
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Service oriented architecture solutions 
White paper 

Providing a backbone for 
connectivity with SOA Messaging 

Ben Mann, Worldwide Product Manager 
 
Updated: June 2009 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
 

 

Contents 
 

 

2 Executive summary 
4 Messaging backbone: 
A first step to SOA 
8 Messaging concepts 
16 Meeting enterprise 

demands 
23 Connecting virtually 

anything 
24 Interfaces and standards 
26 Messaging for Web 

services 
27 Transferring files reliably 
29 Foundation for your ESB 
31 Summary 
31 For more information 

Executive summary 
Today, you likely have a disparate, widely distributed, increasingly 
complex, enterprise-computing infrastructure. One that’s made of 
different kinds of systems — located in and managed through different 
departments and geographic locations. A flexible, robust messaging 
backbone can enable you to quickly connect new applications and use 
existing ones cost-effectively, while minimizing risks to business data. 
And you can integrate these applications across your entire 
organization and with those of key trading partners, suppliers and 
customers. 
 
To stay competitive, you can’t continue to rely on manual processes to 
manage information that’s distributed through a wide range of 
disconnected systems. It’s expensive to maintain, more prone to 
human error and doesn’t accommodate future growth. A strong 
messaging backbone can provide you with the security-rich foundation 
to provide your goods and services over the Web, facilitate more-
effective interactions, streamline critical processes and enhance 
productivity across your value chain. So the flow of transactions, 
information and ideas can ripple immediately through your enterprise 
— and beyond. 
 
As many organizations look to service oriented architecture (SOA) to 
increase the flexibility of IT, it becomes increasingly important to be 
able to connect the new (service-oriented applications and assets) 
and the now (existing IT assets that are the lifeblood of your 
organization). As SOA enables greater interoperability to IT assets 
and increases the ability to dynamically interconnect these, the need 
to provide a robust, reliable backbone for these interactions is ever-
more acute, preserving a bet-the-business quality of robustness 
whenever services and non-service-oriented assets interact. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
IBM WebSphere® MQ provides a flexible, robust messaging 
backbone that 
enables integration for SOA and for your existing IT assets. 
WebSphere MQ provides the industry’s leading messaging backbone 
with assured, once-only delivery of data across a wide range of 
operating systems. Across industries, from banks and 
telecommunications companies to government agencies, IT 
departments have reaped the benefits of using a common technology 
to connect disparate systems. 
 
In the last decade, the software industry has converged on certain 
standards: Web services for service discovery and invocation, Java™ 
2 Platform, Enterprise Edition (J2EE) as an enterprise programming 
model or XML as a canonical data format. Messaging technology — 
particularly WebSphere MQ — complements these standards by 
playing an important role in building a strong, open, IT infrastructure. 
 
This white paper examines the value of implementing a messaging 
backbone instead of building a complex web of custom coding to 
integrate your business processes. It explores WebSphere MQ, and 
the key concepts that comprise the product, in more detail. This white 
paper also discusses some of the standards that currently shape the 
industry — and why the messaging backbone is still a critical part of 
the picture, especially in an SOA. Finally, it provides insight about the 
overall industry landscape, so you can more clearly understand 
WebSphere MQ, how it fits into today’s IT industry and how it can 
work for you. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Messaging backbone: A first step to SOA 
Today’s business goals are driving IT priorities. Competitive pressure 
and market forces drive business leaders to radically change their 
organizations. The goal is strategic flexibility through innovation. And 
SOA enables IT to respond to change faster. Typically, a major barrier 
to achieving flexible IT is a veritable rat’s nest of applications, 
developed in isolated silos, often aligned with departments. Significant 
portions of IT budgets are expended simply maintaining the 
connectivity, and the cost of extending it tends to increase as it grows. 
 
The messaging backbone provides a first step to SOA (see Figure 1). 
It bridges the gap between new service-oriented assets and existing 
core assets, and provides the transport foundation for an enterprise 
service bus (ESB). It also frees applications from the connectivity logic 
needed to determine how each application communicates with the 
others. 
 

 
Figure 1. WebSphere MQ provides a first step to SOA. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
A messaging backbone enables you to reuse what you have already. 
Because you do not have to rip and replace applications, you can 
increase the return on investment (ROI) of the applications you have. 
Because the WebSphere MQ messaging backbone is supported on 
virtually any commercial IT system, you don’t have to replace your 
choice of hardware and operating system, either. Its choice of 
interfaces in a range of popular programming languages means that 
you can use the skills that you have available. 
 
Business processes can be made more reliable with a messaging 
backbone helping to assure that the data is delivered and that 
transactions are preserved, even when these processes touch 
multiple IT systems spanning across your organization. Reducing the 
risk of IT systems losing integrity can help to prepare you for the 
challenges of regulatory compliance, where financial reports must be 
based on demonstrably accurate business data. 
 
To further understand the benefits of messaging software, consider 
the alternatives. Most enterprises have several systems, applications 
or islands of automation that stand alone — often on different 
operating systems. Data usually resides in more than one place, 
causing duplication and synchronization issues. Employees manually 
enter data into several different systems. And if you develop or 
purchase a new application — or a merger or acquisition occurs — the 
situation becomes even more complex. To solve the problem, you 
need to connect your applications together, allowing them to share 
information and unlock the data distributed across your enterprise. 
 
To achieve this level of connectivity, you might decide to write code, 
typically embedded into your application, to communicate with other 
systems. This means your developers must write connectivity logic — 
and grapple with the nuts and bolts of a particularly difficult area of 
software development. It could involve issues like the handling of 
TCP/IP sockets, which can vary depending on the operating system 
and programming language used. And it can require a wide array of 
specialized skill sets within your development team. The code must be 
able to handle situations where the network fails, or where the 
receiving applications are unavailable. Because each piece of 
connectivity logic is specific to the applications it connects, you limit 
the possibility of reuse and make it more difficult to add applications 
as your business needs change. The likely result is your IT staff writes, 
owns, extends and maintains a large quantity of complex, unwieldy 
connectivity logic. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
You can avoid this situation by using a software product designed to 
handle all these connectivity issues for you — a messaging backbone. 
Rather than riddling your applications with connectivity logic, you let 
your applications talk to the backbone — through a simple, common 
application programming interface (API) — to deliver the data to other 
applications. 
 
