Datal nterchange v3.1 Technical XML Implementation Guide

XML PTF Overview

Datal nterchange devel opment has created this PTF in response to the immediate demand to
support XML processing. The DI XML processor enhancement for DI 3.1 should be viewed as a
short-term solution for implementing XML trandation. The enhancement is supplied via host
PTF and DI Client Fixpak 6 for DI 3.1 customersto process XML datamore easily. Theinitia
enhancement isfor MV S batch processing and is available for both the Datal nterchange MV S
and Datal nterchange MV S/CICS products. Processing for CICS environment is planned to
follow soon after. The PTF will alow trandation for XML datain both directions. Application
datato XML for send or outbound processing, and XML to application data for receive or
inbound processing, are both supported. It isimplemented by convertingan XML DTD to an
"EDI standard". The "EDI standard" is a representation of the XML data using an EDI-type
syntax that is understood by DI. A DTD conversion utility (Windows application) will be used
to define an "EDI standard” from the user's DTD. The generated standard has a structure similar
to the XML document.

Note: Thisdocument is not aformal IBM publication. It isatechnical document written by
Datal nterchange development to help customers implement XML using this PTF.

Pr er equisite Softwar e

The following software will be new prerequisites for the customer to install this PTF:

* (0S/390 V2R6
e XML Tool kit for OS/390 ("non-priced" software) http://www.s390.ibm.com/xml/

Acknowledgments

This product includes software devel oped by the Apache Software Foundation
(http://www.apache.org/). Copyright (c) 1999-2000 The Apache Software Foundation. All
rightsreserved. This software is distributed under Apache Software License, Version 1.1. A
copy of thislicense isincluded in the Datal nterchange Client installation directory
(LICENSE.TXT).

a Copyright IBM Corp. 2000

DI v3.1 Technical XML Implementation Guide Page 1

Convertingan XML DTD
Overview

To implement XML processing using DI, the first step isto convert the DTD using the DTD
conversion utility (DTDConvert) . The DTD conversion utility isa GUI standalone program
available with DI Client Fixpak6, which reads an XML DTD and generates an EDI standard
representation of the XML structure. The EDI standard can be used by Datal nterchange to
perform normal mapping and tranglation functions.

The utility will convert each DTD file that you select. From the DTD file and other user input, it
will generate two output files:

* An XML dictionary. Thisfile contains information that allows DI to correlate the XML
elements and attributes with the “EDI standard” segments and data el ements.

* Animport filefor DI Client. Thisfileisimported into DI Client to define the EDI standard
in the database.

Y ou can invoke the DTD conversion utility by selecting the corresponding shortcut or by
double-clicking on the DTDCONV ERT.EXE file located in the Datal nterchange install directory.
Then fill in the fields requested by the DTD conversion utility. The Browse button can be used
to locate and identify the XML DTD file that will be used asinput to the utility. The DTD Name
and Root Element Name fields are required. After entering the required data and any optional
data you need, press the OK button to begin converting the DTD. During conversion processing,
astatus window isdisplayed. The status window displays messages pertinent to the conversion,
including identifying the names of the two output files produced by the utility. Y ou can close the
status window using its Close button. After the conversion of aDTD has been completed, you
can convert another DTD by specifying the necessary information in the DTD conversion utility.
Once you have completed all conversions, close the utility by pressing the Close button.

Note: The DTD conversion utility is supported on the Windows 98, Windows NT, and Windows
2000 platforms. It has successfully been used with Windows 95 in atest environment. However,
Windows 95 is not supported because some underlying software is not supported in that
environment.

DI v3.1 Technical XML Implementation Guide Page 2

Input fields

The DTD conversion utility includes on-line help and will take the following as user inpult:

DTD Name (required) - The name of the DTD to be converted. The DTD name is selected
by using the “Browse” button to locate and select aDTD file. The maximum length for the
DTD file name is 63 characters (including the extension). File nameslonger than 63
characters will be truncated.

Root element name (required) - The XML element name for the root element. The root
element is an element that completely contains all other elements of the document. The
maximum length is 64 characters. Only valid XML element name characters are permitted in
thisfield (see note below).

Standard name (optional) - The name of the EDI standard to be generated from thisDTD.
If not specified, the first 8 alphanumeric characters of the root element name are used. The
maximum length is 8 characters. Only letters and numbers are permitted in thisfield.

Transaction name (optional) - This defines the EDI standard transaction name that will be
associated with thisDTD. If not specified, the first 6 characters of the root element name are
used. The maximum length is 6 characters. Only valid XML element name characters are
permitted in thisfield (see note below).

Sender Qualifier element (optional) - The XML element name, attribute, or path that
defines the sender qualifier for the standard. The maximum length is 64 characters. Only
valid XML element name characters (see note below), and the characters“/” and “$” to
indicate path or attribute names, are permitted in thisfield.

For inbound processing, the value from the sender qualifier is used as the interchange sender
qualifier. If the Sender Qualifier element is not specified, or if the specified element,
attribute or path is not found in the XML data, the value "ZZ" will be used as the default
sender qudlifier.

For outbound processing, thisfield is not used, and the interchange sender qualifier will
awaysbe“zZ".

Sender 1D element (optional) - The XML element name, attribute, or path that defines the
sender ID for the standard. The maximum length is 64 characters. Only valid XML element
name characters (see note below), and the characters “/” and “$” to indicate path or attribute
names, are permitted in thisfield.

For inbound processing, the value from the sender ID element is used as the interchange
sender. If the Sender ID element is not specified, or if the specified element, attribute or path
isnot found in the XML data, the value "XMLPROC" will be used as the default sender ID.

For outbound processing, thisfield is not used, and the interchange sender ID will always be
“XMLPROC".

Receiver Qualifier element (optional) - The XML element name, attribute, or path that
defines the receiver qualifier for the standard. The maximum length is 64 characters. Only

DI v3.1 Technical XML Implementation Guide Page 3

valid XML element name characters (see note below), and the characters“/” and “$” to
indicate path or attribute names, are permitted in thisfield.

For inbound processing, the value from the receiver qualifier is used as the interchange
receiver qualifier. If the Receiver Qualifier element is not specified, or if the specified
element, attribute or path is not found in the XML data, the value "ZZ" will be used as the
default receiver qualifier.

For outbound processing, thisfield is not used, and the interchange receiver qualifier will
awaysbe“zZ".

Receiver ID element (optional) - The XML element name, attribute, or path that defines the
receiver ID for the standard. The maximum length is 64 characters. Only valid XML
element name characters (see note below), and the characters“/” and “$” to indicate path or
attribute names, are permitted in thisfield.

For inbound processing, the value from the receiver ID element is used as the interchange
receiver. If the Receiver ID element is not specified, or if the specified element, attribute or
path is not found in the XML data, the value "XMLRCVR" will be used as the default
receiver ID.

For outbound processing, thisfield is not used, and the interchange receiver 1D will aways be
“XMLRCVR".

Note: The valid characters for XML elements includes letters, numbers, and the following special
characters:. period (.), dash (-), underscore (_), and colon (:).

DI v3.1 Technical XML Implementation Guide Page 4

Below is ascreen shot from the DTD conversion utility:

-4 DTD Converzsion Utility - Yersion 1.00

DTD File
’V DTD Mame I Browse

Root Elerment Mame | QK.

Standard M ame | Cloze

g Help
Tranzachon Mame

—Sender Element

Qualifer |

Pl

o |

— Recerer Element

Qualifer |

o

Utility Output files

After converting your DTD, two new fileswill be created in the same directory asthe DTD you
selected:

DI Client import file:

The DI import file is used to import the new EDI standard into DI Client. The filename will
be in the format stdname.EIF, where stdname is the standard name you specified. If you did
not specify a standard name, the standard name is taken from the first 8 alphanumeric
characters of the root element.

Thisfileisaready in DI Client format and will not need to be converted. For instructions on
how to import a standard into DI Client, please refer to the DI Client documentation.

XML dictionary file:

The XML dictionary is used for runtime processing. It isused to correlate the XML element
and attribute names with EDI standard segments and data elements. The filename will be in
the format stdname.DIC, where stdname is the standard name you specified. If you did not
specify a standard name, the standard name is taken from the first 8 alphanumeric characters
of the root element.

DI v3.1 Technical XML Implementation Guide Page 5

This should be uploaded to your host environment and placed either in a PDS member or a
HFSfile. The naming of the host file name for the XML dictionary is discussed more in the
section on “XML Dictionary resolution”.

You will aso still havethe DTD file that you converted. The DTD fileis optional for runtime
processing. It can be used to validate the inbound or outbound XML data and/or specify default
XML attribute values. Whether DI usesthe DTD or not depends on the validation level for the
transaction. If you want DI to processthe DTD during the XML parsing, thisfile should be
uploaded to your host environment and placed in a PDS member or HFS file. The naming for
thisfileisdiscussed morein the section on “XML DTD resolution”.

