IBM WebSphere Business Integration Express for

Item Synchroniz ation

Map Development Guide

V4.3

<|ll

Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 415,

100ctober2003

This edition of this document applies to IBM WebSphere Business Integration Express for Item Synchronization,
version 4.3, and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing
from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document. ix
Audience . ix
How to use this manual . ix
Related documents . X
Typographic conventions . . X
New in this release. . Xi
New in release 4.3 . xi
Part 1. Maps 1
Chapter 1. Introduction to map development . . 3
About data mapping .3
Maps: A closer look . .5
Tools for map development .7
Overview of map development. . 10
Chapter 2. Creating maps. 13
Overview of Map Designer Express .13
Creating a map: Basic steps . . . 28
Specifying standard attribute transformatlons . . 35
Saving maps . . . 47
Checking completion . . 49
Mapping standards. . 50
Chapter 3. Working with maps . 51
Opening and closing a map . . 51
Providing map property information . . 54
Using map documents. . 56
Finding information in a map . 60
Finding and replacing text . 62
Printing a map . 62
Deleting objects . . 63
Using execution order . . . 66
Importing and exporting maps from InterChange Server Express . 67
Chapter 4. Compiling and testlng maps. . . 69
Validating a map . . . 69
Compiling a map . . 70
Compiling a set of maps . .71
Testing maps . .72
Doing advanced debuggmg . .79
Testing maps that contain relationships . . 80
Debugging maps . 85
Chapter 5. Customizing a map . 87
Customizing transformation steps . . .87
Importing Java packages to Interchange Server Express . 136
Using variables. . 140
Reusing map instances . . 144
Handling exceptions . . . 144
Creating custom data Vahdatlon levels . . 146
Understanding map execution contexts. . 146
© Copyright IBM Corp. 2003 iii

Part 2. Relationships .

. 151

Chapter 6. Introduction to Relationships. . 153
What is a relationship? . . 153
Relationships: A closer look . . . 159
Overview of the relationship development process . 165
Chapter 7. Creating relationship definitions . 167
Overview of Relationship Designer Express . . 167
Creating relationship definitions . . 173
Defining identity relationships. . 174
Defining lookup relationships . . 176
Creating the relationship table schema . . 178
Copying relationship and participant deflmtlons . 178
Renaming relationship or participant definitions. . 179
Specifying advanced relationship settings . . 179
Deleting a relationship definition . . 183
Optimizing a relationship . 184
Chapter 8. Implementing relationships . 187
Implementing a relationship . 187
Using lookup relationships . . . 188
Using simple identity relationships . . 191
Using composite identity relationships . . 202
Managing child instances . 207
Setting the verb . . 210
Performing foreign key lookups . . 216
Loading and unloading relationships . 221
Part 3. Mapping API Reference . 225
Chapter 9. BaseDLM class. . 227
getDBConnection() . 227
getName() . 229
getRelConnectlon() . . 230
implicitDBTransactionBracketing() . 231
isTraceEnabled() . 231
logError(), logInfo(), logWarnmg() . 232
raiseException() . 233
releaseRelConnection() . 235
trace() . . 236
Chapter 10. BusObj class . . 239
Exceptions and exception types . . 240
Syntax for traversing hierarchical busmess ob]ects . . 240
copy() . . 241
duplicate() . 242
equalKeys() . . 242
equals() . 243
equalsShallow() . 244
exists() . . 244
getBoolean(), getDouble() getFloat() getInt() getLong() get() getBusOb]() getBusOb]Array() getLongText()

getString() .o . 245
getLocale() . 247
getType() . . 247
getVerb() . . 247
isBlank() . . 248
isKey() . 248
isNull() . 249

iv Map Development Guide

isRequired() .
keysToString() .

set()

setContent() . -
setDefaultAttrValues()
setKeys() .

setLocale()

setVerb() . .
setWithCreate() .
toString() .
validData() . .
Deprecated methods .

Chapter 11. BusObjArray class.
addElement()
duplicate()
elementAt() .
equals()
getElements()
getLastIndex() .
max() .
maxBusOb]Array()
maxBusObjs()
min() . . .
mmBusOb]Array()
minBusObjs()
removeAllElements() .
removeElement() .
removeElementAt()
setElementAt() .
size() .

sum() .

swap().

toString() .

Chapter 12. CwDBConnection class.
beginTransaction() .
commit() .
executePreparedSQL()
executeSQL()
executeStoredProcedure()
getUpdateCount() .
hasMoreRows().
inTransaction() .
isActive().

nextRow/()

release() .

rollBack().

Chapter 13. CwDBStoredProcedureParam class
CwDBStoredProcedureParam()

getParamType().

getValue()

Chapter 14. DtpConnection class .
beginTran() .

commit() .

executeSQL()

execStoredProcedure()

getUpdateCount() .

. 250
. 250
. 251
. 252
. 253
. 253
. 253
. 254
. 254
. 255
. 256
. 256

. 259
. 260
. 260
. 261
. 261
. 262
. 262
. 262
. 263
. 264
. 265
. 266
. 267
. 268
. 268
. 269
. 269
. 270
. 270
. 270
. 271

. 273
. 273
. 274
. 275
. 276
. 278
. 279
. 279
. 280
. 280
. 281
. 281
. 282

. 285
. 285
. 286
. 287

. 289
. 289
. 290
. 291
. 292
. 293

Contents

A\

hasMoreRows().o, 29
inTransaction() L oL s 2%
nextRow() Lo Lo e s s 2%
rollBack(). L s 2%

Chapter 15. DtpDataConversionclass. .297
getType(). oL e e e e 2y
isOKToConvert()o 298
toBoolean() L .. Lo oo osu300
toDouble() L L ..o s
toFloat() L oL s s B
tolnteger() L L L. 30
toPrimitiveBoolean() .30
toPrimitiveDouble() .303
toPrimitiveFloat() L B4
toPrimitiveInt(). L . L oL B4
toString(). L L ..o 3B0

Chapter 16. DtpDateclass«307
DtpDate() L L3
addDays()o.o.310
addWeekdays(). L oo
addYears() Lo e s e 12
after() L L3113
before() L L314
calcDays()o 314
caleWeekdays()., L3B1s
getl2MonthNames() .36
getl2ShortMonthNames() .36
getZDayNames() .. .36
getCWDate() L LB
getDayOfMonth() L L LB
getDayOfWeek()38
getHours() L . L Lo
getintDay() o318
getintDayOfWeek() L. L3
getintMilliSeconds() 319
getIntMinutes(). L . . L. ..o 31d
getintMonth()o.o.o.o2320
getIntSeconds().o.o.o.ou320
getintYear() 2320
getMSSincel970() L Lo
getMaxDate() L L 0L
getMaxDateBO() L. L322
getMinDate() L L. ... 2323
getMinDateBO() 325
getMinutes(). L L. ..o 326
getMonth() L. L. 326
getNumericMonth() ... 2326
getSeconds(). L oL Lo B27
getShortMonth() L L L LB
getYear() . . . NG 4.
setlZMonthNames() . NG 24
setl2MonthNamesToDefault() G A"
set12ShortMonthNames() . . G V4"
setl2ShortMonthNamesToDefault() G YA°)
set7DayNames() . . N < (0]
set7DayNamesTODefault() G 1 (0]
toString(). L L L Lo B3

vi Map Development Guide

Chapter 17. DtpMapSerwce class.
runMap().

Chapter 18. DtpSletStrlng class
DtpSplitString().

elementAt() .

firstElement()

getElementCount()

getEnumeration() .

lastElement()

nextElement()

prevElement() .

reset() .

Chapter 19. DtpUtlIs class .
padLeft() .

padRight()

stringReplace() .

truncate().

Chapter 20. IdentltyReIatlonshlp class.

addMyChildren() .
deleteMyChildren()
foreignKeyLookup() .
foreignKeyXref()
maintainChildVerb() .
maintainCompositeRelationship().
maintainSimpleldentityRelationship()
updateMyChildren() .

Chapter 21. MapExeContext class
getConnName()

getInitiator().

getLocale()

getOrlgmalRequestBO()

setConnName().

setlnitiator() .

setLocale() .

Deprecated methods .

Chapter 22. Participant class.
Participant() .

getBusODbj(), getStrmg() getLong() getInt() getDouble()

getFloat(), getBoolean() .
getInstanceld() .
getParticipantDefinition()
getRelationshipDefinition() .
set() .
setInstanceld() .
setParticipantDefinition()
setRelationshipDefinition() .

Chapter 23. Relationship class .
addParticipant()

create()

deactivateParticipant()
deactivateParticipantByInstance() .
deleteParticipant() .
deletePart1c1pantByInstance()

. 333

. 333

. 335

. 335
. 336
. 336
. 337
. 338
. 338
. 338
. 339
. 340

. 341

. 341
. 341
. 342
. 343

. 345

. 345
. 347
. 348
. 350
. 352
. 354
. 356
. 358

. 363

. 363
. 363
. 364
. 365
. 366
. 366
. 367
. 368

. 369

. 369

. 371
. 371
. 372
. 372
. 373
. 373
. 374
. 374

. 377

Contents

. 378
. 380
. 381
. 382
. 383
. 384

vii

getNewlD() . . 385
retrievelnstances() . . 386
retrieveParticipants() . . 388
updateParticipant() . 389
updatePart1C1pantByInstance() . 389
Deprecated methods . . 390
Chapter 24. UserStoredProcedureParam class . . 393
UserStoredProcedureParam() . . 393
getParamDataTypeJavaObj() . 394
getParamDataType]DBC() . 395
getParamIndex() . . 395
getParamIOType() . . 396
getParamName() . 397
getParamValue() . 397
setParamDataType]avaOb]() . 398
setParamDataType]DBC() . 398
setParamIndex() . 399
setParamIOType() . . 399
setParamName() . 400
setParamValue() . 400
Part 4. Appendixes . . 401
Appendix A. Message files. . 403
Message location . . 403
Format for map messages . . 405
Maintaining the files . . 407
Operations that use message ﬁles . 407
Appendix B. Attribute properties . . 413
Notices . . - . 415
Programming interface 1nf0rmat10r1 . . 416
Trademarks and service marks . 416
Index . . 419

viii Map Development Guide

About this document

The IBM® WebSphere™ Business Integration Express for Item Synchronization
product includes Interchange Server Express, the associated Toolset Express
product, the Item Synchronization collaboration, and a set of software integration
adapters. Together they provide business process integration and connectivity
among leading e-business technologies and enterprise applications as well as
integration with the UCCnet GLOBALregistry.

This document provides an introduction to the use of maps and relationships and
describes how to use Map Designer Express and Relationship Designer Express for
creating and modifying maps and relationships.

Audience

This document is for connector developers, collaboration developers, and IBM
WebSphere consultants who create or modify business object definitions or maps.

How to use this manual

This manual is organized as follows.

Part I: Maps

[Chapter 1, “Introduction to map development”| Is an overview of maps and the Business
Integration Express for Item Synchronization
mapping tools.

[Chapter 2, “Creating maps”| Provides an introduction to the use of Map

Designer Express for the creation and

modification of maps.

[Chapter 3, “Working with maps”| Describes some advanced features of Map

Designer Express that you might use after

creating maps.

[Chapter 4, “Compiling and testing maps”| Describes how to compile a map into its
executable form and how to run a test run to
verify the map’s correctness.

[Chapter 5, “Customizing a map”] Describes how to implement maps.
Part II: Relationships
[Chapter 6, “Introduction to Relationships’| Provides an introduction to relationships,

including the kinds of relationships that Business
Integration Express for Item Synchronization
supports and the way the system implements a
relationship.

[Chapter 7, “Creating relationship definitions”] Provides an introduction to the use of
Relationship Designer Express for the creation
and modification of relationship definitions.

[Chapter 8, “Implementing relationships”| Describes how to implement relationships.

Part III: Mapping API Reference

© Copyright IBM Corp. 2003 ix

Chapter 9, “BaseDLM class”}

Chapter 10, “BusObj class”}

Chapter 11, “BusObjArray class”}

Chapter 12, “CwDBConnection class”}

Chapter 13, “CwDBStoredProcedureParam class”}
Chapter 14, “DtpConnection class”}

Chapter 15, “DtpDataConversion class”}
Chapter 17, “DtpMapService class”}

Chapter 18, “DtpSplitString class}

Chapter 19, “DtpUtils class”}

Chapter 20, “IdentityRelationship class”}
Chapter 21, “MapExeContext class”}

Chapter 22, “Participant class”}

Chapter 23, “Relationship class’}

Chapter 24, “UserStoredProcedureParam class”|
[Appendix A, “Message files”|

[Appendix B, “Attribute properties”|

Contain reference pages for methods of classes in
the Mapping APL

Related documents

The complete set of documentation describes the features and components
common to all installations of IBM WebSphere Business Integration Express for
Item Synchronization, and includes reference material on specific components.

You can download, install, and view the documentation at the IBM WebSphere
Business Integration Express for Item Synchronization InfoCenter, located at:

lhttp:/ /www.ibm.com /websphere /wbiitemsync/express/infocentei]

Typographic conventions

This document uses the following conventions:

courier font

Indicates a literal value, such as a command name,

information that you type, or information that the system
prints on the screen.

italic or italic

Indicates a variable name, title name, or new term the first

time that it appears

blue outline

A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click
inside the outline to jump to the object of the reference.

ProductDir

Represents the directory where the product is installed.

X Map Development Guide

http://www.ibm.com/websphere/wicsserver/infocenter

New in this release

This section describes the new and changed features of IBM WebSphere Business
Integration Express for Item Synchronization 4.3 and its associated tools for map
and relationship development, which are covered in this document.

New in release 4.3

This is the first release of Map Designer Express and Relationship Designer
Express as part of the IBM Web Sphere Business Integration Express for Item
Synchronization release.

© Copyright IBM Corp. 2003

xi

xii Map Development Guide

Part 1. Maps

© Copyright IBM Corp. 2003

2 Map Development Guide

Chapter 1. Introduction to map development

This chapter provides an overview of data mapping, introduces the tools you use
to implement maps, and describes map and relationship definitions.

This chapter covers the following topics:

* [“About data mapping” on page 3|

* ["Maps: A closer look” on page 5

» [“Tools for map development” on page 7

+ [“Overview of map development” on page 10|

About data mapping

Data mapping is the process of transforming (or mapping) data from one
application-specific format to another. Mapping is central to the process of
transferring information between different applications, and for providing
collaborations (business processes) that are independent of specific applications. By
mapping data between application-specific business objects and generic business
objects, WebSphere creates the environment that allows for the use of “best of
breed” applications. The WebSphere business integration system provides a
modular and extensible architecture for easy maintenance of your maps.

The WebSphere map development system provides comprehensive support for
mapping between business objects, including the following capabilities:

* Transforming data values from one or more attributes in a source business object
to one or more attributes in a destination business object

* Establishing and maintaining relationships between data entities that are
equivalent but are represented differently and cannot be directly transformed

* Enabling access to external mapping resources, such as third-party mapping
products and databases for performing queries

When data mapping is set up among differing applications, an event occurrence in
one application is performed in any other application to which it is mapped. An
event occurrence can be when data is created, retrieved, updated, or deleted.

Mapping uses maps that define the transfer (or transformation) of data between the
source and destination business objects. In the map development environment,
data is mapped from an application-specific business object to a generic business
object or from a generic business object to an application-specific business object.
lists the types of mapping required.

Table 1. Mapping requirements

Destination business

Direction of business object Source business object object Type of map
Connector to collaboration Application-specific Generic Inbound map
Collaboration to connector Generic Application-specific Outbound map

© Copyright IBM Corp. 2003 3

illustrates how mapping occurs at run time, using a fictionalized
Employee Management collaboration as an example.

InterChange Server Express

Map Map
App A Generic Generic App B
Employee [>| Employee Collaboration1 Employee [—| Employee
App A App B
Connector Controller Connector Controller
App A App B
1 Employee Employee 8
Business Object Business Object
App A App B
Connector Connector
App A App B

Figure 1. Data mapping at run time

The Employee Management collaboration (Collaborationl) receives an Employee
business object from the source connector (App A), then sends an Employee business
object to the destination connector (App B). illustrates the following
sequence occurs (the numbers here correspond to the numbers in the figure):

1.

4 Map Development Guide

An event occurs in App A. The App A connector produces an App A Employee
business object and sends it to the App A connector controller.

The App A connector controller sends the App A Employee business object to the
Employee Management collaboration (Collaborationl), which resides on
InterChange Server Express, for mapping. The request includes the name of the
data map that the server must use, based on the map name specified in the
connector configuration.

The inbound map returns the generic Employee business object to the App A
connector controller.

The App A connector controller checks the collaborations that have subscriptions
to the generic Employee business object. In this case, Collaborationl has a
subscription, so the connector controller hands the business object to
Collaborationl.

The collaboration performs some processing, then produces another generic
Employee business object as output, which it sends to the App B connector
controller.

The App B connector controller sends the generic business object to InterChange
Server Express, requesting mapping to the App B Employee business object.

7. The outbound map returns the application-specific Employee business object to
the App B connector controller.

8. The App B connector controller passes the App B Employee object to the App B
connector, which can then pass the data in the business object into App B.

The figure shows two types of maps in use:

¢ One inbound map from the App A Employee business object to the generic
EmpTloyee business object used by the collaboration

* One outbound map from the generic Employee business object to the App B
Employee business object

The Employee data moves in only one direction—from Application A toward
Application B. If you want to exchange the Employee data in both directions
between both applications, two more maps are required:

* An inbound map from the application-specific business object of Application B
to the generic business object

* An outbound map from the generic business object to the application-specific
business object of Application A

Maps: A closer look

As shows, a map is a two-part entity, consisting of a map definition and a
run-time object.

Map definition
You define a map to the map development system with a map definition. Map
definitions are stored in projects in System Manager. The Map Designer Express
tool provides dialogs to assist in the creation of the map definitions (often referred
to simply as maps). It also handles storing the completed map definition in
projects in System Manager.

For more information on how to use Map Designer Express to create map
definitions, see [“Creating a map: Basic steps” on page 28

The map definition provides the following information about the map:
¢ The map name

* The source and destination objects of the map

* The map transformations

Map definition name

A map definition is simply a template or description of the map. It provides
information on how to transform attributes of one business object to another.
Therefore, the name of the map definition should identify the direction of the map
and the business objects it transforms.

Source and destination business objects
Maps consist of one or more source business objects and one or more destination

business objects. The source business objects are the ones to be transformed; the
destination business objects are the ones that are generated with data from the source
business objects.

Map transformations
The rest of the map consists of a series of transformation steps. A transformation

step is a segment of Java code that returns the value of a destination attribute. A

Chapter 1. Introduction to map development 5

map contains one transformation step for each destination attribute that is
transformed. Transformations are implemented as Java code and are therefore
stored in a Java source (.java) file.

shows some of the transformations you can perform on a destination
business object. Standard transformations include Set Value, Move, Join, Split,
Submap, and Cross-Reference. You can create custom transformations with
graphical function blocks.

Table 2. Transformations of a map

Transformation

Standard transformations
Set Value
Move (Copy)
Join
Split
Submap
Cross-Reference

Custom transformations

Description

Transformations for which Map Designer
Express can autogenerate code
Specifying a value for a destination
attribute

Copying a source attribute to a
destination attribute

Joining two or more source attributes into
a single destination attribute

Splitting a source attribute into two or
more destination attributes

Calling a map for a child business object

Maintaining identity relationships for the
business objects

Creating a transformation other than one
of the standard transformations listed
above

For more information

"“Specifying a value for an attribute” on|
page 36

“Copying a source attribute to al
destination attribute” on page 37|

“Joining attributes” on page 38|

|“Splitting attributes” on page 40|

“Transforming with a submap” on page
41

“Cross-referencing identity relationships’]
on page 45

“Creating a Custom transformation” on|

[page 4§|

When a clear correspondence exists between the source attribute and destination

attribute, the transformation step simply copies the source value to the destination
attribute. Other transformations can involve calculations, string manipulations, and
data type conversions.

illustrates some typical kinds of attribute transformations:

CustomerName » FirstName
2
Address1] LastName
3
Address2 » Address
1 .
City » City
StateProv 1 »| State_Prov
ZipPostal 1 » ZipCode
District
Source Destination

Figure 2. Typical attribute transformations

As shows, attributes from the source business object are typically:
* Copied to a destination attribute (City, StateProv, ZipPostal).

6 Map Development Guide

 Split into multiple destination attributes (CustomerName).
* Joined into one destination attribute (Addressl, Address?2).
* Ignored when the destination object has no equivalent attribute (District).

For simple transformations such as copying a value into an attribute, splitting a
value into two or more attributes, or joining two or more values into one attribute,
you can specify the step graphically and Map Designer Express generates the Java
code. For more complex transformations, you can customize the transformation
with a graphical editor.

Map instance

The map definition is a template for the run-time instantiation of the map, the map
instance. During map execution, the Map Development system creates instances of
the map based on the map definition and the transformation code.

Each map instance provides the following information:

* Basic functionality such as logging, tracing, connections, and exception handling
through methods of the BaseDLM class

* The map execution context

For more information, see|“Understanding map execution contexts” on page 146

Tools for map development

shows the two graphical design tools of mapping.

Table 3. Principal components of data mapping system

Design tool
Map Designer Express

Relationship Designer
Express

Mapping component Description

Map Uses Java code to specify how to transform attributes
from one or more source business objects to one or
more destination business objects. You typically create
one map for each source business object you want to
transform, though you can also break up a map into
several submaps.

Relationship Establishes an association between two or more data
entities in the Map Development system. Relationship
definitions most often associate two or more business
objects. You use relationship definitions to transform
data that is equivalent across business objects but is
represented differently. For example, a state code for the
state of Michigan might be represented as MI in one
application and MICH in another. This data is equivalent
but is represented differently in each application. Most
maps use one, or a few, relationship definitions.

These graphical tools run on Windows 2000 and Windows XP. Therefore, these
platforms are for map development.

System Manager is an additional tool that is provided for map development. It
provides graphical windows to configure a map instance as well as configure a
relationship object.

Map Designer Express

Map Designer Express creates and compiles maps. You can launch Map Designer
Express from System Manager by selecting Map Designer Express from the Tools

Chapter 1. Introduction to map development 7

menu. For other ways to launch Map Designer Express, see|“Starting Map

[Designer Express” on page 14.. Map Designer Express provides a tab window to
view map information. This window displays one of four tabs: Table tab, Diagram
tab, Messages tab, or Test tab.

shows a map displayed in the Diagram tab of Map Designer Express.

EfMap Designer Express - Map_Level! : Test , 7. =10/
o Edi Yew Debug ook Heb

[cgacu|as r2rx|? [@Ee PET Db [k

Tatle Diagam IMemga: ‘leﬂ]

|
SOULCe !
:
Affributz Type ' Rtribute Type Rule Comment
= ObjaLevaitnpul aLeveliinpul i ObfaLevelt Outeut]aLmnompm P Cross Refatonce
Wer] N B |
Slring1 Slring | String! Stilag B move
Booleant Boolean ——: Booleant Boolean aJﬂiﬁ
Floatt Float ———————= | Fioatl Float B spit
Intenert Integer i rleger] Integer B setvalue (10)
Datet Date i Datel Dale B Cusion
[alevel2input alevelZinpul L | | @ alLewiOupul |aLevelz0utput [Subinag (Sub_L
ObjactErentd Slring ObjectEventid |Shing |

4 L|j
3

Yap <Map_Levellr opened.

Ready 4

Figure 3. Map Designer Express

For information on how to use Map Designer Express to create a map, see
[Chapter 2, “Creating maps,” on page 13/

Relationship Designer Express

Relationship Designer Express creates relationship definitions and the table
schemas that store the run-time relationship instance data. You can launch
Relationship Designer Express from System Manager by selecting Relationship
Designer Express from the Tools menu. shows several relationships

8 Map Development Guide

displayed in Relationship Designer Express.

.~ Relationship Designer Express

dit - Wiew Help
E||‘i_l'I OrderTest : Relationship Definitions
'ﬁ’ Crad20rde
E|§¢ RelCutl
W NewRit
o Userdd2 Participant Typ

=450 Business Object Definitions
- [3 Addiess

: E Customer

~[i& lasthame

[name
ObjectEventld

i be[F phone

E Order

Figure 4. Relationship Designer Express

For more information on how to use Relationship Designer Express, see
[“Creating relationship definitions,” on page 167

System Manager

System Manager is a graphical tool that provides an interface to InterChange
Server Express and the repository. System Manager provides the means to manage
maps and configure a map definition. You can:

¢ Set some general properties of a map definition, including its trace level and
data validation level.

* Display the source and destination business objects of a map.
* Compile a map definition.

For more information on how to use System Manager to perform these mapping
tasks, see the User Guide for WebSphere Business Integration Express for Item
Synchronization.

Note: System Manager provides ways to start up Map Designer Express. For more
information, see [“Starting Map Designer Express” on page 14}

System Manager also provides the means to manage relationships. You can:

* Set some general properties of a relationship, including the location of its
relationship tables.

* Display the participants of the relationship.

Note: System Manager also provides ways to start up Relationship Designer
Exi ress. For more information, see [“Starting Relationship Designer Express”|

Chapter 1. Introduction to map development 9

Overview of map development

This section provides an overview of map development, which includes the
following high-level tasks:

1.

2.

Installing and setting up the map development software and installing the Java
Development Kit.

Designing and implementing the map.

Setting up the development environment

Requirements: Before you start the development process, the following must be
true:

The map development software is installed on a machine that you can access.

For information on how to install and start up the map development software
system, see your system installation guide.

The IBM Java Development Kit (JDK) is installed from the product CD.

Be sure to update the PATH environment variable to include the installed Java
directory. Restart InterChange Server Express after you have updated the path.

System Manager is running.

For information on starting up System Manager, see your system installation
guide.

Map Designer Express is open and connected to System Manager.

For information on how to start Map Designer Express, see [“Overview of Map|
[Designer Express” on page 13|

Designing and implementing the map

To design and implement maps you need to do the following:

1.

oo

8.

Learn the data formats used by all business objects involved in the map.

2. Create the map within Map Designer Express.
3.
4. Define any relationships within Relationship Designer Express that the map

Customize any required transformation rule.

needs.
Customize the mapping transformation to perform relationship management.
Implement error and message handling if appropriate.

Generate the .java file and compiled code. The compiled code is an executable
Java class. For more information, see[“Map development files” on page 11|

Test and debug the map, recoding as necessary.

provides a visual overview of map development and provides a quick
reference to chapters where you can find information on specific topics.

Tip: If a team of people is available for map development, the major tasks of
developing a map can be done in parallel by different members of the

10 Map Development Guide

development team.

Task Steps: Refer to:

Create the map L | * Create the map definition
. . Chapter 2
* Create the simple transformations

o Use custom transformation rules to
meet your transformation requirements

¢ Validate and compile the map
e Implement error and message handling

¢ Add any required complex
transformatons ~ f- Chapter 3

Customize the map

v

* Recompile the map

Chapter 5

Afdd thg r;alationships I ,| ¢ Create the relationship definiton ~ fl— Chapter 7

if neede

() ¢ Customize the map by addng ~~ § Chapter 8

relationship-management transformation apte
* Recompile the map
v
Test and debug o ° Test map-— e Chapter 2

¢ Modify the map as needed

Figure 5. Overview of the map development task

Map development files
The following information forms the basis of the map:

* When you compile a map, Map Designer Express generates two types of files
(.java, .class) or an optional message file (.txt) if map-specified messages are
defined in the map. These files are saved in the project in System Manager.

¢ Map Designer Express generates a map definition when you save a map to the
project in System Manager. This map definition contains general information
about the map (such as map properties) as well as information about how the
destination attributes are mapped.

Attention: Do not modify the mapname.java file. If you do, your changes are not
reflected in the map design, which is stored in the project in System
Manager. Therefore, these changes are not editable in Map Designer
Express. Map Designer Express reads only the map definition.

Relationship Designer Express also stores relationship definitions in XML format in
System Manager. At deployment, System Manager creates table schemas in the
relationship database to contain the relationship run-time instance data. For each
relationship, you can specify the location of all its relationship tables. The default
location for these tables is the IBM WebSphere InterChange Server Express
repository.

lists the file types that Map Designer Express can generate (.java, .class,
.cwm, .bo, .txt) and their locations relative to the System Manager workplace.

Chapter 1. Introduction to map development 11

Table 4. Map file types

File type

.java

.class

.Cwm

.bo

Ltxt

Description

Generated Java code, created by Map
Designer Express when you compile a
map.

Compiled Java code, created by Map
Designer Express when you compile a
map.

Map definition file, generated by Map
Designer Express when you save a map
definition.

Plain text file, used to save and load
test run data and to save test run
results.

Message file, created by Map Designer
Express from information in the
Messages tab when it compiles the map.

Location relative to System Manager
workspace

Stored in ProjectName\Maps\Src.
Stored in ProjectName\Maps\Classes.
Saved to ProjectName\Maps when

"Saved” to System Manager.

You can save these files to any
location.

Stored in
ProjectName\Maps\Messages.

12 Map Development Guide

Chapter 2. Creating maps

This chapter describes how to use the Map Designer Express to create maps.
Note: This chapter frequently uses the terms map and map definition
interchangeably. When the term map is used, it refers to the map definition

(what is accessed through Map Designer Express).

This chapter covers the following topics:

* |“Overview of Map Designer Express” on page 13|

4

* |“Creating a map: Basic steps” on page 28

. "’Specifying standard attribute transformations” on page 35|

« |“Saving maps” on page 47]

+ |“Checking completion” on page 49|

+ [“Mapping standards” on page 50|

For background information on how the WebSphere business integration system
uses maps, see [Chapter 1, “Introduction to map development,” on page 3/

Overview of Map Designer Express

Map Designer Express is a graphical development tool for creating and modifying
maps. A map is made up of a series of transformation steps that define how to
calculate the value for each attribute in the destination business object. Creating a
map is the process of specifying the transformation steps for each destination
attribute that you want to transform.

Using Map Designer Express, you can specify simple transformation steps, such as
copying a source attribute to a destination attribute of the same data type,
interactively using drag-and-drop. Map Designer Express automatically generates
the Java code necessary to perform the transformation.

To assist with other common transformations, such as splitting a source attribute
into multiple destination attributes or joining multiple source attributes into a
single destination attribute, Map Designer Express prompts you for information,
such as the delimiter on which to split or join, then generates the necessary Java
code. To specify more complex transformations, you can define activities
graphically using the Activity Editor in a custom transformation rule.

This section provides the following information as an overview to Map Designer
Express:

« [“Starting Map Designer Express” on page 14|

* |“Working in projects” on page 14

» [“Layout of Map Designer Express” on page 14|

* |“Assigning preferences” on page 19

* |“Customizing the main window” on page 21]

» [“Using Map Designer Express functionality” on page 23]

© Copyright IBM Corp. 2003 13

Starting Map Designer Express
To launch Map Designer Express, you can do any of the following:
* From System Manager, you can:
— Select Map Designer Express from the Tools menu.

— Click a map folder in a project to enable the Map Designer Express icon in
the System Manager toolbar. Then click the Map Designer Express icon.

— Right-click the map folder in a project and select Create New Map from the
Context menu.

— Right-double-click a map to start Map Designer Express with the selected
map opened.

* From a development tool, such as Business Object Designer Express, you can
— Select Map Designer Express from the Tools menu.
— Click the Map Designer Express icon in the Programs toolbar.

¢ Using a system shortcut:

Start-->Programs-->IBM WebSphere Business Integration Express
for Item Sync v4.3-->Toolset Express-->Development-->Map Designer Express

Important: For Map Designer Express to be able to access maps stored in System
Manager, Map Designer Express must be connected to an instance of
System Manager. The preceding steps assume that you have already
started System Manager. If you have not started System Manager, see
the User Guide for WebSphere Business Integration Express for Item
Synchronization for more information. If System Manager is already
running, Map Designer Express will automatically connect to it.

Map Designer Express displays in its own application window. You can launch
more than one instance of Map Designer Express at a time to edit more than one
map.

Working in projects
Map Designer Express views, edits, and modifies maps stored in System Manager
on a project basis. A project is simply a logical grouping of entities for managing
and deployment purposes. System Manager allows you to create multiple projects.

When Map Designer Express establishes a connection to System Manager, it
obtains a list of business objects that are defined in the current project. If you add
or delete a business object using Business Object Designer Express, System
Manager notifies Map Designer Express, which dynamically updates the list of
business object definitions.

Before you can work on a map, you select which project the map is in by entering
the name of the project in the Open a Map from a Project dialog. Before you
switch to another project, you need to save the maps you modified in the current
project. For more information on opening a map from a project and saving a map
in a project, see [‘Opening a map from a project in System Manager” on page 52[
and [“Saving a map to a project” on page 47| respectively.

Layout of Map Designer Express

When you first open Map Designer Express without specifying a map, the Map
Designer Express tab window is empty and the output window does not display.
When you open an existing map, the Map Designer Express window displays the
Map tabs in the tab window.

14 Map Development Guide

describes each of the components in the Map Designer Express main
window.

Table 5. Components of the Map Designer Express window

Window area Description For more information

Menus Provide options to access Map Designer Express |“Main menus of Map Designer Express” on|
functionality. page 23

Toolbar Actually contains three separate toolbars, each of [“Map Designer Express toolbars” on page 26|

which provides a set of icons to access Map
Designer Express functionality.

Map Designer Displays map information for an open map in [“Table tab” on page 15|“Diagram tab” on|

Express tab window one of four Map tabs. age 17|["Messages tab” on page 18|["Test|
tab” on page 18

Output Window Displays results from the compilation of a map N/A

and other status messages. If the output window
is not currently displaying when Map Designer
Express generates a status message, it opens this
window automatically. You can clear the
contents of the output window with the Clear
Output option of the View menu.

Tip: You can control whether the output
window pane displays as part of the main
window of Map Designer Express with the
Output window option of the View menu.
Status Bar Displays Map Designer Express status messages. N/A

Tip: You can control whether the status bar
displays as part of the Map Designer Express
window with the Status Bar option of the View
menu.

The following sections describe the general layout of each of the tabs that display
in Map Designer Express’s tab window.

Table tab
The Table tab of Map Designer Express displays mapping information in a tabular
format that lists all mapping attributes and transformations.

The Table tab consists of the following areas:
* Attribute Transformation Table

* Business Objects Pane
Attribute transformation table: The attribute transformation table presents in a

tabular format all transformations associated with the map. shows the
columns that make up this table.

Chapter 2. Creating maps 15

Table 6. Columns of the Attribute Transformation Table

Column name Description

Exec. Order The execution order for the destination attribute.

When you add a transformation to the end of this table, Map Designer Express
automatically assigns its execution order as the last in the table. You can change the
execution order of an attribute by typing the desired order number in the Exec. Order field.

Note: You can specify how Map Designer Express handles the execution order of destination
attributes with the option Defining Map: automatically adjust execution order. By
default, this option is disabled. When the option is enabled, Map Designer Express
automatically adjusts the execution order of other attributes. You can change the setting of
this option on the General tab of the Preferences dialog. For more information, see
|“Specifying General Preferences” on page 20

Source Attribute The name of the source attribute for the transformation.

This field provides a combo box that contains a list of all source and destination business
objects with their attributes listed under them. Click the appropriate source attribute from
this list. You can select multiple source attributes by clicking the Multiple Attributes entry in
the combo box list. Map Designer Express displays the Multiple Attributes dialog from
which you can select the attributes.

Note: You can specify how Map Designer Express displays the source attribute name with
the option Defining Map: show full attribute path. By default, this option is disabled and
Map Designer Express displays all source attribute names as ...AttrName. When the option
is enabled, Map Designer Express displays the full attribute path: 0bjSrcBus0Obj .AttrName.
You can change the setting of this option on the General tab of the Preferences dialog. For
more information, see [“Specifying General Preferences” on page 20|

Source Type The data type of the source attribute.
This field is read-only.

Destination Attribute =~ The name of the destination attribute for the transformation.

This field provides a combo box that contains a list of all source and destination business
objects with their attributes listed under them. Click the appropriate destination attribute
from this list.

Note: You can specify how Map Designer Express displays the destination attribute name
with the option Defining Map: show full attribute path. By default, this option is disabled
and Map Designer Express displays all destination attribute names as ...AttrName. When the
option is enabled, Map Designer Express displays the full attribute path:
ObjDestBusObj .AttrName. You can change the setting of this option on the General tab of the
Preferences dialog. For more information, see [’Specifying General Preferences” on page 20
Dest. Type The data type of the destination attribute.
This field is read-only.
Transformation Rule The transformation rule and code for this attribute’s transformation step.

This field provides a combo box that contains a list of standard transformations:
* None (no transformation)

* Join

* Move

* Split

* Set Value

¢ Submap

* Cross-Reference

e Custom

Click the appropriate transformation from this list to enter it in the field. For more
information, see|“Specifying standard attribute transformations” on page 35|

16 Map Development Guide

Table 6. Columns of the Attribute Transformation Table (continued)

Column name

Comment

Description

An informational description of the attribute’s transformation.

See [“Setting comments in the comment field of the attribute” on page 50

Defining a map from the Table tab: To define a map from the Table tab, follow
these general steps:

1. Click in an empty cell in the Source Attribute column. From the available
combo box, click the source attribute to transform.

2. Click in the corresponding cell in the Destination Attribute column. Click the
destination attribute from the available combo box.

3. Click in the corresponding cell in the Transformation Rule column. This column
provides a combo box:

* For a standard transformation (Join, Move, Split, Set Value, Submap, or
Cross-Reference), select the associated option from the list. Map Designer
Express generates code for these standard transformations. You can
customize this code as needed. For more information, see
[standard attribute transformations” on page 35|

e For a transformation that is not in this combo box, select Custom from the
list and add the custom Java code in the Activity Editor. For more
information, see |”Creating a Custom transformation” on page 46l

4. Click in the corresponding cell in the Comment column. For more information,
see [“Setting comments in the comment field of the attribute” on page 50,

Business Objects Pane: The business objects pane presents in a list all source and
destination business objects associated with the map. Its left area displays the
source business objects; its right area displays the destination business objects. If
the map contains a temporary business object, the business objects pane contains
three areas: Source Business Object, Temporary Business Object, and Destination
Business Object.

Tip: You can control whether the business objects pane displays as part of the
Table tab with the Business Objects Pane option of the View menu.

Diagram tab

The Diagram tab of Map Designer Express provides a drag-and-drop interface for
defining and reviewing the transformations. You view and design maps in the map
workspace, which displays on the right side of the window.

The Diagram tab consists of the following areas:

* Business object browser, which displays in the project pane, on the leftmost part
of the window. This browser uses a hierarchical format to list the business
objects in the project in System Manager when Map Designer Express is
connected to System Manager. To refresh the list of business objects in the
business object browser, right-click in the business object browser and select
Refresh All from the Context menu. Map Designer Express queries System
Manager and updates the business object browser with the current business
objects.

Note: If you add or delete a business object from the project in System Manager,

System Manager dynamically updates the list of business object
definitions.

Chapter 2. Creating maps 17

Tip: You can control whether the business object browser displays as part of the
Diagram view with the Project Pane option of the View pull-down menu.

* Map workspace, which always displays the information about the current map.

When you open a map, the map workspace displays a business object window
for each source and destination business object used in the map. Each business
object window lists some or all attributes defined in the business object,
depending on what viewing mode is currently selected. In the case of a
destination business object or temporary business object, the business object
window also lists the transformation rule and comments associated with the
attribute. In the map workspace, you can add, delete, or modify transformations
in the map. Lines connecting attributes represent the transformations between
the attributes.

Tip: You can control which attributes display in the source and destination
business objects in the Diagram tab with the options of the View--->Diagram
submenu. This submenu allows you to select whether to display all attributes,
only linked (mapped) attributes, or only unlinked (unmapped) attributes.

Messages tab
The Messages tab displays the map’s messages. A message consists of a message
ID and its associated message text.

The Messages tab is divided into two panes. The top pane is the message grid,
which consists of three columns: Message ID column, Message column, and
Explanation column (for comments for the entire message file). The bottom or
Description pane is for entering plain text. When you enter text into the
Description pane, the text is added to the top of the generated message file as
comments. Map Designer Express saves any change made to the map’s messages
in the project of System Manager.

For more information on messages and how to use them, see|Appendix A

“Message files,” on page 403 For information about the format of messages, see
“Format for map messages” on page 405|.

When you compile a new map, Map Designer Express generates an external
message file, based on the information entered in the Messages tab. This message
file is saved in the message directory.

Attention: You must make all changes to a map’s messages through the Messages
tab of Map Designer Express. Do not use an external text editor to
make changes to the generated message file. Any changes made from
the external editor will not be visible to Map Designer Express because
they will not be stored in the map definition of the project.
Furthermore, such changes will be overwritten the next time you
compile the map.

Test tab
The Test tab provides an interface for testing maps and viewing the results. In this
tab, you can run tests to verify that transformations are working properly.

The Test tab consists of the following areas:
* Test path diagram

The test path diagram at the top of the window shows the map test as a series
of icons:

18 Map Development Guide

— The Source Testing Data arrow indicates the direction of the map
transformation and is labeled with the business object type for the source
business object that is participating in the map test.

— The Map icon represents the currently open map, which is used in the test.

— The Destination Testing Data arrow indicates the direction of the map
transformation and is labeled with the business object type for the destination
business object that results from the map test.

* Source Testing Data pane

The source testing data area in the lower left window uses a hierarchical format
to list the attributes of the source business object that participates in the map.
Click the plus symbol (+) next to a source business object to expand it. In this
area, you enter test data for the source business object.

* Destination Testing Data pane

The destination testing data area in the lower right window uses a hierarchical
format to list the attributes of the destination business object that results from
the map. Click the plus symbol (+) next to a business object to expand it. In this
area, you view test results data for the destination business object.

Note: Map Designer Express displays results from the test run of the map in the
output window.

For more information on how to use the Test tab, see|“Testing maps” on page 72}

Assigning preferences

Map Designer Express provides the Preferences dialog to allow you to customize
behavior of the Map Designer Express tool. To display the Preferences dialog:

e From the View menu, select Preferences.
* Use the keyboard shortcut of Ctr1+U.

shows the Preferences dialog.
5

General |Va|idati0n| Key Mapping |

— Dpen Map
E validate map when open

—Delete Map

¥ close map before delete

v always display warning message

— Compile Map

v save map before compile

— Defining map
[~ automatically adiust execution order
[~ show full attribute path

¥ show business object instance name

oK I Cancel Lpply

Chapter 2. Creating maps 19

Figure 6. Preferences dialog

Map Designer Express saves preference settings in the Windows registry. Therefore,
they remain in effect for the current Map Designer Express session and future
sessions. The Preferences dialog provides the following tabs:

e General
e Validation
* Key Mapping

Specifying General Preferences
The General tab of the Preferences dialog displays the general preferences you can
specify for how Map Designer Express manages maps.

Table 7. General Map Designer Express Preferences

General Preference

Open Map
validate map when open

Delete Map
close map before delete

always display warning
message

Compile Map
save map before compile

Defining Map
automatically adjust
execution order

show full attribute path

show business object
instance name

Description

When this option is enabled, Map Designer
Express validates the map when it opens it.

Recommendation: If a map uses business
objects with many attributes, that is, more
than a thousand attributes, enabling this
option may result in the map taking a long
time to open. If that is the case, and it is not
desirable, you should disable this option.

When this option is enabled, Map Designer
Express always closes the currently open
map before displaying the Delete Map
dialog.

When this option is enabled, Map Designer
Express always displays a confirmation
before deleting a map.

When this option is enabled, Map Designer

Express always saves the current map to the
project in System Manager before compiling
it.

When this option is enabled, Map Designer
Express automatically renumbers the
execution order of destination attributes in
the Table tab when execution order of an
existing attribute changes.

When this option is enabled, Map Designer
Express shows the full attribute path for the
names of source and destination attributes in
the Table tab.

When this option is enabled, Map Designer
Express displays the names of the source
and destination business object and their
variable names. When this option is
disabled, Map Designer Express omits the
names of the business object variables in
both the Table and Diagram tabs.

For more information

[“Opening a map” on page 51|

[“Deleting maps” on page 64|

[“Deleting maps” on page 64|

[“Compiling a map” on page 70|

[“Using execution order” on page 66|

[“Table tab” on page 15|

"“Generating business object]
variables” on page 140

20 Map Development Guide

Specifying Validation

The Validation tab of the Preferences dialog provides options you can choose for
Map Designer Express to perform validations on the map when you save the map.
The options are as follows:

¢ Show warning if verb not mapped

* Show warning if key attribute not mapped

¢ Show warning if required attribute not mapped

* Show warning if child business object not mapped

Map Designer Express will do the selected validation as deep as there are other
transformation rules in that level.

Example: If path a.b.c is mapped, then Map Designer Express will perform these
validations on business objects level a, a.b, and a.b.c.

For more information, see [“Validating a map” on page 69.

Specifying Key Mappings
The Key Mapping tab of the Preferences dialog displays the key mappings for
several standard transformations in the Diagram tab.

Table 8. Key Mapping Map Designer Express Preferences

Key map
Move/Join/Submap

Split
Cross-Reference

Custom

Description For more information

Key map to use when creating a Move, Join, or Submap transformation. Map Designer
Express distinguishes between the transformations by the type and number of source

attributes:
* Move—one source attribute that is not a child ’Copyir}g a source attribute to 2|
business object destination attribute” on page 37|

* Join—more than one source attribute that is ['Joining attributes” on page 3§
not a child business object

+ Submap—one or more source attributes that ~[-Lransforming with a submap” on|
are a child business object page 41|

Key map to use when creating a Split [’Splitting attributes” on page 40|

transformation.

Key map to use for maintaining identity ‘Cross-referencing identity]

relationships relationships” on page 45|

Key map to use when creating a Custom ‘Creating a Custom transformation”]

transformation. on page 46|

The Key Mapping tab provides the following functionality:

* To change a key mapping, click in the appropriate transformation field and
select the desired key map for this transformation from the combo box. Click
OK.

* To return key mappings to their default values, click Use Default and then click
OK.

Customizing the main window

Map Designer Express provides the following ways to customize its main window:

* [“Choosing how windows display” on page 22|

* |“Floating a dockable window” on page 22|

Chapter 2. Creating maps 21

Choosing how windows display

When you first open Map Designer Express without specifying a map, the main
window is empty with the toolbars and status bar visible. When you open a map,
Map Designer Express displays the Diagram tab in the tab window and opens the
output window. By default, Map Designer Express displays each of the map tabs
as follows:

* Table tab—the business objects pane displays under the attribute transformation
table.

* Diagram tab—the map workspace area displays and is empty.

* Messages and Test tabs—as described in [“Messages tab” on page 1§ and [“Test]
[tab” on page 18 respectively.

You can customize the appearance of the main window and the Map tabs with
options from the View menu. [Table 9| describes the options of the View pull-down
menu and how they affect the appearance of the Map Designer Express window.

Table 9. View menu options for Map Designer Express window customization

View menu option Element displayed

Toolbars A submenu with options for each of the Map Designer
Express toolbars:
» Standard toolbar
* Designer toolbar

* Programs toolbar

Status Bar A single-line pane in which Map Designer Express displays
status information.

Business Objects Pane A pane that displays the source and destination business
objects in the Table tab of Map Designer Express.

Project Pane A pane that displays the business object browser in the
Diagram tab of Map Designer Express.

Diagram A submenu with options for which attributes to display in the

source and destination business objects in the business object
windows of the Diagram tab:

e All Attributes
e Linked Attributes
¢ Unlinked Attributes

The Designer toolbar also provides icons for displaying these
attributes.

Output Window A small window across the bottom of the Map Designer
Express window. The Clear Output option of the View menu
clears all text in the output window.

Tip: When a menu option appears with a check mark to the left, the associated
element displays. To turn off display of the element, select the associated menu
option. The check mark disappears to indicate that the element does not currently
display. Conversely, you can turn on display of an undisplayed element by
selecting the associated menu option. In this case, the check mark appears beside
the displaying element.

Floating a dockable window
Map Designer Express supports the following features as dockable windows:
* Toolbars in the main window:

— Standard toolbar

— Designer toolbar

22 Map Development Guide

— Programs toolbar

For more information about the features of these toolbars, see

[Express toolbars” on page 26|

¢ Output Window

* Find Control pane. For more information, see [“Finding information in a map’]

Tip: By default, a dockable window is usually placed along the edge of the main
window and moves as part of the main window. When you float a dockable
window, you detach it from the main window, allowing it to function as an
independent window. To float a dockable window, hold down the left mouse
button, grab the border of the window and drag it onto the main window or
desktop.

Using Map Designer Express functionality

You can access Map Designer Express’s functionality using any of the following:
* The pull-down menus at the top of the window

* The icons in the toolbars

* Keyboard shortcuts

Main menus of Map Designer Express
Map Designer Express provides the following pull-down menus:

* File menu

* Edit menu

* View menu
* Debug menu
* Tools menu
* Help menu

The following sections describe the options of each of these menus.

Functions of the File menu: The File pull-down menu of Map Designer Express

provides the options shown in [Table 10

Table 10. Options of the File menu in Map Designer Express

File menu option

New...

Open (submenu)
Close
Save (submenu)

Save As (submenu)

Delete...
Validate Map
Compile

Description For more information

Creates a new map file, clearing any [“Creating a map: Basic steps” on|
existing map from the map

page 2§
workspace

A submenu that provides options for [“Opening a map” on page 51|
opening an existing map

Closes the current map “Closing a map” on page 53|
A submenu that provides options for |“Saving maps” on page 47|
saving the current map to the same

name

A submenu that provides options for [“Saving maps” on page 47
saving the current map to a name

different from the map

Deletes a specified map
Validates the current map
Compiles the current map

“Deleting obijects” on page 63
“Validating a map” on page 69|
“Compiling a map” on page 70|

Chapter 2. Creating maps 23

Table 10. Options of the File menu in Map Designer Express (continued)

File menu option Description For more information

Compile with Submap(s) Compiles the current map and its |“Compiling a map” on page 70|
submaps

Compile All.. Compiles all or a subset of maps “Compiling a set of maps” on page]
defined 71

Create Map Document... Creates HTML files that describe the [“Creating a map document” on page]
map between business objects 5

View Map Document... Displays the HTML map-document “Viewing a map document” on page|
file in your HTML browser 6

Print Setup..., Print Preview, Print... Standard Windows print options so “Printing a map” on page 62|
you can preview, print, and configure
a print job

Exit Exits Map Designer Express N/A

Functions of the Edit menu: The Edit pull-down menu of Map Designer Express
provides the following options:

 Standard Windows edit options—Cut, Copy, and Paste
¢ Delete Current Selection—Deletes the currently selected object

* Select All—In the Diagram tab, selects all transformations between the source
and destination business objects

* Insert Row—Inserts a row before the current row in the attribute transformation
table of the Table tab

* Add Business Object—Displays the Add Business Object dialog to add business
objects (source, destination, and temporary) to the map

* Delete Business Object—Displays the Delete Business Object dialog to delete a
business object

* Find—Searches an attribute name or transformation code for text or
transformation code for unmapped attributes

* Replace—searches and replaces in custom Java code or comments

* Map Properties—Displays the Map Properties window

Functions of the View menu: The View pull-down menu of Map Designer
Express provides the following options:

* Business Objects Pane—When enabled, Map Designer Express displays the
source and destination business objects at the bottom pane of the Table tab in
the Map Designer Express window

* Diagram—A submenu that provides options for determining which attributes
display in the business object windows of the Diagram tab

* Project Pane—Always enabled, Map Designer Express displays the business

object browser as the left pane of the Diagram tab in the Map Designer Express
window

* Clear Output—Clears the contents of the output window

* Output Window—When enabled, Map Designer Express displays status
messages, including messages about opening, validating, saving, compiling, and
test running the map

* Toolbars—A submenu that provides options for displaying the Map Designer
Express toolbars: Standard, Designer, and Programs

 Status Bar—When enabled, Map Designer Express displays its single-line status
message at the bottom of the main window

24 Map Development Guide

* Preferences—Displays the Preferences dialog, from which you can set Map
Designer Express preferences

For information on View menu options that control display, see [’Choosing how|
fwindows display” on page 22|

Functions of the Debug menu: The Debug pull-down menu provides access to

the debugging facilities of Map Designer Express. It provides the following

options:

* Run Test—Connects to a server and starts the test run of a map that is opened
from a project

* Continue—Continues execution after it stops at a breakpoint

* Step Over—Continues execution after it stops at a breakpoint, but stops
execution before executing the next attribute

 Stop Test Run--Stops the test run of a map

* Advanced--A submenu that provides options for connecting to a server for
testing a map that resides in the server (Attach) and disconnecting from a server
and closing a map (Detach)

* Toggle Breakpoint—Sets a breakpoint in a map, which pauses execution just
before the selected attribute’s transformation

* Breakpoints—Displays all breakpoints for the map
* Clear All Breakpoints—Clears all breakpoints in the map

For more information about the use of Map Designer Express testing and
debugging facilities, see [“Testing maps” on page 72|

Functions of the Tools menu: The Tools pull-down menu of Map Designer
Express provides options to start each of the tools:

* Map Designer Express
* Business Object Designer Express
* Relationship Designer Express

Functions of the Help Menu: Map Designer Express provides a standard Help
menu with the following options:

* Help Topics
* Documentation

* About Map Designer Express

Context menu

The Context menu is a shortcut menu that is available, by right-clicking, from
numerous places, such as the transformation rule column, row header in the Table
view, child business object in the source testing pane, or edit box in a dialog.

A menu opens that contains useful commands, which change depending on where
you click.

Example: Clicking in the transformation rule column opens a Context menu that
provides the following options:

* Open—Opens the corresponding dialog box for the transformation rule, such as
Join, Split, and Submap. For custom transformations, opens the Activity Editor.

* Open in New Window—For custom transformations, opens a new instance of
the Activity Editor to show the detail of the transformation rule.

Chapter 2. Creating maps 25

* View Source—Shows the transformation’s corresponding Java code in the
Activity Editor. The code will always be read-only.

Note: The default action when you double-click the transformation cell is Open. If
Open is not available for that transformation, then a message saying that the
action is not available is displayed in the status bar.

Map Designer Express toolbars
Map Designer Express provides three toolbars with common tasks you need to
perform:

* Standard toolbar
* Designer toolbar
* Programs toolbar

These toolbars are dockable; that is, you can detach them from the palette of the
main window and float them over the main window or the desktop.

Tip: To identify the purpose of each toolbar button, roll over each button with
your mouse Cursor.

Standard toolbar: shows the Standard toolbar.

DSd ed AS | FBRX P

Figure 7. Standard toolbar

The following list provides the function of each Standard toolbar button, left to

right:

1. New map

2. Open

3. Save to project
4. Open from file
5. Save to file

6. Find in map
7. Print map

8. Cut

9. Copy

10. Paste

11. Delete

12. Help

Designer toolbar: shows the Designer toolbar.

B &S | »E 0| b by

Figure 8. Designer toolbar

The following list provides the function of each Designer toolbar button, left to
right:
1. Add Business Object

26 Map Development Guide

Validate

Compile

Run Test

Continue

Step over

Toggle Breakpoints
Clear All Breakpoints
All Attributes

Linked Attributes
Unlinked Attributes

e R S e L A

—_ -

Programs: shows the Programs toolbar.

Figure 9. Programs toolbar

The following list provides the function of each Programs toolbar button, left to

right:

1. Map Designer Express

2. Business Object Designer Express
3. Relationship Designer Express

Keyboard shortcuts

Map Designer Express provides the keyboard shortcuts shown in [Table 11| for

many of the menu options.

Table 11. Keyboard shortcuts for Map Designer Express

Keyboard shortcut
Ctrl+E

Ctrl+F

Ctrl+H

Ctrl+I
Ctr1+M
Ctr1+N
Ctrl1+0
Ctrl+P
Ctrl1+S

Ctrl+U

Ctr1+ATt+F

Description

Save the current map definition to a map
definition file

Display Find control panel to locate text or
unlinked attributes in the map (use Ctr1+H for
replace)

Display Replace dialog to find and replace text
in customized Java Code and comments of
transformation rules.

Open a map definition file

View a map document

Display the New Map wizard to create a new
map

Open a map definition from the project in
System Manager

Print the map definition

In Map Designer Express main window—Save
the current map definition to the project in
System Manager

Display the Preferences dialog to set Map
Designer Express preferences

Save the current map definition to a map
definition file with a different name (Save As)

For more information

[‘Saving a map to a file” on page 48]

['Finding information in a map” on page 6()

[‘Finding and replacing text” on page 62|

‘Opening a map from a file” on page 53|
‘Viewing a map document” on page 6d
‘Creating a map: Basic steps” on page 28

‘Opening a map from a project in System|
Manager” on page 52|

‘Printing a map” on page 62|

‘Saving a map to a project” on page 47

| Assigning preferences” on page 19

[‘Saving a map to a file” on page 48

Chapter 2. Creating maps

27

Table 11. Keyboard shortcuts for Map Designer Express (continued)

Keyboard shortcut Description For more information

Ctr1+ATt+S Save the current map definition to the project in [‘Saving a map to a project” on page 47|
System Manager with a different name (Save
As)

Ctr1+Shift+p Display the Print Setup dialog to specify ['Printing a map” on page 62|
information for printing the map definition

Ctrl+Enter Display the Map Properties dialog, from which ['Providing map property information” on|
you can set general and business object page 54
properties for the map

F7 Compile the current map ‘Compiling a map” on page 70|

Alt+F4 Close the current map ‘Closing a map” on page 53|

Del Delete the currently selected entity N/A

F1 Display context-sensitive help for the current N/A
dialog or window

Ctr1+F7 Compile all or a subset of maps defined in [‘Compiling a set of maps” on page 71|
System Manager

F8 During a test run, continue a paused map by ['Processing breakpoints” on page 78

executing until the end of the map or another
active breakpoint

F9 Toggle the state of a breakpoint for a [‘Setting breakpoints” on page 75|
transformation rule
F10 During a test run, continue a paused map by [“Processing breakpoints” on page 7§

executing the next single step

Creating a map: Basic steps

Map Designer Express provides a New Map wizard to assist you in creating a map
definition. Follow these basic steps to create a new map:

1.

28 Map Development Guide

Create a new map file with the New Map wizard. Specify the project, the
source and destination business objects, and the name for the new map. For
help in running the New Map wizard, see |[“Creating the map definition” on|
Set the verb for each destination business object. In most cases, destination
business objects have the same verb as source business objects. You can also set
the value of the verb always to be a specific value. For help setting the verb,
see [“Setting the destination business object verb” on page 35|

Specify the transformation steps for each destination attribute that you want to
map. How you do this depends on what kind of transformation is required. For
more information on specifying transformation steps, see [“Specifying standard|
[attribute transformations” on page 35|

Specify the comment for the destination attribute. Although this information is
optional, it greatly improves readability of the map information in Map
Designer Express. For more information, see|“Setting comments in the]
[comment field of the attribute” on page 50

Save, validate, and compile the map. For more information on saving, see
“Saving maps” on page 47} For information on compiling, see ["Compiling a

map” on page 70].

Test and debug the map. For more information on testing and debugging, see
[“Testing maps” on page 72}.

Creating the map definition

Map Designer Express provides a New Map wizard to assist in the creation of a
map definition. To create a map definition:

1. Start the New Map wizard in any of the following ways:
* Select New from the File menu to create a new map.
* Use the keyboard shortcut of Ctr1+N.
* In the Standard toolbar, click the New Map button.

Result: Map Designer Express displays the first window of the New Map
wizard.

Welcome to the Create New Map \Wizard,

Please select the Project that will contain this map:

‘ ClarifyProject
[OracleProject
i SAP4Poject

< Back I MNext » I Cancel

Figure 10. Welcome window of New Map wizard

2. From the list box, select the name of the project for which you want to create
the map.

3. Select the business object you will use as the source business object for the
map. You can select one or more source business objects by clicking in the Use

Chapter 2. Creating maps 29

column of each desired business object. Then click Next to continue.

Choose source business objects
Choose the business objects that you will use as zources for the map.

T
=3
o

=

e | Buziness Object | -~

{

alevelllnput
alewellOutput
alevel2lnput
alewvel20utput
alevel3lnput
alewel30utput
aT opLevellnput
aTopLevelJutput
Simpleln

SimpleCut LI

ljoogooooxRdO
Ay

< Back I Mest > I Cancel |

Figure 11. Selecting source business objects

Tip: To locate a particular business object, enter its name in the Find field. The
up and down arrows scroll through the business object list. Click Next to
continue.

The New Map wizard does not require that you specify the source business
object. You can click Next without selecting the source business object to
postpone specifying this business object definition. You can specify it at a later
time in the map workspace of the Diagram tab. For more information, see
[“Creating the source and destination business objects” on page 32}

Note: If you add or delete a business object from System Manager, it
dynamically updates the list of business object definitions.

4. Select the business object type you will use as the destination business object
for the map. You can select one or more destination business objects by clicking

30 Map Development Guide

in the Use column of each desired business object. Then click Next to continue.

Choose destination buginess objects
Choose the business objects that you will use as destinations for the map.

T
=3
o

L

e | Buziness Object | -

{

alevelllnput
alewellOutput
alevel2lnput
alewvel20utput
alevel3lnput
alewel30utput
aT opLevellnput
aTopLevelJutput
Simpleln

SimpleCut LI

joogooROoOodo
Ay

< Back I Mest » I Cancel |

Figure 12. Selecting destination business objects

Tip: To locate a particular business object, enter its name in the Find field. The
up and down arrows scroll through the business object list. Click Next to
continue.

The New Map wizard does not require that you specify the destination
business object. You can click Next without selecting the destination business
object to postpone specifying this business object definition. You can specify it
at a later time in the map workspace of the Diagram tab. For more information,
see [‘Creating the source and destination business objects” on page 32}

Note: If you add or delete a business object from System Manager, it
dynamically updates the list of business object definitions.

Chapter 2. Creating maps 31

5. Specify the name to associate with the map.

Specify a name for the map.

Mame: |Customer_to_CICustomer

Mapping Direction:

" Application-Specific to Generic

% Generic to Application-Specific
" Dther

< Back Firish Cancel

Figure 13. Saving new map

Rule: Map names can be up to 80 alphanumeric characters and underscores (_).
Map Designer Express does enforce some naming restrictions. For example, it
does not allow certain punctuation symbols, such as a period, a left brace ([), a
right brace (]), a single quotation mark, a double quotation mark, or a space in
the map name.

The New Map wizard does not require that you specify the map name. You can
click Finish without entering the map name to postpone naming this map
definition. When you save the map, Map Designer Express prompts you with
the Save Map As dialog for you to specify the required map name. For more
information, see [‘Saving a map to a project” on page 47

Specify whether the map is an inbound or outbound map. This map role is
needed for automatically generating relationship codes.

6. Click Finish to save the new map definition with the specified source and
destination business objects.

Result: Map Designer Express displays the new map’s information in its
Diagram tab.

Creating the source and destination business objects

If you do not specify the map’s source and destination business objects from the
New Map wizard, you can specify them from either of the following:

* From the Add Business Object dialog
* From the Diagram tab in the business object browser

From the Add Business Object dialog

You can add a source or destination business object to a map from the General tab
of the Add Business Object dialog. You display the Add Business Object dialog in
any of the following ways:

* Select Add Business Object from the Edit menu of Map Designer Express.

32 Map Development Guide

¢ In the Designer toolbar, click the Add Business Object button.

* From the Table tab, right-click in the empty area of the business objects pane
and select Add Business Object from the Context menu.

* From the Diagram tab, right-click in the map workspace and select Add
Business Object from the Context menu.

Through the General tab of the Add Business Object dialog, you specify the source
and destination business objects. The General tab provides the following
functionality:

* To specify a source business object:
— Click the business object in the business object list.
— Click the Add to Source button.

* To specify a destination business object:
— Click the business object in the business object list.
— Click the Add to Destination button.

* To locate a particular business object, enter its name in the Find field. The up
and down arrows scroll through the business object list.

 To close the dialog, click Done.

From the map workspace

From the Diagram tab, you can add a source or destination business object to a
map by dragging a business object definition from the business object browser
onto the map workspace as follows:

 Drag the source business object to the left side of the map workspace. The
business object displays and its title starts with Src.

* Drag the destination business object to the right side of the map workspace. The
business object displays and its title starts with Dest.

Note: A dotted-line boundary divides the left and right halves of the workspace

and identifies the source and destination portions of the map workspace. Be
sure to carefully drop objects in the appropriate place.

Chapter 2. Creating maps 33

shows the source and destination business objects in the map workspace.

E¥Map Desloner Express - Mop_ Levell s Test ST 15E =lojx|
B £ Yien [ebup Toils e

[caasane i maxe||@aEe raess|wss ||

Tabie Diapom Ilee:rag,or- To:ll

- Tt - : 0|
£ Btz Destnalien
8 ABLCsLnerhdd
B MlCistmalbon ALev: Ut | Ok alev Dasi 3 . i)
B ABCRitsedllor Hiroute Tynz Aids Tipe Ruiz Comiment
g :t;;l"'l_‘; , = ObjaLeveltnpul el ilpe = CojsLenett Oupel [aLeveliOutput | () Crass Referente
B develingn (et ettt [Move
alevelilutnn lingt i SHing1 Shing Mine
e Bl 3 = st 1
8 slonliod Booleant Bealan Banleant |B0clzan BJen
g a‘L_rleT::\:‘ Fiasti Flag Flaatl Floal [HES]
aloples 4
8 a[;le‘e[:,wl Integé! Irkeqan Rhzger| Inldaer [Setvarez (10)
© Dediealaily Dated il el il [f) Custoen
g gjzém-: | 1 aleveiZingul aleval ot ® alenal2Ouput [alevel2output | B Subman {Sub L
oLt i : Db . =
© Culmeddies ObjzEveeild 3hing ObjecEeaidld | Sking
8 DuonefalDa.

B Custovedingbsl
B CutomeCiodillal
8 Cutonefomiply
B Cutoneidumal
B DutovePuills
B Custoveszalnd
O Cuteredhopnsl
B DudemeTadaly
B CuitoneT sl
© FODustms

P e —
8 kel
B FlbFatssdulo
9 11B0uy

B leter

B Freanl 4
B liclwosvaumaril
© Nelllisy

& Sinclen

B Sirclidu 0
T

—-—*—‘—-—~—‘—-—~—-—<—-—-—-—<—-—r—-—‘r*Z—r-*r—-—‘—<—

4] 2

bl
|
Map aHop_Levell opened.

frady [14

Figure 14. Defining Source and Destination business objects

Tip: Alternatively, you can create the source and destination business objects by
right-clicking the business object in the business object browser; selecting Copy
from the Context menu; then right-clicking in the map workspace and selecting
Paste As Input Object or Paste As Output Object.

Map Designer Express creates a window, called a business object window, for the
source and destination objects. The title bar of this window displays the business
object instance name. For help interpreting the title bar of the business object
window, see [‘Using generated business object variables and attributes” on page
m. The business object window for the source business object contains columns
for the name and data type of each source attribute. The business object window
for the destination business object contains columns for the name, data type,
transformation rule (which identifies the transformation step), and an optional
comment.

If you make a mistake by dragging the wrong business object or making it an
output object instead of input, you can delete the object from the map workspace
and try again. To delete a business object from the map workspace, you can either:

* Select the business object to delete and use the Delete Current Selection option
from the Edit menu (or press the Del key).

34 Map Development Guide

* Right-click the title bar of the business object’s window and select Delete from
the Context menu.

Setting the destination business object verb

The verb indicates how the system should process the business object’s data. When
a map executes, the system needs to know what verb to assign to each destination
business object it creates.

If a map has only one source business object and one destination business object,
the verb for the destination business object is usually the same as the verb for the
source business object.

In this case, you need to copy the verb from the source business object to the
destination business object (see [Figure 14 on page 34)), by defining a Move
transformation rule with the source attribute as the source business object’s verb
and the destination attribute as the destination business object’s verb. For more
information, see [“Copying a source attribute to a destination attribute” on page 37

Tip: You can also drag-and-drop the verb from the source business object to the
destination business object to define the value of the verb.

If a map has a destination business object with a verb that is not found in the
source business object, you need to set the verb to a constant value, by defining a
Set Value transformation rule with the destination attribute as the destination
business object’s verb. In the Set Value dialog box, enter the constant verb value.
For more information, see [“Specifying a value for an attribute” on page 36/

Maps sometimes have more than one source or destination business object, and
these objects can have several child business objects. In these cases, you must
consider carefully which verb to assign to each destination business object. Some
destination business objects might require some custom logic to set the verb based
on the verbs of one or more source business objects.

Specifying standard attribute transformations

You can specify several standard attribute transformations interactively in Map
Designer Express. [[able 12| shows the standard transformations that you can
specify in Map Designer Express.

Table 12. Common attribute transformations

Name Transformation step Purpose

Set Value |’Specifying a value for an attribute” on page 36 For an attribute in the destination business
object that is not found in the source business
object but is required in the destination

application
Move ‘Copying a source attribute to a destination| For an attribute that is the same in both the
httribute” on page 37 source and destination business objects
Join ‘Joining attributes” on page 3§ For an attribute in the destination business

object that is a combination of several attributes
in the source business object

Chapter 2. Creating maps 35

Table 12. Common attribute transformations (continued)

Name Transformation step Purpose

Split |’Splitting attributes” on page 40| For an attribute in the destination business
object that is either:

* Only one part of an attribute in the source
business object

* Made up of several fields, but with different
delimiters from those in the source business
object

Submap [‘Transforming with a submap” on page 41| For attributes in the source and destination
business objects that contain child business
objects

Cross-Reference ‘Cross-referencing identity relationships” on| For maintaining the identity relationships for

age 45| the business objects

Custom ‘Creating a Custom transformation” on page 46 For an attribute that requires transformations
not provided by the automatically generated
transformations

In the Diagram tab, you can select which attributes display in the business object
windows with the options of the View-->Diagram menu. You can choose to display
all attributes, only linked (mapped) attributes, or only unlinked (unmapped)
attributes.

Tip: Attributes appear in the same order that they appear in the business object
definition. To locate a particular attribute in a long list of attributes, select
Find from the Edit menu (or use the keyboard shortcut of Ctr1+F). For more
information, see [“Finding information in a map” on page 60}

Specifying a value for an attribute

Some destination attribute values do not depend on a source attribute and can be
filled in with a constant value. This is especially true if the destination business
object contains many attributes that are not found in the source business object but
are required in the destination application. Some examples of default values for
attributes are CustomerStatus = "active" or AddressType = "business".

This type of transformation is called a Set Value transformation. You set the value
of a destination attribute with the Set Value dialog, shown in . You can
display the Set Value dialog from either of the following Map tabs:

* From the Table tab:

— Select the destination attribute whose value you want to set.

— Click Set Value from the list in the Transformation Rule column.
* From the Diagram tab:

— Select the destination attribute whose value you want to set.

— Click Set Value from the list in the Rule column of the destination business
object.

» If a Set Value transformation is already defined, you can display the Set Value
dialog to reconfigure the transformation, including modifying its transformation
code in either of the following ways:

— Double-click the corresponding cell of the transformation rule column.
— Click the Set Value bitmap icon contained in the transformation rule column.

36 Map Development Guide

Set Yalue x|

Walue : IEEE‘

¥ Shing Yalue

E=ample

OfficePhonedrea = 650"

Wiew Code. .. | ok I Cancel

Figure 15. Set Value dialog

Through the Set Value dialog, you set the constant value to assign to the
destination attribute. The Set Value dialog provides the following functionality:

* To specify the constant value, enter it in the Value field. For numeric values,
simply enter the number and make sure that the String Value check box is not
selected. For string values, enter the string value in the Value field and select the
String Value check box.

Note: The Set Value dialog uses the Examples area to show how the resulting
destination attribute will look.

* To view the generated code, click View Code...

Result: Map Designer Express brings up the Activity Editor in Java view,
containing a sample of the transformation code in read-only mode for the
destination attribute.

¢ To confirm the transformation setting, click OK.

Copying a source attribute to a destination attribute

The simplest kind of transformation step is a copy of one source attribute into a
corresponding destination attribute. This type of transformation is called a Move
transformation. You perform a move transformation from either of the following
map tabs:

* From the Table tab:

— Select the source attribute.

— Select the destination attribute.

— Click Move from the list in the Transformation Rule column.
¢ From the Diagram tab:

— Select the source attribute.

— Use Ctrl+Drag to move to the destination attribute; that is, hold down the
Ctrl key and drag the attribute onto the destination attribute in the
destination business object window. Continue to hold down the Ctrl key
until after you release the mouse button; otherwise, the operation does not
succeed.

Map Designer Express creates a blue arrow from the source to the destination
object. If the transformation involves a single source attribute that is not a

Chapter 2. Creating maps 37

child business object, Map Designer Express assumes that the transformation
is a Move and automatically assigns Move to the Rule column of the
destination attribute.

Note: You can customize the key sequence used to initiate a Move
transformation in the Diagram tab from the Key Mapping tab of the
Preferences dialog. For more information, seel”Specifying Key Mappings”|
fon page 21}

Result: Map Designer Express generates the code to copy the value of the source
attribute to the destination attribute. If the source and destination attributes are of
different data types, Map Designer Express determines whether a type conversion
is possible, and if so, generates the code to convert the source type to the
destination type. If a type conversion is not possible, or might result in data loss,
Map Designer Express displays a dialog box for you to confirm or cancel the
operation.

If you want to see a sample of the generated code for the Move transformation, in
the Context menu of the rule column, select View Source.

Joining attributes

You can concatenate, or join, the values from more than one source attribute into a
single destination attribute. This type of transformation is called a Join
transformation. For instance, the source business object might store the area code,
telephone number, and extension in separate attributes, while the destination
business object stores these values together in one attribute.

In addition to joining the attributes, you can reorder them and insert delimiters,
parentheses, or other characters. For instance, when joining separate area code and
telephone number attributes into a single attribute, you might want to insert
parentheses around the area code.

Tip: The attributes you want to join can sometimes be located in more than one
source business object, such as in a parent business object and one of its child
business objects. You can also join an attribute with a variable you have
defined. (To learn about defining variables, see|“Using temporary variables”|

on page 142})

You join multiple source attributes into one destination attribute with the Join
dialog, shown in You display the Join dialog in either of the following
ways:
* From the Table tab:

— Select the source attributes to join.

Tip: You can click Multiple Attributes in the combo box to display the
Multiple Attributes dialog. In this dialog, you can check multiple source
attributes. To locate a particular business object, enter its name in the Find
field. The up and down arrows scroll through the business object list. Once
you have selected the source attributes, click OK to close the dialog.

— Select the single destination attribute.
— Click Join from the list in the Transformation Rule column.
* From the Diagram tab:

— Select two or more source attributes.

38 Map Development Guide

Figure 16. Join dialog

— Use Ctrl+Drag to move to the destination attribute; that is, hold down the
Ctrl key and drag the selected source attributes to the destination attribute.
Continue to hold down the Ctr1 key until after you release the mouse button;
otherwise, the operation does not succeed.

If the transformation involves more than one source attribute, Map Designer
Express assumes that the transformation is a Join. It automatically assigns Join
to the Rule column of the destination attribute and displays the Join dialog.

Note: You can customize the key sequence used to initiate a Join transformation
in the Diagram tab from the Key Mapping tab of the Preferences dialog.
For more information, see [“Specifying Key Mappings” on page 21}

If a Join transformation is already defined, you can use the Join dialog to
reconfigure the transformation, including modifying its transformation code, in

either of the following ways:

* Double-click the corresponding cell of the transformation rule column.

* Click the Join bitmap icon contained in the transformation rule column.

Aftribute

Delimiter

OhiClarify_Contact LastMame

OhbiClarify_Contact Firsthame

fmve @ I | aneguwnl

E=armple

ObjClanfy_Contact.LaztMame ObjClanfy_Contact. Firzt ame

Cancel

Through the Join dialog, you build an expression to concatenate the source
attributes by adding delimiters, grouping with parentheses, and reordering the
attributes if necessary. The Join dialog provides the following functionality:

 To insert a delimiter or parenthesis, enter it in the Delimiter field associated with
the attribute. Do not put quotation marks around delimiters. The delimiter you
enter is appended to the associated attribute. For leading delimiters, enter the
delimiters in the Delimiters field of the initial blank line.

Note: The Join dialog uses the Examples area to show how the resulting string

will look after the join.

* To modify a delimiter or parenthesis you have entered, click in the Delimiter

field and edit as appropriate.

Chapter 2. Creating maps 39

e To reorder a delimiter or the attributes, click the left-most column to select the
row, then click Move Up or Move Down to move the whole row up or down.

* To view the generated code, click View Code...
Result: Map Designer Express brings up the Activity Editor in Java view,

containing a sample of the transformation code in read-only mode for the
destination attribute.

¢ To confirm the transformation setting, click OK.

Splitting attributes

To split a source attribute into two or more destination attributes, you specify the
transformation for each destination attribute separately. This type of transformation
is called a Split transformation. For instance, to split a source attribute, such as
phone_number, into three separate destination attributes, such as area_code,
tel_number, and extension, you specify the transformations for area_code,
tel_number, and extension separately.

You split a source attribute into multiple destination attributes with the Split
dialog, shown 'm You display the Split dialog in any of the following
ways:
e From the Table tab:

— Select the single source attribute to split.

— Select one of the desired destination attributes.

— Click Split from the list in the Transformation Rule column.

— Repeat these steps for each destination attribute that receives a segment of the
source attribute.

* From the Diagram tab
— Select the single source attribute to split.

— Use Alt+Drag to move to one of the destination attributes; that is, hold down
the ATt key and drag the source attribute to one of the destination attributes.

If the transformation involves more than one destination attribute, Map
Designer Express assumes that the transformation is a Split. It automatically
assigns Split to the Rule column of the destination attribute and displays the
Split dialog.

— Repeat these steps for each destination attribute that receives a segment of the
source attribute.

Note: You can customize the key sequence used to initiate a Split transformation
from the Key Mapping tab of the Preferences dialog. For more
information, see [*Specifying Key Mappings” on page 21}

If a Split transformation is already defined, you can use the Split dialog to
reconfigure the transformation, including modifying its transformation code, in
either of the following ways:

* Double-click the corresponding cell of the transformation rule column.

40 Map Development Guide

Figure 17. Split dialog

* Click the Split bitmap icon contained in the transformation rule column.

solit x|

Delimiters: H
Sub-string Index: I':' 3
E=armple

AR - HHE-

Wiew Code. .. | ok I Cancel

Through the Split dialog, you split an expression into segments that are separated
by a delimiter. Each segment is identified with an index number, with the first
segment having an index number of zero (0). The Split dialog provides the
following functionality:

To identify the delimiter by which to parse the source attribute, enter it in the
Delimiter field. Do not put quotation marks around delimiters. You can specify
one or more delimiters in this field. The transformation uses each of the
specified delimiters to parse the string into segments. For example, to split

LastName,FirstName, specify “,” as the delimiter, LastName as segment O (the first
segment) and FirstName as segment 1 (the second segment).

Note: The Split dialog uses the Examples area to show how the source attribute
string looks and to indicate which segment is currently being accessed.
The accessed segment displays in bold and red.

To modify a delimiter or parenthesis you have entered, click in the Delimiter
field and edit as appropriate.

To identify the segment of the source attribute that is copied to the destination
attribute, enter its index number in the Sub-string Index field.

To view the generated code, click View Code...

Result: Map Designer Express brings up the Activity Editor in Java view,
containing a sample of the transformation code in read-only mode for the
destination attribute.

To confirm the transformation setting, click OK.

Transforming with a submap

A submap is a map that is called from within another map, called the main map.
This section provides the following information about submaps:

* [“Uses for submaps”|

+ |“Specifying a Submap transformation” on page 43|

Uses for submaps

You can call a submap to obtain a value for any destination attribute, but submaps

are most commonly used for the following:

Chapter 2. Creating maps 41

* To modularize a map
* To specify transformations between child business objects

Improving map modularity: Using submaps can improve the modularity of your
maps by isolating common transformations that can be reused in more than one
map. For example, a Customer business object might have an Address child
business object that is also a child of an Order business object. If you create a
submap for the Address business object, you can reuse the submap in both the
Customer and Order business object maps.

illustrates how a submap, MyAddrToGenAddr, can be reused by two
different maps.

MiyApp_Customer « Map: MyCustToGenCust Customer
Myapp_address | o bmap: MyasddrToGenadd Address
-
Mypp_Order « Map: MyOrder ToGenCust Order
MyApp_ddress | o bman: MyaddiToGenaddr Address
-+

Figure 18. Using submaps for modularity

Transforming child business objects: When the source and destination attributes
contain multiple-cardinality child business objects, it is useful to use a submap to
specify their transformations. Typical examples of multiple-cardinality child
business objects are the multiple addresses of a customer or the multiple line items
in an order.

In the simplest case, you transform each source child business object into a single
destination child business object, in a one-to-one relationship. illustrates
the use of submaps for an Employee business object and its child business array
that contains instances of EmployeeAddress.

42 Map Development Guide

Employee » | App_Empl
Address[2] | » | AppAddr(2]
— Address[1] | > |7ppAddr[1]

Address|[0] AppAddr([0]

v

Figure 19. One-to-one transformation of child business object arrays

A submap can be associated with a conditional statement that governs whether it
executes. For example, consider the Order business object has an
OrderLine attribute that contains a multiple-cardinality child business object,
OrderLine. The OrderLine business object has a DeliverySchedule attribute that
contains a multiple-cardinality child business object, De1Sched.

Order

\ OrderLine[2]
OrderLine[1]

OrderLine[0]
ched
ched (— |
DeliverSched
DeliverSched[2] DeliverSched[2] DeliverSched[2]
DeliverSched[1] DeliverSched[1] DeliverSched[1]
DeliverSched[0] DeliverSched[0] DeliverSched[0]

Figure 20. Source business object with multiple-cardinality child business object

Some conditions that can be written in the map for Order can:

* Execute the submap that transforms the OrderLine attribute in Order only if a
different attribute in Order has a particular value.

* Execute the submap that transforms the DeliverSched attribute in OrderLine
only if a different attribute in OrderLine has a particular value.

* Execute the submap that transforms the DeliverSched attribute in OrderLine
only if an attribute in Order has a particular value.

Specifying a Submap transformation
Perform the following steps to create a Submap transformation.

1. Create the map that you want to use as a submap.

Chapter 2. Creating maps 43

You do this in the same way that you create and save any other map. IBM
naming conventions suggest that submap names begin with the string “Sub_".

Save the submap to the project in System Manager and compile the submap.

Specify the Submap transformation on the attribute in the parent business
object that needs to call the submap. This source attribute contains a child

business object that is mapped to a destination attribute that contains a child
business object.

You specify that a submap needs to be called with the Submap dialog, shown in

You display the Submap dialog in either of the following ways:
* From the Table tab:

In the parent map, select a source attribute (which is a child business object).
Select the desired destination attribute (which is also a child business object).
Click Submap from the list in the Transformation Rule column.

Repeat these steps for each source attribute that is a source business object for
the submap and each destination attribute that is a destination business object
for this submap.

¢ From the Diagram tab

In the parent map, select the source attribute (which is a child business
object).

Use Ctr1+Drag to move to the destination attribute; that is, hold down the
Ctrl key and drag the source attribute onto the destination attribute.
Continue to hold down the Ctrl key until after you release the mouse button;
otherwise, the operation does not succeed.

If the transformation involves a source attribute that is a child business object,
Map Designer Express assumes that the transformation is a Submap. It
automatically assigns Submap to the Rule column of the destination attribute
and displays the Submap dialog.

Note: You can customize the key sequence used to initiate a Submap

transformation from the Key Mapping tab of the Preferences dialog. For
more information, see [“Specifying Key Mappings” on page 21}

If a Submap transformation is already defined, you can use the Submap dialog to
reconfigure the transformation, including modifying its transformation code, in
either of the following ways:

* Double-click the corresponding cell of the transformation rule column.

44 Map Development Guide

* Click the Submap bitmap icon contained in the transformation rule column.

kap I
Bl 5ub_Leval2

Condition:

Wiews Code.. QK I Cancel

Figure 21. Submap dialog

Through the Submap dialog, you specify the name of the submap to call. The
Submap dialog provides the following functionality:

* To identify the submap to call, select its name from the list in the Map area. The
map list displays maps that meet the following conditions:

— The submap has the same business object definitions for its source and
destination business objects as the source and destination attribute you have
selected.

Tip: To locate a particular submap, enter its name in the Find field. The up and
down arrows scroll through the business object list.

* To specify a condition for the submap, enter it in the Condition area of the
Submap dialog. You can enter the condition now or simply dismiss the dialog
and enter the condition in the destination attribute’s generated code.

* To view the generated code, click View Code...

Result: Map Designer Express brings up the Activity Editor in Java view,
containing a sample of the transformation code in read-only mode for the
destination attribute.

* To confirm the transformation setting, click OK.

Cross-referencing identity relationships

In some cases, the source attribute may need to reference a relationship table to
find out what value to set in the destination attribute. This can be done using a
Cross-Reference transformation.

Perform the following steps to use a cross-reference transformation:

1. Select the source and destination attributes in any of the ways previously
described for other transformation. Both have to be business objects.

2. Select Cross-Reference in the corresponding transformation cell.

Chapter 2. Creating maps 45

Result: The Cross-Reference dialog appears:

Cross Reference x|

Relationzhip:

Mame I

kT estR

Participatit: I%ﬂ OutlPre j
[Buziness Objects q
Genaric: Iﬂ Objalewvell Input j
Application Specific: IE Objalevel Output j

Wiew Code... | oK I Cancel |

Figure 22. Cross-Reference dialog

3. In this dialog, select the relationship name from the list.

Result: The Participant combo box will be populated with all participants from
the selected relationship. The Business Object combo box, by default, will be
populated according to the mapping role defined in the map property. You can
change the combo boxes.