When you implement a messaging backbone, you can adopt industry-
standard programming models and make them available on a 
selection of operating systems. An effective messaging backbone 
should be ubiquitous to maximize reuse of skills and code across your 
enterprise. Your application developers can simply concentrate on 
writing business logic without having to maintain large quantities of 
connectivity code. 
 
A vital aspect of the messaging backbone is assured delivery. You 
have to be able to control the required quality of service on data 
delivery. For example, it might be acceptable to send noncritical data 
in a fire-and-forget model, where you’re aware that the data might be 
lost, given certain failure scenarios. 
However, for critical business information, like a banking transaction, 
you want assured once-and-once-only delivery. When the application 
sends this critical data to the messaging layer, the processing should 
continue. If messaging events — like sending and receiving data — 
can also act as part of a transaction, it helps ensure that actions, such 
as database updates, can occur in the same unit of work as 
messaging operations, with coordinated commit or rollback. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Another central concept of the messaging backbone is 
timeindependent — or asynchronous — processing. This concept 
means that applications don’t rely on each other’s availability, or the 
availability of the network, to send data. In a purely synchronous 
model, in the case of a network failure, your applications would require 
sophisticated retry logic and could be blocked waiting for the network 
to recover. Asynchronous messaging is best viewed as a delivery 
model, not as the opposite to synchronous messaging. Asynchronous 
messaging simply decouples applications from each other and from 
the network. It operates on a fastest-possible delivery model. If you 
wish to send data from application A to application B, and the network 
is available, the data will be delivered almost immediately. However, if 
the network or the receiving application is unavailable, the sending 
application isn’t necessarily affected. The messaging backbone 
temporarily stores the data if required. 
 
Because your messaging backbone handles your valuable business 
data, you want to ensure that the infrastructure you choose is reliable. 
You have to make sure data doesn’t get irrecoverably lost. Your 
messaging software must operate in a failover model. It needs built-in 
capabilities to help ensure high availability. You might also want 
features to help with workload balancing, so you can be sure your 
messaging backbone can grow and adapt as your business 
requirements change. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Messaging concepts 
The fundamental components of a messaging backbone are its 
messages and queues. This section briefly discusses these and some 
other key components. For more in-depth information, refer to the 
WebSphere MQ product manuals. 
 
Messages 
WebSphere MQ enables applications and services to communicate by 
sending messages rather than calling each other directly. Messages 
are simply strings of bytes, containing the data you wish to deliver 
from one application to another. A message has two parts: a header 
that describes the message, and the data itself, which could be any 
kind of data, such as XML, binary data or a bit stream. The message 
header identifies the message with a unique message ID and contains 
other fields such as message type, information about its origin, priority, 
expiration time, the queue to send any replies to and so on. 
 
Each WebSphere MQ message can be up to 100 MB in size. Larger 
messages and files can be transported by segmenting these into 
smaller chunks. WebSphere MQ can segment large messages 
automatically, and receiving applications can choose to retrieve the 
larger messages when these have been recombined by WebSphere 
MQ, or receive each segment. Alternatively, programming controls 
enable messages to be split into segments based on logical 
boundaries or the size of the buffer available to the receiving 
application. WebSphere MQ helps ensure that the order of the 
segments is preserved. 
 
Similarly, messaging traffic can be reduced when many very small 
messages are being sent to the same destination by grouping these 
together into larger WebSphere MQ messages. When the composite 
message arrives at its destination, WebSphere MQ disassembles the 
message and can again preserve the order in which these constituent 
messages are delivered. 
 
 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Distribution lists provide another way to reduce messaging traffic. 
When the same message is being sent to multiple queues owned by 
the same queue manager, only one single copy of that message 
needs to be sent to the queue manager. WebSphere MQ uses a 
distribution list to determine which of the queues it owns needs a copy 
of that message and acts accordingly. These distribution lists can be 
updated at any time, as required. 
 
Message persistence 
WebSphere MQ can handle messages in both a persistent and 
nonpersistent manner. All persistent messages are logged by 
WebSphere MQ, which synchronously writes these messages to disk 
or other nonvolatile storage at the same time as sending them. This 
capability enables the delivery and recovery of messages even if the 
applications, networks or WebSphere MQ server goes down at any 
stage of transmission. Nonpersistent messages are not logged in this 
way; however, these messages are also delivered no more than once, 
avoiding the problems associated with duplicate messages arriving 
and causing transactions to partially run more than once. 
 
Semipersistent messaging is also possible, in cases where you need 
a more granular trade-off between the robustness of delivery and the 
throughput of the messaging system. Performance of semipersistent 
messaging is typically greater than persistent messages because logs 
of the message are not taken at all the steps during delivery where 
failures could possibly occur. In this instance, semipersistent message 
logging occurs asynchronously — typically after the message is 
actually dispatched. This capability can increase the speed of 
throughput because it avoids waiting for disk input/output (I/O) 
operation to complete before sending, but introduces some risk that 
the messages and queue manager cannot be completely recovered if 
a failure occurs in the window before the log is updated. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 

 
 

Types of queues 
The most common types of 
queues include: 
• Local queues, the queues 
that actually reside on a 
particular machine 
• Alias queues, alternate 
names for referring to local 
queues 
• Remote queues, references 
or handles to queues that 
reside on other machines 
• Transmission queues, 
special queues that 
WebSphere MQ uses 
internally to move messages 
across a network (where 
messages reside if the 
network is unavailable) 
• Dynamic queues, local 
queues that are created on 
demand 
• Dead-letter queues, queues 
that store messages that 
cannot be delivered (such as 
when a destination queue is 
full and cannot be enlarged) 
• Repository queues, queues 
that hold clustering 
information 

It is important to understand the level of persistence needed by each 
application or service and select the appropriate persistence service to 
help optimize the messaging backbone and provide the level of 
recoverability needed by the business. By default, WebSphere MQ 
uses persistent messaging. In addition, to make accurate performance 
benchmark comparisons of message backbones, you should use 
equivalent persistence levels. 
 