The DTD and XML dictionary files can be considered library type filesfor XML processing.

Specifying Sender and Receiver information

To identify the sender and receiver ID and qualifier fields using the DTD conversion utility, you
simply enter the name of the XML element that contains the value. For example, if the XML
data contains the following:

<Header>
<From>SenderName</From>
<To>ReceiverName</To>
</Header>

Y ou would just enter the values “From” and “To” in the Sender ID and Receiver ID fields. Note
that these fields, like all XML elements names, are case sensitive. This example does not have
any qualifiers, so you would leave those blank.

Sometimes the sender and receiver information isin an attribute. The format to specify an
attribute is “ elementNameS$attributeName”. For example, if the XML data contains:

<Header>
<From type="DUNS’ >SenderName</From>
<To type="DUNS’>ReceiverName</To>
</Header>

Y ou would specify the sender and receiver IDs asin the first example. For the sender and
receiver qualifiers you would specify:

* Sender qualifier: “From$type”
* Receiver qualifier: “To$type”

Attribute names, like element names, are case sensitive.

DI v3.1 Technical XML Implementation Guide Page 6

In some cases, the sender and receiver information is specified not just by a unique element, but
also depends on the context in which the element occurs. (i.e. The meaning depends on the
parent or ancestor elements). Take the following XML as an example:

<Header>
<From>
<Credential domain="DUNS">
<ldentity>942888711</Identity> <!-- Sender ID -->
</Credentia>
</From>
<To>
<Credential domain="Name">
<ldentity>X MLTEST 1</ldentity> <!-- Receiver ID -->
</Credentia>
</To>
</Header>

In this example the sender and receiver IDs are both located in Identity elements, and the
gualifiers occur in the domain attribute of the Credential elements. But, the Credential and

| dentity elements occur within both the From and To elements so we will need to identify the
path to sender and receiver. Y ou only need to include as much path information as required to
uniquely identify the element. We will use the To structure for the receiver ID and the From
structure for the sender ID. Inthe DTD conversion utility you would enter the following:

Sender | D element From/Credential/ldentity
Sender qualifier element From/Credential$domain
Receiver ID element To/Credential/ldentity
Receiver qualifier element Tol/Credential$domain

Other notes on specifying the sender and receiver information:

* The maximum path length for each sender and receiver element field is 64 characters.

* |f thevaluesinthe XML datafor the sender and receiver ID are longer than 35 characters,
they will be truncated to 35 characters

* |f thevaluesinthe XML datafor the sender and receiver qualifier are longer than 4
characters, they will be truncated to 4 characters

Diagnosing DTD Parsing Errors

Sometimes the DTD conversion utility will detect a syntax error, or issue awarning while trying
to parsethe DTD. This section isintended to help you understand the messages that the utility
displays, so you can make any corrections that are needed.

DI v3.1 Technical XML Implementation Guide Page 7

First, a short explanation of how the utility parsesthe DTD file:

1. First the utility creates short buffer of XML data, containing an XML declaration

(“<?xml...”), adocument type declaration (“<!DOCTY PE..."), and an empty root element. It

uses the root element and the DTD name that you provide as input to create this XML data.

Then the utility passes the XML datato a parser component, which will parse the data.

3. If the XML data and the referenced DTD file are well-formed (syntactically correct), then the
parser returns information about elements and attributes defined by the DTD. The utility will
use thisinformation to generate the XML dictionary file and the DI Client import file.

4. If thedatais not syntactically correct, the parser component will pass error messages to the
utility, which will be displayed in the status window.

N

If the parser detects a syntax error, the status window will display messages that ook something
like the following:

Fatal error parsing the DTD - File: bad.dtd, line: 6, column: 2
Message text: Invalid document structure

Thefirst line tells you the name of the DTD file, as well as the line and column number where
the parser detected the error. Note that thisis the position that the parser detected the error, not
necessarily where the error is. For example, if you are missing the end of a comment in the
DTD, the parser will tell you where it first detected the error, not where you meant for the
comment to end.

The second line displays the error message that was returned from the parser. The words
"Message text:" are not part of the parser error message, but are generated by the utility.

In some cases, you may see the file name "XMLBuffer". This means that the error was detected
in the buffer of datathat the utility generated. This could be caused by something such asa
syntactically bad root element name, or an unreadable DTD file. To see the buffer of XML data
that was created (XML Buffer), you can look at the trace file that the utility creates. Thisfileis
named "xmltrc”, and is located in the same directory asthe DTD. (Note: The “xmiltrc” file may
contain messages that start with “Ignoring validation error in....” These are aresult of using an
empty root element, and do not indicate a problem.)

There are al so other warning messages that may be generated by the utility, evenif the DTD is
parsed without errors. These are issued when the utility finds something about the element
structure that may or may not indicate a problem. Warning messages are generated for the
following conditions:

* If an element is declared as a descendent of itself, the following message is displayed:

Warning : Element "name" declared as a descendant of itself inthe DTD file
The nested instance of element "name" isignored

DI v3.1 Technical XML Implementation Guide Page 8

An example of thisisif element A has child elements B and C. However, element B has
child A asone of its child elements. In this case, the utility will ignore the nested occurrence
of A, and omit it from thelist of children for element B. A will not appear asachild of B in
the EDI standard that is generated, and errors may occur if XML datais received that
contains A asachild element of B. If incoming data does not use the nested occurrence of
the element, and you do not need to map data to it, then this warning should not cause a
problem.

If the parser indicates that the root element has content model “Any”, the following message
is displayed:

Warning : Root element "name" has content model "Any"
Element "name" might not be declared inthe DTD file

There are two cases where the parser will indicate that the root element has content model
“Any”. One caseisthat the DTD actually declares the element to by type “Any”. Although
thisislegal, thistype of DTD is not very useful for mapping, since it does not define any
structure for the DTD. The other case that may cause thisis that the root element specified in
the input field is not declared in the DTD file. (Note: XML element names are case
sensitive.) Inthis case, the parser assumes that it should be type “Any”.

If you see this warning, you should verify that the root element name is correct for the DTD

(including any case sensitivity). If not, correct it and retry. If the root element name redly is
declared as type “Any”, then you will not be able to do much useful mapping for thisDTD.

DI v3.1 Technical XML Implementation Guide Page 9

Mapping
Overview

Mapping XML datais similar to mapping EDI datausing DI Client. To map between data
format and XML, just map the data format fields to the data el ements that correspond to the
appropriate XML elements and attributes. To map a dataformat field to an XML element value,
map it to the first data element of the segment that corresponds to the XML element. To map a
dataformat field to an attribute of an XML element, map it to the corresponding data element on
the segment for the XML element. The full XML element names are provided in the segment
descriptions, and the attribute names are included in the data element descriptions.

Most of the segment names are based on the name of the XML element that they represent.
However, there will be some segments and loops you will not recognize. These segments start
with “$SQ” and “$CH”, and are created by the DTD conversion utility to represent certain types
of complex DTD element definitions.

Many segments do not contain any data elements. These segments are used to indicate the start
and end of loops and are automatically qualified with occurrence 1 when you map inner loops
using DI Client. The XML and translation processing will handle these segments.

Since mapping for XML dataisto and from an EDI standard representation of the XML data, all
DI mapping functions apply such as Boolean logic, segment, loop, el ement qualification,
accumulators, application control fields, tranglation/validation tables, rawdata, and C&D
application data formats.

EDI Standard Representation of XML data

There are some special rules used to equate the XML elements and attributes with the standard
segments and data elements. The segment and data element descriptions contain the el ement
names and attributes that they correspond to, but a general understanding will help you
determine, find and understand these better. The following rules apply:

* Each XML element corresponds to an EDI segment.
The element name is truncated to 6 characters to create the segment ID. If the truncation
causes duplicate segment names, then a sequence number is used for the last character(s) to
ensure unigueness. The segment description includes the full XML element name.

e |f the XML element isdeclared astype “#PCDATA”, “ANY”, or mixed content (a mixture

of #PCDATA and child elements), then the element value(s) correspond to the first data
element on the segment.

DI v3.1 Technical XML Implementation Guide Page 10

When receiving these types of elements, all element values within the element are
concatenated and placed into the first data element on the segment. The tags and attributes of
any nested child elements for types mixed and ANY are discarded. (#PCDATA elements do
not have nested child e ements.)

When sending these types of elements, the first data element of the segment is used as the
element value.

The description for the first data element includes the name of the XML element, and also its
content model, either “Any” or “PCData/Mixed”.

* If the XML element isdeclared astype “EMPTY”, then the first data element is not used
since no element value is alowed.

