through firewalls; pluggable communications adapters.

v Compatibility: MQSeries quality of service and seamless messaging interchange;
the ability to communicate to existing MQSeries systems without application change;
flexible control of message interchange between MQSeries and MQSeries
Everyplace .

v Footprint: substantially below 100K bytes for a minimally configured device system.

v Function: synchronous and asynchronous messaging capabilities, access to
messages held in either local or remote queues; the ability to use any field in the
message for selective retrieval; selective control of the backing medium for a queue.

v Rule support: control of many aspects of behavior through rules, for example, when
to send messages, how often to retry a communication link, what to do with a
message that is too big, or how to behave when a target queue is full.

v Security: full support for security, authentication and non-repudiation; message-level
and queue level security; protection of the messaging system from security attacks;
pluggable security using industry standard algorithms; ability to integrate with
operating system user credentials; the capability to comply with the national security
requirements, allowing security support to change as messages cross country
boundaries.

12 MQSeries Everyplace Introduction

Chapter 5. Product concepts

Introduction
The fundamental elements of the MQSeries Everyplace programming model are
messages, queues and queue managers. MQSeries Everyplace messages are objects
that contain application-defined content. When stored, they are held in a queue and
such messages may be moved across an MQSeries Everyplace network. Messages are
addressed to a target queue by specifying the target queue manager and queue name
pair. Applications place messages on queues through a put operation and typically
retrieve them through a get operation. Queues can either be local or remote and are
managed by queue managers. Both devices and gateways store configuration data in a
registry.

Applications on devices can make use of any or all of the APIs or functions available on
the device, they are not restricted to the MQSeries Everyplace programming interfaces.
Through dynamic channels MQSeries Everyplace devices may be connected to other
MQSeries Everyplace devices and/or to an MQSeries Everyplace gateway.

Applications on gateways can also make use of any or all of the APIs or functions
available on the gateway, not just the MQSeries Everyplace programming interfaces.
Through dynamic channels, a gateway can be connected to other gateways and/or to
MQSeries Everyplace devices. Through MQSeries client channels, a gateway may be
connected to one or more MQSeries servers (but not to other MQSeries Everyplace
gateways). Both MQSeries Everyplace and MQSeries can coexist on a single machine
although the presence of MQSeries is entirely optional.

The capabilities of full function devices and gateways are the same, except that:

v Gateways can handle multiple simultaneous inbound requests (from other devices
and/or gateways)

v Gateways can simultaneously interface to multiple MQSeries servers

Dynamic channels support the following network connections:

v Dial-in connections

v Permanent connections, for example a conventional LAN, leased line, infrared or
wireless LAN.

The communications protocols are implemented by a set of adapters, one for each of
the supported protocols. This enables new protocols to be added when required and
the memory footprint on a given environment to be tailored to a particular configuration.

Queues are individually mapped to storage media through another set of adapters.
Thus a queue can be stored in the file system or in memory, depending on the chosen
adapter.

The MQSeries Everyplace programming interface is designed so that applications can
be written with no dependence on the location of queues. Thus a program designed to

© Copyright IBM Corp. 2000 13

access local queues should be able to run unchanged from a remote queue manager
(subject to satisfying any security considerations in force and accepting that certain
MQSeries Everyplace operations are not supported against remote queues). This
independence includes any use of administrative functions.

Message objects
MQSeries Everyplace message objects differ fundamentally from the messages
supported by MQSeries. In MQSeries, messages are byte arrays, divided into a
message header and a message body. The message header is understood by
MQSeries and contains vital information, such as the identity of the reply to queue, the
reply to queue manager, the message id, and the correlation id; the message body is
not understood.

In contrast, messages in MQSeries Everyplace are message objects inherited from an
MQSeries Everyplace object known as the fields object. Messages are true objects,
with no concept of a header or a message body. The real nature of the message object
becomes clearer only when the base fields object is understood. These fields objects,
used extensively in MQSeries Everyplace , are an accumulation of fields, where a field
comprises a name, a data type and the data itself. Field names are ASCII character
strings (barring a number of reserved characters) of unlimited length.

Field types may be:

v ASCII string or a dynamic array of ASCII strings

v Boolean value

v Byte , fixed array, or a dynamic array of byte values

v Double floating point , fixed array, or a dynamic array of double floating point values

v Fields object or a dynamic array of fields objects (thus nesting of fields objects is
supported)

v Floating point value, fixed array, or a dynamic array of floating point values

v Integer (4 byte), fixed array, or a dynamic array of integers

v Long integer (8 byte, fixed array, or a dynamic array of long integers

v Short integer (2 byte), fixed array, or a dynamic array of short integers

v UNICODE string or a dynamic array of UNICODE strings

Fields objects have a type where the type corresponds to the programming object class
name. Descendants of this object class are used by application programs as message
objects and their type is used by MQSeries Everyplace to instantiate the correct object
class when required, for example after a message object has been flowed across a
channel.

Fields objects supply a number of methods, for example, fields can be enumerated or
their existence can be verified. Likewise fields objects can be compared for equality.
They have the capability to dump and restore their field items to and from a byte array,
used for example to provide the data for transmission of the object over a link, and to
restore the object after transmission. The dump and restore methods can be overridden
to allow fields objects to serialize themselves in other ways, for example, to query a

14 MQSeries Everyplace Introduction

database for their field content at the time of transmission.Table 3 lists the properties of
fields objects and/or their constituent fields.

Table 3. Fields objects and their constituent field properties

Property Presence

Fields objects Fields

Associated attribute object Optional

Constituent field(s) yes

Hidden yes

Name yes

Type yes yes

Value yes

The hidden property of a field enables that field to be ignored for the purposes of a
comparison operation.

Attribute objects contain the mechanisms to perform authentication, encryption and
compression and may be associated with fields objects.

v Authentication: controls access

v Compression: reduces storage requirements (for transmission and/or storage)

v Encryption: protects the contents when the object is dumped (and allows
restoration)

Attribute objects are fundamental to the MQSeries Everyplace security model and allow
selective access to content and the protection of data on backing storage amongst
many other uses.Table 4 lists the properties of attribute objects.The Rule value, when
present, controls which operations are allowed.

Table 4. Attribute object properties

Property Presence

Cryptor optional (may be required in some circumstances)

Authenticator optional

Compressor optional

Rule optional

Type optional

Message objects are derived from fields objects and include a UID (unique identifier)
that is generated by MQSeries Everyplace. This UID uniquely identifies a message
object and is constructed from:

v Name of the originating queue manager (added by the queue manager on receipt of
the object). This name must be globally unique.

v Time that the message object was created (added at creation)

Chapter 5. Product concepts 15

Message objects have the basic properties listed in Table 5 in addition to those that
they inherit as fields objects.

Table 5. Message object properties

Property Explanation

Msg_OriginQMgr The name of the queue manager that sent the message

Msg_Time Time the message object was created by the application

These two properties make up the unique identifier (UID) of the message object.

No other information is required in a message destined for another MQSeries
Everyplace queue manager, though other fields are usually included to carry the
messages information content. Typically messages are descendants of the base
message object class and thus have additional fields as befits their purpose. Of these
additional fields, a number will be common to a wide range of applications, such as
’reply to queue manager. Accordingly MQSeries Everyplace provides some measure of
support for them.

Table 6 lists the supported fields.

Table 6. Message object fields for which provision is made

Field name Usage

Msg_CorrelID Byte string typically used to correlate a reply with the
original message

Msg_ExpireTime Time after which message may be deleted (even if
undelivered)

Msg_LockID The key necessary to unlock a message

Msg_MsgID Used by the application for correllation with the original
message

Msg_Priority Priority of the message

Msg_ReplyToQ Name of the queue to which a message reply should be
addressed

Msg_ReplyToQMgr Name of the queue manager to which a message reply
should be addressed

Msg_Resend Indicates that the message is a re-send of a previous
message

Msg_Style Distinguishes commands from request/reply etc.

In all cases a defined constant is available that allows the field name to be carried in a
single byte. For some fields more extensive provision is made - for example: priority (if
present) affects the order in which messages are transmitted; correlation id triggers
indexing of a queue on those field values for fast retrieval; expire time triggers the
expiry of the message, and so on.

Message objects have a number of methods defined on them, for example the ability to
extract the message UID, the originating queue manager name and the object creation
time. Other useful methods are inherited from the fields object class, for example,
various methods for getting and putting field values. Of particular interest is the dump

16 MQSeries Everyplace Introduction

method, which is used to dump the object data to a byte string. MQSeries Everyplace
calls this method when a message is to be saved to persistent storage and when it is to
be transmitted over a dynamic channel. By this means the message object itself is
responsible for determining the external representation of its data value and this can be
exploited in many ways. For example, an object can simply dump the values of its
constituent fields or it could choose to query a database instead. The complementary
restore method offers similar control possibilities when an object is recreated from its
dumped format. Note that if the message object has an attached attribute object, the
attribute’s data encoder, encryptor and compressor are invoked on dump; similarly the
decoder, decryptor and decompressor are invoked on restore.

When MQSeries Everyplace flows a message object, in order to reduce footprint over
the wire, it does not flow the associated class file. Accordingly the appropriate message
class must be available at each queue manager where the message object is to be
instantiated.

The default message object dump method has been optimized to minimize the size of
the generated byte string in order to achieve efficient message storage and
transmission.

Dump data format
The default dump data format encodes fields as follows:

{Length Identifier Fence {Data}} {Length Identifier Fence {Data}} { ...}

where:

v Data: the data value. Integers are compressed with leading 0s and Fs removed.
Booleans have no associated data bytes

v Fence: a special byte delimiting the boundary between the identifier and the optional
Data item. This byte also indicates the Data item type

v Identifier: holds the field name in a variable length ASCII string of bytes, terminated
with an end byte

v Length: indicates the length of the data field. A variable number of bytes between 1
and 4 are used. The first byte has the first two bits reserved to indicate the length of
the length field. Lengths in the range 0 - 1,073,741,823 are supported

This results in a highly compact data stream. Further savings can be achieved by
compressing the data. XOR compression with a previous byte stream might be
expected to produce good results but, because of the variable nature of these fields
and the fact that the order of the fields can change, a simple XOR does not always
produce the desired effect. MQSeries Everyplace includes an intelligent XOR, working
on a field-by-field basis, that is much more likely to improve compression.

Chapter 5. Product concepts 17

Queues
Queues are typically used to hold message objects pending their removal by application
programs. Like messages, queues also derive from the fields objects. Direct access by
applications to the queue object is not permitted3; instead the queue manager acts as
an intermediary between application programs and queues. Queues are identified by
name and the name can be an ASCII character string of unlimited length4but must be
unique within a particular queue manager.

MQSeries Everyplace supports a number of different queue types:

Local queues
Local queues are used by applications to store messages in a safe and secure
manner. They have a message store that is accessed via an adapter class,
typically the disk adapter class. However a memory adapter class is supplied
with MQSeries Everyplace that holds the message store in memory for fast
access (at the cost of message loss if the system crashes). By creating the
appropriate adapter messages can be stored anywhere, on a queue-by-queue
basis, for example in a relational database, on a writable CD etc. Local queues
can be used on or offline, that is connected or not to a network. Access and
security are owned by the queue and may be granted for use by a remote
queue manager, when connected to a network, allowing others to send or
receive messages to/from the queue. Local queue access is always
synchronous.