Queues 
WebSphere MQ enables applications and services to communicate 
asynchronously, without each having to be available at the same time. 
This capability is possible because of queues, which are data 
structures used to store messages. When messages move across the 
WebSphere MQ backbone, queues are used, even momentarily, to 
store messages so that these can be retrieved when the recipient is 
available. Typically, when sending and receiving applications are all 
available, messages sent through these queues arrive at their 
destination in near real time. However, when applications or the 
network are unavailable or busy, the queue is able to hold the 
messages until they can be received and processed. This 
asynchronous messaging model is a powerful way of loosely coupling 
applications and services so that their communication is time-
independent. 
 
As a result, the messaging backbone is able to shield applications and 
services from interruptions and failures, as well as enabling them to 
continue doing meaningful work instead of being locked in 
conversations. In addition, you can also use WebSphere MQ to start 
applications — through the use of application triggering — when 
sufficient messages arrive for it to process. And WebSphere MQ can 
preserve the order of messages, delivering them to applications in the 
same order as they were dispatched. First-In-First-Out (FIFO) is the 
default. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Queue managers 
At the heart of a messaging backbone are its queue managers, which 
provide the messaging services and manage objects like queues and 
channels. 
 
Queue managers use transmission queues to move messages to 
remote queues owned by other queue managers. They provide 
triggering services, enabling applications to be started when sufficient 
messages arrive for processing. They also handle the conversion of 
character sets within messages between platforms. On distributed 
systems, WebSphere MQ queue managers can act as transaction 
coordinators, using two-phase commit to preserve the transactionality 
of operations to databases and queues.  
 
Queue managers handle the recovery, persistence and assured 
delivery of messages. In persistent or semipersistent messaging, the 
queue manager logs message data to disk. WebSphere MQ queue 
managers are often backed up in high-availability environments. 
 
Channels 
WebSphere MQ uses channels to connect its queue managers, and to 
connect WebSphere MQ clients to them. Channels are logical 
communication links. 
A message channel is defined to connect one queue manager to 
another — referred to as server-to-server communication. These 
channels are unidirectional, and are often defined in pairs. At either 
end of these message channels, sender and receiver agents — or 
movers — coordinate the communications link. WebSphere MQ 
clients also use channels to connect to the queue managers of 
WebSphere MQ servers, although a different kind of channel is used 
in this case, because clients do not have queue managers. 
Client channels are bidirectional. Some channels can be defined 
automatically by WebSphere MQ. Queue managers contain a 
message channel agent (MCA) that is responsible for channels. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Clients 
WebSphere MQ supports a range of clients to enable applications and 
services to connect into its messaging backbone. WebSphere MQ 
clients connect into remote queue managers. WebSphere MQ clients 
for a range of platforms are included with the product and can also be 
downloaded at no charge. Most clients are fully supported. 
The main difference between clients and servers is that clients do not 
have queue managers, whereas servers can. This difference means 
that clients do not provide a local queue to store messages and so do 
not support asynchronous messaging between the client and the 
servers it connects with. Clients connect using dedicated, bidirectional 
channels, and can only make connections to WebSphere MQ servers 
when the network is available. The application or service can retry the 
connection in this case or try another route to reach messaging 
servers. 
 
Whether to run a WebSphere MQ server with its queue manager or a 
client depends on the quality of delivery needed by the applications 
and services local to a particular machine. If reliable delivery of 
messages is needed from that machine, then a client is unlikely to 
meet your needs. 
 
WebSphere MQ also supports a special client called an extended 
transactional client. As with other clients, it does not provide a queue 
manager. Extended transactional clients enable applications to 
perform several tasks — including putting messages to a server and 
updating the resources of another resource manager, such as a 
transaction coordinator, database or application server — all within a 
single unit of work (UOW) transaction. This capability can enhance the 
transactionality of a connection, while removing the need to deploy a 
local queue manager. Extended transactional clients are licensed as 
part of WebSphere MQ. When installing WebSphere MQ, you can 
choose to deploy either a server or an extended transactional client. 
 
To learn more about clients, visit ibm.com/webspheremq/clients. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Messaging topologies 
Topologies refer to the shape of the messaging backbone — how its 
messaging nodes are connected. Different messaging styles and 
topologies have certain strengths and can be combined within your 
messaging backbone. Figure 2 shows examples of different 
messaging topologies. 
 

 
Figure 2. Messaging backbone topologies 
 
The point-to-point topology is a simple connection between two 
messaging nodes or applications. The logic defining where messages 
are sent resides either in the originating application, or in the 
messaging artefacts defined locally to this application. If the target 
application moves to a new location, the logic at the source 
application must also be updated so that messages still reach it. This 
capability is useful for simple scenarios where a few applications are 
connected. 
 
However, to connect n applications to each other, you must define 
n(n-1)/2 connections in your messaging middleware — to connect 
each point to each other point. For example, for two applications this 
means making only one connection; for five applications, 10 
connections are needed; for 10 applications, 45 connections are 
needed. To add one more application now requires an additional 10 
new connections to be defined and likely requires changes to most of 
the existing connections. This combinatorial explosion of configuration 
information, with the need to make many updates for each changing 
application, means that it is not ideal for larger deployments. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
In a hub-and-spoke topology, each application connects into a 
centralized node in the messaging backbone. This helps to reduce the 
number of connections needed for a given number of applications, 
because the number of connections is only as many as the 
applications being connected. So in the example of 10 applications, 
only 10 connections to the messaging backbone need to be defined. 
Adding another application means defining only one extra connection 
— only one-tenth of the work of a point-to-point topology. Logic 
determining where messages are sent can be centralized within the 
hub of messaging nodes. Although this topology might require more 
planning to set up initially, it can reduce the reconfiguration required 
when applications are added or changed. Single points of failure can 
be eliminated by clustering several messaging nodes within the 
central hub.  
 
In a bus topology, as with a hub-and-spoke, the number of 
connections needed between a given number of applications is also 
only as many as the applications being connected. Fundamentally, 
this topology is equivalent to hub and spoke, although the bus 
topology places more emphasis on distributing the connectivity logic 
across the backbone, helping to reduce the single point of failure often 
thought to be associated with the hub-and-spoke topology.  
 