If the element has attributes (usually the case for EMPTY elements), the first data el ement on
this segment is the special data element “UNUSED”, which should not be mapped. If the
element does not have any attributes, then the segment does not have any data elements.

* If the XML element has any attributes, then the attributes correspond to data elements 2-n on
the segment.

The description for each data element includes the XML element name, followed by a“$’
character, followed by the attribute name. For example, “elementName$attrName’”.

e If the XML element has child elements, then aloop is defined for it.

The first segment of the loop is the segment that corresponds to the XML element as
described above. Thefirst data element of this segment is the specia data element
“UNUSED”, which should not be mapped. If the XML element has attributes, they appear as
elements 2-n asnormal. The start segment does not need to be mapped, unless you want to
map attribute values. The last segment of the loop has the same segment id as the first
segment, plusa“$’ at the end. The end segment does not need to be mapped. The start and
end segments will be written if any of the nested segments within the loop contain data.

Seguences

A sequence means that the child elements are defined as a sequence of elements. For example:
<IELEMENT A (B,C*)>. Thismeans element A consists of element B, followed by 0 or more
occurrences of element C. The XML data might appear something like the following:
<A>

B-Vaue

<C>C-value</C>

<C>C-value2</C>

DI v3.1 Technical XML Implementation Guide Page 11

In this case, element A is defined asaloop, since it has children B and C. Each child in the
sequence is defined as a segment within the loop. Each segment is marked as either mandatory
or optional, and as either repeating or non-repeating, depending on how the element is defined in
the sequence.

In this example, segment B would be mandatory and not repeating, since the DTD states that
element B must occur exactly one time in the sequence. Segment C would be defined as optional
and repeating, sincethe DTD states that it occurs O or more times.

If B and/or C had other child elements, then they would appear as a nested loop (or loops) within
loop A. Loops may be defined as repeating, but may not be defined as mandatory. Inthis case, it
IS up to the person performing the mapping to understand the restrictions imposed by the DTD
and make sure that some data within loop B is mapped in order to generate valid XML data.
Otherwise, the data would not validate properly against the DTD.

Choices
A choice means that the child elements are defined as a choice of elements. For example:

<IELEMENT A (B|C)>. This means element A consists of either element B or element C. The
XML data might appear something like the following:

<A>
B-Vaue

- Or -
<A>
<C>C-Vaue</C>

Again, element A isdefined asaloop, sinceit has children B and C. Each child in the sequence
is defined as a segment (or loop) within the loop. Each segment (or loop) in achoice is marked
as optional, and not repeating. It isup to the person performing the mapping to understand the
structure of the XML data and only map one of the child segments or loops.

Special Sequences and Choices

Some types of XML sequences and choices require special handling to represent them in an EDI
type structure. These cases are:

Repeating sequences
Repeating choices

A sequence within a choice
A choice within a sequence

DI v3.1 Technical XML Implementation Guide Page 12

For each of these, some special segments will be generated and inserted in the EDI standard
transaction representation. These will start with “$CH” (for repeating choices or a choice within
a sequence) or “$SQ” (for repeating sequences or a sequence within achoice). Segments
beginning with $SQ and $CH will have no data elements.

M apping example

As an example, look at the following XML data structure:

<ltemln quantity="6" lineNumber="1">
<ltem|D>
<SupplierPartl D>pn12345</SupplierParti D>
<SupplierPartAuxiliaryl D>EA</SupplierPartAuxiliaryl D>
</ItemID>
</lItemin>
<ltemln quantity="12" lineNumber="2">
<ItemID>
<SupplierPartl D>823488664ZZZ</SupplierPartl D>
<SupplierPartAuxiliaryl D>345602840800</SupplierPartAuxiliary| D>
</ItemID>
</lItemin>

Now if we look at the sections:
<ItemlIn quantity="6" lineNumber="1"> Loop with attributes (quantity, | i neNurmber)

<ltemID> Loop

Segment Element
<SupplierPartiD> pnl12345 </SupplierPartiD>
<SupplierPartAuxiliarylD> EA </SupplierPartAuxiliarylD>

</ltemID> End Loop
</Itemin> End L oop

<ltemln quantity="12" lineNumber="2">
<ltemID>
<SupplierPartl D>823488664ZZZ</SupplierPartl D>
<SupplierPartAuxiliaryl D>345602840800</SupplierPartAuxiliaryl D>
</ltemID>
</ltemIn>

DI v3.1 Technical XML Implementation Guide Page 13

Let’ s begin with the inner most structures SupplierPartID and SupplierPartAuxiliaryl D identified
under the heading Segment. These are considered child elements of ItemID. Each child of

ItemI D, SupplierPartlD and SupplierPartAuxiliaryl D, has only one child, identified under
Element. The SupplierPartID and SupplierPartAuxiliarylD are represented in the EDI standard
as segments or repeating segments with one element. The segment ID is generated from the
XML element name. The element ID isthe segment ID + sequence number. Since
SupplierPartID and SupplierPartAuxiliaryl D are child elements of ItemID, ItemID is represented
in the EDI standard as aloop.

The ItemlIn tag is an element with multiple ItemID child elements and also has attributes.
Attributes are represented in the EDI standard as data elements with element IDs of segment ID +
seguence number and a description of segment ID +‘$ + XML attribute name.

In this example the Itemin [oop is equivalent to aline item loop and may be multiple occurrence
qualified using a structure or record. If the SupplierPartID element is mapped without qualifying
the ItemI D loop, DI Client will automatically qualify the ItemlID loop with occurrence 1.

Below isan example of an EDI standard transaction representation for an XML DTD :

et 21 - [[evelopmendt - Siandaed Transaction - CHMLTEST CHL]

Bl B felime Edl Newgde Yew Widw Heb alfix

oo 18]] 1 pemm) 2

= R A e A 3 L

ot | Fit Snprert.]
Table | Pos | Segment | Tl Max e | 21| Luoap D | it s-'|| el | Seqment Descripion
1 1 It} 1 o 1 | Wl o
i e iR R e
ER HELDER I 1 [o2 1 Ci= H
g FROM M 1 [oos i 4
& | CREDEM I 1 I D04 = F 5
RN CIERT] i o] r s
[g SCHIO M ! C s 1 C &
R Ul SHLAED o 1 s] CE
EE DI TA [#] i [i 1 r 6
o SCHOOO1S ™ 1 C s] CE
Al CREDEMS I i oo] C s
iz FROME (% 1 oo a (=il
ER R TO] 1 [] 1 r
2 T T e e 5 T
ERL CIERT ™ 1 o007 a C 5
15 SCHIDON M 1 I oa i 0 B
e] SHARED fal 1 oS] riE
ERL DIGTA [l 1 [iom] &
2 TR T - T -t
El CREDENS ™ 1 o7] C 5
R Ul TR I 1 r oG 0 r
R SEMDER o 1 [oo| 1 o
3 __(CREDEN M A e B 5
1 CER o 1 r | 0 C'E
?1 srHm il 1 I inA 1 iR
Fisack UM
12EPH

DI v3.1 Technical XML Implementation Guide Page 14

Below is an example of mapping the SupplierPartID with our previous XML example:

iert 2.1 - [Dovelopment - Mapping Hoader - CAMLTEST1]

% Fle delow Edi Meapss Yew widow Help al#)]

el s L el e

] B I R e

Gerersl Oetsle | Comreris

[P s me=r2 E Agplicetion Conkr ol Fiekda
58 PROLCEIE L [Transacion for KK docment ML)
- DT YRE om0 WKL N e ooy nent]
#-E8 COCKE @ er 40 W FSE000T Loow: Sumified by Doourmeres 81
+-28 HEADER [phmer a0 M QNN [Sequmnce siat ssgment]
E-EH LKEMEWS @« 50 M HEADER Loog Quakied by Ovcurmence ¥1
=Rl] F-Ev WO M TCHINOZ Lonp Gueiified by Cocurmnce 31
| =m ATVORDERED o ST00 M HCHIONZ |Choice e s grrerd|
| B8 UMTORMEAS o @ v }D M WESSAT Loge usdfiad by Orourmres # 1
i - BB LMTPRICE | et CHD W WESEAG Morsegs shet segmant]
| TEMDESC | Ef v #10 RWPNCTE Laog Gusied by Ooouirence £1
1 Bm ! S 4100 W PURNCTD [FurchD D msrs ssege cist segmsnt]
| B TEMOODE | Gl v 430 W ELMERC [Buyariookal
| BB TEMRUREER i A v 40 W PINETI Locp: Gusitied by Ocoimencs £1
+- BB TEMCODE: 1 SHEF v 20 W TEMR Loom Guminied by Pl of LREITENES
| == TEwLREERS i Lo 530 W TEWIM[Eein st segmant]
|- B ITEMCOCER | @ 550 W ITEWDLoce: Gusiied by Dooumence £1
BB NAMJFRCTURER i G et S50 M ITEMID | il sdart mugmend] |
EHEH TRALER I Fimmme 570 W SIFPd [SplePuriD]
=R 1 b
| = TEMCOUNT | == TEMBLWEERT in LINETENS
b B ToraLBUKE i Bl B0 M SUPPAG [SumelsPrrlaudier v
=_Nrtow ! Bim== 000 M TEECES Qe e zage]
e B0 W (TEWDE Loges Gusiilad by Dooir rerce 81
Fomm TS0 W ITEWIME [heminand segnen]
| — B0 W PUNCTIE [PunchOuiOrceri mrcsge erd zegmant]
| s B0 M WESSOON Meissge el segient]
Mo W0 M 3CHIOOES [Choics snd pegment]
[Lommm BE) M ESQOODE [Secunoe end sanent]
Fomm o BED W OCHLS [aHML and sepmend]

Overriding thedefault XML prolog

For outbound processing a new mapping keyword, DIPROLOG, isavailableto override the

XML prolog declaration generated during XML processing. DIPROLOG isaspecial DI variable
and can be created using literal data or from your application data. There is no need to issue an
& USE with the DIPROLOG variable.