Creating a Custom transformation

In a Custom transformation, you use the Activity Editor to customize the activity
for the transformation graphically. Perform the following steps to define a custom
transformation from either the Table or Diagram tab:

* From the Table tab

— Select the source attribute.

— Select the desired destination attribute.

— Click Custom from the list in the Transformation Rule column.
* From the Diagram tab

— Select the source attribute.

— Select the desired destination attribute.

— Drag the source attribute onto the destination attribute in the destination
business object window.

Note: You can customize the key sequence used to initiate a Custom
transformation from the Key Mapping tab of the Preferences dialog. For
more information, see [“Specifying Key Mappings” on page 21|

Result: Map Designer Express displays the Activity Editor with a graphical view.
For more information on the Activity Editor, see [“Using the Activity Editor” on|

46 Map Development Guide

If a custom transformation is already defined, you can modify its transformation
code in either of the following ways:

* Double-click the corresponding cell of the transformation rule column.

* Click the Custom bitmap icon contained in the transformation rule column.

Saving maps

To preserve the map definition for use at a later time, you must save the map.
Before Map Designer Express saves a map, it first validates the map. For more
information, see [“Validating a map” on page 69}

Map Designer Express provides two ways to save the current map:

« |“Saving a map to a project” on page 47|

+ [“Saving a map to a file” on page 48|

Important: For Map Designer Express to be able to save a map, a map must
currently be open.

Saving a map to a project

A map definition stores map information in a project in System Manager. This map
definition contains the following information for a map:

* The general map information, which includes map properties
* The map design, which includes the transformation mappings.
¢ The custom transformation code

To save a map to a project in System Manager, you can perform any of the actions
shown in [Table 13.

Table 13. Saving a map to the project

If you want to . . . Then ...

Save the map definition to the name Use any of the following;:

of the currently open map. * Select To Project from the File --> Save submenu.

* Use the keyboard shortcut Ctr1+S.
* In the Standard toolbar, click the Save Map to
Project button).
Save the map definition to a name Use any of the following;:
different from the currently open
map.

* Select To Project from the File--> Save As submenu.
* Use the keyboard shortcut Ctr1+ATt+S.

Result: Map Designer Express displays the Save Map
As dialog in which you can specify the map name.

Chapter 2. Creating maps 47

Project:

[

Map |
= ClanfyContact_to_Contact

= ClanfyContact_to_Crder

= ClarifyContactBole_to_CustomerRole

M arne: |ClanfyContact_ta_Order
Cancel |

Figure 23. Save As dialog

When you save the map, Map Designer Express saves the map definition and map
content to the project in System Manager. It saves the map content as XML data.

Note: You can specify whether Map Designer Express automatically saves a map
to the project in System Manager before compiling the map with the option
Compile Map: save map before compile. By default, this option is enabled.
You can change the setting of this option on the General tab of the
Preferences dialog. For more information, see [‘Specifying Generall
[Preferences” on page 20|

Tip: To rename an existing map, select To Project from the File--> Save As
submenu.

Saving a map to a file

A map definition can be stored as text in an operating-system file, called a map
definition file. A map definition file contains the complete map definition; that is,
this file uses Extended Markup Language (XML) format to represent the following
parts of a map definition:

e The general map information, which includes map properties

* The map content, which includes the transformation mappings in an
uncompressed format

Recommendation: Map Designer Express creates a map definition file with a .cwm

extension. You should follow a naming convention for your map definition files,
such as. using the file extension (.cwm) to distinguish them.

48 Map Development Guide

You import a map definition into Map Designer Express by opening an existing
map definition file. For more information, see [“Opening a map from a file” on|

You can save the currently open map to a map definition file in any of the ways

shown in .

Table 14. Saving a map to a map definition File

If you want to . . . Then . ..

Save the map to the name of the Use any of the following:

currently open map in the format: . gelect To File from the File—> Save submenu.
MapName . cwm * Use the keyboard shortcut Ctr1+E.

(where MapName is the name of the ~ ° In the Standard toolbar, click the Save Map to File
currently open map) button (see.

Note: Map Designer Express will
always open the File Save dialog if
you do not open the currently
opened map from file.

Save the map to a specified map Use either of the following;:
definition file. Map Designer
Express displays a dialog box to
allow you to select the file name.

e Select To File from the File--> Save As submenu.
* Use the keyboard shortcut Ctr1+A1t+F.

Note: When you select the To File option from the File-->Save or File-->Save As
menus, Map Designer Express displays a dialog box to allow you to select
the file name. This file name identifies the file. It is not necessarily the name
of the map.

Example: You can save MapA in a file named fileA.cwm. This fileA file contains the
map definition for MapA. When Map Designer Express opens the fileA map
definition file, it displays the MapA map definition.

Tip: Exporting a map copies only the map.

Checking completion

When you are mapping two large business objects, it is easy to overlook some
required attributes. You can search for attributes that are not yet mapped to make
sure that you have specified all desired transformations. Such attributes are called
unlinked attributes.

Perform the following step to check completion:

¢ Select Find from the Edit menu and click the Unlinked attributes option in the
Find control pane.

Result: Map Designer Express displays a list of attributes for which there is no
transformation code. For more information, see|“Finding information in a map’]

Note: Once the code is completed, you must compile and test it. For information
on compiling a map, see [“Compiling a map” on page 70l For information on
testing a map, see|“Testing maps” on page 72|

Chapter 2. Creating maps 49

Mapping standards

This section provides the following procedural standards for maps:

* [“Tips on mapping individual attributes”|

+ [“Setting comments in the comment field of the attribute”|

Tips on mapping individual attributes

If the attribute mapping does not include relationship management, copy the
source attribute to the destination attribute (see|“Copying a source attribute to a|

[destination attribute” on page 37).

Important: Do not map the ObjectEventid attribute. InterChange Server Express
reserves the ObjectEventId for its own processing purposes. Any
custom code that has ObjectEventId as destination attribute will not

execute properly.

Setting comments in the comment field of the attribute

Attribute comments can improve the readability of your map. However, Map
Designer Express does not automatically generate a comment for an attribute.
provides some suggested standards for attribute comments based on the
type of transformation associated with the destination attribute.

Table 15. Settings for the Attribute Comment

Situation

If the child business object is not mapped
Set Value transformation

Move transformation

Join transformation

Split transformation

For child business objects, when the mapping is done without calling a
submap to indicate the object has to be expanded to see its attributes

If the code to call the submap is generated

Custom transformation that is nof one of those listed above
If the attribute’s code does not contain anything except setting the verb

Setting for Attribute Comment

=No mapping

=SET VALUE(value)

=MOVE

=JOIN(srcAttrl, srcAttr2, ...)
=SPLIT(srcAttr[index])
=Mapping here

=SUBMAP (mapName)
=CUSTOM(summary)
=SET VERB

50 Map Development Guide

Chapter 3. Working with maps

This chapter describes some advanced features of Map Designer Express that you
might use after creating maps.

The chapter covers the following topics:

» [“Opening and closing a map” on page 51|

» |“Providing map property information” on page 54|

* |“Using map documents” on page 56

* |“Finding information in a map” on page 60|

. "’Finding and replacing text” on page 62|

2

* |Printing a map” on page 62
. "’Deleting objects” on page 6?:|

+ [“Using execution order” on page 66

Opening and closing a map

Map Designer Express displays one map at a time within the tab window. This
map is called the current map (sometimes called the “currently open map”). You
can control which map is the current map with the following Map Designer
Express procedures:

+ |“Opening a map’]

+ [“Closing a map” on page 53|

Opening a map
A map must be open in Map Designer Express before you can view its information
in a Map tab or modify this information. When Map Designer Express opens a
map, if the validate map when open preference is enabled, it first performs a set of
validations on this map.

Note: You can specify whether Map Designer Express validates a map when it
opens it, with the option Open Map: validate map when open. By default,
this option is enabled.

If this preference is enabled when a map that uses big business objects (that
is, thousands of attributes) is opened, Map Designer Express may take a
long time to open the map. You can change the setting of this option on the
General tab of the Preferences dialog. For more information, see
[General Preferences” on page 20|

The validations that Map Designer Express performs on the map are as follows:

* Ensures that each business object definition that the map uses is defined in the
project in System Manager.

* Ensures that every attribute in the map exists in the specified business object
definition, as defined in the project in System Manager.

* Ensures that the type of each attribute in the map matches its type in the
specified business object definition, as defined in the project in System Manager.

¢ Validates transformations:

© Copyright IBM Corp. 2003 51

— Ensures execution order is correct; that is, that execution order is unique,

positive, and consecutive.

Ensures that no attributes have cyclic dependencies on each other. If any
cyclic transformations are found, Map Designer Express displays the cyclic
rules in the output window.

Checks transformation information:
Move transformation—only one source attribute is involved.
Join transformation—more than one source attribute is involved.

Split transformation—only one source attribute is involved; split index is
greater than or equal to zero; split delimiter is not empty.

Set Value transformation—no source attribute is involved; a value has been
specified.

Submap transformation—at least one source attribute is involved; submap
name is specified.

Cross-Reference transformation—only one source attribute is involved.

Map Designer Express provides the following ways to open a map:

* [“Opening a map from a project in System Manager” on page 52|

+ |“Opening a map from a file” on page 53|

Opening a map from a project in System Manager
Perform the following steps to open a map from a project in System Manager:

1.

52 Map Development Guide

Open the Open a Map from a Project dialog in any of the following ways:
* Select From Project from the File-->Open submenu.

* Use the keyboard shortcut of Ctr1+0.

* In the Standard toolbar, click the Open Map from Project button.

Result: Map Designer Express displays the Open Map dialog.

Froject:

Ifi ClarifyProjec j

Fird: | -~

Map |
= ClarifuCaontact_to_Contact

B4 ClarifuCantact_ta_Order

= ClanfyContactRole_to_CustomerRole

Open I Cancel

Figure 24. Open Map dialog

2. Select the project.

3. Select the map’s name from the list of maps currently defined in the project in
System Manager.

Tip: To locate a particular map name, enter its name in the Find field. The up
and down arrows scroll through the map list.

4. Click the Open button to open the map from the project.

Opening a map from a file
A map definition can be stored in XML format in an operating-system file called a

map definition file. To create a map definition file, you save the map as a map
design file (.cwm) in Map Designer Express. For more information, see

Imap to a file” on page 4§

When you open a map definition file, you open the map in Map Designer Express.

Perform the following steps to open a map definition file:

1. Open the Open a Map from a File dialog in any of the following ways:
* Select From File from the File--> Open submenu.
¢ Use the keyboard shortcut of Ctri+I.
¢ In the Standard toolbar, click the Open Map from File button.

Result: The Open file with Map dialog box appears.
2. Select the map definition file you want to open. The file must be a .cwn file
created by Map Designer Express.

Result: Map Designer Express opens the map definition file. The map
information appears in the Map tabs.

Important: Opening the map in Map Designer Express does not automatically
save the map to the project. To save this map to the project,
continue to step

3. Save the map to the project in System Manager. For more information, see
[“Saving a map to a project” on page 47

Rule: You must save the map to the project in System Manager for it to be
compiled. To compile the map, select Compile from the File menu. For more
information, see [‘Testing maps” on page 72,

Closing a map

Perform one of the following actions to close the current map, which is displaying
in the tab window:

* Open a new map in any of the ways discussed in [“Opening a map” on page 51|

Result: Map Designer Express closes the current map before it opens a new one.
¢ Select Close from the File menu.

Result: Map Designer Express closes the current map and clears the tab window.
To make a new map current, you can either create a new map or open an
existing map.

* Exit from Map Designer Express in any of the following ways:
— Select Exit from the File menu.

— Use the keyboard shortcut of Al1t+F4.

Chapter 3. Working with maps 53

Result: Map Designer Express automatically closes the current map before it
exits.

Note: If you have changed the current map since it was last saved, Map Designer
Express displays a confirmation box to confirm the map closure.

Providing map property information

Map Designer Express provides the Map Properties dialog (see [Figure 25) to
display and specify property information for a map. To display the Map Properties

dialog, take any of the following actions:
* From the Edit menu, select Map Properties.
¢ Use the keyboard shortcut of Ctrl+Enter.

* In the map workspace of the Diagram tab, right-click and select Map Properties
from the Context menu.

The Map Properties dialog provides the following tabs:
* General tab
* Business Objects tab

shows the General tab of the Map Properties dialog.

Map Properties

Figure 25. General tab of Map properties dialog

54 Map Development Guide

Defining General Property information

information shown in

The General tab of the Map Properties dialog displays the general property

Table 16. General Map Property Information

General Map Property

Map name

Mapping role

Run-time properties

Trace level

Data validation level

Implicit Database
transaction

Fail on invalid data

Description For more information

Identifies the map whose properties the N/A
dialog displays. This field is initialized when

you create a new map and is not an editable

field.

Identifies the purpose of the map. Possible

values of mapping roles are:

* Application-specific to generic
* Generic to application-specific

* Other (for maps that do not have a
specific mapping direction associated with
them)

Note: For previously defined maps that do

not have this property information, the

combo box will be empty. This is permissible

as long as you do not use any Relationship

transformation rules. When you first create a

Relationship transformation rule and this

value is empty, Map Designer Express will

prompt you for this value.

These map properties (trace level, data validation level, implicit database
transaction, and fail on invalid data) apply to the map instance at run time. You
can specify these properties here in the General tab of Map Designer Express’s
Map Properties dialog or from the Map Properties window that System Manager
provides. The changes are made to the local file system. Deploying the map to the
server will not update the run-time instance.

Note: You can update these map properties dynamically from the server
component management view by right-clicking on a map and selecting the
properties from the Context menu. The changes will be automatically updated to
the server.

For more information, see the User Guide for WebSphere Business Integration Express
for Item Synchronization.

Sets the trace level for the map. “Adding trace messages” on page]
409

Allows you to check each operation in a map [“Creating custom data validation|
and log an error when data in the incoming [levels” on page 146

business object cannot be transformed.

Determines whether InterChange Server

Express uses implicit transaction bracketing

for transactions over its connections.

Determines whether map execution fails if “Creating custom data validation|
data is invalid. levels” on page 146|

Defining business objects

The Business Objects tab of the Map Properties dialog displays information about
the map’s business objects. It lists the source and destination business objects as
well as any temporary business object that might be defined. For more
information, see|’Generating business object variables” on page 140}

Chapter 3. Working with maps 55

Using map documents

Map Designer Express supports creation of a map document, which allows you to
see all transformations in a single map or between two maps. While checking a
map, you might want to view all of its transformations in a single operation, rather
than opening and viewing each attribute separately. To do so, you can create a
map document that contains all transformations. A map document provides you
with an automated way to document native-map transformations.

This section provides the following information:

* A description of the two HTML files that make up a map document
* How to create a new map document

* How to view a map document

* How to print out a map document

What Is a map document?
A map document consists of two HTML files that describe all transformations of a
map (or set of maps):
* A map-table file that describes the map transformations in a tabular format.
The map-table file has the name mapDoc .HTM.
¢ AJava-code file that contains the code of the map transformations.
The Java-code file has the name mapDocJavaCode.HTM.

In both these HTML files, mapDoc is the user-specified name of the map document.

The map document can include information for all attributes, only those attributes
that have map transformations, or only those attributes that do not have map
transformations (unlinked attributes). If you specify all attributes, the map
document also contains a list of unlinked attributes in the source and destination
business objects.

The following sections describe the format of the two HTML files of a map
document.

Map-table file format
The map-table file, mapDoc .html, describes the map transformations in a tabular
format:

e If the map document describes only one map, Map Designer Express creates a
single-map map table.

* If the map document describes two maps, Map Designer Express creates a
multiple-map map table.

Single-map map table: A single-map map table describes the mapping flow in a
single map; that is, it describes the transformations between a source and
destination business object. The single-map map table has the following columns:

e Source Attribute shows the names of the source business object’s attributes.

* Transformation Rule describes the kind of mapping transformation between the
attribute in the source business object (in the column to the left) and the
attribute in the destination business object (in the column to the right). The
transformations listed in this column are hypertext links to the location of the
attribute in the mapDocJavaCode.HTM Java-code file for the map.

56 Map Development Guide

e Destination Attribute shows the names of the destination business object’s
attributes.

shows the HTML file that contains a single-map map table.

3 ClarifyContact_to_Contact - Microsoft Internet Explorer =101
wid - S Q@ | Dewh Gifmwtss Piiode J|H-SE-EHO R |
m@v:mmww«:_w_cmmmm j @G | Links il

ClarifyContact_to_Contact

Linked Attributes:

ObyClanfy Contact ContactID [Mowe {ObyContact Contactld |

ObiClarify_Contact [Move [ObiContact | =
OhbyClarify_Contact Faxumber [Spht |ObjContact OfficePhoneCriry|

{ObjClarify_Contact Phone [Move j.ObJComcl HomePhone |

ObjClarify_Contact. Sahutation | Move |ObjContact. Salutation |
g:jg—ﬁjg{ﬂ%z—:;ﬁ% Jom ObyContact FrstName

ObjClanify_Contact Firstiame |Spht |ObyClontact Middlelnitial |

The tshle ghews how an attribuie of 3 source business ehject is mapped to 3m atiribute of' s destinathon business ebject. To display Jova code for a
particular atiribute, click iis transfomation rule hyperlink.

Unlinked attributes in map *ClarifyContact_to_Contact’:

ObyContact
» Lastiame =
&) oo T S

Figure 26. Single-map map table

Note: If you enabled the Comment check box Create Map Document dialog, the
map table contains a fourth column called Comment, which shows the
comment for each of the destination attributes in the table.

Multiple-map map table: A multiple-map map table describes the mapping flow
between two maps; that is, it describes the transformations in the inbound map
(between the application-specific and generic business object) and an outbound
map (between the generic and application-specific business object). The
multiple-map map table has the following columns:

* Source Attribute shows the names of the application-specific business object’s
attributes.

 The first Transformation Rule column describes the kind of mapping
transformation between the attribute in the application-specific business object
(in the column to the left) and the attribute in the generic business object (in the
column to the right). The transformations listed in this column are hypertext
links to the location of the attribute in the mapDocJavaCode.HTM Java-code file for
the inbound (application-specific to generic) map.

* Common Attribute shows the names of the generic business object’s attributes.

* The second Transformation Rule column describes the kind of mapping
transformation between the attribute in the generic business object (in the
column to the left) and the attribute in the application-specific business object (in

Chapter 3. Working with maps 57

the column to the right). The transformations listed in this column are hypertext
links to the location of the attribute in the mapDocJavaCode.HTM Java-code file for
the outbound (generic to application-specific) map.

* Destination Attribute shows the names of the application-specific business
object’s attributes.

shows the HTML file that contains a multiple-map map table.

T ‘ClarifyContact_to_Contact” to ‘Contact_to_Contract’ - Microsaft Internet Explorer

fle Edt Wew Favorkes Toos Heh
o - - QD) A Doeach GiFavorkes Greda P - IE-HO R)

gdvess @] F-{rempi ClanfyContact_to_Cortact HTM I @6 [tnks ¥

"ClarifyContact_to_Contact’ to "Contact_to_Contract’

Linked Attributes:

OhjClanfy_Contact, ContactID | Move |Obij|ta.cl Contactld |[Move OhjContract Contractld

ObyClanfy_Contact. Lasthl

= lm_&_ o _zs — Tom ‘ObijctFw:Name Move ObyContract. Custemer]d
ObiClarify_Contact FirstName| :

ObyClanfy_Contact Move |Ob_|Camacl |Move ObyContract
ObyClanify_Contact FirstMame | Spht |ObjCom.act MtddleImh.al|Mwa \ObyContract ContractEndDt

The tahle shows how an attribuie of 2 source business shject is mapped to am ativihute ofa des tination busine=s ohject. To display Java code fora
particular atteibute, elick it transformation rule hyperlink,

Unlinked attributes in map "ClarifyContact_to_Contact":

ObjContact
+ LastMame
a Snfe M— :I
] [1 My Computer P

Figure 27. Multiple-map map table

Java-Code file format

The Java-code file, mapDocJavaCode.html, provides more detailed information about
the map. It contains the Java code that performs the transformations. This code is
in standard program format. The Java-code file is useful when you want to view
all map transformations in a single operation, rather than opening and viewing
each attribute separately.

Creating a map document

Perform the following steps to create a map document:

1. Open the Create Map Document dialog by selecting Create Map Documents
from the File menu.

Result: Map Designer Express displays the Create Map Document dialog (see
Figure 9.

2. Select the map-document configuration options from the Create Map Document
dialog:
* Specify the project.
* Specify the maps that are involved in the map document.

58 Map Development Guide

Guideline: If you do not check the “Show mapping flow with two maps”
check box, you can select only one map from the drop-down list. The
drop-down list includes all maps currently defined. If a map is currently
open, its name appears by default.

If you check the “Show mapping flow with two maps” check box, the second
drop-down list is enabled. This second drop-down list provides only those
maps that share the same generic business object as the first map. From this
list, you can select the name of the second map to include in the map
document.

* Specify the attributes in the destination business object to include in the map
document.

Click the appropriate radio button to indicate whether to include all
attributes, only mapped attributes, or only unmapped attributes in the map
document.

* Specify a name for the new map document.

Guideline: You can click the Browse button to find a location for the
map-document file. Map Designer Express automatically appends the suffix
.HTM to the map-document name you enter. Therefore, you do not need to
specify a file extension.

3. To initiate creation of the map document, select one of the following options:
¢ Click Save to save the selected maps in a map document.

* Click Save/View to save the selected maps in a map document and view this
new map document in an HTML browser.

shows the Create Map Document dialog.

Create Map Document

—Map Mames
Save

Project: I'D ClarifyProject j

Saveliew...
tap Mame: I@ ClarityContact_to_Contact j AEEN

[~ Show Comment

ik,

Cancel
[Show Mapping flow with two maps

[dap Marme: I j
™ Show Commett

— Show Destination Business Object Athributes with
& Al atibutes

" Linked Attributes Only

™ Unlinked Sttributes Only

—HTHL Map Document Mame

F-\temphClarifyContact_to_Contact.HT M

Figure 28. Create Map Document dialog

Chapter 3. Working with maps 59

When you create a map document, Map Designer Express creates the map
document as a Hypertext Markup Language (HTML) file (mapDoc.html) and a
related Java code file (mapDocJavaCode.html) where mapDoc is the map-document
name you specified in the Map Document Configuration dialog.

Viewing a map document
You can view a map document in any of the following ways:
* Open an existing map document in either of the following ways:
— Select the View Map Document option of Map Designer Express’s File menu.
— Use the keyboard shortcut Ctr1+M.

Result: The Open dialog displays the available map-document files. Specify the
HTML map document to read and click Open.

* Open a new map document by clicking Save/View on the Map Document
Configuration dialog.

* Go into the directory that contains the map document files and double-click the
desired file.

Result: Map Designer Express invokes your browser to display the HTML
map-document file that you selected.

In addition, you can view the Java code associated with a particular transformation
by clicking the entry in the Mapping Action column of the map table. Your
browser displays the corresponding Java code segments that implement the
mapping between the associated source and destination attributes.

Printing a map document
Perform the following steps to print a map-document file:
1. View the desired file in your HTML browser.
For more information, see[“Viewing a map document” on page 60
2. Print the displaying HTML file from the browser.

Select the Print option of the browser’s File menu, use the keyboard shortcut
(Ctr1+P), or select the Print icon from the Standard tool bar.

Finding information in a map

You can use Map Designer Express’s search facility to perform the following
searches:
* Search for text in an attribute name or in the attribute’s transformation code.

e Search for unlinked attributes.
Perform the following steps to find information in a map.

Initiate a find in any of the following ways:

* Select Find from the Edit menu.

* Use the keyboard shortcut Ctri+F.

¢ In the Standard toolbar, click the Find button.

Result: Map Designer Express displays the Find control pane (see [Figure 29)

60 Map Development Guide

Choose what to find what to find?
by clicking one of these T(: el

radio buttons T Unlinked Attributes

) [Find: I

Find area, where you ;
. — [Athibute Fird
specify where to £
™ Code

search and whether [CaseSensii Close |
the search is case Lo e
sensitive. Altribute | Mame [Code

Find results area,
where the search
facility displays the
search results.

< |

Figure 29. Find Control Pane

From the Find control pane, select one of the radio buttons in the What to find?
area to indicate which kind of search you want to perform:

e To search for text:
— Click the Text radio button.

— Enter the text to search for in the Find field. You can enter multiple words
and spaces if necessary.

— Indicate where to search for the text by selecting one or more options in the
Find area:

Attribute—search the attribute names for the specified text.

Code—search the attributes’ transformation code for the specified text. You
can select either Attribute or Code, or both of those options.

Case Sensitive—make the text search case sensitive. To find only instances of
the text that have the same case that you typed, select Case Sensitive.

Restriction: You cannot search on data types or comments.
— Click Find to initiate the search.
* To search for unlinked attributes:

— Click the Unlinked Attributes radio button. The Find control pane deactivates
the fields in the Find area.

— Click Find to initiate the search.
Result: Map Designer Express displays the search results in the Find Results area.

You can click any attribute name to automatically select that attribute in the map.
Click Close to close the Find control pane.

Chapter 3. Working with maps 61

Finding and replacing text

Using Map Designer Express’s Find and Replace capability, you can search for
specified text in the comments of a transformation rule and replace it with other
specified text.

Perform the following steps to find and replace text.

1. Initiate a find and replace in any of the following ways:
* Select Replace from the Edit menu.
* Use the keyboard shortcut Ctr1+H.

Result: Map Designer Express displays the Replace dialog.
=

Find Mt <]

Figure 30. Replace dialog

2. In the Replace dialog, enter the text to search for in the Find what field and the
text to replace it in the Replace with field. Select Match case, as necessary.

3. Click Find Next to initiate the search.

Result: The Table view will be activated and the text will appear in the
comment column in the Table view.

4. Click Replace to replace the match with the new text.
Guideline: You can replace all similar matches with one action by clicking
Replace All

5. To continue finding and replacing the specified text, instance by instance,
repeat steps 3 and 4.

Printing a map

Map Designer Express allows you to print a map. It creates a tabular
representation of the map, much like the map appears in the Table tab. You can
print a map in any of the following ways:

* Select Print from the File menu to print the current map.
* Use the keyboard shortcut of Ctr1+P.
e In the Standard toolbar, click the Print button.

Map Designer Express also supports the following standard print tasks:

* Print Preview—select Print Preview from the File menu to preview the page
layout for the current map.

* Print Setup

— Select Print Setup from the File menu to display the Print Setup dialog, where
you can configure information such as printer setting, paper size and
orientation.

— Use the keyboard shortcut of Ctr1+Shift+P.

62 Map Development Guide

Guideline: When Map Designer Express performs the print or print-preview task,

it copies the attribute transformation table in the Table tab. Before you print, you
can adjust the width of the individual columns and height of individual rows in
the attribute transformation table to make the whole map fit on one page or to

customize the print result.

Deleting objects

This section provides information on how to delete the following objects:

“Deleting map transformation steps’’

“Deleting business objects”

“Deleting maps” on page 64|

Deleting map transformation steps

Deleting a map transformation step includes three components:

Deleting the transformation code
Deleting the comment

Deleting the data flow arrow

Perform the following steps to delete the transformation step:

From the Table tab:

Select the attribute line to delete by clicking in the leftmost column (the column

to the left of Exec. Order) and doing one of the following actions:
— Right-click and select Delete Row from the Context menu.

— Select the Delete Current Selection option from the Edit menu.
— Use the keyboard shortcut of Del.

Result: Map Designer Express automatically deletes any incomplete
transformations when you save the map.

From the Diagram tab:

Select the data flow arrow and select either of the following menu options:
— The Delete Current Selection option from the Edit menu

— The keyboard shortcut of Del

— The Delete option from the map workspace’s Context menu

Result: A dialog asks you whether to delete the associated data flow arrow.

Click Yes and Map Designer Express displays a second confirmation asking if

you want to delete the associated code:

Click Yes and all three items are deleted.

Deleting business objects

Perform the following steps to delete a business object from a map:

1.

Display the Delete Business Object dialog in any of the following ways:
¢ Select the Delete Business Object option of the Edit menu.
¢ From the Table tab, perform either of the following actions:

— Right-click in the empty area of the business objects pane and select
Delete Business Object from the Context menu.

Chapter 3. Working with maps

63

— Right-click the business object in the business objects pane (click the name
in the cell) and select Delete <BusObjName> (where BusObjName is the
name of the selected business object.)

Result: The Delete Business Object dialog displays.

Delete Business Dbjects x|
Fin | =] 2]
Buziness Object:
Del... | Buziness Object | Type |
O B Objalevellnput alevelllnput
O B Objalevell Output alevell Output

Delete I Cancel

Figure 31. Delete Business Object dialog

2. Through the Delete Business Object dialog, you specify which business objects
you want to delete from the map. The Delete Business Object dialog provides
the following functionality:

* To delete a business object:
— Check the business object in the business object list.
— Click the Delete button.

* To locate a particular business object, enter its name in the Find field. The up
and down arrows scroll through the business object list.

* To close the dialog, click Done.

Deleting maps
Perform the following steps to delete a map from the project in System Manager:
1. Select the Delete option from the File menu.

64 Map Development Guide

Result: Map Designer Express displays the Delete Map dialog, as

shows.

Delete Map x|
Froject:
I‘. ClarifuPraject j

Finct | -~

bdap I
| ClarifyContact_to_Contact

ClarifuContact_ta_Order

B ClarifyContactRole_ta_CustomerRole

Delete I Cancel

Figure 32. Delete Map dialog

Note: If a map is currently open, Map Designer Express closes this map before
it displays the Delete Map dialog. You can specify whether Map
Designer Express closes any currently open map with the option Delete
Map: close map before delete. By default, this option is enabled. If the
option is disabled, Map Designer Express provides a confirmation
prompt if you select the currently open map from the Delete Map dialog.
You can change the setting of this option on the General tab of the
Preferences dialog. For more information, see|“Specifying Generall
[Preferences” on page 20|

2. Enter the project name.
3. Select the map or maps you want to delete.
From the Delete Map dialog, you can:
* Select a single map by clicking on the map name in the list.
¢ Select multiple maps by holding down the Ctrl or Shift key and clicking on
the map names.
* Locate a particular business object by entering its name in the Find field. The
up and down arrows scroll through the business object list.

4. Click the Delete button to delete the maps.
Result: Map Designer Express displays a confirmation box for the delete.

Note: You can specify whether Map Designer Express confirms the deletion of
a map with the option Delete Map: always display warning message. By
default, this option is enabled. You can change the setting of this option
on the General tab of the Preferences dialog. For more information, see
[“Specifying General Preferences” on page 20|

Chapter 3. Working with maps 65

Using execution order

By default, map execution occurs in the order that the destination attributes appear
in the Table tab. Only destination attributes that have transformations are executed.
Often, the execution order is the order in which the destination attributes are
defined in the destination business object. shows an execution order of
the map A-to-B in which destination attributes are executed in the order they are

defined.
Execution Order
Src-A Dest - B
B Attr1
B Attr2
Attr1 Attrl B Attr3
Attr2 Attr2 B Attr4
Attr3 Attr3 B Attr5
B Attré
Attrd — | Attr4 B Attr7
Attr5 Attr5
Attré Attré
Attr7 Attr7

Figure 33. Default execution order
Note: assume that all destination attributes have transformation code.

However, certain attributes might have dependencies in their execution order. To
ensure that the transformation code of certain attributes is executed before the
transformation code of other ones, you can specify the order of their execution.
You can change the execution order to specify data flow. For example, suppose in
the map A-to-B that Attr7 needs to execute immediately after Attr3 (in other
words, Attr7 needs to execute before Attr4). shows how a sequence
specification in the destination business operation changes the sequence.

Execution Order

Src-A Dest - B

B Attr1

B Attr2
Attri Attr B Attr3
Attr2 Attr2 B Attr7
Attr3 Attr3 B Attr4

B Attr5
Attrd — | Attr4 B Attr6
Attr5 Attr5
Attré Attré
Attr7 Attr7

Figure 34. Changing execution order

You can specify an explicit execution sequence that overrides the default order
from the Table tab of Map Designer Express. To specify the sequence of

66 Map Development Guide

transformations between two destination attributes in the Table tab, click in the
Exec. Order field for the destination attribute whose execution order you want to
change and enter the desired execution order value.

Note: You can specify whether Map Designer Express renumbers the execution
order for any attributes affected by this change with the option Defining
Map: automatically adjust execution order. By default, this option is
disabled. When the option is enabled, Map Designer Express automatically
adjusts the execution order of other attributes. You can change the setting of
this option on the General tab of the Preferences dialog. For more
information, see [“Specifying General Preferences” on page 20|.

By default, the Table tab displays attributes in the order their transformations are
defined. You can then choose to display these mapped attributes by their execution
order, their attribute names, or ordered by any other column of the attribute
transformation table. Just click the heading of the column to order the attributes by
that column’s value.

Important: If you click the row header of the transformation and drag-and-drop
the transformation to a new position, you change the order in which
the transformation rule is displayed. However, this action does rnot
affect its execution order.

Importing and exporting maps from InterChange Server Express

With the repos_copy utility, you can load and unload specified map definitions in
the repository with the -e option. A map repository file is the file that the
repos_copy utility creates when it extracts a map definition from the repository
into a .jar file. This file contains a map definition in an IBM WebSphere
InterChange Server Express-defined .jar format.

Recommendation: You should use the .jar file extension for the map repository
file.

For example, the following repos_copy command unloads (exports) the
ClCwCustomer (ClarifyBusOrg to generic Customer) map definition from the

repository of an InterChange Server Express named dexter into a map repository
file:

repos_copy -eMap:C1CwCustomer+BusObj:Customer+BusObj:Clarify Customer
-oNM_C1CwCustomer.jar -sdexter -pnull -uadmin

You can create one repository file that contains all map definition files, including:
* Main map definitions
* Submap definitions

* Files for both directions, if applicable.

For example, to copy all related map definitions for the ClarifyBusOrg/Customer
mapping into a map repository file, use the following repos_copy command:

repos_copy -eMap:C1CwCustomer+Map:CwC1Customer
-oNM_C1CwCustomer_and_CwC1Customer.jar -sdexter -pnull -uadmin

If you are reusing a submap in several maps, create a separate repos_copy file for
it instead of putting it in the main text file.

Chapter 3. Working with maps 67

You can also use repos_copy to load (import) a map definition into the repository
from a map repository file. The following repos_copy command loads the
C1CwCustomer map definition into the repository of an InterChange Server Express
named testing:

repos_copy -iNM_Cl1CwCustomer.jar -stesting -uadmin -pnull

This repos_copy command assumes that the C1CwCustomer and CwC1Customer map
definitions do not currently exist in the repository. If they do exist, this command
fails to load these new map definitions. You can use one of the -a options of
repos_copy to choose how to handle duplicate map definitions:

-ai Skip over duplicate map definitions during the load

-ar Overwrite any duplicate map definitions with the map definition in the
map repository file.

-arp Interactively query the user whether to overwrite any duplicate map
definitions with the map definition in the map repository file.

Note: In Production mode, the maps will be automatically compiled.

You can also use repos_copy to load and unload relationship definitions in the
repository. For more information, see [“Loading and unloading relationships” on|
page 221f.

68 Map Development Guide

Chapter 4. Compiling and testing maps

This chapter describes how to validate, compile, and test maps using Map
Designer Express.

+ [“Validating a map” on page 69|

+ |[“Compiling a map” on page 70|

» [“Compiling a set of maps” on page 71|

* |“Testing maps” on page 72

+ |"Debugging maps” on page 85|

Validating a map

Map Designer Express’s validation process verifies the accuracy of the map’s data

flow by performing the following checks:
* Ensures that the map has no incomplete transformation steps.

* Ensures that indexes to business object arrays are properly sequenced, starting

from zero (0).

* Provides a warning if any transformation step maps to the ObjectEventId
attribute.

e Validates transformations:

— Makes sure execution order is correct; that is, that execution order is unique,

positive, and consecutive.

— Ensures that no attributes have cyclic dependencies on each other. If any
cyclic transformations are found, Map Designer Express displays the cyclic

rules in the output window.
— Checks transformation information:
Move transformation—only one source attribute is involved.

Join transformation—more than one source attribute is involved.

Split transformation—only one source attribute is involved; split index is

greater than or equal to zero; split delimiter is not empty.

Set Value transformation—no source attribute is involved; a value has been

specified.

Submap transformation—at least one source attribute is involved; submap

name is specified.

Cross-Reference transformation—only one source attribute is involved.

Map Designer Express automatically validates a map when you save it. You can
also choose to validate the map by performing either of the following actions:

* Select Validate Map from the File menu.
* In the Designer toolbar, click the Validate button.

At this point, if you have specified any options on the Validation tab of the

Preferences dialog, Map Designer Express will issue a warning if the specific

condition is not mapped.

For more information on setting dependencies between attributes, see

fexecution order” on page 66|

© Copyright IBM Corp. 2003

69

Compiling a map

When it compiles a map, Map Designer Express generates a .class file from the
.java file that holds Java code for the map’s transformations. It generates this
.java file from the transformation code stored as part of the map definition in the
project.

Important: To be able to compile a map, the Java compiler (javac) must exist on
your system and its path must be on your PATH system variable. For
more information, see [‘Setting up the development environment” on|
[page 1.

From within Map Designer Express, you can initiate compilation of a map in
several ways:

* Compile the current map in one of the following ways:
— Select Compile from the File menu.
— Use the keyboard shortcut of F7.
— In the Designer toolbar, click the Compile button.
* Compile the current map and any submaps that this map is using;:
— Select Compile with Submap(s) from the File menu.
* Compile all or a subset of maps defined in System Manager:
— Select Compile All from the File menu.
— Use the keyboard shortcut of Ctr1+F7.

For more information, see|Compiling a set of maps” on page 71|

By default, Map Designer Express saves the map in the project before it begins the
compile and generates the Java code in the .java file and .class file. If any
message file is needed, Map Designer Express will also generate the message file.

Note: You can specify whether Map Designer Express automatically saves a map
to the project before compiling the map with the option Compile Map: save
map before compile. By default, this option is enabled. You can change the
setting of this option on the General tab of the Preferences dialog. For more
information, see [“Specifying General Preferences” on page 20}

To compile, Map Designer Express calls the Java compiler on the map’s Java source
code (.java file). The actions it then takes depend upon whether the compilation is
successful.

System Manager also provides several ways to compile a map. You can do any of
the following:

* Compile a single map:
— Highlight the desired map and select Compile from the Component menu.
— Right-click the desired map and select Compile from the Context menu.

* Compile a map and its submaps:

— Right-click the desired map and select Compile with Submap(s) from the
Context menu.

* Compile all maps defined in the project:
— Highlight the Maps folder and select Compile All from the Component menu.

70 Map Development Guide

Note: You will need to select which map folder in the project to compile all
maps for by right-clicking on the map folder and selecting Compile All
from the Context menu.

For more information on using System Manager to compile a map, see the User
Guide for WebSphere Business Integration Express for Item Synchronization.

A successful map compilation

When the map successfully compiles, Map Designer Express takes the following
steps:
* Compiles the Java code into a .java file.
* Displays the following message in the output window at the bottom of each
Map tab to indicate that there are no errors during compilation:
Compilation is successful.

An unsuccessful map compilation

If an error occurs during compilation, Map Designer Express generates error
messages and displays them in the output window at the bottom of the screen.
Unless an output window is already open, Map Designer Express opens one at the
bottom of the Map tab to display these compilation messages.

When a compile error occurs, the output window displays the error message with
the problematic attribute name and line number in blue. Click the hyperlink to

navigate to the problematic area in the Java view in Activity Editor.

Tip: You can clear the output window of messages by choosing Clear Output from
the View menu.

Some errors are easy to detect, while others are not.

Compiling a set of maps

Using the Compile All option on the File menu, you can compile all maps in your
System Manager, or a subset of maps. Perform the following steps to compile a set
of maps:

1. Select Compile All from the File menu.

Result: Map Designer Express displays the Compile All Maps window.
2. Select the project to compile maps for.
3. Select the maps to compile.

Guideline: Checking any check box at the root will automatically check all its
child check boxes. Thus, when you select a project, all maps in that project are
selected. To select only a subset of maps, deselect the appropriate Compile
check boxes.

Chapter 4. Compiling and testing maps 71

illustrates the Compile All Maps window.

Select the maps to compile;

= [Frojects

= ClarifyProject
ClarifyContact_to_Contact
ClarifyContact_to_Order
ClarifuContactRole_to_CusztomerRole
Contact_to_Contract

= [OracleProject
[Contact_ta_OracleContact
[CracleCustomer_to_Customer

= [S&FP4Froject
SaPdltermn_to |temBazic

Figure 35. Compile All Maps window

Result: Map Designer Express displays the success or failure of each map’s
compilation in the output window. You might want to enlarge the size of the
output window before starting the compilation process so you can see more of the
compilation status messages.

Testing maps

You can test a map’s transformation steps by providing sample data for the source
business object and executing a test run of the map. A test run is map execution
that does not involve an event sent by a connector or a call sent by an access
client; the map executes within Map Designer Express. Map Designer Express
provides a separate tab, the Test tab in the Map Designer Express window to test
maps and view test results.

Note: When a map is selected from Testing Environment for further debugging,
Testing Environment will launch Map Designer Express, giving Map

Designer Express the input business objects to the map under testing.

This section describes how to set up and execute a test run, using these steps:

s [“Preparing to run the test” on page 73|

+ |“Creating test data” on page 73|

+ |“Setting breakpoints” on page 75|

72 Map Development Guide

* |"Running the test map” on page 77|

* |"Viewing test run results” on page 79|

« |"Changing the map and re-executing” on page 79|

Note: An alternative testing strategy, which is not covered in detail, is to set
breakpoints in the map and to send a triggering event from the connector,
which causes the map to execute.

Preparing to run the test
Before running the test, perform the following steps:
1. Open the map to debug from the project.

2. If the map has not been compiled since the last modification, compile it b
choosing Compile from the File menu. For more information, see

[map” on page 70}

3. If the Test tab of Map Designer Express is not currently displaying in the tab
window, select the Test tab.

Creating test data

Every time you test a map, you must load data into the source business object. To
do this, use the Source Testing Data pane in the Test tab (see Figure 36). The Source
Testing Data pane allows you to specify the following test information:

* The calling context—indicates the map execution context for the map run.

* The generic business object—provides test data for the generic business object

when testing the SERVICE_CALL_RESPONSE calling context for an identity
relationship.

¢ The test data—data for the attributes of the source business object.

Important: The calling context and generic business object are required only for
testing relationships within maps. For more information, see

[maps that contain relationships” on page 80|

Testing the map for the first time
When you test the map for the first time, you must manually enter the values of
the attributes in the Source Testing Data pane.

The following sections provide information about how to enter this data:

« |"Test data for the source business object” on page 73|

« |"Test data for a child business object” on page 74|

Test data for the source business object: To create source business object data for
the first time, follow these rules:

* To set the verb, select it from the verb combo box in the verb row.

* To assign a value to a source attribute, type it into the attribute’s Value column.
You do not have to provide values for all attributes.

* To assign a value to a relationship attribute, specify the appropriate value in the
Value column and make sure you also specify the correct calling context. For
more information, see [“Testing maps that contain relationships” on page 80}

* To assign values to a child business object, right-click the child object and select
the Add Instance option from the Context menu. For more information, see
[data for a child business object” on page 74,

* To assign default values to the source attributes attribute, select the source
business object and select Reset from the Context menu.

Chapter 4. Compiling and testing maps 73

 If you are testing relationships, make sure to set the ObjectEventIds of the
source parent object and all child objects that participate in the relationships.

To save the values you have entered for future test runs, create a business object
(.bo) file by selecting the source business object and performing either of the
following actions:

* Click the Save To button in the Source Testing Data pane.

* Select Save To from the Context menu. When prompted, enter a file name where
these values will be stored.

Result: The next time you test this map, you can click the Load From button
and the attributes will be filled in automatically from the business object file.

£ Source TestingData Calling Context; I.&EEESS_HEGUEST j
Genenic business object: | <Mones j
Mame Type Walue
=l ObjaLevellInput alevellnput

Ilferif Create

String1 String

Boolean Boolean

Floatt Float

Integert Integer

Date1 Cate

alevel2lnput alevel2input

ChjectEventld String

Beszet Load From... Save To..

Figure 36. Source Testing Data pane of the Test tab

Test data for a child business object: If the source business object has child
business objects and you want to specify test data for the child attributes, you
must first create an instance for each child object you need. To do so, perform the
following steps:

1. Right-click the child business object name and select Add Instance from the
Context menu. When you expand the object, you see the instance that Map
Designer Express has created.

Guideline: The first instance you add has an index number of zero. You can
have as many instances as you want (as long as the child attribute has
multiple-cardinality).

2. Click the plus symbol (+) beside the instance index number to expand the child
business object.

Result: When you expand the object, you see the child attributes for this
instance.

3. To create data for the child business object instance, follow these rules:

74 Map Development Guide

* To set the verb for the child business object, select it from the verb combo
box in the verb row.

* To specify a value for a child attribute, select it and enter the value in the
Value column.

* If the name of the attribute is followed by (N), the attribute contains a
multiple-cardinality child business object and you can add more instances.

To add a child business object to the end of the array, right-click the last
index and select Add Instance from the Context menu.

* Modify the values of as many instances as you want. Add and remove
instances as follows:

— To add an instance, right-click the child instance name and select Add
Instance.

— To delete an instance, right-click the instance name of the child instance
you want to delete and select Remove Instance.

— To delete all instances, right-click the child instance name and select
Remove All Instances. This option is only enabled if the child business
object has multiple-cardinality.

Testing the map in subsequent runs
For subsequent test runs, Map Designer Express reuses the previously specified

test data. You can take any of the following actions on this data:
* Leave all test data as it is.

* Modify values for any individual attributes by changing the appropriate entries
of the Values column.

Tip: If you modify the data, remember to resave any business object (.bo) file.
* Load a set of values from a business object (.bo) file.

To load attribute values from a business object file, select the source business
object and perform either of the following actions:

— Click the Load From button in the Source Testing Data pane.
— Select Load From from the Context menu.

When prompted, enter the name of the business object file to be loaded.

* Return all source destination values to their defined default values by selecting
the source business object and selecting the Reset option from the Context menu.

Setting breakpoints

When you set a breakpoint, map execution pauses just before the transformation of
the destination attribute on which the breakpoint is set. The use of breakpoints lets
you step through map execution and check the sequence and the results of
individual operations. You can set as many breakpoints as you like.

Guideline: Breakpoints are not part of the map’s definition. You set breakpoints on
the map after the map is opened in Map Designer Express, and when the map is
debugged (either with Debug-->Run Test... or Debug-->Advanced-->Attach...).
Breakpoints have no effect on the map when the map is not debugged from Map
Designer Express.

Note: You can only set a breakpoint on a destination attribute that has a
transformation defined for it.

To set a breakpoint, you can use any one of the following methods:

Chapter 4. Compiling and testing maps 75

* Right-click a destination attribute in the Destination Testing Data pane and select
Set Breakpoint from the Context menu. If the destination source attribute is not
yet expanded, you can expand it with either of the following commands:

— Click the plus symbol (+) next to the destination business object.

— Select the destination business object and select Expand from the Context
menu.

Note: The Context menu of the destination business object also provides a
Collapse option.

* Select Toggle Breakpoint from the Debug menu.
¢ Use the keyboard shortcut of F9.
* In the Designer toolbar, click the Toggle Breakpoint button.

Note: The Toggle Breakpoint option toggles a breakpoint definition on and off. If
the breakpoint is not currently set, Toggle Breakpoint sets it. If the
breakpoint is currently set, Toggle Breakpoint removes it.

Result: Map Designer Express displays a dark circle next to the destination
attribute on which the breakpoint is set, as shown in

Q Destination Testing Data
Mame Type Yalue Rule Source Attribute Com
= Objalevell Qutput alevell (fLocalf Cross Ref Ohjalevell Input
VVerbf Move Chjalevellinput Merh]
& String String Move ...atring1
Boolean1 Boolean Jain ..otringl, ..Booleant
Float1 Float Split ...Floatl
Integeri Integer Setvalue
Date1 Date Custom
alevel20utput alevel? (fLocal] Submap |...alevelZlnput
OhjectEventld String
4] | i
Save To.. |

Figure 37. Breakpoint set

Once you set the breakpoint, the execution of the map instance pauses at this
breakpoint and you can see the current status of the map. Unless you specify at
least one breakpoint, the map executes and finishes with the message:

Test run finished
Rule: You must always provide values for the source data associated with the

destination attributes where you set the breakpoints. Otherwise, the transformation
rule will run normally and the breakpoints will execute normally, but the

76 Map Development Guide

destination value will usually be empty, depending on what transformation rule is
defined. For more information, see [“Creating test data” on page 73|

To view all breakpoints for the map, select Breakpoints from the Debug menu.

Result: Map Designer Express displays the Breakpoints dialog (see [Figure 38).
Breakpoints
Find:|— -]~

@ Objaddiess. AddiessLined

Delete l Clear &1l I

Cancel l

Figure 38. Breakpoints dialog of the test tab

From the Breakpoints dialog, you can perform any of the following actions:

* Locate a destination attribute on which a breakpoint is set—double-click the
breakpoint name.
Tip: To locate a particular breakpoint, enter its name in the Find field. The up
and down arrows scroll through the business object list. In the Destination
Testing Data pane, Map Designer Express highlights the destination attribute.

* Remove a breakpoint—in the Breakpoints area, select the breakpoint to remove
and click the Delete button.

You can also remove a breakpoint by performing any of the following actions:

- Right-click a destination attribute in the Destination Testing Data pane and
select Clear Breakpoint from the Context menu.

— Use any of the commands for the Toggle Breakpoint option on an existing
breakpoint. For more information, see [‘Setting breakpoints” on page 75,

* Clear all breakpoints that display in the Breakpoints area—click the Clear All
button.

You can also clear all breakpoints by performing any of the following actions:
— Select Clear All Breakpoints from the Debug menu.
— In the Designer toolbar, click the Clear All Breakpoints button.

Running the test map

Once you have entered the source test data and set any desired breakpoints, you
are ready to test the map. To run a map test involves the following steps:

1. |“Starting the test run” on page 78|

2. |"Processing breakpoints” on page 78| (if any breakpoints have been set)

Chapter 4. Compiling and testing maps 77

Starting the test run
To start the test run, perform the following steps:

1.

Do any of the following actions:
* Select Run Test from the Debug menu.

* In the Designer toolbar, click the Run Test button.

Result: The Connect to IBM WebSphere InterChange Server Express dialog box
will display and allow you to connect to the server for testing.

In the dialog, enter the server name, user name, and password.
Specify whether you want to deploy the map and dependent business objects
for the test run.

Guideline: Deploying a minimum set of business objects to the server for
testing will minimize debugging initialization time.

Result: Execution of the map starts. Map Designer Express displays the following
message in the output window:

Starting test run...

Processing breakpoints

Map execution pauses when it reaches a destination attribute where you have set a
breakpoint. When the breakpoint is reached, Map Designer Express takes the
following actions:

1.

78 Map Development Guide

Highlights the destination attribute on which the breakpoint was set and
displays a dark circle with a yellow arrow next to it.

Displays the following message in the output window:
Test Run stopped at attribute AttrName (next transformation--> "Rule").

Tip: With map execution paused, you can examine the values of the destination
attributes that have been processed so far by looking in the Value column of
the Destination Testing Data pane.

Processes the breakpoint and continues map execution, when you do either of
the following actions:

* Proceed to the next breakpoint or the end of the map, whichever comes first.
To continue map execution, perform any of the following actions:
— Select Continue from the Debug menu.
— Use the keyboard shortcut of F8.
— In the Designer toolbar, click the Continue button.

* Execute this destination attribute, then stop before executing the next
attribute.

To continue map execution for only one more step, perform any of the
following actions:

— Select Step Over from the Debug menu.

Tip: Select this option to watch the code execute attribute by attribute.
— Use the keyboard shortcut of F10.
— In the Designer toolbar, click the Step Over button.

Result: When the execution of the test run is finished without any run-time
errors, Map Designer Express displays the following message in the output
window:

Test run finished.

Viewing test run results

Test run results display in the destination business object, which is in the
Destination Testing Data pane. Values resulting from the map transformations are
visible in the Values column of this table. You can view test run results by either:

+ |[“Watching the process”|

» |“Viewing results after execution”|

Watching the process

During a test run that has test data and breakpoints, you can watch as the
destination business object fills with values. Values appear in the Values column in
the Destination Testing Data pane as they are processed. When map execution is
paused on a breakpoint, all destination attributes before that attribute in the
execution order have values displayed.

To view the transformations as they occur:

* Set a breakpoint on the second destination attribute and step through map
execution with the Step Over option. The map will be read-only.

Viewing results after execution
To view test run results when the map has already executed, examine the
destination business object in the Destination Testing Data pane.

To save the test results:

* Highlight the destination business object and select Save To from the Context
menu.

Result: Map Designer Express saves the values of the destination attributes in a
business object (.bo) file.

Changing the map and re-executing

As you test the map, you might discover the need to change the map. To edit the
map and then continue the test, perform the following steps:

Switch to either the Table or Diagram tab to view the map transformations.
Make the edits to fix the errors.
Recompile the map.

Continue the testing process by switching back to the Test tab.

ok wn =

Begin a new test run.

Important:

1. Make sure you complete the test run, either with success or failure, before you
attempt to recompile the map.

2. After you modify the map, be sure to deploy the map to the server for the
change to be reflected in the server.

Doing advanced debugging

Besides debugging maps that are stored in local projects, you can also directly
debug a map that resides in the server. Perform the following steps to do so:

1. Select Debug-->Advanced-->Attach.

Result: The Connect to WebSphere InterChange Server Express dialog displays.
2. Enter the Server name, User name, and Password; and click Connect.

Result: Map Designer Express displays a list of new maps on that server.
3. Select the map you want to attach to.

Chapter 4. Compiling and testing maps 79

Result: The map opens in Map Designer Express in Read-only mode.

4. Set breakpoints in the map to have the server pause map execution at a certain
transformation rule.

Result: When a breakpoint is hit on the server, you can step over or continue
map execution, as usual. The resulting business object values will display in the
Destination Test Data pane.

5. Stop the debugging session at any time using Debug-->Advanced-->Detach.

Result: Map Designer Express will close the map.

Testing maps that contain relationships

When you test a map that contains a relationship transformation, you need to
provide the following information in addition to the test data:

* The calling context

Part of a map’s execution context includes a calling context. Many of the
relationship methods in the Mapping API use this calling context to determine
what action to take during the mapping. For this reason, if you are testing a
relationship attribute in a map, you usually must specify the appropriate calling
context for the transformation.

* The generic business object definition

When you test the SERVICE_CALL_RESPONSE calling context for an identity
relationship, you need to specify the maps generic business object so that the
test run can locate the generic key value in the relationship.

You specify this information in the Source Testing Data pane of the Test tab.

Tip: If the width of the Source Testing Data pane is not enough to let you see the
complete menu options of the Calling Context combo box, you can expand the size
of this area by putting the cursor over the right-hand boundary until you see the
following symbol <-| |-> and drag the boundary to the right.

If you are testing Relationships, select the appropriate generic object from the list
of business objects, select Calling Context, and set the ObjectEventIds for the
parent and child objects that match the ones you already set in the Test Data
screen. The calling context you need to provide and whether you need to specify a
generic business object depend on the type of relationship you are testing. This
section provides information on the following:

* |“Testing an identity relationship”]

« |"Testing a lookup relationship” on page 83|

Testing an identity relationship

To test point-to-point mapping (from Application 1 to Application 2) for an identity
relationship you use three maps:

* An inbound map from Application 1’s application-specific business object to a
generic business object—Appl_to_Generic

* An outbound map from the generic business object to Application 2’s
application-specific business object—Generic_to_App2

* An inbound map from Application 2’s application-specific business object to the
generic business object—App2_to_Generic

shows an example of a point-to-point communication of customer data
between a Clarify application and an SAP application. If each application uses a

80 Map Development Guide

unique key value to identify customers, these three business objects can be related
with an identity relationship. Therefore, each map includes a cross-reference
transformation rule. As each of these maps executes, these relationship methods
access the calling context to determine the actions to take.

Inbound Map Outbound Map
Clarify_Site Customer
to to
Customer SAP_Customer

EVENT_DELIVERY
or

ACCESS_REQUEST SERVICE_CALL_REQUEST
Clarify_Site Customer SAP_Customer
Application-Specific Generic Application-Specific
Business Object Business Business Object

Object SERVICE_CALL_RESPONS

SAP_Customer
to
Generic

Inbound Map

Figure 39. Maps involved in point-to-point testing of an identity relationship

To test the Create verb, you need to verify that a new application-specific key
value in Application 1 (Clarify application in causes a new generic key
value to be added for the generic business object and a new application-specific
key value in Application 2 (SAP application in . Therefore, testing
involves three steps:

1. Test the inbound map, Appl_to_Generic, to send in a new key value from
Application 1 and ensure that a new _key value is generated for the generic
business object. Follow the steps in

Table 17. Testing the App1-to-Generic map for an identity relationship

To set up test run To verify test run

1. Set the calling context to EVENT DELIVERY 4 Read the resulting generic key value in the
or ACCESS_REQUEST by choosing the destination business object, which has been
appropriate calling context from the added to the relationship table for the
Calling Context combo box. Appl/Generic identity relationship. 5. Save

the destination business object data in a .bo
file (e.g. Appl_to_Generic.bo) by selecting the
destination business object and choosing
Save To from the Context menu.

2. Enter the application-specific value in the
key of the source business object. This
value is unique for the key attribute(s) in
the Applicationl application.

3. Run the test.

Chapter 4. Compiling and testing maps 81

2.

Test the outbound map, Generic_to_App2, to ensure that the new generic key
value is sent to Application 2.

To test an identify relationship in the outbound Generic_to_App2 map, you
must provide the generic key value in your source Test Data. You might want
to do either of the following, but they are both wrong:

* Put an arbitrary number into the generic business object’s primary key
attribute, then run the map.

* Create the record directly in the relationship table.

In both cases, Map Designer Express generates the
RelationshipRuntimeException or NulTPointerException. The error occurs
because the generic key value has to be in the system for the
SERVICE_CALL_REQUEST to work properly, and the relationship table is not the
only place the generic key value is stored.

The correct solution is to first run an inbound EVENT_DELIVERY (or
ACCESS_REQUEST) map that uses the same identity relationship (as described in
step . Follow the steps in [Table 18| to test the outbound Generic_to_App2 map.

Table 18. Testing the generic-to-app2 map for an identity relationship

To set up test run To verify test run

1.

Set the calling context to 4. Read the resulting application-specific key
SERVICE_CALL_REQUEST by choosing this value in the destination business object,
calling context from the Calling Context which is empty because Application 2 has
combo box. not generated its key value yet. 5. Save the
destination business object data in a .bo file
(e.g. Generic_to_App2.bo) by selecting the
destination business object and choosing
Save To from the Context menu.

Load the generic business object with the
test results from the previous step (e.g.
Appl_to_Generic.bo).

Run the test.

82 Map Development Guide

Test the inbound map, app2_to_generic, to verify that the new key value from
Application 2 is associated with the new generic key value.

When the calling context is SERVICE_CALL_RESPONSE, an identity relationship
must cross-reference the ID in the application-specific business object to the ID

in the generic business object. Therefore, for this test, you must specify the
generic business object definition. Follow the steps in [Table 19

Table 19. Testing the App2_to_Generic map for an identity relationship

To set up test run

1. Set the calling context to
SERVICE_CALL_RESPONSE by choosing this
calling context from the Calling Context
combo box.

2. Set the generic business object by
choosing the name of the appropriate
generic business object from the Generic
Business Object combo box. Map
Designer Express adds the specified

To verify test run

7. Read the resulting generic key value in the
destination business object, which should be
the same value you entered in the generic
source business object. 8. You can use
Relationship Manager to verify that the
correct application-specific key values are
associated with this generic key value for
this identity relationship. For more
information on Relationship Manager, see the
User Guide for WebSphere Business Integration

generic business object to the Source

Express for Item Synchronization.
Testing Data pane. press f 4

3. Load the application-specific business
object with the test results from the
previous step (e.g. Generic_to_App2.bo).

4. In the application-specific business object,
enter an application-specific value in the
key of the business object.

5. In the generic business object, enter the
generic key value associated with the
Applicationl key. This value should be
the same key value generated for the
generic business object in the
EVENT_DELIVERY/ACCESS_REQUEST test (step

.

6. Run the test.

Testing for other verbs involves similar steps. For more detailed information on the
actions of relationship methods for an identity relationship, see
[“Implementing relationships,” on page 187

Testing a lookup relationship

To test point-to-point mapping (from Application 1 to Application 2) for a lookup
relationship you use two maps:

* From Application 1’s application-specific business object to a generic business
object—Appl_to_Generic

¢ From the generic business object to Application 2’s application-specific business
object—Generic_to_App2

shows an example of a point-to-point communication of customer data
between a Clarify application and an SAP application. If each application uses a
special static code to identify geographic states, these three business objects can be
related with a lookup relationship. Therefore, each map includes custom
transformations that do static lookups. For more information, see the "Static
Lookup” activity example in [“Example 3 of using the Activity Editor” on page 133
As each of these maps executes, these relationship methods access the calling
context to determine the actions to take.

Chapter 4. Compiling and testing maps 83

Inbound Map Outbound Map

Clarify_Site Customer
to to
Customer SAP_Customer

Clarify_Site

EVENT_DELIVERY
or
ACCESS_REQUEST SERVICE_CALL_REQUEST
Customer SAP_Customer

Application-Specific Generic Application-Specific
Business Object Business Object Business Object

Figure 40. Maps involved in point-to-point testing of a lookup relationship

To test the Create verb, you need to verify that an existini aiilication—specific

lookup value in Application 1 (Clarify application in [Figure 40) causes the
associated generic lookup value to be added to the generic business object and the
associated application-specific lookup value in Application 2 (SAP application in

to be added to its business object. Therefore, testing involves two steps:
1. Test the inbound map, Appl_to_Generic, to send in an existing lookup value

from Applicationl and ensure that the associated generic lookup value is
obtained for the generic business object. Follow the steps in [Table 20

Table 20. Testing the App1-to-Generic map for a lookup relationship

To set up test run

1. Set the calling context to EVENT_DELIVERY
or ACCESS_REQUEST by choosing the
appropriate calling context from the
Calling Context combo box.

2. Enter the application-specific value in the
lookup field of the source business object.
This value is an existing lookup value
whose data is already loaded in the
Appl/Generic relationship table.

3. Run the test.

To verify test run

4. Read the resulting generic lookup value in
the destination business object, which has
been obtained to the relationship table for
the Appl/Generic lookup relationship. 5. Save
the business object data in a .bo file (e.g.
Appl_to_Generic.bo) by highlighting the
destination business object and choosing
Save To from the Context menu.

2. Test the outbound map, Generic_to_App2, to send in the generic lookup value
and ensure that the associated lookup value is obtained for Application 2.

Follow the steps in|Table 21},

Table 21. Testing the Generic-to-App2 Map for a lookup relationship

To set up test run

1. Set the calling context to
SERVICE_CALL_REQUEST by Choosing this
calling context from the Calling Context
combo box.

2. Load the generic business object with the
test results from the previous step (e.g.
Appl_to_Generic.bo).

3. Run the test.

To verify test run

4. Read the resulting application-specific key
value in the destination business object,
which contains the Application 2 lookup
value. 5. Save the business object data in a
.bo file (e.g. Generic_to_App2.bo) by
highlighting the destination business object
and choosing Save To from the Context
menu.

84 Map Development Guide

Note: A lookup relationship can be tested for the SERVICE_CALL_RESPONSE calling
context. However, this case usually only is required if the map is doing
something else that requires the lookup data. The relationship methods for a
lookup relationship in the Mapping API never write data to a relationship
table.

Debugging maps

This section provides the following information about debugging a map:

* |"Resolving run-time errors”]|

* [“Debugging tips’]

For information on how to test relationships, see |“Testing maps that containl
Irelationships” on page 80|

Resolving run-time errors

Even if your map compiled successfully, you can get a run-time error during the
map execution in the Debugger.

Example: You have an outbound map with the generic business object on one side
and an application specific business object on the other side. Let us assume that
this map has an identity relationship in it.

1. Go to the Test tab and select the calling context SERVICE_CALL_REQUEST.
2. Select the verb "Update.”
3. Run the test.
Result: An error message like the one below displays:
Exception at step 17, attribute <attribute name>,java.lang.nullpointerexception

This exception is happening because the map is trying to update an entry in the
repository that is not created in the first place. Ideally, you should ensure that the
sequence of steps is correct. You should look at the database for relationship
entries pertaining to the map in question. You should then draw the conclusions
based on whether it is ready for SERVICE_CALL_REQUEST or not.

Debugging tips

This section provides the following tips for making the debugging of a map easier:

* |"Using logging messages”|

* |"Writing safe mapping code” on page 86|

Using logging messages

Use the TogInfo() method for tracking the map execution. It takes a String as an
argument, which is sent on the InterChange Server Express log. You need to type it
in Activity Editor for the attribute whose execution needs to be tracked. To make
sure that the submap is executed, create a custom transformation rule and use the
"Log Information” function block to customize the activity.

You might not always want to see this message. If this is the case, change the
DataValidationLevel property of the map.

To set the DataValidationLevel, select the Map Properties option from the Edit

menu of Map Designer Express and change 0 to 1 or a greater number. The
settings are as follows:

Chapter 4. Compiling and testing maps 85

0 No data validation

1 IBM data validation level
2 or greater User-defined data validation

Writing safe mapping code

If you customize your transformation rule in Activity Editor, you are not
guaranteed that it will work properly during run time. To make sure that the map
continues executing when an error occurs and you get a notification of an error,
use the "Catch Error” function block in Activity Editor and handle the error
appropriately.

86 Map Development Guide

Chapter 5. Customizing a map

This chapter provides information to use for customizing maps.

This chapter covers the following topics:

» |“Customizing transformation steps” on page 87]

* [“Importing Java packages to Interchange Server Express” on page 136|

* |“Using variables” on page 140

* |“Reusing map instances” on page 144|

* [“Handling exceptions” on page 144

. "’Creating custom data validation levels” on page 146|

* |"Understanding map execution contexts” on page 146|

Customizing transformation steps

Map Designer Express provides two ways to generate Java code:
* Using the Activity Editor
* Defining transformation rules using standard transformations

Using the Activity Editor

Using the Activity Editor, you can specify the flow of activities for a specific
transformation rule graphically, without knowing programming or Java code. For
each transformation rule in Map Designer Express, you can display one activity
and its subactivities. You can view the associated attribute’s transformation code
graphically, modify it, and have the tool generate the corresponding Java code.

You launch the Activity Editor directly from Map Designer Express (see
fthe Activity Editor” on page 87). At startup, the Activity Editor communicates with
System Manager to discover the set of activities allowed. After you have finished
designing the activity for a particular transformation rule, you save the changes in
the Activity Editor, and they are communicated to Map Designer Express.

This section contains the following topics on the Activity Editor:

« |“Starting the Activity Editor” on page 87

« |"Layout of the Activity Editor” on page 88

* [“Using the Activity Editor functionality” on page 88|

* |“Working in Graphical view” on page 91

+ [“Identifying supported function blocks” on page 95|

* |“Example 1 of using the Activity Editor” on page 122

* [“Example 2 of using the Activity Editor” on page 126

* [“Working in Java view” on page 135

Starting the Activity Editor

You launch the Activity Editor through the transformation rule column of the Table
or Diagram tabs of Map Designer Express. There are two ways to access
information in this transformation rule column:

* Double-click the attribute’s corresponding cell of the transformation rule column.

© Copyright IBM Corp. 2003 87

* Click the bitmap icon in the corresponding cell of the transformation rule
column.

Transformation code is generated from one of the standard transformations that

Map Designer Express provides on the combo box of the transformation rule

column. When you double-click the attribute’s transformation rule cell or click the

mapping rule icon, the type of transformation determines what Map Designer

Express displays:

* For the Custom transformation, Map Designer Express brings up the Activity
Editor on the transformation code.

 For all other standard transformations (Join, Set Value, Split, and Submap,
Cross-Reference), Map Designer Express displays the transformation’s dialog.
Click the View Code... button on this dialog to bring up the Activity Editor.

The Activity Editor appears with the attribute name in the title bar. You can open
multiple instances of the Activity Editor at the same time.

Layout of the Activity Editor

The Activity Editor has two main views: Graphical view and Java view. Depending
on the nature of the activity, at any given time, only one view is visible. Thus, if
Map Designer Express invokes the Activity Editor to display a graphical activity,
the Activity Editor will startup with the Graphical view. If you choose to translate
this graphical activity into Java code, the Java view will display in place of the
Graphical view.

[Figure 44 on page 92| and [Figure 68 on page 136 show the layout of the Graphical
and Java views, respectively, of the Activity Editor.

Both views have common Window elements, as described in|Table 22}.

Table 22. Common Window elements

Window element Description

Title Bar Contains the name of the application
(Activity Editor), application icon, and the
main activity’s name.

Menu Contains the primary menus.

Tool Bar Contains dockable toolbars with shortcuts to
various functions and tools.

Document Display Area Displays the representation of the activity
definition. It is organized with a workbook
look.

Status Bar Displays status information and some handy
shortcuts.

Using the Activity Editor functionality

You can access the Activity Editor’s functionality using any of the following:
* The pull-down menus at the top of the window

* The Context menu

* Keyboard shortcuts

* The icons in the toolbars

Main menus and keyboard shortcuts: The Activity Editor provides the following
pull-down menus:

¢ File menu

88 Map Development Guide

Edit menu
View menu
Tools menu

Help menu

The following sections describe the options of each of these menus and their
associated keyboard shortcuts.

Functions of the File menu: The File pull-down menu of the Activity Editor
provides the following options:

Save [Ctrl+S]--Saves the activity to Map Designer Express.

Print Setup... [Ctrl+Shift+P]--Brings up the Print Setup dialog box for changing
the printer and printing options.

Print Preview--Switches the editor to print preview mode.
Print... [Ctrl+P]--Brings up the Print dialog box for printing the current activity.
Close --Closes the Activity Editor.

Functions of the Edit menu: The Edit pull-down menu of the Activity Editor
provides the following options:

Cut [Ctrl+X]--Deletes the selected item and copies it to the clipboard.
Copy [Ctrl+C]--Copies the selected item to the clipboard.

Paste [Ctrl+P]--Pastes the object in the clipboard to the cursor position if they are
compatible.

Delete [Del]--Deletes the selected item.

Select All [Ctrl+A]--Selects all items.

Find... [Crtl+F]--Finds the specific text in the editing area.
Goto Line... [Ctrl+G]--Goes to a specific line.

Functions of the View menu: The View pull-down menu of the Activity Editor
provides the following options:

Design mode--Toggles between Design mode and Quick view mode. (Only one
mode is enabled at a single time.)

Quick view mode--Toggles between Quick view mode and Design mode. (Only
one mode is enabled at a single time.)

Go To--A submenu that provides the following options:

— Back [Alt+Left Arrow]--Goes backward in the navigation history in Graphical
view.

— Forward [Alt+Right Arrow]--Goes forward in the navigation history in
Graphical view.

— Up One Level--Shows the diagram at one level up.

— Home [Alt+Home]--Goes to the top-level diagram in Graphical view.
Zoom In [Ctrl++]--Magnifies content in the editor.

Zoom Out [Ctrl+-]--Shrinks content in the editor.

Zoom To... [Crtl+M]--Displays the Zoom dialog box for a zoom factor.
Library window--Toggles the Library window on and off.

Content window--Toggles the Content window on and off.

Properties window--Toggles the Properties window on and off.

Toolbars--A submenu that provides toolbars (Standard, Graphics, and Java) that
toggle on and off.

Chapter 5. Customizing a map 89

 Status Bar--Toggles the status bar on and off.

* Preferences... {Ctrl+U]--Opens the Preferences dialog box for changing the
default behavior of the editor.

Functions of the Tools menu: The Tools pull-down menu of the Activity Editor
provides the following option:

¢ Translate [Ctrl+T]--Translates the current activity to Java code and brings up the
Java view.

Functions of the Help menu: The Help pull-down menu of the Activity Editor
provides the following options:

* Help Topics [F1]--Opens the context-sensitive Help topics

* Documentation—-Opens the IBM WebSphere InterChange Server Express
documentation.

Context menu: The Context menu provides options for performing many tasks on
the editing canvas. To access the Context menu, right-click the editing canvas. The
Context menu provides the following options:

* New Constant--Creates a new Constant container on the canvas.

e Add Label--Creates a new label component on the canvas.

* Add Description--Creates a new description component on the canvas.

* Add Comment--Creates a new comment component on the canvas.

* Add To do--Creates a new component for entering some reminder in the activity.
* Add To My Collection--Creates a new group in the Library window for reuse.

Toolbar elements: The toolbars provide direct access to various features and
functions of the Activity Editor. The functions of the toolbar buttons are the same
as their corresponding menu items.

The Activity Editor supports two toolbars:
* Standard toolbar
* Graphics toolbar

Tip: To identify the function of each toolbar button, roll over each button with
your mouse cursor.

Standard toolbar: shows the Standard toolbar.

[CIEIER=

s|‘?|

Figure 41. Activity Editor Standard toolbar

provides the function of each Standard toolbar button (left to right) and

the corresponding menu command.

Table 23. Functions of Standard toolbar buttons

Function Corresponding menu command
Save Activity File-->Save

Print Activity File-->Print...

Cut Edit->Cut

Copy Edit-->Copy

90 Map Development Guide

Table 23. Functions of Standard toolbar buttons (continued)

Function Corresponding menu command
Paste Edit-->Paste

Delete Edit-->Delete

Help Help-->Help Topics

Graphics toolbar: shows the Graphics toolbar.

[e= & ajasa

Figure 42. Activity Editor Graphics toolbar

provides the function of each Graphics toolbar button (left to right) and
the corresponding menu command.

Table 24. Functions of Graphics toolbar buttons

Function Corresponding menu command
Back View-->Go To-->Back

Forward View-->Go To-->Forward

Up One Level View-->Go To-->Up One Level
Home View-->Go To-->Home

Zoom In View-->Zoom In

Zoom Out View-->Zoom Out

Status bar elements: The Activity Editor also provides a Status bar, as shown in

Zoom: 100% Ready 28 %3 L

Figure 43. Activity Editor Status bar

describes the functionality of each Status bar element, left to right.

Table 25. Functions of Status bar elements

Element Function

Zoom: 100% Edit box for specifying a zooming percentage

Ready Status message

10.9 Navigation pane showing the current
position of the I-bar in the Java editor

>> (Shown in Quick view mode) Toggle between Design mode and quick view
mode

<< (Shown in Design mode)

Working in Graphical view

If Map Designer Express opens the Activity Editor with an activity definition that
has a graphical nature, the Activity Editor will display the activity definition in
graphical view in one of two available display modes: Design mode or Quick view
mode.

Chapter 5. Customizing a map 91

* Design mode: In Design mode, the Activity Editor resembles a regular
application--in addition to the editing area, it contains a menu bar, toolbars, and
other control bars that support your editing needs during the design stage of the
activity definition.
shows the Graphical view in Design mode.

@220 ||=+t|a]aa

-
= o Geressl -p-y -\..v-.ﬂ:—.-e-p wlling 3

3) 3 Vessbler =
3103 Spten 1] |

OuiClanfy_Contact Lasthame
Upper Case

o} 01 M
2 ot JE

ObgContact LastName

-

1| 1+ Graphical Iﬂl
— — ; o
5[retbad Tottegh Tt TmAgh fmTer o | X L CtfcerbctLaethirn
Igreom Cas Descistinn

¥

% ;

=] &

Il | veper Case = |O

o L00% Resdy «

Figure 44. Graphical view in Design mode

This view contains a main activity editing area (the activity workbook window)
and three supporting windows, as follows:

— Library window---A dockable control bar containing a tree view of the

available function blocks, and optionally, the named groups. The function
blocks are arranged in folders according to their purpose, and you can
expand them to show the actual function blocks. You can view the function
blocks in the Library window under their corresponding folder, or as icons in
the Content window.

Additionally, the Library window contains folders for adding system elements
to the graphical canvas (System folder), for customizing the library (Library
folder), for grouping components (My Collection folder), and for listing global
variables accessible to the current activity--typically, the source and
destination business object, and the global variable cwExecCtx (Variables
folder).

Content window--A dockable control bar containing a large icon list of the
available function blocks under the currently selected folder in the Library
window. You can select a function block to view its description and properties
in the Properties window, or drag-and-drop a function block onto the editing
canvas to create part of the activity flow.

Properties window--A dockable control bar containing the properties of the
selected component in a gridlike layout. Different components may have
different properties. Your interaction with the grid depends on the nature of
the individual property. Some properties may be editable; some may be
read-only, while some properties may present a drop-down combo-box for
your selection. In each case, the Properties window presents the property
with appropriate actions.

* Quick view mode: In Quick view mode, the Activity Editor resembles a control
bar--with only the editing area displayed; all other supporting windows, the
menu bar, and the toolbars are hidden.

92 Map Development Guide

shows the Graphical view in Quick view mode.

Activity Editor |

[<> W framSting s T s 10String :I

ObjClarify_Contact.LastName
! - Upper Case

< |4

ObjContact.LastName

| | Q|
| Graphical IJa\ta I

Zoam: 100%. Ready » 4

Figure 45. Graphical view in Quick view mode

Initially, when an activity definition that has a graphical nature opens, the Activity
Editor displays the top-level view of the definition in a tabbed window. Inside the
tab window is the editing canvas, which is also known as the activity canvas or
graphical canvas.

Working with activity definitions: You define and modify activity definitions on
the editing canvas using the canvas components. The following list identifies the
canvas components and briefly describes how to use them to define and modify
activity definitions. For detailed steps for defining and modifying activity
definitions, see [“Example 1 of using the Activity Editor” on page 122} [“Example 2|
of using the Activity Editor” on page 126} and [‘Example 3 of using the Activity|
Editor” on page 133|

* Function blocks--define the behavior of an activity. You drag and drop them from
the Library window or Content window onto the editing canvas. Each function
block has a set of predefined inputs and outputs.

Result: The Activity Editor displays a little icon for each of the input and output
going into or coming out of the block. These ports serve as connecting points for
linking between the function block and other components. Outgoing ports can
connect to multiple connection links, but incoming ports can only connect to one
connection link. The name of the input and output displays beside the
connection ports. You can choose to show or hide these port names using the
option in the Preference dialog.

For a list of supported functional blocks, organized in tables according to
category, see [“Identifying supported function blocks” on page 95|

Note: In addition to the standard function blocks that Activity Editor provides,
you can import your own Java library for use as function blocks in
Activity Editor. Importing custom Jar libraries into activity settings will
enable any public methods in the Jar library to be used as function blocks
in Activity Editor. For more information, see|“Importing Java packages to|
[[nterchange Server Express” on page 136.|

* Connection links--define the flow of activity between various components in the
canvas.

Example: To specify that the output of function block A should go to the input
of function block B, click and hold down the left mouse button on the outgoing

Chapter 5. Customizing a map 93

port of function block A, and while continuing to hold down the left mouse
button, move the cursor onto the incoming port of function block B, and release
the left mouse button. This will create a connection link from function block A’s
out-port to function block B’s in-port. If function block B’s in-port is already
connected with another connection link, the newer connection link will replace
the existing connection link. Graphically, the connection link will appear as a
right-angled line between components.

* Label, Description, Comment, and To Do tags--identify each activity or subactivity
or serve as some reminder in the activity:

— To start editing them, single click around the center.
Result: The cursor will change to an I-beam.

Type the text. All the editing components will wrap the line if the line is
longer than the display area. If you want to start a new line, press Enter.

— To resize the text input field, hold down the left mouse button in the lower
right-hand corner of the tag.

Result: The cursor will change to the resize cursor.
Move the cursor to resize the editing pad.

Restriction: Each of these editing components has a minimize size, so the
components cannot be resized to be smaller than a certain size.

shows resizing a label tag and entering multiple lines of text.
Label
line 1

line 2
=

F

Figure 46. Resizing a label and entering multiple lines of text

— To move the tag around the canvas, click the edge of the component to
drag-and-drop it.

* New Constant icon--defines a constant value that you set and use as input to
function blocks or ports. When you drag-and-drop the New Constant icon from
the Library window or Content window onto the editing canvas, the Activity
Editor displays a Constant icon as the container for the constant value. A text
edit box displays on top of the icon for you to enter the value of the Constant.
To revise this value, double-click the Constant icon and enter the new value.
Constants contain one outgoing port.

Note: The Constant is the only editing component that accepts only a single
line. This is because the constant will be translated to a Java code string,
and the system does not know how to translate multi-line constant input
to a Java code string. If multi-line input is required, use the "\n" value to
separate between lines in the Constant.

Example: The value "linel\nline2” will tell the system to output the text
in two lines.

Grouping components: Once you have dragged-and-dropped components onto

the canvas to define the desired activity flow, you can select and save the whole or
part of this activity flow as a named group. Then later on, you can reuse this

94 Map Development Guide

named group in another activity definition just like a regular function block. The
following procedure describes the steps to take.

Before you begin: You need to enable "Show child functions in Library window”

in the Preference dialog to display the added group.

Perform the following steps:

1.
2.

Select one or more graphical components in the canvas.

Right-click the canvas to open the Context menu and select Add to My
Collection.

In the dialog that pops up, enter a name, a description, and select an icon to
represent this group.

Result: The added group will appear in the Library window under My
Collection.

Identifying supported function blocks
The supported function blocks are organized into the following categories:

General/APIs/Business Object Array
General/ APIs/Business Object/Array
General/APIs/Business Object/Constants
General/APIs/Business Object
General/APIs/Database Connection
General/APIs/Identity Relationship
General/APIs/Maps/Constants

General/ APIs/Maps/Exception
General/APIs/Maps
General/APIs/Participant/Array
General/ APls/Participant/Constants
General/APIs/Participant
General/APIs/Relationship

General/Date

General/Date/Formats

General/Logging and Tracing
General/Logging and Tracing/Log Error
General/Logging and Tracing/Log Information
General/Logging and Tracing/Log Warning
General/Logging and Tracing/Trace
General/Mapping

General/Math

General/Properties

General/Relationship

General/String

General/ Utilities

General/Utilities / Vector

The following tables identify the function blocks in each category and the
acceptable values for their inputs and outputs.

Chapter 5. Customizing a map

95

Table 26. General/APIs/Business Object Array

Name

Description

Inputs and outputs with acceptable values

Add Element

Adds a business object to this business object

API: BusObjArray.addElement()

Inputs:
* business object array--BusObjArray
* element--BusObj

object array 2’s values, to determine whether
they are equal.

API: BusObjArray.equals()

Duplicate Creates a business object array exactly like the |Inputs: original--BusObjArray
original one.
Outputs: duplicate--BusObjArray
API: BusObjArray.duplicate()
Equals Compares business object array 1’s and business | Inputs:

* array 1--BusObjArray
* array 2--BusObjArray

Outputs: equal?-- boolean

Get Element At

Retrieves a single business object by specifying
its position in the business object array.

API: BusObjArray.elementAt()

Inputs:
* business object array--BusObjArray

¢ index--int

Outputs: element--BusObj

Get Elements

Retrieves the contents of this business object
array.

API: BusObjArray.getElements()

Inputs: business object array--BusObjArray

Outputs: element--BusODbjl[]

Get Last Index

Retrieves the last available index from a
business object array.

API: BusObjArray.getLast Index()

Inputs: business object array--BusObjArray

Outputs: last index--int

Is Business Object
Array

Tests whether value is a business objet array
(BusObjArray).

Inputs: value--Object

Outputs: result--boolean

Max attribute value

Retrieves the maximum values for the specified
attribute among all elements in this business
object array.

API: BusObjArray.max()

Inputs:
* business object array--BusObjArray

* attribute--String

Outputs: max--String

Min attribute value

Retrieves the minimum value for the specified
attribute among all elements in this business
object array.

API: BusObjArray.min()

Inputs:
* business object array--BusObjArray

* attribute--String

Outputs: min--String

Remove All
elements

Removes all elements fro the business object
array.

API: BusObjArray.removeAllElements()

Inputs: business object array--BusObjArray

Remove Element

Removes a business object element from a
business object array.

API: BusObjArray.removeElement()

Inputs:
* business object array--BusObjArray

* element--BusObj

Remove Element At

Removes an element at a particular position in
this business object array.

API: BusObjArray.removeElementAt()

Inputs:
* business object array--BusObjArray

¢ index--int

96 Map Development Guide

Table 26. General/APIs/Business Object Array (continued)

Name

Description

Inputs and outputs with acceptable values

Set Element At

Sets the value of a business object in the
business object array.

API: BusObjArray.setElementAt()

Inputs:
* business object array--BusObjArray
* index--int

* element--BusObj

Size Gets the number of elements i this business Inputs: business object array--BusObjArray
object array.
Outputs: size--int
API: BusObjArray.size()
Sum Adds the values of the specified attribute for all | Inputs:
business objects in this business object array. * business object array--BusObjArray
API: BusObjArray.sum() * attribute--String
Outputs: sum--double
Swap Reverses the positions of two business objects | Inputs:
in this business object array. * business object array--BusObjArray
APIL: BusObjArray.swap() * index 1--int
* index 2--int
To String Retrieves the values in this business object array | Inputs: business object array--BusObjArray

as a single string.

API: BusObjArray.to String|()

Outputs: string--String

Table 27. General/APls/Business Object/Array

Name

Description

Inputs and outputs with acceptable values

Get BusObj At

Retrieves the element at the specified index in
the business object array.