Often, hub-and-spoke topologies are associated with “traditional” 
messaging, and buses are positioned as a new approach. This 
comparison depends largely on how one chooses to define or 
implement these topologies. Ideally a messaging backbone should 
support a mix of topologies so that the optimal approach can be used. 
 
 
Messaging styles 
You can use a variety of approaches to set up a messaging backbone 
that can optimize performance or simplify ongoing configuration (see 
Figure 3). Fire-and-forget is a style of messaging where the sending 
application does not require a reply or confirmation from the receiving 
application or applications. Such messages are sometimes called 
datagrams. Request-response is a style of messaging where 
applications request messages specifying where replies need to be 
sent. Applications sending requests can choose to wait for replies or 
continue processing 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 

 
 

Examples of publish-and-
subscribe topics 
Topics can be simple strings: 
“New Sale”, “New 
Customer”, 
“Credit Rejected”,… 
 
Topics can be organized into 
hierarchies (such as 
organizing sales activities by 
location and industry for each 
customer): 
“North-East/New 
York/Retail/ACME Corp 
/New Sale” 
 
Richer subscriptions can be 
described using “*” wildcards 
(for example, get messages 
whenever the credit for 
retailers is rejected): 
“*/*/Retail/*/Credit Rejected” 
 
(or get messages whenever 
there are new customers in 
New York): 
“North-East/New 
York/*/New Customer” 

 

 

 
Figure 3. Messaging styles 
 
 
Publish-and-subscribe provides an event-driven style of messaging 
that enables the messaging backbone to dynamically determine 
where messages should be delivered. This approach relieves 
applications and services of the burden of containing up-to-date 
information about which applications and services need to receive 
messages and precisely where these are currently located. It can be 
useful in progressing toward an SOA, and is especially valuable when 
you are more likely to move or replace applications and services. 
 
In the publish-and-subscribe model, messages are tagged with 
keywords or topics — strings that represent a subject for the message. 
These keyword topics can be organized into hierarchies to enable 
more-complex classification. Applications and services define the 
messages they need to receive by logging a subscription with the 
messaging backbone, using topics to describe their information space, 
and optionally using wildcards to define richer subscriptions. 
 
WebSphere Message Broker, IBM’s advanced ESB, takes topic-based 
publish-and-subscribe messaging even further, enabling messages to 
be routed based on the content of messages and more-sophisticated 
message routing definitions. You can apply statistical- and causal-
analysis tools to streams of messages so that patterns can be 
detected that signify even more-complex events and situations. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Meeting enterprise demands 
The messaging backbone plays a crucial role in an IT infrastructure as 
the conduit for linking assets and services together. This backbone 
must satisfy the high demands of business today to be entrusted as 
the courier of one of its most valuable resources — its business data. 
WebSphere MQ has the heritage and credentials to be an excellent 
choice as the messaging backbone for all sizes of organization, 
across all industries. 
 
Reliability 
The business costs, implications and penalties are steep when critical 
business data is lost or when the integrity of data and applications is 
compromised. Lost or duplicated business transactions can severely 
disrupt business processes, causing a chain reaction of expensive 
after-affects that might confuse supply-chain interactions and erode 
customer satisfaction. 
 
Regulatory-compliance initiatives such as the U.S. Sarbanes-Oxley 
Act (SOX) impose heavy penalties on businesses that cannot 
demonstrate that their financial reports are accurate — an 
unattainable goal if business transactions are at risk of being lost or 
duplicated. An organization’s messaging backbone must be robust, 
and able to ensure that business transactions are preserved 
regardless of failures in hardware, software and the network. 
WebSphere MQ guarantees the delivery of messages transported 
over its backbone and helps ensure that these messages are not 
duplicated during transmission. It automatically manages its reliable 
messaging by using receipts to confirm delivery and resends 
messages as needed so that these operations are invisible to 
application programmers. By using queues to store the messages, 
reliable delivery is assured even when the network, hardware and 
receiving applications are not available. 
 
WebSphere MQ employs the two-phase-commit protocol as a 
mechanism for preserving the integrity of IT systems when transferring 
messages over its backbone as part of transactions — where the 
entire exchange must complete and partial completion or failure 
leaves these systems in an unreconciled state. It can coordinate 
transactions that involve messages moving right across its backbone, 
not just between one server and another, enabling transactionality to 
be preserved from end to end. 
 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 

 
 

WebSphere MQ: Proven 
and trusted 
• More than 10 000 customers 
worldwide use WebSphere 
MQ. 
• WebSphere MQ moves 
more than 10 billion 
messages every day, 
supporting more than 
US$1 quadrillion (US$1 000 
000 000 000 000) worth of 
business transactions. 
• WebSphere MQ has won 
multiple awards including the 
prestigious Royal Academy of 
Engineering MacRobert 
Award in 2004. 
• WebSphere MQ provides 
the underlying backbone for 
IBM’s advanced ESB, 
WebSphere Message Broker, 
and is fully supported by all 
IBM ESB offerings. 
• More than 800 IBM 
Business Partners worldwide 
support WebSphere MQ with 
software, solutions and 
services. 

High availability 
In today’s 24x7 world, the business impact of applications, networks 
and hardware failing can be severe and far-reaching. Similarly, the 
messaging backbone that connects these applications and services 
also needs to meet the enterprise’s needs for high availability. High 
availability is the most fundamental part of a strategy to maximize the 
resilience of an IT environment and requires that this environment be 
able to rapidly and completely recover from outages — especially 
unplanned ones. 
 
High availability is achieved by eliminating single points of failure in 
the backbone by providing backup or redundant systems that can take 
over should failures occur. It is also accomplished by helping to 
ensure that whatever data is being transported, and the state of the 
messaging system itself, is logged up to date and can be used to 
restore the data and the messaging system following a failure. 
 
Replication-based techniques are often viewed as the simple, 
straightforward approach to increasing the availability of messaging 
systems, requiring only software and no specific hardware. However, 
these approaches are not always recommended. Asynchronous 
replication puts messages at risk of being duplicated or lost, and 
synchronous replication requires real-time replication of all messages 
to work around this shortcoming and can result in significant 
performance degradation. 
 