Below is an example of the default prolog without DTD validation:

<?xml version="1.0"?>
If DTD validation is specified (validation level = 2), aDOCTY PE declaration is added to the
prolog which includes the root element and DTD name. Below is asample default prolog with

DTD validation:

<?ml version="1.0"?>
<IDOCTYPE cXML SYSTEM "cXML.dtd">

DI v3.1 Technical XML Implementation Guide Page 15

To override the generated prolog declaration with literal values, add the following mapping
commands using your literal data:

& SET DIPROLOG <?ml version="1.0" encoding="iso-8859-1" ?>
& SAVE DIPROLOG,*,* <IDOCTY PE order SYSTEM *“order.dtd”>

Control String generation

When mapping is complete, generate the control string using DI Client. If you are using DI
Client in“stand-alone” mode (not client server), you will need to export the control string along
with any trading partner profile or usage setup and upload/import to the host system.

The EDIFACT envelope standard must be loaded into the host system.

DI v3.1 Technical XML Implementation Guide Page 16

Inbound Trandlation Process (XML to Data For mat)

Overview

The inbound tranglation process will be similar to the current EDI to dataformat (ADF) process
flow. The DI Utility will identify XML data asinput viaanew PERFORM keyword XML(Y/N)
which will default to N if not specified. If XML(Y) is specified the Utility will call the XML
preprocessor service to convert the XML datainto an EDI standard format, including an
EDIFACT envelope, and write it to the XML work file XMLWORK. The Utility will continue
the inbound process flow as normal through the trandlation process, and pass the XMLWORK
file asthe FILEID parm to translation services.

Thelevel of XML validation will be determined by the VALIDATE keyword on the Utility
PERFORM command.

e 0-Indicatesthat external DTD references should be ignored.

« 1-Indicatesthe DTD specified on the DOCTY PE declaration should be processed (e.g..
default attributes, entity references, etc.), but no DTD validation should be done.

e 2-Indicatesfull validation against DTD.

Thedefaultis1. All XML data must be well-formed to be processed. Validation level 1 and 2
requires the XMLDTD keyword to be used on the Utility PERFORM commands and that the
DTD files are on the host system.

XML processor errors will be written to afile XMLERR and will signal the Utility to also log
and write an error message to the Audit trail report. The XML data containing errors will be
written to the XMLEXCP file.

XML processor trace messages will be written out to XMLTRC fileif alocated. Thisfileisfor
DI development use only. Thisfile should typicaly only be alocated when doing problem
determination. Allocating this file during normal translation will reduce performance.

Transaction store and management reporting will have no changes and may be used with current
implementation. XML datawill be represented in EDI standard format. Since Transaction Store
will be usable and the XML datais stored in EDI standard format, other outbound commands are
supported. The interchange control numbers are generated from the system clock to avoid
duplicate envelopes.

DI v3.1 Technical XML Implementation Guide Page 17

Trading Partner Setup

Since the XML datawill be converted to EDI data with an EDIFACT envelope, trading partner
identification works the same as with current EDI processing. If asender ID and/or receiver ID
was identified with the DTD conversion utility, the EDIFACT sender ID and receiver ID will
contain these values from the XML data.

With traditional inbound EDI processing, the interchange sender 1D and qualifier are used to
locate a DI trading partner profile, and the profile aong with the transaction ID is used to locate
the map. Thereceiver ID can be used for minimal trading partner setup. Please see the DI
Administrator’ s Guide for more information on minimal trading partners. For XML processing
the setup isthe same asfor EDI processing. Y ou set up the trading partner profile and attach a
trading partner usage to the map. Some trading partner usage fields do not apply to XML data
such as application sender/receiver, functional acknowledgement fields, decryption, and
authentication. These EDI type fields should not be used for XML processing and could produce
unexpected results.

If the sender and receiver ID and qualifier elements were identified with the DTD conversion
utility, the XML processor will retrieve the values from these elements (or attributes) and place
them into the interchange header. The sender and receiver ID will each be truncated to 35
characters. The qualifierswill each be truncated to 4 characters.

If asender ID was not identified with the DTD conversion utility, the sender 1D will default to
XMLPROC with qualifier ZZ. A trading partner profile and trading partner usage is required for
these defaults. If areceiver ID was not identified, the receiver 1D will default to XMLRCVR
with qualifier ZZ. A trading partner profile and trading partner usage is required for these
defaults as needed for minimal trading partner resolution. Please see the DI Administrator’s
Guide for more information on minimal trading partner setup.

PERFORM Commands

The following PERFORM commands can be used to process inbound XML data:

PERFORM DEENVELOPE
PERFORM TRANSLATE TO APPLICATION
PERFORM DEENVELOPE AND TRANSLATE

DI v3.1 Technical XML Implementation Guide Page 18

New PERFORM Keywords

The following new keywords may be used on the PERFORM commands to control how the
inbound XML datais processed:

XML (Y/N) - Required for XML processing. The default is N.

* Y - Indicatesthat input datais XML.
* N - Indicates normal processing (no XML processing).

XMLVALIDATE(0/1/2) - Optional. All XML data must be well-formed to be processed. The
default is 1.

* 0O- Indicatesthat external DTD references should be ignored.

e 1-Indicatesthatif aDTD is specified on the DOCTY PE declaration, it should be
processed (e.g.. default attributes, entity references, etc.), but no DTD validation should
be done.

e 2-Indicatesfull validation against DTD.

XMLSTDID() - Optional for XML processing. Identifies the standard ID that was created with
the DTD conversion utility. If thiskeyword isused, the specified standard ID is used to convert
each XML document to a corresponding "EDI standard" envelope and transaction. If this
keyword is not specified, then the first 8 aphanumeric characters of the root el ement name are
used as the standard ID for each XML document. The maximum length is 8 characters. Also see
the XMLDICT keyword.

MULTIDOCS(Y/N) - Optional for XML processing. The default is N.

« Y - Indicates the XML input file contains multiple documents. If Y is specified, the input
message must be in EBCDIC and each document must begin with an XML declaration
(<?xml...).

« N - Indicates the XML input file contains one document.

XMLEBCDIC(Y/N) - Optiona for XML processing. ThedefaultisY.

* Y - Indicatesthe XML dataisto be interpreted as EBCDIC.
* N - Indicates that the encoding on XML declaration should be used.

See the section on “ XML Encoding Considerations’ for more detail.

DI v3.1 Technical XML Implementation Guide Page 19

XMLSEGINP(Y/N) - Optional for XML processing. ThedefaultisY.

* Y - Indicates that the record boundaries in the input XML data should be treated asline
breaks.
* N - Indicates that the record boundaries in the input XML data should be ignored.

This keyword isignored for XMLEBCDIC(N). See the section on “Other Considerations’
for more detail.

XMLDTDY() - Required for XML DTD processing. Identifies the PDS or HFS path where the
XML DTD members are located. The maximum length is 64. Please seethe “XML DTD
Resolution” section of this document for more information.

XMLDICT() - Required for XML processing. Identifiesthe PDS or HFS path where the XML

dictionary files generated by the DTD conversion utility are located. The maximum length is 64.
Please see the “ XML Dictionary Resolution” section of this document for more information.

Other Consider ations

If you are using XMLEBCDIC(Y), you can also use the XMLSEGINP(Y/N) keyword to control
whether the record boundaries on your input XML data are treated as line breaks or ignored.