Remote queues

Remote queues do not reside in the local environment; instead a definition
exists locally that identifies the owning queue manager and the real queue.
Remote queues may be accessed either synchronously or asynchronously. If
there is a definition of the remote queue held locally, then the mode of access
is based on this definition. If not, then queue discovery occurs, such that the
characteristics are discovered and the mode of access is forced to be
synchronous.

Synchronous queues are queues that can only be accessed when connected
to a network that has a path to the owning queue manager. If the network is
not established then the operations such as put, get, and browse, (see
Table 10 on page 24) cause an exception to be raised. The owning queue
controls the access permissions and security requirements needed to access
the queue. It is the application’s responsibility to handle any errors or retries
when sending or receiving messages, and in this case MQSeries Everyplace is
no longer responsible for once-only assured delivery.

Asynchronous queues are queues that can have messages put into them but
not retrieved. If the network connection is established then the messages are
sent to the owning queue manager and queue. If however the network is not
connected the messages are stored locally until there is a network connection

3. Direct access is permitted inside a queue rule.

4. For interoperability it is recommended that the MQSeries naming restrictions are observed, including a maximum name length of 48
characters. The length may also be restricted by the file system you are using.

18 MQSeries Everyplace Introduction

and then the messages are transmitted. This allows applications to operate on
the queue when the device is offline; it does however require that these types
of queue have a message store in order to temporarily store messages.

Store and forward queues
This type of queue stores messages until they can be forwarded to the next
(but not necessarily the owning) queue manager. This type of queue is
normally (but not necessarily) defined on a gateway and the device would
have to collect its messages when it is connected to the network. Store and
forward queues may hold messages for many target queue managers or there
may be one store and forward queue per target queue manager. When a
sender wishes to send a message to a recipient that may be disconnected the
sender still addresses the message to the recipient’s queue manager/queue;
the intermediate server detects that the recipient is not connected and stores
the message in its local message store. The sending application does not
require any changes to send a message to a connected or disconnected target
queue.

Home server queues
This type of queue normally resides on a device (assumed to be occasionally
connected) and points to a store and forward queue on a queue manager
known as the home server. The home server queue pulls messages from the
home server whenever the device connects to the network. When the queue
has pulled a message from the server it gives it to the local queue manager
using the putMessage and confirmputMessage method calls (see “Queue
manager operations” on page 23). It is then the responsibility of the queue
manager to place the message in the correct local queue. The pull method of
getting messages from the server can be more efficient in terms of flows over
the network than the server pushing the messages; this is because the home
server queue uses the acknowledgement of the first message as the request
for the next one message (if any), whereas the server push would require a
request/response to send the message and a second request/response for the
confirmation flow. Home server queues normally having a polling interval set
that causes it to check for any pending messages on the server whilst the
network is connected. The poll interval is an administration configuration
option.

Administration queues
This type of queue receives MQSeries Everyplace administration messages.
An optional administration message reply queue can also be used to receive
replies to administration messages sent by the MQSeries Everyplace system.
The administration queues do not understand how to perform the
administration, they handle the messages that encapsulate the administration
details.

MQSeries bridge queues
This is a specialized form of remote queue with the definition on a gateway
and the target queue on an MQSeries queue manager. This form of queue
provides a pathway between the MQSeries Everyplace and the MQSeries
environments. Transformers are used to perform any necessary data or

Chapter 5. Product concepts 19

message reformatting. A very basic transformer is supplied with MQSeries
Everyplace; programmers are expected to customize this transformer to suit
their own requirements.

MQSeries Everyplace stores data securely on queues, ensuring that messages are
physically written to the media and not simply buffered by the operating system.
However MQSeries Everyplace does not independently log changes to messages and
queues. If recovery from media failure is required then hardware solutions must be
deployed, such as the use of RAID disk systems. Alternatively the queue must be
mapped into recoverable storage such as certain database subsystems.

MQSeries Everyplace does not require that a queue manager has defined queues.
However provision is made for four system queues, if required:

v AdminQ: required for the receipt of administration messages

v AdminReplyQ: optionally used for receiving replies to administration messages

v DeadLetterQ: used to store messages that cannot otherwise be delivered

v SYSTEM.DEFAULT.LOCAL.QUEUE: a queue that shares a common name with the
mandatory system queue on MQSeries servers

Queue properties are shown in Table 7, note however that not all the properties shown
apply to all the queue types:

Table 7. Queue properties

Property Explanation

Admin_Class Queue class

Admin_Name Ascii queue name

Queue_Active Indicates that the queue is active

Queue_AttRule Rule class controlling security operations

Queue_Authenticator Authenticator class

Queue_BridgeName Owning MQ bridge name

Queue_ClientConnection Client connection name

Queue_CreationDate The date that the queue was created

Queue_Compressor Compressor class

Queue_Cryptor Cryptor class

Queue_CurrentSize Number of messages on the queue

Queue_Description Unicode description

Queue_Expiry Expiry time for messages

Queue_ FileDesc The location where the queue is stored

Queue_MaxMsgSize Maximum length of messages allowed on the queue

Queue_MaxQSize Max. no. of messages allowed

Queue_Mode Synchronous or asynchronous

Queue_MQQMgr MQSeries queue manager proxy

20 MQSeries Everyplace Introduction

Table 7. Queue properties (continued)

Property Explanation

Queue_Priority Priority to be used for messages (unless overridden by
a message value)

Queue_QAliasNameList Alternative names for the queue

Queue_QMgrName Queue manager owning the real queue

Queue_RemoteQName Remote MQSeries field name

Queue_Rule Rule class for queue operations

Queue_TargetRegistry The target registry type

Queue_Transporter Transporter class

Queue_Transformer Transformer class

Administrative functions are used to create and delete queues, and to inquire on or
modify their properties.

Queues are not limited to use as a message store. Sub-classed queues can be used in
process control application scenarios, for example the queue object could directly
control a valve. A message of the right type would cause the valve to be opened, the
volume of the flow to be changed etc. An application would not be pulling messages off
the queue and performing the action, the queue object would itself controls the action.
Other queues could, for example, update spreadsheets or do text to speech conversion.
The advantages of this technique are that the security aspects of the queues are still in
place and effective, as also is assured messaging. So MQSeries Everyplace would still
assure the once-only delivery of the messages, and an associated authenticator and
cryptor would guarantee that only the authorized sender of the message could send
such messages, with the contents highly secure in transit. No applications would be
permitted access to the queue and none would be required.

Queue managers
The MQSeries Everyplace queue manager provides application access to the
messages and queues and controls any channels. In MQSeries Everyplace Version 1.0
only one queue manager can be active on a single Java virtual machine at any one
time. If there are multiple JVMs on a machine, there can be the same number of queue
managers as JVMs. Queue managers are identified by name and the name must be
globally unique5 and an ASCII character string that can be of unlimited length.6Queue
managers can be configured with or without local queueing. All queue managers
support synchronous messaging operations; a queue manager with local queueing also
supports asynchronous message delivery.

5. This restriction is not enforced by MQSeries Everyplace or MQSeries, but duplicate queue manager names may cause messages to
be delivered to the wrong queue manager.

6. For interoperability it is recommended that the MQSeries queue manager name rules are observed, including limiting the maximum
name length to 48 characters. The length may also be restricted by the file system you are using.

Chapter 5. Product concepts 21

Asynchronous and synchronous message deliveries have very different characteristics
and consequences:

Asynchronous message delivery 7

With asynchronous message delivery, the application passes the message to
MQSeries Everyplace for delivery to a remote queue. An immediate return is
made back to the application after the put operation. MQSeries Everyplace
temporarily holds the message locally until it can be delivered. Delivery may be
staged, with MQSeries Everyplace responsible for delivery. This mode of
operation provides once-only assured delivery. See “Asynchronous message
delivery” on page 31 for further discussion.

Synchronous message delivery:
Synchronous messaging can be used to address:

v Target queues on an MQSeries Everyplace queue manager routed over an
MQSeries Everyplace network

v target queues on an MQSeries queue manager directly attached to an
MQSeries Everyplace gateway

v Target queues on an indirectly attached MQSeries server

With synchronous messaging, the application puts the message to MQSeries
Everyplace for delivery. MQSeries Everyplace synchronously contacts the
target remote queue and places the message. After delivery MQSeries
Everyplace returns to the application.

Contact with the remote queue manager may involve MQSeries Everyplace
routing through intermediate devices and/or gateways.See “Synchronous
message delivery” on page 31 for further discussion.

Thus asynchronous message delivery means that the local application gives the
message to MQSeries Everyplace and its delivery onwards from that local queue
manager is the responsibility of MQSeries Everyplace . It means that the network
and/or the receiving application need not be available. The time of the actual delivery is
unknown to the sending application. Synchronous message delivery requires the
network to be running but the sending application knows that it has been delivered to
the receiving application’s queue. The receiving application does not need to be
available in either the asynchronous or the synchronous case.

A local queue manager has properties that reflect the local management of queues. It
also needs a connection definition for each remote queue manager with which it must
make contact. Hence connection definitions are sometimes referred to as remote queue
manager definitions. These definitions may include all the information needed for a
direct communication between the queue managers (including a network address), or
they may simply indicate that the communication is indirect, going via an intermediate
queue manager. In the latter case all that is required is the name of the next hop queue
manager.

7. MQSeries Everyplace does not distinguish between the persistent and non-persistent modes offered by MQSeries, only persistent is
supported. However, if required, the choice of queue backing storage allows a trade-off to be made between performance and
recovery.

22 MQSeries Everyplace Introduction

Queue managers properties are shown in Table 8 and Table 9.

Table 8. Local queue manager properties

Property Explanation

QMgr_ChnlAttrRules Channel attribute rules

QMgr_ChnlTimeout Channel time-out

Admin_Class Queue manager class

QMgr_Description Unicode description

Admin_Name Queue manager name

QMgr_Rules Rule class for queue manager operations

Table 9. Connection (remote queue manager) properties

Property Explanation

Con_Adapter The adapter file descriptor

Con_AdapterOptions Adapter options (such as use history)

Con_AdapterParm ASCII data to be use by an adapter (such as servlet
name)

Con_Aliases Alternative names for the queue manager

Con_Channel The type of channel that this connection should use

Con_Description Unicode description

Queue_QMgrName Owner of the definition

Admin_Name Queue manager name

Multiple adapters are supported in a connection definition.

Queue manager operations
Queue managers support messaging operations and optionally manage queues.
Applications have access to messages through operations performed on a queue
manager. Unless a filter is specified, the first available message on the queue is
retrieved. A filter is a field object that is matched for equality and any fields in the
message can be used for selective retrieval. The get operation, like all message
sending and retrieval operations, can optionally be given an attribute object to be used
in the encoding and decoding of a message.

In MQSeries Everyplace , as in MQSeries, get is normally a destructive operation. If
assured messaging is required between MQSeries Everyplace and the application, then
the get followed by confirm method sequence should be used. First a get is issued with
a confirm id (its value being chosen by the application) - that operation gets the
message but hides it on the queue rather than deleting it immediately. A subsequent
confirm operation, specifying the original message UID, indicates that the get was
successful for the application, and it is then that the message is deleted. Failure of the
get allows the message to be recovered. Put operations behave in a similar manner.

By specifying the UID, messages can be deleted from a queue, without being retrieved.

Chapter 5. Product concepts 23

If nondestructive read is required, queues may be browsed for messages (optionally
under the control of a filter). Browsing retrieves all the message objects that match the
filter, but leaves them on the queue. Browsing under lock is also supported. This has
the additional feature of locking the matching messages on the queue. Messages may
be locked individually, or in groups identified through a filter, and the locking operation
returns a lock id. Locked messages can be got or deleted only if the lock id is supplied.
An option on browse allows either the full messages, or only the UIDs, to be returned.