Inputs:
* array--BusObj[]

¢ index--int

Outputs: business object--BusObj

New Business
Object Array

Creates a new business object array.

Inputs: size--int

Outputs: array--BusObj[]

Set BusObj At

Sets the element at the specified index in the
business object array.

Inputs:
* array--BusObj[]
* index--int

* business object--BusObj

Size

Retrieves the size of the business object array

Inputs: array--BusObj[]

Outputs: size--int

Table 28. General/APIs/Business Object/Constants

Name

Description

Inputs and outputs with acceptable values

Verb: Create

Business object verb "Create”.

Outputs: Create--String

Verb: Delete

Business object verb "Delete”.

Outputs: Delete--String

Verb: Retrieve

Business object verb "Retrieve”.

Outputs: Retrieve--String

Verb: Update

Business object verb "Update”.

Outputs: Update--String

Chapter 5. Customizing a map 97

Table 29. General/APIs/Business Object

attribute with a specified name.

API: BusObj.exists()

Name Description Inputs and outputs with acceptable values
Copy Copies all attribute values from the input Inputs:
business object. « copy to--BusObj
APIL: BusObj.copy() * copy from--BusObj
Duplicate Creates a business object exactly like the Inputs:original--BusObj
original one.
Outputs: duplicate--BusObj
API: BusObj.duplicate()
Equal Keys Compares business object 1’s and business Inputs:
object 2’s values, to determine whether they are |. }siness object 1--BusObj
equal. * business object 2--BusObj
APL: BusObj.equalKeys() Outputs: key values equal?-- boolean
Equals Compares business object 1’s and business Inputs:
object 2’s values, including child business « business object 1--BusObj
objects, to determine whether they are equal. . . .
* business object 2--BusObj
APL: BusObj.equals() Outputs: equal?-- boolean
Exists Checks for the existence of a business object Inputs:

* business object--BusObj

* attribute--String

Outputs: exists?-- boolean

Get Boolean

Retrieves the value of a single attribute, as a
boolean, from a business object.

API: BusObj.getBoolean()

Inputs:
* business object--BusObj

* attribute--String

Outputs: value-- boolean

Get Business Object

Retrieves the value of a single attribute, as a
BusObj, from a business object.

API: BusObj.getBusODbj()

Inputs:
* business object--BusObj
* attribute--String

Outputs: value--BusOb;j

Get Business Object
Array

Retrieves the value of a single attribute, as a
BusObj Array, from a business object.

API: BusObj.getBusObjArray()

Inputs:
* business object--BusObj
* attribute--String

Outputs: value--BusObjArray

Get Business Object
Type

Retrieves the name of the business object
definition on which this business object was
based.

API: BusObj.getType()

Inputs: business object--BusObj

Outputs: type--String

Get Double

Retrieves the value of a single attribute, as a
double, from a business object.

API: BusObj.getDouble()

Inputs:
* business object--BusObj
* attribute--String

Outputs: value--double

98 Map Development Guide

Table 29. General/APIs/Business Object (continued)

Name Description Inputs and outputs with acceptable values
Get Float Retrieves the value of a single attribute, as a Inputs:
float, from a business object. « business object--BusObj
API: BusObj.getFloat() * attribute--String
Outputs: value--float
Get Int Retrieves the value of a single attribute, as an | Inputs:
integer, from a business object. + business object--BusObj
API: BusObj.getInt() * attribute--String
Outputs: value--int
Get Long Retrieves the value of a single attribute, as a Inputs:

long, from a business object.

API: BusObj.getLong()

* business object--BusObj
* attribute--String

Outputs: value--long

Get Long Text

Retrieves the value of a single attribute, as a
long text, from a business object.

API: BusObj.getLongText()

Inputs:
* business object--BusObj
* attribute--String

Outputs: value--String

Get Object Retrieves the value of a single attribute, as an | Inputs:
object, from a business object. + business object--BusObj
APIL: BusObj.get() * attribute--String
Outputs: value--Object
Get String Retrieves the value of a single attribute, as a Inputs:
string, from a business object. « business object--BusObj
API: BusObj.getString() * attribute--String
Outputs: value--String
Get Verb Retrieves this business object’s verb. Inputs: business object--BusObj
API: BusObj.getVerb() Outputs: verb--String
Is Blank Finds out whether the value of an attribute is Inputs:

set to a zero-length string.

API: BusObj.isBlank()

* business object--BusObj
* attribute--String

Outputs: blank?--boolean

Is Business Object

Tests whether the value is a business object
(BusObj).

Inputs: value--Object

Outputs: result--boolean

Is Key

Finds out whether a business object’s attribute
is defined as a key attribute.

APT: BusObj.isKey()

Inputs:
* business object--BusObj

* attribute--String

Outputs: key?--boolean

Chapter 5. Customizing a map 99

Table 29. General/APIs/Business Object (continued)

Name

Description

Inputs and outputs with acceptable values

Is Null

Finds out whether the value of a business
object’s attribute is null.

API: BusObj.isNull()

Inputs:
* business object--BusObj
* attribute--String

Outputs: null?--boolean

Is Required

Finds out whether a business object’s attribute
is defined as a required attribute..

API: BusObj.isRequired()

Inputs:
* business object--BusObj
* attribute--String

Outputs: required?--boolean

Iterate Children

Iterates through the child business object array.

Inputs:

* business object--BusObj
* attribute--String

e current index--int

* current element--BusObj

Key to String

Retrieves the values of a business object’s
primary key attributes as a string.

API: BusObj.keysToString()

Inputs:business object--BusObj

Outputs: key string--String

New Business
Object

Creates a new business object instance (BusObj)
of the specified type.

API: Collaboration.BusODbj()

Inputs: type--String

Outputs: business object--BusObj

Set Content

Sets the contents of this business object to
another business object. The two business
objects will own the content together. Changes
made to one business object will be reflected in
the other business object.

API: BusObj.setContent()

Inputs:
* business object--BusObj
* content--BusObj

Set Default
Attribute Values

Sets all attributes to their default values.

API: BusObj.setDefaultAttrValues()

Inputs:business object--BusObj

Set Keys

Sets the values of the "to” business object’s key
attributes to the values of the key attributes in
"from” business object.

API: BusObj.setKeys()

Inputs:
* from business object--BusObj

* to business object--BusObj

Set Value with
Create

Sets the business object’s attribute to a specified
value of a particular data type, creating an
object for the value if one does not already
exist.

API: BusObj.setWithCreate()

Inputs:
* business object--BusObj

* attribute--String

* value--BusObj, BusObjArray, Object

Set Verb

Sets the verb of a business object.

API: BusObj.setVerb()

Inputs:
* business object--BusObj

* verb--String

Set Verb with
Create

Sets the verb of a child business object, creating
the child business object if one does not already
exist.

API: BusObj.setVerbWithCreate()

Inputs:

* business object--BusObj
* attribute--String

* verb--String

100 Map Development Guide

Table 29. General/APIs/Business Object (continued)

Name Description Inputs and outputs with acceptable values
Set Value Sets a business object’s attribute to a specified | Inputs:

value of a particular data type. « business object--BusObj

API: BusObj.set() * attribute--String

* value--boolean, double, float, int, long,
Object, String, BusObj

Shallow Equals Compares business object 1 and business object |Inputs:
2’s values, excluding child business objects, to

* business object 1--BusObj
determine whether they are equal.

* business object 2--BusObj

API: BusObj.equalsShallow() Outputs: equal?—boolean

To String Gets the values of all attributes in a business Inputs: business object--BusObj
object as string.
Outputs: string--String
API: BusObj.toString()

Valid Data Checks whether the specified value is a valid Inputs:
type for a specified attribute. + business object--BusObj
API: BusObj.validData() ¢ attribute--String

* value--Object, BusObj, BusObjArray,
String, long, int, double, float, boolean

Outputs: valid?--boolean

Table 30. General/APIs/Database connection

Name Description Inputs and outputs with acceptable values
Begin Transaction | Begins an explicit transaction for the current Inputs: database connection--
connection. CwDBConnection

API: CwDBConnection.beginTransaction()

Commit Commits the active transaction associated with |Inputs: database connection--
the current connection. CwDBConnection

APIL: CwDBConnection.commit()

Execute Prepared Executes a prepared SQL Query by specifying |Inputs:
SQL its syntax. + database connection--CwDBConnection

API: CwDBConnection.executePreparedSQL() * query--String

Outputs: equal?-- boolean

Execute Prepared Executes a prepared SQL query by specifying Inputs:
SQL with Parameter |its syntax with the specified parameters. « database connection--CwDBConnection

APL:CwDBConnection.executePreparedSQL() * query--String
* parameters--java.util.Vector

Execute SQL Executes a static SQL query by specifying its Inputs:

syntax. e database connection--CwDBConnection

APIL: CwDBConnection.executeSQL() * query--String

Execute SQL with | Executes a static SQL query by specifying its Inputs:

Parameter syntax with the specified parameters.. « database connection--CwDBConnection

API: CwDBConnection.executeSQL() * query--String
* parameters--java.util. Vector

Chapter 5. Customizing a map 101

Table 30. General/APIs/Database connection (continued)

Name

Description

Inputs and outputs with acceptable values

Execute Stored
Procedure

Executes an SQL stored procedure by specifying
its name and parameter array.

API: CwDBConnection.executeStored
Procedure()

Inputs:
¢ database connection--CwDBConnection
* query--String

* parameters—java.util.Vector

Get Database
Connection

Establishes a connection to a database and
returns a CwDBConnection() object.

Inputs: connection pool name--String

Outputs: database connection--

Connection with
Transaction

returns a CwDBConnection() object.

API: BaseDLM.getDBConnection() or
BaseCollaboration.getDBConnection()

API: BaseDLM.getDBConnection() or CwDBConnection
BaseCollaboration.getDBConnection()
Get Database Establishes a connection to a database and Inputs:

* connection pool name--String

* implicit transaction--boolean

Outputs:database connection--
CwDBConnection

Get Next Row

Gets the next row from the query result.

APIL: CwDBConnection.nextRow()

Inputs: database connection--
CwDBConnection

Outputs: row--java.util. Vector

Get Update Count

Gets the number of rows affected by the last
write operation to the database.

API: CwDBConnection.getUpdateCount()

Inputs: database connection--
CwDBConnection

Outputs: count--int

Has More Rows

Determines whether the query result has more
rows to process.

APIL: CwDBConnection.hasMoreRows()

Inputs: database connection--
CwDBConnection

Outputs: more rows?--boolean

In Transaction

Determines whether a transaction is in progress
in the current connection.

API: CwDBConnection.inTransaction()

Inputs: database connection--
CwDBConnection

Outputs: in transaction?--boolean

the current connection.

APIL: CwDBConnection.rollback()

Is Active Determines whether the current connectio is Inputs: database connection--
active. CwDBConnection
APIL: CwDBConnection.isActive() Outputs: is active?--boolean
Release Releases use of the current connection, Inputs: database connection--
returning it to its connection pool. CwDBConnection
APIL: CwDBConnection.release()
Roll Back Rolls back the active transaction associated with | Inputs: database connection--

CwDBConnection

102 Map Development Guide

Table 31. General/APIs/Identity Relationship

Name

Description

Inputs and outputs with acceptable values

Add My Children

Adds the specified child instances to a
parent/child relationship for an identity
relationship.

API: IdentityRelationship.addMyChildren()

Inputs:

* map--BaseDLM

* parentChildRelDefName--String

* parentParticipantDefName--String

* parentBusObj--BusObj

* childParticipantDefName--String

* childBusObjList--BusObj,BusObjArray

Delete All My
Chidren

Removes all child instances to a parent/child
relationship for an identity relationship
belonging to the specified parent.

API: IdentityRelationship.deleteMyChildren()

Inputs:

* map--BaseDLM
 parentChildRelDefName--String
* parentParticipantDefName--String
* parentBusObj--BusObj

¢ childParticipantDefName--String

Delete My Children

Removes the specified child instances to a
parent/child relationship for an identity
relationship belonging to the specified parent.

API: IdentityRelationship.deleteMyChildren()

Inputs:

* map--BaseDLM

* parentChildRelDefName--String

* parentParticipantDefName--String

* parentBusObj--BusObj

¢ childParticipantDefName--String

* childBusObjList--BusObj,BusObjArray

Foreign Key
Cross-Reference

Performs a lookup in the relationship table in
the relationship database based on the foreign

key of the source business object, adding a new

relationship instance in the foreign relationship
table if the foreign key does not exist.

API: IdentityRelationship.foreignKeyXref()

Inputs:

* map--BaseDLM

* RelDefName--String

* appParticipantDefName--String
* genParticipantDefName--String
* appSpecificBusObj--BusObj

* appForeignAttr--String

* genericBusObj--BusObj

* genForeignAttr--String

Foreign Key
Lookup

Performs a lookup in a foreign relationship
table based on the foreign key of the source
business object, failing to find a relationship
instance if the foreign key does not exist in the
foreign relationship table..

API: IdentityRelationship.foreignKeyLookup()

Inputs:

* map--BaseDLM

* relDefName--String

* appParticipantDefName--String
* appSpecificBusObj--BusObj

* appForeignAttr--String

* genericBusObj--BusObj

* genForeignAttr--String

Chapter 5. Customizing a map 103

Table 31. General/APIs/Identity Relationship (continued)

Name

Description

Inputs and outputs with acceptable values

Maintain child Verb

Sets the child business object verb based on the
map execution context and the verb of the
parent business object.

API: IdentityRelationship.maintainChild Verb()

Inputs:

* map--BaseDLM

* relDefName--String

* appSpecificParticipantName--String
* genericParticipantName--String

* appSpecificObj--BusObj

* appSpecificChildObj--String

* genericObj--BusObj

* genericChildObj--String

* to_Retrieve--boolean

* Is_Composite--boolean

Maintain Composite
Relationship

Maintains a composite identity relationship
from within the parent map.

API: IdentityRelationship.maintain
CompositeRelationship()

Inputs:

* map--BaseDLM

* relDefName--String

* participantDefName--String

* appSpecificBusObj--BusObj

* genericBusObjList--BusObj, BusObjArray

Maintain Simple

Maintains a simple identity relationship from

Inputs:

Identity within either a parent or child map. + map--BaseDLM
Relationship .
APIL IdentityRelationship.maintain * relDefName--String
Simple Identity Relationship() * participantDefName--String
* appSpecificBusObj--BusObj
* genericBusObj--BusObj
Update My Adds and deletes child instances in a specified |Inputs:
Children parent/child relationship of an identity

relationship as necessary.

API: IdentityRelationship.updateMyChildren()

* map--BaseDLM

* parentChildRelDefName--String

* parentParticipantDef--String

* parentBusObj--BusObj

* childParticipantDef--String

* childAttrName--String

* childIdentityRelDefName--String

* childldentityParticipantDefName--String

Table 32. General/APIs/Maps/Constants

Name

Description

Inputs and outputs with acceptable values

Calling Context:
ACCESS
_REQUEST

An access client has sent an access request from
an external application to InterChange Server
Express.

API: MapExeContext. ACCESS_REQUEST

Outputs: ACCESS_REQUEST--String

Calling Context:
ACCESS
_RESPONSE

The source business object is sent back to the
source access client in response to a
subscription delivery request.

APIL: MapExeContext. ACCESS_RESPONSE

Outputs: ACCESS_RESPONSE--String

104 Map Development Guide

Table 32. General/APIs/Maps/Constants (continued)

Name

Description

Inputs and outputs with acceptable values

Calling Context:
EVENT
_DELIVERY

A connector has sent an event from the
application to InterChange Server Express
(event-triggered flow).

APIL: MapExeContext. EVENT_DELIVERY

Outputs: EVENT_DELIVERY--String

Calling Context:
SERVICE_CALL
_FAILURE

A collaboration’s service call request has failed.
As such, corrective action might need to be
performed.

APIL: MapExeContext.SERVICE_CALL_FAILURE

Outputs: SERVICE_CALL_FAILURE

--String

Calling Context:
SERVICE_CALL
_REQUEST

A collaboration is sending a business object
down to the application through a service call
request.

APIL
MapExeContext.SERVICE_CALL_REQUEST

Outputs: SERVICE_CALL_REQUEST

--String

Calling Context:
SERVICE_CALL
_RESPONSE

A business object was received from the
application as a result of a successful response
to a collaboration service call request.

APIL: MapExeContext.SERVICE_CALL
_RESPONSE

Outputs: SERVICE_CALL_RESPONSE

--String

Table 33. General/APls/Maps/Exception

Name Description Inputs and outputs with acceptable values
Raise Map Raises a map run-time exception. Inputs:
Fxception API: raiseException() * map--BaseDLM
* exception type--String
° message--String
Raise Map Raises a map run-time exception. Inputs:

Exception 1

API: raiseException()

* map--BaseDLM
* exception type--String
° message--String

* parameter 1--String

Raise Map
Exception 2

Raises a map run-time exception.

API: raiseException()

Inputs:

* map--BaseDLM

* exception type--String
* message--String

* parameter 1--String

* parameter 2--String

Raise Map
Exception 3

Raises a map run-time exception.

API: raiseException()

Inputs:

* map--BaseDLM

* exception type--String
° message--String

* parameter 1--String

* parameter 2--String

* parameter 3--String

Chapter 5. Customizing a map

105

Table 33. General/APIs/Maps/Exception (continued)

Name

Description

Inputs and outputs with acceptable values

Raise Map
Exception 4

Raises a map run-time exception.

API: raiseException()

Inputs:

* map--BaseDLM

* exception type--String
° message--String

* parameter 1--String

* parameter 2--String

* parameter 3--String

* parameter 4--String

Raise Map
Exception 5

Raises a map run-time exception.

API: raiseException()

Inputs:

* map--BaseDLM

* exception type--String
* message--String

* parameter 1--String

e parameter 2--String

* parameter 3--String

* parameter 4--String

° parameter 5--String

Raise Map
RunTimeEntity
Exception

Raises a map run-time exception.

API: raiseException()

Inputs:
* map--BaseDLM
¢ exception--RunTimeEntityException

Table 34. General/APIs/Maps

Name

Description

Inputs and outputs with acceptable values

Get Adapter Name

Retrieves the adapter name associated with the
current map instance..

API: MapExeContext.getConnName()

Inputs: map--BaseDLM

Outputs: adapter name--String

Get Calling Context

Retrieves the calling context associated with the
current map instance..

API: MapExeContext.getInitiator()

Inputs: map--BaseDLM

Outputs: calling context--String

Get Original
Request Business
Object

Retrieves the original-request business object
associated with the current map instance..

API: MapExeContext.getOriginalRequestBO()

Inputs: map--BaseDLM

Outputs: original business object--BusObj

Table 35. General/APls/Participant/Array

Name

Description

Inputs and outputs with acceptable values

Get Participant At

Retrieves the element at the specified index in
the participant array.

Inputs:

* array--
Server.RelationshipServices.Participant]]

¢ index--int

Outputs: participant--
Server.RelationshipServices.Participant

106 Map Development Guide

Table 35. General/APIs/Participant/Array (continued)

Name

Description

Inputs and outputs with acceptable values

New Participant
Array

Creates a new participant array with the
specified size.

Inputs: size--int

Outputs: array--
Server.RelationshipServices.Participant[]

Set Participant At

Sets the element at the specified index in the
participant array.

Inputs:

* array--
Server.RelationshipServices.Participant]]

¢ index--int
* participant--
Server.RelationshipServices.Participant

Size

Retrieves the size of the participant array.

Inputs: array--
Server.RelationshipServices.Participant[]

Outputs: size--int

Table 36. General/APIs/Participant/Constants

Name Description Inputs and outputs with acceptable values
Participant: Participant constant indicating the participant | Outputs: INVALID_INSTANCE_ID--int
INVALID ID is invalid..

_INSTANCE_ID

API: Participant.INVALID_INSTANCE_ID

Table 37. General/APIs/Participant

Name

Description

Inputs and outputs with acceptable values

Get Boolean Data

Retrieves the data associated with the
Participant object.

API: Participant.getBoolean()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--boolean

Get Business Object
Data

Retrieves the data associated with the
Participant object.

API: Participant.getBusObj()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--BusObj

Get Double Data

Retrieves the data associated with the
Participant object.

API: Participant.getDouble()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--double

Get Float Data

Retrieves the data associated with the
Participant object.

API: Participant.getFloat()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--float

Get Instance ID

Retrieves the relationship instance ID of the
relationship in which the participant instance is
participating.

API: Participant.getInstanceld()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: instance ID--int

Get Int Data

Retrieves the data associated with the
Participant object.

API: Participant.getInt()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data—-int

107

Chapter 5. Customizing a map

Table 37. General/APIs/Participant (continued)

Name

Description

Inputs and outputs with acceptable values

Get Long Data

Retrieves the data associated with the
Participant object.

API: Participant.getLong()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--long

Get Participant
Name

Retrieves the participant definition name from
which the participant instance is created.

API: Participant.getParticipantDefinition()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: name--String

Get Relationship
Name

Retrieves the name of the relationship definition
in which the participant instance is
participating.

API: Participant.getRelationshipDefinition()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: name--String

Get String Data

Retrieves the data associated with the
Participant object.

API: Participant.getString|()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--String

New Participant

Creates a new participant instance with no
relationship instance.

API: Participant()

Inputs:

* relDefName--String

* partDefName--String

* partData--BusObj, String, long, int,
double, float, boolean

Output: participant--

Server.RelationshipServices.Participant

New Participant in

Creates a new participant instance for adding to

Inputs:

instance.

API: Participant.set()

Relationship an existing participant in a relationship + relDefName--String
instance. .
* partDefName--String
API: RelationshipServices.Participant() * instanceld--int
* partData--BusObj, String, long, int,
double, float, boolean
Output: participant--
Server.RelationshipServices.Participant
Set Data Sets the data associated with the participant Inputs:

* participant--
Server.RelationshipServices.Participant

* partData--BusObj, String, long, int,
double, float, boolean

Set Instance ID

Sets the instance ID of the relationship in which
the participant instance is participating.

API: Participant.setInstanceld()

Inputs:
* participant--
Server.RelationshipServices.Participant

e id--int

Set Participant
Defnition

Sets the participant definition name from which
the participant instance is created.

API: Participant.setParticipantDefinition()

Inputs:
* participant--
Server.RelationshipServices.Participant

* partDefName--String

Set Relationship
Definition

Sets the relationship definition in which the
participant instance is participating.

API: Participant.setRelationshipDefinition()

Inputs:
* participant--
Server.RelationshipServices.Participant

* relDefName--String

108 Map Development Guide

Table 38. General/APIs/Relationship

Name

Description

Inputs and outputs with acceptable values

Add Participant

Adds an existing participant object to a
relationship instance.

API: Relationship.addParticipant()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: result instance ID--int

Add Participant
Data

Adds a new participant to an existing
relationship instance.

API: Relationship.addParticipant()

Inputs:

* relDefName--String
* partDefName--String
* instanceld--int

* partData--BusObj, String, long, int,
double, float, boolean

Outputs: result instance ID--int

Add Participant
Data to new
Relationship

Adds a participant to a new relationship
instance.

API: Relationship.addParticipant()

Inputs:
* relDefName--String
* partDefName--String

* partData--BusObj, String, long, int,
double, float, boolean

Outputs: result instance ID--int

Create Relationship

Creates a new relationship instance.

API: Relationship.create()

Inputs:
* relDefName--String
* partDefName--String

* partData--BusObj, String, long, int,
double, float, boolean

Outputs: instance ID--int

Create Relationship
with Participant

Creates a new relationship instance.

API: Relationship.create()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: instance ID--int

Deactivate Deactivates a participant from one or more Inputs: participant--

Participant relationship instances. Server.RelationshipServices.Participant
API: Relationship.deactivate Participant()

Deactivate Deactivates a participant from one or more Inputs:

Participant By Data

relationship instances.

API: Relationship.deactivate Participant()

* relDefName--String
* partDefName--String

* partData--BusObj, String, long, int,
double, float, boolean

Deactivate
Participant by
Instance

Deactivates a participant from a specific
relationship instance.

API: Relationship.deactivate
ParticipantBylInstance()

Inputs:
* relDefName--String
* partDefName--String

¢ instanceld--int

Chapter 5. Customizing a map

109

Table 38. General/APIs/Relationship (continued)

Name

Description

Inputs and outputs with acceptable values

Deactivate
Participant By
Instance Data

Deactivates a participant from a specific
relationship instance with the data associated
with the participant.

API: Relationship.deactivate
ParticipantBylInstance()

Inputs:

* relDefName--String
* partDefName--String
* instanceld--int

* partData--BusObj, String, long, int,
double, float, boolean

Delete Participant

Removes a participant instance from one or
more relationship instances.

API: Relationship.deleteParticipant()

Inputs: participant--
Server.RelationshipServices.Participant

Delete Participant
By Instance

Removes a participant from a specific
relationship instance.

API: Relationship.deleteParticipanByInstancet()

Inputs:
* relDefName--String
* partDefName--String

* instanceld--int

Delete Participant
By Instance Data

Removes a participant from a specific
relationship instance with the dta associated
with the participant.

API: Relationship.deleteParticipanByInstancet()

Inputs:

* relDefName--String
» partDefName--String
* instanceld--int

* partData--BusObj, String, long, int,
double, float, boolean

Delete Participant
with Data

Removes a participant instance from one or
more relationship instances.

API: Relationship.deleteParticipant()

Inputs:
* relDefName--String
* partDefName--String

* partData--BusObj, String, long, int,
double, float, boolean

Get Next Instance
1D

Returns the next available relationship instance
ID for a relationship, based on the relationship
definition name.

API: Relationship.getNewID()

Inputs: relDefName--String

Outputs: ID--int

Retrieve Instances

Retrieves zero or more IDs of relationship

instances which contain the given participant(s).

API: Relationship.retrievelnstances()

Inputs:
* relDefName--String
* partDefName--String,String|[]

* partData--BusObj, String, long, int,
double, float, boolean

Outputs: instance IDs--int

Retrieve Instances
for Participant

Retrieves zero or more IDs of relationship
instances which contain a given participant.

API: Relationship.retrievelnstances()

Inputs:
* relDefName--String

* partData--BusObj, String, long, int,
double, float, boolean

Outputs: instance IDs--int

110 Map Development Guide

Table 38. General/APIs/Relationship (continued)

Name Description Inputs and outputs with acceptable values
Retrieve Retrieves zero or more participants from a Inputs:
Participants relationship instance. « relDefName--String
API: Relationship.retrieveParticipants() * partDefName--String, String]
* instanceld--int
Outputs: participant instances--
Server.RelationshipServices.Participant[]
Retrieve Retrieves zero or more participants from a Inputs:

Participants with ID

relationship instance.

API: Relationship.retrieveParticipants()

* relDefName--String

¢ instanceld--int

Outputs: participant instances--
Server.RelationshipServices.Participant]]

Update Participant

Updates a participant in one or more
relationhip instances.

API: Relationship.updateParticipant()

Inputs:

* relDefName--String
* partDefName--String
* partData--BusObj

Update Participant
By Instance

Updates a participant in a specific relationship

instance.

API: Relationship.updateParticipantBylnstance()

Inputs:
* relDefName--String
* partDefName--String, String[]

¢ instanceld--int

Update Participant
By Instance Data

Updates a participant in a specific relationship

instance with the data associated with the
participant.

API: Relationship.updateParticipantByInstance()

Inputs:

* relDefName--String
* partDefName--String
* instanceld--int

* partData--BusObj, String

Table 39. General/Da

te

Name

Description

Inputs and outputs with acceptable values

Add Day

Adds additional days to the from date.

Inputs:
* from date--String
* date format--String

* day to add--int

Outputs: to date-- String

Add Month

Adds additional months to the from date.

Inputs:

* from date--String

* date format--String
* month to add--int

Outputs: to date-- String

Add Year

Adds additional years to the from date.

Inputs:

* from date--String
* date format--String
* year to add--int

Outputs: to date-- String

Chapter 5. Customizing a map 111

Table 39. General/Date (continued)

Name

Description

Inputs and outputs with acceptable values

Date After

Compares two dates and determines whether
Date 1 is after Date 2.

Inputs:

* Date 1--String

* Date 1 format--String
* Date 2--String

* Date 2 format--String

Outputs: Is Date 1 after Date 2?-- boolean

Date Before

Compares two dates and determines whether
Date 1 is before Date 2.

Inputs:

e Date 1--String

* Date 1 format--String
e Date 2--String

* Date 2 format--String

Outputs: Is Date 1 before Date 2?-- boolean

Date Equals

Compares two dates and determines whether
they are equal.

Inputs:

* Date 1--String

* Date 1 format--String
¢ Date 2--String

* Date 2 format--String

Outputs: Are they equal?-- boolean

Format Change

Changes a date format.

Inputs:
* date--String
* input format--String

* output format--String

Outputs: formatted date--String

expression.

Get Day Returns the numeric day of month based on Inputs:
date expression. + Date--String
* Format--String
Outputs: Day--int
Get Month Returns the numeric month of year based on Inputs:
date expression. « Date--String
* Format--String
Outputs: Month--int
Get Year Returns the numeric year based on date Inputs:

e Date--String

* Format--String

Outputs: Year--int

112 Map Development Guide

Table 39. General/Date (continued)

Name

Description

Inputs and outputs with acceptable values

Get Year Month
Day

Given an input date, extracts the
Year/Month/Day parts from the input date
respectively.

Inputs:
* Date--String

* Format--String

Outputs:

* Year--int
* Month--int
* Day--int

Now

Gets today’s date.

Inputs: format--String

Outputs: now--String

Table 40. General/Date/Formats

Name Description Inputs and outputs with acceptable values
yyyy-MM-dd Date format of yyyy-MM-dd Outputs: format--String
Example: 2003-02-25
yyyyMMdd Date format of yyyyMMdd Outputs: format--String
Example: 20030225
yyyyMMdd Date format of yyyyMMdd HH:mm:ss Outputs: format--String
HH:mm:ss

Example: 20030225 12:36:40

Table 41. General/Logging and Tracing

Name

Description

Inputs and outputs with acceptable values

Log error

Sends the specified error message to the ICS log
file.

Inputs: message--String, byte, short, int,
long, float, double

Log error ID

Sends the error message associated with the
specified ID to the ICS log file.

Inputs: ID--String, byte, short, int, long,
float, double

Log information

Sends the specified information message to the
ICS log file.

Inputs: message--String, byte, short, int,
long, float, double

Log information ID

Sends the information message associated with
the specified ID to the ICS log file.

Inputs: ID--String, byte, short, int, long,
float, double

Log warning

Sends the specified warning message to the ICS
log file

Inputs: message--String, byte, short, int,
long, float, double

Log warning ID

Sends the warning message associated with the
specified ID to the ICS log file.

Inputs: ID--String, byte, short, int, long,
float, double

Trace

Sends the specified trace message to the ICS log
file.

Inputs: message--String, byte, short, int,
long, float, double

Table 42. General/Logging and Tracing/Log Error

Name

Description

Inputs and outputs with acceptable values

Log error ID 1

Formats the error message associated with the
specified ID with the parameter and send it to
the ICS log file.

Inputs:

* ID--String, byte, short, int, long, float,
double

* parameter--String, byte, short, int, long,
float, double

Chapter 5. Customizing a map 113

Table 42. General/Logging and Tracing/Log Error (continued)

Name

Description

Inputs and outputs with acceptable values

Log error ID 2

Formats the error message associated with the
specified ID with the parameters and send it to
the ICS log file.

Inputs:

» ID--String, byte, short, int, long, float,
double

e parameter 1--String, byte, short, int, long,
float, double

* parameter 2--String, byte, short, int, long,
float, double

Log error ID 3

Formats the error message associated with the
specified ID with the parameters and send it to
the ICS log file.

Inputs:

* ID--String, byte, short, int, long, float,
double

* parameter 1--String, byte, short, int, long,
float, double

* parameter 2--String, byte, short, int, long,
float, double

* parameter 3--String, byte, short, int, long,
float, double

Table 43. General/Logging and Tracing/Log Information

Name

Description

Inputs and outputs with acceptable values

Log information ID
1

Formats the information message associated
with the specified ID with the parameter and
send it to the ICS log file.

Inputs:
» ID--String, byte, short, int, long, float,
double

* parameter--String, byte, short, int, long,
float, double

Log information ID
2

Formats the information message associated
with the specified ID with the parameters and
send it to the ICS log file.

Inputs:

* ID--String, byte, short, int, long, float,
double

* parameter 1--String, byte, short, int, long,
float, double

* parameter 2--String, byte, short, int, long,
float, double

Log information ID
3

Formats the information message associated
with the specified ID with the parameters and
send it to the ICS log file.

Inputs:

* ID--String, byte, short, int, long, float,
double

* parameter 1--String, byte, short, int, long,
float, double

* parameter 2--String, byte, short, int, long,
float, double

* parameter 3--String, byte, short, int, long,
float, double

Table 44. General/Logging and Tracing/Log Warning

Name

Description

Inputs and outputs with acceptable values

Log warning ID 1

Formats the warning message associated with
the specified ID with the parameter and send it
to the ICS log file.

Inputs:

» ID--String, byte, short, int, long, float,
double

* parameter--String, byte, short, int, long,
float, double

114 Map Development Guide

Table 44. General/Logging and Tracing/Log Warning (continued)

Name

Description

Inputs and outputs with acceptable values

Log warning ID 2

Formats the warning message associated with
the specified ID with the parameters and send
it to the ICS log file.

Inputs:

» ID--String, byte, short, int, long, float,
double

e parameter 1--String, byte, short, int, long,
float, double

* parameter 2--String, byte, short, int, long,
float, double

Log warning ID 3

Formats the warning message associated with
the specified ID with the parameters and send
it to the ICS log file.

Inputs:

* ID--String, byte, short, int, long, float,
double

* parameter 1--String, byte, short, int, long,
float, double

* parameter 2--String, byte, short, int, long,
float, double

* parameter 3--String, byte, short, int, long,
float, double

Table 45. General/Logging and Tracing/Trace

Name Description Inputs and outputs with acceptable values
Trace ID 1 Formats the trace message associated with the |Inputs:
specified ID with the parameter and display it |, ID--String, byte, short, int, long, float,
if tracing is set to the specified level or a higher double
level. * level--String, byte, short, int, long, float,
double
* parameter--String, byte, short, int, long,
float, double
Trace ID 2 Formats the trace message associated with the |Inputs:
specified ID with the parameters and display it |, ID--String, byte, short, int, long, float,
if tracing is set to the specified level or a double
highter level. * level--String, byte, short, int, long, float,
double
e parameter 1--String, byte, short, int, long,
float, double
* parameter 2--String, byte, short, int, long,
float, double
Trace ID 3 Formats the trace message associated with the |Inputs:

specified ID with the parameters and display it
if tracing is set to the specified level or a
highter level.

* ID--String, byte, short, int, long, float,
double

* level--String, byte, short, int, long, float,
double

* parameter 1--String, byte, short, int, long,
float, double

* parameter 2--String, byte, short, int, long,
float, double

* parameter 3--String, byte, short, int, long,
float, double

Chapter 5. Customizing a map 115

Table 45. General/Logging and Tracing/Trace (continued)

Name

Description

Inputs and outputs with acceptable values

Trace on Level

Displays the trace message if tracing is set to
the specified level or a higher level.

Inputs:

* message--String, byte, short, int, long,
float, double

* level--String, byte, short, int, long, float,
double

Table 46. General/Mapping

Name

Description

Inputs and outputs with acceptable values

Run Map

Executes the specified map with the current
calling context.

Inputs:
* Map Name--String
* Source Business Objects--BusObj, BusObj[]

Outputs: Map Results--BusObj, BusObj][]

Run Map with
Context

Executes the specified map with the calling
context specified.

Inputs:

* Map Name--String

* Source Business Objects--BusObj, BusObj[]
* calling context--String

Outputs: Map Results--BusObj, BusObj][]

Table 47. General/Math

Name

Description

Inputs and outputs with acceptable values

Absolute value

a=abs(b)

API: Math.abs()

Inputs: b--byte, short, int, long, float, double

Outputs: a--byte, short, int, long, float,
double

Ceiling

Returns the next highest integer that is greater

than or equal to the specified numeric
expression.

Inputs: number--String, float, double

Outputs: ceiling—int

Divide

a=b/c

Inputs:
* b--byte, short, int, long, float, double
* c--byte, short, int, long, float, double

Outputs: a--byte, short, int, long, float,
double

Equal

Is value 1 equal to value 2?

Inputs:

* value 1--String, byte, short, int, long, float,
double

* value 2--String, byte, short, int, long, float,
double

Outputs: are they equal?--boolean

Floor

Returns the next lowest integer that is greater
than or equal to the specified numeric
expression.

Inputs: number--String, float, double

Outputs: floor--int

116 Map Development Guide

Table 47. General/Math (continued)

Name

Description

Inputs and outputs with acceptable values

Greater than

Is value 1 greater than value 2?

Inputs:
* value 1--byte, short, int, long, float, double
* value 2--byte, short, int, long, float, double

Outputs: result-boolean

Greater than or
Equal

Is value 1 greater than or equal to value 2?

Inputs:
* value 1--byte, short, int, long, float, double
* value 2--byte, short, int, long, float, double

Outputs: result--boolean

Less than

result=value 1 is less than value 2?

Inputs:
* value 1--byte, short, int, long, float, double
* value 2--byte, short, int, long, float, double

Outputs: result-boolean

Less than or equal

Is value 1 less than or equal to value 2?

Inputs:
* value 1--byte, short, int, long, float, double
* value 2--byte, short, int, long, float, double

Outputs: result--boolean

Maximum a=max(b, c) Inputs:
API: Math.max() * b--byte, short, int, long, float, double
* c--byte, short, int, long, float, double
Outputs: a--byte, short, int, long, float,

double

Minimum a=min(b, ¢) Inputs:
API: Math.min() * b--byte, short, int, long, float, double
* c-—-byte, short, int, long, float, double
Outputs: a--byte, short, int, long, float,

double

Minus a=b-c Inputs:
* b--byte, short, int, long, float, double
* c--byte, short, int, long, float, double
Outputs: a--byte, short, int, long, float,

double

Multiply a=b*c Inputs:
* b--byte, short, int, long, float, double
* c--byte, short, int, long, float, double
Outputs: a--byte, short, int, long, float,

double

Not Equal result=is value 1 not equal to value 2? Inputs:

* value 1--String, byte, short, int, long, float,
double

* value 2--String, byte, short, int, long, float,
double

Outputs: are they not equal?--boolean

Chapter 5. Customizing a map 117

Table 47. General/Math (continued)

Name

Description

Inputs and outputs with acceptable values

Not a Number

Returns true if input is not a number.

Inputs: input--String

Outputs: is not a number--boolean

Number to String

Converts a numeric expression to a character
expression.

Inputs: number--String, short, int, long, float,
double

Outputs: string--String

Plus

a=b+c

Inputs:
* b--byte, short, int, long, float, double
* c--byte, short, int, long, float, double

Outputs: a—-byte, short, int, long, float,
double

Round

Rounds a numeric expression down to the next
lowest integer if <5; otherwise, the integer is
rounded up.

Inputs: number--String, float, double

Outputs: rounded number--int

String to Number

Converts a character expression to a numeric
expression.

API: Math.type()

Inputs: string--String

Outputs: String, short, int, long, float, double

Table 48. General/Properties

Name

Description

Inputs and outputs with acceptable values

Get Property

Retrieves the specified configuration property
value.

Inputs: property name--String

Outputs: property value--String

Table 49. General/Relationship

Name

Description

Inputs and outputs with acceptable values

Maintain Identity
Relationship

Maintain Identity Relationship with the
maintainSimpleldentityRelationship()
Relationship API.

Inputs:

* relationship name--String

* participant name--String

* Generic Business Object--String

* Application-Specific Business
Object--String

* calling context--String

Static Lookup

Look up a static value in the relationship.

Inputs:

* relationship name--String
* participant name--String
e inbound?--boolean

* source value--String

Outputs: lookup value--String

118 Map Development Guide

Table 50. General/String

Name

Description

Inputs and outputs with acceptable values

Append Text

Appends the "in string2” to the end of the
string "in string 1.”

Inputs:
* in string 1--String
* in string 2--String

Outputs: result--String

If Returns the first value if condition is true and | Inputs:
the second value if condition is false. « condition--boolean, Boolean
* value 1--String
* value 2--String
Outputs: result--String
Is Empty Returns the second value if the first value is Inputs:
empty. « value 1--String
* value 2--String
Outputs: result--String
Is NULL Returns the second value if the first value is Inputs:
null. * value 1--String
* value 2--String
Outputs: result--String
Left Fill Returns a string of the specifed length; fills the |Inputs:

left with indicated value.

* string--String
* fill string--String
* length--int

Outputs: filled string--String

Left String

Returns the left portion of string for the
specified number of positions.

Inputs:
e string--String
* length--int

Outputs: left string--String

Lower Case

Changes all characters to Lower Case letters

Inputs: fromString--String

Outputs: toString--String

Object To String

Gets a string representation of the object.

Inputs: object--Object

Outputs: string--String

Repeat Returns a character string that contains a Inputs:
specified character expression repeated a « repeating string--String
specified number of times. .
* repeat count--int
Outputs: result--String
Replace Replaces part of a string with indicated value Inputs:

data.

* input--String
* old string--String

° new string--String

Outputs: replaced string--String

Chapter 5. Customizing a map 119

Table 50. General/String (continued)

Name

Description

Inputs and outputs with acceptable values

Right Fill

Returns a string of the specified length; fills the
right with indicated value.

Inputs:

* string--String

e fill string--String
* length—int

Outputs: filled string--String

Right String

Returns the right portion of string for the
specified number of positions.

Inputs:
* string--String
* length—int

Outputs: right string--String

Substring by
position

Returns a portion of the string based on start
and end parameters.

Inputs:
* string--String
* start positon--int

* end position--int

Outputs: substring--String

Substring by value

Returns a portion of the string based on start
and end parameters. The substring will not
include the start and end value.

Inputs:
e string--String
e start value--int

¢ end value--int

Outputs: substring--String

Text Equal

Compares the strings "inStringl” and
"inString2” and determine whether they are the
same.

Inputs:
* inStringl--String
* inString2--String

Outputs: are they equal?--boolean

Text Equal Ignore
Case

Compares the strings "inString1” and
"inString2” lexicographically, ignoring case
considerations.

Inputs:
* inStringl--String
* inString2--String

Outputs: are they equal?--boolean

Text Length

Finds the total number of characters in a String

Inputs: str--String

Outputs: length---byte, short, int, long, float,
double

Trim Left Trims the specified number of characters from |Inputs:
the left side of the string. « input--String
* trim length--int
Outputs: result--String
Trim Right Trims the specified number of characters from |Inputs:
the right side of the string. « input--String
* trim length--int
Outputs: result--String
Trim Text Trims white spaces before and after string Inputs: in string--String

Outputs: trimmed string--String

120 Map Development Guide

Table 50. General/String (continued)

Name

Description

Inputs and outputs with acceptable values

Upper Case

Changes all characters into Upper Case letters

Inputs: fromString--String

Outputs: toString--String

Table 51. General/Utilities

Name

Description

Inputs and outputs with acceptable values

Catch Error

Catches all the Exceptions thrown in the current
activity and its subactivities. (Double-click the
function block icon in the canvas to define the
subactivity.)

Inputs:
e Error Name--String

* Error Message--String

Catch Error Type

Catches the specified Exception type thrown in
the current activity and its subactivities.
(Double-click the function block icon in the
canvas to define the subactivity.)

Inputs:
* error type--String

* Error Message--String

Condition

If "Condition” is true, executes the subactivity
defined in"True Action”; otherwise, executes the
subactivity defined in "False Action.”
(Double-click the function block icon in the
canvas to define the subactivity.)

Inputs: Condition--boolean

Loop

Repeats the subactivity until "Condition” is
false. (Double-click the function block icon in
the canvas to define the subactivity.)

Inputs: Condition--boolean

Move Attribute in
Child

Moves the value from "from attribute” to "to
attribute”.

Inputs:

* source parent--BusObj

* source child BO attribute--string

* from attribute--String

* destination parent--BusObj

* destination child BO attribute--String
* to attribute--String

Raise Error

Throws a new Java Exception with the given
message.

Inputs: message--String

Raise Error Type

Throws the specified Java Exception with the
given message.

Inputs:
* error type--String

° message--String

Table 52. General/Utilities/Veector

Name

Description

Inputs and outputs with acceptable values

Add Element

Adds the specified element to the end of the
vector, increasing its size by one.

Inputs: vector-java.util. Vector

Outputs: element--Object

Get Element

Gets the element at the specified index in the
Vector object.

Inputs:
* vector—java.util.Vector

¢ index--int

Outputs: element--Object

Chapter 5. Customizing a map

121

Table 52. General/Utilities/Veector (continued)

Name Description Inputs and outputs with acceptable values

Iterate Vector Iterates through the vector object. Inputs:
* vector—java.util.Vector
* current index—int

* current element--Object

New Vector Creates a new Vector object. Outputs: vector--java.util. Vector

Size Gets the number of elements in this vector. Inputs: vector--java.util. Vector

Outputs: size--int

To Array Gets the array representation containing all of | Inputs: vector-java.util. Vector
the elements in this vector.

Outputs: array--Object(]

Example 1 of using the Activity Editor

The following example illustrates the steps for using Activity Editor to change the
source attribute’s value to all uppercase and assign the change to the destination
attribute.

Perform the following steps:

1. From the Diagram tab, drag the source attribute onto the destination attribute
to create a Custom transformation rule. Then click the icon of the Custom
transformation rule to open Activity Editor.

Example: shows the Custom transformation we are using in this
example. The source attribute is ObjClarify_contact.LastName, and the
destination attribute is ObjContact.LastName.

B Map Designer Express - ClanifyContact_to_Contact : DlarifyProject 2 =10 x|
Flo Edt Vew Debug Took Hebp
[paacd narnex|t|[@aue|pieon|v||Ees
Tatia Disgom [uissoges | Teu|
Source =
Src_Clarify_Contact [ObjClarity_Contact)
Alfribute Type | 1
£ ObjCIarify_Contact |Clarity_Coritact | = ovjComact Contac
Mort] i [Verby ; | B Move
ContaciD [integer Contactid [sting | @ Move
FirstHams |Sring Firstame |string |
LasiName |Swing Wddeiniial |Sting | [S0
Salutation | Sting Lasthame |sting | E&Cuslnm
Phone |String S |sting |
Fasbiumber [ting Saltabion |Sting | [Mowe
Title |Etring OficePhoneCntr|Sting. | () Spif
EMall |ting OfizePhoneAsealSling |
Expertisa_Level |Witeger OsitePhone |Sting |
Hours |String = O ePhoneEst 'Bumn |
% Clarity_Contact_Rols |Clarity_Contact AlPhoneCriry |Sting | =
| CHartEvanta Eirn F; APhonsArea :smnn
AlfFhone Elring
AFhoneEd |Sting |
FanCntry |Gtring | |
Fanhrea 'ernnn | |
FaxPhone |sting | | _'ﬂ
1 v
Ready) L]

Figure 47. Custom transformation rule

Result: Activity Editor opens.

For more information on creating Custom and other transformations, see
[Chapter 2, “Creating maps,” on page 13}.

122 Map Development Guide

2. Select a category in the Library window (top left) to show the available
function blocks in that category in the Content window (bottom left).
shows the available functions blocks for the "String” category; the

source and destination attributes in our example are displayed as icons in the
graphical canvas.

B “te Diesigner Ewpress: - ctivity Edites - DbiContact.Lastiame® =100
IEE R)
@g|l+max|t||e=t(R|as |

3 3

CibjClarily_Contact LastName

@

OtyContact LasiName,

" Suirg
T EG)

1 [E] B |

ILII‘dhljmcm Otect To Repeat Reploce nl.wnfﬁ

Toam: I00% Foady -

Figure 48. Function blocks in String category and icons for source and destination attributes

3. To use any of the function blocks in the activity, drag the function block from
the tree in the Library window and drop it onto the activity canvas; or

alternatively, drag the icon from the Content window and drop it onto the
activity canvas.

Example: In our example, we want to change the source attribute to all
uppercase letters, so we will drag-and-drop the Upper Case function block in

the String cateiori from the Content window onto the activity canvas, as

shown in|Figure 49.

B “1ep Designer Enpress - Activity Editer - DbjConkact.L astSame*

IERE R)

(@@= m@x|e ||e=t|alas]
3, Loy B a
-a;w:;‘ -t@-o j

B s CibjClarily_Cortact LastName

%3 Loggeyg and Tisong
i Wappng

[+ 0 Math

[Propestion [%
= Rt

[3 (= Sting

0 Unlbes -8
£ My Lty

ObyConiact Lasthame
a3 My Colection

G} C3 Visdabie:
.
4l | v

o=
q | » " Graphical Joava |

X T = £ . @ =[x Upper Cane
e
5‘:‘;:_“" Sbsorlby Text Bl);::“c'; Taod Laegth m;:\:" Change sl charmciers inio Upper Case loers.
= inpets
0 B
E . § . TronEting Etring
S| tTmnge TnTed [(ESEEEE = | &
K]] [£
Toam 0% Foady

Figure 49. Dragging the Upper Case function block

Chapter 5. Customizing a map 123

4. After you drop a function block on the activity canvas, you can move it around
the canvas by selecting the function block icon and dragging and dropping it at
the desired position. When the function block is in place, you are ready to

connect the inputs and outputs of the function block to define the flow of
execution.

Example: In our example, we want to convert the attribute value of
ObjClarify_Contact.LastName to all uppercase letters. We can do this by
connecting the output of the icon for ObjClarify_Contact.LastName to the input
of the Upper Case function block. To do this, move the mouse cursor to the
output of the icon of port ObjClarify_Contact.LastName.

Result: The shape of the icon will change to an arrow to indicate that you can
initiate a link at that point, as shown in .

B M0 Diesigner Enpress - Activity Edites - DbContact.Lastiame* =100x
IEE e
|ﬂ=.,- chmx|2||e=t|Rlaa
3, Libwary g -
B B

=i AP

i Dade ObiClarly_ContallLastName

<100 Loggeg and Tiaceg

= Mapprg

5 Mah

0 Paapsties o Cse

= Fesistinahg =

= 5 Sng

of=al &@-&

Ca My Ly ObfConlact Lastkame

3 My Colection
o) [Viasable:
= G Syrtern >

4] | [
s | #1||” Graphical [
dEEEEEEEER o
":1 Tipe: GenershSrwgl nger Cane

5“’"‘"“"' “’*"U“' Tat Eoudl ""‘:“‘ oo Laegth | Beseriptiar Chaige ol chammelers into Lyper Case loers
Tgnor |

= dngis
. . . nomsung sung
S outocts
-
3

Canberd

CiPmees

TriRight TrmTest Upper Case
([N KX}

Zoom: 00 Feady

wEy Sting

Figure 50. Cursor as arrow at output port of ObjClarify_Contact.LastName

5. When the mouse icon is changed to an arrow, hold down the mouse button
and move the mouse to the input of the Upper Case function block, and release

the mouse button. A connection link will be drawn to connect the input and
outputs.

To indicate that the result of the Upper Case function block should be assigned
to the destination attribute (in our example, ObjContact.LastName), repeat the

same steps to drag-and-drop from the output of the Upper Case function block
to the input of the ObjContact.LastName port icon. shows the

124 Map Development Guide

connection links.

[e Designeer Enpress - iotivity Editor - DbjContact.Lasthame®

Be Bl e Iock bee

|@l&|=mix|2 ||«=t|a[as]

a
=) :
ObjClanfy_Contact Lasthpme
hwmwwl js liSiring
Upper Case
nh.c«%u T
-
|] ¥
Graghical [Jiva |
D m m =] [mame GtiCorinct Lasthiame
Adtritane Ties SHring
Loggrgand Bigony Deta Tie fang

Tracingi F
= R = R 3
| wan gt Belstioshe S = |C
Zoom: 100 Ready “©

Figure 51. Upper Case function block with connection links

Result: We have defined an activity which will take the value of the source
attribute, uppercase it, and set the upper-cased value to the destination
attribute.

Save the activity by selecting To Project or To File from the File-->Save

submenu or by clicking the Save Map to Project or Save Map to File button in
the Standard toolbar.

the Java tab.
Result: The Java tab will be activated with the sample Java code, as shown in

Ve shves EMpness - Activity Editor - Ob§Contsctl astiame

Eie st pew Jook e

To see an example of the Java code that will be generated by this activity, click

@ amx|?|ese|ass]

Toom:

k
Scring var_2 = mull:
Sering var 5 = null:
String var_% = null;
i

war_Z = CojClarify Comtact.get(”Laschaxe") == nall 7 77 1
¥
vaE_5 = war_2.EoUppacCasei)
war_9 = war_§;
i
r
Buaadk) descBualo) = ObjLomcact;
String destAtts = “LastHane®;
£
ff Set che descinacion valus only 1if neitker
i spuree noe deseinarion are mull.
il
if [{var_% !'= aull) &£& (destBusth] '= null)] O
1 (dataValidationlevel »= 1] (
if {!ObjConvact.validbara ["LastHame”, war_9}) (
Ll
/4 Log a warning shout thiz fadlure,
"

Scring varningNssasgs =
I

/f Log & warning about this failuce.
i

OIClAEiLy_CORGArt et | " Lastiame")

|*

Graphical Javs |

00 Rrady 3

Figure 52. Java tab with code

Chapter 5. Customizing a map 125

Example 2 of using the Activity Editor

The following example illustrates the steps for using Activity Editor to change the
source value’s date format to a different format and assign it to the destination

attribute.

Perform the following steps:

1.

From the Diagram tab, drag the source attribute onto the destination attribute
to create a Custom transformation rule. Then click the icon of the Custom

transformation rule to open Activity Editor.

Example: shows the Custom transformation we are using in this
example. The source attribute is
ObjClarify_QuoteSchedule.PriceProgExpireDate, and the destination attribute
is ObjARInvoice.GLPostingDate.

BErMap Dessqner Express - ClarifyQuoteschedule_ta_AftInvolce 1 ClarifyProject *

Filo

Edk Viow Debug Took Helbp

[oea|sa ue s vex |t @aEe rEros|[vet||zes]

Tathe Disgion [Messoges | Tou |

=101x|

Altribute

Sonree

Srg Clarity_OuateSchedule [ObjClarify_Ouates

Tyme -

ContrSthdObjid Intg ger
Conlréchidld |tring
& Clarity_QueteStheduleBillTo | Clarfy_QuoteSch
= CIaliM_GlumschndnleanT_'Clarﬂr_aunbeﬁm

erty

ShigToCustd [Inbzger

OtjectEventi |sting
ContrEchedGrogslingfr 'B‘Img
ContrichedNetLinePr |5inng
ContrSchedAdjAmt 'Smnu
ContrchedTaxkmt [stnng
ConlrBehadNathmt |tring
ConlrBchedBill option |Inte ger
ConirSchedPriceList |string

= Clarify_Quoteline

Clarity_QuoleLine =
1 »

&

CustAccountio | String
FOMumber -Slﬂﬂn
BalosOrderiumbe String
Confracsd [Siring
Cortracthumber | Siring
Caseld | Btring
WorkOrderumber String
PaymeniTanmms 'Emnﬂ
FreighiTerms | Sng
MinimumDue | String
GLPastngDate 'Smnn
Notes [5tring
CumencyCode |Sting
Contactid [String

B ARImiteddres | Customer|
CSRId Istng
HARWAREPIEA | Biian

:Drm

:Ducm?

| B wove

'@scuswm T

Figure 53. Custom transformation rule

126 Map Development Guide

Result: Activity Editor opens.

For more information on creating Custom and other transformations, see

[Chapter 2, “Creating maps,” on page 13|.

Select a category in the Library window (top left) to show the available
function blocks in that category in the Content window (bottom left).

shows the available functions blocks for the "Date” category; the
source and destination attributes in our example are displayed as icons in the

graphical canvas.

[} “ap Designes Enpress - Activity Editor - Ob3AR Irvosce.GLPostingDate®

Bl % yor Took e :
@@ |+ bmx |2 ||« e|aas

ww]
[i :"mu - @..

41 AP

+}

e L el Traeng

4] [Mapping

}Ca Math

+] C3 Progestias

) [Pelstiorahip

7} Ca Shing

+ G Ukiiee

Ca Hylbssy

C3 My Celeetion
5} [Verisbles
B3 Spstem

. 1

ObiChanfy_BuolsSchedule PriceProgExpire Date

2

OEAR Inwacs GLPaslng Da be

ol

‘ 1 ” Graphical darva |

RO R

AdiDay AdMoth AddYesr Debedfter Dste Bafors
I | Dbk Fomat Fomats Getpey Gmmorh o [
Toon: 100% Fmady

Figure 54. Function blocks in Date category and icons for source and destination attributes

3. To use any of the function blocks in the activity, drag the function block from
the tree in the Library window and drop it onto the activity canvas; or
alternatively, drag the icon from the Content window and drop it onto the

activity canvas.

Example: In our example, we want to change the date format of the source
attribute from "yyyyMMdd" to "yyyy.MM.dd G "at’ HH:mm:ss z" and assign
it to the destination attribute; so we will drag-and-drop the Format Change
function block in the Date category from the Content window onto the

activity canvas, as shown in [Figure 55

Note: A date formatted with "yyyyMMdd" looks like this: "20030227"; a date
formatted with "yyyyMM.dd G "at’” HH:mm:ss z" looks like this

"2003.02.27 AD at 00:00:00 PDT".

B Map Desipnes Express - Activity Editor - ObJAR Invoice.GLPostingDabe®

Bl % yor Tock e :
IR R AR A AT ER

. Ly B
BT ..@..
3] AP

+] Lo Dot

F1 (3 Legong ard Tiacng
+] [Mapping

03 Math

+] G Progertias

7 G Shg

o G Wit

=

3 My Celeetion
8}) Verisbles
03 Spstem

| |

ObiChanfy_BuolsSchedule PriceProgExpive Date

4] L Aelsioratip %

[

OEgAR Inwacs GLPasng Da be

ol

| |_'.-G"P"i"|j‘lﬂl

" B o Il
Date B n Formats GetDay GetMorh
i
M| cevew Getvew Hswt

Toom: 100 Ready

Dz rpdion
J HEEES
é ﬁnm

IO cupesoma

Format change
Oenedabilal e oimal changs
Change 8 Date formal.

Sting

Figure 55. Dragging the Date Format Change function block

Chapter 5. Customizing a map 127

4.

Figure 56. Cursor as arrow at

5.

128 Map Development Guide

After you drop a function block on the activity canvas, you can move it
around the canvas by selecting the function block icon and dragging and
dropping it at the desired position. When the function block is in place, you
are ready to connect the inputs and outputs of the function block to define the
flow of execution.

Example: In our example, we want to change the date format of the source
attribute ObjClarify_QuoteSchedule.PriceProgExpireDate. We will do this by
connecting the output of the port icon for
ObjClarify_QuoteSchedule.PriceProgExpireDate to the date input of the
Format Change function block. To do this, move the mouse cursor to the
output of the icon of port ObjClarify_QuoteSchedule.PriceProgExpireDate.

Result: The shape of the icon will Chanie to an arrow to indicate that you can

initiate a link at that point, as shown in [Figure 56}.
B Map Desigres Express - Activity Editor - ObgAR Invoice.GLPostingDate® =10 =l
[3t powr ook 10
@@ +xodn|z||sst|R|ad
i Libtaey - -
B =[< j
Vi
i Ca AP i L
+] L Dote ObjClanty_OuoleScheduld™ riceP rogExpireDiate
3] Ca Ligong aed Tracing
+] [Mepping
4L Math e e [E T Moivuatied diti
2103 Pepet et
%] 8 Aestiorshp oapet et
20 Uik QBjARINwas GLPaslingDale
G My Liesy 4
G My Colsetion
o i Vansbles
W03 System =
| I LIJ
i 1 N Graphical Jml
a = Feermal change
& G - e
Date Equsls Format Fomats GetDey GetMorth Desrptin Changs 8 Cuge foeml,
arge =
J)g -
T, dale String
i e
M| Gevew Getvew e 2D cupesma sumng
Toom: 100% Frady o

output port of ObjClarify_QuoteSchedule.PriceProgExpireDate

When the mouse icon is changed to an arrow, hold down the mouse button
and move the mouse to the date input of the Format Change function block,
and release the mouse button. A connection link will be drawn to connect the
input and outputs.

To indicate that the result of the Format Change function block should be
assigned to the destination attribute ObjARInvoice.GLPostingDate, repeat the

same steps to drag-and-drop from the output of the Format Change function
block to the input of the ObjARInvoice.GLPostingDate port icon.

shows the connection links.

B Map Desioner Express

Activity Editor - ObSAR Irvosce.GLPostingDate®
[Be B3 pow Toch tee _
CIEAER T R AR 3 AR TR

Fl & Genmsl *@*
4 Ca AP
] o Dot ObjClanty_OualeSchedule PriceProgExpiraDate
% 3 Leggng and Tracng
a1 [Mapping
+}Ca Mah
+] [Progetsss
+] [Relstiorship
+ Lo Sy
+ Uiy
£a Hy Lty
o3 My Ceeetion
[} Verisbles
[Ca Spsten

A
Irput format |

\mun-au-
ourpat dormat s

Fomat changs

o

(s

-'\F!!---.:-%- GLPasling Dabe

W -anhir.al dava |

=t
Alrbite Ties
Date T

e

Format
charge
Get Yeur

Faady

‘

Dte Equsls

!

| Getves
Toom;

Sy
Sirng

Ca E =

Fourats ot Dy Gt Morth
Jg

i

o)
] [l

¥
]

100,

Figure 57. Date Format Change function block with connection links

Result: Now we have instructed the Format Change function block to take the
input from the attribute ObjClarify_QuoteSchedule.PriceProgExpireDate,
change its date format, and assign the result to the attribute
ObjARInvoice.GLPostingDate. However, we still need to let the Format
Change function block know what the original date format is and what

resulting format we want.

Example: In our example, if the source attribute
ObjClarify_QuoteSchedule.PriceProgExpireDate

is in the date format of

yyyMMDD (that is, 20030227), we can use the predefined Date Format
function block yyyyMMdd. Drag-and-drop the yyyyMMdd function block

onto the activity canvas and connect the format

output of the yyyyMMdd

function block to the input format of the Format Change function block.

Result: This will specify that the input format of the date is in yyyyMMdd

format, as shown in [Figure 58.

B Map Designes Express

Adtivity Editor - ObJAR Trvoic e GLPostingDate®
Bl % yor Toch e _
Q& [+ @ x|2]]|sst|@|®a

-0@4-

[Genel
ObiClardy_OualsSehedule PriceProgExpireDiate

4] Gy AP
B

=} G Dot
yyy MM

& AddDay

& MddMontn

AddYes

& Diate Alied

@ Diste Defors
& Due Equas
Fomng charge

[+ 2 Foamaty
4 Gl

v Homrared dati
gt dormateg

ourpst tormat uii,
Fomal changs

& (et Monih
@ Gelvear
@ ool Vi Worth [

o

CEA R Inwacs GLPasng Da be

o)

ol

@ Now -
| s

et

.-Gmphir.al dava |
El
]

HHmm:ss

[®

yrrr-H-dd

[IPropertie:

'.
Zoom: 100% eady

formt

Chapter 5. Customizing a map 129

Figure 58. Input Date Format

7. Activity Editor provides three predefined Date formats: yyyyMMDD
HH:mm:ss, yyyyMMDD, and yyyy-MM-dd. If the desired date format is not
one of the three predefined formats, you can specify the date format you want
by using a Constant. A Constant is a graphical component in which you enter
text directly and use the text as input to function blocks or ports.

Example: In our example, we want the Format Change function block to
change the date format to yyyyMM.dd G “at’ Hh"mm"ss z. This is not one of
the predefined formats, so we will create a New Constant component in the
activity canvas by dragging and dropping the New Constant icon (located
under the System category) from the Content window to the activity canvas.
shows the result of this action.

BB Map Desipnes Express - Activity Editor - ObgAR Invoice.GLPostingDabe® T m
[0 3t g ook 10
@@ +xomele||sst|@|ad
. Ly fall | -
S G Goona [
0 AP DbjClarity_OualsSchedule Price ProgExpireD
= Ca Dote biClarty_OualeSchedule. PriceProgExpineDate
+ Ca Legong and Tracng
+] C Mapping s formrual n
+}Ca Math Aoy q.. Ko dits
4 (3 Progetins e p— |,
%] 8 Aestiorshp oapt et wl
Ca Sy Fomal changs #‘1-
2 Uik | QBjARINvas GLPaslingDale
£ My Ly - EA RN ing
Ca My Colection
1) Wariskes 3
5 G Symten =
] I _lJ
g 1 ” Graphical [Jaa |
I — . = Cowstant
=2 =l - et - Thee g
Hewr Commrank RowConstant Hew NewLabel New Tol Vake:
Desaiption 8
] }
] 1]
Toom: ID0% rady o©

Figure 59. New Constant icon dropped on the activity canvas

8. To specify a constant with the value yyyy.MM.dd G "at’ Hh"mm"ss z, click the
editable area of the Constant component in the activity canvas and enter the
text yyyy.MM.dd G 'at' Hh"mm"ss z. By default, any Constant component will
have the type String (shown in the Properties window when the Constant
component is selected). However, you can change the type of the Constant by
selecting the Constant and using the combo box in the Properties window.

130 Map Development Guide

shows the New Constant icon with the text value entered.

B} Map Desires Express - Activity Editor - DbgAR Invoice.GLPostingDate® =10 =l
[Bie B o ok pee |
@@ nde 2|« t|a6s
(. Ly L -
& Genmal w@w
3] Cm AP
+10n Dae ObjClanty_OualeSchedule PriceProgExpireDabe
4 08 Leggng and Tracng
#] [Mapping e ot
+}C3 Math iy
+] C3 Progestiss wyyyMMdd Inpat format e,
+] [Relstiorship vt format s
+1 03 Sty Fomat changs Ib‘ =
+ Co Uiie
3 MyLisy VP M A3 O “a’ EH e 2] |_b QLjARINvoss, GLPosling Dale
3 My Colection
o} G Wansbles
[G Syten =
| I _l'J
H 1 ” Graphical darva |
® P r . r = Comadant
=2 =l - et - Thee g
Hewr Commrank RowConstant Hew NewLabel New Tolo Vake: Yy MM G R s T
Desar
] ;
| 8]
Toom: 100% Reacy oL &

Figure 60. New Constant with text entered

9. To continue to specify that we want the output format of the Format Change
function block as yyyyMM.dd G ‘at’ Hh"mm"ss z, we define a connection link
between the Constant component and the output format of the Format

Change function block

Result: We have completed the activity definition that will change the date
format of the source attribute to a new date format and assign it to the

destination attribute.

10. To add a comment or description to remind us later what this activity does,
we can add a Description component to the activity and enter a description.

Tip: Use the Context menu in the graphical canvas and select Add

Description, or drag the New Description

icon under the System folder in the
Content window and drop it onto the activity canvas. shows how to
add the Description component using the Context menu.

B Map Desires Enpress - Activity Edior - DbjARTnvose.GLPostingDate® I8
| e B3y Toch e J
@@ |+ahe|e|ssoa|ad
e | i
5o tows []
] G APY:
7 _—: Dn: rify_CuotaSchadul, PricaProgEspaslats
0 date e [o Wormanied dats
e Legoing aed Tracing ¢ formas mm--u.n
+] [Mapping cupet formal g
+1 03 Math MMdd Formai change M
[+ G 5 e
aa :m AR Ivos GLPoS!
Gl S
+ Ca Uiy Constant
En Hy Ly Py MM 0w Hi e =
Ca My Celaction * Lol
) i Werisbhes [—
O A =
R | A4 Ta b .rJ
= R i
4l | | Graphical Hava|
- — N = | Lot CrpATTricn L PotrgOmie
[=) = [- | Dase it
bt Commant. Hewe Constant e Mo Lol Mew T
Description |
] i
| o
Toom: 100 mady i

Chapter 5. Customizing a map 131

Figure 61. Adding a Description using the Context menu

Result: The Description component will be created in the graphical canvas.
Enter the description in the Description component by clicking on the editable
area of the component and typing directly into the component. You can resize

the Description by clicking and moving the lower right-hand corner of the
Description component.

1.

igure 62|shows adding the Description.

FEFET R e
(4 Libvay 1) =
o laed =N]
;': DtjClasity_ CuocteSchedule PriceProgExpueDale
e dainek lrmurad dace
5 Logging and Tiacing (- fus forraieg
S = @
1 Ca b -
i ryyMMdd Formad change
ta h OejARinvoics GLFoslingDate
[3 ey
[EHEa Uiten D crphion
1 Mylbey Ty MM 40 o HH s 3 5
- Chagy the Sarmat of the Dule from “2UE015" 1o
S My Colecton 4I" 20309 1% AVt 00.0000 PDT |
G Vet
Ca Sy
-
| 1 X
Ll 151]| Oreghic Pl
£ = Deserptan
G @ G @ . s o bt o o 1S
¥ Cote Loggrged Magong Hath
Trsang
! Relatinito g Lares s
[« 1 2|0
T N0 By

Figure 62. Adding the Description

12. Save the activity by selecting To Project or To File from the File-->Save

submenu or by clicking the Save Map to Project or Save Map to File button in
shows saving the activity.

the Standard toolbar.

B Map Desiper Esipiess - Activity Editor - ObjAR Invosce.GLPGStngDste
[3 powr ook 1o |
JJ-’JH’LDEB 2|« e|ajas|
G [zave to] = A
o =N
G AR
& g . rily_QuotaSchadute PricaProgEREslatn
& date | b lomaned date
cra :‘MNT'M fesmiat g formad
[+] Gl Mepping par—
EH Mg Farmat change “
e Frsa YA
,‘52 [OtjARInvoxs GLPoat
[elstiorship.
L Sy
[+ G Utitieg Desaripson
3 HyLibesy oy MM A O ' HH s = .
Chege the format of the Date from “2000001 5
G2 MyColaction g* % "2003.09 15 A Dt 00.0000 FOT*
G Weridtkes
L Syem
»
Lej I ;l"
1 ||| Graphical [daea |
= . — - Brm CitjARirrecice L PreirgDale
= = - = - § Descrton
bow Comment. How Constont ew Nemlabd Mo Tola
Beseription E’
- [s]
Toom; 0% Sivn cusrank a0 Fle «

Figure 63. Saving the activity

132 Map Development Guide

Example 3 of using the Activity Editor
The following example illustrates using the Static Lookup relationship function
block in Activity Editor.

In the WebSphere InterChange Server Express, a static lookup relationship

normally consists of two or more relationship tables. For example, consider a
system that consists of three end-applications, as shown in

PeopleSoft
Application
SAP CA --> 1
Application > WBIICS Express
Clarify
1--> State1 | Application

Figure 64. Static Lookup relationship with three end-applications

Each of these three applications has a different representation for "State”
information, as shown in [Table 53|

Table 53. Application-specific representation of state information

California
Washington
Hawaii
Delaware

SAP application PeopleSoft application Clarify application
CA 01 Statel
WA 02 State2
HI 03 State3
DE 04 State4

When state information is sent to the WebSphere business integration system from
the SAP application, SAP specified-state code is sent to ICS. But when ICS needs to
pass this information to other applications, the state information has to be
converted to the format that the target application understands. In order to do this,
the system needs a generic representation of the "State” information. With the
generic representation, the system can process business logics in a generic, unified
manner; and the generic representation will be converted to the application-specific
format only when needed.

Thus, in the preceding example, we would create a static lookup relationship for
doing this "State” conversion, with the application-specific data as WebSphere
business integration-managed participants. With this setup, a generic ID is used to
represent the state information in the WebSphere business integration system.
shows this representation.

Table 54. Generic representation of state information

Generic ID SAP application PeopleSoft application Clarify application
California 1 CA 01 Statel
Washington 2 WA 02 State2
Hawaii 3 HI 03 State3
Delaware 4 DE 04 State4

Chapter 5. Customizing a map 133

Application-specific data is converted to the generic ID as it enters the ICS system,

and the generic ID is converted to application-specific data as it exits the
system.This data conversion is shown in

PeopleSoft
Application
SAP
Application *| WBI ICS Express
Clarify
Application

Figure 65. Data conversion from application-specific to generic to application-specific

The ID conversion is usually done in maps that convert application-specific
business objects to generic business objects, or vice versa. For example in the
SAP-to-Generic map, we would do a static lookup for the data "CA” and convert it
to the generic representation that ICS understands, "1". And in the
Generic-to-Clarify map, we would instead do a static lookup for the generic data
"1" and convert it to "Statel”. In either map, only one static lookup is required.

shows how to use the Static Lookup function block to convert the
SAP-specified state data to the ICS generic state data for processing in ICS.

s i
relationship name =) %, =) lookup value
SapPrt participant name =)
34‘ ————— inbound? =p N ﬁl=>

source value =y

StateRel

. . i Stat
true Static Lookup ObjGeneric.State

2

» _léi

ObjSAP.State

Figure 66. Using static lookup function block to convert SAP-specific state data to ICS-generic state data

Similarly, the Static Lookup function block is used to convert the ICS-generic state
data to Clarify-specific state data in the Generic-to-Clarify map. This is shown in

134 Map Development Guide

Figure 67

StateRel

. i
relationship name =p =) lookup value
ClarifyPrt participant name =)
éji inbound? = N Qlé

source value =)

Static Lookup ObjClarify.State

false

2

éjé

ObjGeneric.State

Figure 67. Using static lookup function block to convert ICS-generic state data to Clarify-specific state data

Normally, in a static lookup relationship, we convert application-specific data to
generic data, or generic data to application-specific data. In these scenarios, only
one Static Lookup function block is used. But in the special cases where you want
to directly lookup a name-value pair, then two Static Lookup function blocks are
required.

For more information on defining and using static relationships, see |Chapter 7
[‘Creating relationship definitions,” on page 167

Working in Java view

If Map Designer Express opens the Activity Editor with an activity definition that
contains only custom Java code, the Activity Editor displays the activity definition
in Java view. Similar to Graphical view, the Activity Editor is available in Java
view in two display modes: Design mode and Quick view mode.

* Design mode: In Design mode, the Java view of the Activity Editor contains the
main Java WordPad for viewing and editing custom Java code to provide the
definition for the activity. The WordPad is contained in a tabbed window area.
In addition to the regular editing options in a WordPad (Cut, Copy, Paste,
Delete, Select All, Undo, Redo), the Java WordPad provides syntax highlighting
for the Java Programming language.

By default, comments are green, string literals are pink, and keywords are blue.

Tip: You can customize the syntax highlighting schemes in the Preference dialog.

Chapter 5. Customizing a map 135

shows the Java view in Design mode.

B} Map Diesigner Express - Activity Editor - Dbjlontact.Lasthame : =loj =i
[e e vew Toos 1
@@|+md=|2||++t|aas

1 -
Brring war 32 = nalls
Sreing wae_38 = nall:
String var_J4 = nall:
i
var 3% = CbjClarify Comtact.get|"Lastheos™) == pull 7 % ; (biClarify Contact.get (“Lasties
1
var_38 = var 32.coUppecCase():
war_34 = var 38
[
{
Busth) destBustb) = dbidontects
String dastAtor = "L Mases™)
£
A Set the destination value only if meither
S/ acurce nor destinavion are null.
£
AL [[¥ar_34 '= null) &4 (destBusOb) '= mull]) {
if [dataValidaciomLevel == 1} {

if [!0bjContact.validbate (“LestHane”, vac_34)) i
:F Loy & waening sbeur ehis failuce.
| “] ;I;I
Graphical Java I
Toom: 100% Raady M W g

Figure 68. Java view in Design mode

* Quick view mode: In Quick view mode, the Java view only displays the

WordPad. shows the Java view in Quick view mode.

Activity Editor : |

String wvar_ 32 = null:;
String war 38 = null:
String war 34 = null:
{
var 32 = Chjclarify Contact.get ("Lastlame"”) == null 2 "7
b
var 38 = war 3Z.tolUppercase(]:
var 34 = wvar 35;
{
{

Busthj destBusCh) = ChjContact: -
1| | 3
Graphical Java
Zoam: 100%. Ready 20 54 » 4

Figure 69. Java view in Quick view mode

Tip: To change from Quick view mode to Design mode, click the >> button on the
status bar. If you do not see the >> button, resize the Quick view window
horizontally until the button appears.

Importing Java packages to Interchange Server Express

In addition to using the standard function blocks that Activity Editor provides,
Map Designer allows you to import your own Java library for use as function
blocks in Activity Editor. Importing custom Jar libraries into activity settings will
enable any public methods in the Jar library to be used as function blocks in
Activity Editor.

136 Map Development Guide

Steps for importing Jar libraries as activity function blocks

Before you begin: You need to export your Java classes into a .jar file.

Perform the following steps to import a Jar library into Activity Editor:

1. In System Manager, open the Activity Settings view by clicking
Window-->Show View-->Other... and selecting Activity Settings from the
category WebSphere Business Integration system Manager.

2. Right-click BuildBlock Libraries and select Add Library. shows the
Activity Settings view for adding a custom Jar library.

B nctivity Settings

E-{2] Activity Editar Settings
38 ¥ EuildBlock Libraries

-l My Collections M

Caonsole |Lcu; Okpuk l.ﬁ.ctivity Settings I

Figure 70. Activity Settings view

3. In the Open File dialog box, navigate to your custom .jar files and select Open.

System Manager will try to import your custom .jar file for use as function
blocks in Activity Editor. If the file is imported properly, the name of your
custom .jar file will appear under BuildBlock Libraries in the Activity Settings
view.

Tip: After you import your custom .jar files into Activity Settings, when your
maps and collaboration template compile in System Manager, the custom .jar
file will automatically be included into the compile CLASSPATH. To prepare
InterChange Server Express for compilation, make sure that its CLASSPATH
includes your custom jar file. For information on setting up Interchange Server
Express for importing your custom .jar files, see [“Importing third-party classes|
[to Interchange Server Express” on page 139

Result: When you open Activity Editor, the custom Jar library will be listed in the
Library window under My Library in Activity Editor. By default, available custom
function blocks are listed according to their package structure. You can use them in
an activity the same way as standard function blocks.

Rule: After you change any settings in the Activity settings view, you must restart
Map Designer Express for the change to take effect in Activity Editor.

Customizing display settings of custom Jar libraries

You can customize the display settings of the function blocks imported to Activity
Editor, such as its name and icon, by changing the custom Jar library’s properties.
Perform the following steps to do this:

 Display the Properties window for the custom Jar library by right-clicking on
your custom Jar library listed under BuildBlock Libraries in the Activity Settings
view in System Manager.
Result: When the Properties window for the custom Jar library is opened, it will
list the available function blocks in this custom library in a tree structure on the
right-hand side of the dialog. The available function blocks are listed as child
nodes under the Java class and package that contain them.

Chapter 5. Customizing a map 137

For the Java package and classes, you can customize the display name of the entry
and whether Activity Editor should display this Java package/class in the My
Library tree structure by changing the check box "Hide level in tree display.” If this
option is enabled, Activity Editor will not display this entry in the My Library
subtree. This option is usually useful when the Java methods in your custom Jar
library are in a Java class that is in a package many levels deep, and enabling this
option can better organize your My Library subtree in Activity Editor.

shows the dialog for customizing the Jar library display.
8 UnzipUtils L x|

FileARtils

shakic wold copyToFolder(F
static void trarsferctream: Hame: IF"-‘LNS

static v deleteDirectory I Fide Leval in trae display
static woid extractTipContt

static void copyFile(Sring,

static void main{String()

shakic byte{] writeFle(Strir

stakic String QatExbenssn]

static voud copy ToFolder(S

shatic void copryFile(File, Fi

stakic byte]] readFils(Strin

static void extractAlZioFile

static String gethamednily
Fibeliils()
Ll | i

Figure 71. Properties dialog for customizing Jar library display

For those Java methods used as function blocks in Activity Editor, you can specify
the function block display name, description, icon, and parameter’s display name
in the Properties window. When you choose to import an icon for the function
block, the icon that you choose will be copied into the Activity Settings folder and
will be available for other function blocks in the same package to use.

Recommendation: If you choose to import an icon for your function block to use,

the icon should be 32 pixels by 32 pixels in size and should be in .bmp format. The
color depth of the icon can be up to 24-bit.

138 Map Development Guide

shows the Properties dialog for customizing the Jar library function block

display.
&5 Unziputils x|
[SFklil shakic void copyToFolder(File, File)

ETTTEE——
stabic woid transfertream: Name: | coery To Folder
static void deletelactory o L TES Yo Fokder
stakic vold endract BpCorke o work o1 1o
static veid copyFie(String,
stakic woid man(String[T Teon
static bte]] vk aFis{Stir
stabic String getExtensiond 2 [convert_rkeger ko =
stahic void copyToFokden(S i~ o M
stabic woid copyFile(Fie, Fi Import... |
static ote(] readFile(Strin
shatic void estract TpFiE
stabic String getidametnhn
FimiRis()

Function Block Parafistars:

Farameter | Type | Name | Edt...

@ Input

i fawa.io File Fre fle
[} pava.io.File taFle
KN I |
[]_cwes |

Figure 72. Properties dialog for customizing Jar library function block display

Rule: After you change any settings in the Activity settings view, you must restart
Map Designer Express for the change to take effect in Activity Editor.

Importing third-party classes to Interchange Server Express

If the imported classes are in a third-party package rather than in the JDK, in order
to set up the server compile, you must add them to the path of the imported
classes in the JCLASSES variable.

Recommendation: You should use some mechanism to differentiate those classes in
JCLASSES that are standard from those that are custom.

Example: You can create a new variable to hold only those custom classes and
append this new variable to JCLASSES, by performing the following steps:

1. Create a new map property, such as one called DEPENDENCIES.
2. Place the CwMacroUtils.jar in its own directory.

Example: Create a dependencies directory below the product directory and
place the jar file in it.

3. Add the dependencies directory to the file used to start ICS (by default,
start_server.bat or CWSharedEnv.sh), which is located in the bin directory
below the product directory. For example, add the following entry for UNIX:

set DEPENDENCIES=$ProductDir/dependencies/CwMacroUtils.jar

Add the following entry for Windows:

set DEPENDENCIES="%ProductDirS%"\dependencies\
CwMacroUtils.jar

4. Add DEPENDENCIES to the JCLASSES entry:
For UNIX, add:
set JCLASSES=$JCLASSES:ExistingJarFiles:$DEPENDENCIES

For Windows, add:

Chapter 5. Customizing a map 139

set JCLASSES=ExistingdJarFiles;%DEPENDENCIES%

5. In each map that uses the classes, include the PackageName.ClassName specified
in the CwMacroUtils.jar file.

6. Restart ICS to make the methods available to the maps.

Guidelines: When importing a custom class, you may get an error message
indicating that the software could not find the custom class. If this occurs, check
the following:

* Check that the custom class is part of a package. It is good programming
practice for custom classes to be placed in a package. Make sure that the custom
class code includes a correct package statement and that it is placed at the
beginning of the source file, prior to any class or interface declarations.

* Be sure that you have updated the CLASSPATH environment variable to include
the path to the package containing the custom class, or to the custom class itself
if it is not in a package.

Example: When importing a custom class, you might create a folder called
%ProductDir%\1ib\com\<ProductDir>\package, where package is the name of your
package. Then, place your custom class file under the folder you just created.
Finally, in the CLASSPATH variable in the start_server.bat file, include the path
%ProductDir%\1ib.

Using variables

A variable is a placeholder for a value in the Java code. This section provides the
following information about using variables in transformation code:

+ |[“Using generated business object variables and attributes”|

+ |“Using temporary variables” on page 142|

Using generated business object variables and attributes

This section provides information about generating business object variables for the
source and destination business objects.

Generating business object variables
When you add a business object to the map, Map Designer Express automatically
generates the following:

¢ An instance name

The instance name that Map Designer Express generates is a system-declared
local variable that you can use to refer to this business object in the mapping
code. It is prepended with the letters Obj, which is followed by the name of the
business object definition.

Example: If you add Customer to the map, its instance name is ObjCustomer.
Map Designer Express generates an instance name for both the source and
destination business objects.

* An index for the business object within a business object array (if the business
object is multiple-cardinality)

The business object index represents the order of this source or destination
business object. The index number of the first source and destination business
objects in a map is zero. Additional business objects take the next available
index number, such as 1, 2, 3, and so on.

When the map is executed, the index number represents the position of the
business object in the array that is passed into the map (source business objects)
or returned by the map (destination business objects).

140 Map Development Guide

Map Designer Express displays this information in the following locations:
* In the Business Objects tab of the Map Properties dialog

Right-click the title bar of the business object window and select Properties from
the Context menu. The Map Properties dialog appear with the Business Objects
tab displaying and the selected business object highlighted in the list. This tab
displays both the instance name and its index within the business object array (if
the business object is multiple cardinality).

* In the Table tab—in the business object pane

* In the Diagram tab—in the title bar of the business object window in the
following format:

The title bar displays the instance name for the business object.

Note: You can specify whether Map Designer Express displays the names of the
variables for the source and destination business objects with the option
Defining Map: show business object instance name. By default, this option
is enabled and Map Designer Express displays these variable names
(0bjBusObj) in both the Table and Diagram tabs. When the option is
disabled, Map Designer Express only displays the names of the source and
destination business objects. You can change the setting of this option on the
General tab of the Preferences dialog. For more information, see _”SEecifiiné]
[General Preferences” on page 20)

You can modify these business object variables from the Business Objects tab of the
Map Properties dialog (see Figure 73)

Map Properties E

General Businesz Objects |

— Business Objects:

Business Object I Role I

The Business ObjeCtS area @ biLegacAddress Drestination
contains the name of each __|

business object variable.