« If youuse XMLSEGINP(Y), then anewline character is assumed at the end of each input
record in the XML data. Thiswill give more information for any error messages generated
by the XML parser, since it will include more accurate line and column information.
However, this requires that the record boundaries only occur where whitespace characters are
valid, such as between elements.

« If you use XMLSEGINP(N), then record breaks are ignored and the data is treated as a
continuous stream of characters. This allows record breaks to occur anywhere in the data.
However, any parser errors will not accurately show the line number, since the entire
document istreated asif it wereasingleline.

For XMLEBCDIC(N), the record boundaries are always ignored, and line numbers are based on
the carriage-return or newline characters that appear in the data.

The Interchange Sender ID and Qualifier will default to XMLPROC and ZZ if no sender ID is
present in the XML data. This means a Trading Partner profile and Trading Partner receive
usage for sender ID XMLPROC must be defined and attached to the XML mapping. The
interchange and transaction control numbers will be based on the system clock to avoid duplicate
envelopes in Transaction store.

DI v3.1 Technical XML Implementation Guide Page 20

The PERFORM RECEIVE command will receive EDI dataonly. It isatwo step processto
receive XML datausing IBM Globa Network (IGN):

PERFORM RECVFILE
And

PERFORM DEENVELOPE AND TRANSLATE.

It isaso atwo step process to tranglate from XML to an EDI standard such as X12 or EDIFACT.
First you use this XML processor to transate from XML to application data. Thenyou trandate
the application datato EDI .

DI v3.1 Technical XML Implementation Guide Page 21

Outbound Translation Process (Data Format to XML)
Overview

The outbound processis similar to the current dataformat (ADF) to EDI process flow. The
tranglation process will determine the mapping to use with the current trading partner usage
lookup. An XML map will be identified using envelope type “L” for the EDI standard
transaction. (Thiswill be created when the EDI standard is generated by the DTD conversion
utility.) If envelopetypeisL, each new transaction will force an interchange break to build all
EDIFACT envelope segments. The XML processor will convert the standard datato XML data.

XML validation will be determined by the trading partner usage overrides.
e O-Will indicate that no checking should be done on the outbound XML data.

« 1-Will verify that the outbound XML dataiswell-formed. If aDTD is specified in the
DIPROLOG variable, it will be processed for default attributes, parameter entity references,
etc. The XML datawill not be checked against the DTD for validity.

« 2- Will validate the outbound XML data against the DTD, in addition to verifying that it is
well-formed. Thisrequiresthe XMLDTD keyword to be used on the Utility PERFORM
commands.

Note that the validation of the outbound XML datawill cause additional processing, so it may
impact performance.

The Trading Partner Profile definition flag (segmented output = Y) will cause XML datato be
written out in an easy to read format with line breaks and indentation. 1f segmented output = N,
the data is written as a continuous stream, with no blanks or line breaks inserted.

XML processor errors and status messages will be written to afile XMLERR. If an XML
processing error occurs, the processor will signal the Utility to also log and write an error
message to the Audit trail report. If the XML datais generated by the XML processor, but an
error isfound during the validation, theinvalid XML datawill be written to the XMLEXCP file.

XML processor trace messages will be written out to the XMLTRC fileif allocated. Thisfileis
for DI development use only. It should typically only be allocated when doing problem
determination. Allocating this file during normal translation will reduce performance.

Transaction store and management reporting will have no changes and may be used with current
implementation. XML datawill be represented in EDI standard format. Since the transaction
store will be usable and the XML datais stored in EDI standard format, other outbound
commands are supported. The interchange sender and qualifier will be XMLPROC and ZZ.
Interchange control numbers will be updated based on trading partner similar to current EDI
processing.

DI v3.1 Technical XML Implementation Guide Page 22

Trading Partner Setup

Since the application data will be converted to EDI data with an EDIFACT envelope as the first
step, trading partner identification works the same as with current EDI processing. Theinternal
trading partner 1D identified on the RAW data format or the DI *C’ record will be used along
with the data format 1D to locate the mapping.

For XML processing the interchange sender ID and qualifier will always be XMLPROC and ZZ
The receiver ID will be populated using the trading partner profile member information for
traditional processing. Minimal trading partner setup may be used. Please see DI
Administrator’s Guide for more information on minimal trading partners. For XML processing
the setup isthe same as for EDI processing. Y ou set up the trading partner profile and attach a
trading partner usage to the mapping. Some trading partner usage fields do not apply to XML
data such as application sender/receiver, functional acknowledgement fields, encryption, security,
and authentication. These EDI type fields should not be used for XML processing and could
produce unexpected results.

The envelope type field on the trading partner usage override must be ‘L’ for XML. The
envelope type indicates thisisan XML trading partner. Thereis no envelope profile for XML.

PERFORM Commands

The following PERFORM commands can be used to process outbound XML data:
PERFORM TRANSLATE TO STANDARD

PERFORM ENVELOPE
PERFORM TRANSLATE AND ENVELOPE

New PERFORM Keywords

The following new keywords may be used on the PERFORM commands to control how the
outbound XML datais processed:

XMLDTDY() - Required for XML DTD processing. Identifies the PDS or HFS path where the
XML DTD members are located. The maximum length is 64. Please seethe“XML DTD
resolution” section of this document for more information.

XMLDICT() - Required for XML processing. Identifiesthe PDS or HFS path where the XML

dictionary files generated by the DTD conversion utility are located. The maximum length is 64.
Please see the “XML Dictionary Resolution” section of this document for more information.

DI v3.1 Technical XML Implementation Guide Page 23

Other Consider ations

The PERFORM SEND command will send EDI dataonly. It isatwo step processto send XML
datausing IBM Global Network (IGN).

PERFORM TRANSLATE AND ENVELOPE
And
PERFORM SENDFILE

A new mapping variable DIPROLOG will allow the user to map an override for the default
XML prolog generated by the XML processor. You can use thisif you want to customize the
XML prolog information, such as the encoding type or the DOCTY PE declaration. The
maximum number of characters that can be saved is approximately 900.

To map from an EDI standard such as X12 or EDIFACT to XML format, there are two options:

« You can map the EDI datato a dataformat (ADF) using host or DI Client mapping. With
this option you will need to map the XML prolog, starting, and ending tags as well as control
any formatting wanted such as line breaks and indentation.

« The second option isto use this XML processor to trandate from EDI to application data
followed by application datato XML trandation.

DI v3.1 Technical XML Implementation Guide Page 24

Other Topics

XML Dictionary Resolution

The XML dictionary is used by the XML processor to correlate the XML elements and attributes
with the EDI standard segments and data elements. It is one of the two files that are generated by
the DTD conversion utility when you convert aDTD. The file will be saved in the same
directory asthe DTD being converted. The filename will be in the format standard.DI C, where
standard is the standard name being generated.

This file must be uploaded to the host so the XML processor can accessit during trandation. It
should be uploaded using text mode, since it is generated as an ASCII text file. 1t may be stored
on the host as either aPDS member, or as an HFSfile. If it isstored asaPDS member, the
member name should be the same as the standard name. If it is stored as an HFSfile, the
filename should be in the format /path/standard.D1 C, where path is the HFS directory for the
file, and standard is the standard name (in uppercase).

The XMLDICT keyword on the PERFORM command is used to specify the location of thisfile
for the XML processor. If the XMLDICT value starts with aslash (“/”) character, the dictionary
isassumed to be an HFSfile, and the XMLDICT value specifiesthe directory. If the XMLDICT
value does not start with adlash (“/”) character, the dictionary is assumed to be a PDS member,
and the XMLDICT value specifies the fully qualified PDS name.

For inbound processing, the XMLSTDID keyword identifies the EDI standard (dictionary) name
to beused. If the XMLSTDID keyword is not used, the first 8 alphanumeric characters of the
root element in the XML datawill be used as the EDI standard (dictionary) name.

For outbound processing, the dictionary name is defined in the map (the standard dictionary
name used for the map).

For example, if the dictionary nameis CXML and islocated in the PDS EDI.XML.DICT then
the dictionary file would be in EDI.XML.DICT(CXML). Your PERFORM command would
look something like this:

PERFORM TRANSLATE AND ENVELOPE WHERE XMLDICT(EDI.XML.DICT)

PERFORM DEENVELOPE AND TRANSLATE WHERE XMLSTDID(CXML)
XMLDICT(EDI.XML.DICT)

If the dictionary name CXML islocated in HFS directory /u/ediuser, it would be in file
/ulediuser/CXML.DIC. The PERFORM command would look something like:

PERFORM TRANSLATE AND ENVEL OPE WHERE XMLDICT (/u/ediuser)

DI v3.1 Technical XML Implementation Guide Page 25

PERFORM DEENVEL OPE AND TRANSLATE WHERE XMLSTDID(CXML)
XMLDICT (u/ediuser)

Note that for HFSfiles, the path and filenames are case sensitive.