Applications can wait for a specified time for messages to arrive on a queue. Optionally
a filter can be used to identify those of interest and a confirm id can also be specified.
Alternatively applications can listen for MQSeries Everyplace message events, again
optionally with a filter. Listeners are notified when messages arrive on a queue.

Queues are enabled for messaging operations as shown in Table 10

Table 10. Messaging operations on MQSeries Everyplace queues

Local queue Remote queue ¹

Synchronous Asynchronous

Browse (±lock, ±filter) Yes Yes

Delete Yes Yes

Get (±filter) Yes Yes

Listen (±filter) Yes

Put Yes Yes Yes

Wait (±filter) Yes Yes

Notes:

1. The synchronous remote wait operation is implemented through a pole of the remote queue,
so the actual wait time is a multiple of the poll time

2. ¹The MQSeries Everyplace MQSeries Bridge supplied with MQSeries Everyplace Version 1.0
only supports the ’put’ operation.

Queue managers can optionally load applications (classes) immediately after initiation;
similarly they can terminate applications on shutdown. Queue managers raise events to
reflect status or error; by default these appear in the event log.

Administration
Administration provides facilities to configure and manage MQSeries Everyplace
resources such as queues and connections. Message-related functions are regarded as
the responsibility of applications. Administration is enabled through an interface that
handles the generation and receipt of administrative messages and is designed so that
local and remote administration is handled in an identical manner. Requests are sent to
the administration queue of the target queue manager and replies may be received if
required. Any local or remote MQSeries Everyplace application program can create and
process administration messages directly or indirectly through helper methods.

24 MQSeries Everyplace Introduction

Administration messages can also be generated indirectly through MQSeries
Everyplace Explorer8, a management tool that provides a graphical user interface for
system administration.

The administration queue does not understand how to perform the administration of
individual resources; this knowledge is encapsulated in each resource and its
corresponding administration message.

Administration messages
Administration messages extend the base MQSeries Everyplace message
object.Table 11 lists the message classes provided for administration of MQSeries
Everyplace resources. These base administration messages can be sub-classed to
provide for the administration for other objects; for example a different type of queue
could be managed using a subclass of MQeQueueAdminMsg. The MQSeries
Everyplace bridge to MQSeries uses subclasses of the MQeAdminMsg in this way.

Table 11. Administration message classes

Administration message class Use

MQeAdminMsg Abstract class used as the basis of all
administration messages

MQeQueueManagerAdminMsg Administration of queue managers

MQeQueueAdminMsg Administration of local queues

MQeRemoteQueueAdminMsg Administration of remote queues

MQeAdminQueueAdminMsg Administration of the administration queue

MQeHomeServerQueueAdminMsg Administration of home server queues

MQeStoreAndForwardQueueAdminMsg Administration of store and forward queues

MQeConnectionAdminMsg Administration od connections between queue
managers

MQeClientConnectionAdminMsg Administration of a bridge client connection object,
used to connect to MQS

MQeListenerAdminMSg Administration of a bridge transmissuin queue
listener object, used to collect messages from
MQS

MQeBridgeAdminMsg Administration of a bridge to MQS

MQeMQBridgesAdminMsg Administration of a list of MQ bridges

MQeMQQMgrProxyAdminMsg Administration of a bridge representation of an
MQSeries queue manager

MQeMQBridgeQueueAdminMsg Administration of an MQ bridge queue

The structure of an administration message depends upon its particular class, that is
the nature of the resource that it is managing, and the details of the operation to be
performed on that resource. Generically however, the administration messages are

8. MQSeries Everyplace Explorer is not included in Version 1.0 but will be available from the MQSeries software download site on the
World Wide Web (http://www-4.ibm.com/software/ts/MQSeries/).

Chapter 5. Product concepts 25

structured as shown in Table 12:

Table 12. Generic structure of an administration message

Level 1 fields Level 2 and below fields Use

Admin_Action Create, delete, inquire, etc.

Admin_Errors Fields object parent

Multiple fields Detailed information on a
per-error basis

Admin_MaxAttempts Maximum number of times the
administration action should be
attempted

Admin_Parameters Fields object parent

Resource Name of resource to be
managed

Multiple fields Detailed parameter data
specific to the message class
and action

Admin_Reason Text message indicating
reason for failure

Msg_ReplyToQ Name of the queue to which
the response should be sent

Msg_ReplyToQMgr Name of the queue manager to
which the response should be
sent

Admin_RC Numeric return code indicating
the outcome

Msg_Style Command or request/reply

Admin_TargetQMgr Name of the queue manager
owning the target resource

Three styles of administration message are supported, namely commands (datagrams)
that indicate an administration action that does not require a reply, requests that require
a reply, and the replies themselves. The reply is constructed from a copy of the original
message; thus additional fields can be added by the sender for use by the receiver.

In addition to the basic administration message support, helper classes that
encapsulate the message construction and interpretation of the reply are also provided
for the most common administration operations . These classes can optionally supply
user dialogues, which makes them useful for building simple administration tools.9

Selective administration
Access to administration can be controlled through the authenticator on the
administration queue. For local applications the supplied authenticator considers them

9. These classes are not included in Version 1.0 but will be available from the MQSeries software download site on the World Wide
Web (http://www-4.ibm.com/software/ts/MQSeries/).

26 MQSeries Everyplace Introduction

all to represent the same local user and therefore either allows or disallows
administration for them all. Remote administration applications are controlled by the
invocation of the authenticator on the channel before any administration messages flow.
Different remote users can thus be distinguished and separately enabled or disabled. In
all cases for any user, administration is enabled or disabled in its entirety. If a finer level
of administration control is required, for example certain administration users are to be
given access to some queues and not others, then additional programming is required.
A more sophisticated authenticator can keep track of permissions associated with user
identities, and administration messages can be subsequently be processed on the basis
of these permissions (see security section). Rules associated with queues can also be
exploited to allow or disallow actions in a similar manner (see “Rules” on page 38).

Monitoring and related actions
Administration is often concerned with more than object creation and modification, for
example with monitoring the state of the system and with the handling of error
situations; such as informing an operator when a queue is almost full, or by taking
appropriate action when a message arrives that is too large for its target queue. These
aspects are handled in MQSeries Everyplace through the use of rules, that is classes
that are invoked whenever objects significantly change their status or when certain
types of error situations arise. A default set of rules classes is provided with MQSeries
Everyplace but typically these are replaced with custom classes (see “Rules” on
page 38).

Dynamic channels
MQSeries Everyplace communicates between devices and/or gateway queue managers
through logical links known as dynamic channels. These support bidirectional flows and
are established by the queue manager as required. Asynchronous and synchronous
messaging both use the same channels and the protocol used is unique to MQSeries
Everyplace . By contrast MQSeries usually uses client channels for its synchronous
traffic and a pair of message channels for bidirectional asynchronous messaging.
MQSeries cluster message channels have some similar characteristics to the MQSeries
Everyplace dynamic channels, but there are a number of differences.

A dynamic channel is a logical connection between two queue managers, established
for the purpose of sending or receiving data. Multiple concurrent channels can exist,
even between the same parties. They have characteristics, for example authentication,
cryptography, compression, and the transport protocol used. These characteristics are
pluggable, (different versions may be used on different channels) and consequently
each channel has its own quality of service attributes of:

v Authenticator: either null or an authenticator object that can perform user or channel
authentication

v Channel: the class providing the transport services.

v Compressor: either null or a compressor object that can perform data compression
and decompression

v Cryptor: either null or a cryptor object that can perform encryption and decryption

v Destination: the target for this channel, for example SERVER.XYZ.COM

Chapter 5. Product concepts 27

The authenticator is typically only used when setting up the channel. Compressors and
cryptors are typically used on all flows.

The simplest type of cryptor is MQeXorCryptor, which encrypts the data being sent by
performing an exclusive-OR of the data. This encryption is not secure, but makes the
data unviewable. In contrast, MQe3DESCryptor implements triple DES. The simplest
type of compressor is the MQeRleCompressor, which compresses the data by replacing
repeated characters with a count. Other authenticators, compressors, and cryptors are
supplied, see Table 13 on page 33.

Channel establishment uses protocol adapter specifications to determine the links and
protocols to be used for a particular channel. At each intermediate node the channel
definitions are searched to resolve the addressing needed for the next link. Where no
onwards definition exists, the channel ends and any messages flowing through are
passed to the queue manager at that point.

Channels are not directly visible to applications or administrators and are established by
the queue manager as required. Channels link queue managers together and their
characteristics are negotiated and renegotiated by MQSeries Everyplace dependent
upon the information to be flowed. Transporters are the MQSeries Everyplace
components that exploit channels to provide queue level communication. Again, these
are not visible to the application programmer or administrator.

When assured messaging is demanded MQSeries Everyplace delivers messages to the
application once, and once-only. It achieves this by ensuring that a message has
successfully passed from one queue manager to another, and been acknowledged,
before deleting the copy at the transmitting end. In the event of a communications
failure, if an acknowledgment has not been received, a message may be retransmitted
(once-only delivery does not imply once-only transmission) but duplicates are not
delivered.

Adapters
Adapters are used to map MQSeries Everyplace to device interfaces. Channels exploit
the protocol adapters to run over HTTP, native TCP/IP, and other protocols. Similarly
queues exploit fields storage adapters to interface to a storage subsystem such as
memory or the file system.Adapters provide a mechanism for MQSeries Everyplace to
both extend its device support and to allow versioning.

A file descriptor is a string that is used to identify, load and activate an adapter.

Dialup connection management
Dialup networking support for devices is handled by the device operating system. When
MQSeries Everyplace on a disconnected device attempts to use the network, for
example because a message must be sent, then if the network stack is not active, the
operating system itself initiates remote access services (RAS). Typically this takes the
form of a panel displayed to the user, offering a dialup connection profile. Until the
connection is established, the operating system is in control. Consequently the device

28 MQSeries Everyplace Introduction

user must ensure that appropriate dialup connection profiles are available for the
operating system to use. There is therefore no explicit support needed for dialup
networking in MQSeries Everyplace device implementations.

Trace
Trace is enabled by running an independent program that performs tracing actions.
Embedded within MQSeries Everyplace are calls to trace for information, warning and
error situations with system and user variants. Applications may also call trace directly
and may add new messages or modify existing trace messages. The supplied sample
trace program allows selected messages to be displayed, printed and/or directed to the
event log. Other trace programs can be written with additional capabilities or be
designed to format and deliver their output in other ways.

Most MQSeries Everyplace exceptions are passed to the application for handling, and
the application exception handler may also route these to trace.

Event log
MQSeries Everyplace provides event log mechanisms and interfaces that may be used
to log status, queue manager started for example. Logging can be initiated and by
default written out to a file, however this can be intercepted and directed elsewhere.
The MQSeries Everyplace event log does not log message data and cannot be used to
recover messages or queues.

MQSeries Everyplace networks
MQSeries Everyplace networks are connected devices and gateways. They can span
multiple physical networks and route messages between them. In general they provide
synchronous and asynchronous access to queues with a programming model that is
independent of queue location.

Configurations and scalability
A selection of basic MQSeries Everyplace network topologies is shown inFigure 5 on
page 30. For these purposes it is assumed that each is configured with both
synchronous and asynchronous communication capabilities.