— [Properties
To modify the index or instance ; ; o
P H . Business object definition name: IAddIBSS
name, highlight the business
object in the Business Objects Ehange... |
area and change the]
appropriate fleld in the Business object jnstance name: IDbiAddress
PrOpertleS area. Business object index: ID _,::'
()8 I Cancel

Figure 73. Business Objects Tab of the Map Properties Dialog

You can display the Business Objects tab of the Map Properties dialog in any of the

following ways:

e From the Edit menu, select Map Properties. For information on other ways to
display the Map Properties dialog, see [‘Providing map property information” onf
The General tab of the Map Properties dialog box appears. Click the
Business Objects tab.

Chapter 5. Customizing a map 141

* From the Diagram tab, right-click the business object window and select
Properties from the Context menu.

Using temporary variables

Map Designer Express lets you create temporary variables that can be accessed in
transformation steps throughout the map; that is; temporary variables are global to
the map. For example, you can calculate a value in one transformation step, store it
in a temporary variable, and reference the variable in another transformation step.
This is especially useful if a certain calculation is performed repeatedly; you can
perform the calculation once, store the result in a temporary variable, and retrieve
the value as needed (for example, with a Move transformation).

Temporary variables are defined within a temporary business object. You create a
temporary business object from the Temporary tab of the Add Business Object
dialog. To display the Add Business Object dialog, perform the following steps:

1. Select Add Business Object from the Edit menu.

For information on other ways to display the Add Business Object dialog, see
[“From the Add Business Object dialog” on page 32|

Result: The General tab of the Add Business Object Properties dialog box
appears.

2. Click the Temporary tab. shows the Temporary tab of the Add
Business Object dialog.

Add Buziness Object E3

General Temporary |

Attribute Type

Add Temparary Buzinesz Object

Done |

Figure 74. Temporary tab of the Add Business Object dialog

Through the Temporary tab of the Add Business Object dialog, you specify the
temporary variables. To define a temporary variable:

1. Map Designer Express generates the temporary business object’s name and
displays it in the Name field. This field is read-only. The first generated name
is ObjTemporary.

2. Click in the Attribute field.

Result: A new row appears in the variables table. Enter the name of the
temporary variable.

142 Map Development Guide

Note: Do not create two temporary variables with the same name.

3. Click the Type field and select the temporary variable’s data type from the
pull-down list.

Note: To be compatible with the ICS data type scheme, all temporary variables
have an internal type String. The data type specified in the Add Business
Object dialog will affect only how the variable is initialized. If you want
to write custom Java code to assign values to the temporary variable, the
value has to be converted to a String first.

4. Repeat steps El and Elfor each of the temporary variables you need in the map.
5. Click the Add Temporary Business Object button.

6. You can either define another temporary business object or click Done to finish.

Once Map Designer Express creates the temporary business object, this business
object appears in the Table and Diagram tabs with the map’s other business
objects, as follows:

¢ From the Table tab:

— The business object pane adds a new area for the temporary business object.
You can right-click the name of the temporary business object to get a Context
menu that provides options to edit and delete this business object.

— The temporary business object and its attributes appear in the combo boxes of
the Source Attribute and Dest. Attribute columns in the attribute
transformation table.

¢ From the Diagram tab, the map workspace adds a new business object window
for the temporary business object.

This Temporary business object window has many of the same characteristics as
a business object window. Variables you create appear in the variables table just
like attributes in a business object. This business object window provides a Rule
and Comment column where you can add the temporary variable’s
transformation code and comment, respectively.

You can right-click in the title bar of the Temporary business object window to
get a Context menu that provides options to edit and delete this business object,
as well as its properties.

To specify a value for the variable, copy the value from a business object
attribute to the variable by holding down the Ctr1 key and dragging the
attribute onto the variable name. You can also split and join attributes into a
variable.

Note: A temporary business object also appears in the Business Object tab of the
Map Properties dialog.

You use the temporary variable in a transformation step in this way:
* In the Diagram tab:
— Click the row header (left-most) column of the temporary attribute.

— Copy the variable value to an attribute by holding the Ctr1 key and dragging
the variable onto the attribute.

Important: Because a temporary variable is a global variable, you must explicitly
initialize a temporary variable to null when using the Map Instance
Reuse option. Otherwise, the value of the temporary variable from a
previous execution of the map instance can incorrectly be used as the
value of the temporary variable in subsequent executions of the same

Chapter 5. Customizing a map 143

map. When you do not use the Map Instance Reuse option, the
InterChange Server Express system automatically initializes temporary
variables between separate invocations of the map.

Reusing map instances

Typically, the map development system creates an instance of a map to process
each transformation of data between the source and destination business objects.
When the instance completes the handling of the transformation, the system frees
up its resources. To reduce memory usage, the IBM system recycles an instance of
a map instance by caching it and reusing it when the same type of map is
instantiated at some later time. When the IBM system can recycle an existing map
instance, it can avoid the overhead of map instantiation, thereby improving overall
system performance and memory use.

The map development system automatically caches a map instance; that is, a map
instance uses the Map Instance Reuse option by default.

Requirement: The Map Instance Reuse option imposes the following requirement
on the map: If your map requires global variables, avoid initializing these global

variables at declaration time. Instead, ensure that the global variables are always

initialized at a map node, preferably the first transformation (attribute) node in a
map.

Attention: A map containing global variables that are not initialized at the first
transformation node cannot safely be recycled because the variable
values in the cached map instance persist when the instance is reused.
When the cached map instance is reused and begins execution, each
global variable contains the value from the end of the previous use of
the map instance.

If you cannot define your map so that it meets the preceding restrictions, you must
disable the Map Instance Reuse option for this map. To disable this option, remove
the check mark from the Map instance reuse box, which appears in the map’s
Map Properties window in System Manager. This window also allows you to
specify the size of the map-instance pool. For more information on the Map
Properties window of System Manager, see the User Guide for WebSphere Business
Integration Express for Item Synchronization.

Note: Deploying the map to the server will not update the run-time instance. You
can update the map properties dynamically from the server component
management view by right-clicking on the map and selecting the properties
from the Context menu. The changes will be automatically updated to the
server.

Handling exceptions

An exception represents an occurrence that, if not handled explicitly within the
map, stops the map’s execution. During the execution of a map, run-time
exceptions can occur. When you define a custom transformation rule, you can use
the "Catch Error” function block to trap any run-time exception. Once you catch a
particular exception, you can determine how to handle this exception.

144 Map Development Guide

Relationship exceptions

When using relationships in a map, several exceptions can occur. All of these
exceptions are subclasses of RelationshipRuntimeException. If you are not
concerned about the kind of exception, but simply want to catch them all, you can
catch RelationshipRuntimeException. Otherwise, you can catch any of the
following exceptions for specific cases:

e RelationshipRuntimeDataAccessException—thrown if a problem occurs while
accessing the relationship database. You might catch this exception in any
method call from the Relationship or Participant class.

e RelationshipRuntimeDuplicateldentityEntryException—thrown if you try to
add a participant to an identity relationship with the same relationship instance
ID as an existing relationship instance. You might catch this exception in
|addMyCh1' Tdren ()| and |create ()|method calls.

RelationshipRuntimeUserErrorException—is an abstract exception. It is thrown
only if a RelationshipRuntimeMetaDataErrorException or
RelationshipRuntimeGeneralUserErrorException occurs. You might catch this
exception in any method call from the Relationship or Participant class during
map development. Once the map is debugged, you can remove the handlers for
this exception.

RelationshipRuntimeMetaDataErrorException—thrown if an error occurs while
manipulating the meta-data associated with participant instances, such as the
relationship name or participant definition name. You might catch this exception
in any method call that adds, modifies, or deletes participant instances.

* RelationshipRuntimeGeneralUserErrorException—thrown if there is an error in
the run-time data supplied with a ReTationship or Participant class method
call.

Example: The exception is thrown if you pass a business object of the wrong
type to the method.

illustrates the relationship run-time exception hierarchy. Any exception
you catch automatically catches those that are lower in the hierarchy. However, if
an exception lower in the hierarchy is thrown, you cannot know exactly which one
it is unless you catch it specifically.

RelationshipRuntimeException

RelationshipRuntimeDataAccessException

RelationshipRuntimeDuplicateldentityEntryException

RelationshipRuntimeUserErrorException

RelationshipRuntimeMetaDataErrorException

RelationshipRuntimeGeneralUserErrorException

Figure 75. Relationship run-time exceptions

Chapter 5. Customizing a map 145

Example: If you catch RelationshipRuntimeUserErrorException, you automatically
also catch RelationshipRuntimeMetaDataErrorException and
RelationshipRuntimeGeneralUserErrorException. However, you cannot easily
know which one of these was actually thrown, unless you test the exception with
the instance of operator. The exception you choose to catch depends on how
specific you want your exception handling to be.

Creating custom data validation levels

When values are mapped from one business object to another based on
transformation code, incorrect data can result. The data validation feature checks
each operation in a map and logs an error when data in the incoming business
object cannot be transformed to data in the outgoing business object according to
certain rules.

Example: Suppose that a map transforms a string value in the source business
object to an integer value in the destination business object. This type conversion
works properly when an incoming string value represents an integer (for example,
“1234” represents the integer 1234). However, the conversion does not work
properly if the string value does not represent an integer (for example, “ABCD”
might indicate invalid data).

Coding a data validation level

The map development system defines data validation levels 0 and 1; levels 2 and
greater are available for you to define. [Table 55|summarizes the data validation
levels:

Table 55. Data Validation Levels

Level Description

0 Default; no data validation

1 IBM-defined data type checks
2 and greater User-defined validation checks

Understanding map execution contexts

Each map instance executes within a specific execution context that is set by the
connector controller. The Mapping API represents the map execution context with
an instance of the MapExeContext class.

For every map that Map Designer Express generates, the map’s execution context
is accessible through a system-defined variable named cwExecCtx. You can
reference this variable in the Variables folder in the Activity Editor.

Calling contexts

The calling context indicates the purpose for the current map execution. When
transforming relationship attributes, you usually need to take actions based on the
map’s calling context.|Table 56 lists the valid constants for calling contexts.

146 Map Development Guide

Table 56. Calling contexts

Calling-context constant Description

EVENT_DELIVERY The source business object(s) being mapped are event(s)
from an application, sent from a connector to
InterChange Server Express in response to a
subscription request (event-triggered flow).

ACCESS_REQUEST The source business object(s) being mapped are calls
from an application, sent from an access client to
InterChange Server Express (call-triggered flow).

ACCESS_RESPONSE The source business object(s) being mapped are sent
back to the access client in response to a subscription
delivery request.

SERVICE_CALL_REQUEST The source business object(s) being mapped are sent
from InterChange Server Express to an application,
through a connector.

SERVICE_CALL_RESPONSE The source business object(s) being mapped are sent
back to InterChange Server Express from an application
as a response to a successful service call request.

SERVICE_CALL_FAILURE The source business object(s) being mapped are sent
back to InterChange Server Express from an application
after a failed service call request.

You can reference these calling contexts as constants in the MapExeContext object
that is available in every map that Map Designer Express creates.

Example: You reference the SERVICE_CALL_REQUEST calling context as
MapExeContext.SERVICE_CALL_REQUEST.

illustrates when each of the calling context occurs in an event-triggered
flow. Event-triggered flow is initiated when a connector sends an event to a
collaboration in InterChange Server Express.

SERVICE_CALL_RESP

EVENT_DELIVE SERVICE_CALL_RE Destination
Source » | InterChange » | Connector
Connector Server
Express

S~

Figure 76. Calling contexts in an event-triggered flow

As shows, any mapping request coming from a connector to InterChange
server (that is, a map from application-specific business object to generic business

object) has a calling context of EVENT_DELIVERY. Any mapping request coming from
InterChange server to a connector (that is, a map from generic business object to
application-specific business object) has a calling context of SERVICE_CALL_REQUEST.
Mapping requests sent by connectors in response to a collaboration’s service call
request can have contexts of SERVICE_CALL_RESPONSE or SERVICE_CALL_FAILURE.

Chapter 5. Customizing a map 147

illustrates when each of the calling contexts occurs in a call-triggered
flow. Call-triggered flow is initiated when an access client sends a direct Server
Access Interface call to a collaboration in InterChange Server Express.

ACCESS_RESPONSE SERVICE_CALL_RESPO

Client

ACCESS_REQUE { \ SERVICE_CALL_REQ Destination
Access .| InterChange Connector

Server
Express

A 4

Figure 77. Calling contexts in a call-triggered flow

As shows, any mapping request coming from an access client to
InterChange server (that is, a map from application-specific business object to

generic business object) has a calling context of ACCESS_REQUEST. Any mapping
request coming from InterChange Server Express to an access client (that is, a map
from generic business object to application-specific business object) has a calling
context of ACCESS_RESPONSE.

Original-request business objects

Another important part of the map’s context is the original-request business object.
This business object is the one that has initiated the map execution. [Table 57| shows
the calling contexts and the associated original-request business object.

Table 57. Calling contexts and their associated original-request business objects

Calling context

Original-request business
Original-request business object object from example

EVENT_DELIVERY, ACCESS_REQUEST Application-specific business object that came in AppA-specific

SERVICE_CALL REQUEST,
SERVICE_CALL_FAILURE
SERVICE_CALL_RESPONSE

ACCESS_RESPONSE

from the application

Generic business object that was sent down from Generic
InterChange Server Express

Generic business object that was sent down by ~ Generic

the SERVICE_CALL_REQUEST

Application-specific business object that came in ~AppA-specific
from the access request initially

For example, the generic business object is the original-request business object for
maps that execute with a calling context of SERVICE_CALL_RESPONSE,
SERVICE_CALL_FAILURE, or SERVICE_CALL_REQUEST. These maps use the generic
business object to store relationship instance IDs for the relationship attributes
being transformed. Having the relationship instance IDs is necessary for the map
to look up the relationship instance and fill in the relevant participant data for
newly created or updated objects.

Example: The following example illustrates how this might work in a customer
synchronization scenario. Suppose you are using the system to keep data

148 Map Development Guide

synchronized between Application A and Application B. Both applications store
customer data, and the customer ID attributes are managed using a relationship.
For the purposes of this example, details about the collaborations and connectors
involved are omitted.

When a new customer is added in Application A:

1. A map transforms an AppA-specific business object to a generic business object
with a calling context of EVENT_DELIVERY.

When transforming the customer ID attribute, the map creates a new
relationship instance in the customer ID relationship table and inserts the new
relationship instance ID into the customer ID attribute of the generic business
object.

2. A map transforms the generic business object to a AppB-specific business object
with a calling context of SERVICE_CALL_REQUEST.

No changes occur to the relationship tables. Application B successfully adds the
new customer to the application.

3. A map transforms the AppB-specific business object to a generic business object
with a calling context of SERVICE_CALL_RESPONSE. The context for this map
execution includes the generic business object generated in step .

The reason for this execution is to fill in the new participant data for the
relationship instance created in step |1} In this case, the new participant data is
the customer ID for the new customer added to application B.

illustrates when the map execution for each step occurs for a
call-triggered flow that successfully adds a new customer ID to Application B.

1. AppA-specific to

i . AppB- ifi
Generic, InterChange genr;p;ic specific to
Server
Express

Application A Application B
Connector 2. Generic to AppB- r Connector
specific

Figure 78. Example of Calling Contexts

Chapter 5. Customizing a map 149

150 Map Development Guide

Part 2. Relationships

© Copyright IBM Corp. 2003 151

152 Map Development Guide

Chapter 6. Introduction to Relationships

This chapter provides an overview of WebSphere business integration relationships
and the relationship development process.

This chapter covers the following topics:

* |“What is a relationship?” on page 153|

» |“Relationships: A closer look” on page 159

+ [“Overview of the relationship development process” on page 165|

What is a relationship?

When attributes in a source and destination business object contain equivalent data
that is represented differently, the transformation step employs a relationship. A
relationship establishes an association between data from two or more business
objects. Each business object is called a participant in the relationship.

The data that you typically transform using relationships are:
* ID numbers, such as a customer ID or product ID
* Other values represented as codes, such as country, currency, or marital status

Suppose application A uses sequential integers for customer IDs, and application B
uses generated customer codes. TashiCo has a customer ID of 806 in application A
and A100 in application B. To transfer customer ID data between applications A
and B, you can create a relationship among the application A customer business
object, the generic customer business object, and the application B customer
business object, based on the customer ID attributes.

This relationship establishes an association between customers from application A
and application B, based on the key attributes of their customer business objects. In
each box represents a participant in a relationship called CustIden.

Participant
Application A

Participant
Generic Customer

Participant
Application B

Figure 79. Relationship with three participants

Relationships are classified into the following categories based on the type of data
in the participant and the number of instances of each participant that can be
related:

© Copyright IBM Corp. 2003 153

* A lookup relationship establishes an association between data, such as attributes in
business objects. The data can be related on a one-to-one, one-to-many, or
many-to-many basis. Lookup relationships typically transform non-key attributes
whose values are represented with codes, such as marital status or currency
code. Use a lookup relationship if these attribute values are static; that is, new
values are not often added or existing values removed.

* An identity relationship establishes an association between business objects or
other data on a one-to-one basis. For each relationship instance, there can be only
one instance of each participant. Identity relationships typically transform the
key attributes of business objects, such as ID numbers and product codes. The
relationship in is an example of an identity relationship. Use an
identity relationship if key values are dynamic; that is, key values are frequently
added or existing values are removed.

* A non-identity relationship establishes an association between business objects or
other data on a one-to-many or many-to-many basis. For each relationship instance,
there can be one or more instances of each participant. An example of a
non-identity relationship is an RMA-to-Order transformation, in which a single
RMA (Return Materials Authorization) business object can yield one or more
Order business objects.

Lookup relationships

A lookup relationship relates two pieces of non-key data. For example, in a
Clarify_Site to Customer map, you might transform attributes whose values are
represented by codes or abbreviations, such as SiteStatus, using a lookup
relationship. In a lookup relationship, there is one participant for each
application-specific business object.

The CustLkUp relationship in establishes a lookup relationship between
customer status codes from Clarify and SAP applications. Each box represents a
participant in the CustLkUp lookup relationship. Notice that this relationship has
two participants, one for each application-specific business object.

Type: Data Type: Data

Figure 80. CustLkUp lookup relationship definition

Note: Because a lookup relationship does not indicate which attributes are being
related, its participants use a special type called Data. For more information,
see|“Participant type” on page 164

Suppose that the Clarify application represents an inactive customer with a site
status of Inactive while in SAP the corresponding value is 05. Although these
customer status codes are different, they represent the same status, as _Figure 81|
shows.

154 Map Development Guide

Active

Retired

Data

Inactive 47
Fired

Figure 81. Relationship data for the CustLkUp lookup relationship

shows the steps needed to create a lookup relationship.

Table 58. Steps for creating a lookup relationship

Creation step

1.

For more information

Define a lookup relationship in Relationship Designer I”Deﬁning lookup relationships” on page 176|

Express.

Customize mapping code to maintain the lookup

relationship.

Test the lookup relationship to verify that it is

['Using lookup relationships” on page 18§

|'Testing a lookup relationship” on page 83|

implemented correctly.

Identity relationships

An identity relationship establishes an association between business objects or other
data on a one-to-one basis. To maintain a one-to-one relationship, each business
object must have a key; that is, the object contains at least one attribute (a key
attribute) whose value uniquely identities the object. If both business objects
contain a key, they can participate in an identity relationship.

The WebSphere business integration system supports the following kinds of
identity relationships:

“Simple identity relationships’|

“Composite identity relationships” on page 157]

Both kinds of identity relationships involve relating business object attributes.
Therefore, each participant in an identity relationship has a business object as its

participant type. For more information on participant types, see [“Participant type”|
i

Simple identity relationships

A simple identity relationship relates two business objects through a single key
attribute; that is, each business object contains a single value that uniquely
identifies the object. Suppose the CustIden relationship (see is further
refined to establish an association between customers from the Clarify and SAP

applications, based on the key attributes of their customer business objects. In
each box represents a participant in this customer identity relationship.

Notice that this relationship has a participant for each application-specific business
object and the generic business object.

Chapter 6. Introduction to Relationships 155

Type:Clarify Site
Attributes: siteID

Type: Customer
Attributes: CustomerID

Type: SAP Customer
Attributes: RefID

Figure 82. Custlden simple identity relationship definition

The TashiCo company is identified with a key value of A100 in the Clarify
application while this same company is identified with a key value of 806 in the

SAP application. Although these application IDs are different, they represent the
same customer, as shows.

SitelD

A100
Al06
B312
co004

Figure 83. Relationship data for the custliden simple identity relationship

Therefore, the following maps use a simple identity relationship to maintain the
transformations between the key attributes:

* The inbound maps (between the Clarify application-specific business object and
the generic Customer business object) use a simple identity relationship to
maintain the transformation between the SitelD attribute of the Clarify Site
business object and generic CustomerID attribute of the generic Customer business
object.

* The outbound maps (between the generic Customer business object and the SAP
application-specific business object) also use a simple identity relationship to
maintain the transformation between the RefID attribute of the SAP_Customer
business object and the generic CustomerID attribute of the generic Customer
object.

shows the steps needed to create a simple identity relationship.

Table 59. Steps for creating a simple identity relationship

Creation step For more information

1. Define a simple identity relationship in Relationship [‘Defining identity relationships” on page 174]
Designer Express.

2. Customize mapping code to maintain the simple [‘Using simple identity relationships” on page 191

identity relationship.

156 Map Development Guide

Table 59. Steps for creating a simple identity relationship (continued)

Creation step For more information

3. Test the simple identity relationship to verify that it is [‘Testing an identity relationship” on page 80|
implemented correctly.

Composite identity relationships
A composite identity relationship relates two business objects through a composite

key. As the term “composite” indicates, a composite key is a key that consists of
several attributes. Values for all attributes are needed to uniquely identify the
object. A composite key consists of a unique key from a parent business object and
a nonunique key from a child business object.

Suppose a particular order from TashiCo in the Clarify application is identified
with a key value of 8765. This same order in the SAP application is identified with
a key value of 0003411. Because these two order numbers uniquely identify the
same order, their key attributes are related with a simple identity relationship.
However, an order also contains order lines. If all participating applications
identify these order lines with a unique value, a simple identity relationship can
maintain their transformations.

However, it is often the case that an application uses only the line number to
identify an order-line item. That is, each order contains a line item identified with
1, with any subsequent items numbered 2, 3, and so on. These line numbers do not
uniquely identify the order-line items. To uniquely identify such items, the
application uses a composite key that consists of the order number (from the
parent order business object) and the line number (from the child order-line
business object).

In the OrdrLine relationship establishes a relationship between order
lines from the Clarify and SAP applications, based on their composite key
attributes: the unique key attribute of their parent order business object combined
with the order-line number in their child order-line business object. Each box
represents a participant in the OrdrLine composite identity relationship. Notice that
each participant has two attributes.

Chapter 6. Introduction to Relationships 157

ClarOrder

Type: Clarify SFAQuote
Attributes:
QuoteObjId
Type: Clarify QuoteLine Type: Order
Attributes: QuoteLineId Attributes:

OrderId
OrderLineltem

Type: OrderLineltem
Attributes: LineItemId

SAPOrder
Type: SAP Order
Attributes:
OrderId
SAP OrderLineItem
Type: SAP OrderLineItem
Attributes: LineItemId

Figure 84. OrdrLine composite identity relationship definition

Suppose the Clarify application (represented by the participant ClarOrder in

gure 84) uses sequential integers to identify order-line items, while the SAP
application uses the line number to identify these items. The Clarify application
uniquely identifies each order-line item. Therefore, the maps between the Clarify
application-specific business object and the generic Order business object
(represented by the participant CWOrder) can use a simple identity relationship to
maintain the transformation of the order-line items.

However, the SAP application (represented by the participant SAPOrder) identifies
order-line items with their line number. Its items are not uniquely identified: every
order contains a line item identified with 1, with any subsequent items numbered
2, 3, and so on. To uniquely identify the third order-line item of Order 0003411,
you need to use a composite key, which includes both the order number (0003411)
and the item number (3). Therefore, the maps between the SAP application-specific
business object and the generic Order business object must use a composite identity
relationship to maintain the transformation of the order-line items.

The third line item from the TashiCo order (8765) is identified in the Clarify
application with the simple key value of 1171. However, this same line item is
identified in the SAP application with a composite key value of 0003411 (order
number) and 3 (line number). Although these order lines are identified differently,
they represent the same order line item, as shows.

158 Map Development Guide

Clarify_SF AQuote SAP_Order

QuoteObjld Clarify_QuoteLine Orderld SAP_OrderLineltem
8764 0003409
8765 1168 0003410 1
8765 1169 0003410 1
8765 Lo 0003411 2
8766 1171 0003411 1
8766 1172 0003411 2
1173 - 3

Figure 85. Relationship data for the OrdrLine composite identity relationship

able 6] shows the steps needed to create a composite identity relationship.

Table 60. Steps for creating a composite identity relationship

Creation step

For more information

1. Define a composite identity relationship in ['Defining identity relationships” on page 174]
Relationship Designer Express.
2. Customize mapping code to maintain the composite ['Using composite identity relationships” on page 202|

identity relationship.

3. Test the composite identity relationship to verify that ['Testing an identity relationship” on page 80|
it is implemented correctly.
Relationships: A closer look

To understand the types of relationships that the WebSphere business integration
system supports, you must understand how IBM implements the following
concepts:

+ [“Relationships”]

« |“Participants” on page 163)|

Relationships

As [Table 61| shows, a relationship is a two-part entity, consisting of a repository
entity and a run-time object.

Table 61. Parts of a relationship

Repository entity Run-time object

Relationship definition Relationship instance

Relationship definition

You define a relationship to the WebSphere business integration system with a
relationship definition. Relationship definitions identify each participant and specify
how the participants are related. In CustlIden is the relationship
definition and it includes information about the three participants, Application A,
Application B, and Generic Customer.

The system stores relationship definitions in the repository. The Relationship
Designer Express tool provides dialogs to help you create the relationship
definitions. Using this tool, you also store the completed relationship definition in
the repository.

Chapter 6. Introduction to Relationships 159

Tip: For more information on how to use Relationship Designer Express to create
relationship definitions, see|’Customizing the main window” on page 170}

The relationship definition provides the following information about the
relationship:

* The relationship name

* The name of the relationship database

Relationship definition name: A relationship definition is simply a template, or
description, of the relationship; it is not an actual business object. Therefore, the
name of the relationship definition should not be the name of the associated
business object.

Relationship database: The relationship database holds the relationship tables for a
relationship. The relationship uses these relationship tables to keep track of the

related application-specific values. For more information, see [“Relationship tables”|
i

To access the relationship database at run time, the system must have the following
information:

* The type of database management system (DBMS) that manages the relationship
database

* The name and password of the user account that accesses the relationship
database

* The location of the relationship database

By default, the relationship database is the WebSphere business integration system
repository; that is, Relationship Designer Express creates all relationship tables in
the repository. Relationship Designer Express allows you to specify the location of
relationship tables in either of the following ways:

¢ Change the default location of relationship databases of every relationship.

For more information, see|“Global default settings” on page 182,

* Customize the location of each relationship’s tables as part of the process of
creating a relationship definition.

For more information, see|”Advanced settings for relationship definitions” on|

Relationship instance

The relationship definition is a template for the run-time instantiation of the
relationship, called the relationship instance. During map execution, the system
creates instances of the relationship based on the relationship definition and using
the values from the actual business objects being transformed.

For example, the relationship data for the CustLkUp lookup relationship (see
shows that a customer status of Inactive in a Clarify application is the

same as a customer status of 05 in an SAP application. Although these status codes
are different, they represent the same customer status and therefore are in the same
relationship instance, as shows.

160 Map Development Guide

Data

Relationship
Instance

Active
Inactive <
Fired
Retired

Figure 86. One Relationship instance for the CustLkUp relationship

A relationship instance is represented in the Mapping API by an instance of the
Relationship or IdentityRelationship class.

To locate a relationship instance, the system requires the following information:

* A relationship table to identify which table contains the relationship instances for
a particular participant

* A relationship instance ID to identify the actual relationship instance within the
relationship table

Relationship tables: A relationship table is a database table that holds the
relationship run-time data for one participant in a relationship. InterChange Server
Express stores relationship instances in relationship tables, with one table
(sometimes called a participant table) storing information for one participant in the
relationship. For example, for the CustLkUp lookup relationship in [Figure 80]
InterChange Server Express requires two participant tables, as shown in [Figure 86|

When you create a relationship definition, Relationship Designer Express
automatically creates the table schemas that the relationship requires; that is, it
creates the relationship tables with the necessary columns for each participant. At
run time, these tables hold the data for the relationship instances.

Note: For an identity relationship, InterChange Server Express automatically
populates the relationship tables. For a lookup relationship, you must
populate the relationship tables with data. For more information, see
[“Populating lookup tables with data” on page 189}

To access a relationship table at run time, the system must have the following
information:

¢ The name of the relationship table

Because a relationship table is associated with a participant, the name of this
table is defined as part of the participant definition. By default, any relationship
table has a name of the form:

RelationshipDefName_ParticipantDefName

Relationship Designer Express allows you to customize the name of a
relationship table as part of the process of creating a participant definition.

For more information, see[“Advanced settings for participant definitions” on|

¢ The name of the database that contains the relationship table

The name of the relationship database is set as part of the relationship definition.
By default, the relationship database is the system repository. For more
information, see [“Advanced settings for relationship definitions” on page 179

Chapter 6. Introduction to Relationships 161

In map-transformation steps, relationship tables are managed using methods in the
Relationship, IdentityRelationship, and Participant classes. Some Mapping API
methods automatically manage relationship tables. You can also explicitly access
these relationship tables to obtain this relationship data.

Relationship instance ID: The WebSphere business integration system uniquely
identifies each relationship instance by assigning it a unique integer value, called a
relationship instance ID. This instance ID allows the system to correlate the
participant values. In general, given any participant in a relationship, you can
retrieve the data for any other participant in the relationship by specifying the
relationship instance ID.

For example, for the relationship between customer status codes of a Clarify
application and an SAP application, the WebSphere business integration system
assigns a relationship instance ID to each relationship instance of the lookup
relationship. shows how instance ID 47 associates the Clarify customer
status of Inactive with the SAP customer status value of 05. Notice that this
relationship is basically the same as the one in with the addition of the
relationship instance ID.

InstancelD Data InstancelD Data Relationship
46 Active 45 03 Instance
47 Inactive 4 46 04 47

48 Fired __..47 05

49 Retired 48 02

Figure 87. A lookup relationship with relationship instance IDs

shows the use of relationship instance IDs in a lookup relationship.
Instance ID 47 associates the two application-specific participants, ClarLkUp and
SAPLkUp.

The WebSphere business integration system also uses a relationship instance ID for
the relationship between participants in an identity relationship. In the CustIden
relationship (see , this instance ID associates the customer IDs stored in
the SitelD attribute of the Clarify_Site business object, the CustomerID attribute of
the generic Customer business object, and the RefID attribute of the SAP_Customer
business object. shows how the relationship instance data for each
participant of the CustIden relationship is associated using the relationship instance
ID.

InstancelD SitelD InstancelD CustomerID InstancelD ReflD
116 A100 +— 114 14 115 803
117 Al06 115 18 4_,—» 116 806
118 B312 L—»(116 07 117 712
119 c004 117 22 118 788

Figure 88. A customer identity relationship with relationship instance IDs

In the relationship table for the CWCust participant is included for clarity,
though the table is not strictly necessary. In fact, relationship tables for the

162 Map Development Guide

participant representing the generic business object in any relationship are
necessary only if you want to generate a generic ID for the associated attribute in
the generic business object. The relationship in generates a generic ID
(07) for the CustomerID attribute in the generic Customer business object.

You can simplify your relationship definition and increase performance by
eliminating the relationship tables for the participant that represents the generic
business object. You do this by checking the managed option for the participant
when you create the relationship definition. See [Advanced settings for participant
[definitions” on page 180|for more information about this setting.

shows how relationship instance data is associated in the CustIden
relationship when the Managed setting is specified for the CWCust participant.

InstancelD SitelD InstancelD ReflD
116 A100 115 803
117 Al06 4—\—> 116 806
118 B312 117 712
119 Cc004 118 788

Figure 89. An identity relationship Instance with no generic table

The WebSphere business integration system stores the relationship instance ID in
the relationship table for each participant. As through show,
each relationship table in a relationship has a column that contains the relationship
instance ID. ICS Express automatically creates the instance ID column when it
creates the table schema.

Participants

A relationship contains participants, which describe the entities participating in the
relationship. As [Table 62| shows, a participant is a two-part entity, consisting of a
repository definition and a run-time object.

Table 62. Parts of a participant

Repository entity Run-time object

Participant definition Participant instance

Participant definitions

The relationship definition contains a list of participant definitions. For instance, the
CustIden relationship definition in associates customer business objects in
Clarify and SAP and contains these participant definitions: SAPCust, CWCust, and
ClarCust.

The WebSphere business integration system stores participant definitions in the
repository. The Relationship Designer Express tool provides dialogs to help you
create the participant definitions. Using this tool, you also store the completed
participant definition in the repository.

The participant definition provides the following information about the participant:
* The participant name

¢ The participant type

Chapter 6. Introduction to Relationships 163

* The name of the participant table and stored procedures

Participant definition name: A participant definition is simply a template, or
description, of the participant; it is not an actual business object. Therefore, the
name of the participant definition should rnot be the name of the associated
business object.

Participant type: Like the attributes in a business object definition, the
participants in a relationship definition have an associated type. The participant
type specifies the kind of data associated with instances of the participant. The
participant type can be one of the following;:

e The name of a business object definition

Relationships with participants of this type establish an association between
entire business objects. In this case, you specify the attributes of the business
object that relate the participant to the other participants in the relationship. The
attributes you choose, usually the key attributes of the business object, become
the participant instance identifiers.

e The word Data.

In the participant definition, Data represents a supported attribute data type,
such as String, Tong, int, double, float, or boolean. You specify Data as the type
for participants in relationships that establish associations between specific
attributes in business objects. Participants in lookup relationships have a
participant type of Data.

For information on how to define the type of a participant, see
frelationship definitions” on page 173

Participant table and stored procedures: For every participant, ICS Express
creates the following database entities:

* A participant table to hold the relationship instance IDs and the associated
participant’s application-specific value

 Stored procedures to perform Retrieve (Select), Insert, Delete, and Update
operations on the participant table

By default, Relationship Designer Express assigns names of the following form to
the participant’s table and stored procedure: RelName_ParticipantName_X, where
RelName is the name of the relationship definition, ParticipantName is the name of
the participant definition, and X is T for the participant table or SP for the stored
procedure. By default, Relationship Designer Express creates the relationship tables
in the WebSphere business integration system repository.

Relationship Designer Express allows you to customize the names of the
participant table and stored procedures. For more information on naming the
participant table and stored procedures, see [“Advanced settings for participant]
ldefinitions” on page 180

Participant instances

The participant definition is a template for the run-time instantiation of the
participant, called the participant instance. During map execution, the WebSphere
business integration system creates instances of the participant based on the
participant definition and the attribute values from the actual business objects
being transformed.

The WebSphere business integration system stores participant instances as a
column in the participant’s relationship table. For example, for the CustIden

164 Map Development Guide

relationship in the ClarCust participant has a column called SitelD in its
participant table to hold the values of its participant instances. The SAPCust
participant has a RefID column in its participant table to hold the values of its
participant instances.

Each participant instance contains the following information:
* Name of the relationship definition

* Relationship instance ID

* Name of the participant definition

* Data to associate with the participant

A participant instance is represented in the Mapping API by an instance of the
Participant class.

Overview of the relationship development process

A relationship in the WebSphere business integration system is a two-part entity:
* A relationship definition, stored in the repository, to define the participants

¢ Code within a map to implement the relationship by accessing the relationship
tables

To define a relationship in the WebSphere business integration system, you must
perform the following basic steps:

1. Determine the type of relationship you need.

2. Within Relationship Designer Express, define a relationship definition and
define the composite participants.

3. Within Map Designer Express, customize the transformation rule, if necessary,
to maintain the relationship.

4. Recompile the affected maps.

5. Deploy the relationships and maps to InterChange Server Express with the
Create Schema option.

6. Ensure that the relationship database(s) exists and is defined correctly within
the relationship definition.

7. Populate relationship tables for any lookup relationships.

8. Optionally, populate other relationship tables with test data for the testing
phase.

9. For each map, start all relationships in the map.

10. Test the relationship with the Test Connector. Be sure to set the appropriate
calling context as part of each of the tests.

provides a visual overview of the relationship development process and
provides a quick reference to chapters where you can find information on specific
topics. Note that if a team of people is available for map development, the major
tasks of developing a map can be done in parallel by different members of the
development team.

Chapter 6. Introduction to Relationships 165

Task:

Determine the type
of relationship

A 4
Define the
relationship
T —

v

Steps:

Determine what type of relationship
you need to use: lookup, identity,
custom

Create the relationship definition
Create the participant definitions
Generate the table schemas

Customize the map

Populate
relationship tables

Activate the

Test and debug

relationship —*

v

the appropriate maps
Implement error and message handling

Add relationship-management code to
Validate and compile the map

Populate the relationship tables for all
lookup relationships

Populate any other relationship tables
with test data (optional)

Manager

the map

Test the map

Before recoding, stop the relationship
Recode as needed

Before retesting, start the relationship

Start the relationship from System |

Figure 90. Overview of the Relationship Development Task

166 Map Development Guide

Refer to:

----Chapter 6

Chapter 7

Chapter 8

Chapter 8

Chapter 4

Chapter 7. Creating relationship definitions

This chapter describes how to create and modify relationship definitions using
Relationship Designer Express. For background information on how the WebSphere
business integration system uses relationships in mapping, see
|”Introduction to Relationships,” on page 153 For help customizing relationships in
maps, see [Chapter 5, “Customizing a map,” on page 87

This chapter covers the following topics:

* |“Overview of Relationship Designer Express” on page 167

4

* |“Creating relationship definitions” on page 173|
. "’Deﬁning identity relationships” on page 174|

+ |“Defining lookup relationships” on page 176

* |“Creating the relationship table schema” on page 17§

+ [“Copying relationship and participant definitions” on page 178|

* [“Renaming relationship or participant definitions” on page 179

* |“Specifying advanced relationship settings” on page 179

* [“Deleting a relationship definition” on page 183|

+ |[“Optimizing a relationship” on page 184

Overview of Relationship Designer Express

Relationship Designer Express is a graphical development tool for creating and
modifying relationship definitions. A relationship definition establishes an association
between two or more participants. You create a relationship definition by
specifying the participants in the relationship and defining the data source and
other properties associated with each participant.

This section provides the following information as an overview to Relationship
Designer Express:

« |“Starting Relationship Designer Express” on page 167

* [“Working with projects” on page 168

« |"Layout of Relationship Designer Express” on page 169

* |"Customizing the main window” on page 170|

* [“Using the Relationship Designer Express functionality” on page 171]

Starting Relationship Designer Express
To launch Relationship Designer Express, you can do any of the following:
* From System Manager, you can
— Select Relationship Designer Express from the Tools menu.

— Click a Relationship folder in a project to enable the Relationship Designer
Express icon in the System Manager toolbar. Then click the Relationship
Designer Express icon.

— Right-click the Relationships folder in a project and select Relationship
Designer Express from the Context menu.

— Right-click a relationship in the Dynamic or Static folder and select Edit
Definitions from the Context menu.

© Copyright IBM Corp. 2003 167

Result: Relationship Designer Express launches and highlights the selected
relationship.

* From a development tool, such as Business Object Designer, Map Designer
Express, or Process Designer, you can either:

— Select Relationship Designer Express from the Tools menu.
— Click the Relationship Designer Express icon in the Programs toolbar:
* Using a system shortcut:

Start-->Programs-->IBM WebSphere Business Integration Express
for Item Sync v4.3 -->Toolset Express-->Development-->Relationship
Designer Express

Important: For Relationship Designer Express to be able to access relationships
stored in System Manager, Relationship Designer Express must be
connected to an instance of System Manager. The preceding steps
assume that you have already started System Manager. If you have not
started System Manager, see the User Guide for WebSphere Business
Integration Express for Item Synchronization for more information. If
System Manager is already running, Relationship Designer Express will
automatically connect to it.

Working with projects
System Manager is the only tool that interacts with the server. It imports and
exports entities (relationships, maps) between InterChange Server Express and
System Manager projects. Various tools, such as Relationship Designer Express,
connect to System Manager and view, edit, and modify these entities on a project
basis.

A project is simply a logical grouping of entities for managing and deployment
purposes. Once entities are deployed to the InterChange Server Express, the project
they originated from no longer has any meaning.

System Manager allows you to create multiple projects. Before you can work on a
relationship, you must select which project the relationship is in.

To select a project to work with, perform the following steps:
1. Select Switch to Project from the File menu.
2. Select the name of the project in the Switch to Project submenu.

Result: You can now work with the relationships in that project. Before you can

switch to yet another project, you are prompted to save the relationships you
modified in the current project.

168 Map Development Guide

shows the Switch to Project option for browsing a project.

Figure 91. Browsing a project

When Relationship Designer Express establishes a connection to System Manager,
it obtains a list of business objects that are defined in the current project. This list
assists you with defining participants.

If you add or delete a business object using Business Object Designer, System
Manager notifies Relationship Designer Express, which dynamically updates the
list of business object definitions.

Layout of Relationship Designer Express

In the Relationship Designer Express window, a list of relationship definitions
stored in the current project appears on the left side. In this relationship definition
list, the contents of each relationship definition appear in a hierarchical format
similar to the Windows Explorer. You can expand the relationship name by clicking
on the plus symbol (+) beside its name to see a list of its participant definitions,

participant types, and associated attributes. shows a relationship
definition list.

LBE Cust20n

=-%F Did2Cust

E%" Custormer

i B Customer
-t lastname

o

ot phone

LB Order
L SAPO

Current Project

Chapter 7. Creating relationship definitions 169

Figure 92. Relationship definition list

The Participant Types window shows a list of available data types in the current
project that you can associate with a participant.

shows the main window of Relationship Designer Express, with both the
Relationship Definition list and the Participant Types window.

- Relationship Designer Express

=@ OrderTest : Relationship Definitions
L8P Cmd20ide
=-%F RelCut!
e MewPit
oG Uzert32

Participant T4

E@ Buziness Object Definitions
B [3 addiess
EE Customer
L L lastname
o[9g name
ObjectEventld
C L F phone
E Order

Figure 93. Relationship Designer Express main window

Customizing the main window

Relationship Designer Express provides the following ways to customize its main
window:

+ [“Choosing windows to display” on page 170

+ |“Floating a dockable window” on page 171

Choosing windows to display

When you first open Relationship Designer Express, only the relationship
definition list displays in the main window. The Participant Types window does
not display. You can customize the appearance of the main window with options
from the View pull-down menu. describes the options of the View menu
and how they affect the appearance of the Relationship Designer Express main
window.

Table 63. View menu options for main window customization

View menu option Element displayed

Participant Types The Participant Types window displays

Toolbar The Standard toolbar, which provides the main functionality for
Relationship Designer Express

Status Bar A single-line pane in which Relationship Designer Express

displays status information

170 Map Development Guide

When a menu option appears with a check mark to the left, the associated element
displays. To turn off display of the element, select the associated menu option. The
check mark disappears to indicate that the element does not currently display.
Conversely, you can turn on display of an undisplayed element by choosing the
associated menu option. In this case, the check mark appears beside the displaying
element.

Floating a dockable window
Relationship Designer Express supports the following portions of the main
window as dockable windows:

 Standard toolbar
* Participant Types window

By default, a dockable window is usually placed along the edge of the main
window and moves as part of the main window. When you float a dockable
window, you detach it from the main window, allowing it to function as an
independent window. To float a dockable window, hold down the left mouse
button, grab the border of the window and drag it onto the main window or
desktop.

Using the Relationship Designer Express functionality

You can access Relationship Designer Express’s functionality using any of the
following:

* The pull-down menus at the top of the window
* The Context menu

* Keyboard shortcuts

* The icons in the toolbars

Main menus of Relationship Designer Express
Relationship Designer Express provides the following pull-down menus:

* File menu
* Edit menu
* View menu
* Tools menu
* Help menu

The following sections describe the options of each of these menus. Keyboard
shortcuts are available for some of these options, as indicated.

Functions of the File menu: The File pull-down menu of Relationship Designer
Express displays the options shown in [Table 64 Except for the Switch to Project
option, all File menu options affect objects in the current project.

Table 64. File menu options in Relationship Designer Express

File menu option

Description For more information

New (Ctrl+N) Creates a new relationship definition [“Creating relationship definitions” on|
page 173|
Switch to Project... (Ctrl+S) A submenu with a list of other “Working with projects” on page 168
projects
Save Saves the current relationship “Creating relationship definitions” on|
definition to a file page 173
Save All Saves all open relationship definitions N/A

Chapter 7. Creating relationship definitions 171

Table 64. File menu options in Relationship Designer Express (continued)

File menu option

Description For more information

Add Participant Definition Adds a new participant definition to |“Creating relationship definitions” on|

the current relationship definition [page l73|

Functions of the Edit menu: The Edit pull-down menu of Relationship Designer
Express displays the following options:

* Rename—renames the relationship definition

* Copy (Ctrl+C)—Copies the current relationship definition.

* Paste (Ctrl+V)—Pastes the copied relationship definition.

e Cut (Ctrl+X)—Deletes the current relationship definition.

* Advanced Settings..—Displays the Advanced Settings window.

Functions of the View menu: The View pull-down menu of Relationship
Designer Express displays the following options:

* Participant Types—Displays the Participant Types window.

* Expand Tree—Displays the members of the current level of the relationship
definition list (same as clicking on the plus symbol beside the name of the level).

* Collapse Tree—Condenses the current level of the relationship definition list so
that its members do not display (same as clicking on the minus symbol beside
the name of the level).

* Toolbar—When on, Relationship Designer Express displays the Standard toolbar.

* Status Bar—When on, Relationship Designer Express can display its single-line
status message at the bottom of the main window.

For information on the View menu options that control display, see
windows to display” on page 170l

Tools menu functions: The Tools pull-down menu of Relationship Designer
Express provides options to start each of the WebSphere business integration tools:

* Relationship Manager
* Map Designer Express

* Business Object Designer Express

Help Menu functions: Relationship Designer Express provides a standard Help
menu with the following options:

* Help Topics (F1)

* Documentation

* About...

Note: A Context menu provides shortcuts to useful commands and is available by
right-clicking. Its options change depending on where you click

Relationship Designer Express toolbar

Relationship Designer Express provides a Standard toolbar for common tasks you
need to perform. This toolbar is dockable; that is, you can detach it from the
palette of the main window and float it over the main window or the desktop.
shows the Relationship Designer Express Standard toolbar.

w EHy B s

172 Map Development Guide

Figure 94. Relationship Designer Express Standard toolbar

The following list provides the function of each Standard toolbar button, left to
right:

* New Relation

¢ Save Relation

* New Participant

* Copy

* Paste

* Help

Creating relationship definitions

Perform the following steps to create a relationship definition:
1. Create a relationship name with one of the following:

* Select New Relationship Definition from the File menu.

* Use the keyboard shortcut Ctr1+N.

¢ In the Standard toolbar, click the New Relation button.
2. Name the icon for the relationship definition.

Rule: Relationship definition names can be up to 8 characters long, can contain
only letters and numbers, and must begin with a letter.

3. Create a participant definition for each business object to be related.

To do so, select the relationship definition name and perform one of the
following actions:

* Select Add Participant Definition from the File menu.
* In the Standard toolbar, click the New Participant button.
4. For each participant definition, name the icon for the participant definition.

Rule: Participant definition names can be up to 8 characters long, can contain
only letters and numbers, and must begin with a letter.

5. Associate a data type with each participant by dragging the type from the
Participant Types window onto the participant definition.
Tip: To display the Participant Types window, select Participant Types from the
View menu.
* To associate a business object data type, drag the business object definition
from the Participant Types window.

The participants in an identity relationship use business object definitions as
their participant type. For more information, see [“Defining identity|
[relationships” on page 174}

* To associate a Java data type, drag the Data participant type from the
Participant Types window.

In the relationship definition, the Data participant type represents all data
types other than business object types. The participants in a lookup
relationship use Data as their participant type. For more information, see
[“Defining lookup relationships” on page 176,

6. For participant types that are business object definitions, add or change the
attributes to associate with the participant.

The attributes you select become the basis on which the business objects are
related.

Chapter 7. Creating relationship definitions 173

7. Save the relationship definition with one of the following:
* Select Save Relationship Definition from the File menu.
* Use the keyboard shortcut Ctr1+S.
e In the Standard toolbar, click the Save Relation button.

8. Before executing a map that uses the relationship definition, perform the
following steps:

* Activate the relationship. After the relationship is deployed to ICS Express,
this new relationship is not activated. However, for the Mapping API
methods to be able to access the relationship tables, a relationship table must
be active. To activate the relationship, click the relationship name in System
Manager and select the Start option from the Component menu. For more
information about starting and stopping a relationship, see the User Guide for
WebSphere Business Integration Express for Item Synchronization.

* Compile and deploy the map that uses the relationship. If the map is
deployed and compiled successfully in ICS Express, ICS Express creates the
executable map code and activates the map. For more information, see
[“Compiling a map” on page 70|

Note: If you create or make a change to a relationship definition, you must first
stop the relationship through the System Manager Relationship menu, make
the change to the relationship, and then restart the relationship.

Defining identity relationships

An identity relationship establishes an association between two or more business
objects on a one-to-one basis. That is, for a given relationship instance, there can be
only one instance of each participant. You typically create an identity relationship
to transform the key attributes in a business object, such as customer or product
ID. For more background information, see [“Identity relationships” on page 155}

InterChange Server Express supports the kinds of identity relationships shown in

[Table 63

Table 65. Kinds of Identity relationships

Identity

relationship type Description For more information

Simple identity Relates two business objects through a single "Using simple identity relationships” on page
relationship key attribute 191

Composite identity Relates two business objects through a ‘Using composite identity relationships” on|
relationship composite key (made up of more than one page 202]

attribute)

To define an identity relationship using Relationship Designer Express, perform the

following steps:

1. Create a relationship definition and the participant definitions by following
Steps 1-4 in [“Creating relationship definitions” on page 173

Guideline: Create a participant definition for each business object to be related.
Identity relationships require participants for the generic business object as well
as the application-specific business objects.

2. Associate a business object with each participant definition by dragging the
business object definition from the Participant Types window onto the
participant definition. You can release the drag button when the plus symbol
(+) appears in the Relationship Designer Express main window. For

174 Map Development Guide

information on how to open the Participant Types window, see step El in
[“Creating relationship definitions” on page 173}

For identity relationships, the participant type is a business object. Every
identity relationship has a participant with a participant type of the generic
business object plus one participant for each application-specific business
object.

For each business object that you associate with a participant definition, add
the attributes that relate the business object with the other participants.

To do so, expand the associated business object in the Participant Types
window, select an attribute, and drag it onto the business object in the main
Relationship Designer Express window. The attributes you select become the
basis of the relationship between the business objects.

For identity relationships, the attributes are usually the key attributes of each

business object definition. The type of the key determines the kind of identity

relationship:

* For a single key, use a simple identity relationship. Each participant can
consist of only one attribute: the unique key of the business object. For more
information, see [“Creating the child relationship definition” on page 201}.

* For a composite key, use a composite identity relationship. Specify a
composite key by adding each key attribute in the order in which it appears
in the composite key. Each participant can contain several attributes: usually,
the unique key from the parent business object and at least one attribute
from the child business object (within the parent business object). When
deployed to the server, the relationship is saved in a table, the name of
which is the concatenation of the attributes in the order in which they appear
in the participant definition. For more information, including the index size
limitations of some databases, see [‘Creating composite identity relationship]
[definitions” on page 202].

Highlight the relationship definition name and select Advanced Settings from
the Edit menu.

Initially, the Advanced Settings window displays the relationship definition
settings, as [Figure 96 on page 180 shows.

a. Modify the relationship definition settings as follows:
* Under Relationship type, check the Identity box.

Result: This setting tells InterChange Server Express to process the
relationship as an identity relationship by setting a uniqueness constraint
on the relationship instance ID and the key attributes for each participant.
This action guarantees a one-to-one correspondence between all
participants in each relationship instance.

¢ If you want the relationship tables to reside in a database other than the
default database (the WebSphere business integration system repository,
by default), enter the appropriate database information in the DBMS
Settings area of the window. For more information, see
lsettings for relationship definitions” on page 179

b. Modify the advanced settings for the participant definition.

* In the object browser of the Advanced Settings window, expand the
relationship definition and highlight the participant definition that
represents the generic business object to display the participant definition
settings (see [Figure 97 on page 181). Check the box labeled IBM WebSphere
Business Integration Express for Item Sync- managed.

Result: This action tells Relationship Designer Express not to create
relationship tables for the generic business object. When you maintain the

Chapter 7. Creating relationship definitions 175

relationship with the maintainSimpleldentityRelationship ()| method, the

WebSphere business integration system uses the relationship instance IDs
stored in the application-specific relationship tables to transform the

relationship attributes.

 If you want to customize the name for this participant’s relationship table
or stored procedure, enter the name in the appropriate field in the
window. For more information, see [‘Advanced settings for participant|

[definitions” on page 180}

c. Click OK to close the Advanced Settings window.
5. Save the relationship definition as described in steps 7-8 in

[relationship definitions” on page 173

Relating child business objects

When you create identity relationships, the business objects you are relating often
have child business objects. For instance, some customer business objects have
child business objects for storing address information. A child business object can

participate in the kinds of relationships that shows.

Table 66. Relationships for child business objects

Condition of child business object Kind of relationship

The key for the child business object ~ Simple identity relationship
uniquely identifies the child beyond

the context of its parent

The key for the child business object =~ Composite identity relationship
does not uniquely identify it beyond

the context of its parent

To maintain the child business objects Parent/child relationship
during an Update operation as part of

the identity relationship

For more information

“Coding a child-level simple identity|

relationship” on page 201

“Managing child instances” on page|

207

If the child is a multiple-cardinality child business object, you can change the index
to make the participant reference a specific child. To do so, select the child’s key
attribute, right-click, and select Change Index from the Context menu. If the source
and destination children in a map correspond one to one, the index is not
significant and you do not need to change it. However, if the map transforms the
children in any other way, you can enter a specific index number. For example, if
the child business objects represent addresses and the third source address
corresponds to the first destination address, you can change the indexes to 2 and 0,

respectively.

Defining lookup relationships

A lookup relationship associates data that is equivalent across business objects but
may be represented in different ways. In this case, given a value in one business
object, the relationship can look up its equivalent in the relationship tables for
another business object. The most common example of attributes that might
require lookups are codes (EmployeeType, PayLevel, OrderStatus) and abbreviations
(State, Country, Currency). For more background information, see

frelationships” on page 154}

When you create a relationship definition for a lookup, you add a participant
definition for each business object that contains the attributes you want to relate.

176 Map Development Guide

However, you do not associate the actual business object definitions or attribute
names with the participant definitions. Instead, you specify Data as the participant
type for each participant definition.

To define a lookup relationship using Relationship Designer Express, perform the
following steps:

1. Create a relationship definition and the participant definitions by following
Steps 1-4 in [“Creating relationship definitions” on page 173,

Create a participant definition for each business object to be related.

2. For each participant definition, specify Data as the participant type by dragging
the Data participant type from the Participant Types window onto the
participant definition.

In the relationship definition, the Data participant type represents all data types
other than business object types. When you create the map and work with
instances of the relationship using methods in the Relationship,
IdentityRelationship, and Participant classes, you can use data of any of the
supported Java data types, such as String, int, Tong, float, double, or boolean.

3. Make a note of the table name for storing the lookup values for each
participant definition. You need to know the table name so you can populate
the tables with the lookup values for each participant definition. Or, if you
already have tables containing the lookup values, you can replace the generated
table name with your own table name.

To retrieve the table names for each participant definition in the relationship
definition, or to specify your own table names:

a. Select the participant definition and select Advanced Settings from the Edit
menu.

Result: The Advanced Setting dialog box appears showing the storage
settings for that participant. See [“‘Specifying advanced relationship settings”|
for more information on these settings.

b. Write down the storage settings for the participant, or overwrite the settings
with your own table information.

Advanced Sebtings x|

- @ Zian : Relationship Daii | Far1
5 Jupite
=% Mas

= B Paril

%"'ﬂ A Table name:

+ Parl2

B NewRlt Tzbl_Pait2

& Shatus

&F Yanus

Storage zetiings

Stered procadune setlings
[zme:
|SF'1

™ 1BH WEI menaged

1l |

Glohal efauls. Carcel

Figure 95. Advanced Settings dialog

C. Repeat step @ and step |3b|for each participant definition.
d. Click OK to close the Advanced Settings dialog box.

Chapter 7. Creating relationship definitions 177

4. Save the relationship definition as described in steps 7-8 in
[relationship definitions” on page 173

To create the relationship tables, check the Create Schema box in the Deploy
Project dialog in System Manager. For more information about when to create
the run-time schema, sed“Creating the relationship table schema” on page 178

5. Using the information you gathered in step@ populate the relationship tables
with the lookup values for each participant, or add your own tables of lookup
values to the database. For more information, see [“Populating lookup tables|
[with data” on page 189]

Creating the relationship table schema

For each relationship definition you create, InterChange Server Express uses the
following database objects to maintain the run-time data for instances of the
relationship:

* Tables in the relationship database hold the data of the relationship instances.
* Stored procedures in the relationship database maintain the relationship tables.

For information, see the User Guide for WebSphere Business Integration Express for
Item Synchronization.

Copying relationship and participant definitions

Relationship Designer Express allows you to copy the following:
* Relationship definitions
* Participant definitions

Copying relationship definitions in the current project

To create a new relationship definition that is similar to an existing one, you can
copy the existing definition and modify it to suit your needs. You can also copy a
participant definition from a relationship definition and paste it into the same
relationship definition or into another one.

To copy a relationship definition, perform the following steps:
1. Select the relationship definition you want to copy (for example, CustToClient)
and select Save Relationship Definition from the File menu.

2. Select the relationship definition you want to copy and select Copy from the
Edit menu.

3. Select the Project name (root tree node) and select Paste from the Edit menu.

Result: Relationship Designer Express creates a new relationship definition
with a name of Copy of CustToClient. The definition name appears in edit
mode.

4. Enter a new name for the relationship definition, then press Enter.

5. To save the new definition to the repository, select Save Relationship Definition
from the File menu (or use the keyboard shortcut Ctr1+S).

Tip: To copy a relationship definition from one InterChange Server Express to
another, use the repos_copy command. The repos_copy command copies
objects into and out of the InterChange Server Express repository. For more
information on using repos_copy, see the User Guide for WebSphere Business
Integration Express for Item Synchronization.

178 Map Development Guide

Copying participant definitions in the current project
To copy a participant definition:

1. Select the relationship definition to which the participant definition you want to
copy belongs and select Save Relationship Definition from the File menu.

2. Select the participant definition you wish to copy and select Copy from the Edit
menu.

3. Select the relationship definition to which you want to copy the participant
definition and select Paste from the Edit menu.

Result: Relationship Designer Express creates a new participant definition with
a name of Copy. The definition name appears in edit mode.

4. Enter a new name for the participant definition, and then press Enter.

Renaming relationship or participant definitions

You can rename a relationship or participant definition before you save it to the
repository. To change a definition’s name after you have saved it, you must copy
the definition to a new name and delete the old name. For help copying
definitions, see [“Copying relationship and participant definitions” on page 178|

Specifying advanced relationship settings

For each relationship definition you create, Relationship Designer Express
maintains advanced settings that affect the storage and processing of the
relationship instance data.

Note: If you change any database-related setting, such as a login account name,
password, or a table name after creating the relationship table schemas, you
must re-create the relationship table schemas using System Manager for
your changes to take effect.

To view or change the settings, select Advanced Settings from the Edit menu. In
the Advanced Settings dialog, the settings that appear on the right side differ
depending on which of the following items you have selected on the left:

* Relationship definition
e Participant definition
e Attribute

Advanced settings for relationship definitions

To view or change the settings for a relationship definition, select the relationship
name. The following illustration shows an example of the advanced settings at this

Chapter 7. Creating relationship definitions 179

level:

Select the relationship E & CrossWorlds - Rolatil] | Eustarmer
definition name to view or D/‘?; s Rilstionship typs Voo [l00
change its settings. 5 CoesCust W ldenity
%8 ClaBorg r
ClarSite Bl
CwCust I=| Gachied

SAPdCust
- SAP4Fun:

i DBMS Setting
URL: |\dbc:web\og\c:mssqlserverd CwRepository

Email Login |closswollds

i
¥
%2 Ouder
i
e
L

Password: I xxxxx

e
&
#
c
B OrdiLine =
#

Ordridrln

5 Giatel a4
4 »
Global defaults.

3l
3l
!
!
3l
-t
.

T-""3‘3:|EiE!L Server =

Cancel

Figure 96. Advanced settings for a relationship definition

summarizes the settings available for relationship definitions. Default
values for the DBMS settings come from the Global Default Settings dialog box
described in [“Global default settings” on page 182}

Table 67. Summary of advanced settings for relationship definitions

Setting Description

Relationship type

Identity When this option is enabled, relationship is an identity relationship. For more
information, see [“Defining identity relationships” on page 174}

Static When this option is enabled, relationship is a static relationship. For more
information, see ['Defining lookup relationships” on page 176

Cached When the Static field is enabled, this field is enabled. Check this field to have

the relationship tables cached in memory. For more information, see
[’Optimizing a relationship” on page 184

Version This field is read-only. Versions for relationship definitions are not supported in
this release.

DBMS Settings

URL The JDBC path where the relationship tables for this relationship definition are
located. The default location for all relationship tables is specified in Global
Default Settings (see .

Login The user name for logging in to the relationship database.

Password The password for logging in to the relationship database.

Type The relationship database type, such as SQL Server or DB2.

180

Note: If you specify a database for the relationship tables that is different from the
InterChange Server Express’s repository database, you might need to
increase the setting for the maximum number of connection pools that the
server can create. The server configuration parameter that specifies the
number of connection pools is MAX_CONNECTION_POOLS. The default value is

10.

Advanced settings for participant definitions

To view or change the settings for participant definitions, select the participant
definition name. The following illustration shows an example of the advanced

Map Development Guide

settings at this level:

Advanced Sebtings x|

& Jupiter
=% Mas

= B Paril
F E.ﬂ]

=50 Pari2

% Newflt

& Shatus

&F Yanus

1l |

- @ Zian : Relationship Daii | Far1

Storage zetiings

Tabls mame:

Tzbl_Pait2

Stered procadune setlings
[zme:
|SF'1

™ 1BH WEI menaged

Global defaulks...

Figure 97. Advanced settings for a participant definition

summarizes the settings available for participant definitions.

Table 68. Summary of advanced settings for participant definitions

Setting

Table name

Stored procedure
name
IBM WBI managed

Description

Name of the relationship table in the relationship database containing
the relationship data for this participant instance.

Rule: If your relationship database is a DB2 database, you must use up
to a maximum of 18 characters in the relationship table names.
Although table names do not have a limit in DB2, index names do.
Because Relationship Designer Express generates index names for the
relationship tables based on their table names, relationship table names
for a DB2 database must be 18 characters or less.

Name of the stored procedure that maintains the relationship table.

If checked, prevents relationship tables from being created for this

participant. Check this setting only when:

* The business object associated with this participant definition is a
generic business object.

* There is only one attribute associated with the participant and it is a
key attribute.

Chapter 7. Creating relationship definitions 181

Advanced settings for attributes

To view or change the advanced settings for an attribute, select the attribute. The
following illustration shows an example of the advanced settings:

Advanced Sebtings x|

- @ Zian : Relationship Daii | aicg
& Jupiter
=% Mas

= B Parl

- Eﬁ; e Abrbie column name: IAJDG_EDI—

+- g Parl2
&2 nlewRl
&* Shatus
¢ Venus

1l |

Glohal efauls. Carcel

Figure 98. Advanced settings for attributes

For attributes, the only setting available is the attribute column name. The column
name is the name of the column in the relationship table that contains the values
for the selected attribute. It is typically the same as the attribute name. You might
want to change the column name if you are using tables you created instead of the
default tables that the Relationship Designer Express creates.

Global default settings

When you save a new relationship definition and create the relationship table
schemas, Relationship Designer Express must know the location of the database for
the relationship tables, the type of database, and how to access the database with a
valid user name and password. Relationship Designer Express maintains default
values for these settings, which it uses for all new relationship definitions you
create. Once a relationship definition is created, these settings are stored with the
relationship definition, and you can change the settings for each relationship
definition individually.

By default, the database name and access information is the same one used by the
InterChange Server Express repository. If you want to store your relationship tables
in another location, you can modify the global settings.

To view or change the global default settings, perform the following steps:

1. In Relationship Designer Express, select Advanced Settings from the Edit menu.
Result: The Advanced Settings dialog box appears.

2. Click the Global defaults button.

182 Map Development Guide

Result: The Global Default Settings dialog box appears.

Global Default Settings |

—DBRMS Settings
ok
URL: IZ'.-‘-.'Ebh:lgiI:ZITIESEHSEWE[ZHDNZEWHEI]DE“D[}'
Cancel
Lagin: Icrnsawnrlds
Fassword: Ixmx
Type: ISIJL Server j
Figure 99. Global Default Settings dialog
Table 69| describes the global default settings for relationships.
Table 69. Relationship global default settings
Setting Description
URL The JDBC path where the relationship database is located. The default is
the InterChange Server Express’s repository database.
Login The user name for logging in to the relationship database.
Password The password for logging in to the relationship database.
Type The relationship database type, such as SQL Server or DB2.

Note: If you specify a database for the relationship tables that is different from
the InterChange Server Express’s repository database, you might need to
increase the setting for the maximum number of connection pools that
the server can create. The server configuration parameter that specifies
the number of connection pools is MAX_CONNECTION_POOLS. The default

value is 10.
3. When you are finished viewing or making changes, click OK to save or Cancel
to exit without saving.

Note: Changes that you make to the global default settings apply only to new
relationship definitions. They do not affect existing relationships. If you
want to change the settings for an existing relationship, see

[advanced relationship settings” on page 179}

Deleting a relationship definition

The Relationship Designer Express allows you to delete a relationship definition
listed in its main window by highlighting the definition and choosing Delete from
the Edit menu or right-clicking on the definition and choosing Delete.

Chapter 7. Creating relationship definitions 183

Optimizing a relationship

By default, each relationship’s relationship tables are stored in the relationship
database. Each time a relationship retrieves or modifies run-time data, it uses SQL
statements to access this database. If the relationship tables are accessed frequently,
these accesses can have a significant impact on performance in terms of CPU usage
and InterChange Server Express resources. As part of the design of a relationship,
you can determine whether to cache these relationship tables into memory.

To make this decision, you need to determine how frequently the relationship’s
run-time data changes. The WebSphere business integration system allows you to
categorize your relationship in one of two ways:

* Dynamic relationship—a relationship whose run-time data changes frequently;
that is, its relationship tables have frequent Insert, Update, or Delete operations.
All relationships are dynamic by default.

* Static relationship—a relationship whose run-time data undergoes very minimal
change; that is, its relationship tables have very few Insert, Update, or Delete
operations. For example, because lookup tables store information such as codes
and status values, their data very often is static. Such tables make good
candidates for being cached in memory.

Note: The WebSphere business integration System Manager categorizes
relationships into these same two categories. When you expand the
Relationships folder, System Manager displays two subfolders: Dynamic and
Static.

You define whether a relationship is dynamic or static from the Advanced Setting
dialog for the relationship definition. The following sections summarize how to
define a dynamic and static relationship from this dialog. For information on how
to display the Advanced Setting dialog, see|’Specifying advanced relationship]
lsettings” on page 179|

Defining a dynamic relationship

For a dynamic relationship, InterChange Server Express accesses the run-time data
from its relationship tables in the relationship database. By default, InterChange
Server Express assumes a relationship is dynamic. Therefore, you do not have to
take any special steps to define a dynamic relationship:

* For an identity relationship, click Identity from the Advanced Settings dialog, as
described in [‘Defining identity relationships” on page 174

» For a lookup relationship, make sure Identity is not checked, as described in
[“Defining lookup relationships” on page 176}

Note: For a dynamic relationship, do not click the Static or Cached field on the
Advanced Settings dialog.

System Manager lists all dynamic relationships in the folder labeled Dynamic
under the Relationships folder.

Defining a static relationship

For a static relationship, InterChange Server Express can access the run-time data
from cached relationship tables. With caching enabled for the static relationship,
InterChange Server Express stores a copy of the relationship tables in memory.
When making the decision to cache relationship tables, try to balance the following
conditions:

184 Map Development Guide

Performance usually improves if you let InterChange Server Express cache the
relationship tables in memory.

In this case, the server does not need to use SQL statements to access the
relationship database for the run-time data. Instead, it can access memory for
this data, which is much faster. If the run-time data for a static relationship is
not currently in memory, InterChange Server Express reads the appropriate
relationship tables from the database into memory when the data is first
accessed. For future accesses, InterChange Server Express uses the cached
version of the tables.

However, once the table is read into memory, InterChange Server Express must
maintain consistency between the relationship tables in the database and the
cached tables. For Update, Insert, and Delete operations, InterChange Server
Express must modify both the database tables and the cached tables. This double
update can be very performance intensive. When you determine whether to
cache a relationship’s tables, consider the expected lifetime and refresh rate of
the data.

Memory usage increases when relationship tables are cached in memory. The
amount of memory used is roughly equivalent to the size of all in-memory
tables.

Recommendation: You should not cache a relationship table that contains more
than 1000 rows.

Important: InterChange Server Express does not check for excessive memory
usage. You must ensure that memory usage remains within the limits that your
system imposes.

To define a static relationship, display the Advanced Settings dialog (see
for the relationship definition and set the Static field from this dialog as follows:

For an identity relationship, enable both the Identity and Static fields. For more
information on the use of the Identity field, see [“Defining identity relationships”|

For a lookup relationship, enable the Static field (not the Identity field).

When the Static field is enabled, the Advanced Settings dialog also enables the
Cached field. The Cached field allows you to control when InterChange server
actually caches the relationship’s table:

When Cached is enabled, InterChange server can cache the relationship tables
for a static relationship. It caches all relationship tables involved in the
relationship.

When Cached is disabled, InterChange Server Express does not cache the
relationship tables in memory. Instead, it uses the tables in the relationship
database for future accesses.

You can only control caching for a relationship that is defined as static.

Note: After you change a relationship’s static or cached state from the Advanced

Settings dialog, make sure you save the relationship definition for the
change to be stored in the project.

Note: You can modify the cached and reload relationship properties from the

server component management view. To do this, right-click the static
relationship and select the properties from the Context menu.

* Cached—controls caching of the relationship’s tables.

Chapter 7. Creating relationship definitions 185

* Reload—tells InterChange Server Express to reread the relationship’s
tables into memory.

For more information on caching and reloading relationship tables, see the User
Guide for WebSphere Business Integration Express for Item Synchronization.

186 Map Development Guide

Chapter 8. Implementing relationships

Relationship attributes are those you transform using relationships. You do not
transform relationship attributes by dragging from source attribute to destination
attribute. Instead, you create a Custom transformation and customize the
transformation rule for the destination relationship attribute using the function
blocks in Activity Editor.

This chapter describes how to develop code within a map to implement the
different kinds of relationships.

Note: This chapter assumes that you have already created the relationship
definitions for the relationships. For information, see [Chapter 7, “Creating]
[relationship definitions,” on page 167

+ |[“Implementing a relationship” on page 187]

+ [“Using lookup relationships” on page 188

* [“Using simple identity relationships” on page 191|

+ |[“Using composite identity relationships” on page 202|

* [“Managing child instances” on page 207|

+ |“Setting the verb” on page 210|

+ |“Performing foreign key lookups” on page 216

* [“Loading and unloading relationships” on page 221|

Implementing a relationship

Once you have created a relationship definition within Relationship Designer
Express, you are ready to implement the relationship within the map.

Note: See|Chapter 7, “Creating relationship definitions,” on page 167 for
instructions about how to create relationship definitions.

To implement a relationship, you use the relationship function blocks in the map’s
destination object. [Table 70| shows the function blocks to use.

Table 70. Relationship function blocks

Kind of
relationship Function block For more information
Lookup General/ APIs/Relationship /Retrieve Instances ‘Using lookup relationships” on page|
General/ APIs/Relationship /Retrieve Participants 188,
Simple identity General/ APIs/Identity Relationship/Maintain Simple “Using simple identity relationships”]
Identity Relationship on page 191]
General/ APIs/Identity Relationship/Maintain Child
Verb
Composite General/ APIs/Identity Relationship/Maintain "Using composite identity|
Identity Composite Relationship relationships” on page 202
General/ APIs/Identity Relationship/Maintain Child
Verb
General/APIs/Identity Relationship/Update My Children
(optional)

© Copyright IBM Corp. 2003 187

Table 70. Relationship function blocks (continued)

Kind of
relationship

Custom

Function block For more information

General/APIs/Relationship /Create Relationship
General/ APIs/Identity Relationship/Add My Children
General/ APIs/Relationship/Add Participant

When transforming relationship attributes, a map needs to know the calling
context of the map. To determine calling context, the map needs the following
information from the map execution context:

e The map’s calling context, which is part of the map execution context

For more information, see|“Calling contexts” on page 146|.

* The verb, which is part of the business object

These two factors tell the map what actions need to be taken on the relationship
tables.

Using lookup relationships

A lookup relationship associates data that is equivalent across business objects but
may be represented in different ways. The following sections describe the steps for
using lookup relationships:

» |“Creating lookup relationship definitions”]

+ |[“Populating lookup tables with data” on page 189

* [“Customizing map transformations for a lookup relationship” on page 191]

Note: For background information, see [‘Lookup relationships” on page 154}.

Creating lookup relationship definitions

Lookup relationship definitions differ from identity relationship definitions in that
the participant types are not business objects but of the type Data (the first
selection in the participant types list). For more information on how to create a
relationship definition for a lookup relationship, see [“Defining lookup|
frelationships” on page 176|

For example, suppose you create a lookup relationship called StatAdtp for the

AddressType values. In each box represents a participant in the
StatAdtp lookup relationship. Notice that each participant in this relationship is of

type Data.

PsftAdtp

Type: Data Type: Data

StatAdtp

Figure 100. The StatAdtp lookup relationship definition

188 Map Development Guide

Because a lookup relationship does not indicate which attributes are being related,
you can use one lookup relationship definition for transforming several attributes.
In fact, you can use one lookup relationship definition for every attribute that
requires a lookup, regardless of the business object being transformed. However,
because only one set of tables is created for each relationship definition, using one
relationship definition for all lookup relationships would make the tables large and
hard to maintain.

A better strategy might be to create one lookup relationship definition per common
unit of data, such as country code or status. This way, each set of relationship
tables contains information related by meaning. Relationships defined this way are
also more modular because you can add new participants, as you support new
collaborations or applications, and reuse the same relationship definition. For
instance, suppose you create a lookup relationship definition for country code to
transform Clarify_Site business objects to SAP_Customer. Later on, if you add new
collaborations or a new application, you can reuse the same relationship definition
for every transformation involving a country code.

Populating lookup tables with data

When you deploy the lookup relationship definition with the option Create
Schema enabled, Interchange Server Express generates a relationship table (also
called a lookup table) for each participant. Each lookup table has a name of the
form:

RelationshipDefName ParticipantDefName

When you save the StatAdtp relationship definition (see [Figure 100) with the
option Create Schema enabled, Interchange Server Express generates the following

two lookup tables:
» StatAdtp_PsftAdtp_T
e StatAdtp SAPAdtp T

A lookup table contains a column for the relationship instance ID (INSTANCEID) and
its associated participant instance data (data). shows the lookup tables
for the PsftAdtp and SAPAdtp participants in the StatAdtp lookup relationship.
These two lookup tables use the relationship instance ID to correlate the
participants. For example, the instance ID of 116 correlates the PsftAdtp value of
Fired and the SAPAdtp value of 04.

StatAdtp_PsftAdip_T StatAdtp_SAPAdtp_T
PsftAdtp SAPAdtp
INSTANCEID data INSTANCEID data
114 Active 115 03
115 Inactive 116 04
116 Fired 4—,—> 117 05
117 Retired 118 02

Figure 101. Relationship tables for the CustLkUp lookup relationship

Unlike relationship tables that hold data for identity relationships, lookup tables do
not get populated automatically. You must populate these tables by inserting data
into their columns. You can populate a lookup table in either of the following
ways:

Chapter 8. Implementing relationships 189

* Create a script that contains SQL INSERT statements to fill the lookup table with
the desired data.

* Use Relationship Manager to add rows to the lookup table.

Inserting participant instances with SQL

You can insert participant data into a lookup table with the SQL statement INSERT.
This method is useful when you need to add many rows of data to the lookup
table. You can create the syntax for one INSERT statement and then use the editor to
copy and paste this line as many times as you have rows to insert. In each line,
you only have to edit the data to be inserted (usually in a VALUES clause of the
INSERT statement).

To use the INSERT statement, you must know the name of the lookup relationship
table and its columns. [Table 71|shows the column names in a lookup table.

Table 71. Columns of a lookup table

Column in lookup table Description

INSTANCEID The relationship instance ID.

data The participant data

STATUS Set to zero (0) when the participant is active

LOGICAL_STATE Indicates whether the participant instance
has been logically deleted (zero indicates
“no”)

TSTAMP Date of last modification for the participant
instance.

Attention: When you use SQL statements to insert participant data into a lookup
table, make sure you provide a value for the STATUS, LOGICAL_STATE,
and TSTAMP columns. All values are required for IBM WebSphere
business integration tools to function correctly. In particular, omission of
the TSTAMP value causes Relationship Manager to be unable to retrieve
the participant data; if no timestamp value exists, Relationship Manager
raises an exception.

Suppose you want to add the participant data in to the relationship table that
contains information for address type, shown in [Table 72

Table 72. Sample values for address type for PsftAdtp participant

INSTANCEID STATUS LOGICAL_STATE TSTAMP data
1 0 0 current date Home
2 0 0 current date Mailing

The following INSERT statements create the [Table 72| participant data in the
PstfAdtp lookup table:

INSERT INTO StatAdtp_PsftAdtp_T

(INSTANCEID, STATUS, LOGICAL_STATE, TSTAMP, data)
VALUES (1, 0, 0, getDate(), 'Home')

INSERT INTO StatAdtp_PsftAdtp_T

(INSTANCEID, STATUS, LOGICKL_STATE, TSTAMP, data)
VALUES (2, 0, 0, getDate(), 'Mailing')

190 Map Development Guide

Note: The preceding INSERT syntax is compatible with the MicroSoft SQL Server
7.0. If you are using another database server for your relationship table,
make sure you use INSERT syntax compatible with that server.

Inserting participant instances with Relationship Manager
Relationship Manager is an IBM WebSphere business integration tool that
graphically displays run-time data in a relationship table. Relationship Manager is
useful when you only need to add a few rows to the lookup table. For more
information on Relationship Manager, see the User Guide for WebSphere Business
Integration Express for Item Synchronization.

Customizing map transformations for a lookup relationship

Once you have created the relationship definition and participant definitions for
the lookup relationship, you can customize the map transformation rule for
performing the lookups. For information on using lookup relationships, see
[“Example 3 of using the Activity Editor” on page 133|

Using simple identity relationships

An identity relationship establishes an association between business objects or
other data on a one-to-one basis. A simple identity relationship relates two business
objects through a single key attribute. The following sections describe the steps for
working with simple identity relationships:

+ |“Creating simple identity relationship definitions”]

* |“Accessing identity relationship tables”]

* |“Defining transformation rules for a simple identity relationship” on page 201|

Creating simple identity relationship definitions

Identity relationship definitions differ from lookup relationship definitions in that
the participant types are business objects, not of the type Data (the first selection in
the participant types list). For a simple identity relationship, the relationship
consists of the generic business object and at least one application-specific business
object. The participant type for a simple identity relationship is a business object
for all participants. The participant attribute for every participant is a single key
attribute of the business object. (For more information on how to create a
relationship definition for a simple identity relationship, see |“Defining identity]|
frelationships” on page 174})

Accessing identity relationship tables

To reference a simple identity relationship, define a Cross-Reference transformation
rule between the application-specific business object and the generic business
S)[;T'ect. For more information, see [“Cross-referencing identity relationships” on page|

For example, the CustIden relationship (see [Figure 82) transforms a SiteID key
attribute in a Clarify customer to an RefID key attribute in an SAP customer. It
includes maps between the following objects:

* Inbound map: Clarify_Site to Customer

Obtain from the ClarCust relationship table the relationship instance ID that is
associated with the SitelD key value.

¢ Outbound map: Customer to SAP_Customer

Obtain from the SAPCust relationship table the RefID key value that is associated
with relationship instance ID.

Chapter 8. Implementing relationships 191

shows how to use the CustIden relationship tables to transform a SiteID
value of A100 to a RefID value of 806.

Application-Specific
Business Object

Clarify_Site

SitelD =
A100

Generic
Business Object

Customer
A

InstancelD= InstancelD=

116 116
Inbound Map v Outbound Map

Clarify_Site Customer

to to
Customer SAP_Customer

®

A

ClarCust

InstancelD SitelD
1 116 A100 1|
i 117 AlQ06
| 118 B312
i 119 Cc004

T TR S S —

SAPCust

ReflD =
806

Application-Specific
Business Object

SAP_Customer

InstancelD RefID
115 803
116 806---
117 712
118 788

Relationship Database

Figure 102. Using relationship tables to transform a SitelD to a ReflD

//

The maintainSimpleldentityRelationship() method must manage the relationship
tables to ensure that related application-specific keys remain associated to a single
relationship instance ID. At a high level, the Cross-Reference transformation rule

generates code to do the following:
1.

Perform validations on the arguments that are passed in. If an argument is
invalid, the method throws the RelationshipRuntimeException exception. For a
list of validations that the Java code generated by the Cross-Reference
transformation performs, see the maintainSimpleldentityRelationship() API

in [Chapter 20, “IdentityRelationship class,” on page 345

Takes the appropriate actions to maintain the relationship tables based on the
calling context, which includes the following factors:

* The verb of the business object

The Cross-Reference transformation obtains this verb from the source
business object. For inbound maps, the source is the application-specific
business object; for outbound maps, the source is the generic business object.

192 Map Development Guide

¢ The value of the calling context

The Cross-Reference transformation rule obtains the calling context from the
map execution context automatically.

This transformation deals with the calling contexts shown in [Table 73].
Table 73. Calling contexts with maintainSimpleldentityRelationship()

Calling context Description

EVENT_DELIVERY A connector has sent an event from the application to
InterChange Server Express (event-triggered flow).

ACCESS_REQUEST An access client has sent an access request from an
external application to InterChange Server Express.

SERVICE_CALL_REQUEST A collaboration is sending a business object down to
the application through a service call request.

SERVICE_CALL_RESPONSE A business object was received from the application as

a result of a successful response to a collaboration
service call request.

SERVICE CALL FAILURE A collaboration’s service call request has failed. As
such, corrective action might need to be performed.

ACCESS_RESPONSE The source business object is sent back to the source
access client in response to a subscription delivery
request.

The following sections discuss the behavior of the Cross-Reference transformation
with each of the calling contexts in|Table 73].

EVENT_DELIVERY and ACCESS_REQUEST calling contexts

When the calling context is EVENT_DELIVERY or ACCESS_REQUEST, the map is being
called is an inbound map; that is, it transforms an application-specific business
object to a generic business object. A connector sends the EVENT_DELIVERY calling
context; an access client sends an ACCESS_REQUEST calling context. In either case, the
inbound map receives an application-specific business object as input and returns a
generic business object as output. Therefore, the task for the Cross-Reference
transformation is to obtain from the relationship table a relationship instance ID for
a given application-specific key value.

For the EVENT_DELIVERY and ACCESS_REQUEST calling contexts, the Java code
generated by the Cross-Reference transformation takes the following actions:

1. Locate the relationship instance in the relationship table that matches the given
application-specific business object’s key value. shows the actions that
the Java code generated by the Cross-Reference transformation takes on the
relationship table based on the verb of the application-specific business object.

2. Obtain the instance ID from the retrieved relationship instance.
3. Copy the instance ID into the generic business object.

Table 74. Actions for the EVENT_DELIVERY and ACCESS_REQUEST Calling Contexts

Verb of

application-

specific business

object Action Performed by maintainSimpleldentityRelationship()

Create Insert a new entry into the relationship table for the application-specific

business object’s key value.
If an entry for this key value already exists, retrieve the existing one; do
not add another one to the table.

Chapter 8. Implementing relationships 193

Table 74. Actions for the EVENT_DELIVERY and ACCESS_REQUEST Calling
Contexts (continued)

Verb of

application-

specific business

object Action Performed by maintainSimpleldentityRelationship()

Update Retrieve the relationship entry from the relationship table for the given
application-specific business object’s key value.
If an entry for this key value does not exist, add one to the table.

Delete 1. Retrieve the relationship entry from the relationship table for the

given application-specific business object’s key value.
2. Mark the relationship entry as “deactive”.
Retrieve Retrieve the relationship entry from the relationship table for the given
application-specific business object’s key value. If an entry for this key
value does not exist, throw a RelationshipRuntimeException exception.

For an identity relationship that supports the transformation of an AppA
application-specific business object to AppB application-specific business object,
shows how the Java code generated by the Cross-Reference
transformation accesses a relationship table associated with the AppA participant
when a calling context is EVENT_DELIVERY (or ACCESS_REQUEST) and the AppA
application-specific business object’s verb is either Create or Update.