XML DTD Resolution

External DTDs can be parsed along with the XML data. The DTD can be used to validate that
the XML data conformsto the DTD, and can also be used to resolve things such as default
attribute values and parameter entity references. If you want the parser to process an external
DTD aong with the XML data, then you must upload the DTD file to the host. The file may be
stored as either aPDS member or an HFSfile.

For send processing (data format to XML), the DTD should be uploaded as text. For receive
processing (XML to dataformat), if you specify XMLEBCDIC(Y) (or use the default of Y), the
DTD file should be uploaded astext. If you specify XMLEBCDIC(N), then the DTD file must
contain an XML declaration (*<?xml...>") that includes the appropriate encoding type for the
file. Seethe section on XML Encoding Considerations for more information.

If DTD processing is to be done as part of the XML parsing (based on the validation level), then
the following processing takes place whenever the parser finds areference to an external DTD
file:

1. When an external DTD referenceisfound in the XML data, al path information (such asa
URL path or file path information) is removed from the DTD name, leaving only abase DTD
name.

2. IfaDTD diasfile (DD:DTDALIAYS) isallocated, then the base name isfirst looked up in the
aliasfile. (See below for more information.)

3. If the base nameisfound in the aliasfile, then the alias name is combined with the
XMLDTDS value to determine the filename of the DTD file. The search for the base name
inthe aliasfileis not case sensitive.

4. If noadiasisfound (or the DTDALIASfileis not allocated), then the base DTD nameis
combined with the XMLDTDS value to determine the filename of the DTD file. ThisDTD
fileis used by the XML parser in place of the URL specified on the DOCTY PE declaration.

Normally, the XML processor will just take the DTD name (without file or URL path
information) and combine it with the XMLDTDS value provided on the PERFORM command. If
the XMLDTDS value starts with a"/", then it is assumed to be an HFS path, and the base nameis
appended to the path. Otherwise, the XMLDTDS value is assumed to be a PDS, and the first 8
characters of the base name (minus the extension) are assumed to be the member name. For
example, if the XML data contains the following DOCTY PE declaration:

<IDOCTY PE PurchaseOrder SYSTEM * http://xyz.or g/xml/dtdsMyPO.dtd” >

DI v3.1 Technical XML Implementation Guide Page 26

The DTD name would be resolved as follows:

=

Remove the URL path information, leaving MyPO.dtd as the base name.

2. Look up MyPO.dtd inthe DTDALIASfile. For thisexample, we will assumeit is not
found.

3. If the XMLDTDS value starts with adlash (“/”), then the base name is appended to the
XMLDTDSvalue. If XMLDTDS(/u/ediuser/mydtds) is specified, then the DTD file name
would be /u/ediuser /mydtds/M yPO.dtd.

4. If the XMLDTDS value does not start with a slash, then the base name (without the

extension) is assumed to be aPDS name. If XMLDTDS(EDIUSER.MYDTDYS) is specified,

then the DTD file name would be EDIUSER.MYDTDS(MY PO).

This default behavior may cause conflictsin certain cases, such aswith long DTD names or DTD
names that differ only in the extension. To resolve conflicts caused by long DTD names, the
DTDALIASTilealowsyou to specify an aliasfor aDTD name. For example, if you are keeping
your DTD filesin aPDS, but you have two DTD files: LongDTDNamel.dtd and
LongDTDName2.dtd using the first 8 characters would yield the same member name for both:
LONGDTDN. The DTDALIASfile alowsyou to specify different member names for each of
these. Theformat isthe DTD (base) name followed by one or more blanks, followed by the aias
name (Note that HFS file names are case sensitive. PDS member names are not case sensitive.) .
For example:

longdtdnamel.dtd LONGN1
longdtdname2.dtd LONGN2

As an example, if you used the above DTDALIASfile, specified the parameter
XMLDTDS(EDIUSER.DTDS) on your PERFORM command, and your XML data contained the
following DOCTY PE declaration:

<I DOCTYPE po SYSTEM "http://xyz.org/ xm /dtds/LongDTDNanel. dtd">
The parser would resolve the DTD asfollows:

1. Remove the URL path information from the DTD name, resulting in a base name of
LongDTDNamel.dtd.

2. Look up thisbase name in the DTDALIASfile. Since this search is not case sensitive, it
would find the first entry, and result in an alias name of LONGNL.

3. Combine the alias name with the XMLDTDS value. Since EDIUSER.DTDS does not start
witha'/', itisassumed to be aPDS. Therefore, the member EDIUSER.DTDS(L ONGN1)
will be processed asthe DTD file for this XML document.

For outbound processing, the DTD nameisin the XML dictionary created by the DTD
conversion utility. If you use validation level 2, the DTD nameisretrieved from the XML
dictionary and used to create the default DOCTY PE declaration. If you use validation level 1,
the DTD name will not be included in the default DOCTY PE declaration, but if you override the

DI v3.1 Technical XML Implementation Guide Page 27

default prolog using the DIPROL OG variable and specify aDTD, it will be processed. If you use
validation level 0, outbound XML datais not validated usingaDTD.

Utility JCL

The DI XML processor library (EDI.V3R1IMO.SEDIXML1) and XMLA4C library (such as
EDI.XML.SIXMMODZ1) from the XML Toolkit must be included in the Utility JCL. For
example:

/ISTEPLIB DD DSN=EDI.V3RIMO0.SEDILMD1,DISP=SHR

I
I
I
I
I

DD DSN=EDI.V3R1IMO0.SEDIXML1,DISP=SHR
DD DSN=DB93.DSNEXIT,DISP=SHR

DD DSN=DB93.DSNLOAD,DISP=SHR

DD DSN=EDI.SNA131.LOADLIB,DISP=SHR
DD DSN=EDI.XML.SIXMMOD1,DISP=SHR

The following files may be allocated for XML processing:

XMLWORK - Required. Thisisawork file or temporary file used for XML inbound and
outbound processing. Thefile allocation for thisis similar to FFSWORK. The
Datalnterchange Utility and XML processor open thisfilefor OUTPUT and INPUT and it
should aways be empty before the job begins. Use the JCL DISP=0OLD to clear thisfile. It
isaprime candidate for avirtual 1/0 data set.

XMLERR - Required. Error and status messages from the XML processor are written to this
file. The record length should be long enough to hold any messages from the XML processor
(typically LRECL=255 is adequate), or some messages may be truncated. If you do not
alocate thisfile in your JCL, then you will not be able to see these messages. Thefile
alocation for thisissimilar to PRTFILE. The XML processor opens the file for OUTPUT.

It will normally start writing from the beginning of thisfile for each new PERFORM
command in your job step. Use the JCL DISP options to control whether the file is cleared or
appended to. If you are executing multiple PERFORM commands, you may want to use
DISP=MOD.

XMLTRC - Optional. If alocated, it contains XML processing trace messages. Thefile
alocation for thisissimilar to EDITRACE. The XML processor opensthe file for
OUTPUT. It will normally start writing from the beginning of thisfile for each transaction
on outbound, and each XML input file on inbound. Use the JCL DISP options to control
whether thefileis cleared or appended to.

XMLEXCP - Required. XML datathat isin error iswritten to thisfile. If thisfileis not
allocated in the JCL, the XML datathat isin error will be discarded. Thefile allocation for
thisissimilar to FFSEXCP. The XML processor opens the file for OUTPUT when
processing the first transaction, and starts writing from the beginning of thefile. It then
opens the file for extend for each subsequent transaction in the PERFORM command. Use
the JCL DISP optionsto control whether the fileis cleared or appended to during the first
use. Thefile should be allocated the same as your XML input file for inbound processing. If
you are executing multiple PERFORM commands, you may want to use DISP=MOD.

DI v3.1 Technical XML Implementation Guide Page 28

Thesefiles are used in asimilar fashion as the related allocation files. The recommendation isto
alocate these files the same as the rel ated files.

Encoding Considerations

The XML processor uses the XML Toolkit for OS/390 to parse the XML data. This parser
supports many different character encodings, and follows the XML standards for auto detection
of the character encoding. However, this can sometimes cause problems when dealing with
EBCDIC data.

According to the XML standard, if the XML document is not in UTF-8 (similar to ASCII for
most commonly used characters) or UTF-16 format, it must begin with an XML encoding
declaration (<?xml...>). For EBCDIC data, the encoding= attribute must be present and indicate
which encoding typeisin use. If the XML datawas generated as ASCII data, then converted to
EBCDIC, itislikely that the encoding= attribute would not be added or updated to reflect the
EBCDIC conversion.

Additionally, the newline (EBCDIC x’15) character is not recognized as avalid white space
character by the XML standard. However, on MV S thisis often inserted into files as arecord
separator by editors, upload applications, and other MV S applications.