The simplest case is where a standalone device supports synchronous inter-application
communication through local queues, as in (a) above. More interesting however is case
(b), illustrating a peer-to-peer network. This requires both devices to speak the same
communications protocol, and at least one of the devices to be configured with listening
capabilities, so that it can respond to the other attempting to make contact. Obviously in
this simple case communication is possible only when both are available on the same
network. Asynchronous messaging allows applications to run when the devices are not
connected, synchronous messaging is possible only when the devices are actually
connected.

Chapter 5. Product concepts 29

With three devices there are many more possibilities. Either one can play the role of a
linking device, or all three can be interconnected. If they are configured to interchange
messages to each other on a peer-to-peer basis then the considerations just given
apply. If they communicate through a third device then there is much greater flexibility.
The two communication devices do not need to speak the same communications
protocol, each must speak one that is understood by the bridging device. Moreover
asynchronous connectivity allows messages to flow if the sender and receiver are never
on the network at the same time (provided each is on the network at a time when the
linking device is also available). Synchronous communication requires all three devices
to be available at the same time. For devices that are frequently disconnected, a
configuration that goes through a third node of some kind is very appropriate, provided
that the intermediary is generally available.

In practice devices are likely to be linked by a gateway three examples of which are
shown in Figure 5(d). The preference for a gateway as a link node is based on the fact
that gateways support multiple concurrent incoming connection requests. The first
configuration shown is most likely, although the second and third are feasible, if
somewhat unusual. In the third configuration note that only one route can be configured
for a particular remote queue manager and so, although two routes appear to exist, one
must be chosen.

For larger networks a number of gateways can be used, each gateway supporting a
number of devices. The gateways can be interconnected in any way, but if full
interconnection is defined then no routes between devices involve more than two
gateways. Figure 6 on page 31 shows an example of a larger network.

Figure 5. Simple MQSeries Everyplace networks

30 MQSeries Everyplace Introduction

Asynchronous message delivery
When a message is asynchronously put to a remote queue, the message object is
logically placed on the backing store associated with the local definition of that queue,
along with its destination queue manager and queue names, and with the compressor,
authenticator and cryptor characteristics that match the target destination of the
message. The object’s dump method is called as the object is saved to persistent
storage in a secure format, as defined by its destination queue. The queue manager
controls message delivery. It identifies (or establishes) a channel with appropriate
characteristics to the queue manager for the next hop, then creates (or reuses) a
transporter to the target queue. The transporter dumps the object and transmits the
resulting byte string. Note that the target queue manager and queue name are not part
of that message flow.

If appropriate, the message is encrypted and compressed over the channel. If it has
reached its destination queue manager, it is decrypted and uncompressed. A new
message object is created, using the restore method of that object class, with the
resultant object being placed on the destination queue. If the message has not reached
its destination queue manager, it is decrypted and uncompressed, then placed on a
store and forward queue with the appropriate characteristics for onwards transmission.
In both cases it is held on its respective queue in a secure format, as defined by its
destination queue.

A characteristic of asynchronous message delivery is that messages are passed to the
queue manager at intermediate hops, being queued for onwards transmission.
Messages are taken off the intermediate queues firstly in priority order, then in
timestamp sequence.

Synchronous message delivery
Synchronous message delivery is similar to the asynchronous case described above,
but the queue manager involvement in intermediate hops takes place at a much lower
level, involving the transporter and channels. A channel is established end-to-end, using

Figure 6. A star MQSeries Everyplace network

Chapter 5. Product concepts 31

the adapters defined in the protocol specifications at each intermediate node, to identify
the next link. At the end of the last link, where no further relevant file descriptors exist,
the message gets passed to the higher layers of the queue manager for processing.
Thus the sending node does not queue the message but passes it along the channel,
through intermediate hops, and then gives it to the destination queue manager to place
it on the target queue.

The link into MQSeries uses a bridge queue at the gateway, which transforms the
message to an MQSeries format. This mechanism means that synchronous MQSeries
Everyplace -style messaging from a device is possible to MQSeries, with the dynamic
channel terminating at the gateway. The message is delivered in real time from the
gateway, through a client channel, to an MQSeries server. From there its destination
may require it to be routed asynchronously along MQSeries message channels

In a similar manner a device capable of only synchronous messaging can send
messages to an asynchronous MQSeries Everyplace queue, provided that a suitable
intermediary is available.

Security
MQSeries Everyplace provides an integrated set of security features enabling the
protection of message data both when held locally and when it is being transferred.

MQSeries Everyplace security features provide protection in three different categories:

v Local security - local protection of message (and other) data

v Queue-based security - protection of messages between initiating queue manager
and target queue

v Message-level security - message level protection of messages between initiator and
recipient

MQSeries Everyplace local and message-level security are used internally by MQSeries
Everyplace , but are also made available to MQSeries Everyplace applications.
MQSeries Everyplace queue-based security is an internal service.

The MQSeries Everyplace security features of all three categories protect message
data by use of an attribute (MQeAttribute or descendent). Depending on the category,
the attribute is applied either explicitly or implicitly.

Each attribute can contain the following objects:

v Authenticator

v Cryptor

v Compressor

v Key

v Target Entity Name

These objects are used differently, depending on the category of MQSeries Everyplace
security feature, but in all cases, the MQSeries Everyplace security feature’s protection

32 MQSeries Everyplace Introduction

is applied when the attribute attached to a message object is invoked. This occurs
when an MQSeries Everyplace message’s ’dump’ method is invoked (when the
attribute’s ’ encodeData’ method is used, for example to encrypt and compress the
message data). The MQSeries Everyplace security feature’s unprotect occurs when the
MQSeries Everyplace message’s ’restore’ method is invoked (when the attribute’s
’decodeData’ method is used, for example to decompress and decrypt the message
data).

The algorithms supported by MQSeries Everyplace Version 1.0 for authentication,
encryption and compression are detailed inTable 13.

Table 13. Authentication, encryption and compression support

Function Algorithm

Authentication Mini Certificate based, (derived from WAP forum WTLS
Mini Certificate)

Validation Windows NT/2000 identity

Compression LZW

RLE

Encryption Triple DES

DES

MARS

RC4

RC6

XOR

MQSeries Everyplace local security
Local security protects MQSeries Everyplace message (or MQeFields or MQeFields
descendent) data locally. This is achieved by creating an attribute with an appropriate
symmetric cryptor and compressor, creating and setting up an appropriate ’key’ (by
providing a password or passphrase) and explicitly attaching the key to the attribute,
and then attaching the attribute to the MQSeries Everyplace message. MQSeries
Everyplace provides MQeLocalSecure class to assist with the setup of local security,
but in all cases it is the responsibility of the local security user (MQSeries Everyplace
internally or an MQSeries Everyplace application) to set up an appropriate attribute and
manage the password or passphrase key.

MQSeries Everyplace queue-based security
Queue-based security can be applied to synchronous and asynchronous messages.

Synchronous queue-based security
Use of synchronous queue-based security allows an application to leave all message
security considerations to MQSeries Everyplace . Queues have authentication,
encryption and compression characteristics and these are used to determine the level
of security needed to protect message flows (as well as for persistent storage).

Chapter 5. Product concepts 33

When a message is to be sent, the security characteristics of the target queue are
retrieved from the local registry. If these are not present , the queue manager attempts
to discover the target characteristics from the target queue manager and caches them
for subsequent reuse. If a channel exists to that queue manager it is used; if not, a new
channel is created. The target queue attributes are retrieved.

Based on the quality of service required, the channel attributes to the target queue
manager are dynamically changed. This is subject to any rules that have been
established. Typically a rule allows an upgrade in the level of security, (for example
from no protection to weak protection, or from weak to strong). If the channel cannot be
upgraded, or the security level is deemed excessive (for example no protection is
required and the available channel implements strong protection) then a new channel is
created. A pool of channels exists, reused where possible, with dynamically changing
characteristics according to the demands of the traffic. Channels are automatically
destroyed when not required. Messages are always placed on queues at the security
level defined by the target queue characteristics.

Authentication takes place at the channel level, keeping the overhead per message to a
minimum. Synchronous queue-based security is also typically used with symmetric
cryptors since this results in fast encryption/decryption. However, in these symmetric
cases, MQSeries Everyplace uses RSA asymmetric encryption initially, to protect the
flows necessary to establish a shared key at the sender and receiver. After that point
symmetric encryption is used to protect the confidentiality of the data flowed. MQSeries
Everyplace makes the cryptographic attack of this data more difficult by changing the
key dynamically on each channel flow. MQSeries Everyplace also ensures the integrity
of the data flowed by generating and appending the digest to the data before sending,
and regenerating and validating it on receipt.

Asynchronous queue-based security
Asynchronous messaging differs from the synchronous case described above in as far
as there is no guarantee that the target queue is accessible at the time the putMessage
is executed. In this case the queue manager cannot send the message immediately
and places it on the transmission queue; however it is encrypted in accordance with its
target queue characteristics. When it can be transmitted, it is decrypted, and then sent
down a channel with suitable characteristics. Thus messages are always protected,
even while awaiting transmission. Asynchronous messaging requires a remote queue
definition - otherwise the target queue characteristics cannot be determined.

In the asynchronous case, authentication is not possible between originator and target.
Where authentication is important, for example for a recipient to determine the
message’s originator (to determine acceptance or establish non-repudiation) or for an
initiator to ensure that message can only be processed by the intended recipient,
message-level security must be used.

Queue-based security can be used at the same time as message-level security, but it is
not necessary, since message data is already protected.

34 MQSeries Everyplace Introduction

Message-level Security
Message-level security provides the protection of message data between an initiating
and receiving MQSeries Everyplace application.

Message-level security is an application layer service that requires the initiating
MQSeries Everyplace application to set up a message-level attribute and provide it
when using putMessage to put the message to a target queue. The receiving
application must set up and pass a matching message-level attribute to the receiving
queue manager so that the attribute is available when the application invokes
getMessage to get the message from the target queue.

Like local security, message-level security exploits the application of an attribute on a
message object. The initiating application’s queue manager handles the putMessage
with the ’dump’ method, which uses the attribute’s ’encodeData’ method to protect the
message data. The receiving application’s queue manager handles the application’s
getMessage with the ’restore’ method which uses the attribute’s ’decodeData’ method to
recover the original message data.

MQSeries Everyplace supplies two alternative attributes for Message-level security:

MQeMAttribute
This is used for business-to-business communications where mutual trust is
tightly managed in the application layer and requires no trusted third party. All
available MQSeries Everyplace symmetric cryptor and compressor choices can
be used. Like local security, the attribute’s key must be preset before it is
provided with putMessage or getMesssage. MQeAttribute provides a simple
and powerful method for message-level protection enabling the use of strong
encryption to protect message confidentiality, without the overhead of any
public key infrastructure (PKI).

MQeMTrustAttribute
This attribute provides a more advanced solution using digital signatures and
exploiting the default public key infrastructure. It uses ISO9796 digital
signature/validation to enable the receiving application to establish proof that
the message comes from the purported sender. The supplied attribute’s cryptor
is used to protect message confidentiality. SHA1 digest guarantees message
integrity and RSA encryption/decryption ensures that the message can only be
restored by the intended recipient. As with MQeMAttribute, all available
MQSeries Everyplace symmetric cryptor and compressor choices can be used.
Chosen for size optimization, the certificates used are mini-certificates based
on the WTLS Certificate proposed by the WAP forum WTLS Specification. The
mutual availability of the information necessary to authenticate (validate
signatures) and encrypt/decrypt is provided through the MQSeries Everyplace
default infrastructure.