Inbound Map InterChange Server Express

AppA

. AppA ID = DDD to InstancelD = 4
AppA Obj pp — > Generic
(new or existing)

Collaboration

Y

AppA Relationship Table

InstancelD AppAID Active? | @ 1. Does relationship id exist with:
| AppA ID = DDD ?
1 AAA Y !
2 BBB Y | - NO: Create new relationship instance
3 cee v | * 2. Return InstancelD.
4 DDD Y <_.]l:

i - YES: Retrieve relationship instance

Figure 103. EVENT_DELIVERY and ACCESS_REQUEST with a create or update verb

For a calling context of EVENT_DELIVERY (or ACCESS_REQUEST) and an
application-specific verb of either a Create or Update, . shows the write
that the Java code generated by the Cross-Reference transformation makes to the
relationship table when no entry exists that matches the AppA application-specific
key value.

194 Map Development Guide

Before

Create After Create

AppA Relationship Table AppA Relationship Table New , .
Relationship

InstancelD AppAID Active? InstancelD AppAID Active? Entry
1 AAA Y 1 AAA Y
2 BBEB Y 2 BBEB Y
3 CCC Y 3 CCC Y
4 DDD Y

Figure 104. The Write to the relationship table for a new relationship entry

For a calling context of EVENT_DELIVERY (or ACCESS_REQUEST) and an
application-specific verb of Delete, [Figure 105(shows the write that the Java code
generated by the Cross-Reference transformation performs on the AppA relationship
table.

Before Delete After Delete

“Deleted” Row

AppA Relationship Table
InstancelD AppAID Active? InstancelD AppAID Active?
1 AAA Y 1 LAAD ¥
2 BBB Y 2 BBB N
3 CCCDDD Y 3 CCC Y
4 Y 4 DDD Y

Figure 105. The write to the relationship table for a delete verb

SERVICE_CALL_REQUEST calling context

When the calling context is SERVICE_CALL_REQUEST, the map is being called is an
outbound map; that is, it transforms a generic business object to an
application-specific business object. The outbound map receives a generic business
object as input and returns an application-specific business object as output.
Therefore, the task for the Cross-Reference transformation is to obtain from the
relationship table an application-specific business object’s key value for a given a
relationship instance ID only if the verb is Update, Delete, or Retrieve. The
Cross-Reference transformation does not obtain the application-specific key value
for a Create verb.

shows the action that the Cross-Reference transformation takes on the
relationship table based on the verb of the generic business object.

Table 75. Actions for the SERVICE_CALL_REQUEST calling context

Verb of generic business

object

Create

Action performed by the Cross-Reference transformation
Take no action.
When the calling context is SERVICE_CALL_RESPONSE, the method actually writes a new

entry to the relationship table. For more information, see [‘SERVICE_CALL_RESPONSH
lcalling context” on page 197,

Chapter 8. Implementing relationships 195

Table 75. Actions for the SERVICE_CALL_REQUEST calling context (continued)

Verb of generic business

object
Update Delete Retrieve

Action performed by the Cross-Reference transformation

1. Obtain the generic business object’s key value (the relationship instance ID) from the
original-request business object in the map execution context.

2. Retrieve the entry from the relationship table for the given generic business object’s
key value. If an entry for this key value does not exist, throw a
RelationshipRuntimeException exception. If no participants are found when the verb
is Retrieve, throw a CxMissingIDException exception.

3. Obtain the application-specific key value from the retrieved relationship entry.

4. Copy the application-specific key value into the application-specific business object.

As shows, when the verb is Create, the Java code generated by the
Cross-Reference transformation does not write a new entry to the relationship
table. It does not perform this write operation because it does not yet have the
application-specific key value that corresponds to the relationship instance ID.
When the connector processes the application-specific business object, it notifies the
application of the need to insert a new row (or rows). If this insert is successful,
the application notifies the connector, which creates the appropriate
application-specific business object with a Create verb and the application’s key
value.

For the remaining verbs (Update, Delete, and Retrieve), the Java code generated by
the Cross-Reference transformation performs a read operation on the relationship
table. For an identity relationship that supports the transformation of an AppA
application-specific business object to AppB application-specific business object, as
shows how the Cross-Reference transformation accesses a relationship
table associated with the AppB participant when a calling context is
SERVICE_CALL_REQUEST and the generic business object’s verb is Update, Delete, or
Retrieve.

InterChange Server Express Outbound Map

Collaboration

Generic

InstancelD = 3 to AppB ID = MMMM ,
— > AppB » (AppB Obj
(existing)

AppB Relationship Table

InstancelD AppB ID Active?

1 KKKK Y
2 LLLTL Y
+ 3 MMMM Y |

Figure 106. SERVICE_CALL_REQUEST with an update, delete, or retrieve verb

196 Map Development Guide

SERVICE_CALL_RESPONSE calling context
When the calling context is SERVICE_CALL_RESPONSE, the map is being called is an

inbound map; that is, it transforms an application-specific business object to a
generic business object. The inbound map receives an application-specific business
object as input and returns a generic business object as output. The
SERVICE_CALL_RESPONSE calling context is important for the Create verb, to indicate
that the destination application was able to create a unique value for the new
entity and the connector has returned an application-specific business object.

The task for the Cross-Reference transformation rule is to maintain an
application-specific business object’s key value in the relationship table for an
existing relationship instance ID. For the SERVICE_CALL_RESPONSE calling context,
the Java code generated by the Cross-Reference transformation takes the following
actions:

1. Determines whether the generic business object is null:

* For the Update, Delete, and Retrieve verbs, the transformation throws the
RelationshipRuntimeException if the generic business object is null.

* For a Create verb, a null-valued generic business object is valid.

2. Locates the entry in the relationship table that matches the given
application-specific business object’s key value. shows the action that
the Java code generated by the Cross-Reference transformation takes on the
relationship table based on the verb of the application-specific business object.

Table 76. Actions for the SERVICE_CALL_RESPONSE calling context

Verb of

application-specific

business object Action performed by maintainSimpleldentityRelationship()

Create For the given application-specific key, insert into the relationship table
the new relationship entry containing the application-specific business
object’s key value and its associated relationship instance ID. The
method obtains the relationship instance ID from the original-request
business object in the map execution context (cwExecCtx).

If an entry for this key value already exists, retrieve the existing one;
do not add another one to the table.

Delete 1. Retrieve the relationship entry from the relationship table for the

given application-specific business object’s key value.
2. Mark the relationship entry as “deactive.”

Update Retrieve the relationship entry from the relationship table for the given
application-specific business object’s key value.

Retrieve Retrieve the relationship entry from the relationship table for the given

application-specific business object’s key value.

For an identity relationship that supports the transformation of an AppA
application-specific business object to AppB application-specific business object,
shows how the Java code generated by the Cross-Reference
transformation accesses a relationship table associated with the AppB participant
when a calling context is SERVICE_CALL_RESPONSE and the AppB application-specific
business object’s verb is Create.

Chapter 8. Implementing relationships 197

Inbound Map InterChange Server Express

App B

(.) AppB ID = NNNN to InstancelD = 4
App B Obj (EZW) > Generic

Y

Collaboration

AppB Relationship Table

InstancelD AppB ID !
1 KKKK |
2 LLLL |
3 MMMM !
---14-4 NNNN «-1-

Figure 107. SERVICE_CALL_RESPONSE with the create verb

When the calling context is SERVICE_CALL_RESPONSE and the verb is Create, the
inbound map has been invoked by the connector controller in response to the
following actions:

* The connector has been notified that the application has inserted a new row.

The connector sent this insert request to the application when it received the
application-specific business object with a Create verb from the outbound map.
This outbound map had a calling context of SERVICE_CALL_REQUEST. When the
calling context was SERVICE_CALL_REQUEST, the Cross-Reference transformation
could not write a new relationship instance to the relationship table because it
did not yet have the application-specific key value that corresponded to the
instance ID.

* The connector has generated a new application-specific business object based on
the values in the new application-specific row and with a verb of Create.

The connector sends this application-specific business object to InterChange
Server Express, where it is received by the connector controller.

* The connector controller has called the inbound map to convert the
application-specific business object to a generic business object.

The inbound map contains a Cross-Reference transformation to create an entry
in the relationship table for the new application-specific key.

For a calling context of SERVICE_CALL_RESPONSE and an application-specific verb of
Create, [Figure 108 shows the write that the Java code generated by the

Cross-Reference transformation makes to the relationship table.

198 Map Development Guide

Before Create After Create

AppB Relationship Table AppB Relationship Table

InstancelD AppB ID Active? InstancelD AppBID Active?
1 KKKK Y 1 KKKK Y ‘Inserted” Row
2 LLLL Y 2 LLLL Y
3 MMMM Y 3 MMMM Y
4 NNNN Y

Figure 108. The write to the relationship table for a create verb

The Cross-Reference transformation must associate the new AppB
application-specific key with its equivalent value in the AppA application. For the
EVENT_DELIVERY or ACCESS_REQUEST calling context, the Cross-Reference
transformation could just generate a new relationship instance ID. However, for
SERVICE_CALL_RESPONSE, the Cross-Reference transformation cannot just generate a
new instance ID. Instead, it must assign the same relationship instance ID to the
AppB key value as it has already assigned to the AppA key value. The method
obtains the instance ID associated with the AppA key value from the
original-request business object, which is part of the map execution context.

In the Java code generated by the Cross-Reference transformation takes
the following steps for the SERVICE_CALL_RESPONSE calling context and the Create
verb:

* Obtain the instance ID of 4 from the original-request business object in map
execution context.

¢ Create a new entry in the AppB relationship table for this instance ID (4) and the
new application-specific key (NNNN).

When the map executions with both the EVENT_DELIVERY (or ACCESS_REQUEST) and
SERVICE_CALL_RESPONSE calling contexts (and a Create verb) are complete, the
relationship tables for AppA and AppB use common relationship instance IDs to

associate their keys, as [Figure 109|shows.

AppA Relationship Table AppB Relationship Table Relationship

InstancelD AppAID Active? InstancelD AppBID Active? Instance
1 AAA Y 1 KKKK Y
2 BBB Y 2 LLLL Y
3 CCC Y 3 MMMM Y
4 DDD Y 4 NNNN Y

Figure 109. Creating the relationship instance

For the Update and Delete verbs (and Retrieve, if the instance ID already exists in
the relationship table), the Cross-Reference transformation just retrieves the
relationship instance ID from the relationship table. For a calling context of
SERVICE_CALL_RESPONSE and an application-specific verb of Delete, the
Cross-Reference transformation must take an additional step to deactivate the
relationship instance, as shows.

Chapter 8. Implementing relationships 199

AppB Relationship Table

Before Delete

InstancelD AppB ID Active? InstancelD AppBID Active?
1 KKKK Y 1 KEKZXL =
2 LLLL Y 2 LLLL N
3 MMMM Y 3 MMMM Y
4 NNNN Y 4 NNNN Y

After Delete

AppB Relationship Table

“Deleted” Row

Figure 110. The write to the relationship table for SERVICE_CALL_RESPONSE and a delete verb

SERVICE_CALL_FAILURE calling context

When the calling context is SERVICE_CALL_FAILURE, the map is being called is an
inbound map; that is it transforms an application-specific business object to a
generic business object. For SERVICE_CALL_FAILURE, the inbound map receives an
null application-specific business object as input and returns a generic business
object as output. The SERVICE_CALL_FAILURE calling context is important for the
Create verb; it indicates that the destination application was unable to create a
unique value for the new entity and therefore the connector was unable to return
an application-specific business object. The task for the Cross-Reference

transformation is the same for all verbs, as|Table 77 shows.
Table 77. Actions for the SERVICE_CALL_FAILURE calling context

Verb of

Application-Specific

business object Action Performed by maintainSimpleldentityRelationship()
Create Delete 1. Obtain the key value (relationship instance ID) from the generic

Update Retrieve business object. This generic business object is in the map

execution context.

2. Copy the retrieved instance ID into the generic business object.

ACCESS_RESPONSE calling context

When the calling context is ACCESS_RESPONSE, the map is being called is an
outbound map as a result of a call-triggered flow. It transforms a generic business
object to an application-specific business object. The outbound map receives a
generic business object as input and returns an application-specific business object
as output. Therefore, the task for the Cross-Reference transformation is the same

for all verbs, as|Table 78| shows.
Table 78. Actions for the ACCESS_RESPONSE calling context

Verb of generic
business object Action Performed by maintainSimpleldentityRelationship()

Create Delete 1

. Obtain the key value (relationship instance ID) from the generic
Update Retrieve

business object. This generic business object is in the map
execution context.

2. Convert the relationship instance ID to an integer value. If this
conversion fails, throw an exception.

3. Copy the key values from the original-request business object into
the application-specific business object.

200 Map Development Guide

Because the original-request business object for ACCESS_RESPONSE is the
application-specific business object, the Cross-Reference transformation
automatically obtains this key value from the original-request business object in the
map execution context (cwExecCtx).

The Cross-Reference transformation can perform the tasks in as long as it
has access to the original-request business object. However, in some cases, it might
not have access to this business object. For example, if the Cross-Reference
transformation is processing a child object that didn’t exist in the primary request,
the method tries to retrieve that child object’s relationship instance ID. If the
method can’t find the relationship instance, it just populates the keys of this child
object with the CxIgnore value.

Defining transformation rules for a simple identity relationship

For information on defining a Cross-Reference relationship, see|“Cross-referencing]
lidentity relationships” on page 45

Coding a child-level simple identity relationship

If child business objects have a unique key attribute, you can relate these child
business objects in a simple identity relationship. Coding this simple identity
relationship involves the following steps:

* [“Creating the child relationship definition”|

+ |“Customizing the parent map”|

+ [“Customizing the submap” on page 202|

Creating the child relationship definition: To create a relationship definition for

a simple identity relationship between child business objects, take the following

steps:

1. Create a participant definition whose participant type is the child business
object.

2. Set the participant attribute to the key attribute of the child business object.
Expand the child business object and select the key attribute.

3. Repeat steps 1 and 2 for each of the participants. As with all simple identity
relationships, this relationship contains one participant for the generic business
object and at least one participant for an application-specific business object.
Each participant contains a single attribute: the key of the business object.

Customizing the parent map: In the map for the parent business object (the main
map), add the mapping code to the attribute that contains the child business object.
In the Activity Editor for this attribute, take the following steps to code a simple
identity relationship:

1. If you created a submap for the child object, call this submap from the child
attribute of the main map. Usually mapping transformations for a child object
are done within a submap, especially if the child object has multiple cardinality.

2. Use the General/APIs/Identity Relationship/Maintain Child Verb function
block to set the source child objects” verbs for you.

The last parameter of the General/APIs/Identity Relationship/Maintain Child
Verb function block is a boolean flag to indicate whether the child objects are
participating in a composite relationship. Make sure you pass a value of false
as the last argument to the General/APIs/Identity Relationship/Maintain Child
Verb function block because this child object participates in a simple, not a
composite identity relationship. If the child object has a submap, call the

Chapter 8. Implementing relationships 201

General/APIs/Identity Relationship/Maintain Child Verb function block before
the call to the submap. For more information, see [‘Setting the source child]
[verb” on page 213}

Note: If the key attribute of the parent business object also participates in a simple
identity relationship, define a Cross-Reference transformation in the main
map, as described in |”Cross—referencing identity relationships” on page 45I

Customizing the submap: In the submap, perform the following steps:
1. Define a More or Set Value transformation for the child business object.

2. Define a Cross-Reference transformation for the child business object and
specify the relationship name and participant. For more information, see
[“Cross-referencing identity relationships” on page 45|

Using composite identity relationships

An identity relationship establishes an association between business objects or
other data on a one-to-one basis. A composite identity relationship relates two
business objects through a composite key attribute. The following sections describe
the steps for working with composite identity relationships:

* [“Creating composite identity relationship definitions”|

+ |[“Determining the relationship action” on page 203|

+ |“Customizing map rules for a composite identity relationship” on page 204

Creating composite identity relationship definitions

Identity relationship definitions differ from lookup relationship definitions in that
the participant types are business objects, not of the type Data (the first selection in
the participant types list). As with a simple identity relationship, a composite
identity relationship:

* The relationship consists of the generic business object and at least one
application-specific business object.

* The participant type is a business object for all participants.

However, for a composite identity relationship, the participant attribute for every
participant is a composite key. This composite key usually consists of a unique key
from a parent business object and a nonunique key from a child business object.

To create a relationship definition for a composite identity relationship, take the
following steps:

1. Create a participant definition whose participant type is the parent business
object.

2. Set the first participant attribute to the key of the parent business object.
Expand the parent business object and select the key attribute.

3. Set the second participant attribute to the key of the child attribute.

Expand the parent business object, then expand the child attribute within the
parent. Select the key attribute from this child object.

4. Repeat steps 1-3 for each of the participants. As with all composite identity
relationships, this relationship contains one participant for the generic business
object and at least one participant for a application-specific business object.
Each participant consists of two attributes: the key of the parent business object
and the key of the child business object (from the attribute within the parent
business object).

202 Map Development Guide

Restriction: To manage composite relationships, the server creates internal tables.
A table is created for each role in the relationship. A unique index is then created
on these tables across all key attributes of the relationship. (In other words, the
columns which correspond to the key attributes of the relationship are the
participants of the index.) The column sizes of the internal tables have a direct
relation to the attributes of the relationship and are determined by the value of the
MaxLength attribute for the relationship.

Databases typically have restrictions on the size of the indexes that can be created.
For instance, DB2 has an index limitation of 1024 bytes with the default page size.
Thus, depending on the MaxLength attribute of a relationship and the number of
attributes in a relationship, you could run into an index size restriction while
creating composite relationships.

Important:

* You must ensure that appropriate MaxLength values are set in the repository file
for all key attributes of a relationship, such that the total index would never
exceed the index size limitations of the underlying DBMS.

If the MaxLength attribute for type String is not specified, the default is
nvarchar(255) in the SQLServer. Thus, if a relationship has N Keys, all of type
String and the default MaxLength attribute of 255 bytes, the index size would be
((N*255)*2) + 16 bytes. You can see that you would exceed the SQLServer 7 limit
of 900 bytes quite easily when N takes values of >=2 for the default MaxLength
value of 255 bytes for type String.

* Remember, too, that even when some DBMS’es support large indexes, it comes
at the cost of performance; hence, it is always a good idea to keep index sizes to
the minimum.

For more information on how to create a relationship definition for a composite
identity relationship, see [“Defining identity relationships” on page 174}

Determining the relationship action

shows the activity function blocks that the Mapping API provides to
maintain a composite identity relationship from the child attribute of parent source
business object. The actions that these methods take depends on the source object’s
verb and the calling context.

Table 79. Maintaining a composite identity relationship from the child attribute

Activity function blocks Purpose

General/APIs/Identity Relationship/ Set source child verb correctly
Maintain Child Verb

General/ APIs/Identity Relationship/ Perform appropriate action on the
Maintain Composite Relationship relationship tables

Actions of General/APls/ldentity Relationship/Maintain Composite
Relationship

The Maintain Composite Relationship function block will generate Java code that
calls the mapping API maintainCompositeRelationship(), which will manage
relationship tables for a composite identity relationship. This method ensures that
the relationship instances contain the associated application-specific key values for
each relationship instance ID. This method automatically handles all of the basic
adding and deleting of participants and relationship instances for a composite
identity relationship.

Chapter 8. Implementing relationships 203

The actions that maintainCompositeRelationship() takes are based on the value of
the business object’s verb and the calling context. The method iterates through the
child objects of a specified participant, calling the
maintainSimpleIdentityRelationship() on each one to correctly set the child key
value. As with maintainSimpleldentityRelationship(), the action that
maintainCompositeRelationship() takes is based on the following information:

* The calling context: EVENT_DELIVERY, ACCESS_REQUEST, SERVICE_CALL_REQUEST,
SERVICE_CALL RESPONSE, SERVICE CALL_FAILURE, and ACCESS RESPONSE

* The verb of the source business object: Create, Update, Delete, or Retrieve

For information on the actions that maintainSimpleldentityRelationship() takes,
see |"Access1’ng identity relationship tables" on page 1911

The maintainCompositeRelationship() method deals only with composite keys that
extend to only two nested levels. In other words, the method cannot handle the
case where the child object’s composite key depends on values in it grandparent
objects. For example, if A is the top-level business object, B is the child of A, and C
is the child of B, the two methods will not support the participant definitions for
the child object C that are as follows:

* The participant type is A and the attributes are:

key attribute of A: ID
key attribute of B: B[0].ID
key attribute of C: B[0].C[0].ID

* The participant type is A and the attributes are:

key attribute of A: ID
key attribute of C: B[0].C[0].ID

To access a grandchild object, these methods only support the participant
definitions that are as follows:

* The participant type is B and the attributes are:

key attribute of B: ID
key attribute of C: C[0].ID

* The participant type is B and the attributes are:

key attribute of B: ID
first key attribute of C: C[0].ID1
second key attribute of C: C[0].ID2

Actions of General/APls/ldentity Relationship/Maintain Child Verb
The Maintain Child Verb function block will generate Java code that calls the
mapping API maintainChildVerb(), which will maintain the verb of the child
objects in the destination business object. It can handle child objects whose key
attributes are part of a composite identity relationship. When you call
maintainChildVerb() as part of a composite relationship, make sure that its last
parameter has a value of true. This method ensures that the verb settings are
appropriate given the verb in the parent source object and the calling context. For
more information on the actions of maintainChildVerb(), see [‘Setting the source]
child verb” on page 213

Customizing map rules for a composite identity relationship

Once you have created the relationship definition and participant definitions for
the composite identity relationship, you can customize the map to maintain the
composite identity relationship. A composite identity relationship manages a
composite key. Therefore, managing this kind of relationship involves management

204 Map Development Guide

of both parts of the composite key. To code a composite identity relationship, you
need to customize the mapping transformation rules for both the parent and child
business objects, as [Table 80| shows.

Table 80. Activity function blocks for a composite identity relationship

Map
involved

Main

Submap

Business object

involved Attribute Activity function blocks
Parent business Top-level business Use a Cross-Reference transformation rule
object object
Child attribute General/ APIs/Identity Relationship/Maintain Composite
(child business Relationship
object) General/ APIs/Identity Relationship/Maintain Child Verb
General / APIs/Identity Relationship/Update My Children
(optional)
Child business Key attribute Define a Move or Set Value transformation for the verb.
object (nonunique key)

If child business objects have a nonunique key attribute, you can relate these child
business objects in a composite identity relationship. Customizing this composite
identity relationship involves the following steps:

* [“Customizing the main map”]

« |"Managing child instances” on page 207]

Customizing the main map
In the map for the parent business object (the main map), add the mapping code to
the following parent attributes:

* Map the verb of the top-level business object by defining a Move or Set Value
transformation rule.

* Define a Cross-Reference transformation between the top-level business objects.

* Define a Custom transformation for the child attribute and use the
General/ APIs/Identity Relationship/Maintain Composite Relationship function
block in Activity Editor.

Coding the child attribute: The child attribute of the parent object contains the
child business object. This child object is usually a multiple cardinality business
object. It contains a key attribute whose value identifies the child. However, this
key value is not required to be unique. Therefore, it does not uniquely identify one
child object among those for the same parent nor is it sufficient to identify the
child object among child objects for all instances of the parent object.

To uniquely identify such a child object, the relationship uses a composite key. In
the composite key, the parent key uniquely identifies the parent object. The
combination of parent key and child key uniquely identifies the child object. In the
map for the parent business object (the main map), add the mapping code to the
attribute that contains the child business object. In the Activity Editor for this
attribute, take the following steps to code a composite identity relationship:

1. Define a Submap transformation for the child business object attribute of the
main map. Usually mapping transformations for a child object are done within
a submap, especially if the child object has multiple cardinality.

2. In the main map, define a Custom transformation rule for the child verb and
use the General/APIs/Identity Relationship/Maintain Child Verb function
block to maintain the child business object’s verb.

The last input parameter of the General/APIs/Identity Relationship/Maintain
Child Verb function block is a boolean flag to indicate whether the child objects

Chapter 8. Implementing relationships 205

are participating in a composite relationship. Make sure you pass a value of
true as the last argument to maintainChildVerb() because this child object
participates in a composite, not a simple identity relationship. Make sure you
call maintainChildVerb() before the code that calls the submap. For more
information, see |[“Setting the source child verb” on page 213

3. To maintain this composite key for the parent source object, customize the
mapping rule to use the General/APIs/Identity Relationship/Maintain
Composite Relationship function block.

4. To maintain the relationship tables in the case where a parent object has an
Update verb caused by child objects being deleted, customize the mapping rule
to use the General/APIs/Identity Relationship/Update My Children function
block.

Tip: Make sure the transformation rule that contains the Update My Children
function block has an execution order after the transformation rule that
contains the Maintain Composite Relationship function block.

Here is a sample of how the map can be customized for a Composite Identity
Relationship.

1. In the main map, define a Custom transformation rule between the child
business object’s verbs. Use the General/APIs/Identity Relationship/Maintain
Child Verb function block in the customized activity to maintain the verb for
the child business objects.

The goal of this custom activity is to use the maintainChildVerb() API to set the
child business object verb based on the map execution context and the verb of

the parent business object. |[Figure 111 shows this custom activity.

Deseriplion
L -
Ifaintsin the child besmess ohject's
O ine this vtk fior melabaeehap
Y
S&FCaln
-
e) s [
- ralCatame s | k=)
Har
B
ObjSAP_Order appSpecificCHMBONama s

i
SAP OnderLine[t gunedcChidBOName e
- =l J _Ralimey
+ Is_Composite s
: Maintain Child Verb
" ‘::>* ' s
|

-

Figure 111. Using the Maintain Child Verb function block

2. If necessary, define a Submap transformation rule between the child business
object to perform any mapping necessary in the child level.

3. Define a Custom transformation rule between the top-level business objects.
Use the General/APIs/Identity Relationship/Maintain Composite Relationship
function block in the customized activity to maintain the composite identity
relationship for this map.

The goal of this custom activity is to use the maintainComposite Relationship()
API to maintain a compositie identity relationship within the map.

on page 207

206 Map Development Guide

shows this custom activity.
«[e

Orrdrl e

-
SAPCaln

Y
e

ObjSAP_Crder

RN

ObjCrder

this

mapg (i
reiDaitame s

participartDeMame s
appSpecificBusOb)
genarcBusObjlistep

Maintain Composite Relationship

business olyect w s valLe
altribute s

Gel Business Object Amay

OrderL ineTtemn

Figure 112. Using the Maintain Composite Relationship function block

4. Define a Custom transformation rule mapping from the source top-level
business object to the destination child business object attribute. Use the
General/APIs/Identity Relationship/Update My Children function block in the
customized activity to maintain the child instances in the relationship.

The goal of this custom activity is to use the updateMyChildren() API to add or
delete child instances in the specified parent/child relationship of the identity
relationship. shows this custom activity.

\— mapsp

this
B
a8t 15 I parantChikIReIDeMNams s
| _parentParticipaniDel sl
pareniBusObjef
*@*____J childParticipan iDef e

ObjSAP_Order

childAtirMNanme s
childidentityRelDeiMNamea o

childidenmityParicipaniDeaMams o

SACH&La

Figure 113. Using the Update My Children function block

Update My Children

Managing child instances

The Activity Editor provides the function blocks in|Table 81| to manage child object
instances that belong to a parent in an identity relationship.

Table 81. Function blocks for Managing Child Instances

Function block

General/APIs/Identity
Relationship/Add My Children
General/ APIs/Identity
Relationship/Delete My Children

Description

Adds child relationship instances to parent/child
relationship tables

Deletes child relationship instances to parent/child
relationship tables

Chapter 8. Implementing relationships 207

Table 81. Function blocks for Managing Child Instances (continued)

Function block Description

General / APIs/Identity Deletes or adds child relationship instances from
Relationship/Update My Children parent/child relationship tables.

Note: The most common use of the function blocks in [Iable 81|is to maintain child
business objects in custom relationships involving composite identity
relationships.

The function blocks in assume that the parent business object being
passed is an after-image; that is, the image of the business object after the verb
operation has taken place. For example, if a business object has an Update verb
with the update caused by the addition of new child objects, these new child
objects already exist in the business object. Similarly, if a business object has an
Update verb with the update caused by the deletion of child objects, the business
object already has these child objects deleted.

This section provides the following information about how to manage child
instances:

* |“Creating the parent/child relationship definition”]

« |"Handling updates to the parent business object” on page 209

Creating the parent/child relationship definition

A parent/child relationship is a 1-to-many relationship between parent (1) and child
(many) business objects. A parent/child relationship involves the following
participants:

* A participant containing the key attribute of that parent business object
* A participant containing the key of the child business object

The relationship tables for a parent/child relationship enable the function blocks in
to track the child business objects associated with a particular parent
business object.

To create a relationship definition for a parent/child relationship, take the
following steps in Relationship Designer Express:

1. Create a participant definition whose participant type is the parent business
object.

2. Set the participant attribute to the key of the parent business object.
Expand the parent business object and select the key attribute.

3. Create a participant definition whose participant type is the child business
object.

4. Set the participant attribute to the key of the child attribute.

Expand the child business object (not the child attribute with the parent object)
and select the key attribute from this child object.

Note: The parent-child relationship needs to be maintained only if the child object
does not have a unique key; that is, the child object only exists within the
context of its parent.

For more information, see [‘Defining identity relationships” on page 174

208 Map Development Guide

Handling updates to the parent business object

This section provides the following steps to ensure that child objects that
participate in a composite identity relationship are correctly managed during an
Update:

+ [“Comparing the before- and after-images”|

* |“Tips on using Update My Children’]

Comparing the before- and after-images

The Update My Children function block updates the relationship tables for a
parent/child relationship. A parent/child relationship is needed to help determine
whether child objects have been added to or deleted from a parent business object.

For a given parent business object, this method makes sure that the following
images of the business object match:

* The before-image information is contained in the relationship tables for the
parent/child relationship.

* The after-image is contained in parent business object.

For the map to detect that a child business object has been deleted, it must
determine how many instances of the child object of this type that the parent
business object had before the Update (the before-image) and compare that to what
the parent object presently has (the after-image). The map can use the Update My
Children function block to make this comparison and find out what has been
deleted or added.

When Update My Children compares the before- and after-images, it can
determine whether to remove the associated relationship instances from the
relationship tables for any child object that is not present in the parent business
object. The method removed relationship instances from the following relationship
tables:

* The relationship table for the child participant in the parent/child relationship

* The relationship table for the participant in the composite identity relationship
that contains the parent and child objects

Note: Although Update My Children can also add instances to the relationship
table for any child object that is present in the parent business object (but
not in the child relationship table), it does not need to when called in the
context of a composite identity relationship. All new child objects for the
parent object have already been added to the relationship tables by the
Maintain Composite Relationship function block For more information, see
“Actions of General/APIs/Identity Relationship/Maintain Composite|
Relationship” on page 203

Tips on using Update My Children

When you use the Update My Children function block to maintain relationship

tables for a child object involved in a composite identity relationship, keep the

following tips in mind:

* Make sure you use the Update My Children function block after the Maintain
Composite Relationship function block and that you have set the appropriate
verbs on the child business objects.

* The Update My Children function block is only needed to track child objects
involved in composite relationships.

Chapter 8. Implementing relationships 209

You do not need to use the Update My Children function block to track child
objects involved in a simple identity relationship. For more information, see
[“Coding a child-level simple identity relationship” on page 201}

* The Update My Children function block (as with the Maintain Composite
Relationship function block) deals only with composite keys that extend to only
two nested levels: the parent and its immediate children.

In other words, the method cannot handle the case where the grandchild object’s
composite key depends on values in it grandparent objects. For example, if A is
the top-level business object, B is the child of A, and C is the child of B, the two
methods will not support the participant definitions for the child object C that
are as follows:

— The participant type is A and the attributes are:

key attribute of A: ID
key attribute of B: B[0].ID
key attribute of C: B[0].C[0].ID

— The participant type is A and the attributes are:

key attribute of A: ID
key attribute of C: B[0].C[0].ID

To access a grandchild object, these methods only support the participant
definitions that are as follows:

— The participant type is B and the attributes are:

key attribute of B: ID
key attribute of C: C[0].ID

— The participant type is B and the attributes are:

key attribute of B: ID
first key attribute of C: C[0].ID1
second key attribute of C: C[0].ID2
e The Update My Children function block manages the parent/child relationship
tables for the EVENT_DELIVERY and SERVICE_CALL_RESPONSE calling contexts only.
Execution of the Update My Children function block with a calling context of

SERVICE_CALL_REQUEST or ACCESS_RESPONSE does not produce any changes to
these relationship tables.

e The Update My Children function block can also be used when the child
business object has a unique ID; that is, the child object participates in a simple
identity relationship. In this case, you must still define the parent/child
relationship (see [“Creating the parent/child relationship definition” on page]

o3

Setting the verb

This section contains the following information on how to set the verb of a
business object participating in a map:

+ |“Conditionally setting the destination verb”|

* [“Setting the source child verb” on page 213

Note: For general information about how to set the verb of the destination
business object, see [“Setting the destination business object verb” on page|

Conditionally setting the destination verb

Usually, you just set the destination verb to the value of the source verb by
defining a Move transformation. (For more information on this action, see “Setting

210 Map Development Guide

fthe destination business object verb” on page 35|) However, sometimes the source
application sets the business object verb in an unusual manner; for example, the
verb is set to Update even though the event is new. As another example, the verb
is always set to Retrieve. In the situations like these, the map must resets the
destination verb to the one that corresponds to the actual event.

If the source business object’s key participates in a relationship, the map can
perform a static lookup in the relationship table to determine if the source business
object exists. The map can then set the destination verb to either Update or Create
based on whether the corresponding entry is found in the table. You perform this
static lookup in much the same way as accessing a lookup relationship.
shows the function block to use for each kind of static lookup.

Table 82. Checking for Existence of the source business object

Type of source business object Map type Function block

Application-specific Inbound General/ APIs/Relationship /
Retrieve Instances

Generic Outbound General/ APIs/Relationship /

Retrieve Participants

Example of customizing the inbound map
Here is an example of how an inbound map can conditionally set the destination
verb based on the result of a lookup:

1. In the map, define a Custom transformation between the source business object
and the destination verb.

2. In the Activity of this Custom Transformation, perform the following steps. The
goal of this activity is to identify the number of instances in the participant of
the relationship. If there are no participant instances in the relationship, the
destination business object verb should be Create; otherwise, the verb should
be Update.

a. Define the activity, as shown in [Figure 114} to identify the number of
instances in the relationship participant.

e - eeiDalNarme p [0 o iazirecs 104
meures
} panDatmsy
AppPeibiens
L3 Relriave Inslances """""@" .
) Size
- *»3-9

ObgSre e o 20w they apsal?
5] wilue
o Equal
Conidition wy
Candilic

Figure 114. Identifying the number of instances in the relationship participant

b. Double-click the Condition function block in the canvas to open it. Select
True Action to define the action to take when the condition is true. Define

Chapter 8. Implementing relationships 211

the True Action as shown in [Figure 115

[F] # Condiion
B False Action
= Create
R
Verb: Create ObjDest

Figure 115. Defining the True Action

c. Select the False Action to define the action to take when the number of

participant instances is not zero. Define the False Action as shown in

[=] @ Condition
B True dction
B Falze Action

a @umate_,_¢<>¢

Verb: Update ObjDest

Figure 116. Defining the False Action

Example of customizing the outbound map
You can use similar steps in the outbound map to perform a static lookup based

on the primary key of the generic object. To do that, you need to replace the
function block General/APIs Relationship/Retrieve Instances with the function
block General/APIs Relationship/Retrieve Participants. Here are the steps:

1. In the map, define a Custom transformation between the key attribute of the
source business object and the destination verb.

2. In the activity of this Custom transformation, perform the following steps. The
goal of this activity is to identify the number of participants of the relationship.
If there are no participant instances in the relationship the destination business
object verb should be Create; otherwise, the verb should be Update.

212 Map Development Guide

a. Define the activity, as shown in [Figure 117} to identify the number of

participants in the relationship.

RelName
d 1 rolDafName sp [F55) e pasticipant instances ,

parDaMame s

AppPutHame ingtancald e
ad ' Ratrieve Participants

-
E aray e [0 e sire
ObjSre. SrelD

Size

wilus 1 e aré thary egual?
] —walue 2
o Condit
Equal conditice s
-

Figure 117. Identifying the number of participants in the relationship

b. Follow steps 2b and 2c, described in[“Example of customizing the inbound|
[map” on page 211

Setting the source child verb

When a parent source business object has child business objects, the value of the
source child verb is usually the same as that of the parent verb. Therefore, you set
the source child object’s verb by defining a Move transformation from the parent
verb to the child verb. However, if the parent object’s verb is Update, the update
could be a result of any of the modifications shown in

Table 83. Updating a parent business object

Update task Verb in child object
Modifying some non-child attribute i the parent object Update

Modifying some attribute in a child object Update

Adding more child objects Create

Deleting existing child objects Delete

All of the modifications are represented by a verb of Update in the parent
object. However, not all of these modifications represent an Update to the child
object. The value of the source child verb depends on what action was taken on
the parent verb. When the child object’s key participates in an identity relationship
(composite or simple), the source child verb value depends not just on the parent
verb but also on the calling context. In such cases, use the Maintain Child Verb
function block to handle the setting of the verb of the source child object.

This section provides the following information about using the Maintain Child
Verb function block to maintain a source child object verb:

* [“Determining the child verb setting”]

« |"Tips for using the Maintain Child Verb function block” on page 215|

Determining the child verb setting

The Maintain Child Verb function block must ensure that the verb settings of the
child objects in the source business object are appropriate given the verb in the
parent source object and the calling context. The actions that this method takes are
based on the verb in the parent source object and the calling context.

Chapter 8. Implementing relationships 213

EVENT_DELIVERY and ACCESS_REQUEST calling Contexts: When the calling
context is EVENT_DELIVERY or ACCESS_REQUEST, the map is being called is an
inbound map; that is, it transforms an application-specific business object to a
generic business object. The inbound map receives an application-specific business
object as input and returns a generic business object as output. For
EVENT_DELIEVERY (or ACCESS_REQUEST), there are no special cases to handle when
setting the child verbs. Therefore, the maintainChildVerb() method just copies the
parent verb to the child verb for all verb values, as shows.

Table 84. Actions for the EVENT_DELIVERY and ACCESS_REQUEST calling contexts

Verb of generic
business object

Action performed by the Maintain Child Verb function block

Create Delete Update Set the verbs of all child objects in the source object to the verb in the parent source object.

Retrieve

This action overwrites any existing verb in the child object.

SERVICE_CALL_REQUEST calling context: When the calling context is
SERVICE_CALL_REQUEST, the map is being called is an outbound map; that is, it
transforms a generic business object to an application-specific business object. The
outbound map receives a generic business object as input and returns an
application-specific business object as output. For SERVICE_CALL_REQUEST, the Java
code generated by the Maintain Child Verb function block handles the special case
for an Update verb: If the change to the parent object is the creation of new child
objects, the Maintain Child Verb function block changes the verb to Create for any
child objects that do not currently exist in the relationship tables, as
shows.

Table 85. Actions for SERVICE_CALL_REQUEST calling context

Verb of generic
business object

Create Delete
Retrieve
Update

Action performed by the Maintain Child Verb function block

Set the verbs of all child objects in the source object to the verb in the parent source object.
This action overwrites any existing verb in the child object.

1.

Retrieve the relationship instance from the child relationship table for the given generic
business object’s key value.

2. Set the verb of the child object based on the success of the table lookup:

* If a relationship instance for this child object exists, set the verb of the child object to
Update.

* If a relationship instance for this child object does not exist, set the verb of the child
object to Create.

SERVICE_CALL_RESPONSE calling context: When the calling context is
SERVICE_CALL_RESPONSE, the map is being called is an inbound map; that is it
transforms an application-specific business object to a generic business object. The
inbound map receives an application-specific business object as input and returns a
generic business object as output.

The behavior of the Maintain Child Verb function block is determined by the
second-to-last parameter of the method. This parameter is the boolean to_Retrieve
flag, whose value indicates whether the application resets or i reserves child

objects” verbs when processing a collaboration request, as [Table 86 shows.

214 Map Development Guide

Table 86. Connector behavior

Value of to_Retrieve
flag

true

false

Connector behavior

Connector sets child object verbs to different value from what they had coming into the
application.

For example, if a business object comes to the connector with a parent verb of Update and a
child verb of Create, the connector might reset all child object verbs to their parent value after
the application completes the operation. In this case, the child verb would be changed to
Update.

Connector preserves child object verbs.

For example, if a business object comes to the connector with a parent verb of Update and a
child verb of Create, the connector preserves all child object verbs. In this case, the child verb
would still be Create.

Note: The Java code generated by the Maintain Child Verb function block uses the
value of the to_Retrieve parameter only when it processes the
SERVICE_CALL_RESPONSE calling context.

If the to_Retrieve argument is true, the Maintain Child Verb function block
performs the tasks in [Table 87].

Table 87. Actions for the SERVICE_CALL_RESPONSE calling context

Verb of generic
business object

Create Delete
Retrieve Update

Action performed by the Maintain Child Verb function block
Set the verbs of all child objects in the source object to the verb in the parent source object.
This action overwrites any existing verb in the child object.
1. Lookup each child object in the child relationship table.
2. Set the verb of the child object based on the success of the table lookup:
* If a relationship instance for this child object exists, set the verb of the child object to
Update.
* If a relationship instance for this child object does not exist, set the verb of the child
object to Create.

Note: If you are unsure of the behavior of your application, set the to_Retrieve
argument to true. With a true flag value, performance might be affected
because the Java code generated by the Maintain Child Verb function block
might perform an unnecessary lookup. However, it is usually safer to have
an unnecessary lookup than to have an incorrect verb setting in the child
object.

Tips for using the Maintain Child Verb function block

The Maintain Child Verb function block maintains the verb of the child objects in
the source business object. It can handle child objects that are part of a simple or a
composite identity relationship. This function block must ensure that the verb
settings are appropriate given the verb in the parent source object and the calling
context.

Keep the following tips in mind when using the Maintain Child Verb function
block:

* The second to last parameter in this method is the to_Retrieve boolean flag,
which indicates whether the application resets or preserves child objects” verbs.

Chapter 8. Implementing relationships 215

For more information on how to set the to Retrieve flag, see
[“SERVICE_CALL_RESPONSE calling context” on page 214}

* The last parameter in this method is the is_Composite boolean flag, which
indicates whether the child object is part of a simple or composite identity
relationship.

The key attribute of a child business object can participate in either of the
following kinds of identity relationship:

— As a unique key in a simple identity relationship
Set the value of the is_Composite flag to false.

— As a nonunique key of a composite key in a composite identity relationship;
in this case, the other part of the composite key is the unique key in the
parent business object.

Set the value of the is_Composite flag to true.

* Make sure you use the Maintain Child Verb function block in the child attribute
of the source parent map, before calling the submap.
For multiple-cardinality child objects, use the Maintain Child Verb function block
right before the start of the for loop. The method iterates through the child
objects to set the child verbs correctly.

Performing foreign key lookups

A foreign key is an attribute within one business object that contains the key value
of another business object. This key value is considered “foreign” to the source
business object because it identifies some other business object. To transform a
foreign key in a source business object, you must access the relationship table
associated with the business object that the foreign key references (the foreign
relationship table). From this foreign relationship table, you can obtain the
associated key value for the foreign key of the destination business object.

The Mapping API provides the methods in [Table 88| to perform foreign key

lookups.

Table 88. Function blocks for foreign key lookups

Function block Description

General/APIs/Identity Performs a foreign key lookup, failing to find a relationship
Relationship/Foreign Key instance if the foreign key does not exist in the foreign
Lookup relationship table.

General/ APIs/Identity Performs a foreign key lookup, adding a new relationship
Relationship /Foreign Key instance in the foreign relationship table if the foreign key
Cross-Reference does not exist.

Using the Foreign Key Lookup function block

The Java code generated by the Foreign Key Lookup function block performs a
lookup in a foreign relationship table for the foreign key of the source business
object. This function block takes the following actions:

1. Verify that the application-specific participant contains a single key, not a
composite key.

Determine the participant type of the application-specific participant, which is
the application-specific business object. In this business object, verify that only
one key attribute exists. If more than one key attribute exists, the Foreign Key
Lookup function block does not know which application-specific key attribute

216 Map Development Guide

to populate with the application-specific equivalent of the generic business
object’s foreign key. Therefore, it throws the RelationshipRuntimeException
exception.

2. Locate the relationship instance in the foreign relationship table that matches
the value of the foreign key in the generic business object.

3. Obtain the application-specific key value from the retrieved relationship
instance.

4. Copy the application-specific key value into the foreign key of the
application-specific business object.

The Java code generated by the Foreign Key Lookup function block takes these
actions on the foreign relationship table regardless of the verb in the source
business object.

Using the Foreign Key Cross-Reference function block

As with the Foreign Key Lookup function block, the Foreign Key Cross-Reference
function block performs a lookup in a foreign relationship table based on the
foreign key of the source business object. However, the Foreign Key
Cross-Reference function block provides the additional functionality that it can add
an entry to the foreign relationship table if the lookup fails. The following sections
discuss the behavior of the Foreign Key Cross-Reference function block with each
of the calling contexts.

EVENT_DELIVERY, ACCESS_REQUEST, and
SERVICE_CALL_RESPONSE calling contexts

When the calling context is EVENT_DELIVERY, ACCESS_REQUEST, or
SERVICE_CALL_RESPONSE, the map is being called is an inbound map; that is, it
transforms an application-specific business object to a generic business object. The
inbound map receives an application-specific business object as input and returns a
generic business object as output. Therefore, the task for the Foreign Key
Cross-Reference function block is to obtain from the foreign relationship table the
generic key for a given application-specific key value.

For the EVENT_DELIVERY, ACCESS_REQUEST, and SERVICE_CALL_RESPONSE calling
contexts, the Foreign Key Cross-Reference function block takes the following
actions:

1. Verify that the generic participant contains a single key, not a composite key.

Determine the participant type of the generic participant, which is the generic
business object. In this business object, verify that only one key attribute exists.
If more than one key attribute exists, the Foreign Key Cross-Reference function
block does not know which generic key attribute to populate with the generic
equivalent of the application-specific business object’s foreign key. Therefore, it
throws the RelationshipRuntimeException exception.

2. Locate the relationship instance in the foreign relationship table that matches
the value of the foreign key in the application-specific business object.
shows the actions that the Foreign Key Cross-Reference function block takes on
the foreign relationship table based on the verb of the application-specific
business object.

3. Obtain the instance ID from the retrieved relationship instance.

Chapter 8. Implementing relationships 217

4. Copy the instance ID into the foreign key of the generic business object.

Table 89. Actions for EVENT_DELIVERY, ACCESS_REQUEST, and
SERVICE_CALL_RESPONSE

Verb of
application-specific
business object

Create

Update

Retrieve

Action performed by the Foreign Key Cross-Reference function
block

For the EVENT_DELIVERY and ACCESS_REQUEST calling contexts, insert a
new relationship entry into the foreign relationship table for the
application-specific business object’s key value.

For the SERVICE_CALL_RESPONSE calling context, insert into the
relationship table the new relationship entry containing the
application-specific business object’s key value and its associated
relationship instance ID. The method obtains the relationship instance
ID from the original-request business object in the map execution
context (cwExecCtx). For more information on the behavior of the
SERVICE CALL RESPONSE, see ["SERVICE_CALL_RESPONSE calling|
lcontext” on page 197

If an entry for this key value already exists, retrieve the existing one;
do not add another one to the table.

Retrieve the relationship entry from the foreign relationship table for
the given application-specific business object’s foreign key value.

If an entry for this foreign key value does not exist, insert a new
relationship instance into the foreign relationship table for the
application-specific business object’s foreign key value.

Retrieve the relationship entry from the foreign relationship table for
the given application-specific business object’s foreign key value

shows how the Foreign Key Cross-Reference function block accesses the
foreign relationship table (for App Obj C) when a calling context is EVENT_DELIVERY,
ACCESS_REQUEST, or SERVICE_CALL_RESPONSE and the verb for the application-specific
business object (App 0bj A) is either Create or Update.

218 Map Development Guide

Map

App Obj A . Generic Obj A
PP =) AppObiC Generic ObjA (il
1 App Obj C App ObjC ID = 1234 G :10 ’ InstancelD = 4 ,| Generic Obj C
(foreign key) (new or existing) eneric (foreign key)

Relationship

InstancelD App ObjC ID Active? | ! ® 1. DXGS fg?g?gs*;iggjg?e“ﬁ with:
i pp ObjCID= !
1 8097 Y | e YES: Retrieve relationship instance
2 2341 Y : o NO: Create new relationship instance
3 6539 Y i
i 2. Return Instance ID.
__}_4 1234 be 4__},-

Figure 118. Foreign key lookup for a create or update verb

Note: The Foreign Key Cross-Reference function block only adds relationship

instances to the foreign relationship table for inbound maps.

SERVICE_CALL_REQUEST calling context and Foreigh Keys
When the calling context is SERVICE_CALL_REQUEST, the map is being called is an
outbound map; that is, it transforms a generic business object to an
application-specific business object. The outbound map receives a generic business
object as input and returns an application-specific business object as output. For
the SERVICE_CALL_REQUEST calling context, the Foreign Key Cross-Reference
function block takes the following actions:

1.

Verify that the application-specific participant contains a single key, not a
composite key.

Determine the participant type of the application-specific participant, which is
the application-specific business object. In this business object, verify that only
one key attribute exists. If more than one key attribute exists, the Foreign Key
Cross-Reference function block does not know which application-specific key
attribute to populate with the application-specific equivalent of the generic
business object’s foreign key. Therefore, it throws the
RelationshipRuntimeException exception.

Perform the task outlined in [Table 90| based on the verb of the
application-specific business object.

The Foreign Key Cross-Reference function block obtains from the foreign
relationship table an application-specific business object’s key value for a given
a relationship instance ID only if the verb is Update, Delete, or Retrieve. The
Foreign Key Cross-Reference function block does not obtain the
application-specific key value for a Create verb.

shows the action that the Foreign Key Cross-Reference function block
takes on the foreign relationship table based on the verb of the generic business
object.

Chapter 8. Implementing relationships 219

Table 90. Actions for the SERVICE_CALL_REQUEST calling context and a Foreign Key

Verb of generic business
object Action performed by the Foreign Key Cross-Reference function block

Create Take no action.
The method writes a new relationship instance to the foreign relationship table when the

calling context is SERVICE CALL RESPONSE. For more information, see|”’EVENT_DELIVERY)
|[ACCESS_REQUEST, and SERVICE_CALL_RESPONSE calling contexts” on page 217}

Update Delete Retrieve 1 Obtain the generic business object’s key value (the relationship instance ID) from the
original-request business object in the map execution context.

2. Retrieve the relationship instance from the foreign relationship table for the given
generic business object’s key value. If a relationship instance for this key value does
not exist, throw a RelationshipRuntimeException exception. If no participants are
found when the verb is Retrieve, throw a CxMissingIDException exception.

3. Obtain the application-specific key value from the retrieved relationship instance.

4. Copy the application-specific key value into the application-specific business object.

As shows, when the verb is Create, the Foreign Key Cross-Reference
function block does not write a new relationship instance to the relationship table.
It does not perform this write operation because it does not yet have the
application-specific foreign key value that corresponds to the instance ID. When
the connector processes the application-specific business object, it notifies the
application of the need to insert a new row (or rows). If this insert is successful,
the application notifies the connector, which creates the appropriate
application-specific business object with a Create verb and the application’s key
value.

Note: For the SERVICE_CALL_REQUEST calling context, the Foreign Key
Cross-Reference function block manages the foreign relationship table in the
same way that the Maintain Simple Identity Relationship function block
manages a relationship table.

ACCESS_RESPONSE calling context and foreign keys

When the calling context is ACCESS_RESPONSE, the map is being called is an
outbound map; that is, it transforms a generic business object to an
application-specific business object. The outbound map receives a generic business
object as input and returns an application-specific business object as output.
Therefore, the task for the Foreign Key Cross-Reference function block is to obtain
from the foreign relationship table the application-specific key for a given generic
key value.

For the ACCESS_RESPONSE calling context, the Foreign Key Cross-Reference function
block takes the following actions:

1. Verify that the application-specific participant contains a single key, not a
composite key.

Determine the participant type of the application-specific participant, which is
the application-specific business object. In this business object, verify that only
one key attribute exists. If more than one key attribute exists, the Foreign Key
Cross-Reference function block does not know which application-specific key
attribute to populate with the application-specific equivalent of the generic
business object’s foreign key. Therefore, it throws the
RelationshipRuntimeException exception.

2. Locate the relationship instance in the foreign relationship table that matches
the value of the foreign key in the generic business object.

220 Map Development Guide

3. Obtain the application-specific key value from the retrieved relationship
instance.

4. Copy the application-specific key value into the foreign key of the
application-specific business object.

The Foreign Key Cross-Reference function block takes these actions on the foreign
relationship table regardless of the verb in the generic business object.

Tips for using the Foreign Key Cross-Reference and Foreign
Key Lookup function blocks

Keep the following tips in mind when using the Foreign Key Cross-Reference and
Foreign Key Lookup function blocks:

* Put the call to the Foreign Key Lookup or Foreign Key Cross-Reference function
blocks in the transformation step for the foreign key attribute of the destination
business object.

* The Foreign Key Lookup and Foreign Key Cross-Reference function blocks do
not support composite keys as the foreign key.

* After using the Foreign Key Lookup function block, check that the destination
foreign key attribute does not contain a null value. A null foreign key value
indicates that the Foreign Key Lookup function block was not able to locate the
corresponding foreign key value for the foreign key in the source business
object. To indicate this condition, log message number 5007 or 5008 (depending
on whether or not the map is forced to fail) and, optionally, throw the
MapFailureException exception to stop the map.

You do not need this check after using Foreign Key Cross-Reference function
block because this function block automatically adds an entry to the foreign
relationship table if the application-specific key value does not exist.

* If any of the child object attributes require the use of the Foreign Key
Cross-Reference function block or the Foreign Key Lookup function block (but
not the Maintain Simple Identity Relationship function block or the Maintain
Composite Relationship function block), you can set the verb of the source child
object by defining a Move transformation from the source parent object’s verb to
the child business object’s verb. Make the call inside the for loop, just before the
runMap () method is called.

Loading and unloading relationships

With the repos_copy utility, you can load and unload specified relationship
definitions in the repository.

Note: You can also use repos_copy to load and unload map definitions in the
repository. For more information, see |”Imp0rting and exporting maps fr0m|
[[nterChange Server Express” on page 67].

Unloading a relationship definition

With the repos_copy utility, you can unload specified relationship definitions in the
repository with the -e option. A relationship repository file is the file that the
repos_copy utility creates when it extracts a relationship definition from the
repository into a text (.Jjar) file.

For example, the following repos_copy command unloads the StatelLk relationship
definition from the repository of an InterChange Server Express named dexter into

a relationship repository file:

Chapter 8. Implementing relationships 221

repos_copy -eRelationship:StateLk -oRL_StatelLookup.jar
-sdexter -uadmin -pnull

Attention: A relationship is not a first-class entity. Therefore, its name space is
separate from the first-class entities. While no first-class entities can
have the same name, a relationship can have the same name as a
first-class entity (such as a business object or collaboration). However, if
a relationship definition has a name that matches any existing first-class
entity, you cannot use the -e option of repos_copy to unload or load
that relationship definition. You can load and unload the entire
repository, which includes relationship definitions.

You can copy several the relationship definitions into one relationship repository
file. For example, to copy both the StateLk and CustLkUp relationship definitions,
use the following repos_copy command:

repos_copy —eRelationship:StateLk+Relationship:CustLkUp
—oRL_Lookup_Relationships.jar —sdexter -uadmin -pnull

Loading a relationship definition

You can also use repos_copy to load a relationship definition into the repository
from a relationship repository file. The following repos_copy command loads the
StatelLk relationship definition into the repository of an InterChange Server
Express named testing:

repos_copy -iRL_StatelLookup.jar -stesting -uadmin -pnull

The repos_copy utility performs the following validations when it loads a
relationship definition:

e It validates the Database URL of the relationship definition it loads.

e It validates that any dependent objects for the relationship definition already
exist in the repository.

If repos_copy cannot perform both of these validations, it cannot load the
relationship definition. However, repos_copy provides special command-line
options to suppress or restrict these validations, as the following sections explain.

Validating the database URL

The repos_copy utility provides the -r option to assist in loading relationship
definitions into a repository. The -r option tells repos_copy to add relationship
definitions to the repository without creating their run-time schemas. When
repos_copy backs up an entire repository (with the -o option), some of the
information in the resulting repository text file describes relationship definitions. If
you then use repos_copy (without the -r option) to load a different repository with
the contents of this repository text file, repos_copy might generate errors of the
following format when it attempts to load the relationship definitions:

Server error: An error occurred during the validation of the runtime database
connection information for relationship definition Customer. The database URL

used is: jdbc:weblogic:mssqlserverd:Cwrelns312@CWDEV:1433. The database

Togin name used is: crossworlds. The database type used is: W55s/wPE/14=1.
Reason: SqlServer.

The cause of this error is repos_copy’s attempt to validate the URL for the
relationship database. Part of a relationship’s definition is the Database URL of the
relationship database.

If repos_copy cannot find the relationship database, it generates an error and rolls
back the repository load. If you are just backing up and restoring on the same

222 Map Development Guide

InterChange Server Express (with the same relationship databases), you do not
need to include the -r option. Validation of the relationship database URL succeeds
because the database URLs can be located. Therefore, the repository load
(including the relationship definitions) is successful.

However, in the import process of a migration when you are moving repository
data from one machine to another, the -r option can be helpful. If you execute the
repos_copy command in an environment that cannot locate any existing
relationship databases in the repository data, repos_copy generates the validation
error. To suppress this validation, include the -r option of repos_copy when you
load the repository. By suppressing this validation, repos_copy can successfully
add the relationship definitions to the repository. It uses the current repository
database as the location for the relationship database. You can then use
Relationship Designer Express to change the Database URL to point to the
appropriate location of each relationship database.

The following repos_copy command loads the Statelk relationship definition into
the repository, suppressing the validation of its Database URL:

repos_copy -rStatelLk -iRL_StatelLookup.txt -stesting -uadmin
-pnull

Validating dependent objects

By default, repos_copy validates whether all dependent objects exist when it loads
a relationship definition. For example, it checks that all business objects involved
in the relationship exist in the repository. If all dependent objects do not exist,
repos_copy generates an error and rolls back the repository load. In the repos_copy
command window, the following message is displayed:

Some of the participants for relationships were missing.
For more info, refer to InterChange Server Express Tog file.

Chapter 8. Implementing relationships 223

224 Map Development Guide

Part 3. Mapping APl Reference

© Copyright IBM Corp. 2003 225

226 Map Development Guide

Chapter 9. BaseDLM class

The methods documented in this chapter operate on map instances. They are
defined on the IBM WebSphere InterChange Server Express-defined class BaseDLM.
The BaseDLM class is the base class for all map instances. All created maps are
subclasses of BaseDLM; they all inherit these methods. The BaseDLM class provides
utility methods for error handling and debugging in maps, and establishing a
connection to a database. All methods in this class can be called without referring
to the class name.

able 91) summarizes the methods of the BaseDLM class.
Table 91. BaseDLM method summary

Method Description Page
[getbBConnection ()| Establishes a connection to a database and
returns a CwDBConnection object.
etName () Retrieves the name of the current map. D29
etRelConnection()| Establishes a connection to a relationship D30
database and returns a DtpConnection object.
[implicitDBTransactionBracketing ()| Retrieves the transaction programming model
that the map instance uses for any connection it
obtains.
[isTraceEnabled ()] Compares the specified trace level with the
current trace level of the map.
[TogError(), TogInfo(), TogWarning()| Sends an error, information, or warning message
to the InterChange Server log file.
raiseException()] Raises an exception. 33]
releaseRelConnection ()] Releases a connection to a relationship database. [235
trace() Generates a trace message. D36
getDBConnection()

Establishes a connection to a database and returns a CwDBConnection object.

Syntax

CwDBConnection getDBConnection(String connectionPoolName)
CwDBConnection getDBConnection(String connectionPoolName,
boolean implicitTransaction)

Parameters

connectionPoolName
The name of a valid connection pool. The method connects to the
database whose connection is in this specified connection pool.

implicitTransaction
A boolean value to indicate the transaction programming model to
use for the database associated with the connection. Valid values

are:
true Database uses implicit transaction bracketing
false Database uses explicit transaction bracketing

© Copyright IBM Corp. 2003 227

Return values
Returns a CwDBConnection object.

Exceptions

CwDBConnectionFactoryException — If an error occurs while trying to establish the
database connection.

Notes

The getDBConnection() method obtains a connection from the connection pool that
connectionPoolName specifies. This connection provides a way to perform queries
and updates to the database associated with that connection. All connections in a
particular connection pool are associated with the same database. The method
returns a CwDBConnection object through which you can execute queries and
manage transactions on the database. See the methods in the CwDBConnection class
for more information.

By default, all connections use implicit transaction bracketing as their transaction
programming model. To specify a transaction programming model for a particular
connection, provide a boolean value to indicate the desired transaction
programming model as the optional implicitTransaction argument to the
getDBConnection() method. The following getDBConnection() call specifies explicit
transaction bracketing for the connection obtained from the ConnPool connection
pool:

conn = getDBConnection("ConnPool",false);

The connection is released when the map instance finishes execution. You can
explicitly close this connection with the release() method. You can determine
whether a connection has been released with the isActive() method.

Examples

The following example establishes a connection to the database associated with
connections in the CustConnPool connection pool. It then uses an implicit
transaction to insert and update rows in a table of the database.

CwDBConnection connection = getDBConnection("CustConnPool");

// Insert a row
connection.executeSQL("insert...");

// Update rows...
connection.executeSQL("update...");

Because the preceding call to getDBConnection() does not include the optional
second argument, this connection uses implicit transaction bracketing as its
transaction programming model (unless the transaction programming model is
overridden in the Map Properties dialog). Therefore, it does not specify explicit
transaction boundaries with beginTransaction(), conmit(), and rollback(). In
fact, an attempt to call one of these transaction methods with implicit transaction
bracketing generates a CwDBTransactionException exception.

Note: You can check the current transaction programming model with the
[imp1icitDBTransactionBracketing()| method.

The following example also establishes a connection to the database associated
with connections in the CustConnPool connection pool. However, it specifies the

228 Map Development Guide

use of explicit transaction bracketing for the connection. Therefore, it uses an
explicit transaction to contain the inserts and updates on rows in the database
tables.

CwDBConnection connection = getDBConnection("CustConnPool", false);

// Begin a transaction
connection.beginTransaction();

// Insert a row
connection.executeSQL("insert...");

// Update rows...
connection.executeSQL("update...");

// Commit the transaction
connection.commit();

// Release the connection
connection.release();

The preceding call to getDBConnection() includes the optional
implicitTransaction argument to set the transaction programming model to
explicit transaction bracketing. Therefore, this examples uses the explicit
transaction calls to indicate the boundaries of the transaction. If these transaction
methods are omitted, InterChange Server Express handles the transaction as it
would for an implicit transaction.

See also

Chapter 12, "CwDBConnection class"} [implicitDBTransactionBracketing()}
isActive()|[release()]

getName()

Retrieves the name of the current map.

Syntax

String getName()

Parameters
None.

Return values

None.

Exceptions
None.

Examples

The following example obtains the name of the current map and logs an
informational message:

String mapName = getName();
TogInfo(mapName + " is starting");

Chapter 9. BaseDLM class 229

getRelConnection()

Establishes a connection to a relationship database and returns a DtpConnection

object.
Syntax
DtpConnection getRelConnection(String relDefName)
Parameters
relDefName A relationship definition name. The method connects to the
database containing the relationship tables for this relationship
definition.

Return values
Returns a DtpConnection object.

Exceptions

DtpConnectionException — If an error occurs while trying to establish the database
connection.

Notes

This method establishes a connection to the database that contains the relationship
tables used by the relDefName relationship, and provides a way to perform queries
and updates to the relationship database. The method returns a DtpConnection
object through which you can execute queries and manage transactions. See the
methods in the DtpConnection class for more information.

The connection is released when the map is finished executing. You can explicitly
close this connection with the [releaseRelConnection ()| method.

Examples

The following example establishes a connection to the database containing the
relationship tables for the SapCust relationship. It then uses a transaction to execute
a query for inserting rows into a table in the SapCust relationship.

DtpConnection connection = getRelConnection("SapCust");

// begin a transaction
connection.beginTran();

// insert a row
connection.executeSQL("insert...");

// update rows...
connection.executeSQL("update...");

// commit the transaction
connection.commit();

See also
lgetDBConnection()] [Chapter 14, "DtpConnection class"} releaseRelConnection ()|

230 Map Development Guide

implicitDBTransactionBracketing()

Retrieves the transaction programming model that the map instance uses for any
connection it obtains.

Syntax

boolean implicitDBTransactionBracketing()

Parameters

None.

Return values

A boolean value to indicate the transaction programming model to be used in all
database connections.

Notes

The implicitDBTransactionBracketing() method returns a boolean value indicates
which transaction programming model the map instance assumes is used by all
connections that it obtains, as follows:

* A value of true indicates that all connections use implicit transaction bracketing.
* A value of false indicates that all connections use explicit transaction bracketing.

This method is useful before obtaining a connection to see whether the current
transaction programming model is appropriate for that connection.

Note: You can override the transaction programming model for a particular
connection with the getDBConnection() method.

Examples
The following example ensures that map instance uses explicit transaction
bracketing for the database associated with the conn connection:

if (implicitDBTransactionBracketing())
CwDBConnection conn = getDBConnection("ConnPool", false);

See also
lgetDBConnection ()|
isTraceEnabled()
Compares the specified trace level with the current trace level of the map.
Syntax
Boolean isTraceEnabled(int tracelLevel)
Parameters
traceLevel The trace level to compare with the current trace level.

Return values

Returns true if the current system trace level is set to the specified trace level;
returns false if the two trace levels are not the same.

Chapter 9. BaseDLM class 231

Notes

The isTraceEnabled() method is useful in determining whether or not to log a
trace message. Because tracing can decrease performance, this method is useful in
the development phase of a project.

Examples

if (isTraceEnabled(3))
{

trace("Print this level-3 trace message");

}

logError(), loginfo(), logWarning()

Sends an error, information, or warning message to the InterChange Server log file.

Syntax

void TogError(String message)
void TogError(int messageNum)
void logError(int messageNum, String param [,...])
void TogError(int messageNum, Object[] paramArray)

void logInfo(String message)
void TogInfo(int messageNum)
void TogInfo(int messageNum, String param [,...])
void TogInfo(int messageNum, Object[] paramArray)

void TogWarning(String message)
void TogWarning(int messageNum)
void TogWarning(int messageNum, String param [,...])
void TogWarning(int messageNum, Object[] paramArray)

Parameters
message The message text.
messageNum The number of a message in a message text file.
param A single parameter. There can be up to five parameters, separated
by commas. Each is sequentially resolved to a parameter in the
message text.
paramArray An array of parameters.

Return values

None.

Exceptions
None.

Notes

This method sends a message to the InterChange Server Express’s logging
destination. The logging destination can be a file, a window, or both.

By default, the logging destination is the file InterchangeSystem.log. You can
change the logging destination by entering a value for the LOG_FILE parameter in
the configuration file, InterchangeSystem.cfg. The parameter value can be a file
name, STDOUT (which writes the log to the server’s command window), or both.

232 Map Development Guide

Within each set of methods:

* The first form is self-contained and includes all of the text necessary to generate
a message.

* The second form generates a message that does not have parameters.
* The third form contains a message number and a set of parameter values.
* The fourth form uses an array of parameters.

All forms of the method that take a messageNum parameter require the use of a
message file that is indexed by message number. For information on how to set up
a message text file, refer to [Appendix A, “Message files,” on page 403

Examples

The following example logs an informational message, using getString() to obtain
an attribute value to log in the message.

TogInfo("Item shipped. CustomerID: "
+ fromCustomerBusObj.getString("CustomerID"));

The following example logs an error message whose text is contained in the map
message file. The message, which is number 10 in the message file, takes two
parameters: customer last name (LName attribute) and customer first name (FName
attribute).

TogError(10, customer.get("LName"), customer.get("FName");

The following example logs an error message using an array of parameters. For the
purpose of illustration, the example uses an array with just two parameters. The
example declares the array args, which has two elements, the customer ID and the
customer name. The TogError() method then logs an error, using message number
12 and the values in the args array.
Object[] args = {
fromCustomerBusObj.getString("CustomerID"),
fromCustomerBusObj.getString("CustomerName");

}

TogError(12, args);

See also
trace()

raiseException()

Raises an exception.

Syntax

void raiseException(String exceptionType, String message)

void raiseException(String exceptionType, int messageNum,
String parameter([,...])

void raiseException(RunTimeEntityException exception)

Parameters

exceptionType One of the following IBM WebSphere InterChange Server
Express-defined constants:

Chapter 9. BaseDLM class 233

AnyException Any type of exception

AttributeException Attribute access problem. For
example, the collaboration called
getDouble() on a String attribute
or called getString() on a
nonexistent attribute.

JavaException Problem with Java code that is not
part of the IBM WebSphere
InterChange Server Express API.

ObjectException Business object passed to a method
was invalid or a null object was
accessed.

OperationException Service call was improperly set up
and could not be sent.

ServiceCallException Service call failed. For example, a
connector or application is
unavailable.

SystemException Any internal error within the IBM
WebSphere InterChange Server
Express system.

message A text string that embeds the exception message in the method
call.

messageNum A reference to a numbered message in the map message file.

parameters A value for the parameter in the message itself. There can be up to

five parameters in the method call.

exception The name of an exception object variable.

Return values
None.

Notes
The raiseException() method has three forms:

* The first form of the method creates a new exception, passing an exception type
and a string. Use it to embed a message into the method call itself.

* The second form creates a new exception, passing an exception type and a
reference to a message in the map message file. The method call can contain up
to five parameters, separated with commas.

* The third form raises an exception object that the map has previously handled.
For example, a transformation step might get an exception, assign it to a
variable, and do some other work. Finally, the transformation step raises the
exception.

Note: All forms of the method that take a messageNum parameter require the use
of a message file that is indexed by message number. For information on
how to set up a message text file, refer to|Appendix A, “Message files,” on|
[page 403]

234 Map Development Guide

Examples

The following example uses the first form of the method to raise an exception of
ServiceCallException type. The text is embedded in the method call.

raiseException(ServiceCallException,
"Attempt to validate Customer failed.");

The next example raises an exception of ServiceCallException type. The message
in the message file is as follows:

23
Customer update failed for CustomerID={1} CustomerName={2}

The raiseException() method invokes the message, retrieves the values of the
message parameters from the fromCustomer variable, and passes them to the
raiseException() call.

raiseException(ServiceCallException, 23,

fromCustomer.getString("CustomerID"),
fromCustomer.getString("CustomerName"));

The final example raises a previously handled exception. The system-defined
variable currentException is an exception object that contains the exception.

raiseException(currentException);

releaseRelConnection()

Releases a connection to a relationship database.

Syntax
void releaseRelConnection(Boolean doCommit)
Parameters
doCommit The flag that indicates whether this method should call the
DtpConnection.commit() method before it releases the database
connection.

Return values

None.

Exceptions

DtpConnectionException — If an error occurs while trying to release the database
connection or if the requested commit or rollback has failed.

Notes

The releaseRelConnection() method releases the connection for this specific map.
It commits or rolls back the database transactions based on the value of its
doCommit argument, as follows:

e If doCommit is true, releaseRelConnection() assumes it was called after the
successful completion of the operation on a database and therefore it is safe to
commit the transaction.

e If doCommit is false, releaseRelConnection() assumes it was called as the result
of an exception and therefore the transaction must be rolled back.

Chapter 9. BaseDLM class 235

Once releaseRelConnection() has performed the chosen action on the database
transaction, it releases the database connection that the current thread is
exclusively using.

See also

lgetRe1Connection ()} [release()]

trace()

Generates a trace message.

Syntax

void trace(String traceMsg)

void trace(int tracelevel, String traceMsg)

void trace(int tracelevel, int messageNum)

void trace(int tracelevel, int messageNum, String param [,...])
void trace(int tracelevel, int messageNum, Object[] paramArray)

Parameters
tracelevel The tracing level that causes the message to be generated.
traceMsg A string that prints to the trace file.
messageNum A number that represents a message in the map message file.
param A single parameter. You can add additional single parameters,

separated by commas, up to a total of five.

paramArray An array of parameters.

Notes

The trace() method generates a message that the map prints if tracing is turned
on. This method has five forms:

* The first form takes just a string message that appears when tracing is set to any
level.

* The second form takes a trace level and a string message that appears when
tracing is set to the specified level or a higher level.

* The third form takes a trace level and a number that represents a message in the
map message file. The entire message text appears in the message file and is
printed as it is, without parameters, when tracing is set to the specified level or
a higher level.

¢ The fourth form takes a trace level, a number that represents a message in the
map message file, and one or more parameters to be used in the message. You
can send up to five parameter values to be used with the message by separating
the values with commas.

* The fifth form takes a trace level, a number that represents a message in the
map message file, and an array of parameter values.

Note: All forms of the method that take a messageNum parameter require the use of
a message file that is indexed by message number. For information on how

to set up a message text file, refer to|Appendix A, “Message files,” on page|

You can set the trace level for a map as part of the Map Properties.

236 Map Development Guide

Examples

The following example generates a Level 2 trace message and supplies the text of
the message:
trace (2, "Starting to trace at Level 2");

The following example prints message 201 in the map message file if the trace
level is 2 or higher. The message has two parameters, a name and a year, for which
this method call passes values.

trace(2, 201, "DAVID", "1961");

See also
|1ogError(), TogInfo(), 1ogWarn1'ng()|

Chapter 9. BaseDLM class 237

238 Map Development Guide

Chapter 10. BusObj class

The methods documented in this chapter operate on objects of the BusObj class.

Note: The BusObj class is used for both collaboration development and mapping;
check the Notes section for each method’s usage issues.

The first two sections of this chapter explain the exceptions listed with these
methods and how to specify attributes and child business objects in a hierarchical
business object. The rest of the sections describe the methods listed in [Table 92

Table 92. BusObj method summary

Method Description Page

copy () Copy all attribute values from the input
business object to this one.

Create a business object (BusObj object)
exactly like this one.

Compare this business object’s key

attribute values with those in the input
business object.

Compare this business object’s attribute
values with those in the input business
object, including child business objects.

D
O
<
QL
—_
w
—~
—

[9]
fa}
<
Qo
—
w
(%]
=
QL
p—
—_—
o
=
E

() Compare this business object’s attribute
values with those in the input business
object, excluding child business objects

from the comparison.

exists() Check for the existence of a business

object attribute with a specified name.
lgetBoolean(), getDouble(),| Retrieve the value of a single attribute
getFloat(), getint(),| from a business object.

getlong(), get(), getBusObj(),|
getBusObjArray () ,|
etLongText(), getString()|

etlLocale() Retrieve the locale of the business
object’s data.
getType() Retrieve the name of the business object
definition on which this business object
was based.
etVerb() Retrieve this business object’s verb.
isBlank() Find out whether the value of an 48
attribute is set to a zero-length string.
Find out whether a business object’s
attribute is defined as a key attribute.
Find out whether the value of a business
object’s attribute is null.
Find out whether a business object’s
attribute is defined as a required
attribute.
Retrieve the values of a business object’s
primary key attributes as a string.
set () Set a business object’s attribute to a

specified value of a particular data type.

© Copyright IBM Corp. 2003 239

Table 92. BusObj method summary (continued)

Method Description Page

setContent() Set the contents of this business object to
another business object.

setDefaultAttrValues ()| Set all attributes to their default values. [253

setKeys ()] Set the values of this business object’s 253

key attributes to the values of the key
attributes in another business object.
setLocale() Set the locale of the current business
object.
setVerb() Set the verb of a business object.
setWithCreate() Set a business object’s attribute to a
specified value of a particular data type,

creating an object for the value is one
does not already exist.

Return the values of all attributes in a
business object as a string.
validData() Checks whether a specified value is a

valid type for a specified attribute.

Exceptions and exception types

Methods for which exceptions or exception types are listed throw the

CollaborationException exception. Some methods have both exceptions and

exception types listed. Both of these relate to a ColTaborationException object and

differ as follows:

* An Exception is a class that is subclassed from CollaborationException. If there
is a subclassed exception, you can use it in mapping to determine more closely
the cause of the problem.

An Exception type is a piece of data in a CollaborationException object.
Collaboration developers use this exception type to catch exceptions through the
Designer user interface. In addition, all users of BusObj can use this field to
determine the reason for a failure if there is no exception class thrown that is
more detailed than CollaborationException.

Syntax for traversing hierarchical business objects

When you are writing code that requires that you traverse hierarchical business
objects, you need to use the syntax that lets you specify attributes in elements in
child business object arrays that are elements of child business object arrays, and
other such complexities. This chapter specifies the syntax to use.

An attribute specification can be:
[[attributeName[index].]...]attributeName

This syntax expands to any of the following formats:

attributeName
attributeName[index] .attributeName
attributeName[index]attributeName

Note: Do not use the period (.) when creating a business object attribute name. If a

business object attribute has a period within its name, a IBM WebSphere
InterChange Server Express Map interprets the period as Java’s dot operator

240 Map Development Guide

and imparts special meaning to it. For example, “attribute.name”will be
interpreted as “name” being a field or method for the “attribute” object.

Specifying an attribute of basic type

The following example uses the busObj.get () method to retrieve a basic type
attribute named OrderID from the business object orderQObj.

orderObj.get("OrderID");

Specifying an attribute in a child business object

The following example assumes that order0Obj is a hierarchical business object. One
of its attributes is CustomerInfo, a single-cardinality child business object. The
example retrieves the customer name from the CustomerName attribute of
CustomerInfo.

orderObj.get ("CustomerInfo.CustomerName")

Specifying an attribute in a child of a child business object

If there is a chain of child business objects, in which CustomerInfo is a child of
orderObj and AddressInfo is a child of CustomerInfo, you can retrieve city
information from AddressInfo as follows:

orderObj.get("CustomerInfo.AddressInfo.City");

Specifying an attribute in an element of an array of child
business objects

You can also refer to a child business object in an array by specifying its index in
the array. The first element in the array always begins with zero. For example, the
following example retrieves the value of the Quantity attribute from the third child
business object in an array.

orderObj.get("Lineltem[2].Quantity");

copy()

Copy all attribute values from the input business object to this one.

Syntax

void copy(BusObj inputBusObj)

Parameters

inputBusObj The name of the business object whose attributes values are copied
into the current business object.

Notes

The copy () method copies the entire business object, including all child business
objects and child business object arrays. This method does not set a reference to
the copied object. Instead, it clones all attributes; that is, it creates separate copies
of the attributes.

Examples

The following example copies the values contained in sourceCustomer to
destCustomer.

destCustomer.copy (sourceCustomer) ;

Chapter 10. BusObj class 241

The following example creates three business objects (myBus0Obj, myBusObj2, and
mysettingBusObj) and sets the attrl attribute of myBusObj with the value in
mysettingBusObj. It then clones all attributes of myBusObj to myBusObj2.

BusObj myBusObj = new BusObj();
BusObj myBusObj2 = new BusObj();

BusObj mySettingBusObj = new BusObj();

myBusObj.set ("attrl", mySettingBusObj);
myBus0bj2.copy (myBusObj) ;

After this code fragment executes, myBusObj.attrl and myBusObj2.attrl are both
set to the mySettingBusObj business object. However, if mySettingBusObj is
changed in any way, myBusObj.attrl changes but myBusObj2.attrl does not.
Because the attributes of myBusObj2 were set with copy(), their values were cloned.
Therefore, the value of attrl in myBus0bj2 is still the original
mySettingBusObj.attrl value before the change.

duplicate()

Create a business object (BusObj object) exactly like this one.

Syntax

BusObj duplicate()

Return values

The duplicate business object.

Exceptions

Notes

CollaborationException—The duplicate() method can set the following exception
type for this exception: ObjectException.

This method makes a clone of the business object and returns it. You must
explicitly assign the return value of this method call to a declared variable of
BusObj type.

Examples

The following example duplicates sourceCustomer in order to create destCustomer.
BusObj destCustomer = sourceCustomer.duplicate();

equalKeys()

Compare this business object’s key attribute values with those in the input
business object.

Syntax

boolean equalKeys (BusObjinputBusObyj)

Parameters

inputBusObj A business object to compare with this business object.

242 Map Development Guide

Return values

Returns true if the values of all key attributes are the same; returns false if they
are not the same.

Exceptions

CollaborationException—The equalKeys() method can set the following exception
type for this exception:

* ObjectException — Set if the business object argument is invalid.

See also
lequalsShallow()] lequals ()|

Notes

This method performs a shallow comparison; that is, it does not compare the keys
in child business objects.

Examples

The following example compares the key values of order2 to those in orderl.
boolean areEqual = orderl.equalKeys(order2);

equals()
Compare this business object’s attribute values with those in the input business

object, including child business objects.

Syntax

-boolean equals(Object inputBusObj)

Parameters

inputBusObj A business object to compare with this business object.

Return values

Returns true if the values of all attributes are the same; otherwise, returns false.

Exceptions

CollaborationException—The equals() method can set the following exception
type for this exception:

* ObjectException — Set if the business object argument is invalid.

Notes

This method compares this business object’s attribute values with those in the
input business object. If the business objects are hierarchical, the comparison
includes all attributes in the child business objects.

Note: Passing in the business object as an Object ensures that this equals()
method overrides the Object.equals() method.

In the comparison, a null value is considered equivalent to any value to which it is
compared and does not prevent a return of true.

Chapter 10. BusObj class 243

See also
lequalsShallow()] lequalKeys ()]

Examples

The following example compares all attributes of order2 to all attributes of orderl
and assigns the result of the comparison to the variable areEqual. The comparison
includes the attributes of child business objects, if any.

boolean areEqual = orderl.equals(order2);

equalsShallow()

Compare this business object’s attribute values with those in the input business
object, excluding child business objects from the comparison.

Syntax

boolean equalsShallow(BusObj inputBusObj)

Parameters

inputBusObj A business object to compare with this business object.

Return values
Returns true if the values of all attributes are the same; otherwise, returns false.

Exceptions

CollaborationException—The equalsShallow() method can set the following
exception type for this exception:

* ObjectException — Set if the business object argument is invalid.

See also
lequals ()} lequalKeys ()]

Examples

The following example compares attributes of order2 with attributes of orderl,
excluding the attributes of child business objects, if any.

boolean areEqual = orderl.equalsShallow(order2);

exists()

Check for the existence of a business object attribute with a specified name.

Syntax

boolean exists(String attribute)

Parameters

attribute The name of an attribute.

Return values

Returns true if the attribute exists; otherwise, returns false if the attribute does
not exist.

244 Map Development Guide

Examples

The following example checks whether business object order has an attribute
called Notes.

boolean notesAreHere = order.exists("Notes");

getBoolean(), getDouble(), getFloat(), getint(), getLong(), get(),
getBusObj(), getBusObjArray(), getLongText(), getString()

Retrieve the value of a single attribute from a business object.

Syntax

Object get(String attribute)
Object get(int position)

boolean getBoolean(String attribute)

double getDouble(String attribute)

float getFloat(String attribute)

int getInt(String attribute)

long getLong(String attribute)

Object get(String attribute)

BusObj getBusObj(String attribute)
BusObjArray getBusObjArray(String attribute)
String getlLongText(String attribute)

String getString(String attribute)

Parameters
attribute The name of an attribute.
position an integer that specifies the ordinal position of an attribute in the

business object’s attribute list.

Return values

The value of the specified attribute.

Exceptions

Notes

CollaborationException—These get methods can set the following exception type

for this exception:

* AttributeException - Set if an attribute access problem occurs. For example, this

exception can be caused if the collaboration calls getDouble() on a String
attribute that does not consist of digits or calls getString() on a nonexistent
attribute.

The get() method retrieves an attribute value from the current business object. It

returns a copy of the attribute value. It does not return an object reference to this

attribute in the source business object. Therefore, any change to attribute value in

the source business object is not made to the value that get () returns. Each time
this method is called, it returns a new copy (clone) of the attribute.

The get () method provides the following forms:

¢ The first form returns a value of the type specified in the method name. For
example, getBoolean() returns a boolean value, getBusObj () returns a BusObj

value, getDouble() returns a double value, and so on. However, getLongText ()

returns a String object because the WebSphere InterChange Server Express

Chapter 10. BusObj class

longtext type is a String object with no maximum size. Use these forms to
retrieve attributes with specific basic or WebSphere InterChange Server
Express-defined data types.

These methods provide the ability to access an attribute value by specifying the
name of the attribute.

* The second form, get () retrieves the value of an attribute of any type. You can
cast the returned value to the appropriate value of the attribute type.

This method provides the ability to access an attribute value by specifying either
the name of the attribute or the attribute’s index position within the business
object attribute list.

Examples
The following example illustrates how get () returns a copy (clone) of the attribute
value instead of an object reference:
BusObj mySettingBusObj = new BusObj();
BusObj myBusObj = new BusObj();
myBusObj.set ("attrl", mySettingBusObj);

BusObj Extract = myBusObj.get("attrl");

After this code fragment executes, if you change the Extract business object,
mySettingBusObj does not change because the get() call returned a copy of the
attrl attribute.

The following example uses getBusObj () to retrieve a child business object
containing a customer address from the customer business object and assign it to
the variable address.

BusObj address = customer.getBusObj("Address");

The following example uses getString() to retrieve the value of the CustomerName
attribute. The business object variable is sourceCustomer.

String customerName = sourceCustomer.getString("CustomerName");

The following example uses getInt() to retrieve the Quantity values from two
business objects whose variables are iteml and item2. The example then computes
the sum of both quantities.

int sumQuantity = iteml.getInt("Quantity") + item2.getInt("Quantity");

The following example retrieves the attribute Item from the business object
variable order. The attribute Item is a business object array.