To avoid these issues, WebSphere MQ uses a persistent messaging 
approach that logs its messages to disk synchronously with message 
transmission, along with the state of its queue managers, so that it can 
reconstruct messages and recover to a consistent state following a 
failure. Synchronously logging messages to disk at the same time they 
are dispatched is very important; otherwise you risk being unable to 
recover a failure to a coherent state before or after the message is 
sent. WebSphere MQ can take steps to roll back messages that were 
in transit and commit transfers that had completed to help preserve 
the integrity of the messages and the applications exchanging them. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
WebSphere MQ uses platform-specific high-availability facilities such 
as High Availability Cluster Multi-Processing (IBM HACMP™) on the 
IBM AIX® platform and Automatic Restart Manager (ARM) on the IBM 
z/OS® platform.  
 
On IBM System z™ running on the z/OS operating system, 
WebSphere MQ provides shared queues that can be accessed by 
different queue managers so that should any fail, another queue 
manager can automatically access the shared messages. 
 
Clustering 
The clustering features of WebSphere MQ enable messages to be 
redirected around parts of the messaging backbone that have become 
isolated by network failure or otherwise unavailable without the 
applications. 
 
Clustering can help reduce administration of the messaging backbone. 
It enables many WebSphere MQ queue managers to be administered 
together as a group. Configuring queues in a cluster with the same 
name enables WebSphere MQ to determine how the messaging 
workload should be shared between them. This clustering can be 
based on the workload-balancing algorithm supplied or your own 
custom algorithm. Alternatively, individual queue managers can be 
targeted within a cluster by giving them unique names and referencing 
them when directing messages to their cluster. By balancing the 
workload, clustering enables you to improve the performance of a 
messaging backbone, and enable more messaging engines to be 
added as needed. 
 
Security 
In today’s business climate, the security of valuable and confidential 
information and IT systems is a major concern. Making IT systems as 
secure as possible is an holistic challenge that needs to address 
areas such as encryption, authentication, authorization, 
nonrepudiation and privacy. 
 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
WebSphere MQ provides built-in security features to help protect data 
moving across its messaging backbone. It supports the industry-
standard Secure Sockets Layer (SSL) for strong authentication of 
message channels before messages are exchanged to help prevent 
malicious attacks to the backbone. SSL can also provide bulk data 
encryption similar to virtual private networks (VPNs). 
 
IBM WebSphere MQ Extended Security Edition adds even more 
security capabilities to the messaging backbone, taking advantage of 
IBM Tivoli® technologies to provide individual, message-level security 
encapsulation. It extends protection beyond the messaging channels 
to the application layer. It also provides granular audit records down to 
the message level and can be retrofitted to an existing WebSphere 
MQ network without the need to modify it. Security is configured using 
policies that can be administered remotely using a Web browser 
interface, helping to avoid the need to write security-specific code for 
each application. 
 
 
Scalability and performance 
As business requirements grow and as more applications and 
services use messaging to communicate, the messaging backbone 
needs to be able to scale to support increasing volumes of messaging 
traffic and enable you to take full advantage of the power of your IT 
infrastructure.  
 
WebSphere MQ takes advantage of multiprocessor and multicore 
machines so that you can scale your messaging backbone by using 
parallel processing to accelerate messaging. This approach can 
significantly improve point-to-point messaging performance and 
scalability over single-threaded alternatives. A single instance of 
WebSphere MQ can run across multiple processors and cores, so 
there is no need to configure routing or load balancing between 
multiple instances of a server. It requires practically no tuning or 
configuration to run across multiple processors or cores, and does not 
require multiple message logs. To help ensure your messaging 
backbone can grow with your business, insist on performance 
comparisons where a range of processors are used. Another useful 
approach to scaling a messaging backbone is clustering, which is 
described previously in this white paper. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
When comparing the performance of messaging servers, it is 
important to use the same quality of service for message delivery — 
such as persistence or nonpersistence. Performance reports for 
WebSphere MQ provide throughput analysis, capacity planning and 
tuning information specific to each platform and are published as IBM 
SupportPacs™ at ibm.com/webspheremq/support. 
 
 
Configuration 
Your organization’s IT infrastructure is as unique as a fingerprint and 
ever-changing to take advantage of new technologies and IT assets, 
and to respond to business pressures and opportunities. It is vital that 
the messaging backbone enables these changes rather than inhibits 
them. To reduce the time, risk and cost of configuration, it is important 
that the whole messaging backbone is able to be centrally configured 
and administered, despite being a widespread, distributed 
infrastructure. 
 
WebSphere MQ enables its entire messaging backbone to be 
remotely configured from a single console, called WebSphere MQ 
Explorer (see Figure 4). WebSphere MQ, Version 6.0 introduced this 
new configuration tool, which is based on open-source Eclipse 
Workbench technology. The Eclipse framework is common across 
IBM software products, so that WebSphere MQ Explorer can be 
combined with the tools of other products, such as WebSphere 
Message Broker, to provide a single integrated console. This graphical 
tool enables you to explore and configure all WebSphere MQ objects 
and resources, including Java Message Service (JMS), and publish 
and subscribe. Because it is based on Eclipse technology, 
WebSphere MQ Explorer is highly customizable and fully extensible. 
You can add new tools as plug-ins to WebSphere MQ Explorer to add 
new features in a way that is integrated into the console. 
Documentation shipped with the WebSphere MQ Explorer provides 
the interfaces for plug-ins, together with examples of how to develop 
them so that IBM Business Partners and users can join IBM in 
augmenting its capabilities. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
 

 
 
Figure 4. WebSphere MQ Explorer enables you to explore, test and 
configure your entire messaging backbone remotely. 
 