A typical MQeMTrustAttribute protected message has the format:

RSA-enc{SymKey}, SymKey-enc {Data, DataDigest, DataSignature}

where:

RSA-enc: RSA encrypted with the intended recipient’s public key

Chapter 5. Product concepts 35

SymKey generated pseudo-random symmetric key

SymKey-enc symmetrically encrypted with the SymKey

Data message data

DataDigest digest of message data

DigSignature initiator’s digital signature of message data

Message-level security is independent of queue-level security.

The registry
The registry is the primary store for queue manager-related information; one exists for
each queue manager. Every queue manager uses the registry to hold its:

v Queue manager configuration data

v Queue definitions

v Remote queue definitions

v Remote queue manager definitions

v User data (including configuration-dependent security information)

Access to the registry is normally restricted to the legitimate queue manager user and is
PIN protected, but a configurable option enables this to be bypassed by users more
concerned with footprint size than security.

MQSeries Everyplace Authenticatable entities
Queue-based security, which uses mini-certificate based mutual authentication, and
message-level protection, which uses digital signature, have triggered the concept of
’authenticatable entity’. In the case of mutual authentication it is normal to think about
the authentication between two users (people), but in general, messaging has no
concept of a user. Usually this concept is managed at the application level, that is, by
the user of messaging services. MQSeries Everyplace deliberately abstracts the
concept of ’target of authentication’ from user to ’authenticatable entity’. This does not
exclude the possibility of authenticatable entities being people, but this would be an
application selected mapping. Internally, MQSeries Everyplace defines all queue
managers that can either originate or be the target of mini-certificate dependent
services as an authenticatable entity. In addition, MQSeries Everyplace also defines
queues defined to use mini-certificate based authenticators to be an authenticatable
entity. So queue managers that support these services may have one authenticatable
entity, the queue manager, or a set of authenticatable entities, the queue manager and
every queue that uses certificate based authenticator.

Private Registry and credentials
To be useful, every authenticatable entity needs its own credentials. This provides two
challenges. Firstly how to execute registration to get the credentials, and secondly
where to manage the credentials in a secure manner. Classically, these challenges are
more difficult to solve than the underlying cryptographic techniques. MQSeries
Everyplace provides default services that can be used to enable authenticatable entities
to perform auto-registration, private registry (a descendent of base registry) to enable

36 MQSeries Everyplace Introduction

secure management of an authenticatable entity’s private credentials, and public
registry (also a descendent of base registry) to manage set of public credentials. The
private registry provides base registry with many of the qualities of a secure or
cryptographic token, for example, it can be a secure repository for public objects like
mini certificates, and private objects like private keys. It provides a mechanism to allow
only the authorized user to access the private objects. It provides support for services
(for example digital signature, RSA decryption) in such a way that the private objects
never leave the private registry. By providing a common interface, it hides the
underlying device support, which is currently is restricted to the local file system, but
may well be extended to map to portable tokens in the future.

Auto-registration
MQSeries Everyplace provides default services that support auto-registration. These
services are automatically triggered when an authenticatable entity is configured, for
example when a queue manager is started or when a new queue is defined. In both
cases registration is triggered and new credentials are created and stored in the
authenticatable entity’s private registry. Auto-registration steps include generating a new
RSA key pair, protecting and saving the private key in the private registry; and
packaging the public key in a ’new certificate’ request to the default mini certificate
server. Assuming the mini certificate server is configured and available, it returns the
authenticatable entity’s new mini certificate, along with its own mini certificate and
these, together with the protected private key, are stored in the authenticatable entity’s
private registry as its new credentials. While auto-registration provides a simple
mechanism to establish an authenticatable entity’s credentials, for message-level
protection (MqeMTrustAttribute, see above), access to the intended recipient’s public
key (mini certificate) is also required.

Public registry and certificate replication
MQSeries Everyplace provides default services that enable the sharing of
authenticatable entity public credentials (mini certificates) between MQSeries
Everyplace components. These are a prerequisite for MQeMTrust based message-level
security. MQSeries Everyplace public registry provides a publicly accessible repository
for mini certificates. This is analogous to the personal telephone directory service on a
mobile phone, the difference being that, instead of phone numbers, it is a set of mini
certificates of the authenticatable entities that are the most frequently contacted. The
public registry is not purely passive in its services. If accessed to provide a mini
certificate that it does not hold, and if configured with a valid home server component,
the public registry automatically attempts to fetch the requested mini certificate from the
public registry of the home server. These services can be used to provide an intelligent
automated mini-certificate replication service, that facilitates the availability of the right
mini certificate at the right time.

Application use of registry services
While the MQSeries Everyplace queue manager is designed to exploit the advantages
of using private and public registry services, access to these services is not restricted.
MQSeries Everyplace solutions may wish to define and manage their own
authenticatable entities, for example users. Private-registry services can then be used
to auto-register and manage the credentials of the new authenticatable entities, and
public-registry services to make the public credentials available where needed. All

Chapter 5. Product concepts 37

registered authenticatable entities can be used as the initiator or recipient of
message-level services protected using MQeMTrustAttribute

Default mini certificate issuance service
MQSeries Everyplace provides a default mini-certificate issuance service that can be
configured to satisfy private-registry auto-registration requests. With the tools provided
with MQSeries Everyplace , a solution can setup and manage a mini-certificate
issuance service to issue mini certificates to a carefully controlled set of entity names.
The characteristics of this issuance service are:

v Management of the set of registered authenticatable entities

v Mini-certificate issuance (mini certificate based on WAP WTLS mini certificate)

v Mini Certificate Repository management

The tools provided with MQSeries Everyplace enable a mini-certificate issuance service
administrator to authorize mini-certificate issuance to a given entity by registering its
entity name and registered address and defining a one-time-use certificate request PIN.
This is normally done after offline checking has validated the authenticity of the
requestor. The certificate request PIN is posted to the intended user (for example in a
similar way to the way that bank card PINs are posted to users when a new bank card
is issued). The user of the private registry (for example the MQSeries Everyplace
Application or MQSeries Everyplace queue manager) can then be configured to provide
this certificate request PIN at startup time. When the private registry triggers
auto-registration, the mini-certificate issuance service validates the resulting new
certificate request’ (based on a match of the presented entity name and certificate
request PIN with their preregistered values), issues the new mini certificate and resets
the registered certificate request PIN so that it cannot be reused. All auto-registration
new mini-certificate requests are processed on a secure channel.

The set of mini certificates issued by a mini-certificate issuance service is held in the
issuance service’s own registry. When a mini certificate is reissued (for example as the
result of expiry) then the expired mini certificate is archived.

The security interface
An optional interface is provided that may be implemented by a custom security
manager. The methods allow the security manager to authorize or reject requests
associated with:

v Addition or removal of class aliases

v Definition of adapters

v Mapping of file descriptors

v Processing of channel commands

Configuration and customization

Rules
Rules are Java classes that are used to customize the behavior of MQSeries
Everyplace when various state changes occur. Default rules are provided where

38 MQSeries Everyplace Introduction

necessary, but these may be replaced with application- or installation-specific rules to
meet customer requirements. The rule types supported differ in how they are triggered -
not what they can do; rules contain logic and can therefore perform a wide range of
functions.

Attribute rules
This rule class is given control whenever change of state is attempted, for example, a
change of:

v Authenticator

v Compressor

v Cryptor

The rule would normally allow or disallow the change.

MQSeries bridge rules
These rules classes are given control when the MQSeries Everyplace to MQSeries
bridge code has a change of state. There is a separate bridge rule class to determine
each of the following:

v What to do with a message when a listener cannot deliver it onto MQSeries
Everyplace , when it is coming from MQSeries. For instance because the message is
too big, or the queue does not exist.

v The state bridge administered objects should start in once the server is instantiated

v What to do when the bridge finds something wrong with the Sync Q on MQSeries
(the persistent store used for crash recovery). The default rule just displays the
problem.

v How to convert an MQSeries Everyplace message to an MQ message, and
vice-versa. Transformers to do message conversion between MQSeries Everyplace
and MQ messages are not derived from any MQeRule classes, instead they must
implement the MQeTransformerInterface interface. Apart from this, transformers act
like rules and are invoked when a message requires format conversion.

RAS dialer rules
This rule class is given control when the RAS dialer has a change of state, for example:

v What to do if the number to be called does not connect

v What to do once an error threshold is exceeded

v Dialling is attempted and only certain types of connections should be used, based on
time of day. For example, only use the telephone if off-peak

Queue rules
This rule class is given control whenever a change of state of the associated queue
occurs, for example:

v Adding a message to a queue. For example to see if a threshold is exceeded
(number of messages, size of message, invalid priority)

v Queue characteristics assigned or changed

v Queue is opened or closed

v Queue is to be deleted

Chapter 5. Product concepts 39

Queue manager rules
This rule class is given control whenever a change of state of the queue manager
occurs, for example:

v Queue manager is opened. For example, start a background timer thread running to
allow timed actions to occur

v Queue manager is closed. For example terminate the background timer thread

v A new queue is added

Connection styles
MQSeries Everyplace can support client-server10 and/or peer-to-peer operation. A client
is able to initiate communication with a server; a server is only able to respond to the
requests initiated by a client. In peer-to-peer operation, the two peers can initiate flows
in either direction. These connection styles require different components of MQSeries
Everyplace to be available and active. The components involved are:

v Channel listener: that listens for incoming connection requests.

v Channel manager: that supports logical multiple concurrent communication pipes
between end points.

v Queue manager: that supports applications through the provision of messaging and
queuing capabilities.

Table 14 shows the relationship between these components and the connection style.
The client/server connection style describes the situation where MQSeries Everyplace
can operate in either client or server mode. The servlet option describes the case
where MQSeries Everyplace is configured as an HTTP servlet with the HTTP server
itself responsible for listening for incoming connection requests.

Table 14. Connection styles

Queue manager Channel manager Channel listener

Client Yes

Client/server Yes Yes Yes

Peer Yes

Server Yes Yes Yes

Servlet Yes Yes

Use of an MQSeries Everyplace channel manager or MQSeries Everyplace
channel listener determines, for licensing purposes, that an MQSeries Everyplace
instance is a gateway.

MQSeries Everyplace applications are not directly aware of the connection style used
by the queue managers. However style is significant in that it affects what resources

10. In this section the terms ’client and ’server’ reflect general usage, not their MQSeries semantics.

40 MQSeries Everyplace Introduction

are available to the parties, which queue managers can connect with other queue
managers, the MQSeries Everyplace footprint at a device or gateway, and which
connections can concurrently exist.

Peer-to-peer connection
A peer-to-peer channel includes the capabilities of a channel manager and a channel
listener for a single channel. When a peer-to-peer channel is created between two
queue managers, one queue manager must act as a listener and the other as the
connection initiator. A peer-to-peer connected queue manager can initiate multiple
peer-to-peer connections with other queue managers, but it can only respond to one
incoming connection request and then must wait for that peer-to-peer channel to be
closed before responding to another such request. Over any one peer-to-peer channel
the two participating queue managers can both initiate actions, thus for example,
applications on each queue manager can access queues on the other.

Peer-to-peer channels may not be usable through firewalls since the target of the
incoming connection request may not be acceptable to the firewall.

Client-server connection
Standard channels, used for the client-server connection style, have no listening
capabilities but depend on an independent listener at the server and the server requires
a channel manager to handle multiple concurrent channels. The client initiates the
connection request and the server responds. A server can usually handle multiple
incoming requests from clients. Over a standard channel the client has access to
resources on the server. If an application on the server needs synchronous access to
resources on the client, a second channel is required where the roles are reversed.
However, since standard channels are themselves bidirectional, messages destined for
a client from its server’s transmission queue, are delivered to it over the standard
(client-server) channel that it initiated.