BusObjArray items = order.getBusObjArray("Item");

The following example gets the CustID attribute value from the source business
object and sets the Customer value in the destination business object to match.

destination.set("Customer", source.get("CustID"));

The following example accesses an attribute value using the attribute’s ordinal
position within the attribute list:

for i=0; i<maxAttrCount; i++)
{
String strValue = (String)myBusObj.get(i);

246 Map Development Guide

getLocale()
Retrieve the locale associated with the business object’s data.

Syntax

java.util.Locale getlocale()

Parameters
None.

Return values

A Java Locale object that contains information about the business object’s locale.
This Locale object must be an instance of the java.util.Locale class.

Notes

The getlLocale() method returns the locale associated with the data in a business
object. This locale is often different from the collaboration locale in which the
collaboration is executing.

See also
getLocale() (BaseCollaboration class),

getType()
Retrieve the name of the business object definition on which this business object
was based.
Syntax

String getType()

Return values

The name of a business object definition.

Notes

The type of a business object, in terms of this method, is the name of the business
object definition from which the business object was created.

Returns

The following example retrieves the type of a business object called sourceShipTo.
String typeName = sourceShipTo.getType();

The following example copies a triggering event into a new business object of the
appropriate type.
BusObj source = new BusObj(triggeringBusObj.getType());

getVerb()

Retrieve this business object’s verb.

Chapter 10. BusObj class 247

Syntax

String getVerb()

Return values
The name of a verb, such as Create, Retrieve, Update, or Delete.

Notes

In collaboration development, this method is useful for scenarios that handle
multiple types of incoming events. The first action node in a scenario calls
getVerb(). The outgoing transition links from that action node then test the
contents of the returned string, so that each outgoing transition link is the start of
an execution path that handles one of the possible verbs.

Examples

The following example obtains the verb from a business object called orderEvent
and assigns it to a variable called orderVerb.

String orderVerb = orderEvent.getVerb();

isBlank()

Find out whether the value of an attribute is set to a zero-length string.

Syntax

boolean isBlank(String attribute)

Parameters

attribute The name of an attribute.

Returns

Returns true if the attribute value is a zero-length string; returns false otherwise.

Notes

A zero-length string can be compared to the string "". It is different from a null,
whose presence is detected by the isNull() method.

If a collaboration needs to retrieve an attribute value and then do something with
it, it can call isBlank() and isNul1() to check that it has a value before retrieving
the value.

Examples

The following example checks whether the Material attribute of the
sourcePaperClip business object is a zero-length string.

boolean key = sourcePaperClip.isBlank("Material");

isKey()

Find out whether a business object’s attribute is defined as a key attribute.

Syntax

boolean isKey(String attribute)

248 Map Development Guide

Parameters

attribute The name of an attribute.

Return values

Returns true if the attribute is a key attribute; returns false if it is not a key
attribute.

Examples

The following example determines whether the CustID attribute of the customer
business object is a key attribute.

boolean keyAttr = (customer.isKey("CustID"));

isNull()

Find out whether the value of a business object’s attribute is null.

Syntax

boolean isNull(String attribute)
Parameters

attribute The name of an attribute.

Return values

Returns true if the attribute value is null; returns false if it is not null.

Notes

A null indicates no value, in contrast to a zero-length string value, which is
detected by calling isBlank(). Test an object with isNul1() before using it, because
if the object is null, the operation could fail.

An attribute value can be null under these circumstances:
* The attribute value was explicitly set to null.

An attribute value can be set to null using the set () method.
* The attribute value was never set.

At instantiation of a new business objects, all attribute values are initialized with
a null. If the attribute value has not been set between the time of creation and
the time of the isNu11() call, the value is still null.

e The null was inserted during mapping.

When a collaboration is processing a business object received from a connector,
the mapping process might have inserted the null. The mapping process
converts the application-specific business object received from the connector to
the generic business object handled by the collaboration. For each attribute in
the generic business object that has no equivalent in the application-specific
object, the map inserts a null value.

Tip: Always call isNul1() before performing an operation on an attribute that is a

child business object or child business object array, because Java does not
allow operations on null objects.

Chapter 10. BusObj class 249

Examples

The following example checks whether the Material attribute of the
sourcePaperC1ip business object has a null value.

boolean key = sourcePaperClip.isNull("Material");

The following example checks whether the CustAddr attribute of the contractl
business object is null before retrieving it. The attribute retrieval proceeds only if
the isNul1() check is false, showing that the attribute is not null.

if (! contractl.isNull("CustAddr"))

{
BusObj customerAddress = contractl.getBusObj("CustAddr");
//do something with the "customerAddress" business object

}

isRequired()

Find out whether a business object’s attribute is defined as a required attribute.

Syntax

boolean isRequired(String attribute)

Parameters

attribute The name of an attribute.

Return values

Returns true if the attribute is required; returns false if it is not required.

Notes

If an attribute is defined as required, it must have a value and the value must not
be a null.

Examples

The following example logs a warning if a required attribute has a null value.

if ((customer.isRequired("Address"))
&& (customerBusObj.isNull("Address)))
{

TogWarning(12, "Address is required and cannot be null.");

else

{

//do something else

}

keysToString()

Retrieve the values of a business object’s primary key attributes as a string.

Syntax

String keysToString()

Return values

A String object containing all the key values in a business object, concatenated, and
ordered by the ordinal value of the attributes.

250 Map Development Guide

Notes

The output from this method contains the name of the attribute and its value.
Multiple values are primary key attribute values, concatenated and separated by
spaces. For example, if there is one primary key attribute, SS#, this could be the
output:

SS#=100408394

If the primary key attributes are FirstName and LastName, this could be the
output:

FirstName=Nina LastName=Silk

Examples

The following example returns the values of key attributes of the business object
represented by the variable name fromOrder.

String keyValues = fromOrder.keysToString();

set()

Set a business object’s attribute to a specified value of a particular data type.

Syntax

void set(String attribute, Object value)
void set(int position, Object value)

void set(String attribute, boolean value)
void set(String attribute, double value)
void set(String attribute, float value)
void set(String attribute, int value)
void set(String attribute, long value)
void set(String attribute, Object value)
void set(String attribute, String value)

Parameters
attribute The name of the attribute to set.
position An integer that specifies the ordinal position of an attribute in the
business object’s attribute list.
value An attribute value.
Exceptions

Notes

CollaborationException—The set() method can set the following exception type
for this exception:

* AttributeException—Set if an attribute access problem occurs.

The set() method sets an attribute value in the current business object. This
method sets an object reference to the value parameter when it assigns the value to
the attribute. It does not clone the attribute value from the source business object.
Therefore, any changes to value in the source business object are also made to the
attribute in the business object that calls set ().

The set() method provides the following forms:

* The first form sets a value of the type specified by the method’s second
parameter type. For example, set(String attribute, boolean value) sets an attribute

Chapter 10. BusObj class 251

with a boolean value, set(String attribute, double value) sets an attribute with a
double value, and so on. Use this form to set attributes with specific basic or
WebSphere InterChange Server Express-defined data types.

These methods provide the ability to access an attribute value by specifying the
name of the attribute.

* The second form sets the value of an attribute of any type. You can send in any
data type as the attribute value because the attribute-value parameter is of type
Object. For example, to set an attribute that is of BusObj or LongText object, use
this form of the method and pass in the BusObj or LongText object as the
attribute value.

This form of the set() method provides the ability to access an attribute value by

specifying either the name of the attribute or the attribute’s index position within
the business object attribute list.

Examples
The following example sets the LName attribute in toCustomer to the value Smith.
toCustomer.set("LName", "Smith");

The following example illustrates how set () assigns an object reference instead of
cloning the value:

BusObj BusObj myBusObj = new BusObj();
BusObj mySettingBusObj = new BusObj();

myBusObj.set("attrl", mySettingBusObj);

After this code fragment executes, the attrl attribute of myBusObj is set to the
mySettingBusObj business object. If mySettingBusObj is changed in any way,
myBusObj.attrl is changed in the exact manner because set() makes an object
reference to mySettingBusObj when it sets the attrl attribute; it does not create a
static copy of mySettingBusObj.

The following example sets an attribute value using the attribute’s ordinal position
within the attribute list:
for i=0; i<maxAttrCount; i++)

{
myBusObj.set (i, strValue);

setContent()

Set the contents of this business object to another business object.

Syntax

void setContent(BusObj BusObj)

Parameters

BusObj The business object whose values are used to set values of this
business object.

Exceptions

CollaborationException—The setContent () method can set one of the following
exception types for this exception:

e AttributeException — Set if an attribute access problem occurs.

252 Map Development Guide

* ObjectException — Set if the business object argument is invalid.

Examples

The following example sets the contents of the instance variable for the output
object ObjOutputl to the contents of the business object rDstBO[0].

ObjOutputl.setContent(rDstBO[0]);

setDefaultAttrValues()

Set all attributes to their default values.

Syntax

void setDefaultAttrValues()

Notes

A business object definition can include default values for attributes. The method
sets the values of this business object’s attributes to the values specified as defaults
in the definition.

Examples

The following example sets the values of the PaperClip business object to their
default values:

PaperClip.setDefaultAttrValues();

setKeys()
Set the values of this business object’s key attributes to the values of the key
attributes in another business object.
Syntax
void setKeys(BusObj inputBusObj)
Parameters
inputBusObj The business object whose values are used to set values of another
business object
Exceptions
CollaborationException—The setKeys() method can set one of the following
exception types for this exception:
* AttributeException — Set if an attribute access problem occurs.
* ObjectException — Set if the business object argument is invalid.
Examples
The following example sets the key values in the business object helpdeskCustomer
to the key values in the business object ERPCustomer.
helpdeskCustomer.setKeys (ERPCustomer);
setLocale()

Set the locale of the current business object.

Chapter 10. BusObj class 253

Syntax

void setlLocale(java.util.Locale locale

Parameters

locale The Java Locale object that contains the information about the locale to
assign to the business object. This Locale object must be an instance of the
java.util.Llocale class.

Return values
None.

Notes

The setLocale() method assigns a locale to the data associated with a business
object. The locale might be different from the collaboration locale in which the
collaboration executes.

See also
getLocale()
setVerb()
Set the verb of a business object.
Syntax
void setVerb(String verb)
Parameters
verb The verb of the business object.
Notes

The setVerb() method is used only in mapping.

Note: Do not use this method in collaboration development, where you must set
the verb of an outgoing business object interactively by filling in the
properties of a service call.

Examples

The following example sets the verb Delete on the business object contactAddress.
contactAddress.setVerb("Delete");

setWithCreate()

Set a business object’s attribute to a specified value of a particular data type,
creating an object for the value is one does not already exist.

Syntax

void setWithCreate(String attributeName, BusObj busObj)
void setWithCreate(String attributeName, BusObjArray busObjArray)
void setWithCreate(String attributeName, Object value)

254 Map Development Guide

Parameters

attributeName The name of the attribute to set.
bus0bj The business object to insert into the target attribute.
busObjArray The business object array to insert into the target attribute.

value The object to insert into the target attribute. This object needs to be
one of the following types: BusObj, BusObjArray, Object.

Exceptions

Notes

CollaborationException—The setWithCreate() method can set the following
exception type for this exception:

e AttributeException—Set if an attribute access problem occurs.

If the object provided is a BusObj and the target attribute contains multi-cardinality
child business object, the BusObj is appended to the BusObjArray as its last element.
If the target attribute contains a BusObj, however, this business object replaces the
previous value.

Examples

The following example sets an attribute called ChildAttrAttr to the value 5. The
attribute is found in a business object contained in myBO'’s attribute, ChildAttr. If
the childAttr business object does not exist at the time of the call, this method call
creates it.

myBO.setWithCreate("childAttr.childAttrAttr", "5");

toString()

Return the values of all attributes in a business object as a string.

Syntax

String toString()

Return values

Notes

A String object containing all attribute values in a business object.

The string that results from a call to this method is similar to the following
example:

Name: GenEmployee

Verb: Create

Type: AfterlImage

Attributes: (Name, Type, Value)

LastName:String, Davis

FirstName:String, Miles

SS#:String, 041-33-8989

Salary:Float, 15.00

ObjectEventId:String, MyConnector_922323619411 1

Chapter 10. BusObj class 255

Examples

The following example returns a string containing the attribute values of the
business object variable fromOrder.

String values = fromOrder.toString();

validData()

Checks whether a specified value is a valid type for a specified attribute.

Syntax

boolean validData(String
boolean validData(String
boolean validData(String
boolean validData(String
boolean validData(String
boolean validData(String
boolean validData(String
boolean validData(String
boolean validData(String

Parameters

attributeName,
attributeName,
attributeName,
attributeName,
attributeName,
attributeName,
attributeName,
attributeName,
attributeName,

attributeName The attribute.

value The value.

Returns

true or false (boolean return)

Notes

Object value)
BusObj value)
BusObjArray value)
String value)

long value)

int value)

double value)
float value)
boolean value)

Checks the compatibility of the value passed in with the target attribute (as
specified by attributeName). These are the criteria:

for primitive types (String, long, int,

double, float, boolean)

for a BusObj

for a BusObjArray

for an Object

the value must be convertible to the data type of

the attribute

the value must have the same type as that of the
target attribute

the value must point to a BusObj or BusObjArray
with the same (business object definition) type as
that of the attribute

the value must be of type String, BusObj, or
BusObjArray. The corresponding validation rules
are then applied.

Deprecated methods

Some methods in the BusObj class were supported in earlier versions but are no
longer supported. These deprecated methods will not generate errors, but
CrossWorlds recommends that you avoid their use and migrate existing code to
the new methods. The deprecated methods might be removed in a future release.

lists the deprecated methods for the BusObj class. If you have not used
Map Designer Express before, ignore this section.

256 Map Development Guide

Table 93. Deprecated methods, BusObj Class

Former Method Replacement

getCount () BusObjArray.size()

getKeys () keysToString()

getValues() toString()

not standard Java NOT operator, "!"

set(BusObj inputBusObj) copy ()

All methods that took a child business object Get a handle to the child business object or
or child business object array as an input business object array and use the methods of
argument the BusObj or BusObjArray class

The setVerb() method, which was previously listed as deprecated, is now restored
for use in mapping. Do not use it within a collaboration.

Chapter 10. BusObj class 257

258 Map Development Guide

Chapter 11. BusObjArray class

The methods documented in this chapter operate on objects of the IBM WebSphere
InterChange Server Express-defined class BusObjArray. The BusObjArray class
encapsulates an array of business objects. In a hierarchical business object, an
attribute is a reference to an array of child business objects when its cardinality is
equal to n. Operations on the BusObjArray class can return either a BusObjArray
object or an actual array of business objects.

Note: The BusObjArray class is used for both collaboration development and
mapping; check the Notes section for each method’s usage issues.

lists the methods of the BusObjArray class.
Table 94. BusObjArray method summary

Method Description Page

addETement () Add a business object to this business object |260
array.
Create a business object array (BusObjArray [260

object) exactly like this one.

duplicate()

Retrieve a single business object by 261
specifying its position in this business object
array.

Compare another business object array with |261
this one.

Retrieve the contents of this business object |262
array.

Retrieve the last available index from a
business object array.

Retrieve the maximum value for the
specified attribute among all elements in
this business object array.

faxBusObjArray ()| Returns the business objects that have the
maximum value for the specified attribute,
as a business object array (BusObjArray
object).

axBusObjs () Returns the business objects that have the
maximum value for the specified attribute,
as an array of BusObj objects.

in() Retrieve the minimum value for the
specified attribute among the business
objects in this array.

finBusObjArray ()| Returns the business objects that have the 266
minimum value for the specified attribute,
as a BusObjArray object.

inBusObjs () Returns the business objects that have the
minimum value for the specified attribute,
as an array of BusObj objects.

[removeAl1ETements ()] Remove all elements from this business
object array.

Remove a business object element from a
business object array.

[removeET1ementAt ()] Remove an element at a particular position [269,

in this business object array.

© Copyright IBM Corp. 2003 259

Table 94. BusObjArray method summary (continued)

Method Description Page

setETementAt () Set the value of a business object in a 269
business object array.

size(Return the number of elements in this 270

business object array.

Adds the values of the specified attribute for
all business objects in this business object

array.

swap (Reverse the positions of two business objects m
in this business object array. Keep in mind

that the first element in the array is zero (0),

the second is 1, the third is 2, and so on.

oString Retrieve the values in this business object 271
array as a single string.

o @
c
3
—~
—
— —

Note: See|“Exceptions and exception types” on page 240| for an important
clarification on exception handling with this class. The section applies to
exceptions in BusObjArray and BusObj only.

addElement()
Add a business object to this business object array.
Syntax
void addElement (BusObj element)
Parameters
element A business object to add to the array.
Exceptions
CollaborationException—The addETement () method can set the following
exception type for this exception:
e AttributeException — Set if the element is not valid.
Examples
The following example uses the getBusObjArray() method to retrieve an array of
business objects called itemList from the business object order. The array is
assigned to items, and then a new business object is added to items.
BusObjArray items = order.getBusObjArray("itemList");
items.addElement (new BusObj("oneltem"));
duplicate()
Create a business object array (BusObjArray object) exactly like this one.
Syntax

BusObjArray duplicate()

Return values
A business object array.

260 Map Development Guide

Examples

The following example duplicates the items array, creating newItems.
BusObjArray newlItems = items.duplicate();

elementAt()

Retrieve a single business object by specifying its position in this business object
array.

Syntax
BusObj elementAt(int index)

Parameters
index The array element to retrieve. The first element in the array is zero

(0), the second is 1, the third is 2, and so on.

Exceptions
CollaborationException—The elementAt() method can set the following exception
type for this exception:
* AttributeException — Set if the element is not valid.

Examples
The following example retrieves the 11th business object in the items array and
assigns it to the Item variable.
BusObj Item = items.elementAt(10);

equals()

Compare another business object array with this one.

Syntax
boolean equals(BusObjArray inputBusObjArray)

Parameters
inputBusObjArray

A business object array to compare with this business object array.

Notes
The comparison between the two business object arrays checks the number of
elements and their attribute values.

Examples

The following example uses equals() to set up a conditional loop, the inside of
which is not shown.

if (items.equals(newItems))

Chapter 11. BusObjArray class 261

getElements()

Retrieve the contents of this business object array.

Syntax

BusObj[] getElements()

Exceptions
CollaborationException—The getElements() method can set the following
exception type for this exception:
* ObjectException — Set if one of the elements is not valid.

Examples

The following example prints the elements of the items array.

BusObj[] elements = items.getElements();
for (int i=0, i<elements.length; i++)

{

trace(1, elements[i].toString());

1

getLastindex()

Retrieve the last available index from a business object array.

Syntax

int getlLastIndex()

Returns
The last index to the last element in this BusObjArray.

Notes

Previously, the size() method was used to do this. That is, the user would use the
size() of the business object array to retrieve the last index available in a
BusObjArray. Unfortunately, this approach yields incorrect data if the BusObjArray
contains gaps.

Like all Java arrays, BusObjArray is a zero relative array. This means that the
size() method will return 1 greater than the getLastIndex() method.

Examples

The following example retrieves the last index in the business object array.
int lastElementIndex = items.getlLastIndex();

max()

Retrieve the maximum value for the specified attribute among all elements in this
business object array.

Syntax

String max(String attr)

262 Map Development Guide

Parameters

attr A variable that refers to an attribute in the business object. The
attribute must be one of these types: String, LongText, Integer,
Float, and DoubTe.

Returns

The maximum value of the specified attribute in the form of a string, or null if the
value for that attribute is null for all elements in this BusObjArray.

Exceptions

UnknownAttributeException — When the specified attribute is not a valid attribute
in the business objects passed in.

UnsupportedAttributeTypeException — When the type of the specified attribute is
not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The
max () method can set the following exception type for these exceptions:
AttributeException.

Notes

The max() method looks for the maximum value for the specified attribute among

the business objects in this BusObjArray. For example, if three employee objects are
used, and the attribute is “Salary” which is of type “Float,” it will return the string
representing the largest salary.

If the value of the specified attribute for an element in BusObjArray is null, then
that element is ignored. If the value of the specified attribute is null for all
elements, then null is returned.

When the attribute type is of type String, max() returns the attribute value that is
the longest string lexically.

Examples

String maxSalary = items.max("Salary");

maxBusObijArray()

Returns the business objects that have the maximum value for the specified
attribute, as a business object array (BusObjArray object).

Syntax
BusObjArray maxBusObjArray(String attr)
Parameters
attr A String, LongText, Integer, Float, or Double variable that refers
to an attribute in a business object in the business object array.
Returns

A list of business objects in the form of BusObjArray or null.

Chapter 11. BusObjArray class 263

Exceptions

UnknownAttributeException — When the specified attribute is not a valid attribute
in the business objects passed in.

UnsupportedAttributeTypeException — When the type of the specified attribute is
not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The
maxBusObjArray () method can set the following exception type for these
exceptions: AttributeException.

Notes

The maxBusObjArray () method finds one or more business objects with the
maximum value for the specified attribute, and returns these business objects in a
BusObjArray object.

For example, suppose that this is a business object array containing Employee
business objects and that the input argument is the attribute Salary, a Float. The
method determines the largest value for Salary in all the Employee business objects
and returns the business object that contains that value. If multiple business objects
have that largest Salary value, the method returns all of those business objects.

A business object is ignored if the specified attribute contains null. If the value is
null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the longest string lexically.

Examples
BusObjArray boarrayWithMaxSalary = items.maxBusObjArray("Salary");

maxBusObijs()

Returns the business objects that have the maximum value for the specified
attribute, as an array of BusObj objects.

Syntax
BusObj[] maxBusObjs(String attr)
Parameters
attr A String, LongText, Integer, Float, or Double variable that refers
to an attribute in the business object.
Returns

A list of business objects in the form of a BusObj[] or null.

Exceptions

UnknownAttributeException — When the specified attribute is not a valid attribute
in the business objects passed in.

UnsupportedAttributeTypeException — When the type of the specified attribute is
not one of the supported attribute types listed in the note section.

264 Map Development Guide

All of the above exceptions are subclassed from CollaborationException. The
maxBusObjs () method can set the following exception type for these exceptions:
AttributeException.

Notes

The maxBusObjs () method finds one or more business objects with the maximum
value for the specified attribute, and returns these business objects as an array of
BusObj objects.

For example, suppose that this is a business object array containing Employee
business objects and that the input argument is the attribute Salary, a Float. The
method determines the largest value for Salary in all the Employee business objects
and returns the business object that contains that value. If multiple business objects
have that largest Salary value, the method returns all of those business objects.

A business object is ignored if the specified attribute contains null. If the value is
null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the longest string lexically.

Examples
BusObj[] bosWithMaxSalary = items.maxBusObjs("Salary");

min()

Retrieve the minimum value for the specified attribute among the business objects
in this array.

Syntax
String min(String attr)
Parameters
attr A String, LongText, Integer, Float, or Double variable that refers
to an attribute in the business object.
Returns

The minimum value of the specified attribute in the form of a string, or null if the
value for that attribute is null for all elements in this BusObjArray.

Exceptions

UnknownAttributeException — When the specified attribute is not a valid attribute
in the business objects passed in.

UnsupportedAttributeTypeException — When the type of the specified attribute is
not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The

min() method can set the following exception type for these exceptions:
AttributeException.

Chapter 11. BusObjArray class 265

Notes

The min() method looks for the minimum value for the specified attribute among
the business objects in this business object array.

For example, suppose that this is a business object array containing Employee
business objects and that the input argument is the attribute Salary, a Float. The
method determines the smallest value for Salary in all the Employee business
objects and returns the business object that contains that value. If multiple business
objects have that lowest Salary value, the method returns all of those business
objects.

A business object is ignored if the specified attribute contains null. If the value is
null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the shortest string
lexically.

Examples

String minSalary = items.min("Salary");

minBusObjArray()

Returns the business objects that have the minimum value for the specified
attribute, as a BusObjArray object.

Syntax
BusObjArray minBusObjArray(String attr)
Parameters
attr A String, LongText, Integer, Float, or Double variable that refers
to an attribute in the business object.
Returns

A list of business objects in the form of BusObjArray or null.

Exceptions

UnknownAttributeException — When the specified attribute is not a valid attribute
in the business objects passed in.

UnsupportedAttributeTypeException — When the type of the specified attribute is
not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The
minBusObjArray () method can set the following exception type for these
exceptions: AttributeException.

Notes

The minBusObjArray () method finds one or more business objects with the
minimum value for the specified attribute, and returns these business objects in a
BusObjArray object.

266 Map Development Guide

For example, suppose that this is a business object array containing Employee
business objects and that the input argument is the attribute Salary, a Float. The
method determines the smallest value for Salary in all the Employee business
objects and returns the business object that contains that value. If multiple business
objects have that smallest Salary value, the method returns all of those business
objects.

A business object is ignored if the specified attribute contains null. If the value is
null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the shortest string
lexically.

Examples

BusObjArray boarrayWithMinSalary = items.minBusObjArray("Salary");
minBusObjs()

Returns the business objects that have the minimum value for the specified
attribute, as an array of BusObj objects.

Syntax
BusObj[] minBusObjs(String attr)

Parameters
attr A String, LongText, Integer, Float, or Double variable that refers

to an attribute in the business object.

Returns
A list of business objects in the form of a BusObj[] or null.

Exceptions
UnknownAttributeException — When the specified attribute is not a valid attribute
in the business objects passed in.
UnsupportedAttributeTypeException — When the type of the specified attribute is
not one of the supported attribute types listed in the note section.
All of the above exceptions are subclassed from CollaborationException. The
minBusObjs () method can set the following exception type for these exceptions:
AttributeException.

Notes

The minBusObjs () method finds one or more business objects with the maximum
value for the specified attribute, and returns these business objects as an array of
BusObj objects.

For example, suppose that this is a business object array containing Employee

business objects and that the input argument is the attribute Salary, a Float. The
method determines the smallest value for Salary in all the Employee business

Chapter 11. BusObjArray class 267

objects and returns the business object that contains that value. If multiple business
objects have that smallest Salary value, the method returns all of those business
objects.

A business object is ignored if the specified attribute contains null. If the value is
null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the shortest string
lexically.

Examples
BusObj[] bosWithMinSalary = items.minBusObjs("Salary");

removeAllElements()

Remove all elements from this business object array.

Syntax

void removeAllElements ()

Examples
The following example removes all elements of the array items.
items.removeAl1ETements();

removeElement()

Remove a business object element from a business object array.
Syntax

void removeElement (BusObj element)
Parameters

elementReference

A variable that refers to an element of the array.

Exceptions

CollaborationException—The removeElement () method can set the following
exception type for this exception:

e AttributeException — Set if the element is not valid.

Notes

After you delete an element from the array, the array resizes, changing the indexes
of existing elements.

Examples

The following example deletes the element Childl from the business object array
items.

items.removeElement (Childl);

268 Map Development Guide

removeElementAt()

Remove an element at a particular position in this business object array.

Syntax

void removeElementAt(int index)

Notes

After an element is removed from the array, the array resizes, possibly changing
the indexes of existing elements.

Parameters

index The element index.

Exceptions

CollaborationException—The removeElementAt () method can set the following
exception type for this exception:

* AttributeException — Set if the element is not valid.

Examples

The following example deletes the sixth business object in the array items.
items.removeElementAt (5);

setElementAt()

Set the value of a business object in a business object array.

Syntax

void setElementAt (int index, BusObj element)

Parameters

index An integer representing the array position. The first element in the
array is zero (0), the second is 1, the third is 2, and so on.

inputBusObj ~ The business object containing the values to which you want to set
the array element.

Exceptions

CollaborationException—The setETementAt () method can set the following
exception type for this exception:

e AttributeException — Set if the element is not valid.

Notes

This method sets the values of the business object at a specified array position to
the values of an input business object.

Examples

The following example creates a new business object of type Item and adds it to
the array items, as the fourth element.

items.setElementAt(5, new BusObj("Item"));

Chapter 11. BusObjArray class 269

size()

Return the number of elements in this business object array.

Syntax

int size()

Notes

Like all Java arrays, BusObjArray is a zero relative array. This means that the
size() method will return 1 greater than the getLastIndex() method.

Examples
The following example returns the number of elements in the array items.

int size = items.size();

sum()

Adds the values of the specified attribute for all business objects in this business
object array.

Syntax

double sum(String attrName)

Parameters

attr A variable that refers to an attribute in the business object. The
attribute must be of type Integer, Float, or Double.

Returns

The sum of the specified attribute from the list of the business objects.

Exceptions

UnknownAttributeException — When the specified attribute is not a valid attribute
in the business objects passed in.

UnsupportedAttributeTypeException — When the type of the specified attribute is
not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The
sum() method can set the following exception type for these exceptions:
AttributeException.

Examples

double sumSalary = items.sum("Salary");

swap()

Reverse the positions of two business objects in this business object array. Keep in
mind that the first element in the array is zero (0), the second is 1, the third is 2,
and so on.

270 Map Development Guide

Syntax

void swap(int indexI, int index2)

Parameters
index1 The array position of one element you want to swap.
index2 The array position of the other element you want to swap.
Examples

The following example uses swap() to reverse the positions of BusObjA and
BusODbjC in the following array:

BusObjA | BusObjB | BusObjC

swap(0,2);

The result of the swap() call is the following array:

BusObjC | BusObjB | BusObjA

toString()

Retrieve the values in this business object array as a single string.

Syntax

String toString()

Examples

The following example uses toString() to retrieve the contents of the items
business object array and then uses lTogInfo() to write the contents to the log file.

TogInfo(items.toString());

Chapter 11. BusObjArray class 271

272 Map Development Guide

Chapter 12. CwDBConnection class

The CwDBConnection class provides methods for executing SQL queries in a

database. Queries are performed through a connection, which is obtained from a
connection pool. To instantiate this class, you must call [getDBConnection()|in the
BaseDLM class. All maps are derived or subclassed from BaseDLM so they have access

to getDBConnection().

summarizes the methods in the CwDBConnection class.

Table 95. CwDBConnection method summary

Method Description Page

beginTransaction ()] Begins an explicit transaction for the current connection. 73

commi t ()| Commits the active transaction associated with the 74
current connection.

Executes a static SQL query by specifying its syntax and
an optional parameter array.

lexecutePreparedSQL ()| Executes a prepared SQL query by specifying its syntax
and an optional parameter array.

[executeStoredProcedure ()] Executes an SQL stored procedure by specifying its name
and parameter array.

|getU|gdateCount ()| Returns the number of rows affected by the last write
operation to the database.

Determines whether the query result has more rows to
process.

w Determines whether a transaction is in progress in the
current connection.

isActi ve()| Determines whether the current connection is active. m

nextRow () Retrieves the next row from the query result.

release() Releases use of the current connection, returning it to its
connection pool.

rol1Back() Rolls back the active transaction associated with the

current connection.

beginTransaction()

Begins an explicit transaction for the current connection.

Syntax

void beginTransaction()

Parameters

None.

Return values

None.

Exceptions

CwDBConnectionException — If a database error occurs.

© Copyright IBM Corp. 2003

273

Notes

The beginTransaction() method marks the beginning of a new explicit transaction
in the current connection. The beginTransaction(), conmit() and rol1Back()
methods together provide management of transaction boundaries for an explicit
transaction. This transaction contains SQL queries, which include the SQL
statements INSERT, DELETE, or UPDATE, and a stored procedure that includes
one of these SQL statements.

If you do not use beginTransaction() to specify the beginning of the explicit
transaction, the database executes each SQL statement as a separate transaction.

Important: Only use beginTransaction() if the connection uses explicit transaction
bracketing. If the connection uses implicit transaction bracketing, use of
beginTransaction() results in a CwDBTransactionException exception.

Before beginning an explicit transaction, you must create a CwDBConnection object
with the getDBConnection() method from the BaseDLM class. Make sure that this
connection uses explicit transaction bracketing.

Examples

The following example uses a transaction to execute a query for inserting rows into
a table in the database associated with connections in the CustDBConnPool.

CwDBConnection connection = getDBConnection("CustDBConnPool", false);

// Begin a transaction
connection.beginTransaction();

// Insert a row
connection.executeSQL("insert...");

// Commit the transaction
connection.commit();

// Release the connection
connection.release();

See also
[commit ()}|getDBConnection ()} [inTransaction()} [ro11Back()|

commit()

Commits the active transaction associated with the current connection.

Syntax

void commit()

Parameters
None.

Return values

None.

Exceptions
CwDBConnectionException — If a database error occurs.

274 Map Development Guide

Notes

The commit () method ends the active transaction by committing any changes made
to the database associated with the current connection. The beginTransaction(),
commit () and rol1Back() methods together provide management of transaction
boundaries for an explicit transaction. This transaction contains SQL queries, which
include the SQL statements INSERT, DELETE, or UPDATE, and a stored procedure
that includes one of these SQL statements.

Important: Only use commit() if the connection uses explicit transaction
bracketing. If the connection uses implicit transaction bracketing, use of
commit () results in a CwDBTransactionException exception. If you do
not end an explicit transaction with commit() (or rollback()) before
the connection is released, InterChange Server Express implicitly ends
the transaction based on the success of the map. If the map is
successful, ICS commits this database transaction. If the map is not
successful, ICS implicitly rolls back the database transaction.
Regardless of the success of the map, ICS logs a warning.

Before beginning an explicit transaction, you must create a CwDBConnection object
with the getDBConnection() method from the BaseDLM class. Make sure that this
connection uses explicit transaction bracketing.

Examples

For an example of committing a transaction, see the example for
lbeginTransaction ()]

See also
beginTransaction ()] [getDBConnection()}[inTransaction()} ro11Back ()|

executePreparedSQL()
Executes a prepared SQL query by specifying its syntax and an optional parameter

array.

Syntax

void executePreparedSQL(String query)
void executePreparedSQL(String query, Vector queryParameters)

Parameters
query A string representation of the SQL query to execute in the
database.
queryParameters
A Vector object of arguments to pass to parameters in the SQL
query.

Return values

None.

Exceptions

CwDBSQLException — If a database error occurs.

Chapter 12. CwDBConnection class 275

Notes

The executePreparedSQL() method sends the specified query string as a prepared
SQL statement to the database associated with the current connection. The first
time it executes, this query is sent as a string to the database, which compiles the
string into an executable form (called a prepared statement), executes the SQL
statement, and returns this prepared statement to executePreparedSQL(). The
executePreparedSQL() method saves this prepared statement in memory. Use
executePreparedSQL() for SQL statements that you need to execute multiple times.
The executeSQL() method does not save the prepared statement and is therefore
useful for queries you need to execute only once.

Important: Before executing a query with executePreparedSQL(), you must obtain
a connection to the desired database by generating a CwDBConnection
object with the getDBConnection() method from the BaseDLM class.

The SQL statements you can execute include the following (as long as you have
the necessary database permissions):

* The SELECT statement to request data from one or more database tables
Use the hasMoreRows () and nextRow() methods to access the retrieved data.
* SQL statements that modify data in the database
— INSERT
- DELETE
- UPDATE

If the connection uses explicit transaction bracketing, you must explicitly start
each transaction with beginTransaction() and end it with either commit() or
rollback().

* The CALL statement to execute a prepared stored procedures with the limitation
that this stored procedure cannot use any OUT parameters

To execute stored procedures with OUT parameters, use the
[executeStoredProcedure ()| method.

See also

beginTransaction ()] |commit ()| [executeSQL ()} fexecuteStoredProcedure ()]

getDBConnection ()} |hasMoreRows ()} lhextRow()} fro11Back ()]

executeSQL()

Executes a static SQL query by specifying its syntax and an optional parameter
array.

Syntax

void executeSQL(String query)
void executeSQL(String query, Vector queryParameters)

Parameters

query A string representation of the SQL query to execute in the
database.

queryParameters
A Vector object of arguments to pass to parameters in the SQL

query.

276 Map Development Guide

Return values

None.

Exceptions

Notes

CwDBSQLException — If a database error occurs.

The executeSQL() method sends the specified query string as a static SQL
statement to the database associated with the current connection. This query is sent
as a string to the database, which compiles the string into an executable form and
executes the SQL statement, without saving this executable form. Use executeSQL()
for SQL statements that you need to execute only once. The executePreparedSQL()
method saves the executable form (called a prepared statement) and is therefore
useful for queries you need to execute multiple times.

Important: Before executing a query with executeSQL(), you must obtain a
connection to the desired database by generating a CwDBConnection
object with the getDBConnection() method from the BaseDLM class.

The SQL statements you can execute include the following (as long as you have
the necessary database permissions):

¢ The SELECT statement to request data from one or more database tables
Use the hasMoreRows () and nextRow() methods to access the retrieved data.
¢ SQL statements that modify data in the database
— INSERT
- DELETE
- UPDATE

If the connection uses explicit transaction bracketing, you must explicitly start
each transaction with beginTransaction() and end it with either commit() or
rollback().

e The CALL statement to statically execute a stored procedures with the limitation
that this stored procedure cannot use any OUT parameters

To execute stored procedures with OUT parameters, use the
[executeStoredProcedure ()| method.

Examples

The following example executes a query for inserting rows into an accounting
database whose connections reside in the AccntConnPool connection pool.

CwDBConnection connection = getDBConnection("AccntConnPool");

// Begin a transaction
connection.beginTransaction();

// Insert a row
connection.executeSQL("insert...");

// Commit the transaction
connection.commit();

// Release the database connection
connection.release();

For a more complete code sample that selects data from a relationship table, see

Chapter 12. CwDBConnection class 277

See also

executePreparedSQL ()| [executeStoredProcedure ()} lgetDBConnection()]
hasMoreRows ()], InextRow ()

executeStoredProcedure()

Executes an SQL stored procedure by specifying its name and parameter array.

Syntax

void executeStoredProcedure(String storedProcedure,
Vector storedProcParameters)

Parameters

storedProcedure
The name of the SQL stored procedure to execute in the database.

storedProcParameters
A Vector object of parameters to pass to the stored procedure. Each
parameter is an instance of the CwDBStoredProcedureParam class.
For more information on how to pass parameters through this
array, see

Return values

None.

Exceptions
CwDBSQLException — If a database error occurs.

Notes

The executeStoredProcedure() method sends a call to the specified
storedProcedure to the database associated with the current connection. This
method sends the stored-procedure call as a prepared SQL statement; that is, the
first time it executes, this stored-procedure call is sent as a string to the database,
which compiles the string into an executable form (called a prepared statement),
executes the SQL statement, and returns this prepared statement to
executeStoredProcedure(). The executeStoredProcedure() method saves this
prepared statement in memory.

Important: Before executing a stored procedure with executeStoredProcedure(),
you must create a CwDBConnection object with the getDBConnection()
method from the BaseDLM class.

To handle any data that the stored procedure returns, use the hasMoreRows () and
nextRow() methods.

You can also use the executeSQL() or executePreparedSQL() method to execute a
stored procedure as long as this stored procedure does not contain OUT
parameters. If the stored procedure uses OUT parameters, you must use
executeStoredProcedure() to execute it. Unlike with executeSQL() or
executePreparedSQL(), you do not have to pass in the full SQL statement to
execute the stored procedure. With executeStoredProcedure(), you need to pass in
only the name of the stored procedure and a Vector parameter array of
CwDBStoredProcedureParam objects. The executeStoredProcedure() method can

278 Map Development Guide

determine the number of parameters from the storedProcParameters array and
builds the calling statement for the stored procedure.

See also
executePreparedSQL()L |executeSQL()|, |getDBConnect1' on ()l |hasMoreRows ()|,

nextRow () |
getUpdateCount()

Returns the number of rows affected by the last write operation to the database.

Syntax

int getUpdateCount()

Parameters
None.

Return values

Returns an int representing the number of rows affected by the last write
operation.

Exceptions

CwDBConnectionException — If a database error occurs.

Notes

The getUpdateCount () method indicates how many rows have been modified by
the most recent update operation in the database associated with the current
connection. This method is useful after you send an UPDATE or INSERT statement
to the database and you want to determine the number of rows that the SQL
statement has affected.

Important: Before using this method, you must create a CwDBConnection object
with the getDBConnection() method from the BaseDLM class and send a
query that updates the database with either the executeSQL() or
executePreparedSQL() method from the CwDBConnection class.

See also
lexecutePreparedSQL ()] [executeSQL ()] |getDBConnection ()|

hasMoreRows()

Determines whether the query result has more rows to process.

Syntax

boolean hasMoreRows ()

Parameters

None.

Return values

Returns true if more rows exist.

Chapter 12. CwDBConnection class 279

Exceptions

CwDBSQLException — If a database error occurs.

Notes

The hasMoreRows () method determines whether the query result associated with
the current connection has more rows to be processed. Use this method to retrieve
results from a query that returns data. Such queries include a SELECT statement
and a stored procedure. Only one query can be associated with the connection at a
time. Therefore, if you execute another query before hasMoreRows () returns false,
you lose the data from the initial query.

See also
|executePreparedSQL ()|, |executeSQL ()|, |nextRow()|

inTransaction()

Determines whether a transaction is in progress in the current connection.

Syntax

boolean inTransaction()

Parameters
None.

Return values

Returns true if a transaction is currently active in the current connection; returns
false otherwise.

Exceptions

CwDBConnectionException — If a database error occurs.

Notes

The inTransaction() method returns a boolean value that indicates whether the
current connection has an active transaction; that is, a transaction that has been
started but not ended.

Important: Before beginning a transaction, you must create a CwDBConnection
object with the getDBConnection() method from the BaseDLM class.

See also
beginTransaction ()} [commit ()} |getDBConnection ()} |ro11Back ()|

isActive()

Determines whether the current connection is active.

Syntax

boolean isActive()

280 Map Development Guide

Parameters

None.

Return values

Returns true if the current connection is active; returns false if this connection has
been released.

Exceptions

None.

See also
lgetDBConnection ()} [release ()|

nextRow()

Retrieves the next row from the query result.

Syntax

Vector nextRow()

Parameters
None.

Return values

Returns the next row of the query result as a Vector object.

Exceptions

CwDBSQLException — If a database error occurs.

Notes

The nextRow() method returns one row of data from the query result associated
with the current connection. Use this method to retrieve results from a query that
returns data. Such queries include a SELECT statement and a stored procedure.
Only one query can be associated with the connection at a time. Therefore, if you
execute another query before nextRow() returns the last row of data, you lose the
query result from the initial query.

See also
|hasMoreRows ()I,|executePreparedSQL()|, |executeSQL()|, |execute$toredProcedure()|

release()

Releases use of the current connection, returning it to its connection pool.

Syntax

void release()

Parameters
None.

Chapter 12. CwDBConnection class 281

Return values

None.

Exceptions

CwDBConnectionException

Notes

The release() method explicitly releases use of the current connection by the map
instance. Once released, the connection returns to its connection pool, where it is
available for other components (maps or collaborations) that require a connection
to the associated database. If you do not explicitly release a connection, the map
instance implicitly releases it at the end of the current map run. Therefore, you
cannot save a connection in a static variable and reuse it.

Attention: Do not use the release() method if a transaction is currently active.
With implicit transaction bracketing, ICS does not end the database
transaction until it determines the success or failure of the map.
Therefore, use of this method on a connection that uses implicit
transaction bracketing results in a CwDBTransactionException exception.
If you do not handle this exception explicitly, it also results in an
automatic rollback of the active transaction. You can use the
inTransaction() method to determine whether a transaction is active.

See also
lgetDBConnection ()} [inTransaction ()] [isActive()|

roliBack()

Rolls back the active transaction associated with the current connection.

Syntax

void rollBack()

Parameters

None.

Return values

None.

Exceptions
CwDBConnectionException — If a database error occurs.

Notes

The rollback() method ends the active transaction by rolling back any changes
made to the database associated with the current connection. The
beginTransaction(), conmit() and rol1Back() methods together provide
management of transaction boundaries for an explicit transaction. This transaction
contains SQL queries, which include the SQL statements INSERT, DELETE, or
UPDATE, and a stored procedure that includes one of these SQL statements. If the
roll back fails, rol1back() throws the CwDBTransactionException exception and
logs an error.

282 Map Development Guide

Important: Only use rollback() if the connection uses explicit transaction
bracketing. If the connection uses implicit transaction bracketing, use of
rollback() results in a CwDBTransactionException exception. If you do
not end an explicit transaction with rollback() (or commit()) before
the connection is released, InterChange Server Express implicitly ends
the transaction based on the success of the map. If the map is
successful, ICS commits this database transaction. If the map is not
successful, ICS implicitly rolls back the database transaction.
Regardless of the success of the map, ICS logs a warning.

Before beginning an explicit transaction, you must create a CwDBConnection object
with the getDBConnection() method from the BaseDLM class. Make sure that this
connection uses explicit transaction bracketing.

See also
bbeginTransaction ()} |commit ()} |getDBConnection()}[inTransaction()|

Chapter 12. CwDBConnection class 283

284 Map Development Guide

Chapter 13. CwDBStoredProcedureParam class

A CwDBStoredProcedureParam object describes a single parameter for a stored
procedure. summarizes the methods in the CwDBStoredProcedureParam
class.

Table 96. CwDBStoredProcedureParam method summary

Method Description Page
[CwDBStoredProcedureParam()| Constructs a new instance of

CwDBStoredProcedureParam that holds argument
information for the parameter of a stored procedure.

Retrieves the in/out type of the current

stored—procedure parameter as an integer constant.

Retrieves the value of the current stored-procedure

parameter.

CwDBStoredProcedureParam()

Constructs a new instance of CwDBStoredProcedureParam that holds argument
information for the parameter of a stored procedure.

Syntax

CwDBStoredProcedureParam(int paramType, String paramValue);

CwDBStoredProcedureParam(int paramType, int paramValue);
CwDBStoredProcedureParam(int paramType, Integer paramValue);
CwDBStoredProcedureParam(int paramType, Long paramValue);

CwDBStoredProcedureParam(int paramType, double paramValue);
CwDBStoredProcedureParam(int paramType, Double paramValue);
CwDBStoredProcedureParam(int paramType, float paramValue);
CwDBStoredProcedureParam(int paramType, Float paramValue);
CwDBStoredProcedureParam(int paramType, BigDecimal paramValue);

CwDBStoredProcedureParam(int paramType, boolean paramValue);
CwDBStoredProcedureParam(int paramType, Boolean paramValue);

CwDBStoredProcedureParam(int paramType, java.sql.Date paramValue);
CwDBStoredProcedureParam(int paramType, java.sql.Time paramValue);
CwDBStoredProcedureParam(int paramType, java.sql.Timestamp paramValue);

CwDBStoredProcedureParam(int paramType, java.sql.Blob paramValue);
CwDBStoredProcedureParam(int paramType, java.sql.Clob paramValue);

CwDBStoredProcedureParam(int paramType, byte[] paramValue);
CwDBStoredProcedureParam(int paramType, Array paramValue);
CwDBStoredProcedureParam(int paramType, Struct paramValue);

Parameters
paramType The in/out parameter type of the associated stored-procedure
parameter.
paramValue The argument value to send to the stored procedure. This value is

one of the following Java data types

© Copyright IBM Corp. 2003 285

Return values

Returns a new CwDBStoredProcedureParam object to hold the argument information
for one argument in the declaration of the stored procedure.

Exceptions
None.

Notes

The CwDBStoredProcedureParam() constructor creates a CwDBStoredProcedureParam
instance to describe one parameter for a stored procedure. Parameter information
includes the following:

* The parameter’s in/out type

The constructor’s first argument initializes this in/out parameter type. For a list
of valid in/out parameter types, see [lable 97

* The parameter value

The constructor’s second argument initializes this parameter value. The
CwDBStoredProcedureParam class provides one form of its constructor for each of
the parameter-value data types it supports.

You provide a Java Vector of stored-procedure parameters to the
executeStoredProcedure() method, which creates a stored-procedure call from a
stored-procedure name and the parameter vector, and sends this call to the
database associated with the current connection.

See also
lexecuteStoredProcedure ()

getParamType()

Retrieves the in/out type of the current stored-procedure parameter as an integer
constant.

Syntax

int getParamType()

Parameters

None.

Return values

Returns the in/out type of the associated CwDBStoredProcedureParam parameter.

Exceptions

None.

Notes

The getParamType() method returns the in/out parameter type of the current
stored-procedure parameter. The in/out parameter type indicates how the stored
procedure uses the parameter. The CwDBStoredProcedureParam class represents each

in/out type as a constant, as [Table 97|shows.

286 Map Development Guide

Table 97. Parameter In/Out Types

Parameter in/out type Description In/Out type constant

IN parameter

An IN parameter is input only; that is, the stored PARAM_IN
procedure accepts its value as input but does not use
the parameter to return a value.

OUT parameter An OUT parameter is output only; that is, the stored PARAM_OUT

procedure does not read its value as input but does use
the parameter to return a value.

INOUT parameter An INOUT parameter is input and output; that is, the PARAM_INOUT

stored procedure accepts its value as input and also
uses the parameter to return a value.

See also
[CwDBStoredProcedureParam()} |getValue ()|

getValue()

Retrieves the value of the current stored-procedure parameter.

Syntax

Object getValue()

Parameters
None.

Return values

Returns the value of the associated CwDBStoredProcedureParam parameter as a Java
Object.

Exceptions

None.

Notes

The getValue() method returns the parameter value as a Java Object (such as
Integer, Double, or String). If the value returned to an OUT parameter is the JDBC
NULL, getParamValue() returns the null constant.

See also
[CwDBStoredProcedureParam()} |[getParamType ()|

Chapter 13. CwDBStoredProcedureParam class 287

288 Map Development Guide

Chapter 14. DtpConnection class

The DtpConnection class is part of the Data Transformation Package (DTP). It
provides methods for executing SQL queries on the relationship database. To
instantiate this class, you must call |getRe1 Connection ()|in the BaseDLM class. All

maps are derived or subclassed from BaseDLM so they have access to
getRelConnection().

Important: The DtpConnection class and its methods are supported for backward
compatibility only. These deprecated methods will not generate errors, but

you should avoid using them and migrate existing code to the new
methods. The deprecated methods might be removed in a future

release. In new map development, use the CwDBConnection class and its

methods to establish a database connection.

summarizes the methods in the DtpConnection class.

Table 98. DipConnection method summary

Method Description Page
beginTran () Begins an SQL transaction for the relationship database. m
commit () Commits the current transaction in the relationship 9}
database.
executeSQL() Executes a SQL query in the relationship database by @
specifying a CALL statement.
[execStoredProcedure ()] Executes an SQL stored procedure in the relationship
database by specifying its name and parameter array.
[getUpdateCount ()] Returns the number of rows affected by the last write @
operation to the relationship database.
hasMoreRows () Determines whether the query result has more rows to @
process.
inTransaction() Determines whether a transaction is in progress in the @
relationship database.
nextRow() Retrieves the next row in the query result vector. 294
rol1Back() Rolls back the current transaction in the relationship 295
database.
beginTran()
Begins an SQL transaction for the relationship database.
Syntax
void beginTran()
Parameters
None.

Return values

None.

© Copyright IBM Corp. 2003

289

Exceptions

DtpConnectionException — If a database error occurs.

Notes

The beginTran(), conmit() and rol1Back() methods together provide transaction
support for SQL queries.

Before beginning a transaction, you must create a DtpConnection object with the
lgetRelConnection ()| method from the BaseDLM class.

Examples

The following example uses a transaction to execute a query for inserting rows into
a table in the SapCust relationship.

DtpConnection connection = getRelConnection("SapCust");

// begin a transaction
connection.beginTran();

// insert a row
connection.executeSQL("insert...");

// commit the transaction
connection.commit();

See also
[commit ()} |getRelConnection ()} [inTransaction ()] |ro11Back ()]

commit()

Commits the current transaction in the relationship database.

Syntax

void commit()

Parameters
None.

Return values

None.

Exceptions

DtpConnectionException — If a database error occurs.

Notes
The beginTran(), conmit() and rol1Back() methods together provide transaction
support for SQL queries.

Before beginning a transaction, you must create a DtpConnection object with the
lgetRelConnection ()| method from the BaseDLM class.

290 Map Development Guide

Examples

The following example uses a transaction to execute a query for inserting rows into
a table in the SapCust relationship.

DtpConnection connection = getRelConnection("SapCust");

// begin a transaction
connection.beginTran();

// insert a row
connection.executeSQL("insert...");

// commit the transaction
connection.commit();

See also

|beg1' nTran ()|, |getRe1 Connection ()|, |1' nTransaction ()|, |ro1 1 Back()|

executeSQL()

Executes a SQL query in the relationship database by specifying a CALL statement.

Syntax

void executeSQL(String query)
void executeSQL(String query, Vector queryParameters)

Parameters

query The SQL query to run in the relationship database.

queryParameters
A Vector object of arguments to pass to parameters in the SQL
query.

Return values

None.

Exceptions

Notes

DtpConnectionException — If a database error occurs.

Before executing a query with executeSQL(), you must create a DtpConnection
object with the[getRelConnection ()| method from the BaseDLM class.

The SQL statements you can execute include INSERT, SELECT, DELETE, and
UPDATE. You can also execute stored procedures with the limitation that this
stored procedure cannot use any OUT parameters. To execute stored procedures
with OUT parameters, use the [execStoredProcedure ()| method.

Examples

The following example executes a query for inserting rows into a table in the
SapCust relationship.

DtpConnection connection = getRelConnection("SapCust");

// begin a transaction
connection.beginTran();

Chapter 14. DtpConnection class 291

// insert a row
connection.executeSQL("insert...");

// commit the transaction
connection.commit();

// release the database connection
releaseRelConnection(true);

See also
lexecStoredProcedure ()} [getRelConnection ()} jhasMoreRows ()} pextRow ()|

execStoredProcedure()

Executes an SQL stored procedure in the relationship database by specifying its
name and parameter array.

Syntax

void execStoredProcedure(String storedProcedure,
Vector storedProcParameters)

Parameters

storedProcedure
The name of the SQL stored procedure to run in the relationship
database.

storedProcParameters
A Vector object of parameters to pass to the stored procedure. Each
parameter is an instance of the UserStoredProcedureParam class.
For more information on how to pass parameters through this
array, see

Return values
None.

Exceptions
DtpConnectionException — If a database error occurs.

Notes

Before executing a stored procedure with execStoredProcedure(), you must create
a DtpConnection object with the |getRe1Connection()|method from the BaseDLM
class.

You can also use the executeSQL() method to execute a stored procedure as long as
this stored procedure does not contain OUT parameters. If the stored procedure
uses OUT parameters, you must use execStoredProcedure() to execute it. Unlike
with executeSQL(), you do not have to pass in the full SQL statement to execute
the stored procedure. With execStoredProcedure(), you need to pass in only the
name of the stored procedure and a Vector parameter array of
UserStoredProcedureParam objects. The execStoredProcedure() method can
determine the number of parameters from the storedProcParameters array and
builds the calling statement for the stored procedure.

292 Map Development Guide

See also
fexecuteSQL ()}, [getRelConnection ()} [hasMoreRows ()} jhextRow ()]

getUpdateCount()

Returns the number of rows affected by the last write operation to the relationship
database.

Syntax

int getUpdateCount()

Parameters

None.

Return values

Returns an int representing the number of rows affected by the last write
operation.

Exceptions

DtpConnectionException — If a database error occurs.

Notes

Before using this method, you must create a DtpConnection object with the
lgetRelConnection ()| method from the BaseDLM class.

This method is useful after you send an UPDATE or INSERT statement on the
relationship database and you want to determine the number of rows that the SQL
statement has affected.

See also
lexecuteSQL ()] [getRelConnection ()]

hasMoreRows()

Determines whether the query result has more rows to process.

Syntax

boolean hasMoreRows ()

Parameters
None.

Return values

Returns true if more rows exist.

Exceptions

DtpConnectionException — If a database error occurs.

Chapter 14. DtpConnection class 293

Notes

The hasMoreRows () method determines whether the query associated with the
current relationship database has more rows to be processed. Use this method to
retrieve results from a query that returns data. Such queries include a SELECT
statement and a stored procedure. Only one query can be associated with the
connection at a time. Therefore, if you execute another query before hasMoreRows ()
returns false, you lose the data from the initial query.

See also
InextRow ()} [executesqL ()} |getUpdateCount ()|

inTransaction()

Determines whether a transaction is in progress in the relationship database.

Syntax

boolean inTransaction()

Parameters

None.

Return values

Returns "True" if a transaction is in progress.

Exceptions

DtpConnectionException — If a database error occurs.

Notes

Before beginning a transaction, you must create a DtpConnection object with the
[getRelConnection ()| method from the BaseDLM class.

See also
lbeginTran()}|commit ()| [getRelConnection()} |ro11Back ()]

nextRow()

Retrieves the next row in the query result vector.

Syntax

Vector nextRow()

Parameters

None.

Return values

Returns the next row of the query result as a Vector object.

Exceptions

DtpConnectionException — If a database error occurs.

294 Map Development Guide

Notes

The nextRow() method returns one row of data from the query associated with the
current relationship database. Use this method to retrieve results from a query that
returns data. Such queries include a SELECT statement and a stored procedure.
Only one query can be associated with the connection at a time. Therefore, if you
execute another query before nextRow() returns the last row of data, you lose the
data from the initial query.

See also
lhasMoreRows ()| [executeSQL ()] [getUpdateCount ()|

roliBack()

Rolls back the current transaction in the relationship database.

Syntax

void rol1Back()

Parameters

None.

Return values
None.

Exceptions

DtpConnectionException — If a database error occurs.

Notes

The beginTran(), conmit() and rol1Back() methods together provide transaction
support for SQL queries.

Before beginning a transaction, you must create a DtpConnection object with the
lgetRelConnection ()| method from the BaseDLM class.

See also
lbeginTran ()| [commit ()| [setRelConnection()} [inTransaction()|

Chapter 14. DtpConnection class 295

296 Map Development Guide

Chapter 15. DtpDataConversion class

One of the most common tasks in business object mapping is the conversion of

attribute values from one data type to another, a process called data conversion. The

DtpDataConversion class provides a simple way to perform data conversions.

The data type classes in the java.lang package contain some conversion methods,
but all possible conversions are not supported. The DtpDataConversion class

consolidates many data conversion methods into one class and it supports the

most common conversions that you perform in maps. The getType() and
isOKToConvert () methods make it easy to determine whether specific conversions

are possible.

All methods in this class are declared as static. [Table 99 summarizes the methods
of the DtpDataConversion class.

Table 99. DtpDataConversion method summary

Method

getType ()
isOKToConvert ()

toBoolean()
toDouble()

tolnteger()

[toPrimitiveBoolean ()|

[toPrimitiveDouble()|

[toPrimitiveFloat ()|

[toPrimitivelnt ()|

toString()

Description

Determines the data type of a value.
Determines whether it is possible to convert
a value from one data type to another.
Converts a Java object to a Boolean object.
Converts an object or primitive data type to a
Double object.

Converts an object or primitive data type to a
Float object.

Converts an object or primitive data type to
an Integer object.

Converts a String or Boolean object to the
primitive boolean data type.

Converts an object or primitive data type to
the primitive double data type.

Converts an object or primitive data type to
the primitive float data type.

Converts an object or primitive data type to
the primitive int data type.

Converts an object or primitive data type to a
String object.

EEEEEEEER B

getType()

Determines the data type of a value.

Syntax

int getType(Object objectData)
int getType(int integerData)
int getType(float floatData)
int getType(double doubleData)

int getType(boolean booleanData)

Parameters

objectData Any Java object.

© Copyright IBM Corp. 2003

297

integerData Any primitive int variable.
floatData Any primitive float variable.
doubleData Any primitive double variable.

booleanData Any primitive boolean variable.

Return values

Returns an integer representing the data type of the parameter you pass. You can
interpret the return value by comparing it to one of these constants which are
declared as static and final in the DtpDataConversion class:

INTEGER_TYPE The data is a primitive int value or Integer object.
STRING_TYPE The data is a String object.

FLOAT_TYPE The data is a primitive float value or Float object.
DOUBLE_TYPE The data is a primitive double value or Double object.
BOOL_TYPE The data is a primitive boolean value or Boolean object.
DATE_TYPE The data is a Date object.

LONGTEXT_TYPE The data is a LongText object.

UNKNOWN_TYPE ~ The data is of an unknown type.

Exceptions

None.

Notes

You can use the return values from getType() in the OKToConvert () method to
determine whether a conversion is possible between two given data types.

Examples

int conversionStatus = DtpDataConversion.isOKToConvert(
DtpDataConversion.getType(srcObject),
DtpDataConversion.getType(destObject));

switch(conversionStatus)

{

case DtpDataConversion.0OKTOCONVERT:
// go ahead and convert
break;

case DtpDataConversion.POTENTIALDATALOSS:
// convert, then check value
break;

case DtpDataConversion.CANNOTCONVERT:
// return an error

break;
}
See also
|1' sOKToConvert ()|
isOKToConvert()

Determines whether it is possible to convert a value from one data type to another.

298 Map Development Guide

Syntax

int isOKToConvert(int srcDatatype, int destDataType)
int isOKToConvert(String srcDataTypeStr, String destDataTypeStr)

Parameters

srcDataType Integer returned by |getType ()| which represents the data type of

the source value that you want to convert.

destDataType Integer returned by [getType()| which represents the data type to

which you want to convert the source value.

srcDataTypeStr
String containing the data type name for the source value that you
want to convert. Possible values are: Boolean, boolean, Double,
double, Float, float, Integer, int, and String.

destDataTypeStr
String containing the data type name to which you want to convert
the source value. Possible values are: Boolean, boolean, Double,
double, Float, float, Integer, int, and String.

Return values

Returns an integer specifying whether it is possible to convert a value of the source
data type to a value of the destination data type. You can interpret the return value
by comparing it to one of these constants, which are declared as static and final in
the DtpDataConversion class:

OKTOCONVERT You can convert from the source to the destination data type.

POTENTIALDATALQSS
You can convert, but there is a potential for data loss if the source
value contains unconvertable characters or must be truncated to fit
the destination data type.

CANNOTCONVERT The source data type cannot be converted to the destination data
type.

Exceptions

Notes

None.

The getType() method returns an integer representing the data type of the value
you pass as a parameter. You use the first form of is0KToConvert() together with
getType() to determine whether a data conversion between two attributes is
possible. In your is0KToConvert () method call, use getType() on both the source
and destination attributes to generate the srcDataType and destDataType
parameters.

The second form of the method accepts String values containing the data type
names for the source and destination data. Use this form of the method if you
know what the data types are, and you want to check whether you can perform a
conversion.

able 100| shows the possible conversions for each combination of source and

destination data type. In the table:

Chapter 15. DtpDataConversion class 299

* OK means you can convert the source type to the destination type with no data
loss.

* DL means you can convert, but data loss might occur if the source contains
unconvertable characters or must be truncated to fit the destination type.

* NO means you cannot convert the a value from source data type to the
destination data type.

Table 100. Possible Conversions Between Data Types

DESTINATION

SOURCE int, String float, double, boolean Date Longtext
Integer Float Double Boolean

int Integer OK OK OK OK NO NO OK
String DL! OK DL! DL! DL2 DL OK
float, Float DIL2 OK OK OK NO NO OK
double, DL3 OK DL3 OK NO NO OK
Double

boolean, NO OK NO NO OK NO OK
Boolean

Date NO OK NO NO NO OK OK
Longtext DL! DL? DL! DL! DL2 DL OK

'When converting a String or Longtext value to any numeric type, the String or
Longtext value can contain only numbers and decimals. You must remove any other
characters, such as currency symbols, from the String or Longtext value before
converting. Otherwise, a DtpIncompatibleFormatException will be thrown.

*When converting a String or Longtext value to Boolean, the value of the String or
Longtext should be "true" or "false". Any string that is not "true" (case does not
matter) will be considered false.

*Because the source data type supports greater precision than the destination data
type, the value might be truncated.

Examples

if (DtpDataConversion.isOKToConvert(getType(mySource),
getType(myDest))== DtpDataConversion.0OKTOCONVERT)
// map these attributes
else
// skip these attributes

See also
getType()

toBoolean()

Converts a Java object to a Boolean object.

Syntax

Boolean toBoolean(Object objectData)
Boolean toBoolean(boolean booleanData)

Parameters

objectData A Java object that you want to convert to Boolean. The only object
currently supported is String.

booleanData Any primitive boolean variable.

300 Map Development Guide

Return values
Returns a Boolean object.

Exceptions

DtpIncompatibleFormatException — If the source data type cannot be converted to
Boolean.

Examples
Boolean MyBooleanObj = DtpDataConversion.toBoolean(MyString0bj);

See also
|getType ()l |1' sOKToConvert ()[|toPr1'm1' tiveBoolean ()|

toDouble()

Converts an object or primitive data type to a Double object.

Syntax

Double toDouble
Double toDouble
Double toDouble
Double toDouble

Object objectData)
int integerData)
float floatData)
double doubleData)

—_— e — —

Parameters

objectData A Java object. The objects currently supported are: Float, Integer,
and String.

integerData Any primitive int variable.
floatData Any primitive float variable.

doubleData Any primitive double variable.

Return values
Returns a Double object.

Exceptions

DtpIncompatibleFormatException — If the source data type cannot be converted to
Double.

Examples
Double myDoubleObj = DtpDataConversion.toDouble(myInteger);

See also
|getType ()l |1' sOKToConvert ()[|toPr1'm1' tiveDoubl e()|

toFloat()

Converts an object or primitive data type to a Float object.

Chapter 15. DtpDataConversion class 301

Syntax

Float toFloat(Object objectData)
Float toFloat(int integerData)
Float toFloat(float floatData)
Float toFloat(double doubleData)

Parameters
objectData A Java object. The objects currently supported are: Double, Integer,
and String.
integerData Any primitive int variable.
floatData Any primitive float variable.
doubleData Any primitive double variable.

Return values
Returns a Float object.

Exceptions

DtpIncompatibleFormatException — If the source data type cannot be converted to
Float.

Examples
Float myFloatObj = DtpDataConversion.toFloat(myInteger);

See also
lgetType()}[is0OKToConvert ()} [toPrimitiveFloat ()|

tointeger()
Converts an object or primitive data type to an Integer object.

Syntax

Integer tolnteger(Object objectData)
Integer tolnteger(int integerData)
Integer tolnteger(float floatData)
Integer tolnteger(double doubleData)

Parameters

objectData A Java object. The objects currently supported are: Double, Float,
and String.

integerData Any primitive int variable.
floatData Any primitive float variable.

doubleData Any primitive double variable.

Return values

Returns an Integer object.

302 Map Development Guide

Exceptions

DtpIncompatibleFormatException — If the source data type cannot be converted to
Integer.

Examples
Integer myIntegerObj = DtpDataConversion.tolnteger(myFloat);

See also
lgetType ()} |i sOKToConvert ()] [toPrimitivelnt ()|

toPrimitiveBoolean()

Converts a String or Boolean object to the primitive boolean data type.

Syntax
boolean toPrimitiveBoolean(Object objectData)
Parameters
objectData A String or Boolean object that you want to convert to the

primitive boolean data type.

Return values

Returns a primitive boolean value.

Exceptions

DtpIncompatibleFormatException — If the source data type cannot be converted to
boolean.

Examples

boolean MyBoolean = DtpDataConversion.toPrimitiveBoolean(MyStringObj);

See also
lgetType()}[isOKToConvert ()} [toBoolean ()|

toPrimitiveDouble()
Converts an object or primitive data type to the primitive double data type.

Syntax

double toPrimitiveDouble(Object objectData)
double toPrimitiveDouble(int integerData)
double toPrimitiveDouble(float floatData)

Parameters

objectData A Java object. The objects currently supported are: Double, Float,
Integer, and String.

integerData Any primitive int variable.

floatData Any primitive float variable.

Chapter 15. DtpDataConversion class 303

Return values

Returns a primitive double value.

Exceptions

DtpIncompatibleFormatException — If the source data type cannot be converted to
double.

Examples
double myDouble = DtpDataConversion.toPrimitiveDouble(myObject);

See also
lgetType ()} [isOKToConvert ()] [toDouble ()]

toPrimitiveFloat()
Converts an object or primitive data type to the primitive float data type.

Syntax

float toPrimitiveFloat(Object objectData)
float toPrimitiveFloat(int integerData)
float toPrimitiveFloat(double doubleData)

Parameters

objectData A Java object. The objects currently supported are: Double, Float,
Integer, and String.

integerData Any primitive int variable.

doubleData Any primitive double variable.

Return values

Returns a primitive float value.

Exceptions

DtpIncompatibleFormatException — If the source data type cannot be converted to
float.

Examples

float myFloat = DtpDataConversion.toPrimitiveFloat(myInteger);

See also
lgetType ()} i sOKToConvert ()} [toFToat ()]

toPrimitivelnt()

Converts an object or primitive data type to the primitive int data type.

304 Map Development Guide

Syntax

int toPrimitiveInteger(Object objectData)
int toPrimitivelnteger(float floatData)
int toPrimitiveInteger(double doubleData)

Parameters

objectData A Java object. The objects currently supported are: Double, Float,
Integer, and String.

floatData Any primitive float variable.

doubleData Any primitive double variable.

Return values

Returns a primitive int value.

Exceptions

DtpIncompatibleFormatException — If the source data type cannot be converted to
integer.

Examples
int myInt = DtpDataConversion.toPrimitiveInt(myObject);

See also
lgetType ()} [is0OKToConvert ()} [toInteger ()|

toString()
Converts an object or primitive data type to a String object.
Syntax
String toString(Object objectData)
String toString(int integerData)
String toString(float floatData)
String toString(double doubleData)
Parameters

objectData A Java object. The objects currently supported are: Double, Float,
and Integer.

integerData Any primitive int variable.
floatData Any primitive float variable.

doubleData Any primitive double variable.

Return values
Returns a String object.

Exceptions

DtpIncompatibleFormatException — If the source data type cannot be converted to
String.

Chapter 15. DtpDataConversion class 305

Examples
String myString = DtpDataConversion.toString(myObject);

See also
betType()HisOKToConvert(ﬂ

306 Map Development Guide

Chapter 16. DtpDate class

The DtpDate class compares time and date values, sets their formats, and returns
components of a time and date value.

The static (class) methods operate on the class name. The static methods take a set
of business objects and return the earliest or latest dates or the business objects
that contain the earliest or latest dates.

Instance methods operate on a date object. You pass a date value to the DtpDate
constructor and you can then manipulate the resulting date object. Instance
methods let you retrieve, format, and change the values associated with the date.
You can also set the formats in which you want to handle dates.

The data conversion methods are useful when one application stores dates in one
format and another application stores dates in another format. For example, SAP
might send a date in the format 26/8/1999 15:23:20 but Clarify might need the
date in the format August 26, 1999 15:23:20.

The values passed to the DtpDate class must follow these rules:

Day A number from 1 to 30. If a separator between the month, year, and date
is not present in the date-time string and the date is in a numeric
format, single characters must be preceded by a zero (0), as in 01

Month A number from 1 to 12, a name such as January or February, or an
abbreviated (3 character) month name such as Jan or Feb. If a separator
between the month, year, and date is not present in the date-time string
and the date is in a numeric format, single characters must be preceded
by a zero (0), as in 01.

Year A 4-digit number.

Hour A value in the range 01 to 23, representing 24-hour format. AM or PM
designations are not allowed.

Minutes A number in the range 01 to 59.

Seconds A number in the range 01 to 59.

able 101f summarizes the methods in the DtpDate class. Note that static and
instance methods are separated in this table but are in alphabetical order in the
chapter.

Table 101. DtpDate method summary

Method Description Page

Constructor

Parse the date according to the format specified.

Static methods

From a list of business objects, return the latest
date as a DtpDate object.

From a list of business objects, return the earliest
date as a DtpDate object.

From a list of business objects, return those that
contain the latest date.

getMinDateBO() From a list of business objects, return those that

contain the earliest date.

© Copyright IBM Corp. 2003 307

Table 101. DtpDate method summary (continued)

Method

Instance methods
addDays ()
addWeekdays ()

addYears ()

efore()

0

calcWeekdays ()

Q [2) (=2 Q
D o8} —h
+ — +
— (o] o]
N o =
= QO —
o ‘< N
=] wn

—+

=

=

@

3

D

7]

0l

|get12$hortMonthNames Ol

get7DayNames ()

getCWDate()

getDayOfMonth ()
getDayOfWeek ()
getHours ()
getIntDay ()

getIntDayOfWeek ()|
getIntMi1liSeconds ()|

getIntMinutes ()

getIntMonth()
getIntSeconds ()
getIntYear()

etMSSincel970()

=}

getMinutes ()
getMonth ()

[getNumericMonth ()|
getSeconds ()
getShortMonth ()

getYear()
set12MonthNames ()|

[set12MonthNamesToDefault ()|

[set12ShortMonthNames ()|

[set12ShortMonthNamesToDefault ()|

Description

Add the specified number of days to this date.
Add the specified number of weekdays to this

date.

Add the specified number of years to this date.
Check whether this date follows the date passed

in as the input parameter.

Check whether this date precedes the date passed

in as the parameter.

Calculate the number of days between this date

and another date.

Calculate the number of weekdays between this

date and another date.

Return the current short-name representation of

the twelve months for this date.

Return the current full-name representation of the

twelve months for this date.

Return the current names for the seven days in

the week for this date.

Reformats this date into the IBM generic date

format.

Return the day of the month for this date.
Return the day of the week for this date.

Return the hours value for this date.

Return the day of the week in this date as an

integer.

Return the day of the week for this date.
Return the milliSeconds value from this date.
Return the minutes value in this date as an

integer.

Return the month in this date as an integer.
Return the seconds in this date as an integer.
Return the year in this date as an integer.

Return the number of milliseconds between
January 1, 1970 00:00:00 and this date.

Return the minutes value from this date.

Return the full name representation of the month

in this date.

Return the month value from this date in numeric

format.

Return the seconds value from this date as a

string.

Return the short name representation of the

month name from this date.
Return the year value in this date.

Change the full-name representation for the

twelve month names for this date.

Restore the full-name representation for the
twelve month names to the default values for this

date.

Change the short-name representation of the

twelve month names for this date.

Restore the short-name representation of the
twelve month names to the default values for this

date.

Page

B14
B14
Fd

H

F B B B BE EEEE EEE EEEE E E

308 Map Development Guide

Table 101. DtpDate method summary (continued)

Method Description Page

set7DayNames () Change the names of the seven days in the week
for this date.

[set7DayNamesToDefault ()| Restore the names of the seven days in the week
to the default values for this date.

toString() Return the date in a specified format or the

default format.

DtpDate()

Parse the date according to the format specified.

Syntax

public DtpDate()
public DtpDate(String dateTimeStr, String format)

public DtpDate(String dateTimeStr, String format, String[] monthNames,
String[] shortMonthNames)

public DtpDate(Tong msSincel970, boolean isLocalTime)

Parameters
dateTimeStr The date-time in the form of a string.
format The date format. See Notes for details.

monthNames ~ An array of strings representing the full 12 month names. If null,
the default value is January, February, March, and so on.

shortMonthNames
An array of strings representing the short month name. If this is

null but monthNames is not null, this value is the first 3 letters of
the full month names, such as Jan, Feb, Mar, Apr, and so on.

msSincel970 The number of milliseconds since January 1, 1970 00:00:00.

isLocalTime Set this to true if the time is already a local time, or to false
otherwise.

Return values

None

Exceptions
DtpDateException - When the constructor encounters parsing errors. This may
occur if the date is not in the specified format.

Notes
The first form of the constructor does not take any parameters. It assigns the
current date on the system to the new DtpDate object. It does not throw
DtpDateException.

Chapter 16. DtpDate class 309

The second and the third forms of the constructor parse the date according to the
specified date format and extract out the day, month, year, hour, minute, and
second values. These can be retrieved and reformatted later with other DtpDate
methods.

For example, a month can be retrieved in one of the following formats:

* The full-name representation (the default format): January, February, March,
April, May, June, July, August, September, October, November, and December

¢ The numeric format: 1-12

* The short-name representation, which consists of the first three letters of each
month name: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

The retrieved data does not depend of the context of the other data.

You can change the full-name and short-name representations of the month in the
following ways:

+ With the[set12MonthNames ()| and [set12ShortMonthNames ()methods respectively

* By passing the representation as a parameter into the third form of the
DtpDate() constructor

The fourth form of the constructor takes the number of milliseconds since January
1, 1970 00:00:00. Many applications represent the date in this manner.

Date format

In the date format, the date always precedes the time. The time is optional. If it is
missing in a date-time string, the hours, minutes, and seconds have a default value
of 00.

The date format uses the following case sensitive key letters:

day

month
year
hours
minutes
seconds

nw 3 355 < = O

“ o

These key letters may be separated by a separator such as “/” or

Examples

The following examples show the DtpDate() constructor creating new date objects
aDate, date2, and date3:
Dtpdate aDate = new DtpDate("5/21/1997 15:23:01", "M/D/Y h:m:s");

DtpDate date2 = new DtpDate("05211997 152301", "MDY hms");
DtpDate date3 = new DtpDate("Jan 10, 1999 10:00:00", "M D, Y h:m:s");

The following date format results in the DtpDateException being thrown:
h:m:s D/M/Y

addDays()

Add the specified number of days to this date.

310 Map Development Guide

Syntax

public DtpDate addDays(int numberOfDays)

Parameters

numberOfDays An integer number. If it is a negative number, the new date will be
the date numberOfDays days before the current instance of DtpDate.

Return values
A new DtpDate object.

Exceptions

DtpDateException

Notes

The addDays () method adds the specified number of days to this date. You can use
the get () methods to retrieve information about the resulting new date. The
DtpDate object returned inherits all the properties of the current object of DtpDate,
such as month names, date format, and so on.

The new date will be adjusted to be a valid date. For example, adding five days to
January 29, 1999 00:00:00 results in February 03, 1999 00:00:00, and adding -30 days
results in December 30, 1998 00:00:00.

Adding days does not affect the time of day.

Examples

try
{

DtpDate toDay = new DtpDate();
DtpDate tomorrow = toDay.addDays(1);
System.out.printIn("Tomorrow is "

+

+ + + + +

catch (
{

tomorrow.getDayOfMonth() + "/"
tomorrow.getNumericMonth() + "/"
tomorrow.getYear() + " "
tomorrow.getHours() + ":"
tomorrow.getMinutes() + ":"
tomorrow.getSeconds());

DtpDateException date_e)

System.out.printin(date_e.getMessage());

See also

laddWeekdays ()} [addYears ()]

addWeekdays()

Add the specified number of weekdays to this date.

Syntax

public DtpDate addWeekdays(int numberOfWeekdays)

Chapter 16. DtpDate class

311

Parameters

numberOfWeekdays
An integer number. If it is a negative number, the new date will be
the date that is numberOfWeekdays weekdays before the date
represented by the current DtpDate object.

Return values
A new DtpDate object.

Exceptions
DtpDateException

Notes

The addWeekdays () method adds the specified number of weekdays to this date.
You can then use the get methods to retrieve the information of the resulting new
date. The DtpDate returned will inherit all the properties of the current instance of
DtpDate, such as month names, date format, and so on.

Only Monday, Tuesday, Wednesday, Thursday, and Friday, or the equivalent
values, are considered to be weekdays. Monday is considered to be the first day of
the week.

Examples

try
{
DtpDate toDay = new DtpDate("8/2/1999 00:00:00", "M/D/Y h:m:s");
DtpDate fiveWeekdaysLater = toDay.addWeekdays(5);
// The new date should be 8/9/1999 00:00:00
System.out.printin("Next month is "

+ fiveWeekdayslLater.getDayOfMonth() + "/"
fivelWeekdaysLater.getNumericMonth() + "/"
fiveWleekdaysLater.getYear() + " "
fivelWeekdaysLater.getHours() + ":"
fivelWeekdaysLater.getMinutes() + ":"
fivelWeekdaysLater.getSeconds());

+ + + + +

catch (DtpDateException date_e)

{
System.out.printin(date_e.getMessage());

}

See also
laddbays ()} [addYears ()]

addYears()

Add the specified number of years to this date.

Syntax

public DtpDate addYears(int numberOfYears)

312 Map Development Guide

Parameters

numberOfYears An integer number. If it is a negative number, the new date will be
the date that is numberOfYears years before the current DtpDate
object.

Return values
A new DtpDate object.

Notes

The addYears() method adds the specified number of years to this date. You can
then use the get() methods to retrieve the information of the resulting new date.
The DtpDate returned inherits all the properties of the current instance of DtpDate,
such as month names, date format, and so on.

Examples

DtpDate toDay = new DtpDate();
DtpDate lastYear= toDay.addYears(-1);
System.out.printIn("Next month is "
lastYear.getDayOfMonth() + "/"
lastYear.getNumericMonth() + "/"
lastYear.getYear() + " "
lastYear.getHours() + ":"
lastYear.getMinutes() + ":"
lastYear.getSeconds());

+

+ + + + +

See also
laddDays ()} [addWeekdays ()]

after()

Check whether this date follows the date passed in as the input parameter.

Syntax
public boolean after(DtpDate date)
Parameters
date The date to compare with this date.

Return values

Return true if this date follows the date passed in, and false if this date precedes
the data passed in.

Exceptions
DtpDateException

Examples

try
{
DtpDate toDay = new DtpDate();
DtpDate tomorrow = yesterday.addDays(-1);
// isAfter should be false.
boolean isAfter = yesterday.after(today)
1

Chapter 16. DtpDate class 313

catch (DtpDateException date e)

{
System.out.printin(date_e.getMessage());

See also
before()

before()

Check whether this date precedes the date passed in as the parameter.

Syntax

public boolean before(DtpDate date)

Parameters
date The date to compare with this date.

Return values
Return true if this date precedes the date passed in, and false if this date follows
the data passed in.

Exceptions
DtpDateException

Examples
try
{
DtpDate toDay = new DtpDate();
DtpDate tomorrow = yesterday.addDays(-1);

// isBefore should be true.
boolean isBefore = yesterday.before(today)

1
catch (DtpDateException date_e)

{
System.out.printin(date_e.getMessage());

See also
after()
calcDays()
Calculate the number of days between this date and another date.
Syntax
public int calcDays(DtpDate date)
Parameters
date The date to compare with this date.

314 Map Development Guide

Return values

An int representing the number of days. This is always a positive number.

Exceptions
DtpDateException

Notes

The calcDays () method calculates the difference in the number of days between
this date and another date. The result is always a whole number of days.

The difference between 19990615 00:30:59 and 19990615 23:59:59 is 0 days, and the
difference between 19990615 23:59:59 and 19990616 00:01:01 is 1 day.

Examples

try
{
DtpDate toDay = new DtpDate();
DtpDate tomorrow = toDay.addDays(1);
int days = today.caldDays (tomorrow);

}
catch (DtpDateException date_e)

{
System.out.printin(date_e.getMessage());

See also
calcWeekdays ()

calcWeekdays()

Calculate the number of weekdays between this date and another date.

Syntax

public int calcWeekdays(DtpDate date)

Parameters

date The date to compare with this date.

Return values

An int representing the number of weekdays. This is always a positive number.

Exceptions
DtpDateException

Notes

The calcWeekdays () method calculates the number of weekdays between this date
and another date. The difference between Friday and Saturday is 0, and between
Friday and Monday is 1. Weekdays are assumed to be Monday through Friday or
the equivalent values. A weekday is not the same as a business day, since a
holiday can fall on a weekday:.

Chapter 16. DtpDate class 315

Examples

try

{

DtpDate toDay = new DtpDate();

DtpDate tomorrow = toDay.addDays(1);

int days = today.caldWeekdays (tomorrow);

catch (DtpDateException date_e)

{
System.out.printin(date_e.getMessage());

See also
calcDays()

get12MonthNames()

Return the current full-name representation of the twelve months for this date.

Syntax
public String[] getl2MonthNames ()

Return values

An array of String objects containing the effective names of the twelve months.

Examples

DtpDate toDay = new DtpDate();
String[] toDay.getl2MonthNames();

See also
[set12MonthNames ()|, [set 12MonthNamesToDefault ()|

get12ShortMonthNames()

Return the current short-name representation of the twelve months for this date.

Syntax

public String[] getl2ShortMonthNames ()

Return values

An array of String objects containing the effective short names of the twelve
months.

Examples

DtpDate toDay = new DtpDate();
String[] toDay.getl2ShortMonthNames();

See also
lset12ShortMonthNames ()] [set12ShortMonthNamesToDefault ()|

get7DayNames()

Return the current names for the seven days in the week for this date.

316 Map Development Guide

Syntax
public String[] get7DayNames ()

Return values

An array of String objects containing the effective names for the seven days of the
week.

Examples

DtpDate toDay = new DtpDate();
String[] toDay.get7DayNames();

See also
lset7DayNames ()|, [set7DayNamesToDefault ()|

getCWDate()

Reformats this date into the IBM generic date format.

Syntax

public String getCWDate()

Return values

A string representing the date in the IBM WebSphere InterChange Server Express
generic business object format. The format is YMD hms. Examples of this format
are:

* 19990615 150701
e 19990831 114122

Notes

The IBM generic date format takes the form:
YYYYMMDD HHMMSS

Examples

DtpDate toDay = new DtpDate();
String genericDate = toDay.getCWDate();

getDayOfMonth()

Return the day of the month for this date.

Syntax

public String getDayOfMonth()

Return values
The string representing the day of the month, such as 01, 20, 30, and so on.

Examples

DtpDate toDay = new DtpDate();
String dayOfMonth = toDay.getDayOfMonth();

Chapter 16. DtpDate class 317

See also
getIntDay()

getDayOfWeek()

Return the day of the week for this date.

Syntax

public String getDayOfWeek()

Return values

A string indicating day of the week, such as Monday, Tuesday, and so on.

Examples

DtpDate toDay = new DtpDate();
String dayOfWeek = toDay.getDayOfWeek();

See also
lget IntDayOfWeek ()]

getHours()
Return the hours value for this date.

Syntax

public String getHours()

Return values
The string representing the hour value which will be between 00 and 23.

Examples

DtpDate toDay = new DtpDate();
String hours = toDay.getHours();

getintDay()

Return the day of the month in this date as an integer.