 
WebSphere MQ Explorer runs on Microsoft® Windows® and Linux® 
x86 machines. It does not need to be deployed with a WebSphere MQ 
client or server, and you can install as many copies as required. You 
also don’t have to directly connect to a queue manager to explore or 
configure. You can configure queue managers remotely through 
intermediate queue managers. The WebSphere MQ Explorer can 
remotely connect to queue managers on any supported platform — 
enabling your entire messaging backbone to be viewed, explored and 
altered from the console. You can even remotely configure 
WebSphere MQ for z/OS running on the System z platform, provided 
it is running the Version 6.0 (or later) release, because of the added 
support for the programmable command format (PCF) administration 
messages that WebSphere MQ Explorer uses. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 

 
 
WebSphere MQ supports 
more than 80 platform 
configurations, covering 
virtually any commercial IT 
system, including: 
• AIX 
• IBM System i™ (IBM 
eServer™ iSeries™ 
and IBM OS/400®) 
• IBM z/OS (IBM eServer 
zSeries® and 
IBM OS/390®) 
• HP-UX 
• HP NonStop Server and 
OpenVMS 
• Linux on Intel® 
• Linux on System z 
• Sun Solaris Operating 
Environment 
• Microsoft Windows XP 
 
For the latest support details, 
visit 
ibm.com/webspheremq/requir
ements. 

You can customize views of the messaging backbone, for example, 
using filters to show queues or other resources that match certain 
criteria such as the number of messages in a queue or its name. 
You can adjust the refresh rates of these filtered views to update 
them at a machine or queue-manager level. You can also compare 
attributes, for example, to see whether two queues have the same 
characteristics. 
 
To prevent unauthorized changes, the WebSphere MQ Explorer uses 
SSL security. It provides graphical tools to manage authority and 
access based on the Object Authority Manager (OAM) to help make 
governance control easier. For example, you can use WebSphere MQ 
Explorer to show at a glance all the users or groups that have 
permissions to certain queues and objects. Figure 5 shows this 
feature. 
 

 
 
Figure 5. WebSphere MQ Explorer enables you to control access to 
your messaging backbone. 
 
 
New problem-diagnostic tools have recently been added to enable 
you to run tests against your messaging backbone to discover errors 
and potential problems with the configuration. With one click, this tool 
searches for problems and provides advice on solutions and 
improvements. User-defined checks can be added to its suite of tests. 
 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 

 
 
A simple interface 
MQI provides 13 simple 
commands that are consistent 
across supported platforms: 
• MQCONN connects to the 
queue manager named as a 
parameter. 
• MQCONNX connects using 
fast-path bindings for trusted 
applications. 
• MQDISC disconnects from 
the queue manager. 
• MQOPEN opens a message 
queue on the queue manager. 
• MQCLOSE closes the 
message queue. 
• MQPUT puts a message 
onto the queue. 
• MQPUT1 is equivalent to 
the sequence 
MQOPEN, MQPUT, 
MQCLOSE. 
• MQGET retrieves a 
message from the message 
queue. 
• MQINQ inquires about the 
properties of a queue. 
• MQSET sets the properties 
of a queue. 
• MQBEGIN begins a 
transaction or UOW. 
• MQBACK rolls back a 
transaction before it is 
completed. 
• MQCMIT commits a 
transaction, ending the UOW. 

Connecting virtually anything 
A messaging backbone is only as valuable as the range of 
applications and services it can connect. Even if certain platforms and 
environments are not part of your IT domain today, you can’t afford to 
risk leaving applications stranded as a result of a cross-department 
initiative, or merger and acquisition, or be prevented from using a new 
technology or platform. WebSphere MQ is designed to be able to 
connect virtually any commercial IT system, from the latest 
technologies to those core systems your organization depends upon 
— even less common platforms. 
 
WebSphere MQ provides consistent functionality across its range of 
supported platforms. WebSphere MQ for z/OS is built natively for 
z/OS, yet is designed consistently with the distributed version. 
Therefore, it can take specific advantage of the z/OS environment to 
offer unique capabilities that make it a powerhouse for the messaging 
backbone. WebSphere MQ for z/OS is not an adaptation of the 
distributed product, but a unique code-base designed from the ground 
up to take full advantage of the z/OS platform and fit tightly within the 
mainframe environment. WebSphere MQ for z/OS takes advantage of 
IBM Parallel Sysplex® technology, increasing availability, capacity 
and performance for persistent and nonpersistent messages, by 
enabling multiple queue managers to access the same queue. 
WebSphere MQ for z/OS also provides workload balancing based on 
a pull model that enables very high-availability messaging on the z/OS 
platform. In addition, WebSphere MQ for z/OS provides tight 
integration with IBM CICS® and IBM IMS™ using the IBM 
MQSeries®-CICS Dynamic Program Link (DPL) Bridge, the IBM 
MQSeries-CICS 3270 Bridge and IBM MQSeries-IMS Bridge. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Interfaces and standards 
A messaging backbone needs to tie into what you have today, enable 
you to make the most of the skills at your disposal, and support the 
decisions you make in the future. WebSphere MQ has evolved to 
provide a variety of ways to connect to its messaging backbone. 
 
MQI 
The message-queuing interface (MQI) is the original programming 
interface for WebSphere MQ. It provides a simple, small set of verbs 
that are consistent across platforms. Depending on the operating 
system you are running, you can use C, C++, Java, PL/I, COBOL, 
Visual Basic, ActiveX/COM, Assembler, Report Program Generator 
(RPG) or Typed Assembly Language (TAL) to program the MQI. 
Support for other languages, like Perl, are available as downloads. 
 
MQI provides structures (groups of fields) that you can use to supply 
input to, and get output from, calls. It also provides a large set of 
named constants to help you supply options in the parameters of the 
calls. Data-definition files supply the definitions of the calls, structures 
and named constants for each of the supported programming 
languages. Default values are set within the MQI calls. 
 