A client can be a client to multiple servers simultaneously. Note that a channel manager
is not required to support this configuration because channel managers handle multiple
inbound channels.

The client-server connection style is generally suited for use through firewalls since the
target of the incoming connection is normally identified as being acceptable to the
firewall.

Multiple connection styles
A single queue manager can be capable of initiating either peer-to-peer or client/server
connections, and of responding either as a server or a peer. In this case, the peer
channel listener and the standard channel listener must have different port numbers.

Classes
MQSeries Everyplace provides a choice of classes for certain functions to allow the
behavior of MQSeries Everyplace to be customized to meet specific application
requirements. In some cases the interfaces to classes are documented so that
additional alternatives can be developed. Table 15 on page 42 summarizes the

Chapter 5. Product concepts 41

possibilities. Classes can be identified either explicitly or through the use of alias
names.

Table 15. Class options

Class Alternates supplied Interfaces documented

administration no yes

Authenticators yes no

Communications adapter yes yes

Communications style yes no

Compressors yes no

Cryptors yes no

Event log sample provided yes

Messages no yes

Queue storage yes no

Rules default classes provided yes

Trace samples provided yes

Application loading
When MQSeries Everyplace is configured to operate as a client (or peer) the initiating
application is responsible for loading any other applications into the JVM. Standard
Java facilities can be used for this, or the class loader included as part of MQSeries
Everyplace is available. Thus, multiple applications can run against a single queue
manager in the same JVM. Alternatively multiple JVMs can be used but each requires
its own queue manager and each of these must have a unique name.

When MQSeries Everyplace is configured as a server MQSeries Everyplace is itself the
initiating application. MQSeries Everyplace supports a preload class list and these
classes are loaded in turn, before the queue manager is itself loaded.

42 MQSeries Everyplace Introduction

Chapter 6. MQSeries Everyplace and MQSeries networks

Although an MQSeries Everyplace network can exist standalone, without the need for
an MQSeries server or network, in practice MQSeries Everyplace is often used to
complement an existing MQSeries installation, extending its reach to new platforms and
devices, or providing advanced capabilities such as queue or message based security
or synchronous messaging. From an MQSeries Everyplace application perspective,
MQSeries queues and queue managers can be regarded as simply additional remote
queues and queue managers. However, a number of functional restrictions exist
because these queues are not accessed directly through MQSeries Everyplace dynamic
channels and an MQSeries Everyplace queue manager, but require the involvement of
an MQSeries Everyplace gateway. The gateway can send messages to multiple
MQSeries queue managers either directly or indirectly, through MQSeries client
channels. If the connection is indirect, the messages pass through MQSeries client
channels to an intermediate MQSeries queue managers and then onwards through
MQSeries message channels to the target queue manager.

Messages from an MQSeries application destined for MQSeries Everyplace are
addressed to the MQSeries Everyplace queue manager and queue as normal, with the
MQSeries routing (remote queue manager definitions) defined such that the MQSeries
Everyplace messages arrive on specific MQSeries transmission queues. MQSeries
channels are not defined for the transmissions queues, as would be normal practice,
instead the MQSeries Everyplace gateway pulls the messages off these queues and
ensures their delivery to the MQSeries Everyplace destination. The number of
transmission queues to be used (that is the number of routes) is configurable and
should be set to reflect the volume of messages to be delivered.

Interface to MQSeries
The architecture of MQSeries Everyplace supports the concept of one or more optional
bridges between MQSeries Everyplace and other messaging systems.

In MQSeries Everyplace Version 1.0 only one such bridge is supported, the MQSeries
bridge that interfaces between MQSeries Everyplace and MQSeries networks. This
bridge uses the MQSeries Java client to interface to one or more MQSeries queue
managers, thereby allowing messages to flow from MQSeries Everyplace to MQSeries
and vice versa. In MQSeries Everyplace Version 1 one such bridge is recommended
per gateway, and each is associated with multiple MQSeries queue manager proxies
(definitions of MQSeries queue managers). A queue manager proxy definition is
required for each MQSeries queue manager that communicates with MQSeries
Everyplace . Each of these definitions can have one or more associated client
connection services, where each represents a connection to a single MQSeries queue
manager. Each of these may use a different MQSeries server connection to the queue
manager, and optionally a different set of properties such as user exits or ports.

A gateway client connection service may have a number of listeners that use that
gateway service to connect to the MQSeries queue manager and retrieve messages
from MQSeries to MQSeries Everyplace . A listener uses only one service to establish

© Copyright IBM Corp. 2000 43

its connection, with each listener connecting to a single transmission queue on the
MQSeries queue manager. Each listener moves messages from a single MQSeries
transmission queue to anywhere on the MQSeries Everyplace network, via its parent
gateway queue manager. Thus a single gateway queue manager can funnel multiple
MQSeries message sources into the MQSeries Everyplace network.

When moving messages in the other direction, from MQSeries Everyplace to MQSeries,
the gateway queue manager configures one or more bridge queue objects. Each bridge
queue object can connect to any queue manager directly and send its messages to the
target queue. In this way a gateway can dispatch MQSeries Everyplace messages
routed through a single MQSeries Everyplace queue manager to any MQSeries queue
manager, either directly or indirectly. The bridges object has the properties shown in
Table 16.

Table 16. Bridges object properties

Property Explanation

Bridgename List of bridge

Run state Status: running or stopped

The bridges object, and the other gateway objects can be started and stopped
independently of the MQSeries Everyplace queue manager. If such a gateway object is
started (or stopped) the action also applies to all of its children (all bridges, queue
manager proxies, client connections, and transmission queue listeners). The bridge
object has the properties shown in Table 17 on page 45.

Figure 7. MQSeries Bridge object hierarchy

44 MQSeries Everyplace Introduction

Table 17. Bridge properties

Property Explanation

Class Bridge class

Default transformer The default class (rule class) to be used to transform a message
from MQSeries Everyplace to MQSeries (or vice versa) if no other
transformer class has been associated with the destination queue

Heartbeat interval The basic timing unit to be used for performing actions against
bridge objects

Name Name of the bridge object

Run state Status: running or stopped

Start-up rule class Rule class used when the bridge object is started

MQSeries Queue Manager
Proxy Children

List of all Queue Manager Proxies that are owned by this bridge

In simple cases a default transformer (rule) can be used to handle all message
conversions. Additionally a transformer can be set on a per listener basis (for messages
from MQSeries to MQSeries Everyplace) that overrides this default. For more specific
control the transformation rules can be set on a target queue basis using bridge queue
definitions on the gateway; this applies both to MQSeries Everyplace and MQSeries
target queues.

The MQSeries queue manager proxy holds the properties specific to a single MQSeries
queue manager. The proxy properties are shown in Table 18.

Table 18. MQSeries queue manager proxy properties

Property Explanation

Class MQSeries queue manager proxy class

MQSeries host name IP host name used to create connections to the MQSeries queue
manager via the Java client classes. If not specified then the
MQSeries queue manager is assumed to be on the same machine
as the bridge and the Java bindings are used

MQSeries queue manager
proxy name

The name of the MQSeries queue manager

Name of owning bridge Name of the bridge object that owns this MQSeries queue manager
proxy

Run state Status: running or stopped

Start-up rule class Rule class used when the MQSeries queue manager object is
started

Client Connection Children List of all the Client Connection objects that are owned by this
proxy

The bridge client connection service definition holds the detailed information required to
make a connection to an MQSeries queue manager. The connection properties are
shown in Table 19 on page 46.

Chapter 6. MQSeries Everyplace and MQSeries networks 45

Table 19. Client connection service properties

Property Explanation

Adapter class Class to be used as the gateway adapter

CCSID* The integer MQSeries CCSID value to be used

Class Bridge client connection service class

Max connection idle time The max time a connection is allowed to be idle before being
terminated

MQSeries password* Password for use by the Java client

MQSeries port* IP port number used to create connections to the MQSeries queue
manager via the Java client classes. If not specified then the
MQSeries queue manager is assumed to be on the same machine
as the bridge and the Java bindings are used

MQSeries receive exit
class*

Used to match the receive exit used at the other end of the client
channel; the exit has an associated string to allow data to be
passed to the exit code

MQSeries security exit
class*

Used to match the security exit used at the other end of the client
channel; the exit has an associated string to allow data to be
passed to the exit code

MQSeries send exit class* Used to match the send exit used at the other end of the client
channel; the exit has an associated string to allow data to be
passed to the exit code

MQSeries user id* User id for use by the Java client

Client connection service
name

Name of the server connection channel on the MQSeries machine

Name of owning queue
manager proxy

The name of the owning queue manager proxy

Start-up rule class Rule class used when the bridge client connection service object is
started

Sync queue name The name of the MQSeries queue that is used by the bridge for
synchronisation purposes

Sync queue purger rules
class

The rules class to be used when a message is found on the sync
queue

Run state Status: running or stopped

Name of owning Bridge The name of the Bridge object that owns this client connection

MQ XmitQ Listener
Children

List of all the listener objects that use this client connection

*Details of these parameters can be found in the MQSeries Using Java documentation

The adapter class is used to send messages from MQSeries Everyplace to MQSeries
and the sync queue is used to keep track of the status of this process. Its contents are
used in recovery situations to guarantee assured messaging; after a normal shutdown
the queue is empty. It can be shared across multiple client connections and across
multiple bridge definitions provided that the receive, send and security exits are the
same. This queue can also be used to store state about messages moving from
MQSeries to MQSeries Everyplace , depending upon the listener properties in use. The

46 MQSeries Everyplace Introduction

sync queue purger rules class is used when a message is found on the sync queue,
indicating a failure of MQSeries Everyplace to confirm a message.

The maximum connection idle time is used to control the pool of Java client
connections maintained by the bridge client connection service to its MQSeries system.
When an MQSeries connection becomes idle, through lack of use, a timer is started
and the idle connection is discarded if the timer expires before the connection is
reused. Creation of MQSeries connections is an expensive operation and this process
ensures that they are efficiently reused without consuming excessive resources. A value
of zero indicates that a connection pool should not be used.

The listener object, which moves messages from MQSeries to MQSeries Everyplace ,
has the properties shown in Table 20.

Table 20. Listener properties

Property Explanation

Class Listener class

Dead letter queue name Queue used to hold messages from MQSeries to MQSeries
Everyplace that cannot be delivered

Listener state store adapter Class name of the adapter used to store state information

Listener name Name of the MQSeries XMIT queue supplying messages

Owning client connection
service name

Client connection service name

Run state Status: running or stopped

Start-up rule class Rule class used when the listener object is started

Transformer class Rule class used to determine the conversion of an MQSeries
message to MQSeries Everyplace

Undelivered message rule
class

Rule class used to determine action when messages from
MQSeries to MQSeries Everyplace cannot be delivered

Seconds wait for message An advanced option that can be used to control listener
performance in exceptional circumstances

The undelivered message rule class determines what action is taken when a message
from MQSeries to MQSeries Everyplace cannot be delivered. Typically it is placed in
the dead letter queue of the MQSeries system.

In order to provide assured delivery of messages, the listener class uses the listener
state store adapter to store state information, either on the MQSeries Everyplace
system or in the sync queue of the MQSeries system.