Syntax

public int getIntDay()

Return values
An int value which is the day of the month.

Examples
DtpDate toDay = new DtpDate();
int day = toDay.getIntDay();

See also
lgetDayOfMonth ()|

318 Map Development Guide

getintDayOfWeek()

Return the day of the week in this date as an integer.

Syntax

public int getIntDayOfWeek()

Return values

An int value which is the day of the week. The possible values are 0 (Monday), 1
(Tuesday), 2 (Wednesday), 3 (Thursday), 4 (Friday), 5 (Saturday), or 6 (Sunday).

Examples

DtpDate toDay
int dayOfWeek

new DtpDate();
toDay.getIntDayOflWeek();

See also
getDayOfWeek ()

getintMilliSeconds()

Return the milliSeconds value from the date.

Syntax

public int getIntMilliSeconds()

Return values

An int value which is the milliseconds The range is 0-999.

Examples

DtpDate toDay
int millisecs

new DtpDate();
toDay.getIntMilliSeconds();

getintMinutes()

Return the minutes value in this date as an integer.

Syntax

public int getIntMinutes()

Return values

An int value which is the minutes. The range is 0-59.

Examples

DtpDate toDay = new DtpDate();
int mins = toDay.getIntMinutes();

See also
getMinutes()

Chapter 16. DtpDate class

319

getintMonth()

Return the month in this date as an integer.

Syntax

public int getIntMonth()

Return values

An int value which is the month. The range is 1 (January) - 12 (December).

Examples

DtpDate toDay = new DtpDate();
int month = toDay.getIntMonth();

See also
lgetMonth ()} [getNumericMonth ()

getintSeconds()

Return the seconds in this date as an integer.

Syntax

public int getIntSeconds()

Return values

An int value which is the seconds. The range is 0-59.

Examples

DtpDate toDay = new DtpDate();
int secs = toDay.getIntSeconds();

See also
lgetSeconds ()}|{getMSSince1970 ()]

getintYear()

Return the year in this date as an integer.

Syntax

public int getIntYear()

Return values

An int value which is the year.

Examples

DtpDate toDay = new DtpDate();
int year = toDay.getIntYear();

See also
getYear()

320 Map Development Guide

getMSSince1970()

Return the number of milliseconds between January 1, 1970 00:00:00 and this date.

Syntax

public Tong getMSSincel970()

Return values

An integer number. It may be negative if this date is before January 1, 1970
00:00:00.

Exceptions
DtpDateException

Examples

try
{
DtpDate toDay = new DtpDate();
long ms = toDay.getMSSincel970();

1
catch (DtpDateException date_e)

{
System.out.printin(date_e.getMessage());

See also
getSeconds ()

getMaxDate()
From a list of business objects, return the latest date as a DtpDate object.
Syntax

public static DtpDate getMaxDate(BusObjArray bolist, String attr,
String dateFormat)

Parameters
boList A list of business objects.
attr The attribute of the business object to use when doing the

comparison. The attribute must be of type Date.

dateFormat This is the date format. See DtpDate ()| for more details. If this is
null, it is assumed that the date is the number of milliseconds since
1970.

Return values
A DtpDate object that contains the max date.

Exceptions

DtpIncompatibleBOTypeException - When the business objects in the list are not the
same business object type.

Chapter 16. DtpDate class 321

DtpUnknownAttributeException - When the specified attribute is not a valid
attribute in the business objects passed in.

DtpUnsupportedAttributeTypeException - When the type of the specified attribute
is not one of the supported attribute types listed above.

All of these exceptions are subclasses of RunTimeEntityException.

Notes

The getMaxDate() method scans through the list of business objects looking for the
business object with the latest date, and returns that date in the form of a DtpDate
object.

Tip: This method is a static method.

In the date evaluation, Jan 1, 2004 000000 is later than Jan 1, 2002 000000, which is
later than Jan 1, 1999 000000

The date information is assumed to be stored in the attribute name passed into the
method. If an object has null date information, it is ignored. If all of the objects
have null date information, null is returned.

Examples

try
{
DtpDate maxDate = DtpDate.getMaxDate(bos, "Start Date",
"D/M/Y h:m:s");
}

catch (RunTimeEntityException err)

{

System.out.printin(err.getMessage());

See also
lgetMinDate()}|getMaxDateBO ()|

getMaxDateBO()

From a list of business objects, return those that contain the latest date.

Syntax

public static BusObj[] getMaxDateBO(BusObj[] boList, String attr,
String dateFormat)

public static BusObj[] getMaxDateBO(BusObjArray bolList, String attr,
String dateFormat)

Parameters
boList A list of business objects. It can be either an array of BusObj or an
instance of BusObjArray. These business objects must be of the
same business object type.
attr The attribute of the business object to compare with. The attribute

must be of type Date.

322 Map Development Guide

dateFormat This is the date format. See [DtpDate ()| for more details. If this is
null, it is assumed that the date is the number of milliseconds since
1970.

Return values
An array of business objects that have the latest date.

Exceptions

All of these three exceptions are subclasses of RunTimeEntityException.

DtpIncompatibleBOTypeException - When the business objects in the list are not the
same business object type.

DtpUnknownAttributeException - When the specified attribute is not a valid
attribute in the business objects passed in.

DtpUnsupportedAttributeTypeException - When the type of the specified attribute
is not one of the supported attribute types listed above.

DtpDateException - When the date format is invalid.

Notes

The getMaxDateB0O() method scans through the list of business objects looking for
the business object with the latest date and returns that business object. If multiple
business objects have the same max date, all objects with that date are returned.

Tip: This method is a static method.

In the evaluation of which date is earliest, Jan 1, 2004 000000 is later than Jan 1,
2002 000000, which is later than Jan 1, 1999 000000.

The date information is assumed to be stored in the attribute name passed into the
method. If an object has null date information, that object is ignored. If all of the
objects have null date information, null is returned.

Examples

try
{
BusObj[] max = DtpDate.getMaxDateBO(bos, "Start Date",
"D/M/Y h:m:s");
}

catch (RunTimeEntityException err)
{
System.out.printin(err.getMessage());
}

See also
lgetMaxDate ()] [getMinDateB0 ()|

getMinDate()

From a list of business objects, return the earliest date as a DtpDate object.

Chapter 16. DtpDate class 323

Syntax

public static DtpDate getMinDate(BusObjArray bolist, String attr,
String dateFormat)

Parameters
boList A list of business objects.
attr The attribute of the business object to use when doing the

comparison. The attribute must be of type Date.

dateFormat The date format. See DtpDate()|for more details. If this is null, it is
assumed that the date is the number of milliseconds since 1970.

Return values
A DtpDate object which contains the earliest date.

Exceptions

DtpIncompatibleBOTypeException - When the business objects in the list are not the
same business object type.

DtpUnknownAttributeException - When the specified attribute is not a valid
attribute in the business objects passed in.

DtpUnsupportedAttributeTypeException - When the type of the specified attribute
is not one of the supported attribute types listed above.

All of these exceptions are subclasses of RunTimeEntityException.

Notes

The getMinDate() method scans through the list of business objects looking for the
business object with the earliest date, and return that date in the form of a DtpDate
object.

Tip: This method is a static method.

In the evaluation of dates, Jan 1, 1999 000000 is earlier than Jan 1, 2002 000000,
which is earlier than Jan 1, 2004 000000.

The date information is assumed to be stored in the attribute name passed into the
method. If an object has null date information, it is ignored. If all objects have null
date information, null is returned.

Examples

try
{
DtpDate minDate = DtpDate.getMinDate(bos, "Start Date",
"D/M/Y h:m:s");
}

catch (RunTimeEntityException err)

{
System.out.printin(err.getMessage());

See also
lgetMaxDate ()} |getMinDateBO ()]

324 Map Development Guide

getMinDateBO()

From a list of business objects, return those that contain the earliest date.

Syntax

public static BusObj[] getMinDateBO(BusObj[] bolList, String attr,
String dateFormat)

public static BusObj[] getMinDateBO(BusObjArray bolList, String attr,
String dateFormat)

Parameters
boList A list of business objects.
attr The attribute of the business object to use when doing the

comparison. The attribute must be of type Date.
dateFormat The date format. See [DtpDate()|for more details. If this is null, it is

assumed that the date is the number of milliseconds since 1970.

Return values
An array of business objects that have the date.

Exceptions

DtpIncompatibleBOTypeException - When the business objects in the list are not the
same business object type.

DtpUnknownAttributeException - When the specified attribute is not a valid
attribute in the business objects passed in.

DtpUnsupportedAttributeTypeException - When the type of the specified attribute
is not one of the supported attribute types listed above.

DtpDateException - When the date format is invalid.

All of these exceptions are subclass of RunTimeEntityException.

Notes

The getMinDateB0O() method scans through the list of business objects looking for
the business object with the earliest date and returns that date in the form of a
DtpDate object.

Tip: This method is a static method.

In the evaluation of the earliest date, Jan 1, 2004 000000 is later than Jan 1, 2002
000000 which is later than Jan 1, 1999 000000.

The date information is assumed to be stored in the attribute name passed into the
method. If an object has null date information, it is ignored. If all of the objects
have null date information, null is returned.

Examples
try

BusObj[] min = DtpDate.getMinDateBO(bos, "Start Date",
"D/M/Y h:m:s");

Chapter 16. DtpDate class 325

}

catch (RunTimeEntityException err)

{

System.out.printin(err.getMessage());

See also
betMinDate()ngtMaxDateBO(H

getMinutes()

Return the minutes value from this date.

Syntax

public String getMinutes()

Return values

The string representing the minutes. The return value is between 00 and 59.

See also
lgetIntMinutes ()|

getMonth()

Return the full name representation of the month in this date.

Syntax

public String getMonth()

Return values

The name of the month, such as January, February, and so on.

See also
lgetIntMonth ()] [getNumericMonth ()} [getShortMonth ()]

getNumericMonth()

Return the month value from this date in numeric format.

Syntax

public String getNumericMonth ()

Return values

The string in the numeric form for the month, such as 01, 02, and so on.

Examples

DtpDate toDay = new DtpDate();
System.out.printIin("Today is "
+ toDay.getDayOfMonth() + "/"
+ toDay.getNumericMonth() + "/"

326 Map Development Guide

toDay.getYear() + " "
toDay.getHours() + ":"
toDay.getMinutes() + ":"
toDay.getSeconds());

+ + + +

See also
lget IntMonth ()| [getMonth ()|

getSeconds()

Return the seconds value from this date as a string.

Syntax

public String getSeconds()

Return values

The string representing the seconds. The return value is between 00 and 59.

Examples

DtpDate toDay = new DtpDate();
System.out.printin("Today is "
+ toDay.getDayOfMonth() + "/"

+ toDay.getNumericMonth() + "/"
+ toDay.getYear() + " "
+ toDay.getHours() + ":"
+ toDay.getMinutes() + ":"
+ toDay.getSeconds());
See also
lgetIntSeconds ()|
getShortMonth()

Return the short name representation of the month name from this date.

Syntax

public String getShortMonth()

Return values
The name of the month in the short format, such as Jan, Feb, and so on.

Examples

DtpDate toDay = new DtpDate();
DtpDate lastYear= toDay.addYears(-1);
System.out.printIn("Next month is "
lastYear.getShortMonth() + " "
lastYear.getDayOfMonth() + ", "
lastYear.getYear() + " "
lastYear.getHours() + ":"
lastYear.getMinutes() + ":"
lastYear.getSeconds());

+

+ + + + +

See also
fgetMonth ()} [set12ShortMonthNames ()} [set 12ShortMonthNamesToDefault ()|

Chapter 16. DtpDate class 327

getYear()

Return the year value in this date.

Syntax

public String getYear()

Return values

The string representing the year. The year value includes the century. Examples are
1998 and 2004.

Examples

DtpDate toDay = new DtpDate();
DtpDate lastYear= toDay.addYears(-1);
System.out.printIn("Next month is "
lastYear.getDayOfMonth() + "/"

+ lastYear.getNumericMonth() + "/"
+ lastYear.getYear() + " "

+ lastYear.getHours() + ":"
+
+

+

lastYear.getMinutes() + ":"
lastYear.getSeconds());

See also
getIntYear()

set12MonthNames()

Change the full-name representation for the twelve month names for this date.

Syntax

public void setl2MonthNames(String[] monthNames,
boolean resetShortMonth)

Parameters

monthNames ~ An array of String containing the twelve month names. The first
element is the first month of the year and the last element is the
last month of the year.

resetShortMonthNames
By default, the short month names are the first three characters of
the full month names. If this flag is set to true, the short month
names will change based on the new full month names. If it is set
to false, this method will not change the short month names.

Return values

None.

Exceptions
DtpDateException - When the month names passed in are not exactly 12 names.

See also
lget12MonthNames () [set 12MonthNamesToDefault ()|

328 Map Development Guide

set12MonthNamesToDefault()

Restore the full-name representation for the twelve month names to the default
values for this date.

Syntax

public void setl2MonthNamesToDefault()

Return values

None.

Notes

The default names are January, February, March, and so on.

See also
lget12MonthNames ()} [set 12MonthNames ()

set12ShortMonthNames()

Change the short-name representation of the twelve month names for this date.

Syntax

public void setl2ShortMonthNames(String[] shortMonths)

Parameters

shortMonths A list of business objects.

Return values
None.

Exceptions

DtpDateException - When the month names passed in are not exactly 12 names.

See also
lget12ShortMonthNames ()] [set12ShortMonthNamesToDefault ()]

set12ShortMonthNamesToDefault()

Restore the short-name representation of the twelve month names to the default
values for this date.

Syntax

public void setl12ShortMonthNamesToDefault()

Return values
None

Notes

The short month names are Jan, Feb, Mar, and so on.

Chapter 16. DtpDate class 329

See also
[get12ShortMonthNames ()] [set12ShortMonthNames ()|

set7DayNames()

Change the names of the seven days in the week for this date.

Syntax
public void set7DayNames(String[] dayNames)
Parameters

dayNames An array of strings containing the seven days in a week. The first
element should be the equivalent of Monday.

Return values

None.

Exceptions
DtpDateException - When exactly seven days are not specified.

See also
lget7DayNames ()| [set7DayNamesToDefault ()|

set7DayNamesToDefault()

Restore the names of the seven days in the week to the default values for this date.

Syntax

public void set7DayNamesToDefault()

Return values

None.

Notes

The default names are Monday, Tuesday, Wednesday, and so on.

See also
lget7DayNames ()], [set7DayNames ()|

toString()

Return the date in a specified format or the default format.

Syntax

public String toString()
public String toString(String format)
public String toString(String format boolean twelveHr)

330 Map Development Guide

Parameters

format The date format. See DtpDate ()|for more details.
twelveHr A boolean that, if set to true, specifies that the method returns

12-hour time instead of 24-hour time.

Return values
A string containing the date information, such as:
19990930 053029 PM

Regardless of the format of the month position, the output string is always a 2
character integer representation (that is, 01 for January, 12 for December, and so
forth).

Exceptions
DtpDateException - When the date format is invalid.

Examples

try
{
DtpDate toDay
String date =

= new DtpDate();
toDay.toString("Y/M/D h:m:s");

catch (DtpDateException date_e)

System.out.printin(date_e.getMessage());
1

Chapter 16. DtpDate class

331

332 Map Development Guide

Chapter 17. DtpMapService class

A submap is a map that you call from within another map. The DtpMapService
class provides a method for running submaps. [Table 102 summarizes the method
in the DtpMapService class.

Table 102. DipMapService method summary

Method Description Page
runMap () Runs the map you specify. 333

runMap()

Runs the map you specify.

Syntax

BusObj[] runMap(String mapName, String mapType,
BusObj[] srcBOs, cwExecCtx)

Parameters
mapName The name of the map to run.

mapType The type of the map to run. Use the following constant only, which
is defined in the DtpMapService class: CWMAPTYPE — an IBM
WebSphere InterChange Server Express map

srcBOs An array of business objects that are the source business objects for
mapName.
cwExecCtx A variable that contains the execution context for the current map.

This variable is defined in the code thatMap Designer Express
generates for every map.

Return values

Returns an array of business objects that are the destination business objects of
mapName.

Exceptions
MapFailureException — If an error occurs while attempting to run mapName.

MapNotFoundException — If mapName is not found in the repository.

CxMissingIDException — SeemaintainSimpleldentityRelationship()}

Notes

Use the runMap () method to call a submap from within another map. For more
information on calling submaps, see ["Transforming with a submap” on page 41}

Examples

The following code calls a submap to map an application-specific Address business
object to the generic Address business object:

© Copyright IBM Corp. 2003 333

// Create the BusObj Array
BusObj[] rSrcBOs = new BusObj[1];
rSrcB0s[0] = MyCustomerObj.MyAddressObj[0];

// Make the call to the map service

OutObjName = DtpMapService.runMap(MyAppAddressToGenAddress,
DtpMapService.CWMAPTYPE, rSrcBOs,cwExecCtx) ;

See also

[“Transforming with a submap” on page 41|

334 Map Development Guide

Chapter 18. DtpSplitString class

The DtpSplitString class provides a way to split or parse a string into tokens and
retrieve the results. This class is useful for manipulating formatted strings such as
composite keys, dates, or telephone numbers.

DtpSplitString is similar to the StringTokenizer class in the java.util package.
However, when working with IBM WebSphere InterChange Server Express maps,
DtpSplitString provides these advantages over StringTokenizer:

The tokens in a DtpSp1itString object are indexed. This makes it easy to extract

the specific tokens you are interested in. For example, if you parse a telephone
number (such as 650-555-1111) into three tokens using the dash (-) as a
delimiter, you can extract the area code by referencing element 0 and build the
rest of the telephone number by concatenating element 1 and element 2.

A DtpSplitString object allows bidirectional scrolling of the tokens. As you

navigate the elements using nextElement() and prevElement() all the elements

remain available.

able 103] summarizes the methods in the DtpSplitString class.
Table 103. DtpSplitString method summary

Method
[tpSp1itString ()|

elementAt ()

firstElement ()

lgetElementCount ()|

etEnumeration ()

lastElement ()

nextElement ()

prevETement ()

0)

=
D
w
D
+

Description

Page

Constructs a new instance of DtpSp1litString and

parses a string into tokens.

Returns an element in the DtpSp1itString object

at the position you specify.

Returns the element in the DtpSp1itString object

at position zero.

Returns an integer containing the total number
of elements.

Returns an Enumeration of String objects where
each String is one of the parsed tokens.
Returns the last element in the DtpSplitString
object.

Returns the next element in the DtpSplitString
object.

Returns the previous element in the
DtpSplitString object.

Resets the current position number in the
DtpSplitString object to zero.

W

DtpSplitString()

Constructs a new instance of DtpSp1itString and parses a string into tokens.

Syntax

DtpSplitString(String str, String delimiters)
Parameters

str The string to parse.

© Copyright IBM Corp. 2003

335

delimiters A String containing the delimiters used in str. There can be more
than one delimiter, but each delimiter can be only one character in
length.

Notes

DtpSp1itString() parses str into tokens, called elements, based on the specified
delimiters. After calling DtpSp1itString(), you can call any of the DtpSp1itString
class methods to select and retrieve specific elements.

Examples
DtpSplitString MyString = new DtpSplitString("This,is a test",", ");
elementAt()
Returns an element in the DtpSp1itString object at the position you specify.
Syntax
String elementAt(int nth)
Parameters

nth The position of the element to extract from the DtpSplitString
object. The position of the first element is zero.

Return values

Returns a String containing the element at the nth position.

Exceptions
DtpNoETementAtPositionException — If you specify an invalid position for nth.

Notes

Elements are numbered from first to last beginning with zero. For example, if the
delimiters are commas and spaces, then the element at position two in the string,
"This,is a test" is "a".

The elementAt () method returns the element at the specified position but does not
change the current element position.

Examples

// Create a DtpSplitString object
DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

//This call returns "a"
public String MyString.elementAt(2);

See also
lgetETementCount ()|

firstElement()

Returns the element in the DtpSp1itString object at position zero.

336 Map Development Guide

Syntax

String firstElement()

Return values

Returns a String containing the element at position zero.

Exceptions

DtpNoETlementAtPositionException — If there are no elements.

Notes

Elements in the DtpSp1itString object are numbered from first to last beginning

with zero. Therefore, the first element is at position zero.

The firstElement () method returns the element at position zero but does not
change the current element position.

Examples

// Create a DtpSplitString object
DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns the first element containing "This"
String anElement = MyString.firstElement();

See also
TastElement ()

getElementCount()

Returns the total number of elements in the DtpSp1itString object.

Syntax

int getElementCount()

Return values

Returns an integer containing the total number of elements.

Notes

Elements are numbered from first to last beginning with zero. If
getElementCount () returns 6, the highest-numbered element is 5.

Examples

// Create a DtpSplitString object
DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns the integer 4
String numElements = MyString.getElementCount();

See also
[firstETement ()] [1astETement ()]

Chapter 18. DtpSplitString class

337

getEnumeration()

Returns an Enumeration of String objects where each String is one of the parsed
tokens.

Syntax

Enumeration getEnumeration()

Return values

Returns an Enumeration object.

Notes

The getEnumeration() method provides another way to process the parsed tokens
in a DtpSp1itString object. For more information on working with Enumeration
objects, see the Java.Util package.

lastElement()
Returns the last element in the DtpSplitString object.

Syntax

String TastElement ()

Return values

Returns a String containing the last element.

Exceptions

DtpNoETlementAtPositionException — If there are no elements.

Notes

Elements are numbered from first to last beginning with zero. The last element is
the highest-numbered element. The position number of the last element is
equivalent to getElementCount()-1.

The TastETement () method returns the last element but does not change the
current element position.

Examples

// Create a DtpSplitString object
DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns the last element, containing "test"
String anElement = MyString.lastElement();

See also
[firstElement ()] [getE1ementCount ()|

nextElement()

Returns the next element in the DtpSpTitString object.

338 Map Development Guide

Syntax

String nextElement ()

Return values

Returns a String containing the next element.

Exceptions

Notes

DtpNoETlementAtPositionException — If there is no next element.

The first time you call nextElement (), it returns the element at position zero. In
subsequent method calls, nextElement () returns the element at position one, two,
three, and so on. You can use nextElement (), along with [prevElement ()| to

navigate the elements (tokens) in a DtpSp1itString object.

Examples

// Create a DtpSplitString object
DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns element 0 containing "This"
String firstElement = MyString.nextElement()

// This call returns element 1 containing "is"
String secondElement = MyString.nextElement()

See also

prevElement ()| [reset ()]

prevElement()

Returns the previous element in the DtpSplitString object.

Syntax

String prevElement ()

Return values

Returns a String containing the previous element.

Exceptions

Notes

DtpNoElementAtPositionException — If there is no previous element.

You can use prevElement (), along with |nextElement ()} to navigate the elements

(tokens) in a DtpSp1itString object. The first time you call nextElement (), the
element position is zero. Subsequent calls to nextElement ()increment the position
by one. The prevElement () method returns the previous element and decrements
the element position by one.

Chapter 18. DtpSplitString class 339

Examples

// Create a DtpSplitString object
DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns element 0 containing "This"
String firstElement = MyString.nextElement()

// This call returns element 1 containing "is"
String secondElement = MyString.nextElement()

// This call returns element 0 containing "This"
String anotherElement = MyString.prevElement ()

See also

nextElement ()

reset()
Resets the current position number in the DtpSp1itString object to zero.

Syntax

void reset()

Return values
None.

Notes
The default element position is zero. Each time you call |nextE1 ement ()l the
element position increments by one. The prevElement ()| method returns the
previous element and decrements the element position by one. You can use
reset() to reset the current position back to zero.

Examples

// Create a DtpSplitString object
DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns element 0 containing "This"
String firstElement = MyString.nextElement ()

// This call returns element 1 containing "is"
String secondElement = MyString.nextElement()

// Reset the position to zero
MyString.reset()

// This call returns element 0 containing "This"
String firstElement = MyString.nextElement()

See also
IhextElement ()| [prevElement ()

340 Map Development Guide

Chapter 19. DtpUtils class

The DtpUtiTs class performs several general-purpose operations.

able 104 summarizes the methods of the DtpUtils class.
Table 104. DtpUtils method summary

Method Description Page

Pads the string with the specified character. |341
Pads the string with the specified character. |341
Replaces all occurrences of a pattern within |34
a string with another pattern.

padRight ()
stringReplace()

—_

Truncates this number. 343]
padLeft()

Pads the string with the specified character.
Syntax

public static String padLeft(String src, char padWith, int totallen)
Parameters

src The string to be padded.

padWith The character used in padding.

totallen The new size of the string, a positive number. If the value is 0,

smaller than the size of the original string, or a negative number,
the original string is returned.

Return values
A new padded string.

Notes
Pads the string with a specified character.
Examples
The following call returns 0000012345:
padLeft("12345", '0', 10);
The following call returns 123456:
padLeft("123456", '0', 5);
padRight()
Pads the string with the specified character.
Syntax

public static String padLeft(String src, char padWith, int totallen)

© Copyright IBM Corp. 2003 341

Parameters

src The string to be padded.
padWith The character used in padding.
totallen The new size of the string, a positive number. If the value is 0,

smaller than the size of the original string, or a negative number,
the original string is returned.

Return values
A new padded string.

Notes

Pads the string with a specified character.

Examples
The following call returns 1234500000:
padRight ("12345", '0', 10);

The following call returns 123456:
padRight("123456", '0', 5);

stringReplace()

Replaces all occurrences of a pattern within a string with another pattern.

Syntax

public static String stringReplace(String src, String oldpattern,
String newPattern)

Parameters

src The string to change.
oldPattern The character used in padding.

newPattern The string pattern to use in replacement.

Return values

A new string with the new pattern.

Notes

The method replaces all occurrences of the value specified by oldPattern with the
value specified by newPattern. For single character replacement, use the replace()
in the Java String class. If oldPattern is not found, the original, unmodified string
is returned.

Examples
The following results in youoyou and dad.
stringReplace("momomom and dad", "mom", "you");

342 Map Development Guide

truncate()

Truncates this number.

Syntax

public static double truncate(Object aNumber, int precision)
throws DtpIncompatibleFormatException

public static double truncate(float aNumber, int precision)
public static double truncate(double aNumber, int precision)

public static int truncate(Object aNumber)
throws DtpIncompatibleFormatException

public static int truncate(float aNumber)
public static int truncate(double aNumber)

Parameters
aNumber A number. The valid types are String, float, and doubTe.
precision The number of digits to the right of the decimal to be removed.

Return values
A double or int number.

Notes

This method removes digits from this number, starting from the right.

The first three forms of the methods truncate the number by removing the digits to
the right of the decimal place, starting from the right. If the input number is an
integer, it will not get truncated. The number of type Object must be either String,
Double or Float.

The last three forms of the methods truncate the number by removing all digits to
the right of the decimal and return the int value.

Examples

The following returns 123.45:
truncate("123.4567", 2);

The following returns 123:
truncate(123.456, 4)

Chapter 19. DtpUtils class 343

344 Map Development Guide

Chapter 20. IdentityRelationship class

The methods documented in this chapter operate on objects of the
IdentityRelationship class. These objects represent instances of identity
relationships. The IdentityRelationship class provides additional functionality
needed when accessing the repository database. It combines a set of existing APIs
into methods that provide ease of use for the map developer.

The source code for the methods in the IdentityRelationship class is provided
and can be used as is in the IBM WebSphere InterChange Server Express
environment, or can be customized to fit other environments.

able 105 lists the methods of the IdentityRelationship class.
Table 105. IdentityRelationship method summary

Method Description Page
addMyChildren () Adds the specified child instances to a
parent/child relationship for an identity
relationship.
[deteteMyChildren()] Removes the specified child instances to a

parent/child relationship for an identity
relationship belonging to the specified parent.

[foreignkeyLookup ()] Performs a lookup in a foreign relationship 348
table based on the foreign key of the source
business object, failing to find a relationship
instance if the foreign key does not exist in the
foreign relationship table.

[foreignkeyxref ()] Performs a lookup in the relationship table in
the relationship database based on the foreign
key of the source business object, adding a new
relationship instance in the foreign relationship
table if the foreign key does not exist.

fmaintainChildVerb ()| Sets the child business object verb based on the
map execution context and the verb of the
parent business object.

ﬂ

fnaintainCompositeRelationship()| Maintains a composite identity relationship
from within the parent map.

fmaintainSimpleldentityRelationship()| Maintains a simple identity relationship from
within either a parent or child map.

[updateMyChildren()] Adds and deletes child instances in a specified

parent/child relationship of an identity
relationship as necessary.

Note: All methods in the IdentityRelationship class are declared as static. You
can call any of the methods in this class from an existing relationship
instance or by referencing the IdentityRelationship class:
IdentityRelationship.method, where method is the name of a method in

Table 105

addMyChildren()

Adds the specified child instances to a parent/child relationship for an identity
relationship.

© Copyright IBM Corp. 2003 345

Syntax

public static void addMyChildren(String parentChildRelDefName,
String parentParticpntDefName, BusObj parentBusObj,
String childParticpntDefName, Object childBusObjlList,
CxExecutionContext map_ctx)

Parameters

parentChildRelDefName
The name of the parent/child relationship definition.

parentParticpntDefName
The name of the participant definition that represents the parent
business object in the parent/child relationship.

parentBusObj The variable that contains the parent business object.

childParticpntDefName
The name of the participant definition that represents the child
business object in the parent/child relationship.

childBusObjList
The variable that contains child business object or objects to be
added to the relationship. This parameter can be either a single
generic business object (BusObj) or an array of generic business
objects (BusObjArray).

map_ctx The map execution context. To pass the map execution context, use
the cwExecCtx variable, which Map Designer Express defines for
every map.

Return values
None.

Exceptions

ReTationshipRuntimeException

Notes

The addMyChildren() method adds the child instances in childBusObjList to the
relationship tables of the parentChildRelDefName relationship definition. This
method is useful in a custom relationship involving a parent business object with a
unique key. When a parent business object has the addition of new child objects,
use addMyChildren() to compare the after-image (in parentBus0bj) with the
before-image (information in the relationship tables) to determine which child
objects in the after-image are new. For each new child object, addMyChildren()
adds a child instance to the relationship tables for the parent and child participants
(parentParticpntDefName and childParticpntDefName, respectively). If the parent
business object does not exist in the relationship table, addMyChildren() inserts a
relationship instance for this parent object.

The addMyChildren() method requires that a parent/child relationship be defined
with Relationship Designer Express. For information on how to create this kind of
relationship, see [“Creating the parent/child relationship definition” on page 208}.

346 Map Development Guide

See also
[deleteMyChildren()| lupdateMyChildren()|

[‘Managing child instances” on page 207.

deleteMyChildren()

Removes the specified child instances to a parent/child relationship for an identity
relationship belonging to the specified parent.

Syntax

void deleteMyChildren(String parentChildRelDefName,
String parentParticpntDefName, BusObj parentBusObj,
String childParticpntDefName, Object childBusObjList,
CxExecutionContext map_ctx)

void deleteMyChildren(String parentChildRefDefName,
String parentParticpntDefName, BusObj parentBusObj,
String childParticpntDefName, CxExecutionContext map ctx)

Parameters

parentChildRelDefName
The name of the parent/child relationship definition.

parentParticpntDefName
The name of the participant definition that represents the parent
business object in the parent/child relationship.

parentBusObj The variable that contains the parent business object.

childParticpntDefName
The name of the participant definition that represents the child
business object in the parent/child relationship.

childBusObjList
The variable that contains child business object or objects to be
deleted from the relationship. This parameter can be either a single
generic business object (BusObj) or an array of generic business
objects (BusObjArray).

map_ctx The map execution context. To pass the map execution context, use
the cwExecCtx variable, which Map Designer Express defines for
every map.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The deleteMyChildren() method deletes child instances from a parent/child
parentChildRelDefName relationship definition. It supports the following forms:

* The first form of the method removes from the relationship tables for the parent
and child participants those child instances that correspond to each of the child

Chapter 20. IdentityRelationship class 347

business objects in childBusObjList. It locates a child instance to delete by
matching the child object’s value and name, as well as the parent object’s value
and name.

* The second form of the method removes from relationship tables for the parent
and child participants all child instances for the parentBusObj parent object. It
locates the child instance to delete by matching the parent object’s value and
name.

This method is useful in a custom relationship involving a parent business object
with a unique key. When a parent business object has removed child objects, use
deleteMyChildren() to compare the after-image (in parentBusObj) with the
before-image (information in the relationship tables) to determine which child
objects in the after-image have been removed. For each child object,
deleteMyChildren() removes the corresponding child instance from the
relationship tables for the parent and child participants (parentParticpntDefName
and childParticpntDefName, respectively).

The deleteMyChildren() method requires that a parent/child relationship be
defined with Relationship Designer Express. For information on how to create this
kind of relationship, see [‘Creating the parent/child relationship definition” on|

See also
laddMyChiTdren ()] lupdateMyChildren ()]

[“Managing child instances” on page 207]

foreignKeyLookup()

Performs a lookup in a foreign relationship table based on the foreign key of the
source business object, failing to find a relationship instance if the foreign key does
not exist in the foreign relationship table.

Syntax

public static void foreignKeyLookup(String relDefName,
String appParticpntDefName, BusObj

appSpecificBusObj, String appForeignAttr,
BusObj genericBusObj,

String genForeignAttr, CwExecutionContext map ctx)

Parameters

relDefName The name of the simple identity relationship that manages the
foreign business object.

appParticpntDefName
The name of the participant definition that represents the
application-specific business object in the simple identity
relationship. The type of this participant is the foreign
application-specific business object.

appSpecificBusObj

The variable that contains the application-specific business object,
which contains the reference to the foreign business object.

348 Map Development Guide

appForeignAttr
The name of the attribute in the application-specific business object
that contains a key value for the foreign business object.

genericBusObj The variable that contains the generic business object to or from
which the appSpecificObject is being mapped.

genforeignAttr
The name of the attribute name in the generic business object that
contains the generic reference to a foreign business object.

map_ctx The map execution context. To pass the map execution context, use
the cwExecCtx variable, which Map Designer Express defines for
every map.

Return values

None.

Exceptions
RelationshipRuntimeException

Notes
The foreignKeyLookup() method performs a foreign key lookup on the relationship
table for the AppParticpntDefName participant; that is, it checks the foreign
relationship table for a relationship instance that matches the value in the foreign
key of the appSpecificBusObj business object. If this lookup fails, the
foreignKeyLookup () method just sets the foreign key in the destination business
object to null; it does nof insert a row in the foreign relationship table (as
the foreignKeyXref() method does). This method can be used in both inbound
and outbound maps.

Examples

On the Clarify_PartRequest to Requisition object, the VendorId field is a foreign
key lookup. This is because Purchasing does not call Vendor Wrapper. We do not
use the foreignKeyXref() method here because we do not want to insert a row if
the lookup fails.

if (ObjCustomerRole.isNull("RolelId"))

{

TogError(5003, "OrderAssociatedCustomers.Roleld");

// throw new MapFailureException("OrderAssociatedCustomers.Roleld
// is null");

}

try

{

IdentityRelationship.foreignKeyLookup("Customer", "SAPCust",
O0bjSAP_OrderPartners, "PartnerId", ObjCustomerRole,
"RolelId", cwExecCtx);

}

catch (RelationshipRuntimeException re)
{
TogWarning(re.getMessage());
if (ObjSAP_OrderPartners.get("PartnerId") == null)

{
TogError(5007, "SAP_OrderPartners.PartnerId",

Chapter 20. IdentityRelationship class 349

"OrderAssociatedCustomers.Roleld", "Customer", "SAPCust",
strinitiator);
throw new MapFailureException("ForeignKeyLookup failed");

}

See also
[foreignKeyXref ()|

[“Performing foreign key lookups” on page 216|

foreignKeyXref()

Performs a lookup in the relationship table in the relationship database based on
the foreign key of the source business object, adding a new relationship instance in
the foreign relationship table if the foreign key does not exist.

Syntax

public static void foreignKeyXref(String relDefName,
String appParticpntDefName, String genParticpntDefName,
BusObj appSpecificBusObj, String appForeignAttr,
BusObj genericBusObj, String genForeignAttr,
CxExecutionContext map_ctx)

Parameters

relDefName The name of the simple identity relationship name that manages
the foreign business object.

appParticpntDefName
The name of the participant definition for the application-specific
business object in the simple identity relationship. The type of this
participant is the foreign application-specific business object.

genParticpntDefName
The name of the participant definition for the generic business
object in the simple identity relationship. The type of this
participant is the foreign generic business object.

appSpecificBusbj
The application-specific business object that contains the reference
to the foreign object.

appforeignAttr

The name of the attribute in the application-specific business object
that contains a key value for the foreign business object.

genericObject The generic business object to or from which the
appSpecificObject is being mapped.

genforeignAttr
The name of the attribute name in the generic business object that
contains the generic reference to a foreign business object.

map_ctx The map execution context. To pass the map execution context, use
the cwExecCtx variable, which Map Designer Express defines for
every map.

Return values
None.

350 Map Development Guide

Exceptions

ReTationshipRuntimeException

Notes

The foreignkeyXref() method performs a foreign key lookup on the relationship
table for the AppParticpntDefName participant; that is, it checks the foreign
relationship table for a relationship instance that matches the value in the foreign
key of the appSpecificBusObj business object. If this lookup fails, the
foreignKeyXref () method adds a new relationship instance for the
application-specific key to the foreign relationship table; it does not just set the
foreign key in the destination business object to null (as the foreignKeyLookup()
method does). This method can be used in both inbound and outbound maps.

The foreignKeyXref() method performs the following validations on arguments
that are passed in:

* Validate the name of the relDefName relationship definition.

* Validate the name of the particpntDefName participant definition for the
application-specific business object.

* Make sure that the relDefName relationship is an identity relationship. In
addition, the participant definition in relDefName that represents the generic
business object must be defined as IBM WebSphere InterChange Server
Express-managed. For more information on how to specify these settings, see
[“Defining identity relationships” on page 174].

If any of these validations fails, foreignKeyXref() throws the
RelationshipRuntimeException exception.

Once the arguments are validated, the action that foreignKeyXref () takes depends
on the following information:

* The calling context—in the map execution context, passed in as part of the
map_ctx argument (cwExecCtx)
¢ The verb—in the source business object

— Application-specific business object (appSpecificBus0Obj) for calling contexts
EVENT DELIVERY (or ACCESS_REQUEST) and SERVICE CALL_RESPONSE

— Generic business object (genericBusObj) for calling contexts
SERVICE_CALL_REQUEST and ACCESS_RESPONSE

The foreignKeyXref () method handles all of the basic adding of relationship
instances in the foreign relationship table for the appropriate combination of
calling context and verb. For more information on the actions that
foreignkeyXref() takes, seel”Usin% the Foreign Key Cross-Reference functionl
block” on page 217}. [Table 89 and [Table 90 provide the actions for each of the

calling contexts.

Examples

On the Clarify_SFAQuote to Order map, the CustomerlId field is a foreign key
lookup. This is because Sales Order Processing Collab calls Customer Wrapper.

if (ObjSAP_OrderLineltem.get("SAP_OrderLineObjectIdentifier[0]")
1= null)

{
if (ObjSAP_OrderLineltem.getString(
"SAP_OrderLineObjectIdentifier[0].0bjectQualifier").equals("002"))

{
BusObj temp = ObjSAP_OrderLineltem.getBusObj(

Chapter 20. IdentityRelationship class 351

"SAP_OrderLineObjectIdentifier[0]");
if (temp.isNull("ItemId"))

{
TogWarning (5003,
"SAP_OrderLineItem.SAP_OrderLineObjectIdentifier[1].ItemId");
}
else
{
try
{
IdentityRelationship.foreignKeyXref (
n Item" s
"SAPMbasc",
"CWItba",
temp,
"TtemId",
ObjOrderLineltem,
"TtemId",

cwExecCtx) ;

}

catch (RelationshipRuntimeException re)
{
TogWarning(re.getMessage());
}

if (ObjOrderLineltem.get("ItemId") == null)
{
logError(5009, "OrderLineltem.ItemId",
"SAP_OrderLineItem.SAP_OrderLineObjectIdentifier.ItemId",
n Itemll S
"SAPMbasc",
strinitiator);

throw new MapFailureException("ForeignKeyXref() failed");
}
}
}
}

See also
[foreignKeyLookup ()|

[“Performing foreign key lookups” on page 216|

maintainChildVerb()

Sets the child business object verb based on the map execution context and the
verb of the parent business object.

Syntax

public static void maintainChildVerb (String relDefName,
String appSpecificParticpntName,
String genericParticpntName,
BusObj appSpecificObj,
String appSpecificChildobj,
BusObj genericObj,
String genericChildObj,
CxExecutionContext map_ctx,
boolean to_Retrieve,
boolean is_Composite)

352 Map Development Guide

Parameters

relDefName The name of the identity relationship name that manages the child
business object.

appSpecificParticpntName
The name of the application-specific participant definition.

genericParticpntName

The name of the generic participant definition.
appSpecificObj

The application-specific object that contains the child object.

appSpecificChildObj
The name of the application child business object.

genericObj The generic business object to or from which the
appSpecificObject is being mapped.
genericChildObj
The name of the generic child business object.

ctx The execution context.

to_Retrieve The flag for the SERVICE_CALL_RESPONSE logic. When the
condition is true, update the verbs of the child business objects. If
false, do nothing.

isComposite The flag that indicates whether the child participant uses
composite keys. If the condition is true, keys are used; if false, keys
are not used.

Return values
None.

Exceptions

RelationshipRuntimeException—see the Notes section for more information on
when this exception is thrown

ClassCastException

Notes

The maintainChildVerb() method performs the following validations on arguments
that are passed in:

* Validate the name of the relDefName relationship definition.

* Validate the name of the participant definitions for the application-specific
business object (appSpecificParticpntName) and the generic business object
(genericParticpntName).

* Make sure that the application-specific (appSpecificObject) and generic business
objects (genericObject) are not null.

* Make sure that the relDefName relationship is an identity relationship. In
addition, the participant definition in relDefName that represents the generic
business object must be defined as IBM WebSphere InterChange Server
Express-managed. For more information on how to specify these settings, see
[“Defining identity relationships” on page 174}

Chapter 20. IdentityRelationship class 353

If any of these validations fails, maintainChildVerb() throws the
RelationshipRuntimeException exception.

Once the arguments are validated, the action that maintainChildVerb() takes
depends on the following information:

* The calling context—in the map execution context, passed in as part of the
map_ctx argument (cwExecCtx)

¢ The verb—in the source business object

— Application-specific business object (appSpecificObj) for calling contexts
EVENT_DELIVERY (or ACCESS_REQUEST) and SERVICE CALL_RESPONSE

— Generic business object (generic0bj) for calling context SERVICE_CALL_REQUEST

For more information on the actions that maintainChildVerb() takes, see
[“Determining the child verb setting” on page 213} [Table 84| through [Table 8
provide the actions for each of the calling contexts.

You call this method in the transformation step for the child attribute of a parent
object. This child object can participant in either

* In the transformation step for the key attribute of a submap that transforms
child business objects if the child business objects are related using a unique key.

You usually use maintainChildVerb() to set the verb of a child object that
participates in a composite identity relationship
(maintainCompositeRelationship()). However, you can also call it to set the verb
of a child object that participates in a simple identity relationship
(maintainSimpleldentityRelationship()).

Examples

For an example involving maintainChildVerb(), see|’Customizing map rules for a|
fcomposite identity relationship” on page 204

See also
maintainCompositeRelationship()||maintainSimpleldentityRelationship()|

[“Setting the source child verb” on page 213|

maintainCompositeRelationship()

Maintains a composite identity relationship from within the parent map.

Syntax

public static void maintainCompositeRelationship(String relDefName,
String particpntDefName, BusObj appSpecificBusObj,
Object genericBusObjList, CxExecutionContext map ctx)

Parameters
relDefName The name of the composite identity relationship (as defined in
Relationship Designer Express) in which the parent attribute
participates.
particpntDefName

The name of the participant that includes the composite key. This
participant is always application-specific.

354 Map Development Guide

Return values

appSpecificBusObj

The variable that contains the application-specific business object
used in this map. This business object is the parent business object.

genericBusObjList

map_ctx

None.

Exceptions

ReTationshipRuntimeException

Notes

The variable that contains the generic business object or objects
used in this map, each generic business object is a contained child
business object of the generic parent object. This parameter can be
either a single generic business object (BusObj) or an array of
generic business objects (BusObjArray).

The map execution context. To pass the map execution context, use
the cwExecCtx variable, which Map Designer Express defines for
every map.

CxMissingIDException

If a participant does not exist in the relationship tables during a
map execution with a verb of Retrieve and an calling context of
SERVICE_CALL_REQUEST. The connector sends a “service call request
failed” message to the collaboration without sending the business
object to the application.

The maintainCompositeRelationship() method maintains the relationship table
associated with the particpntDefName participant of the relDefName composite
identity relationship. This method maintains a relationship whose participant uses
keys from multiple business objects at different levels (a composite key).

Note: The maintainCompositeRelationship() method cannot handle the case where
the child’s composite key depends on its grandparents. For more
information, see [“Actions of General/APIs/Identity Relationship /Maintain|

[Composite Relationship” on page 203

This method iterates through all the child business objects in the appSpecificObj
parent business object, maintaining the relationship instances in the partDefName
participant’s relationship table. The method obtains the relationship instance IDs
from the array of generic business objects that it receives (generic0bjs). For each
child instance, maintainCompositeRelationship() calls the
maintainSimpleldentityRelationship() method to perform the actual
relationship-table management. The action that
maintainSimpleldentityRelationship() takes depends on the following

information:

¢ The calling context—in the map execution context, passed in as part of the
map_ctx argument (cwExecCtx)

* The verb—in the source business object, which is either:

— Application-specific business object (appSpecificBusObj) for calling contexts
EVENT _DELIVERY (or ACCESS_REQUEST) and SERVICE_CALL_RESPONSE

— Generic business object (one element of the genericBusObjlList array) for
calling contexts SERVICE_CALL_REQUEST and ACCESS_RESPONSE

Chapter 20. IdentityRelationship class 355

For more information on the actions that maintainSimpleldentityRelationship()
takes, see [”Accessing identity relationship tables” on page 191} [Table 74| through
[Table 78 provide the actions for each of the calling contexts.

Use maintainCompositeRelationship() in conjunction with the

maintainChildVerb() and updateMyChildren() methods to maintain a composite
relationship. For more information, see [“Customizing map rules for a composite]
lidentity relationship” on page 204}

Examples

// This is an example of a code fragment in a parent map. It maintains
// the relationship table for all instances of a child object type for
// this application-specific parent object.

BusObjArray secondLevel2 =
(BusObjArray)ObjFirstLevelBusObj2.get ("MultiCardChild");

IdentityRelationship.maintainCompositeRelationship(
"CmposRel",
"AppSpPrt",
ObjFirstLevelBusObj2,
secondLevel?2,
cwExecCtx) ;

IdentityRelationship.updateMyChildren(
"PCRel",
"Parent",
ObjFirstLevelBusObj2,
"Child",
"MultiCardChild",
"CmposRel",
"AppSpPrt",
cwExecCtx) ;

For more examples involving maintainCompositeRelationship(), see
fmap rules for a composite identity relationship” on page 204}

See also
[updateMyChildren()| maintainChildVerb ()} maintainSimpleldentityRelationship()|

[‘Using composite identity relationships” on page 202|

maintainSimpleldentityRelationship()

Maintains a simple identity relationship from within either a parent or child map.

Syntax

public static void maintainSimpleldentityRelationship(
String relDefName, String particpntDefName,
BusObj appSpecificBusObj, BusObj genericBusObj,
CxExecutionContext map_ctx)

Parameters

relDefName The name of the simple identity relationship (as defined in
Relationship Designer Express) in which this attribute participates.

356 Map Development Guide

particpntDefName
The name of the participant definition that represents the
application-specific business object.

appSpecificBusObj
The variable that contains the application-specific business object
used in this map.

genericBusObj The variable that contains the generic business object used in this
map.

map_ctx The map execution context. To pass the map execution context, use
the cwExecCtx variable, which Map Designer Express defines for
every map.

Return values

None.

Exceptions

Notes

RelationshipRuntimeException
see the Notes section for more information on when this exception
is thrown.

CxMissingIDException
If a participant does not exist in the relationship tables during a
map execution with a verb of Retrieve and an calling context of
SERVICE_CALL_REQUEST. The connector sends a “service call request
failed” message to the collaboration without sending the business
object to the application.

The maintainSimpleldentityRelationship() method maintains the relationship
table associated with the particpntDefName participant of the relDefName simple
identity relationship. This method maintains a relationship whose participant uses
unique keys from multiple business objects at the same level.

The maintainSimpleldentityRelationship() method performs the following
validations on arguments that are passed in:

* Validate the name of the relDefName relationship definition.

* Validate the name of the particpntDefName participant definition for the
application-specific business object.

* Make sure that the application-specific (appSpecificBusObj) and generic business
objects (genericBus0bj) are not null.

* Make sure that the relDefName relationship is an identity relationship. In
addition, the participant definition in relDefName that represents the generic
business object must be defined as IBM WebSphere InterChange Server
Express-managed. For more information on how to specify these settings, see
[“Defining identity relationships” on page 174}

* Make sure the calling context is valid (see for a list of valid calling
contexts).

* Make sure that the application-specific business object’s verb is supported. It
must be one of the following: Create, Update, Delete, Retrieve.

If any of these validations fails, maintainSimpleldentityRelationship() throws the
RelationshipRuntimeException exception.

Chapter 20. IdentityRelationship class 357

Once the arguments are validated, the action that
maintainSimpleldentityRelationship() takes depends on the following
information:

* The calling context—in the map execution context, passed in as part of the
map_ctx argument (cwExecCtx)

* The verb—in the source business object

— Application-specific business object (appSpecificBusObj) for calling contexts
EVENT_DELIVERY (or ACCESS_REQUEST) and SERVICE CALL_RESPONSE

— Generic business object (genericBusObj) for calling contexts
SERVICE_CALL_REQUEST and ACCESS_RESPONSE

The maintainSimpleldentityRelationship() method handles all of the basic
adding and deleting of participants and relationship instances for each combination
of calling context and verb. For more information on the actions that
maintainSimpleldentityRelationship() takes, see|’Accessing identity relationship|
ftables” on page 191| [Table 74 through |!able 78| provide the actions for each of the
calling contexts.

You can call this method in either of the following cases:
¢ In the transformation step for the key attribute of a parent object

* In the transformation step for the key attribute of a submap that transforms
child business objects if the child business objects are related using a unique key.

Use maintainSimpleldentityRelationship() in conjunction with the
maintainChildVerb() method to maintain a simple identity relationship. For more
information, see [“Defining transformation rules for a simple identity relationship”|

Ign page 201|

Examples

The following example maintains the simple identity relationship between the
Clarify_BusOrg and generic Customer business objects in an inbound
Clarify_BusOrg-to-Customer map:

IdentityRelationship.maintainSimpleldentityRelationship(
"CustIdentity",
"ClarBusOrg",
ObjClarify_BusOrg,
ObjCustomer,
cxExecCtx) ;

For more examples involving maintainSimpleldentityRelationship(), see
[‘Defining transformation rules for a simple identity relationship” on page 201}

See also
maintainChildVerb ()|

[“Using simple identity relationships” on page 191|

updateMyChildren()

Adds and deletes child instances in a specified parent/child relationship of an
identity relationship as necessary.

358 Map Development Guide

Syntax

void updateMyChildren(String parentChildRelDefName,
String parentParticpntDef, BusObj parentBusObj,
String childParticpntDef, String childAttrName,
String childIdentityRelDefName,
String childIdentityParticpntDefName,
CxExecutionContext map_ctx)

Parameters

parentChildRelDefName
The name of the parent/child relationship definition.

parentParticpntDefName
The name of the participant definition that represents the parent
business object in the parent/child relationship.

parentBusObj The variable that contains the parent business object.

childParticpntDefName
The name of the participant definition that represents the child
business object in the parent/child relationship.

childAttrName The name of the attribute in the parent business object whose type
is the child object name that participates in the parent/child
relationship. For example, in a customer-address relationship, if the
parent object contains an Address1 attribute, which is a child
business object of type Address, the childAttrName attribute name
is Addressl.

childIdentityRelDefName
The name of the identity relationship in which the child business
object participates.

childIdentityParticpntDefName
The name of the participant definition that represents the child
business object in the identity relationship.

map_ctx The map execution context. To pass the map execution context, use
the cwExecCtx variable, which Map Designer Express defines for
every map.

Return values

None.

Exceptions

Notes

RelationshipRuntimeException
see the Notes section for more information on when this exception
is thrown

The updateMyChildren() method updates the child instances in the relationship
tables of the parentChildRelDefName and childIdentityRelDefName relationship
definitions. This method is useful in an identity relationship when a parent
business object has been updated as a result of the addition or removal of child
objects. Use updateMyChildren() to compare the after-image (in parentBus0bj) with
the before-image (information in the relationship tables) to determine which child
objects in the after-image are new or deleted.

Chapter 20. IdentityRelationship class 359

Note: The updateMyChildren() method cannot handle the case where the child’s
composite key depends on its grandparents. For more information, see
[on using Update My Children” on page 209}

The updateMyChildren() method performs the following validations on arguments
that are passed in:

* Validate the name of the parentChildrelDefName relationship definition (first
argument).

* Make sure that the parentChildRelDefName relationship is a parent/child
relationship and that the parentParticpntDefName and childParticpntDefName
are part of the parentChildRefDefName relationship definition.

* Make sure that the childIdentityRelDefName relationship is an identity
relationship. In addition, the participant definition in childIdentityRelDefName
that represents the generic business object must be defined as IBM WebSphere
InterChange Server Express- managed. For more information on how to specify
these settings, see [‘Defining identity relationships” on page 174

* Make sure that the childIdentityParticpntDefName is part of the
childIdentityRefDefName relationship definition

If any of these validations fails, updateMyChildren() throws the
RelationshipRuntimeException exception.

Once the arguments are validated, the updateMyChildren() method adds children
or deletes children from the list of child business objects that belong to the
specified parent business object as appropriate. This method performs one of the
following tasks to the relationship tables for the parent and child participants
(parentParticpntDefName and childParticpntDefName, respectively):

* For each new child object, updateMyChildren() adds a child instance.

This method does not add to the child’s relationship table because all the
business objects that are currently associated with the parent object have already
been maintained when maintainCompositeRelationship() was called.

» For each deleted child object, updateMyChildren() removes the corresponding
child instance.

This method removes from the child’s cross-reference table in addition to the
parent/child relationship table.

The updateMyChildren() method requires that a parent/child relationship is
defined with Relationship Designer Express. For information on how to create this
kind of relationship, see [“Creating the parent/child relationship definition” on|

Note: If the child business object has a unique key, the child participant’s attribute
is the unique key of the child object. If the child object does not have a
unique key, the child participant’s attribute is this nonunique key.

Examples
For an example involving updateMyChildren() in conjunction with the
maintainCompositeRelationship() method, see the Examples section of
maintainCompositeRelationship ()]

For more examples involving updateMyChildren(), see I"Customizing map rules for|
la composite identity relationship” on page 204}

360 Map Development Guide

See also

addMyChildren ()] |[deleteMyChildren()| maintainCompositeRelationship()}
maintainSimpleldentityRelationship()|

[“Handling updates to the parent business object” on page 209

Chapter 20. IdentityRelationship class 361

362 Map Development Guide

Chapter 21. MapExeContext class

The MapExeContext class provides methods for querying and setting various
runtime values that are in effect during map execution.

able 106 summarizes the methods of the MapExeContext class.

Table 106. MapExeContext method summary

Method Description Page
getConnName () Retrieves the connector name associated with the current [363]
map instance.
getInitiator Retrieves the calling context associated with the current |363
map instance.
Retrieves the locale associated with the map execution 364
context.
[getOriginalRequestBO()| Retrieves the original-request business object associated [365
with the current map instance.
setConnName () Sets the connector name associated with the current map [366
instance.
setInitiator() Sets the calling context associated with the current map |366
instance.
setLocale() Sets the locale associated with the map execution 366
context.
getConnName()
Retrieves the connector name associated with the current map instance.
Syntax
String getConnName()
Parameters
None.

Return values

Returns a String containing the connector name.

Exceptions

None.

See also
setConnName ()

getinitiator()

Retrieves the calling context associated with the current map instance.

Syntax

String getInitiator()

© Copyright IBM Corp. 2003 363

Parameters

None.

Return values

Returns a static constant variable representing the calling context for the execution
of the current map instance. Calling contexts are one of the following values:

EVENT_DELIVERY
The source business objects being mapped are sent from an
application to InterChange Server Express through a connector.

ACCESS_REQUEST
The source objects being mapped are sent from an application to
InterChange Server Express through an access client.

SERVICE_CALL_REQUEST
The source objects being mapped are sent from InterChange Server
Express to an application through a connector.

SERVICE_CALL_RESPONSE
The source objects being mapped are sent back to InterChange
Server Express from an application through a connector after a
successful service call request.

SERVICE_CALL_FAILURE
The source objects being mapped are sent back to InterChange
Server Express from an application through a connector after a
failed service call request.

ACCESS_RESPONSE
The source objects being mapped are sent back from InterChange
Server Express to the application through an access client.

Exceptions
None.

Notes

The calling context is part of the map execution context. For more information on
how calling contexts are used in maps, see|“Understanding map execution|
fcontexts” on page 146,

Examples
In the following example, compare the map run-time initiator with the constants
defined in the MapExeContext class:

String sInitiator = null;

sInitiator = cwMapCtx.getInitiator();

if(sInitiator.equals(MapExeContext.EVENT _DELIVERY))
TogInfo("*#**xxrrrrkxxxInitiator = MapExeContext.EVENT DELIVERY.");

See also
lgetOriginalRequestBO()} [setInitiator()|

getLocale()

Retrieves the locale associated with the map execution context.

364 Map Development Guide

Syntax

Locale getlocale()

Parameters
None.

Return values

Returns a Locale object that contains the language and country code for the map
execution context.

Exceptions
None.

Notes

This method must be run on the map variable of MapExeContext type, which is
named cwMapCtx when generated by the system, or which you name when calling
a map in an environment that does not automatically generate map code (such as
within a collaboration).

Examples

The following example retrieves the locale of the map execution context into a
variable and then reports it with a trace statement:

Locale mapLocale = cwMapCtx.getLocale();
String mapLocaleToString = mapLocale.toString();
trace(3, "THE MAP LOCALE IS: " + maplLocaleToString);

See also
setLocale()

getOriginalRequestBO()

Retrieves the original-request business object associated with the current map
instance.

Syntax

BusObj getOriginalRequestBO()

Parameters

None.

Return values

Returns the original-request business object for the map, as the following table

shows:

Calling Contexts Original-Request Business Object

EVENT_DELIVERY, ACCESS_REQUEST Application-specific business object that came
in from the application

SERVICE_CALL_REQUEST, Generic business object that was sent down

SERVICE_CALL_FAILURE from InterChange Server Express

SERVICE_CALL_RESPONSE Generic business object that was sent down

by the SERVICE_CALL_REQUEST

Chapter 21. MapExeContext class 365

Calling Contexts Original-Request Business Object

ACCESS_RESPONSE Application-specific business object that came
in from the access request initially

Exceptions

None.

Notes

The original-request business object is part of the map execution context. The
getOriginalRequestBO() method returns the original-request business object, which
depends on the map’s calling context. For more information on how this business
object is used in maps, see [‘Original-request business objects” on page 148].

See also
getInitiator()

setConnName()

Sets the connector name associated with the current map instance.

Syntax

void setConnName(String connectorName)

Parameters

connectorName Name of the connector

Return values

None.

Exceptions

None.

Notes

The controller for the connector you specify must be running in InterChange
Server Express.

See also
getConnName ()

setlnitiator()

Sets the calling context associated with the current map instance.

Syntax

void setInitiator(String callingContext)

366 Map Development Guide

Parameters

callingContext

String containing one of the following values:

EVENT_DELIVERY

ACCESS_REQUEST

SERVICE_CALL_REQUEST

SERVICE_CALL_RESPONSE

SERVICE_CALL_FAILURE

ACCESS_RESPONSE

Return values

None.

Exceptions
None.

Notes

The source objects being mapped
are sent from an application
through a connector to InterChange
Server Express.

The source objects being mapped
are sent from an application to
InterChange Server Express
through an access client.

The source objects being mapped
are sent from InterChange Server
Express to an application through a
connector.

The source objects being mapped
are sent back to InterChange Server
Express from an application
through a connector after a
successful service call request.

The source objects being mapped
are sent back to InterChange Server
Express from an application
through a connector after a failed
service call request.

The source objects being mapped
are sent back from InterChange
Server Express to the application
through an access client.

The calling context is part of the map execution context. The calling context
indicates the direction in which the source business object is being mapped. For
more information on how calling contexts are used in maps, see [“Understanding|

Imap execution contexts” on page 146} .

See also
getInitiator()

setLocale()

Sets the locale associated with the map execution context.

Chapter 21. MapExeContext class 367

Syntax

void setlLocale(Locale newlocale)

Parameters

newlLocale The new Locale object to set the map execution context to.

Return values

None.

Exceptions
None.

Notes

This method must be run on the map variable of MapExeContext type, which is
named cwMapCtx when generated by the system, or which you name when calling
a map in an environment that does not automatically generate map code (such as
within a collaboration).

The locale of the business object produced by a map is affected by the local of the
map’s execution context. If you change the locale of the map execution context as
part of the map’s logic, therefore, the new locale is copied to the business object.
This is done when the user-modifiable logic is finished executing (that is, when the
transformations visible in the diagram of the Map Designer Express are finished).
You can use this API to change the business object to a different locale than the
one it had when it entered the map.

Examples

The code below defines a new Locale object, sets the map execution context to that
new Locale value, and then reports the map execution context locale:

Locale newLocale = new Locale("ja", "JP");
cwMapCtx.setLocale(newLocale);
trace(3, "THE MAP LOCALE IS NOW: " + cwMapCtx.getLocale().toString());

See also
getLocale()

Deprecated methods

Some methods in the MapExeContext class were supported in earlier versions but
are no longer supported. These deprecated methods will not generate errors, but
CrossWorlds recommends that you avoid their use and migrate existing code to
the new methods. The deprecated methods might be removed in a future release.

able 107 lists the deprecated method for the MapExeContext class. If you have not
used Map Designer Express before, ignore this section.

Table 107. Deprecated Method, MapExeContext Class

Former method Replacement

getGenericBO() getOriginalRequestBO()

368 Map Development Guide

Chapter 22. Participant class

The methods documented in this chapter operate on objects of the Participant
class. Participant instances are used in relationship instances. Each Participant
instance contains the following information:

name of the relationship definition
relationship instance ID
name of the participant definition

data to associate with the participant

The Participant class provides methods for setting and retrieving each of these
values for a given participant.

able 10§ summarizes the methods of the Participant class.

Table 108. Participant method summary

Method Description Page
Participant() Creates a new Participant 369
instance.

getBusObj (), getString(), getLong(),| Retrieves the data associated with

etInt(), getDouble(),] the Participant instance.
etFloat(), getBoolean()|
etInstanceld() Retrieves the relationship instance

ID of the relationship in which the
Participant instance is
participating.

lgetParticipantDefinition()] Retrieves the participant definition

name from which the Participant
instance is created.

lgetRelationshipDefinition ()| Retrieves the name of the 372

relationship definition in which
the Participant instance is
participating.

set () Sets the data associated with the [373]

Participant instance.

setInstanceld() Sets the instance ID of the 373

relationship in which the
Participant instance is
participating.

[setParticipantDefinition()| Sets the participant definition 374

name from which the Participant
instance is created.

[setRelationshipDefinition()| Sets the relationship definition in

which the Participant instance is
participating.

Participant()

Creates a new Participant instance.

© Copyright IBM Corp. 2003

369

Syntax

To add a new participant instance to an existing participant in a relationship

instance:

Participant(String
Participant(String
Participant(String
Participant(String
Participant(String
Participant(String
Participant(String

relDefName,String
relDefName, String
relDefName,String
relDefName, String
relDefName,String
relDefName,String
relDefName, String

partDefName,
partDefName,
partDefName,
partDefName,
partDefName,
partDefName,
partDefName,

instanceld,BusObj partData)
instanceld,String partData)
instanceld,long partData)
instanceld,int partData)
instanceld,double partData)
instanceld, float partData)
instanceld,boolean partData)

int
int
int
int
int
int
int

To create a new participant instance with no relationship instance:

Participant(String
Participant(String
Participant(String
Participant(String
Participant(String
Participant(String
Participant(String

Parameters

relDefName
partDefName

instanceld

relDefName, String
relDefName,String
relDefName, String
relDefName,String
relDefName, String
relDefName,String
relDefName,String

partDefName,
partDefName,
partDefName,
partDefName,
partDefName,
partDefName,
partDefName,

the new participant instance.

participantData

BusObj partData)
String partData)
long partData)
int partData)
double partData)
float partData)
boolean partData)

Name of the relationship definition.
Name of the participant definition that describes the participant.

The relationship instance ID for the relationship instance to receive

Data to associate with the participant instance. Can be one of the
following data types: BusObj, String, Tong, int, double, float,
boolean.

Return values

Returns new participant instance.

Exceptions
RelationshipRuntimeException — See [“Handling exceptions” on page 144}

Notes

This method is the Participant class constructor. It takes the following forms:

¢ The first form of the constructor adds a new participant instance to the

relationship instance identified by instanceld.

* The second form creates a new participant instance with no associated
relationship instance. You can use this participant instance as an argument to
IdentityRe]ationshipladdMyChi1dren()] or Relationshiplcreate()|to create a
new relationship instance. With the Relationship method, having no
relationship instance ID is a requirement.

The data to associate with the participantData parameter depends on the kind of

relationship:

* To create a participant instance for an identity relationship, use a business object

as the participantData parameter.

370 Map Development Guide

* To create a participant for a lookup relationship, use any of the following data
types for the participantData parameter: String, Tong, int, double, float,
boolean.

Examples

// create a participant instance with no relationship instance ID
participant p = new Participant(myRelDef,myPartDef,myBusObj);

// create a relationship instance
int rellnstanceld = Relationship.addParticipant(p);

See also

addMyChildren ()] [Chapter 7, “Creating relationship definitions,” on page 167,|
“Transforming with a submap” on page 41

getBusObj(), getString(), getLong(), getint(), getDouble(),
getFloat(), getBoolean()

Retrieves the data associated with the Participant instance.

Syntax

BusObj getBusObj()
String getString()
Tong getlLong()

int getInt()

double getDouble()
float getFloat()
boolean getBoolean()

Return values

Returns the data associated with this participant instance. This data value is of the
type included in the method name. For example, getBoolean() returns a boolean
value, getBusObj () returns a BusObj value, getDouble() returns a double value, and
SO on.

Exceptions
RelationshipRuntimeException — See ["Handling exceptions” on page 144}

See also

set ()}[Chapter 7, “Creating relationship definitions,” on page 167)" Transforming]
with a submap” on page 41|

getinstanceld()

Retrieves the relationship instance ID of the relationship in which the Participant
instance is participating.

Syntax

int getInstanceld()

Chapter 22. Participant class 371

Return values

Returns an integer representing the instance ID of the relationship instance in
which this Participant instance is participating. If the Participant instance is not
a member of a relationship instance, this method returns the constant,
INVALID_INSTANCE_ID.

Exceptions

RelationshipRuntimeException — See [“Handling exceptions” on page 144}

See also

setInstanceld()| [Chapter 7, “Creating relationship definitions,” on page 167,|
“Transforming with a submap” on page 41]

getParticipantDefinition()

Retrieves the participant definition name from which the Participant instance is
created.

Syntax

String getParticipantDefinition()

Return values

Returns a String containing the name of the participant definition associated with
this participant instance.

Exceptions
RelationshipRuntimeException — See [“Handling exceptions” on page 144}

See also

setParticipantDefinition ()| [Chapter 7, “Creating relationship definitions,” on|
page 167 ||“Transforming with a submap” on page 41|

getRelationshipDefinition()

Retrieves the name of the relationship definition in which the Participant instance
is participating.

Syntax

String getRelationshipDefinition()

Return values

Returns a String containing the name of the relationship definition in which this
participant instance participates.

Exceptions
RelationshipRuntimeException — See [“Handling exceptions” on page 144}

372 Map Development Guide

See also

setRelationshipDefinition ()] [Chapter 7, “Creating relationship definitions,” on|
page 167 ||“Transforming with a submap” on page 41|

set()
Sets the data associated with the Participant instance.
Syntax
void set(BusObj partData)
void set(String partData)
void set(long partData)
void set(int partData)
void set(double partData)
void set(float partData)
void set(boolean partData)
Parameters
partData Data to associate with the Participant instance. Can be one of the
following data types: BusObj, String, long, int, double, float,
boolean.
Return values
None.
Exceptions
RelationshipRuntimeException — See [“Handling exceptions” on page 144]
Notes
If you set the participant data to be a business object (BusObj type), the relationship
definition and participant definition must already be set. If you set the participant
data to any other data type, it does not matter which setting you specify first.
See also
getBusObj (), getString(), getlong(), getInt(), getDouble(),|
getFloat(), getBoolean()} [Chapter 7, “Creating relationship definitions,” on page|
167)" Transforming with a submap” on page 41|
setinstanceld()
Sets the instance ID of the relationship in which the Participant instance is
participating.
Syntax
void setInstanceld(int id)
Parameters
id Instance ID of the relationship.

Chapter 22. Participant class 373

Return values

None.

Exceptions
RelationshipRuntimeException — See [“Handling exceptions” on page 144}

Notes

One use of setInstanceld() is to remove the relationship instance ID when you

want to pass a participant instance as a parameter to the Participant ()| or
-create()

methods. In this case, you set the instance ID to the constant
INVALID_INSTANCE_ID.

Examples

// wipe out the relationship instance ID
myParticipant.setInstanceld(Participant.INVALID INSTANCE_ID);

// pass the participant instance to the create() method
int newRelld = create(myParticipant);

See also

getInstanceld()] [Chapter 7, “Creating relationship definitions,” on page 167
“Transforming with a submap” on page 41|

setParticipantDefinition()

Sets the participant definition name from which the Participant instance is
created.

Syntax
void setParticipantDefinition(String partDefName)
Parameters

partDefName Name of the participant definition from which the Participant
instance is created.

Return values
None.

Exceptions
RelationshipRuntimeException — See [“Handling exceptions” on page 144}

See also

setParticipantDefinition ()| |Chapter 7, “Creating relationship definitions,” on|
age 167 |“Transforming with a submap” on page 41|

setRelationshipDefinition()

Sets the relationship definition in which the Participant instance is participating.

374 Map Development Guide

Syntax

void setRelationshipDefinition(String relDefName)

Parameters

relDefName Name of the relationship definition.

Return values

None.

Exceptions
RelationshipRuntimeException — See [“Handling exceptions” on page 144}

See also

getRelationshipDefinition ()] [Chapter 7, “Creating relationship definitions,” onl
page 167 |I“Transforming with a submap” on page 41|

Chapter 22. Participant class 375

376 Map Development Guide

Chapter 23. Relationship class

The methods documented in this chapter operate on objects of the IBM WebSphere
InterChange Server Express-defined class ReTationship. The Relationship class
provides methods for manipulating the runtime instances of relationships, called
relationship instances. You typically use these methods in transformation steps for
business object attributes that are mapped as identity relationships or static
lookups. For more information on programming relationship attributes using the
methods in this class, see [“Transforming with a submap” on page 41}

Most methods in this class support variations in the parameters you specify. The
variations generally follow these guidelines:

* To identify a specific participant in a relationship instance, you usually specify
the relationship definition name, the participant definition name, the relationship
instance 1D, and the business object associated with the participant.

* Alternatively, you can specify a Participant instance which contains the
relationship definition name, participant definition name, instance ID and
business object, as its attributes.

* For some operations, you can omit the relationship instance ID (for example,
when creating a new relationship) or the business object name.

In most cases, if you have a Participant instance (for example, as the result of a
retrieve() call), it is easier to pass it as a parameter to a Relationship class

method instead of specifying each attribute individually.

All methods in this class are declared as static. You can call them from existing
relationship instances or by referencing the Relationship class.

able 109 summarizes the methods in the Relationship class.

Table 109. Relationship method summary

Method Description Page

Static methods

[addParticipant ()] Adds a new participant to a relationship 378
instance.

create()l Creates a new relationship instance. 330)

deactivateParticipant ()| Deactivates a participant from one or more
relationship instances.

[deactivateParticipantByInstance()| Deactivates a participant from a specific
relationship instance.

|de1 etePartici pant()| Removes a participant instance from one or
more relationship instances.

[deleteParticipantByInstance()| Removes a participant from a specific
relationship instance.

getNewID() Returns the next available relationship instance 385

[retrieveInstances ()|

[retrieveParticipants ()]

ID for a relationship, based on the relationship
definition name.

Retrieves only the relationship instance IDs for
zero or more relationship instances which
contain a given participant instance.

B

2

Retrieves zero or more participants from a
relationship instance.

© Copyright IBM Corp. 2003 377

Table 109. Relationship method summary (continued)

Method Description Page

[updateParticipant ()] Updates a participant in one or more
relationship instances.

[updateParticipantByInstance ()| Updates a participant in a specific relationship
instance.

addParticipant()

Adds a new participant to a relationship instance.

Syntax
To add a new participant to an existing relationship instance:

int addParticipant

(String relDefName,

String partDefName,

int instanceld,BusObj partData)

int addParticipant

(String relDefName,

String partDefName,

int instanceld,String partData)

int addParticipant

(String relDefName,

String partDefName,int instanceld,
long partData)

int addParticipant

(String relDefName,

String partDefName,int instanceld,
int partData)

int addParticipant
(String relDefName,
String partDefName,
int instanceld,
double partData)

int addParticipant

(String relDefName,

String partDefName,

int instanceld, float partData)

int addParticipant
(String relDefName,
String partDefName,
int instanceld,
boolean partData)

To add a participant to a new relationship instance:

int addParticipant
(String relDefName,
String partDefName,
BusObj partData)
int addParticipant
(String relDefName,
String partDefName,
String partData)
int addParticipant
(String relDefName,

378 Map Development Guide

String partDefName,
long partData)
int addParticipant
(String relDefName,
String partDefName,
int partData)
int addParticipant
(String relDefName,
String partDefName,
double partData)
int addParticipant
(String relDefName,
String partDefName,
float partData)
int addParticipant
(String relDefName,
String partDefName,
boolean partData)

To add an existing participant instance to a relationship instance:
int addParticipant(Participant participant)

Parameters

relDefName Name of the relationship definition.
partDefName Name of the participant definition.

instanceld Relationship instance ID of the relationship instance to receive the
new participant.

partData Data to associate with the participant. Can be one of the following
data types: BusObj, String, long, int, double, float, boolean.

participant Participant to add to the relationship.

Return values

Returns an integer representing the instance ID of the relationship to receive the
new participant.

Exceptions

Notes

RelationshipRuntimeException — See [“Handling exceptions” on page 144}

The first form of the method adds a new participant to the relationship instance
you specify. Each variation supports a different data type for the data to associate
with the participant.

The second form, since it does not specify a relationship instance, creates a new
relationship instance and adds the new participant. In this case, the return value is
the instance ID of the newly created relationship instance. Each variation supports
a different data type for the data to associate with the participant.

The third form adds the participant instance you pass to the relationship instance
specified in the participant instance. If the participant instance has no relationship
instance ID, a new relationship instance is created and the new instance ID is
returned.

Chapter 23. Relationship class 379

The addParticipant() method is a class method declared as static. You can call
this method from an existing relationship instance or by referencing the
Relationship class.

See also
create()

create()

Creates a new relationship instance.

Syntax

int create(String relDefName, String partDefName, BusObj partData)
int create(String relDefName, String partDefName, String partData)
int create(String relDefName, String partDefName, long partData)
int create(String relDefName, String partDefName, int partData)

int create(String relDefName, String partDefName, double partData)
int create(String relDefName, String partDefName, float partData)
int create(String relDefName, String partDefName, boolean partData)
int create(Participant participant)

Parameters

relDefName Name of the relationship definition.
partDefName The name of the participant definition.

partData Data to associate with the participant. Can be one of the following
data types: BusObj, String, long, int, double, float, boolean.

participant First participant in the relationship.

Return values

Returns an integer representing the relationship instance ID of the new
relationship.

Exceptions

ReTationshipRuntimeException

Notes

The create() method creates a new relationship instance with one participant
instance of the partDefName participant definition. You can specify the data for this
new participant instance with the partData argument. After calling this method,
you can call [addMyChildren ()|to add more participants to the relationship instance.

In the last form of the method, the participant parameter cannot have a
relationship instance ID. Normally, participant instances do have relationship
instance IDs. Because this method creates a new relationship instance, you must
make sure that the participant instance does not already have an instance
associated with it. To do this, use the |setInstanceId()| method (in the Participant
class) to set the instance ID to the INVALID INSTANCE_ID constant.

The create() method is a class method declared as static. You can call this method
from an existing relationship instance or by referencing the Relationship class.

380 Map Development Guide

See also
laddMyChildren()] |setInstanceld ()|

deactivateParticipant()

Deactivates a participant from one or more relationship instances.

Syntax

void deactivateParticipant(String relDefName,
String partDefName,
BusObj partData)

void deactivateParticipant(String
relDefName,
String partDefName,

String partData)

void deactivateParticipant(String relDefName,
String partDefName,
long partData)

void deactivateParticipant(String relDefName,
String partDefName,
int partData)

void deactivateParticipant(String relDefName,
String partDefName,
double partData)

void deactivateParticipant(String relDefName,
String partDefName,
float partData)

void deactivateParticipant(String relDefName,
String partDefName,
boolean partData)

void deactivateParticipant(Participant participant)

Parameters

relDefName Name of the relationship definition.
partDefName Name of the participant definition.

partData Data associated with the participant. Can be one of the following
data types: BusObj, String, long, int, double, float, boolean.

participant Participant to deactivate in the relationship.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The deactivateParticipant () method deactivates the participant from all instances
of relDefName where partData is associated with partDefName. This method does

Chapter 23. Relationship class 381

not remove the participant from the relationship tables. Use this method to remove
a participant while preserving a record of its existence in the relationship tables.

To view deactivated participants, you can query the relationship tables directly. To
find the table names and access information for a given relationship, open the
relationship definition using Relaitonship Designer Express and choose Advanced

Settings from the Edit menu. See [“Specifying advanced relationship settings” on|
for more information on these settings.

Attention: Because deactivateParticipant() does not actually remove participant
rows from your relationship tables, you should not use this method
routinely to delete participants. Doing so can cause your relationship
tables to become unnecessarily large.

The deactivateParticipant() method is a class method declared as static. You can
call this method from an existing relationship instance or by referencing the
Relationship class.

See also

deleteParticipant ()] [deactivateParticipantByInstance()] [Chapter 7, “Creating
relationship definitions,” on page 167 [[“Transforming with a submap” on page 41|

deactivateParticipantBylnstance()

Deactivates a participant from a specific relationship instance.

Syntax

void deactivateParticipantByInstance(String relDefName,
String partDefName, int instanceld [, BusObj partData])

void deactivateParticipantByInstance(String relDefName,
String partDefName, int instanceld [, String partData])

void deactivateParticipantByInstance(String relDefName,
String partDefName, int instanceld [, long partData])

void deactivateParticipantByInstance(String relDefName,
String partDefName, int instanceld [, int partData])

void deactivateParticipantByInstance(String relDefName,
String partDefName, int instanceld [, double partData])

void deactivateParticipantByInstance(String relDefName,
String partDefName, int instanceld [, float partData])

void deactivateParticipantByInstance(String relDefName,
String partDefName, int instanceld [, boolean partData])

Parameters
relDefName Name of the relationship definition.
partDefName Name of the participant definition.
instanceld ID of the relationship instance to which the participant belongs.

partData Data associated with the participant. Can be one of the following
data types: BusObj, String, long, int, double, float, boolean. This is
an optional parameter

382 Map Development Guide

Return values

None.

Exceptions

Notes

RelationshipRuntimeException — See [“Handling exceptions” on page 144}

The deactivateParticipantByInstance() method deactivates the specified
participant from the relationship instance that relationship instance ID instancelID
identifies. However, the method does 1ot remove the participant from the
relationship tables. Use this method when you want to remove a participant while
preserving a record of its existence in the relationship tables.

To view deactivated participants, you can query the relationship tables directly. To
find the table names and access information for a given relationship, open the
relationship definition using Relaitonship Designer Express and choose Advanced

Settings from the Edit menu. See [“Specifying advanced relationship settings” on|
for more information on these settings.

Attention: Since deactivateParticipantByInstance() does not actually remove
participant rows from your relationship tables, you should not use this
method routinely to delete participants. Doing so can cause your

relationship tables to become unnecessarily large.

The deactivateParticipantByInstance() method is a class method declared as
static. You can call this method from an existing relationship instance or by
referencing the Relationship class.

See also

[deleteParticipant ()] |[deactivateParticipant ()|

deleteParticipant()

Removes a participant instance from one or more relationship instances.

Syntax
void deleteParticipant(String relDefName, String partDefName, BusObj partData)
void deleteParticipant(String relDefName, String partDefName, String partData)
void deleteParticipant(String relDefName, String partDefName, long partData)
void deleteParticipant(String relDefName, String partDefName, int partData)
void deleteParticipant(String relDefName, String partDefName, double partData)
void deleteParticipant(String relDefName, String partDefName, float partData)
void deleteParticipant(String relDefName, String partDefName, boolean partData)
void deleteParticipant(Participant participant)

Parameters
relDefName Name of the relationship definition.
partDefName Name of the participant definition.
partData Data associated with the participant. Can be one of the following

data types: BusObj, String, long, int, double, float, boolean.

Chapter 23. Relationship class

383

participant A Participant instance representing the participant to remove from
the relationship.

Return values
None.

Exceptions

ReTationshipRuntimeException

Notes

The deleteParticipant() method deletes the specified participant from all
instances of relDefName where partData is associated with partDefName and deletes
it from the underlying relationship tables.

The deleteParticipant() method is a class method declared as static. You can call
this method from an existing relationship instance or by referencing the
Relationship class.

See also
ldeactivateParticipant ()} [deleteParticipantByInstance()]

deleteParticipantBylnstance()

Removes a participant from a specific relationship instance.

Syntax

void deleteParticipantByInstance(String relDefName,
String partDefName, int instanceld [, BusObj partData])

void deleteParticipantByInstance(String relDefName,
String partDefName, int instanceld [, String partData])
void deleteParticipantByInstance(String relDefName,
String partDefName, int instanceld [, long partData])
void deleteParticipantByInstance(String relDefName,
String partDefName, int instanceld [, int partData])
void deleteParticipantByInstance(String relDefName,
String partDefName, int instanceld [, double partData])
void deleteParticipantByInstance(String relDefName,
String partDefName, int instanceld [, float partData])

void deleteParticipantByInstance(String relDefName,
String partDefName, int instanceld [, boolean partData])

Parameters
relDefName Name of the relationship definition.
partDefName Name of the participant definition.
instanceld ID of the relationship instance to which the participant belongs.

384 Map Development Guide

partData Data associated with the participant. Can be one of the following
data types: BusObj, String, long, int, double, float, boolean. This
is an optional parameter.

Return values
None.

Exceptions

RelationshipRuntimeException

Notes

The deleteParticipantByInstance() method deletes a participant instance from
the relationship identified by the instanceld relationship instance ID. The method
removes the participant from the relationship instance and from the underlying
relationship tables.

If you supply the optional partData parameter, deleteParticipantByInstance()
deletes the participant instance only if partData is the data associated with the
partDefName participant definition.

The last form of the method accepts a participant instance as the only parameter.
The participant instance must contain the relationship definition name, participant
definition name, and either the instance ID or the participant data.

The deleteParticipantByInstance() method is a class method declared as static.
You can call this method from an existing relationship instance or by referencing
the Relationship class.

See also
[deactivateParticipant ()|

getNewlD()

Returns the next available relationship instance ID for a relationship, based on the
relationship definition name.

Syntax

public static int getNewID(String relDefName)

Parameters

relDefName Name of the relationship definition.

Return values

Returns a relationship instance ID, based on the relationship definition name.

Exceptions

RelationshipRuntimeException

Chapter 23. Relationship class 385

Notes

Because the relationship instance ID can be used as the generic ID for the typical
IBM WebSphere InterChange Server Express identity relationships, this new ID can
be used as the generic ID for generic-to-generic relationships.

retrievelnstances()

Retrieves only the relationship instance IDs for zero or more relationship instances
which contain a given participant instance.

Syntax

int[] retrievelnstances(String relDefName,
String partDefName,
BusObj partData)

int[] retrievelnstances(String relDefName,
String partDefName,
String partData)

int[] retrievelnstances(String relDefName,
String partDefName,
long partData)

int[] retrievelnstances(String relDefName,
String partDefName,
int partData)

int[] retrievelnstances(String relDefName,
String partDefName,
double partData)

int[] retrievelnstances(String relDefName,
String partDefName,
float partData)

int[] retrievelnstances(String relDefName,
String partDefName,
boolean partData)

int[] retrievelnstances(String relDefName,
String[] partDeflist,
BusObj partData)

int[] retrievelnstances(String relDefName,
String[] partDeflist,
String partData)

int[] retrievelnstances(String relDefName,
String[] partDeflist,
long partData)

int[] retrievelnstances(String relDefName,
String[] partDefList,
int partData)

int[] retrievelnstances(String relDefName,
String[] partDeflist,

double partData)
int[] retrievelnstances(String relDefName,
String[] partDeflist,

float partData)
int[] retrievelnstances(String relDefName,

386 Map Development Guide

String[] partDeflist,
boolean partData)

int[] retrievelnstances(String relDefName, BusObj partData)
int[] retrievelnstances(String relDefName, String partData)
int[] retrievelnstances(String relDefName, long partData)
int[] retrievelnstances(String relDefName, int partData)
int[] retrievelnstances(String relDefName, double partData)
int[] retrievelnstances(String relDefName, float partData)
int[] retrievelnstances(String relDefName, boolean partData)

Parameters

relDefName Name of the relationship definition.
partDefName Name of the participant definition.
partDeflist List of participant definitions.

partData Data to associate with the participant. Can be one of the following
data types: BusObj, String, long, int, double, float, boolean.