JMS  
JMS is an industry-standard programming interface for messaging 
based on J2EE. It performs the same role as the MQI but is 
standardized and increasingly popular with Java developers. J2EE 
technology-compliant application servers, such as IBM WebSphere 
Application Server, provide the JMS interface and can also provide an 
implementation of messaging services. JMS is also supported by 
many stand-alone messaging products, including WebSphere MQ. 
J2EE applications servers can use WebSphere MQ as their JMS 
provider, regardless of whether one is already supplied. It is a 
misconception that JMS technology compliant products must be 
developed entirely in Java. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
WebSphere MQ supports the latest version of the JMS standard, 
Version 1.1. Like the MQI described previously, JMS is an interface for 
programming. Because JMS is an industry standard, applications 
programmed to JMS can be ported between messaging products that 
support it without modification, and developers need only learn one 
set of commands to use a range of vendor products. In practice, 
vendors often provide extensions to the JMS API. Because JMS 
standardizes only the interface, it does not standardize the technology 
used for the underlying data delivery. As a result, the wire protocol 
used by JMS technology-compliant products is proprietary and vendor 
specific. This means that products compliant with JMS cannot 
interoperate. 
 
Although the JMS standard does not deliver interoperability between 
messaging providers, IBM provides the capabilities needed to bring 
JMS implementations together to form a combined messaging 
backbone. First, WebSphere MQ and WebSphere Application Server 
have been designed so that their JMS implementations do 
interoperate. WebSphere MQ and WebSphere Application Server can 
exchange messages to form a combined messaging backbone where 
transactionality is preserved between them and publish-and-subscribe 
definitions can be shared. This means that a Java application hosted 
in WebSphere Application Server can use JMS to talk to other 
applications connected to WebSphere MQ, either by JMS or by its 
MQI. IBM products based on WebSphere Application Server, including 
IBM WebSphere ESB and WebSphere Process Server can also 
connect to WebSphere MQ in this manner, as well as use native MQI 
calls to connect to WebSphere MQ.  
 
In addition, WebSphere Message Broker, the advanced ESB, provides 
unique mediations that can consolidate any JMS, Version 1.1 
technology-compliant messaging products into a single messaging 
backbone. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Multilanguage message service 
The industry-standard JMS interface described in the previous section 
requires that programmers have Java skills. Although Java is in 
widespread use today, it is not always the preferred choice of 
programming language, nor is it optimal for connecting to many non-
Java environments. IBM has developed an API that is consistent with 
JMS but implemented in additional languages. Whereas JMS is 
geared specifically toward Java, the IBM API is provided in a range of 
languages, and is referred to as multilanguage message service. 
Often it is abbreviated to XMS, where X stands as a wildcard for “any” 
message service. 
 
WebSphere MQ clients provide the XMS interface. Supported 
languages include C, C++ and a fully managed client for 
Microsoft .NET environments, which can be used with any .NET 
language such as C#. 
 
 
Messaging for Web services 
Web services standards define mechanisms for classifying, 
externalizing, finding and invoking services. These services could 
range from operations residing within your existing applications that 
can be made available to the rest of your enterprise, to new J2EE 
components sitting within an application server. And as Web services 
standards develop, concepts like Web Services- 
Reliable Messaging and Web Services-Notification are emerging. 
Web Services Description Language (WSDL) defines the standards 
for Web services. Universal Description, Discovery and Integration 
(UDDI) provides directory and search capabilities. SOAP is the data 
format used when communicating with a Web service. However, a 
predicated standard for data transmission doesn’t exist. You can send 
your SOAP messages using whatever transport suits you. One 
common method is to send SOAP messages over HTTP or HTTP 
Secure (HTTPS). 
 
If you want your SOAP-formatted data to be delivered with the quality 
of service and benefits of a messaging backbone, you need to use a 
messaging product for the underlying data transfer. WebSphere MQ 
can send and receive SOAP data within a Web services 
implementation — most common within the J2EE environment — and 
often referred to as SOAP over JMS. This approach enables Web 
services to take advantage of the benefits of a messaging backbone. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Transferring files reliably 
Many analysts estimate that as much as 80 percent of business 
information is shared around — and between — organizations using 
File Transfer Protocol (FTP) technology. You might be surprised by 
how much of your valuable business information is exposed to risk, 
and could be lost or unknowingly corrupted. Applications and data can 
become unreconciled, business processes can cease or work less 
effectively, and financial reports can be inaccurate. And perhaps worst 
of all — because the transfers are far from transparent — you might 
not even know when this has happened. 
 
FTP technologies proliferate because of their simple appeal. An 
abundance of free FTP packages are available, the notion of file 
transfer is very intuitive and it usually only requires a basic level of skill 
to get going. There might not be any review or analysis of either the 
initial cost or the ongoing cost of deployment and maintenance of this 
solution. However, as dependency on these approaches increases, IT 
departments invest more time and skills to engineer additional function 
to try and address deficiencies in the reliability or security of these 
solutions. As more senders and receivers of files participate, the 
complexity of the environment rapidly increases and the business 
finds it is now trapped into maintaining and patching these solutions, 
which inhibits it from investing these resources in other IT projects, for 
example, to advance its progress to becoming more flexible or 
service-oriented. 
 
Typically without realizing it, such an IT department has unwittingly 
now entered the middleware business. Even organizations that have 
made great strides in adopting integration middleware might still have 
a significant dependency on file transfers, although they might not be 
aware of this. This dependency not only reduces the flexibility of your 
business and affects responsiveness but can rack up hours of your 
staff’s time in diagnosing errors or reworking supposedly simple 
solutions. Is this really the best use of your precious IT resources? 
What’s needed is a way to incorporate files into your messaging 
backbone. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
WebSphere MQ File Transfer Edition leverages WebSphere MQ 
messaging as its reliable transport mechanism for moving files. It 
enables files to be moved that are larger than maximum individual 
WebSphere MQ message sizes. An audit log of file movements 
enables organizations to demonstrate that business data in files is 
transferred with integrity from source to target file system. Graphical 
configuration tooling, integrated with WebSphere MQ Explorer, 
enables quick and easy definition of transfers without the need for 
programming.  
 

 
 
Figure 7. WebSphere MQ File Transfer Edition provides centralized 
management of remote file transfers via an Eclipse-based Explorer 
 
 
WebSphere MQ File Transfer Edition provides a reliable file transfer 
backbone that leverages the proven WebSphere MQ transport to 
guarantee the delivery of files and ensure that files are not duplicated 
during transmission. The underlying WebSphere MQ transport 
automatically manages its reliable messaging by using receipts to 
confirm delivery and resends file data automatically as needed so that 
these operations are invisible to users. Using queues to store file data 
assures reliable delivery even when the availability of the network, 
hardware, and receiving applications are disrupted. 
 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 

WebSphere MQ File Transfer Edition provides a log of file 

movements that enables organizations to demonstrate that business 

data in files in being transferred with integrity from source to target file 

system. The audit log can be subscribed to by multiple queue 

managers and hence stored in multiple places. The audit log can be 

viewed remotely using plug-ins supplied for WebSphere MQ Explorer. 