In order to complete the configuration of the bridge, both remote queue manager and
remote queue definitions are required. Remote queue manager definitions for remote
MQSeries Everyplace queue managers follow standard MQSeries Everyplace practice;
definitions for remote MQSeries queue managers have the channel definition set to null
to indicate that a normal MQSeries Everyplace dynamic channel is not used - instead a
connection is defined to the MQSeries queue manager as detailed above.

Chapter 6. MQSeries Everyplace and MQSeries networks 47

The remote queue definition for an MQSeries Everyplace queue again follows standard
practice; however for an MQSeries queue it is significantly changed from that used for
MQSeries Everyplace queues. Table 21 shows the properties for MQSeries remote
queues.

Table 21. MQSeries remote queue properties

Property Explanation

Alias names Alternative names for the queue

Authenticator Must be null

Class Object class

Client connection Name of the client connection service to be used

Compressor Must be null

Cryptor Must be null

Expiry Passed to transformer

Maximum message size Passed to the rules class

Mode Must be synchronous

MQ queue manager proxy Name of the MQSeries queue manager to which the message
should first be sent

MQSeries bridge Name of the bridge to convey the message to MQSeries

Name Name by which the remote MQSeries queue is known to MQSeries
Everyplace

Owning queue manager Queue manager owning the definition

Priority Priority to be used for messages (unless overridden by a message
value)

Remote MQSeries queue
name

Name of the remote MQSeries queue

Rule Rule class used for queue operations

Queue manager target MQSeries queue manager owning the queue

Transformer Name of the transformer class that converts the message from
MQSeries Everyplace format to MQSeries format

Type MQSeries bridge queue

The cryptor, authenticator, and compressor classes define a set of queue attributes that
dictate the level of security for any message passed to this queue.From the time on
MQSeries Everyplace that the message is sent initially, to the time when the message
is passed to the MQSeries bridge queue, the message is protected with at least the
queue level of security. These security levels are not applicable when the MQSeries
bridge queue passes the message to the MQSeries system, the security send and
receive exits on the client connection are used during this transfer. No checks are made
to make sure that the queue level of security is maintained.

MQSeries bridge queues are synchronous only; asynchronous applications must
therefore send messages to these queues via MQSeries Everyplace Store and
Forward/Home Server Queues, or via asynchronous remote queue definitions.

48 MQSeries Everyplace Introduction

Administration of the gateway is handled in the same way as the administration of a
normal MQSeries Everyplace queue manager - through the use of administration
messages. New classes of messages are defined as appropriate to the managed
object. Table 11 on page 25 shows the gateway administration message classes.

Message conversion
MQSeries Everyplace messages destined for MQSeries pass through the bridge and
are converted into an MQSeries format, using either a default transformer or one
specific to the target queue. A custom transformer offers much flexibility, for example it
would be good practice to use a subclass of the MQSeries Everyplace message object
class to represent messages of a particular type over the MQSeries Everyplace
network. At the gateway a transformer could convert the message into an MQSeries
format using whatever mapping between fields and MQSeries values that was
appropriate as well as add specific data to represent the significance of the subclass.

The default transformer from MQSeries Everyplace to MQSeries cannot take advantage
of subclass information but has been designed to be useful in a wide range of
situations. It has the following characteristics:

v Message flow from MQSeries Everyplace to MQS:

The default transformer from MQSeries Everyplace to MQSeries works in conjunction
with the MQeMQMsgObject class. This class is a representation of all the fields you
could find in an MQ message header. Using the MQeMQMsgObject, your application
can set values (priority for example) using set() methods. Thus, when an
MQeMQMsgObject (or an object derived from the MQeMQMsgObject class) is
passed through the default MQSeries Everyplace transformer, the default transformer
(MQeBaseTransformer) gets the values from inside the MQeMSMsgObject, and sets
the corresponding values in the MQSeries message (for example, the priority value is
copied over to the MQSeries message).

If the message being passed is not an MQeMQMsgObject, and is not derived from
the MQeMQMsgObject class, the whole MQSeries Everyplace message is copied
into the body of the MQSeries message (funneled). The message format field in the
MQSeries message header is set to indicate that the MQSeries message holds a
message in MQSeries Everyplace ″funneled″ format.

v MQSeries to MQSeries Everyplace message flow:

MQSeries messages for MQSeries Everyplace are handled similarly to those
travelling in the other direction. The default transformer inspects the message type
field of the MQSeries header and acts accordingly.

If the MQSeries header indicates a ″funneled″ MQSeries Everyplace message, then
the MQSeries message body is reconstituted as the original MQSeries Everyplace
message that is then posted to the MQSeries Everyplace network.

If the message is not a ″funneled″ MQSeries Everyplace message, then the
MQSeries message header content is extracted, and placed into an
MQeMQMsgObject object. The MQSeries message body is treated as a simple byte
field, and is also placed into the MQeMQMsgObject object. The MQeMQMsgObject
is then posted to the MQSeries Everyplace network.

Chapter 6. MQSeries Everyplace and MQSeries networks 49

This MQeMQMsgObject class and the default transformer behavior mean that :

v An MQSeries Everyplace message can travel across an MQSeries network to an
MQSeries Everyplace network without change.

v An MQSeries message can travel across an MQSeries Everyplace network to an
MQSeries network without change.

v An MQSeries Everyplace application can drive any existing MQSeries application
without the MQSeries application being changed.

Function
MQSeries remote queues are enabled for synchronous MQSeries Everyplace put
messaging operations, from an MQSeries Everyplace queue manager; all other
messaging operations must be asynchronous.

MQSeries Everyplace administration messages cannot be sent to an MQSeries queue
manager. The AdminQ does not exist there and the administration message format
differs from that used by MQSeries.

Compatibility
An MQSeries Everyplace network can exist independently of MQSeries, but in many
situations the two products together are needed to meet the application requirements.
MQSeries Everyplace can integrate into an existing MQSeries network with compatibility
including the aspects summarized below:

v Addressing and naming:

– identical addressing semantics using a queue manager/queue address

– Common use of an ASCII name space.

v Applications: MQSeries Everyplace is able to support existing MQSeries applications
without application change.

v Channels: MQSeries Everyplace gateways use MQSeries client channels.

v Message interchange and content:

– interchange of messages between MQSeries Everyplace and MQS

– message network invisibility (messages from either MQSeries Everyplace or
MQSeries can cross the other network without change).

– mutual support for identified fields in the MQSeries message header

– once-only assured message delivery

v Sample applications: Interoperability of the MQSeries Postcard and the MQSeries
Everyplace Postcard 11applications

MQSeries Everyplace Version 1 does not support all the functions of MQSeries. Apart
from environmental, operating system and communication considerations, some of the
more significant differences are detailed below. Note however that within MQSeries

11. This application is not included in Version 1.0 but is available from the MQSeries software download site on the World Wide Web
(http://www-4.ibm.com/software/ts/MQSeries/).

50 MQSeries Everyplace Introduction

Everyplace many application tasks can be achieved through alternative means using
MQSeries Everyplace features, or through the exploitation of sub-classing, the
replacement of the supplied classes or the exploitation of the rules, interfaces and other
customization features built into the product.

v No clustering support

v No distribution list support.

v No grouped/segmented messages.

v No load balancing/warm standby capabilities.

v No reference message.

v No report options.

v No shared queue support

v No triggering.

v No unit of work support, no XA-coordination

Scalability and performance characteristics are different.

Assured delivery
Although both MQSeries Everyplace and MQSeries offer assured delivery, they each
provide for different levels of assurance. When a message is travelling from MQSeries
Everyplace to MQSeries, the message transfer is only assured if the combination of
putMessage and confirmPutMessage is used (see “Queue manager operations” on
page 23). When a message is travelling from MQSeries to MQSeries Everyplace , the
transfer is assured only if the MQSeries message is defined as persistent.

Chapter 6. MQSeries Everyplace and MQSeries networks 51

52 MQSeries Everyplace Introduction

Chapter 7. Applications and utilities

Note: These applications and utilites are not included in Version 1.0 but will be
available from the MQSeries software download site on the World Wide Web
(http://www-4.ibm.com/software/ts/MQSeries/).

Postcard
Postcard is an MQSeries Everyplace application that may be used to validate the
operation of a standalone MQSeries Everyplace network or the inter-operation of an
MQSeries Everyplace and MQSeries networks. Postcard is a Java application that
allows text messages to be sent to a user at a remote queue manager. It inter-operates
with Postcard such that a Postcard message sent to an MQSeries target results in a
postcard being received, and vice versa.

There is also a C version of the MQSeries Everyplace Postcard application that runs on
PalmOS and can interoperate with the Java version.

MQSeries Everyplace Explorer
MQSeries Everyplace Explorer is a management tool, written in Java, that allows the
configuration and exploration of local and remote queue managers, queues and
messages. It uses the Microsoft® foundation classes to present a standard Windows
graphical user interface - but as a consequence it cannot execute on non-Windows
platforms . However it can be used to manage all MQSeries Everyplace queue
managers since it operates exclusively through the sending and receiving of
administration messages. It presents a two-pane view of an MQSeries Everyplace
network; a tree view of objects in the left hand pane and a list view of object details in
the right hand pane.

MQSeries Everyplace Explorer has the following capabilities:

v Display or modify queue manager properties

v Create, delete or modify connections and display their properties

v Create, delete or modify queues and display their properties and/or contents

v Browse or delete messages, display their properties and inspect their fields

v Send test messages

v Configure the MQSeries Everyplace bridge to MQSeries

MQSeries Everyplace Explorer typically uses an already configured queue manager and
can load other classes for execution. If no such queue manager exists, it creates one
with user-selected characteristics.

Multiple copies of the tool can be run on a single machine, with each running in its own
JVM. This arrangement allows the simulation of an MQSeries Everyplace network and
can be used to investigate and demonstrate MQSeries Everyplace networking and
operations.

© Copyright IBM Corp. 2000 53

54 MQSeries Everyplace Introduction

Chapter 8. Programming interfaces

The MQSeries Everyplace Systems Programming Interface (SPI) is the programming
interface to MQSeries Everyplace . Two implementations are available depending upon
the operating system. The Java version provides access to all MQSeries Everyplace
functions; the C interface in MQSeries Everyplace Version 1.0 only provides access to a
subset. The detailed classes, methods and procedures are detailed in the MQSeries
Everyplace Programming Reference; examples of MQSeries Everyplace programming
are given in the MQSeries Everyplace Programming Guide.

© Copyright IBM Corp. 2000 55

56 MQSeries Everyplace Introduction

Appendix. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The
materials at those Web sites are not part of the materials for this IBM product and use
of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000 57

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire
England
SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between us.

Trademarks
The following terms are trademarks of International Business machines Corporation in
the United States, or other countries, or both.

AIX AS/400 IBM MQSeries OS/390

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks of
others.

58 MQSeries Everyplace Introduction

Glossary

This glossary describes terms used in this book
and words used with other than their everyday
meaning. In some cases, a definition may not be
the only one applicable to a term, but it gives the
particular sense in which the word is used in this
book.

If you do not find the term you are looking for, see
the index or the IBM Dictionary of Computing,
New York:. McGraw-Hill, 1994.