To resolve both of these problems, the XML processor in DI can instruct the parser to override
the default (auto detected) encoding type for the XML document with a specia encoding type:
“ebcdic-xml-us’. This causes the parser to ignore the encoding= attribute in the XML
declaration, and use this special typeinstead. Thisencoding typeisbased on theibm1140
codepage, and will also treat any newline characters as a carriage-return (X’ OA’), which is
considered avalid XML whitespace character.

When receiving XML data, the XMLEBCDIC(Y) keyword (which is also the default) instructs
the XML processor to override the default encoding type with the specia “ ebedic-xml-us
encoding type. This appliesto any external DTDs processed, as well asto the XML dataitself.
This allows the XML processor to handle XML dataand DTDs that are in EBCDIC format, but
may contain new line characters and/or do not include the encoding type in the XML declaration
(or contains an incorrect encoding type). If XMLEBCDIC(N) is specified, then the XML
processor will determine the encoding type (for both the data and external DTDs) based on the
normal XML auto detection rules. Y ou should typicaly use XMLEBCDIC(N) if your input
XML datais in aformat other than EBCDIC, such as ASCII or UTF-16. Sincethe
XMLEBCDIC vaueisalso used to control the interpretation of the DTD files, using
XMLEBCDIC(N) aso requires that your DTDs contain an XML declaration (<?xml...>) with the
proper encoding type.

When sending XML data, the XML datais always generated as EBCDIC. The specid
“ebcdic-xml-us’ encoding type will always be used to check the XML data (and process any
external DTDs). No encoding typeis specified in the default XML prolog. If you want to send

DI v3.1 Technical XML Implementation Guide Page 29

the datain some other format, such as ASCII or UTF-16, the trandation must be done outside of
DI. Inmany cases, it may be done by the transport mechanism, such as FTP, that you useto
send the data to another system. If you need to specify an encoding= attribute in your XML
declaration, you may override the default prolog using the DIPROL OG mapping variable as
described in the Mapping section.

Additional information on encoding considerations and the XML Toolkit for OS/390 is on the
XML Toolkit for OS/390 web site (http://www.s390.ibm.com/xml/) under the “Usage” section.

DI v3.1 Technical XML Implementation Guide Page 30

XML Processor Messages and Codes

The following error and status messages are generated by the XML processor:
All messages are in the form: XPnnnnS, where:
nnnn is replaced by the message number
Stellsthe severity of the message
| means that the message is informational only, and is used to give status or to give
additional information about other messages.
W means that the message describes awarning. The current document is still
considered valid, but an unusual condition was found that may result in unexpected
output.
E means that the message describes an error. The current document is considered
invalid.

T means that the message describes a severe error that prevents any further processing

by the XML processor.

Messages resulting from the XML processor can be found in the XMLERR file. XML data that
isin error iswritten to the XMLEXCPfile.

XP0001l Starting XML processing (processtype)

Explanation: The XML processor is starting to process a document or file. The processtype

indicates whether it is using the preprocessor to convert XML to dataformat, or if it using the

postprocessor to convert data format to XML.
User Response: No action required.
XP0002I Ending XML processing (processtype) - status=status

Explanation: The XML processor has finished processing a document or file, and this
message describes the final status. The processtype indicates whether it is using the
preprocessor to convert XML to data format, or if it using the postprocessor to convert data
format to XML.

When processing a single document, the status indicates the status for the document. Status
0 means the document was successfully processed; status 4 means that warnings were found;
status 8 or 12 means that the document was not processed successfully.

When processing multiple input documentsin an XML input file, the status tells the overall
status for the set. Status O means that all documents in the file were successfully processed,;

status 4 means some documents were successful, but others had errors; status 8 means that all

documents failed; status 12 meansthat a serious error occurred, and the XML processor
could not continue.

DI v3.1 Technical XML Implementation Guide Page 31

User Response: No action required for status 0. For other status levels, check the other
messages to determine the cause of the error(s).

XP0011l Processing document docnum, (size bytes)

Explanation: When processing multiple input documentsin an XML input file, this message
tells which document in thefileis being processed. The docnum indicates the document
number within the file (sequential, starting with 1), and the size tells the size of the document
in bytes.

User Response: No action required.

XP0012l Document docnum processed - status=status
Explanation: When processing multiple input documentsin an XML input file, this message
tells the status for each document. The docnum indicates the document number within the
file (sequential, starting with 1), and the status tells whether the document was successfully
processed. Status 0 means the document was successfully processed; status 4 means that

warnings were found; status 8 or 12 means that the document was not processed successfully.

User Response: No action required for status 0. For other status levels, check the other
messages to determine the cause of the error(s).

XPO099T Fatal exception - description

Explanation: A serious error occurred in the XML processor, such as an out of memory
condition or a protection exception. The XML processor could not continue.

User Response: If the description indicates that it was a memory exception, check to make
sure that the process has adequate memory available for the size of the XML input file. If
you have alarge number of documentsin your input file you may be able to process them by
splitting the file into smaller pieces.

If the description indicates a"signal™ or some other type of exception, then you will probably
need to contact your system administrator or your support center.

XPO101E Error reading XML input file filename

Explanation: The XML processor could not read the specified filename containing the input
XML data

User Response: Make sure that the DD name for the input file on your PERFORM command
iscorrect, is allocated in the JCL, and that the job has read access to thefile.

DI v3.1 Technical XML Implementation Guide Page 32

XPO0O102E Unabletowritetothe DD:XMLEXCP file

Explanation: The XML processor tried to write invalid XML datato the XMLEXCPfile,
but was unsuccessful.

User Response: Make sure that the XMLEXCP fileis allocated in the JCL, and that the job

has write accessto thefile. Thiserror may aso occur if you are using segmented input or
output, but the record length of the XMLEXCP file is too short for the records.

XPO103E Unableto writetothe DD: XM LWORK file

Explanation: The XML processor tried to write the XML or EDI standard data to the
XMLWORK file, but was unsuccessful.

User Response: Make sure that the XMLWORK fileisallocated in the JCL, and that the job
has write access to thefile.

XPO199E Fileerror operation file filename
Explanation: The XML processor encountered an /O error trying to access the specified
file. The operation indicates whether it failed opening, reading, or writing to the file. The

filename tells which file was trying to be accessed.

User Response: Make sure that the specified file is alocated in the JCL, and that the job has
the appropriate access to thefile.

XP0200I Using XML dictionary file filename

Explanation: The XML processor is using the file specified by filename as the XML
dictionary for the current document.

User Response: No responseisrequired. Thisisfor information purposes only.
XPO201E Error reading XML dictionary file filename

Explanation: The XML processor could not open or read the XML dictionary file. The
filename tells which file the XML processor was trying to use as the XML dictionary.

User Response: Make sure that the specified file exists, and that the job has read access to
thefile. Also, make sure that your XMLDICT keyword has the right PDS name or HFS path
(Note: HFS paths and filenames are case sensitive.) If the XML processor istrying to use the
wrong XML dictionary for inbound processing, you may need to specify the XMLSTDID

keyword.

DI v3.1 Technical XML Implementation Guide Page 33

XP0202E Element element not found in XML dictionary

Explanation: The specified element from the XML data could not be found in the XML
dictionary file. The element tellswhich XML element was not found in the XML dictionary
file.

User Response: Make sure that the correct XML dictionary fileis being used for the data.
Some likely causes and solutions are:
*|f the XML processor istrying to use the wrong XML dictionary file, you may need to
specify the correct dictionary in the XMLSTDID keyword. If no XMLSTDID keyword is
specified, the dictionary name is taken from the root element, which may not be the
dictionary name you want.
*|f the specified element isnot in the DTD file that you converted, you will need to either
correct the XML data to match the DTD, or reconvert an updated DTD file that contains
the specified element. Note that if you update and reconvert the DTD file, anew EDI
standard will be generated. Y ou may need to migrate your map to the new standard or
remap it.

XPO203E Error in XML dictionary - filename

Explanation: The format of the XML dictionary fileisinvalid. The filename tells the name
of the file that the XML processor was trying to use.

User Response: Make sure that the specified file is actually an XML dictionary file that was
generated by the DTD conversion utility. Also, make sure that the file was uploaded to the
host as atext file (not binary), so the proper ASCII-EBCDIC conversion took place and the
record structure was maintained. 1f you suspect that the file was edited or corrupted, you may
need to upload the dictionary file to the host again.

XP0204E Segment segment not found in XML dictionary
Explanation: The specified segment from the EDI standard data could not be found in the
XML dictionary file. The segment tells which segment from the EDI standard data was not
found.
User Response: Make sure that the correct XML dictionary fileis being used for the data. If
an updated DTD has been converted and mapped, then the new XML dictionary file must
also be uploaded to the host.