It will also be possible to register one or more applications as 

subscribers to the audit logs, which can in turn take the log records 

data and persist this to a destination of choice – for example loading 

the audit log into a SQL database. 

 

WebSphere MQ File Transfer Edition provides file transfer services 

that can augment or extend WebSphere MQ networks incrementally.  

Organizations that are running separate mechanisms for file and 

message traffic can consolidate on a single reliable transport capable 

of handling both file and message traffic. Using a single reliable 

backbone can help achieve these operational efficiencies by reducing 

the need to deploy and manage separate parallel networks for 

messages and files. 

 

In addition to transferring files in a managed, reliable fashion, 

organizations are increasingly seeing the value in processing, 

transforming or enriching their files. WebSphere Message Broker 

enables you to transform, reformat and enrich files using its powerful 

mediation functions. This feature is fully integrated with the 

WebSphere Message Broker Toolkit palette, giving new and existing 

users of WebSphere Message Broker immediate productivity in 

processing files. You can apply brokering services such as 

transformation, enrichment, logging and routing to file content, and 

seamlessly convert messages into files, file records and vice versa, 

by simply wiring and configuring the relevant I/O nodes into the 

appropriate message flow. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Foundation for your ESB 

A messaging backbone — even when used to connect just a few 
applications 
— can deliver substantial benefits, such as helping to reduce IT costs 
and making the infrastructure and organization more flexible. However, 
a messaging backbone also serves as a foundation for enabling other 
integration capabilities, providing a basis for deep, end-to-end 
integration and service orientation. A messaging backbone provides a 
springboard for launching IT projects aimed at addressing more-
complex integration challenges and reaping even greater rewards. 

 
An ESB provides an abstraction layer on top of the messaging 
backbone that enables it to be augmented with richer integration 
capabilities without the need to write code. Whereas messaging 
backbones are connected directly to applications, an ESB is primarily 
used by connecting it to services — loosely coupled, interoperable 
pieces of code that are independent of their underlying platform and 
programming language. An ESB also adds these capabilities to a 
messaging backbone: 
 

• Dynamically matching and routing messages between services 
• Converting transport protocols or adjusting transport service-levels 
between services 
• Transforming message formats, and enriching or altering message 
content in-flight between services 
• Distributing business events between services 

 
WebSphere MQ provides a messaging backbone that can be used by 
all of IBM’s ESB offerings — IBM WebSphere ESB, IBM WebSphere 
Message Broker and IBM WebSphere DataPower® XI50 Integration 
Appliance. WebSphere ESB is focused on using Web services 
standards and provides mediation services for XML-formatted data. 
WebSphere Message Broker is an advanced ESB, with extended 
capabilities to handle a broad range of standardized and non-standard 
situations, mediating data in any kind of message format. In turn, an 
ESB provides the grounding for business process management (BPM), 
enabling business tasks to be automated and managed more 
effectively. It also enables you to make more-informed decisions about 
how to evolve and change the way business activities are handled 
based on quantitative business-level analysis, and existing processes 
to be measured and optimized using key performance indicators 
(KPIs) and other business or financial metrics. 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 
Summary 

WebSphere MQ delivers robust, innovative SOA Messaging that 
provides a first step to SOA. Although WebSphere MQ is a mature 
product with a strong reputation and market presence, it continues to 
evolve. Today, as Web services gain momentum, IBM stands at the 
vanguard of standards definition in this area. And WebSphere MQ 
plays a key role as these exciting technologies develop. 
 
However you plan to use SOA for greater IT flexibility, a messaging 
backbone provides compelling value for your organization, regardless 
of its size. If your organization wants to deploy an ESB, WebSphere 
MQ provides a foundational connectivity layer to build on. Small or 
midsize businesses with immediate needs to connect applications can 
still realize substantial benefits from implementing a messaging 
solution. Whatever business you are in, you can feel confident in the 
knowledge that IBM continues to invest in WebSphere MQ. 
 
IBM plans to continue to add new function and support new 
technologies, while improving existing function. 
 
 
For more information 

IBM WebSphere MQ software isn’t just a product with a distinguished 
past.  
It’s also a product with a long and exciting future dedicated to solving 
the fundamental connectivity problems faced within today’s IT industry. 
  
To learn more about SOA Messaging and IBM WebSphere MQ, 
contact your IBM representative or IBM Business Partner, or visit: 
 
ibm.com/webspheremq 
 
To join the Global WebSphere Community, visit: 
www.websphere.org 



Providing a backbone for connectivity with SOA Messaging 
Page 32 

 

© Copyright IBM Corporation 2009 

IBM Corporation 

Software Group 

Route 100 

Somers, NY 10589 

U.S.A. 

 

Produced in the United States of America 

03-07 

All Rights Reserved 

 

AIX, CICS, DataPower, eServer, Everyplace, HACMP, 

IBM, the IBM logo, IMS, iSeries, MQSeries, OS/390, 

OS/400, Parallel Sysplex, SupportPac, System i, System 

z, Tivoli, WebSphere, z/OS and zSeries are trademarks 

of International Business Machines Corporation in the 

United States, other countries or both. 

 

Intel is a trademark of Intel Corporation in the United 

States, other countries or both.  

 

Microsoft and Windows are trademarks of Microsoft 

Corporation in the United States, other countries or both. 

 

Java and all Java-based trademarks are trademarks of 

Sun Microsystems, Inc. in the United States, other 

countries, or both. 

 

Linux is a registered trademark of Linus Torvalds in the 

United States, other countries or both.  

 

Other company, product and service names may be 

trademarks or service marks of others. 

 

All statements regarding IBM future direction or intent 

are subject to change or withdrawal without notice and 

represent goals and objectives only. 