Application Programming Interface (API). An
Application Programming Interface consists of the
functions and variables that programmers are
allowed to use in their applications.

asynchronous messaging. A method of
communicating between programs in which
programs place messages on message queues.
With asynchronous messaging, the sending
program proceeds with its own processing without
waiting for a reply to its message. Contrast with
synchronous messaging.

authenticator. A program that checks that
verifies the senders and receivers of messages.

bridge. An MQSeries Everyplace object that
allows messages to flow between MQSeries
Everyplace and other messaging systems,
including MQSeries.

channel. See dynamic channel and MQI
channell.

channel manager. An MQSeries Everyplace
object that supports logical multiple concurrent
communication pipes between end points.

class. A class is an encapsulated collection of
data and methods to operate on the data. A class
may be instantiated to produce an object that is
an instance of the class.

client. In MQSeries, a client is a run-time
component that provides access to queuing
services on a server for local user applications.

compressor. A program that compacts a
message to reduce the volume of data to be
transmitted.

cryptor. A program that encrypts a message to
provide security during transmission.

dynamic channel. A dynamic channel connects
MQSeries Everyplace devices and transfers
synchronous and asynchronous messages and
responses in a bidirectional manner.

encapsulation. Encapsulation is an
object-oriented programming technique that makes
an object’s data private or protected and allows
programmers to access and manipulate the data
only through method calls.

gateway. An MQSeries Everyplace gateway (or
server) is a computer running the MQSeries
Everyplace code including a channel manager.

Hypertext Markup Language (HTML). A
language used to define information that is to be
displayed on the World Wide Web.

instance. An instance is an object. When a class
is instantiated to produce an object, we say that
the object is an instance of the class.

interface. An interface is a class that contains
only abstract methods and no instance variables.
An interface provides a common set of methods
that can be implemented by subclasses of a
number of different classes.

Internet. The Internet is a cooperative public
network of shared information. Physically, the
Internet uses a subset of the total resources of all
the currently existing public telecommunication
networks. Technically, what distinguishes the
Internet as a cooperative public network is its use
of a set of protocols called TCP/IP (Transport
Control Protocol/Internet Protocol).

Java Developers Kit (JDK). A package of
software distributed by Sun Microsystems for Java
developers. It includes the Java interpreter, Java
classes and Java development tools: compiler,

© Copyright IBM Corp. 2000 59

debugger, disassembler, appletviewer, stub file
generator, and documentation generator.

Java Naming and Directory Service (JNDI). An
API specified in the Java programming language.
It provides naming and directory functions to
applications written in the Java programming
language.

Lightweight Directory Access Protocol
(LDAP). LDAP is a client-server protocol for
accessing a directory service.

message. In message queuing applications, a
message is a communication sent between
programs.

message queue. See queue

message queuing. A programming technique in
which each program within an application
communicates with the other programs by putting
messages on queues.

method. Method is the object-oriented
programming term for a function or procedure.

MQI channel. An MQI channel connects an
MQSeries client to a queue manager on a server
system and transfers MQI calls and responses in
a bidirectional manner.

MQSeries. MQSeries is a family of IBM licensed
programs that provide message queuing services.

object. (1) In Java, an object is an instance of a
class. A class models a group of things; an object
models a particular member of that group. (2) In
MQSeries, an object is a queue manager, a
queue, or a channel.

package. A package in Java is a way of giving a
piece of Java code access to a specific set of
classes. Java code that is part of a particular
package has access to all the classes in the
package and to all non-private methods and fields
in the classes.

personal digital addistant (PDA). A pocket
sized personal computer.

private. A private field is not visible outside its
own class.

protected. A protected field is visible only within
its own class, within a subclass, or within
packages of which the class is a part

public. A public class or interface is visible
everywhere. A public method or variable is visible
everywhere that its class is visible

queue. A queue is an MQSeries object. Message
queueing applications can put messages on, and
get messages from, a queue

queue manager. A queue manager is a system
program the provides message queuing services
to applications.

server. (1) An MQSeries Everyplace server is a
device that has an MQSeries Everyplace channel
manager configured. (2) An MQSeries server is a
queue manager that provides message queuing
services to client applications running on a remote
workstation. (3) More generally, a server is a
program that responds to requests for information
in the particular two-program information flow
model of client/server. (3) The computer on which
a server program runs.

servlet. A Java program which is designed to run
only on a web server.

subclass. A subclass is a class that extends
another. The subclass inherits the public and
protected methods and variables of its superclass.

superclass. A superclass is a class that is
extended by some other class. The superclass’s
public and protected methods and variables are
available to the subclass.

synchronous messaging. A method of
communicating between programs in which
programs place messages on message queues.
With synchronous messaging, the sending
program waits for a reply to its message before
resuming its own processing . Contrast with
asynchronous messaging.

60 MQSeries Everyplace Introduction

Transmission Control Protocol/Internet
Protocol (TCP/IP). A set of communication
protocols that support peer-to-peer connectivity
functions for both local and wide area networks.

Web. See World Wide Web.

Web browser. A program that formats and
displays information that is distributed on the
World Wide Web.

World Wide Web (Web). The World Wide Web
is an Internet service, based on a common set of
protocols, which allows a particularly configured
server computer to distribute documents across
the Internet in a standard way.

Glossary 61

62 MQSeries Everyplace Introduction

Bibliography

Related publications:

v MQSeries Everyplace Read Me First,
GC34–5862–00

v MQSeries Everyplace Programming Reference,
SC34–5846–00

v MQSeries Everyplace Programming Guide,
SC34–5845–00

v MQSeries An Introduction to Messaging and
Queuing, GC33-0805-01

v MQSeries for Windows NT V5R1 Quick
Beginnings, GC34-5389-00

© Copyright IBM Corp. 2000 63

64 MQSeries Everyplace Introduction

Index

A
about this book ix
adapters, MQSeries Everyplace 28
administration messages 25
administration utility 53
administration with MQSeries Everyplace 24
application, Postcard 53
applications 53
applications, loading 42
applications, MQSeries Everyplace 11
assured message delivery 51
asynchronous messaging 22, 31
attribute rules 39
audience ix
authenticatable entities 36
auto-registration 37

B
bridge, MQS 43
bridge object 44
bridges object 44

C
capabilities 11
certificate replication 37
channel listener 40
channel manager 40
channels, client 7, 13
channels, dynamic 7, 13, 27
classes, MQSeries Everyplace 41
client, MQSeries 6
client channels 7, 13
client-server connection 41
communications 40
compatibility with MQSeries 50
compression 32
concepts, product 13
configuration 38
configurations, MQSeries Everyplace 29
connection, client-server 41
connection, peer-to-peer 41
connection styles 40
connection styles, multiple 41
customer requirements 12
customization 38

D
description 1
Devices, MQSeries Everyplace 7, 13
dialup connection management 28
distributed messaging 5
dump data format 17
dynamic channels 7, 13, 27

E
encryption 32
entities, authenticatable 36
event logs 29

F
format of dump data 17

G
gateways, MQSeries Everyplace 7, 13

H
home server queues 19
hone server, MQSeries Everyplace 19
host messaging 5

I
interface, security 38
interface to MQSeries 43
interfaces, programming 55
issuance service for mini certificates 38

L
legal notices 57
listener object 47, 48
loading applications 42
local queues 18
local security 33

M
message conversion 49
message delivery, assured 51
message-level security 35
message objects 14
messages, administration 25
messaging, asynchronous 22, 31
messaging, MQSeries 5
messaging, synchronous 22, 31
mini certificate issuance service 38
mini certificates 36
monitoring 27
MQeAttribute 35
MQeMTrustAttribute 35
MQSeries, compatibility with 50
MQSeries, interface to 43
MQSeries bridge 43
MQSeries bridge queues 19
MQSeries bridge rules 39
MQSeries client 6
MQSeries Everyplace adapters 28
MQSeries Everyplace administration 24
MQSeries Everyplace administration utility 53
MQSeries Everyplace applications 11, 53

© Copyright IBM Corp. 2000 65

MQSeries Everyplace classes 41
MQSeries Everyplace configurations 29
MQSeries Everyplace devices 7, 13
MQSeries Everyplace Explorer utility 53
MQSeries Everyplace gateways 7, 13
MQSeries Everyplace networks 29, 43
MQSeries Everyplace objects 14
MQSeries Everyplace queue managers 21
MQSeries Everyplace queues 18
MQSeries Everyplace registry 13, 36
MQSeries Everyplace rules 38
MQSeries Everyplace security 32
MQSeries Everyplace utilities 53
MQSeries family 5
MQSeries Integrator 5
MQSeries messaging 5
MQSeries networks 43
MQSeries server 6
MQSeries Workflow 5
multiple connection styles 41

N
networks, MQS 43
networks, MQSeries Everyplace 29, 43
notices, legal 57

O
objects, message 14
objects, MQSeries Everyplace 14
operating systems, supported 3
operations, queue manager 23
overview 1

P
peer-to-peer connection 41
pervasive messaging 5
Postcard application 53
prerequisite knowledge ix
prerequisites 3
private registry 36
product concepts 13
programming interfaces 55
public registry 37

Q
queue-based security 33
queue manager 40
queue manager operations 23
queue manager proxy object 45
queue manager rules 40
queue managers 6
queue managers, MQSeries Everyplace 21
queue rules 39
queues, local 18
queues, MQSeries bridge 19
queues, MQSeries Everyplace 18
queues, remote 18

queues, store and forward 19

R
RAS dialer rules 39
readership ix
registry 36
registry, MQSeries Everyplace 13
registry, private 36
registry, public 37
remote queues 18
replication of certificates 37
required operating systems 3
requirements, customer 12
rules, MQSeries Everyplace 38

S
scalability 29
security, local 33
security, message level 35
security, MQSeries Everyplace 32
security, queue-based 33
security interface 38
server, MQSeries 6
SPI 55
store and forward queues 19
supported operating systems 3
synchronous messaging 22, 31

T
terms ix
tracing MQSeries Everyplace 29
trademarks 58
transformers 49

U
utilities 53
utility, MQSeries Everyplace Explorer 53

W
who should read this book ix
workstation messaging 5

66 MQSeries Everyplace Introduction

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5843-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Prerequisite knowledge
	Terms used in this book

	Chapter 1. Overview
	Notes for Version 1.0

	Chapter 2. Prerequisites
	Chapter 3. The MQSeries family
	Chapter 4. Requirements
	Capabilities
	Applications
	Customer requirements

	Chapter 5. Product concepts
	Introduction
	Message objects
	Dump data format

	Queues
	Queue managers
	Queue manager operations

	Administration
	Administration messages
	Selective administration
	Monitoring and related actions

	Dynamic channels
	Adapters
	Dialup connection management
	Trace
	Event log
	MQSeries Everyplace networks
	Configurations and scalability
	Asynchronous message delivery
	Synchronous message delivery

	Security
	MQSeries Everyplace local security
	MQSeries Everyplace queue-based security
	Synchronous queue-based security
	Asynchronous queue-based security

	Message-level Security
	The registry
	MQSeries Everyplace Authenticatable entities
	Private Registry and credentials
	Auto-registration
	Public registry and certificate replication
	Application use of registry services
	Default mini certificate issuance service
	The security interface

	Configuration and customization
	Rules
	Attribute rules
	MQSeries bridge rules
	RAS dialer rules
	Queue rules
	Queue manager rules

	Connection styles
	Peer-to-peer connection
	Client-server connection
	Multiple connection styles

	Classes
	Application loading

	Chapter 6. MQSeries Everyplace and MQSeries networks
	Interface to MQSeries
	Message conversion
	Function
	Compatibility
	Assured delivery

	Chapter 7. Applications and utilities
	Postcard
	MQSeries Everyplace Explorer

	Chapter 8. Programming interfaces
	Appendix. Notices
	Trademarks

	Glossary
	Bibliography
	Index