XPO205E Invalid syntax in standard data

Explanation: The EDI standard data generated by DI and used as XML processor input is
syntactically invalid.

DI v3.1 Technical XML Implementation Guide Page 34

User Response: Check your map to verify that the data was mapped correctly. 1f you cannot
resolve the problem, contact your support center.

XPO0206E XML dictionary does not match data for element " childName", par ent
" parentName"

Explanation: The XML data does not match the content specification that isin the XML
dictionary file. The XML data may be invalid, or the dictionary may need to be updated to
reflect changesto the DTD.

Normally, the XML processor does not check the order of the XML elements, check for
missing elements, etc. However, when processing special loops such as $SQ and $CH loops,
it needs to check the order of the elements more closely. This error indicates that the
elements, or the order of the elementsin the XML data does not match what was expected
based on the XML dictionary.

User Response: Check the XML datain the XMLEXCPfile. It may be helpful to process
this document with validation level 2, since the XML parser may give additional information
about why the data does not match the content specification from the DTD file. If the XML
document does not passthe DTD validation, correct it and retry. If the document passes the
DTD validation, but still does not match the content specification in the XML dictionary file,
make sure that the XML dictionary file was generated from the same DTD file that is used
for validation. If the DTD file has changed, you may need to regenerate the XML dictionary
file and Client import file from the new DTD.

XPO300E The generated XML dataisinvalid.

Explanation: The XML data generated by the XML processor isinvalid. The XML datawill
be written to the XMLEXCPfile. If the document isusing validation level 1, this error
means that the datais not well-formed. If the document is using validation level 2, this
means that the data did not validate correctly against the DTD. Thiserror is not issued when
isusing validation level O, since no validation is performed.

User Response: Check the XML datain the XMLEXCP file, along with the other error
messages for the document, to determine why the dataisinvalid. Thisistypicaly caused by
amapping error. Some common errors include:

* Errorsin the prolog override (DIPROLOG mapping variable).

* Mapping invalid valuesto XML attributes.

* Not mapping required elements.

* Mapping more than one element of a choice.

* Using anincorrect DTD to validate the data.

DI v3.1 Technical XML Implementation Guide Page 35

XPO301E Invalid XML datawritten tothe DD: XMLEXCP file

Explanation: Theinvalid XML datawas written to the XMLEXCPfile. If the document is
using validation level 1 (or O for inbound), this error means that the datais not well-formed.
If the document is using validation level 2, this means that the data did not validate correctly
against the DTD.

User Response: You can use the datain the XMLEXCP file, along with other error messages
generated for the document, to help determine what the error was. For inbound processing,
you can correct the invalid XML documentsin the XMLEXCP file, then reprocess the
corrected data.

XP0302W Warningissued by XML parser in filefilename, line linenum, column
columnnum

Explanation: The XML parser detected a warning condition in the specified file, line
number, and column number. Warning conditions occur when the parser detects an unusual
condition, which may or may not represent a problem. Another message will follow this one
that contains the text returned by the parser.

If the filename value is "xmlbuffer”, this means that the warning condition was detected in
the current XML document that was being processed. (The document isin memory, so it
does not have areal filename.) In some cases, the filename may refer to an external DTD file
if the warning condition is detected inthe DTD file.

The linenum and columnnum values tell the line and column position where the warning
condition was detected. If you are using segmented input or output, the line numbers will
normally correspond to the recordsin thefile. If you are not using segmented input or output,
the line and column numbers will not reflect the record position in the file, since the record
boundaries are ignored.

User Response: The document is still processed, but you may want to check your input or
output data to verify that the warning condition does not indicate a more significant problem.

DI v3.1 Technical XML Implementation Guide Page 36

XPO303E Error found by XML parser in file filename, line linenum, column columnnum

Explanation: The XML parser detected an error condition in the specified file, [ine number,
and column number. Error conditions typically indicate a problem validating the document
against aDTD file. Another message will follow this one that contains the text returned by
the parser.

If the filename value is "xmlbuffer”, this means that the error condition was detected in the
current XML document that was being processed. (The document isin memory, so it does
not have areal filename.) 1n some cases, the filename may refer to an external DTD fileif

the error condition is detected in the DTD file.

The linenum and columnnum values tell the line and column position where the error
condition was detected. If you are using segmented input or output, the line numbers will
normally correspond to the recordsin thefile. If you are not using segmented input or output,
the line and column numbers will not reflect the record position in the file, since the record
boundaries are ignored.

User Response: You can use the datain the XMLEXCP file to help determine what the error
was. For inbound processing, you can correct the invalid XML documents in the XMLEXCP
file, then reprocess the corrected data.

XPO304E Fatal error found by XML parser in file filename, line linenum, column
columnnum

Explanation: The XML parser detected a "fatal" error condition in the specified file, line
number, and column number. Fatal error conditions from the parser typically indicate that
the document is not well-formed (i.e. syntactically incorrect). Another message will follow
this one that contains the text returned by the parser.

If the filename value is "xmlbuffer”, this means that the error condition was detected in the
current XML document that was being processed. (The document isin memory, so it does
not have areal filename.) 1n some cases, the filename may refer to an external DTD fileif
the error condition is detected in the DTD file.

The linenum and columnnum values tell the line and column position where the error
condition was detected. If you are using segmented input or output, the line numbers will
normally correspond to the recordsin thefile. If you are not using segmented input or output,
the line and column numbers will not reflect the record position in the file, since the record
boundaries are ignored.

User Response: You can use the datain the XMLEXCP file to help determine what the error
was. For inbound processing, you can correct the invalid XML documents in the XMLEXCP
file, then reprocess the corrected data.

DI v3.1 Technical XML Implementation Guide Page 37

XPO305E No root nodefound in XML data

Explanation: The XML processor was unable to access the root node in the XML document
for an inbound XML document.

User Response: Check to make sure that the XML document contains aroot node. Y ou can
correct the invalid XML document in the XMLEXCP file, then reprocess the corrected data.

XPO306E Fatal error during XML parser initialization
Explanation: The XML processor was unable to initialize the XML parser. Thistypically is
caused by an installation error in the XML Toolkit for OS/390. Another message will follow
this one that contains the text returned by the parser initialization function.
User Response: Verify that the XML Toolkit for OS/390 is correctly installed.

XPO307E Fatal exception during XML parser processing
Explanation: A serious error occurred within the XML parser while trying to parse the
document. Another message will follow this one which contains the text returned by the

parser. That error will provide more detail on the cause of the error.

User Response: If possible, correct the error indicated by the parser message text. If you
continue to have problems, contact your system administrator or your support center.

XP0310l M essage text: text
Explanation: When the XML parser (XML Toolkit for OS/390) detects any type of error or
warning, it returns some message text to the XML processor. This message follows other
error or warning messages, and will include the text returned by the parser to provide more
detail on the cause of the problem.
User Response: Use this message text to help diagnose error or warning conditions.

XP0350l Using DTD file filename

Explanation: The XML processor is using the file specified by filename asthe DTD file for
the current document.

User Response: No responseisrequired. Thisisfor information purposes only. This
information may be useful if you need to diagnose DTD problems.

DI v3.1 Technical XML Implementation Guide Page 38

XPO999E Internal error: error description

Explanation: The XML processor detected an internal error, such as unexpected parameters
from Datal nterchange or an invalid state within the XML processor. The error description
gives more information about the error that was detected.

User Response: Contact your system administrator or support center.

DI v3.1 Technical XML Implementation Guide Page 39

XML QUICK REFERENCE

. Convert the DTD using the conversion utility. Thiswill create an EDI standards import file
for DI Client, and an XML dictionary file to be used by the XML processor.

. Import the EDI standards import file (generated by the utility) into DI Client.
. Upload the XML dictionary fileand DTD fileto MVS (PDS member or HFSfile).

. Map the data format to the EDI standard (send map), or the EDI standard to the data format
(receive map) using DI Client.

. Generate a control string for the map.

. Set up trading partner and usage information.

. Update/Create DI Utility JCL.

. Update/Create DTDALIASfileif necessary.

. Invoke the DI Utility to do the tranglation and specify some new keywords on the PERFORM
command(s).

10. When doing send (dataformat to XML) processing, DI will trandlate the data format data to

the EDI standard format using the send map, then invoke the XML processor to convert
from the EDI standard format to XML.

11. When doing receive (XML to dataformat) processing, DI will invoke the XML processor to

convert the XML datato the EDI standard format, then trand ate the EDI standard data to the
data format using the receive map.

DI v3.1 Technical XML Implementation Guide Page 40

	Guide
	XML PTF Overview
	Converting an XML DTD
	Mapping
	Inbound Translation Process
	Outbound Translation Process
	Other Topics
	XML Processor Messages and Codes

	XML Quick Reference