Return values

Returns an array of integers that are the instance IDs of relationships containing
the participant.

Exceptions

Notes

ReTationshipRuntimeException

The retrievelnstances() method implements a lookup relationship in an inbound
map. It obtains the relationship instance IDs from the relationship table that are
associated with the specified participant instances (partDefList and partData or
only partData). The method retrieves only those attributes that are associated with
the relDefName relationship definition. It does not fill in any of the other attributes
in the business object. Attributes associated with the relationship definition
typically are the key attributes and any others that you explicitly select. See
[Chapter 7, “Creating relationship definitions,” on page 167|for more information on
relationship definitions.

If retrievelnstances() does not find a relationship instance for the specified data,
it does not raise an exception. Absence of data in the relationship table does not
mean that the lookup was performed improperly. If you want to raise an exception
when retrievelnstances() does not find a value, you must check the value of the
instance IDs that the method returns and explicitly raise a MapFailureException if
the value is null.

The retrievelInstances() method is a class method declared as static. You can call
this method from an existing relationship instance or by referencing the
Relationship class.

See also

addMyChildren()] [deactivateParticipant ()] [deleteParticipant ()}
retrieveParticipants ()|

[“Customizing map transformations for a lookup relationship” on page 191

Chapter 23. Relationship class 387

retrieveParticipants()

Retrieves zero or more participants from a relationship instance.

Syntax
Participant[] retrieveParticipants(String relDefName,
String partDefName, int instanceId)|

Participant[] retrieveParticipants(String relDefName,
String[] partDeflist, int instanceld)

Participant[] retrieveParticipants(String relDefName,
int instanceld)

Parameters

relDefName Name of the relationship definition.
partDefName Name of the participant definition.
partDeflist List of participant definitions.

instanceld The relationship instance ID of the relationship instance to which
the participant belongs.

Return values

Returns an array of Participant instances.

Exceptions

ReTationshipRuntimeException

Notes

The retrieveParticipants() method implements a lookup relationship in an
outbound map. It obtains the participant instances from the relationship table that
are associated with the specified instancelD relationship instance ID. The method
retrieves only those attributes that are associated with the relDefName relationship
definition. It does not fill in any of the other attributes in the business object.
Attributes associated with the relationship definition typically are the key
attributes and any others that you explicitly select. See [Chapter 7, “Creating]
frelationship definitions,” on page 167 for more information on relationship
definitions.

If retrieveParticipants() raises the RelationshipRuntimeException if it receives a
null-valued instanceld. If you are not guaranteed that the retrieveInstances()
method has returned a matching instance ID, check the value of instanceld for a
null value before the call to retrieveParticipants().

The retrieveParticipants() method is a class method declared as static. You can
call this method from an existing relationship instance or by referencing the
Relationship class.

See also

addMyChildren()] [deactivateParticipant ()] [deleteParticipant ()}
retrievelnstances ()|

[“Customizing map transformations for a lookup relationship” on page 191

388 Map Development Guide

updateParticipant()

Updates a participant in one or more relationship instances.

Syntax

void updateParticipant(String relDefName, String partDefName, BusObj partData)
Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition that participates in the
relDefName relationship.

partData Data to associate with the participant. Can be one of the following
data types: BusObj.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The updateParticipant () method updates partData in instances of relDefName
where partData is associated with partDefName. This method updates the non-key
attributes of the business object that is associated with the specified participant.
Only the attributes that are associated with the relationship definition are updated.

The updateParticipant () method updates all participant instances in the
relDefName relationship that have:

* A participant definition of partDefName
* Key value(s) that matches the key value(s) of the partData business object

This method updates the non-key attributes of the participant instances with the
values in the partData business object. Only the attributes that are associated with
the relationship definition are updated.

To modify a key attribute or a participant type that is not a business object (such as
String, Tong, int, double, float, or boolean), you must first delete the participant
using|deleteParticipant)] or|deactivateParticipant(){and then add a new
participant using [addMyChiTdren ()}

The updateParticipant() method is a class method declared as static. You can call
this method from an existing relationship instance or by referencing the
Relationship class.

See also
[deleteParticipant ()| [deactivateParticipant ()} [addMyChildren()|

updateParticipantBylnstance()

Updates a participant in a specific relationship instance.

Chapter 23. Relationship class 389

Syntax

To update a participant in a specific relationship instance:

void updateParticipantByInstance(String relDefName,
String partDefName, int instanceld [, BusObj partData])

void updateParticipantByInstance(Participant participant)

Parameters

relDefName Name of the relationship definition.
partDefName Name of the participant definition.

instanceld The relationship instance ID that identifies the relationship to
which the participant belongs.

partData Data to associate with the participant. Can be one of the following
data types: BusObj. This parameter is optional.

participant Participant to update in the relationship.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The updateParticipantByInstance() method updates the non-key attributes of the
business object associated with the specified participant. Only the attributes that
are associated with the relationship definition are updated.

To modify a key attribute or a participant type that is not a business object (such
as String, long, int, double, float, or boolean), you must first delete the participant
using|deleteParticipant ()| or|deactivateParticipant()|and then add a new
participant using [addMyChildren()]

The updateParticipantByInstance() method is a class method declared as static.
You can call this method from an existing relationship instance or by referencing
the Relationship class.

See also
[deleteParticipant ()| |deactivateParticipant()}|addMyChildren ()|

Deprecated methods

Some methods in the Relationship class have been moved to the
IdentityRelationship class. These deprecated methods will not generate errors, but
CrossWorlds recommends that you avoid their use and migrate existing code to
the new methods. The deprecated methods might be removed in a future release.

390 Map Development Guide

able 110 lists the deprecated methods for the Relationship class.
Table 110. Deprecated methods, Relationship class

Former method Replacement

addMyChildren () [addMyChiTdren()]in the
IdentityRelationship class

deleteMyChildren() [de1eteMyChildren()|in the
IdentityRelationship class

maintainCompositeRelationship() [naintainCompositeRelationship()|
in the IdentityRelationship class

maintainSimpleldentityRelationship() maintainSimpleldentity

Relationship() in the

IdentityRelationship class
updateMyChildren() lupdateMyChildren()|in

the IdentityRelationship class

Chapter 23. Relationship class 391

392 Map Development Guide

Chapter 24. UserStoredProcedureParam class

The UserStoredProcedureParam class provides methods for handling argument
values to stored procedures, which you execute on the relationship database. A
UserStoredProcedureParam object describes a single parameter for a stored

procedure.

Important: The UserStoredProcedureParam class and its methods are supported for

backward compatibility only. These deprecated methods will not generate
errors, but you should avoid using them and migrate existing code to
the new methods. The deprecated methods might be removed in a
future release. In new map development, use the
CwDBStoredProcedureParam class and its methods to provide arguments
to a stored procedure.

able 111| summarizes the methods in the UserStoredProcedureParam class.

Table 111. UserStoredProcedureParam method summary

Method

[userStoredProcedureParam()]

lgetParamDataTypeJavaObj ()]

[getParambDataTypedDBC ()|

getParamIndex ()

[getParamI0Type ()|

etParamName ()

I

getParamValue ()

[setParamDataTypeJavaObj ()|

[setParamDataTypedDBC ()|

setParamIndex()

[setParamI0Type ()|

setParamName ()
setParamValue ()

Description Page
Constructs a new instance of
UserStoredProcedureParam that holds argument
information for the parameter of a stored procedure.
Retrieves the data type of this stored-procedure 394

parameter as a Java Object, such as Integer, Double,
or String.

Retrieves the data type of this stored-procedure
parameter as an integer JDBC data type.

Retrieves the index position of this stored-procedure
parameter.

Retrieves the in/out parameter type for this
stored-procedure parameter.

Retrieves the name of this stored-procedure
parameter.

Retrieves the value of this stored-procedure
parameter.

Sets the data type as a Java Object for this
stored-procedure parameter.

B EE E E E

Sets the data type as a JDBC data type for this 398
stored-procedure parameter.

Sets the index position of this stored-procedure
parameter.

Sets the in/out parameter type of this
stored-procedure parameter.

Sets the name of this stored-procedure parameter. 100
Sets the value of this stored-procedure parameter. mn

UserStoredProcedureParam()

Constructs a new instance of UserStoredProcedureParam that holds argument
information for the parameter of a stored procedure.

© Copyright IBM Corp. 2003

393

Syntax

UserStoredProcedureParam(int paramIndex, String paramType,
Object paramValue, String ParamIOType, String paramName)

Parameters
paramIndex The index position of the associated parameter in the declaration of
the stored procedure. Index numbering begins with one (1).
paramType The data type (as a Java Object) of the associated parameter.
paramValue The argument value to send to the stored procedure.

ParamIOType The in/out type of the associated parameter. Valid types are: “IN”
- parameter value is input only. “INOUT” - parameter value is input
and output. “OUT” - parameter value is output only.

paramName The name of the argument, to be used in later statements that
build the Vector array.

Return values

Returns a new UserStoredProcedureParam object to hold the argument information
for the argument at position argIndex in the declaration of the stored procedure.

Exceptions

DtpConnectionException — If a parameter is invalid.

getParamDataTypedJavaObij()

Retrieves the data type of this stored-procedure parameter as a Java Object, such
as Integer, Double, or String.

Syntax

String getParamDataTypeJavaObj ()

Parameters

None.

Return values

Returns the data type of the associated UserStoredProcedureParam parameter as a
Java Object.

Exceptions

None.

Notes

A Java Object is one of two representations of the parameter data type stored in
the UserStoredProcedureParam object. Use getParamDataTypeJavaObj() to obtain the
Java Object data type, you should work with the Java Object data type because:

* For IN (and INOUT) parameters, you must provide the parameter value as a
Java Object. Therefore, providing the parameter data type as a Java Object is
more consistent.

394 Map Development Guide

* The execStoredProcedure() method sends parameters in a Vector parameter
array. The Vector object can contain only elements that are Java Objects.

See also
lgetParamDataTypeJDBC ()} [setParamDataTypedavaObj ()|

getParamDataTypeJDBC()

Retrieves the data type of this stored-procedure parameter as an integer JDBC data
type.

Syntax

int getParamDataTypeJDBC ()

Parameters
None.

Return values

Returns the data type of the associated UserStoredProcedureParam parameter as a
JDBC data type.

Exceptions
None.

Notes

The JDBC data type is one of two representations of the parameter data type
stored in the UserStoredProcedureParam object. JDBC data types are integer values
and include the following:

e java.sql.Types.INTEGER
* java.sql.Types.VARCHAR
e java.sql.Types.DOUBLE
e java.sql.Types.DATE

These data types are defined in java.sql.Types.

Recommendation: You should use the Java Object data type instead of the JDBC
data type. However, the Mapping API uses the JDBC internally
50 you can obtain its value from the UserStoredProcedureParam
object with getParamDataTypedDBC().

See also
|getPar‘amDataTypeJavaObj ()l |setPar‘amDataTypeJDBC ()|

getParamindex()

Retrieves the index position of this stored-procedure parameter.

Syntax

int getParamIndex()

Chapter 24. UserStoredProcedureParam class 395

Parameters

None.

Return values
Returns the index position of the associated UserStoredProcedureParam parameter.

Exceptions

None.

Notes

The index position of a stored-procedure parameter is its position in the parameter
list of the stored-procedure declaration. The first parameter has an index position
of one (1). The index position does not refer to literal parameters that might be
supplied to the stored procedure.

See also
lsetParamIndex ()|

getParamlOType()

Retrieves the in/out parameter type for this stored-procedure parameter.

Syntax

String getParamIOType()

Parameters

None.

Return values
Returns the in/out type of the associated UserStoredProcedureParam parameter.

Exceptions

None.

Notes

The in/out parameter type indicates how the stored procedure uses the parameter.
It can be the string representation of one of the following:
* IN parameter

An IN parameter is input only; that is, the stored procedure accepts its value as

input but does not use the parameter to return a value. The getParamIOType()
returns the in/out parameter type as “IN”.

* INOUT parameter

An INOUT parameter is input and output; that is, the stored procedure accepts its
value as input and also uses the parameter to return a value. The
getParamIOType() returns the in/out parameter type as “INOUT”.

* OUT parameter
An OUT parameter is output only; that is, the stored procedure does not read its
value as input but does use the parameter to return a value. The
getParamIOType() returns the in/out parameter type as “OUT”.

396 Map Development Guide

See also
lsetParamI0Type ()]

getParamName()

Retrieves the name of this stored-procedure parameter.

Syntax

String getParamName ()

Parameters

None.

Return values

Returns the name of the parameter from the associated UserStoredProcedureParam
object.

Exceptions

None.

Notes

The name of the parameter is informational only. It is used only for error messages
and debugging. The parameter name is not needed to access the stored-procedure
parameter because stored procedures are accessed by their index position in the
stored-procedure declaration.

See also
setParamName ()

getParamValue()

Retrieves the value of this stored-procedure parameter.

Syntax

Object getParamValue()

Parameters

None.

Return values

Returns the value of the associated UserStoredProcedureParam parameter as a Java
Object.

Exceptions

None.

Notes

The getParamValue() method returns the parameter value as a Java Object (such as
Integer, Double, or String). If the value returned to an OUT parameter is the JDBC
NULL, getParamValue() returns the null constant.

Chapter 24. UserStoredProcedureParam class 397

See also
lsetParamValue ()|

setParamDataTypedJavaObij()
Sets the data type as a Java Object for this stored-procedure parameter.

Syntax

void setParamDataTypeJdavaObj(String paramDataType)

Parameters

paramDataType The data type of the parameter as a Java Object.

Exceptions
DtpConnectionException — If the input data type is not supported.

Notes

A Java Object is one of two representations of the parameter data type stored in
the UserStoredProcedureParam object. Use setParamDataTypedavaObj() to set the
data type as a Java Object. You should work with the Java Object data type
because:

e For IN (and INOUT) parameters, you must provide the parameter value as a
Java Object. Therefore, providing the parameter data type as a Java Object is
more consistent.

* The execStoredProcedure() method sends parameters in a Vector parameter
array. The Vector object can contain only elements that are Java Objects.

See also
lgetParamDataTypeJavaObj ()] |[setParamDataTypeJDBC ()|

setParamDataTypeJDBC()

Sets the data type as a JDBC data type for this stored-procedure parameter.

Syntax
void setParamDataTypedDBC(int paramDataType)
Parameters
paramDataType The data type of the parameter as a JDBC type.

Exceptions
DtpConnectionException — If the input data type is not supported.

Notes

Every UserStoredProcedureParam object contains two representations of its data

type: Java Object and JDBC data type. You should use the Java Object data type
because:

398 Map Development Guide

e For IN (and INOUT) parameters, you must provide the parameter value as a
Java Object. Therefore, providing the parameter data type as a Java Object is
more consistent.

* The execStoredProcedure() method sends parameters in a Vector parameter
array. The Vector object can contain only elements that are Java Objects.

See also
lgetParamDataTypeJDBC ()] [setParambataTypedavaObj ()|

setParamindex()

Sets the index position of this stored-procedure parameter.

Syntax

void setParamIndex(int paramIndex)

Parameters

paramIndex The index position of the stored-procedure parameter

Notes

The index position of a stored-procedure parameter is its position in the parameter
list of the stored-procedure declaration. The first parameter has an index position
of one (1). The index position does not refer to literal parameters that might be
supplied to the stored procedure.

See also
lgetParamIndex ()|

setParamIOType()

Sets the in/out parameter type of this stored-procedure parameter.

Syntax

void setParamIOType(String paramIOType)

Parameters
paramIOType The I/O type of the stored-procedure parameter

Notes

The in/out parameter type indicates how the stored procedure uses the parameter.
It can be any of the following;:

* IN parameter

An IN parameter is input only; that is, the stored procedure accepts its value as
input but does not use the parameter to return a value. For an IN parameter, set
the in/out parameter type to “IN”.

e INOUT parameter

An INOUT parameter is input and output; that is, the stored procedure accepts its
value as input and also uses the parameter to return a value. For an INOUT
parameter, set the in/out parameter type to “INOUT”.

* OUT parameter

Chapter 24. UserStoredProcedureParam class 399

An OUT parameter is output only; that is, the stored procedure does not read its
value as input but does use the parameter to return a value. For an OUT
parameter, set the in/out parameter type to “OUT”.

See also
lgetParamI0Type ()]

setParamName()

Sets the name of this stored-procedure parameter.

Syntax

void setParamName(String paramName)
Parameters

paramName The name of the stored-procedure parameter
Notes

The name of the parameter is informational only. It is used only for error messages
and debugging. The parameter name is not needed to access the stored-procedure
parameter because stored procedures are accessed by their index position in the
stored-procedure declaration.

See also
getParamName ()
setParamValue()
Sets the value of this stored-procedure parameter.
Syntax
void setParamValue(Object paramValue)
Parameters
paramValue The value of the stored-procedure parameter. The value must be a
Java Object (such as Integer, Double, or String).
Notes

You must set the parameter value as a Java Object.

See also
lgetParamvalue ()|

400 Map Development Guide

Part 4. Appendixes

© Copyright IBM Corp. 2003 401

402 Map Development Guide

Appendix A. Message files

Each map can have an associated message file. The message file contains the text for
the map’s exception and logging messages. A unique number identifies each
message in the message file. The text of the message may also include placeholder
variables, called parameters.

The methods that generate map messages provide two ways of generating the
message text that a user sees. The coding of the method call can:

* Include the text of the message.

* Contain a reference to message text that is contained in an external message file.

It is generally a better practice for a map to refer to a message file than to generate
the text itself, for ease of maintenance, administration, and internationalization.

This chapter describes message files, how they work, and how to set them up. It
covers the following topics:

[‘Message location”] 403

“Format for map messages” on page 405
“Message parameters” on page 406
"Maintaining the files” on page 407]

‘Operations that use message files” on page 407|

Message location

All message file are located in the following directory of the IBM WebSphere
InterChange Server Express product directory:

DLMs\messages

Note: In this document backslashes (\) are used as the convention for directory
paths. For UNIX installations, substitute slashes (/) for backslashes. All IBM
WebSphere InterChange Server Express product path names are relative to
the directory where the IBM WebSphere InterChange Server Express product
is installed on your system.

There are three types of message files that can be used to generate messages for a

map:

* A map-specific message file, mapName_locale.txt where mapName corresponds to
the name of the map and locale corresponds to the locale that the map is defined
in.

Map messages appear in the Messages tab of Map Designer and are stored as
part of the map definition in the repository. When you compile the map, Map
Designer extracts the message content and creates (or updates) the message file
for runtime use. The name of the message file has the following format:

MapName_locale.txt
For example, for the LegacyAddress_to_CwAddress map, if it is created in an

English locale in the United States, Map Designer creates the message file called
LegacyAddress_to_CwAddress_en_US.txt and places it in the

© Copyright IBM Corp. 2003 403

ProjectName\Maps\Messages directory. After the map is deployed to InterChange
Server Express, it will be placed in the DLMs\messages directory.

The UserMapMessages.txt message file

To this file, you can add new message numbers that fall into a “safe” range, as
defined by IBM WebSphere InterChange Server Express (see . For
example, if you create a message for an Oracle map, you would assign the
message a number between 6101 and 6200. You can also use a message number
that is already defined in the IBM WebSphere InterChange Server Express
generic message file (CWMapMessages.txt, described next) and change the existing
message text to text of your choice. Since the UserMapMessaages.txt file is
searched before the IBM WebSphere InterChange Server Express message file,
your additions override those messages.

The IBM WebSphere InterChange Server Express generic message file,
CWMapMessages.txt (which IBM WebSphere InterChange Server Express
provides).

If your map does not reference one of the other two message files, it must
reference this one. lists the message numbers that IBM WebSphere
InterChange Server Express has assigned and that are contained in the generic
message file.

Attention: Do not change the contents of the IBM WebSphere InterChange
Server Express generic message file CwMapMessages.txt! Make changes to a
generic message by copying it into the UserMapMessage.txt message file and
customizing it.

These files range from map-specific to general purpose. Messages that can be used
by any map are located in a generic file, provided by IBM WebSphere InterChange
Server Express. The other two files provide you with the option to customize
messages for your maps, as needed.

Important: InterChange Server Express reads the UserMapMessages.txt and

CWMapMessages.txt files into memory when it starts up. If you make
changes to UserMapMessages.txt, you must restart InterChange Server
Express for these changes to be available to maps.

Table 112. CwMapMessages.txt messages

Message
number

5000

5001

Message text Message usage

Mapping - Value of the primary key in Used if the primary key of the source object is null. The
the source object is null. Map execution check for the source primary key = null should be always

stopped.

Mapping -

performed before any of the relationship methods are called
that are based on the source object’s primary key. If the key
is null, the error should display and the map should stop
execution.

Used if RelationshipRuntimeException is caught in one of

RelationshipRuntimeException. Map the following:

execution stopped.

e Function blocks

— General/APIs/Identity Relationship/Maintain Simple
Identity Relationship

— General/APIs/Identity Relationship/Maintain
Composite Relationship

* Mapping APIs
— maintainSimpleldentityRelationship()
— maintainCompositeRelationship()

404 Map Development Guide

Table 112. CwMapMessages.txt messages (continued)

Message
number

5002

5003

5007

5008

5009

Message text

Mapping - CxMissingIlDException. Map
execution stopped.

Mapping - Data in the {1} attribute is
missing.

Mapping - ForeignKeyLookup() of "{1}’
with Source Value of {2}’ failed for the
"{3}) relationship and ’{4}" participant on
Initiator "{5}". Map execution stopped.
Mapping - ForeignKeyLookup() of "{1}’
with Source Value of {2}’ failed for the
"{3})’ relationship and ’{4} participant on
Initiator "{5}". Map execution continued.
Mapping - ForeignKeyXref() of "{1}’
with Source Value of {2}’ failed for the
"{3})’ relationship and ’{4}" participant on
Initiator "{5})". Map execution stopped.

Message usage

Used if CxMissingIDException is caught in one of the
following:

* Function blocks

— General/APIs/Identity Relationship/Maintain Simple
Identity Relationship

— General/APIs/Identity Relationship/Maintain
Composite Realtionship

* Mapping APIs
— maintainSimpleldentityRelationship()

— maintainCompositeRelationship()
Used when the source attribute is null before using the
function block Foreign Key Lookup (foreignKeyLookup()) or
Foreign Key Cross-Reference (foreignkKeyXref()). The check
for the source attribute = null should be always performed
before these relationship methods are called. If the key is
null, the error should be displayed and the map might stop
execution.
Used if the destination attribute is null after using the
function block Foreign Key Lookup (foreignKeyLookup()).
Map has to stop execution.

Used if the destination attribute is null after using the
function block Foreign Key Lookup (foreignKeyLookup()).
Map has to continue execution.

Used if the destination attribute is null after using the
function block Foreign Key Cross-Reference
(foreignKeyXref()). Map has to stop execution.

When a map references a message number, the message files are searched in the

following order:

1. The map-specific message file mapName_locale.txt where mapName corresponds
to the name of the map, is searched.

2. The file UserMapMessages.txt is searched.

3. The IBM WebSphere InterChange Server Express generic message
CWMapMessages.txt is searched.

Format for map messages

To ensure consistency of messages, IBM WebSphere InterChange Server Express
has developed a message format. This section describes that format, including:

* [“Message format” on page 406|

* [“Message parameters” on page 406|

+ ["Comments” on page 407

Note: The map-specific message file should be modified from the message tab in
Map Designer Express and should not be modified directly. Map Designer
Express will overwrite any custom modification in the map-specific message

Appendix A. Message files 405

file with the messages saved in the map. However, for the message files
UserMapMessages.txt and CWMapMessages.txt, it is safe to modify the file
directly.

Message format

The format for each message is:

MessageNum
Message

The message number (MessageNum) and the message itself (Message) must be on
different lines, with a carriage return at the end of each line.

For example, a map’s messages might include a message identified as number 23,
whose text includes two placeholder variables, marked as {1} and {2}, as shown in
- igure 119

23
Customer ID {1} could not be changed: {2}

Figure 119. Sample Message

Message parameters

When the map calls a method that displays a particular message, it passes to the
method the message’s identifying number and potentially additional parameters.
The method uses the identifying number to locate the correct message in the
message file, and it inserts the values of the additional parameters into the
message text’s placeholder variables.

It is not necessary to write separate messages for each possible situation. Instead,
use parameters to represent values that change at runtime. The use of parameters
allows each message to serve multiple situations and helps to keep the message
file small.

A parameter always appears as a number surrounded by curly braces: {number}.
For each parameter you want to add to the message, insert the number within
curly braces into the text of the message, as follows:

message text {number} more message text.

For example, consider message 23 in [Figure 119(again. When the map wants to
display or log this message, it passes to the appropriate method the identifying
number of the message (23) and two additional parameters:

* Parameter 1 becomes the customer ID number (6701)

e Parameter 2 becomes a String variable containing some additional explanatory
text, such as greater than maximum length.

The method locates the correct message, substitutes the parameter values for the
message’s placeholders, and displays or logs the following message:

Customer ID 6701 could not be changed: greater
than maximum Tength

Because the message text takes the description of the missing entry and its ID as

parameters, rather than including them as hardcoded strings, you can use the same
message for any pair of customer ID and explanatory text.

406 Map Development Guide

Comments

Precede each comment line in a message file with a pound sign (#). For example, a
comment might look like this:

Message file for the Address business object map.

It is good practice to start the file with a series of comment lines to form a short
header. Include in the header data the name of the map and such information as
the file creator and file creation date.

Maintaining the files

At a user site, an administrator might set up a procedure for filtering map
messages and notifying someone who can resolve problems, by e-mail or e-mail
pager. This means that the error numbers and the meanings associated with the
numbers must remain the same after the first release of a map.

You can change the text associated with an error number, but you should avoid
changing the meaning of the text or reassigning error numbers. If you do change
the meanings associated with error numbers, you should document the change and
notify users of the map.

Operations that use message files

Message files hold text for messages used in several types of operations.
‘

lists the types of operations that use message files and the methods of the
BaseDLM class that perform those operations.

Table 113. Message-generating operations

Operation

Raising exceptions

Logging

Tracing

Function block Method

General/ APIs/Maps/Exception/ raiseException()

Raise Map Exception

* General/Logging and Tracing/Log * TlogInfo()
Information ID * logError()

* General/Logging and Tracing/Log error ID . 4 ogharning()
* General/Logging and Tracing/Log warning
1D
General/Logging and Tracing/Trace/Trace on trace()
Level

This section describes message-generating operations that affect map execution.

Raising exceptions

The raiseException() method has several forms. One commonly used syntax is:

raiseException(String exceptionType,
int messageNum, String param[,...])

With this syntax, you can have from one to three param String parameters. Thus,
there can be up to five comma-separated parameters in a call to raiseException().

This example raises a new exception, using message number 23, and passes in two
parameters to the message, the customer ID value and a string;:

Appendix A. Message files 407

raiseException(AttributeException, 23,
fromCustomer.getString("CustomerID"),
"greater than maximum Tength");

shows the text for message 23 as it appears in the message file.

Logglng messages
A map can log a message whenever something occurs that might be of interest to
an administrator. To log a message, a map uses the 1ogInfo(), TogWarning(), and
lTogError() methods of the BaseDLM class. Each method is associated with a
different message severity level.

Severity levels
To log_a message, you must call the method associated with the message’s severity
level. iTable 114|lists the severity levels and their associated methods.

Table 114. Message levels

Severity

level Method Description

Info TogInfo() Informational only. The user does not need to take action.

Warning TogWarning() Represents information about a problem. Do not use this
level for problems that the user must resolve.

Error TogError() Indicates a serious problem that the user needs to
investigate.

Using a message file

Every map has at least one message file associated with it. If a map does not use
custom messages, its messages come from the system map message file,
CWMapMessages.txt. If a map uses customized messages, it has a map-specific
message file (which is generated from the messages entered in the Messages tab of
Map Designer). For more information, see ["Message location” on page 403|

When a map logs an error, the text of the error message comes from the map’s
message file. The following example logs an error message whose text is contained
in the map’s message file. The text of error message 10 appears as follows in the
message file:

10
Credit report error for {1}, {2}.

The code to log the message looks like this:
TogError(10, customer.get("LName"), customer.get("FName");

When the TogError() method executes, the text for message 10 is written to the log
file, with the customer’s last name and first name substituted for parameters 1 and
2. For example, the logged message for a customer named John Davidson looks
like this:

Credit report error for Davidson, John.

Principles of good message logging
When creating messages, be sensitive to the way that administrators use the
logging feature.

Assigning severity levels: It is important to be precise when assigning error

levels to messages. The IBM system e-mail notification feature sends a message to
a designated person, usually the administrator, when it detects the generation of an

408 Map Development Guide

error message or fatal error message. Administrators use this IBM system e-mail
notification feature, and they additionally might link it to an e-mail pager to send a
page when an error occurs. By being precise when assigning error levels to
messages, you can reduce the number of critical messages.

Revising messages: You can revise the text of a message at any time, such as to
clarify or expand the text. However, once you assign a message number to a
certain type of error, it is important that you do not reassign the number. Many
administrators depend on scripts to filter log messages, and these scripts rely on
the message numbers. Thus, it is important that the numbers in the message file
do not change meaning. If they do, users can lose messages or receive inadvertent
messages.

When to use informational messages: You can use the TogInfo() method to
create temporary messages for your own debugging. However, be sure to remove
these debugging method calls when you are finished with development.

Resist the temptation to use the TogInfo() method to document the normal
operation of the collaboration. Doing so fills the administrator’s log files with
messages that are not of interest. Instead, use the trace() method to give the
administrator detailed information for debugging.

Adding trace messages

You can add trace messages to your map so that when a map instance runs, it
generates a detailed description of its actions. Trace messages are useful for your
own debugging and for on-site troubleshooting by administrators.

Trace messages differ from log messages in that trace messages are suppressed by
default, whereas log messages cannot be suppressed. Trace messages are generally
more detailed and are meant to be viewed only under certain circumstances, such
as when someone intentionally configures the map’s trace level to a number higher
than zero. You can send trace messages and log messages to different files.

You can add trace messages to a map to report operations that are specific to that
map. These are some types of information that the map can write to the trace file:

* Key values of a business object at the point that the map begins or ends a
particular transformation step.

* The decision to take a particular branch in the execution path.

Assigning trace levels

Each trace message must be associated with a trace level between 1 and 5. The
trace level usually correlates to a level of detail: messages at level 1 typically
contain less detail than messages at level 2, which contain less detail than those at
level 3, and so forth. Thus, if you turn on tracing at level 1, you see messages that
contain less detail than the messages at level 5. However, you can assign levels in
any way that is useful to you. Here are some suggestions:

* You can assign the same level to all of your trace messages.
* You can assign trace levels according to level of detail.

* You can assign message levels according to the business object involved: level 1
traces messages relating to a certain business object, level 2 traces messages
relating to another business object, and so on.

When you turn on tracing at a particular level, the messages associated with the
specified level and those associated with all lower levels appear. For example,
tracing at level 2 displays messages associated with both level 2 and level 1.

Appendix A. Message files 409

Tip: Make sure to note the tracing levels with your documentation, so users know
what level to use when they need to trace.

Generating a trace message
The following is an example of a message and the method call that generates the
message. The message appears in the message file as follows:

20
Begin transformation on {1} attribute: value = {2}

The method call obtains the value of the attribute LName, then uses the value to
replace the parameter in the message. The code appears in the map as follows, and
the message appears when the user sets tracing to level 3:

trace(3, 20, "LName", customer.get("LName"));

etting the trace level
shows the General tab of the Map Properties dialog in Map Designer.
(For information on how to display the Map Properties dialog, see [‘Providing map|
[property information” on page 54}) Notice that you can set the trace level for trace
messages in this dialog.

Map Properties

Figure 120. Trace level for a map

As the map developer, you create the levels for which map-generated tracing can
be requested, as described in [Assigning trace levels” on page 409,

Note: If you change the trace level for an activated map, you must stop and restart
the map before the new trace level takes effect. Use the Component menu of
IBM WebSphere System Manager to stop and start a map.

410 Map Development Guide

By setting the trace level in the Map Properties dialog of Map Designer, you set it
for all map instances based on this map definition. You can also set the trace level
for all map instances from the Map Properties window of IBM WebSphere System
Manager. For more information about the Map Properties window of System
Manager, see the User Guide.

Appendix A. Message files 411

412 Map Development Guide

Appendix B. Attribute properties

able 115[lists the properties for attributes of business object definitions.

Table 115. Attribute Properties

Property

Name

Type

IsKey

IsForeignKey
MaxLength

AppSpecificInfo

DefaultValue
IsRequired

ContainedObjectVersion

Relationship

Cardinality

Description

A name that describes what type of data the attribute
contains. The name can be up to 80 alphanumeric characters
and underscores. It cannot contain spaces or other
punctuation.

The data type of the attribute. Basic types include String,
Boolean, Double, Float, Integer, and Date. If the attribute
references a child business object, specify the name of a child
business object definition. Attributes that reference child
business objects are called compound attributes.

A boolean value, true or false, specifying whether this is a
key attribute. Key attributes uniquely identify a business
object created from the definition. Each business object
definition has at least one key attribute.

A boolean value, true or false, specifying whether this is a
foreign key attribute.

An integer representing the maximum number of bytes the
attribute can contain. To specify no limit, enter zero (0).

A string that provides information about the attribute for a
particular application, such as the name of a field in a table
or form that corresponds to the attribute. Connectors use
this information when processing the object.

The value to assign to this attribute if there is no runtime
value.

A boolean value, true or false, specifying whether a value
for this attribute is required to create a business object.

The version number of the child business object definition.
IBM WebSphere System Manager displays this value under
the name Type Version.

The relationship between the parent business object and the
child business object. In the current release, the only valid
relationship is Containment.

The number of child business objects that this attribute
references. If the attribute references only one child business
object, the value is 1. If the attribute can reference many
child business objects, the value is a literal n.

© Copyright IBM Corp. 2003

413

414 Map Development Guide

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Burlingame Laboratory Director
IBM Burlingame Laboratory
577 Airport Blvd., Suite 800

© Copyright IBM Corp. 2003 415

Burlingame, CA 94010
US.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not necessarily tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

Programming interface information

Programming interface information, if provided, is intended to help you create
application software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States or other countries, or both:

416 Map Development Guide

IBM

the IBM logo
AIX
CrossWorlds
DB2

DB2 Universal Database
Domino
Lotus

Lotus Notes
MQIntegrator
MQSeries
Tivoli
WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others. Map Designer Express and Relationship Designer Express include software
developed by the Eclipse Project (http://www.eclipse.org/).

JAVA

WebSphere Business Integration t Express for Item Synchronization V4.3

Notices 417

418 Map Development Guide

Index

Special characters
bo file extension 12, 74, 75, 79

.class file extension 12, 70

.cwm file extension 12, 48, 53

java file extension 12, 70, 71

xt file extension 12, 67, 221, 403

Activity Editor (continued)

New Constant 90, 94

ports 93

Properties window 92

Quick view mode 92, 136
Resize label 94

Set Value transformation 37, 88

Access client 72, 148, 193
ACCESS_REQUEST calling context 147, 148, 193

Create verb and 193, 214, 218

Delete verb and 194, 214

foreignKeyXref() and 217, 351
getOriginalRequestBO() and 365
maintainChildVerb() and 214, 354
maintainCompositeRelationship() and 204, 355
maintainSimpleldentityRelationship() and 193, 358
original-request business object 148, 365
Retrieve verb and 194, 214, 218

retrieving 364

setting to 367

testing with 81, 84

Update verb and 194, 214, 218

ACCESS_RESPONSE calling context 147, 148, 193

foreignKeyXref() and 220, 351
getOriginalRequestBO() and 366
maintainCompositeRelationship() and 204, 355
maintainSimpleldentityRelationship() and 200, 358
original-request business object 148, 201, 366
retrieving 364

setting to 367

updateMyChildren() and 210

Activity Editor 87

accessing 25, 26, 37, 40, 41, 45, 88
Add Comment 90

Add Description 90, 131

Add Label 90

Add Todo 90

Add To My Collection 90
Comment 94

connection links 93

Content window 92
Cross-Reference transformation 88
Description 94

Design mode 92, 135
Document Display Area 88
example of using 122, 126, 133
function blocks 93, 95
Graphical view 88, 91
grouping components 94
Help menu 90

Java view 88, 135

Join transformation 40, 88
keyboard shortcuts 88

Label 94

layout 88

Library window 92

main menus 88

main views 88

© Copyright IBM Corp. 2003

Split transformation 41, 83
starting 87
Status bar 91
Submap transformation 45, 88
Title Bar 88
To Do 94
toolbars 90
addDays() method 310
addElement() method 260
addMyChildren() method 345, 370, 391
addParticipant() method 378
addWeekdays() method 311
addYears() method 312
after() method 313
AnyException exception 234
Application-specific business objects 3
AppSpecificInfo attribute property 413
Attribute
addressing in transformations 140
advanced settings 182
application-specific information 413
checking for key 248
column name 182
comments for 17, 34, 50, 57, 63
data type 16, 34, 256, 413
dependencies of 66
destination 5, 16
finding 36, 49, 60
joining 38
maximum length 413
name 16, 34, 413
properties 413, 415
relationship 146, 187, 188
required 250, 413
source 16
specifying 240
splitting 40
unlinked 18, 49, 59, 60
validating 52, 69
Attribute value
adding together 270
blank 248
copying 37, 50
default 36, 73, 253, 413
null 249
retrieving 245
retrieving as string 255
retrieving maximum 262, 263, 264
retrieving minimum 265, 266, 267
setting 251, 254
setting default value for 253
validating 146
validating data type 256
zero-length string 248

419

AttributeException exception 234

BaseDLM class 227, 237
defined 227
getDBConnection() 227
getName() 229
getRelConnection() 230
implicitDBTransactionBracketing() 231
isTraceEnabled() 231
logError() 232
logInfo() 232
logWarning() 232
method summary 227
releaseRelConnection() 235
trace() 236
before() method 314
beginTran() method (deprecated) 289
beginTransaction() method 273
Blank attribute value 248
BOOL_TYPE constant 298
Boolean class 413
as stored-procedure parameter type 285
converting to 300
converting to Boolean 303
determining data type 298
valid conversions 300
boolean data type
as stored-procedure parameter type 285
checking for valid data 256
converting to 303
converting to Boolean 300
determining data type 298
getting attribute value 245
setting attribute to 251
valid conversions 300
Breakpoints 75, 78
Browsing a Project 169
Business object
adding 14, 169
adding to an array 260
addressing in transformations 140
business object definition for 247
comparing attribute values 243, 244
comparing key attribute values 242
copying 241
deleting 14, 63, 169
duplicating 242
generic 3, 148
instance name 34, 140
key attribute in 248
null attribute in 249
number in a business object array 270
properties 141
refreshing list of 17
removing from business object array 268, 269
required attribute in 250
retrieving attribute value 245, 255
retrieving from business object array 261
retrieving key attribute value 250
retrieving verb 247
setting attribute value 251, 252, 254
setting key values 253
setting value of 269
swapping in an array 270
temporary 142

420 Map Development Guide

Business object (continued)
transversing hierarchical 240
validating attribute data type 256
variable for 140

Business object array
adding attribute values together 270
adding business object to 260
comparing with another 261
duplicating 260
index 69, 74, 140
removing all elements from 268
removing element from 268, 269
retrieving a business object from 261
retrieving contents of 262
retrieving last index of 262

retrieving maximum attribute value from 262, 263, 264
retrieving minimum attribute value from 265, 266, 267

retrieving size of 270

retrieving values as string 271

reversing position of elements in 270

setting element of 269
Business Object Array function block 96
Business object definition

retrieving name of 247
Business Object function block 98
Business Object/Array function block 97
Business Object/Constants function block 97
BusObj class 239, 257

copy() 241

defined 239

deprecated methods 256

duplicate() 242

equalKeys() 242

equals() 243

equalsShallow() 244

exists() 244

getCount() 257

getKeys() 257

getLocale() 247, 253

getType() 247

getValues() 257

getVerb() 247

isBlank() 248

isKey() 248

isNull() 249

isRequired() 250

keysToString() 250

method summary 239

not() 257

set() 251, 257

setContent() 252

setDefaultAttrValues() 253

setKeys() 253

setVerb() 254

setWithCreate() 254

toString() 255

validData() 256
BusObjArray class 259, 271

addElement() 260

defined 259

duplicate() 260

elementAt() 261

equals() 261

getElements() 262

getLastIndex() 262

max() 262

maxBusObjArray() 263

BusObjArray class (continued)
maxBusObjs() 264
method summary 259
min() 265
minBusObjArray() 266
minBusObjs() 267
removeAllElements() 268
removeElement() 268
removeElementAt() 269
setElementAt() 269
size() 270
sum() 270
swap() 270
toString() 271

C

calcDays() method 314
calcWeekdays() method 315
CALL statement 276, 277, 291
Call-triggered flow 148
Calling contexts 146
ACCESS_REQUEST 147, 193
ACCESS_RESPONSE 147, 193
EVENT_DELIVERY 147, 193
example of 149
identity relationship and 193
retrieving 363
SERVICE_CALL_FAILURE 147, 193
SERVICE_CALL_REQUEST 147, 193
SERVICE_CALL_RESPONSE 147, 193
setting 366
testing with 80
CANNOTCONVERT constant 299
Cardinality attribute property 413
child business objects
customizing for relationships 205
example of customizing for relationships 205
Child business objects
adding to parent/child relationship 345, 358
attribute comment for 50
cardinality of 176, 413
identity relationships 176
multiple-cardinality 42

removing from parent/child relationship 347, 358

setting verb for 352

submaps for 42, 44

testing 74

verb 213

version number 413
CLASSPATH environment variable 140
CollaborationException class 240
commit() method (CwDBConnection) 274
commit() method (DtpConnection) 235, 290
Comparing

business object arrays 261

business object attribute values 243, 244

key attribute values 242

Composite identity relationship 157, 159, 174, 202, 210

customizing map rules for 204

defining 175, 176, 202

main map 205

maintainChildVerb() and 206, 216
maintainCompositeRelationship() and 203, 354
managing child instances 207

participant type for 202

Connection
determining if active 280
obtaining 227
releasing 281
transaction programming model 227, 228
Connection pool 228, 281
Connector
initiating mapping request 72, 147, 193
retrieving name of 363
setting name of 366
ContainedObjectVersion attribute property 413
Context menu (Activity Editor) 90
Add Comment 90
Add Description 90
Add Label 90
Add To do 90
Add To My Collection 90
New Constant 90
Context menu (business object browser)
Copy 34
Refresh All 17
Context menu (business object pane)
Add Business Object 33
Delete Business Object 63
Context menu (business object window)
Delete 35
Properties 142
Context menu (dest. data, attribute)
Clear Breakpoint 77
Set Breakpoint 76
Context menu (dest. data, main object)
Collapse 76
Save To 79
Context menu (map workspace)
Add Business Object 33
Delete 63
Map Properties 54
Paste As Input Object 34
Paste As Output Object 34
Context menu (Relationship Designer)
Change Index 176
Context menu (source data, child object)
Add Instance 73,74, 75
Remove All Instances 75
Remove Instance 75
Context menu (source data, main object)
Load From 75
Reset 73
Save To 74
Context menu (Transformations)
Open 25
Open in New Window 25
View Source 26
copy() method 241, 257
Copying
attributes 37, 50
business object 241
participant definitions 178, 179
relationship definitions 178
Create verb
conditionally set 211
foreignKeyXref() and 218, 220
maintainChildVerb() and 214, 215
maintainCompositeRelationship() and 204

maintainSimpleldentityRelationship() and 193, 195, 197,

200
create() method 370, 374, 380

Index

421

Cross-Reference transformation 16, 21, 36, 45, 69, 88

defining for relationships 191
validating 52
Custom transformation 16, 21, 36, 46, 50, 88, 187
CwDBConnection class 273, 283
beginTransaction() 273
commit() 274
creating object of 227
executePreparedSQL() 275
executeSQL() 276
executeStoredProcedure() 278
getUpdateCount() 279
hasMoreRows() 279
inTransaction() 280
isActive() 280
method summary 273
nextRow() 281
release() 281
rollBack() 282

Date formatting (continued)

generic format 317

getting day of the month 317, 318

getting day of the week 318, 319

getting earliest date from a list 323, 325
getting hour value 318

getting in specified or default format 330
getting milliseconds between 1/1/70 and date 321
getting minutes value 319, 326

getting month name 326, 327

getting month value 320, 326

getting most recent date from a list 321, 322
getting seconds value 320, 327

getting year 320, 328

parsing date according to format 309
reformatting to CrossWorlds date format 317
using full names of months 316, 328, 329
using short names of months 316, 329

using weekday names 316, 330

CwDBStoredProcedureParam class 285, 287 Date function block 111, 127

constructor 285 DATE_TYPE constant 298

getParamType() 286 Date/Formats function block 113

getValue() 287 deactivateParticipant() method 381

method summary 285 deactivateParticipantByInstance() method 382
CwDBStoredProcedureParam() constructor 285 Debug menu (Map Designer) 25
CwDBTransactionException exception 228, 274, 275, 282, 283 Advanced 25
cwExecCtx variable 146, 333, 346, 347, 349, 350, 355, 357, 359 Attach 25,79
CWDMapMessages.txt message file 404 Breakpoints 25, 77
CWMAPTYPE constant 333 Clear All Breakpoints 25, 77
CxMissingIDException exception 405 Continue 25, 78

Detach 25, 79
Run Test 25,78

D Step Over 25,78

Stop Test Run 25

Toggle Breakpoint 25, 76
Default attribute value 36, 253, 413
DefaultValue attribute property 413
DELETE statement 276, 277
Delete verb

foreignKeyXref() and 220

maintainChildVerb() and 214, 215

maintainCompositeRelationship() and 204

maintainSimpleldentityRelationship() and 194, 196, 197,

200

deleteMyChildren() method 347
deleteParticipant() method 383
deleteParticipantByInstance() method 384
Deprecated methods

BusObj class 256, 368

DtpConnection class 289

Relationship class 390

UserStoredProcedureParam class 393
Design mode (Activity Editor) 92
Designer toolbar (Map Designer) 22

Add Business Object 33

All Attributes 22

Clear All Breakpoints 77

Data conversion 38, 297

class for 297

Java.lang methods 297

to boolean data type 303

to Boolean object 300

to double data type 303

to Double object 301

to float data type 304

to Float object 301

to int data type 304

to Integer object 302

to String object 305

valid conversions 300
Data type

attribute 413

determining 297

determining if conversion is possible 298
Data validation 146
Database

connecting to 227

executing a query in 276, 277, 278

querying 279, 281

rows affected by last write 279
Database Connection function block 101

DataValidationLevel map property 85
Date class 285, 298, 300, 413
Date formatting
adding days to date 310
adding weekdays to date 311
adding years to date 312
calculating days between dates 314
calculating weekdays between dates 315
comparing dates 313, 314
current date 309

422 Map Development Guide

Compile 70

Continue 78
displaying 22, 24
Linked Attributes 22
Run Test 78

Step Over 78

Toggle Breakpoint 76
Unlinked Attributes 22
Validate 69

Destination business object 3, 5, 13, 144

Destination business object (continued)
adding to map 30, 33
business object window 34
displaying 9, 17, 24, 55
execution order 16, 52, 66, 69
relationship and 153
setting verb of 35
variable for 140
verb 35, 210
Diagram tab (Map Designer) 17
adding business object 33
business object browser 17, 22, 24
business object variables 141
business object window 18, 24, 34, 141
calling a submap 44
custom transformation 46
default display 22
deleting a transformation 63
displaying attributes 36
joining attributes 38
key mappings 21
map workspace 18, 143
moving attribute 37
setting attribute value 36
splitting attribute 40
temporary business object 143
Double class 413
as stored-procedure parameter type 285
converting to 301
converting to Double 303
converting to Float 302, 304
converting to Integer 302, 305
converting to String 305
determining data type 298
obtaining maximum value 263, 264
obtaining minimum value 265, 266, 267
valid conversions 300
double data type
as stored-procedure parameter type 285
checking for valid data 256
converting to 303
converting to Double 301
converting to Float 302, 304
converting to Integer 302, 305
converting to String 305
determining data type 298
getting attribute value 245
setting attribute to 251
valid conversions 300
DOUBLE_TYPE constant 298
DtpConnection class (deprecated) 289, 295
beginTran() 289
commit() 290
creating object of 230
execStoredProcedure() 292
executeSQL() 291
getUpdateCount() 293
hasMoreRows() 293
inTransaction() 294
method summary 289
nextRow() 294
rollBack() 295
DtpDataConversion class 297, 306
CANNOTCONVERT 299
defined 297
getType() 297
isOKToConvert() 298

DtpDataConversion class (continued)

method summary 297
OKTOCONVERT 299
POTENTIALDATALOSS 299
toBoolean() 300
toDouble() 301
toFloat() 301
tolnteger() 302
toPrimitiveBoolean() 303
toPrimitiveDouble() 303
toPrimitiveFloat() 304
toPrimitivelnt() 304
toString() 305

DtpDate class 307, 331

addDays() 310
addWeekdays() 311
addYears() 312

after() 313

before() 314

calcDays() 314
calcWeekdays() 315
DtpDate() 309
getl2MonthNames() 316
getl2shortMonthNames() 316
get7DayNames() 316
getCWDate() 317
getDayOfMonth() 317
getDayOfWeek() 318
getHours() 318

getintDay() 318
getIntDayOfWeek() 319
getIntMilliSeconds() 319
getIntMinutes() 319
getIntMonth() 320
getIntSeconds() 320
getIntYear() 320
getMaxDate() 321
getMaxDateBO() 322
getMinDate() 323
getMinDateBO() 325
getMinutes() 326
getMonth() 326
getMSSincel970() 321
getNumericMonth() 326
getSeconds() 327
getShortMonth() 327
getYear() 328

method summary 307

rules for 307
setl2MonthNames() 328
set12MonthNamesToDefault() 329
set12ShortMonthNames() 329
set12ShortMonthNamesToDefault() 329
set7DayNames() 330
set7DayNamesToDefault() 330
toString() 330

DtpDate() constructor 309
DtpMapService class 333, 334

method summary 333
runMap() 333

DtpSplitString class 335, 340

defined 335
DtpSplitString() 335
elementAt() 336
firstElement() 336
getElementCount() 337
getEnumeration() 338

Index

423

DtpSplitString class (continued)
lastElement() 338
method summary 335
nextElement() 338
prevElement() 339
reset() 340

DtpSplitString() constructor 335

DtpUtils class 341, 343
method summary 341
padLeft() 341
padRight() 341
stringReplace() 342
truncate() 343

duplicate() method 242, 260

Duplicating
business object 242
business object array 260

Dynamic relationship 184

E

Edit menu (Activity Editor) 89
Copy 89
Cut 89
Delete 89
Find 89
Goto Line 89
Paste 89
Select All 89
Edit menu (Map Designer) 24
Add Business Object 24, 32, 141, 142
Delete Business Object 24, 63
Delete Current Selection 24, 34, 63
Find 24, 36, 49, 60
Insert Row 24
Map Properties 24, 54, 85, 141
Replace 24, 62
Select All 24
Edit menu (Relationship Designer) 172
Advanced Settings 172, 175, 177, 179, 182
Copy 172,178, 179
Cut 172
Delete 183
Paste 172, 178, 179
Rename 172
elementAt() method 261, 336
Environment variable
CLASSPATH 140
JCLASSES 139
PATH 10
equalKeys() method 242
equals() method 243, 261
equalsShallow() method 244
Error
compilation 71
run-time 85
Error message 232, 408
EVENT_DELIVERY calling context 147, 193
Create verb and 193, 214, 218
Delete verb and 194, 214
foreignKeyXref() and 217, 351
getOriginalRequestBO() and 365
maintainChildVerb() and 214, 354

maintainCompositeRelationship() and 204, 355
maintainSimpleldentityRelationship() and 193, 358

original-request business object 148, 365
Retrieve verb and 194, 214, 218

424 Map Development Guide

EVENT_DELIVERY calling context (continued)
retrieving 364
setting to 367
testing with 81, 84
Update verb and 194, 214, 218
updateMyChildren() and 210
Event-triggered flow 147
Exception handling 144
Exception types 240
Exceptions
CollaborationException class 240

CwDBTransactionException 228, 274, 275, 282, 283

defined 144, 240

raising 233, 407

RelationshipRuntimeException class 145

relationships 145

type 240
execStoredProcedure() method (deprecated) 292
executePreparedSQL() method 275
executeSQL() method (CwDBConnection) 276
executeSQL() method (DtpConnection) 291
executeStoredProcedure() method 278
exists() method 244

F

File menu (Activity Editor) 89
Close 89
Print 89
Print Preview 89
Print Setup 89
Save 89
File menu (Map Designer) 23
Close 23,53
Compile 23, 53, 70, 73
Compile All 24, 70
Compile with Submap(s) 24, 70
Create Map Document 24, 58
Delete 23, 64
Exit 24, 53
New 23,29
Open 23,52, 53
Print 24, 62
Print Preview 24, 62
Print Setup 24, 62
Save 23, 47,49
Save As 23,47, 49
Validate Map 23, 69
View Map Document 24, 60
File menu (Relationship Designer) 171
Add Participant Definition 172, 173
New 171
New Relationship Definition 173
Save 171
Save All 171
Save Relationship Definition 174, 178, 179
Switch to Project 171
Find and Replace text 62
Find text 60
Find unlinked attribute 60
firstElement() method 336
Float class 413
as stored-procedure parameter type 285
converting to 301
converting to Double 301, 303
converting to Float 304
converting to Integer 302, 305

Float class (continued)
converting to String 305
determining data type 298
obtaining maximum value 263, 264
obtaining minimum value 265, 266, 267
valid conversions 300
float data type
as stored-procedure parameter type 285
checking for valid data 256
converting to 304
converting to Double 301, 303
converting to Float 302
converting to Integer 302, 305
converting to String 305
determining data type 298
getting attribute value 245
setting attribute to 251
valid conversions 300
FLOAT_TYPE constant 298
Foreign key 216, 348, 350, 413
Foreign Key Cross-Reference function block 217
Foreign key lookup 216
Foreign Key Lookup function block 216
foreignKeyLookup() method 216, 348, 405
foreignKeyXref() method 217, 350, 405
Function blocks 93, 95
adding custom Jar libraries as 137
customizing Jar library properites 137
example of using 122, 123, 127, 133
General/ APIs/Business Object 98
General/ APIs/Business Object Array 96
General/ APIs/Business Object/Array 97
General/ APIs/Business Object/Constants 97
General/ APIs/Database Connection 101
General/APIs/Identity Relationship 103
General/APIs/Maps 106
General /APIs/Maps/Constants 104
General / APIs/Maps/Exception 105
General/ APIs/Participant 107
General/ APIs/Participant/Array 106
General/ APIs/Participant/Constants 107
General/APIs/Relationship 109
General/Date 111
General/Date/Formats 113
General/Logging and tracing 113
General/Logging and Tracing/Log Error 113
General/Logging and Tracing/Log Information 114
General/Logging and Tracing/Log Warning 114
General/Logging and Tracing/Trace 115
General/Mapping 116
General/Math 116
General/Properties 118
General/Relationship 118
General/String 119
General/Utilities 121
General/Utilities / Vector 121
using to implement relationships 187

G

get12MonthNames() method 316
get12ShortMonthNames() method 316
get7DayNames() method 316
getConnName() method 363
getCount() method (deprecated) 257
getCWDate() method 317
getDayOfMonth() method 317

getDayOfWeek() method 318
getDBConnection() method 227, 228
getElementCount() method 337
getElements() method 262
getEnumeration() method 338
getGenericBO() method (deprecated) 368
getHours() method 318
getInitiator() method 363
getInstanceld() method 371
getIntDay() method 318
getIntDayOfWeek() method 319
getIntMilliSeconds() method 319
getIntMinutes() method 319
getIntMonth() method 320
getIntSeconds() method 320
getIntYear() method 320
getKeys() method (deprecated) 257
getLastIndex() method 262
getLocale() method 247, 253, 364
getMaxDate() method 321
getMaxDateBO() method 322
getMinDate() method 323
getMinDateBO() method 325
getMinutes() method 326
getMonth() method 326
getMSSince1970() method 321
getName() method 229
getNewID() method 385
getNumericMonth() method 326
getOriginalRequestBO() method 365, 368
getParamDataTypeJavaObj() method (deprecated) 394
getParamDataType]DBC() method (deprecated) 395
getParamIndex() method (deprecated) 395
getParamIOType() method (deprecated) 396
getParamName() method (deprecated) 397
getParamType() method 286
getParamValue() method (deprecated) 397
getParticipantDefinition() method 372
getRelationshipDefinition() method 372
getRelConnection() method (deprecated) 230, 291, 292
getSeconds() method 327
getShortMonth() method 327
getType() method 247, 297
getUpdateCount() method (CwDBConnection) 279
getUpdateCount() method (DtpConnection) 293
getValue() method 287
getValues() method (deprecated) 257
getVerb() method 247
getYear() method 328
Graphical view (Activity Editor) 88, 91

Content window 92

Design mode 92

Library window 92

Properties window 92

Quick view mode 92
Graphics toolbar (Activity Editor) 91

Back 91

Forward 91

Home 91

Up One Level 91

Zoom In 91

Zoom Out 91

H

hasMoreRows() method (CwDBConnection) 279
hasMoreRows() method (DtpConnection) 293

Index

425

Help menu (Activity Editor) 90
Help menu (Map Designer) 25
Help menu (Relationship Designer) 172
Hierarchical business object
comparing all 243
comparing top-level 244
transversing 240

Identity relationship 155, 159
adding child business objects 345, 358
child business objects 176
class for 345
creating participant for 370
defined 154, 155, 174
defining 174, 176, 191, 201, 202
deleting child business objects 347, 358
kinds of 155, 174
maintaining child verb 213
relationship instance IDs 162
static 185
static lookup 211
testing 80
Identity Relationship function block 103
IdentityRelationship class 161, 162, 345, 361
addMyChildren() 345, 391
deleteMyChildren() 347
foreignKeyLookup() 348
foreignKeyXref() 350
maintainChildVerb() 352
maintainCompositeRelationship() 354, 391

maintainSimpleldentityRelationship() 356, 391

method summary 345
updateMyChildren() 358, 391
implicitDBTransactionBracketing() method 231
IN parameter 287
Inbound map 3, 4
example of customizing 211
foreign key lookup in 219, 349, 351
in map document 57
lookup relationship in 387
testing 81, 82, 84
Informational message 232, 408, 409
INOUT parameter 287
INSERT statement 190, 276, 277, 279
int data type
as stored-procedure parameter type 285
checking for valid data 256
converting to 304
converting to Double 301, 303
converting to Float 302, 304
converting to Integer 302
converting to String 305
determining data type 298
getting attribute value 245
setting attribute to 251
valid conversions 300
Integer class 413
as stored-procedure parameter type 285
converting to 302
converting to Double 301, 303
converting to Float 302, 304
converting to Integer 305
converting to String 305
determining data type 298
obtaining maximum value 263, 264

426 Map Development Guide

Integer class (continued)
obtaining minimum value 265, 266, 267
valid conversions 300
INTEGER_TYPE constant 298
inTransaction() method (CwDBConnection) 280
inTransaction() method (DtpConnection) 294
INVALID_INSTANCE_ID constant 372, 374, 380
isActive() method 280
isBlank() method 248
IsForeignKey attribute property 413
IsKey attribute property 413
isKey() method 248
isNull() method 249
isOKToConvert() method 298
IsRequired attribute property 413
isRequired() method 250
isTraceEnabled() method 231

J

Jar libraries
customizing display settings 137
importing as function blocks 137
Java class
Boolean 300, 413
Date 298, 413
Double 301, 303, 413
Float 301, 304, 413
Integer 302, 305, 413
Object 245, 251, 256
StringTokenizer 335
Vector 276, 281, 286
Java compiler (javac) 70
Java Development Kit (JDK) 10
Java operator
NOT 257
Java view (Activity Editor) 88
Design mode 135
Quick view mode 136
WordPad 135

java.lang package 297
java.util package 335

JavaException exception 234
JCLASSES environment variable 139
Join transformation 16, 21, 35, 38, 50, 52, 69, 88

K

Key attribute 155, 413
composite 157, 175, 202, 355
foreign 216, 348, 350, 413
identity relationships and 175
single 155, 175, 357

Key attribute values
checking for 248
comparing 242
retrieving as string 250
setting 253

Keyboard shortcut 27

keysToString() method 250, 257

L

lastElement() method 338
logError() method 232, 407, 408
Logging 85, 408, 409

Logging (continued)
example 408
levels 408
methods that send message 232, 407, 408
principles of 408
severity levels 408
Logging and tracing function block 113
Logging and Tracing/Log Error function block 113
Logging and Tracing/Log Information function block 114
Logging and Tracing/Log Warning function block 114
Logging and Tracing/Trace function block 115
Logical operator 257
logInfo() method 85, 232, 407, 408, 409
logWarning() method 232, 408
long data type 245, 251, 256, 285
LongText class
determining data type 298
getting attribute value 245
obtaining maximum value 263, 264
obtaining minimum value 265, 266, 267
setting attribute 252
valid conversions 300
LONGTEXT_TYPE constant 298
Lookup relationship 154, 188
code for 191, 387, 388
creating participant for 371
defined 154, 176, 188
defining 176, 188
example of 154, 188
participant type for 164, 177, 188
relationship instance IDs 162
static 133, 185
testing 83

M

Maintain Composite Identity Relationship function block 203

maintainChildVerb() method 204, 213, 216, 352
validations performed 353
maintainCompositeRelationship() method 354
actions of 203
deprecated version 391
error messages 404, 405
maintainSimpleldentityRelationship() method 356
deprecated version 391
error messages 404, 405
validations performed 357
Managing child instances function blocks 207
Map definition 5,7
creating 29
defined 5
in map definition file 48
loading 67
location of 5
naming conventions 5
New Map wizard 29
unloading 67
Map Designer 7, 13, 51
Add Business Object dialog 32, 142
Breakpoint dialog 77
business object browser 17, 22, 24
business object pane 17, 22, 33, 63, 143
business object window 18, 24, 34, 141
Context menu 25
data conversion by 38
Delete Business Object dialog 63
Delete Map dialog 65

Map Designer (continued)

exiting 24, 53

files generated 11

Find control pane 23, 49, 60, 61
functionality of 23

launching 14

layout of 14

main components 15

main window 15, 21

map workspace 18, 33, 143
menus of 23

Messages tab 18, 22, 403
Multiple Attributes dialog 16, 38
New Map wizard 29, 32

Open file with map dialog 53
Open Map from Project dialog 52
output window 15, 19, 22, 23, 24, 71, 72
overview 13

preferences 19

Programs toolbar 22, 23, 24, 168
Save Map As dialog 32, 47
search facility 60

starting 14

status bar 15, 22, 24, 170
Submap dialog 44

tab window 8, 51

Tab window 15

Test tab 18,22, 72

toolbars 22, 26, 170

working in projects 14

Map development 10, 13
Map document 56, 60
Map execution

continuing 78

execution order 16, 52, 66, 69

map instances and 7

pausing 75,78

purpose of 146

relationship instances and 160, 164
test run and 72

transactions and 228, 230

viewing 72,79

Map execution context 146

calling context 146, 364, 365, 367, 368

class for 146, 363

cxExecCtx 146

original-request business object 148, 196, 197, 201, 218,
220, 366

Map instance 7

calling context 363, 366

class for 227

connector name 363, 366

contents of 7

defined 7

execution context 7, 146
original-request business object 365
reusing 143, 144

starting 410

stopping 410

trace level 411

transaction programming model 231

Map properties 9, 54

DataValidationLevel 85

run-time 55

Trace level 236, 410

updating from server component management view 55,
144

Index 427

Map Properties dialog (Map Designer)
Business Objects tab 141, 143
General tab 55, 228, 410

Map repository file 67

MapExeContext class 363, 369
calling-context constants 147
deprecated methods 368
getConnName() 363
getGenericBO() 368
getInitiator() 363
getLocale() 364
getOriginalRequestBO() 365
method summary 363
setConnName() 366
setlnitiator() 366
setLocale() 367

mapName._locale.txt message file 403

mapName.txt message file 405

Mapping
defined 3
overview 3
simple 5
standards 50, 86
support for 3
tools for 7,8

Mapping API
BusObjArray class 259
CwDBConnection class 273
CwDBStoredProcedureParam class
DtpConnection class 289
DtpDataConversion class 297
DtpDate class 307
DtpMapService class 333
DtpSplitString class 335
DtpUtils class 341
IdentityRelationship class 345
MapExeContext class 363
Participant class 369
Relationship class 377

UserStoredProcedureParam class 393

Mapping function block 116
Mapping role 55
Maps
base class for 227
closing 53
coding 87
compiling 15, 18, 48, 70, 71, 73
creating 28
current 47,51, 70, 229
debugging 79, 85
defined 3,7, 13
deleting 64
development files 11
exceptions and 144
execution context 146
HTML version 56
improving modularity of 42
map documents 56, 60
name of 5, 32, 55, 229
naming 32
opening 51
printing 62
renaming 48
saving 18, 32, 47, 63
saving to file 49
saving to project 47
testing 72,79

428 Map Development Guide

Maps (continued)

validating 20, 47, 51, 69

viewing execution 72, 79

working with 51

XML version 48
Maps function block 106
Maps/Constants function block 104
Maps/Exception function block 105
Math function block 116

MAX_CONNECTION_POOLS configuratin parameter

183
max() method 262
maxBusObjArray() method 263
maxBusObjs() method 264
MaxLength attribute property 413
Message 18
5000 404
5001 404
5002 405
5003 405
5007 405
5008 405
5009 405
format 405
location of 18, 403
number 406
parameters in 403, 406
revising 409
severity 408
text 406
Message file 403, 410
choosing which one to use 403
comments 407
CWMapMessages.txt 404
defined 403
displaying 18
format 405
location of 12, 403
maintaining 407
mapName_locale.txt 403
mapName.txt 405
operations that use 407
overview 403
UserMapMessages.txt 404, 405
using 406, 408
min() method 265
minBusObjArray() method 266
minBusObjs() method 267

Move transformation 16, 21, 35, 37, 50, 52, 69

Multiple-map map table 57

N

Name attribute property 413
Naming conventions

maps 5

participant definitions 164, 173

relationship definitions 160, 173
New Constant 90, 94, 130
nextElement() method 338

nextRow() method (CwDBConnection) 281
nextRow() method (DtpConnection) 294

Non-identity relationships 154
NOT operator 257

not() 257

Null attribute value 249
Numbers, truncating 343

O

Object class 245, 251, 256
ObjectEventld attribute 50, 69, 74, 80
ObjectException exception 234
OKTOCONVERT constant 299
OperationException exception 234
Original-request business object 148, 196, 197, 201, 218, 220,
365
OUT parameter 287
Outbound map 3,5
example of customizing 212
foreign key lookup in 349, 351
in map document 57
lookup relationship in 388
testing 82, 84

P

Package
importing Java packages 136
javalang 297
java.util 335
padLeft() method 341
padRight() method 341
PARAM_IN constant 287
PARAM_INOUT constant 287
PARAM_OUT constant 287
Parent/child relationship 208
adding child instance 345, 358
defined 208
defining 176
deleting child instance 347, 358
Participant class 162, 165, 369, 375
defined 369
getInstanceld() 371
getParticipantDefinition() 372
getRelationshipDefinition() 372
method summary 369
Participant() 369
set() 373
setInstanceld() 373
setParticipantDefinition() 374
setRelationshipDefinition() 374
Participant definition 163
advanced settings 175, 180
copying 178, 179
creating 173
defined 163
location of 163
name of 372, 374
naming conventions 164, 173
renaming 179
Participant function block 107
Participant instance 164
adding to relationship instance 378
class for 165, 369
constructor for 369
contents of 165
creating 369, 380
data 165, 181, 369, 371, 373
deactivating 381, 382
defined 164, 369
deleting 383, 384
identifier 164
participant definition 165, 369, 372, 374
relationship definition 165, 369, 372, 374

Participant instance (continued)
relationship instance ID 165, 369, 371, 373, 386
retrieving from relationship instance 388
updating 389
Participant instance identifier 164
Participant type 164, 173
business object 164, 173, 174, 191, 202
Data 154, 164, 173, 177, 188
Participant Types window 170, 171, 173, 177
Participant/Array function block 106
Participant/Constants function block 107
Participant() constructor 369, 374
Participants 163, 165
defined 153
naming conventions 164, 173
PATH environment variable 10, 70
POTENTIALDATALOSS constant 299
Preferences dialog (Map Designer) 25
General tab 16, 20, 48, 51, 65, 67, 70, 141
Key Mapping tab 21, 38, 39, 40, 44, 46
Validation tab 21
prevElement() method 339
Project 14, 168
browsing a 169
opening a map from 14
saving map to 47
saving the map in 14
working in 14
working with 168
Properties function block 118

Q

Quick view mode (Activity Editor) 92

R

Relationship attribute property 413
Relationship class 161, 162, 377, 393
addParticipant() 378
create() 380
deactivateParticipant() 381
deactivateParticipantByInstance() 382
defined 377
deleteParticipant() 383
deleteParticipantByInstance() 384
deprecated methods 390
getNewlID) 385
guidelines 377
method summary 377
retrievelnstances() 386
retrieveParticipants() 388
updateParticipant() 389
updateParticipantByInstance() 389
Relationship database 160
connecting to 230
determining if transaction is in progress 294
disconnecting from 235
location of 11, 160, 161, 180, 182, 183
queries for more rows to process 293
retrieving next row 294
rows affected by last write 293
SQL queries 291
type of 180, 182
user account for 179, 180, 182
Relationship definition 159, 160

Index

429

Relationship definition (continued) Relationship tables 160, 161

advanced settings 175, 179 caching 184

changing 174 changes to 149

copying 178 composite identity relationships 203

creating 173 contents of 163

defined 7, 159, 167 creating 175, 178, 181

deleting 183 defined 161

dependent objects 223 foreign 216, 349, 351

identity 174, 176, 191, 201, 202 foreign key lookups and 348, 350

list 169 identity relationships 191

loading 222 index size 203

location of 159 location of 160, 161, 180, 182, 183, 184

lookup 176, 188 lookup relationships 133, 176, 177, 189

name of 372, 374 MaxLength attribute 203

naming conventions 160, 173 modifying 350

parent/child 208 name of 161, 181, 189

renaming 179 participants in 382, 383

saving 174 performing lookup in 211

unloading 221 table schemas 8, 178, 179, 182

viewing 169 RelationshipRuntimeException class 82, 145, 404
Relationship Designer 7 Relationships 159, 163

Advanced Settings dialog 175, 179, 182, 184, 185 defined 153

Edit menu 172 dynamic 184

File menu 171 exceptions 145

functionality of 171 implementing code for 187

Global Default Settings dialog 183 introduction 153, 166

Help menu 172 naming conventions 160, 173

launching 167 non-identity 154

layout of 169 optimizing 184

main window 170 starting 174

menus of 171 static 133, 184

overview 167 stopping 174

starting 167 testing 80

status bar 172 transformations for 187

toolbar 172 types of 153, 180

Tools menu 172 working with 187

View menu 172 release() method 281

working with projects 168 releaseRelConnection() method (deprecated) 235
Relationship development 165 removeAllElements() method 268
Relationship function block 109, 118, 187 removeElement() method 268

Static Lookup 134 removeElementAt() method 269
Relationship instance 160, 163 Replace text 62

adding a participant to 378 repos_copy utility 67, 221

class for 161, 345, 377 Repository

creating 380 exporting a map from 67

creating participant for 370 exporting a relationship 221

deactivating participant 381, 382 relationship database and 160, 161

defined 160 Required attribute 250, 413

deleting child objects 347 reset() method 340

deleting participant 383, 384 Retrieve verb 355, 357

location of 161 foreignKeyXref() and 218, 220

retrieving instance ID 385, 386 maintainChildVerb() and 214, 215

retrieving participants from 388 maintainCompositeRelationship() and 204

run-time data 178 maintainSimpleldentityRelationship() and 194, 196, 197,

updating participants 389 200
Relationship instance ID 162 retrievelnstances() method 211, 386

deactivating participant by 383 retrieveParticipants() method 211, 388

defined 162 Retrieving

deleting participant by 385 business object array contents 262

identity relationship and 162 business object array maximum value 262, 263, 264

in participant instance 371, 373 business object array minimum value 265, 266, 267

lookup relationship and 162 business object array values as string 271

retrieving for participant 386 business object attribute 245

retrieving next 385 business object from array 261

updating participant by 390 business object key attribute value as string 250
Relationship Manager 191 business object type 247
Relationship repository file 221 business object verb 247

430 Map Development Guide

Retrieving (continued)

last index from business object array 262

map name 229

number of elements in business object array 270
rollBack() method (CwDBConnection) 282
rollBack() method (DtpConnection) 295
runMap() method 221, 333

S

SELECT statement 276, 277, 280, 281
Server component management view
updating map properties 55, 144
updating relationship properties 185
SERVICE_CALL_FAILURE calling context 147, 193
generic business object and 148
getOriginalRequestBO() and 365
maintainCompositeRelationship() and 204
maintainSimpleldentityRelationship() and 200
original-request business object 148, 365
retrieving 364
setting to 367
SERVICE_CALL_REQUEST calling context 147, 193
Create verb and 195, 214, 220
Delete verb and 196, 214, 220
foreignKeyXref() and 219, 351
generic business object and 148
getOriginalRequestBO() and 365
maintainChildVerb() and 214, 354
maintainCompositeRelationship() and 204, 355
maintainSimpleldentityRelationship() and 195, 357, 358
original-request business object 148, 365
Retrieve verb and 196, 214, 220
retrieving 364
setting to 367
testing with 82, 84
Update verb and 196, 214, 220
updateMyChildren() and 210
SERVICE_CALL_RESPONSE calling context 147, 193
Create verb and 197, 215, 218
Delete verb and 197, 215
foreignKeyXref() and 217, 351
generic business object and 82, 148
getOriginalRequestBO() and 365
identity relationships and 82
maintainChildVerb() and 214, 354
maintainCompositeRelationship() and 204, 355
maintainSimpleldentityRelationship() and 197, 358
original-request business object 148, 199, 365
Retrieve verb and 197, 215, 218
retrieving 364
setting to 367
testing with 83, 85
Update verb and 197, 215, 218
updateMyChildren() and 210
ServiceCallException exception 234
Set Value transformation 16, 35, 36, 50, 52, 69, 88
set() method 251, 257, 373
setl2MonthNames() method 328
setl2MonthNamesToDefault() method 329
set12ShortMonthNames() method 329
set12ShortMonthNamesToDefault() method 329
set7DayNames() method 330
set7DayNamesToDefault() method 330
setConnName() method 366
setContent() method 252
setDefaultAttrValues() method 253

setElementAt() method 269
setInitiator() method 366
setInstanceld() method 373
setKeys() method 253
setLocale() method 367
setParamDataTypeJavaObj() method (deprecated) 398
setParamDataType]DBC() method (deprecated) 398
setParamIndex() method (deprecated) 399
setParamIOType() method (deprecated) 399
setParamName() method (deprecated) 400
setParamValue() method (deprecated) 400
setParticipantDefinition() method 374
setRelationshipDefinition() method 374
Setting
business object attribute 251, 254
business object attribute default value 253
business object contents 252
business object key attribute value 253
business object value in an array 269
business object verb 254
setVerb() method 254, 257
setWithCreate() method 254
Simple identity relationship 155, 156, 174, 191
child-level 201
defining 175, 176, 191, 201
defining Cross-Reference transformation 191
defining transformation rules 201
example of 155
main map 201
maintainChildVerb() 201, 216
maintainSimpleldentityRelationship() 191, 356
parent map 201
participant type for 191
submap 202
Single-map map table 56
size() method 262, 270
Source business object 3, 5, 144
adding to map 29, 33
business object window 34
displaying 9, 17, 24, 55
testing 73
variable for 140
Split transformation 16, 21, 36, 40, 50, 52, 69, 88
Splitting strings
creating the parsed string 335
getting element at specified position 336
getting first element from string 336
getting last element from string 338
getting next element from string 338
getting number of elements in string 337
getting previous element from string 339
processing the parsed tokens into an object 338
resetting current position number 340
SQL query
checking for more rows 279, 293
executing 275, 276, 278, 291
prepared 275
retrieving next row 281
static 276
Standard toolbar (Activity Editor) 90
Copy 90
Cut 90
Delete 91
Help 91
Paste 91
Print Activity 90
Save Activity 90

Index

431

Standard toolbar (Map Designer) 22
displaying 22, 24
Find 60
New Map 29
Open Map from File 53
Open Map from Project 52
Print 62
Save Map to File 49
Save Map to Project 47
Standard toolbar (Relationship Designer) 171
displaying 170, 172
New Participant 173
New Relation 173
Save Relation 174
start_server.bat file 140
Static lookup 211
Static Lookup relationship 133
Static relationship 184
Status bar (Activity Editor) 91
Stored procedure
executing 276, 277, 278, 292
for relationship instance 178, 181
query result 280, 281
Stored-procedure parameter
creating object for 285, 393
in/out parameter type 286, 396, 399
index position 395, 399
Java Object type 394, 398
JDBC data type 395, 398
name 397, 400
value 287, 397, 400
String class 413
as stored-procedure parameter type 285
checking for valid data 256
converting to 305
converting to Boolean 300, 303
converting to Double 301, 303
converting to Float 302, 304
converting to Integer 302, 305
determining data type 298
getting attribute value 245
obtaining maximum value 263, 264
obtaining minimum value 265, 266, 267
setting attribute to 251
valid conversions 300
String function block 119
Upper Case 123
STRING_TYPE constant 298
stringReplace() method 342
Strings
padding with specified character 341
replacing one pattern with another 342
StringTokenizer class 335
Submap transformation 36
Submaps 41
accessing code for 88
attribute comment for 50
calling 43, 333
child business objects 42, 44
compiling 44, 70
conditions 45
creating 43
defined 41
identity relationships and 202
key mapping for 21
naming conventions 44
transformation code for 16

432 Map Development Guide

Submaps (continued)
uses for 41
validating 52, 69
sum() method 270
swap() method 270
Switch to Project (Relationship Designer) 169
System Manager 9
compiling a map 70
Component menu 70, 174, 410
Map Properties window 55, 144, 411
opening map from project in 52
relationship categories 184
starting Map Designer from 14
starting Relationship Designer from 167
SystemException exception 234

-

Table tab (Map Designer) 15, 17
adding business object 33
attribute transformation table 15, 63
business object pane 17, 22, 24, 33, 63, 143
business object variables 141
calling a submap 44
custom transformation 46
default display 22
deleting a transformation 63
deleting business object 63
joining attributes 38
moving attribute 37
output window 15
setting attribute value 36
specifying execution order 66
splitting attribute 40
temporary business object 143

Temporary variables 142

Test run 72
breakpoints 75, 78
creating test data 73
initial 73
pausing 75,78
preparing for 73
starting 79
subsequent 75
viewing results 79

toBoolean() method 300

toDouble() method 301

toFloat() method 301

toInteger() method 302

Tools menu (Activity Editor) 90
Translate 90

Tools menu (Map Designer) 25

Tools menu (Relationship Designer) 172

toPrimitiveBoolean() method 303

toPrimitiveDouble() method 303

toPrimitiveFloat() method 304

toPrimitivelnt() method 304

toString() method 255, 257, 271, 305, 330

Trace level 231, 409, 410

Trace message 236, 407, 409, 410
adding 409
assigning trace level to 409
generating 410
setting trace level for 410

trace() method 236, 407, 409

Tracing 409, 410
code example 410

Tracing (continued)
generating message 410
level for 409
Transactions
beginning 273, 289
committing 274, 290
determining if in progress 280, 294
rolling back 282, 295
Transformation code
deleting 63
finding text in 60
handling exceptions in 144
location of 70
missing 49
viewing 60
Transformation step 5, 16, 28, 34, 63, 69, 87
Transformations 6, 16, 35
addressing attributes 140
checking completeness of 49
coding 87
Context menu 25
Cross-Reference 16, 36, 45
Custom 16, 36, 46
defining for relationships 187, 204
destination attribute 16
execution order 16, 52, 66, 69
in map definition file 48
introduction 5
Join 16, 35, 38
map document for 56
Move 16, 35, 37
relationship attributes 187
selecting 24
Set Value 16, 35, 36
source attribute 16
Split 16, 36, 40
standard 16, 35, 88
Submap 16, 36
validating 51, 69
validating source data 146
variables 142
truncate() method 343
Type attribute property 413

U

UNKNOWN_TYPE constant 298
UPDATE statement 276, 277, 279
Update verb
conditionally set 211
foreignKeyXref() and 218, 220
maintainChildVerb() and 214, 215
maintainCompositeRelationship() and 204
maintainSimpleldentityRelationship() and 194, 196, 197,
200
updateMyChildren() method 210, 358, 391
updateParticipant() method 389
updateParticipantByInstance() method 389
UserMapMessages.txt message file 404, 405
UserStoredProcedureParam class (deprecated) 393, 400
constructor 393
getParamDataTypeJavaObj() 394
getParamDataType]DBC() 395
getParamIndex() 395
getParamIOType() 396
getParamName() 397

UserStoredProcedureParam class (deprecated) (continued)
getParamValue() 397
method summary 393
setParamDataTypeJavaObj() 398
setParamDataType]DBC() 398
setParamIndex() 399
setParamIOType() 399
setParamName() 400
setParamValue() 400
UserStoredProcedureParam() constructor (deprecated) 393
Utilities function block 121
Utilities/ Vector function block 121

\'

validData() method 256

Variable 140
cwExecCtx 146, 333, 346, 347, 349, 350, 355, 357, 359
for business object 140
global 142
temporary 142

Vector class
with executeStoredProcedure() 276, 286
with nextRow() 281

Verb
defined 35
retrieving 247
setting 35, 50, 210, 254, 352
test run 73,75

View menu (Activity Editor) 89
Content window 89
Design mode 89
GoTo 89
Library window 89
Preferences 90
Properties window 89
Quick view mode 89
Status Bar 90
Toolbars 89
Zoom In 89
Zoom Out 89
Zoom To 89

View menu (Map Designer) 22, 24
Business Object Pane 17, 22, 24
Clear Output 15, 22, 24, 71
Diagram 18, 22, 24, 36
Output Window 15, 22, 24
Preferences 19, 25
Server Pane 18, 22, 24
Status Bar 15, 22, 24
Toolbars 22, 24

View menu (Relationship Designer) 170, 172
Collapse Tree 172
Expand Tree 172
Participant Types 172, 173
Status Bar 170
Toolbar 170

w

Warning message 232, 408

V4

Zero-length string 248

Index 433

	Contents
	About this document
	Audience
	How to use this manual
	Related documents
	Typographic conventions

	New in this release
	New in release 4.3

	Part 1. Maps
	Chapter 1. Introduction to map development
	About data mapping
	Maps: A closer look
	Map definition
	Map instance

	Tools for map development
	Map Designer Express
	Relationship Designer Express
	System Manager

	Overview of map development
	Setting up the development environment
	Designing and implementing the map
	Map development files

	Chapter 2. Creating maps
	Overview of Map Designer Express
	Starting Map Designer Express
	Working in projects
	Layout of Map Designer Express
	Assigning preferences
	Customizing the main window
	Using Map Designer Express functionality

	Creating a map: Basic steps
	Creating the map definition
	Creating the source and destination business objects
	Setting the destination business object verb

	Specifying standard attribute transformations
	Specifying a value for an attribute
	Copying a source attribute to a destination attribute
	Joining attributes
	Splitting attributes
	Transforming with a submap
	Cross-referencing identity relationships
	Creating a Custom transformation

	Saving maps
	Saving a map to a project
	Saving a map to a file

	Checking completion
	Mapping standards
	Tips on mapping individual attributes
	Setting comments in the comment field of the attribute

	Chapter 3. Working with maps
	Opening and closing a map
	Opening a map
	Closing a map

	Providing map property information
	Defining General Property information
	Defining business objects

	Using map documents
	What Is a map document?
	Creating a map document
	Viewing a map document
	Printing a map document

	Finding information in a map
	Finding and replacing text
	Printing a map
	Deleting objects
	Deleting map transformation steps
	Deleting business objects
	Deleting maps

	Using execution order
	Importing and exporting maps from InterChange Server Express

	Chapter 4. Compiling and testing maps
	Validating a map
	Compiling a map
	A successful map compilation
	An unsuccessful map compilation

	Compiling a set of maps
	Testing maps
	Preparing to run the test
	Creating test data
	Setting breakpoints
	Running the test map
	Viewing test run results
	Changing the map and re-executing

	Doing advanced debugging
	Testing maps that contain relationships
	Testing an identity relationship
	Testing a lookup relationship

	Debugging maps
	Resolving run-time errors
	Debugging tips

	Chapter 5. Customizing a map
	Customizing transformation steps
	Using the Activity Editor

	Importing Java packages to Interchange Server Express
	Steps for importing Jar libraries as activity function blocks
	Customizing display settings of custom Jar libraries
	Importing third-party classes to Interchange Server Express

	Using variables
	Using generated business object variables and attributes
	Using temporary variables

	Reusing map instances
	Handling exceptions
	Relationship exceptions

	Creating custom data validation levels
	Coding a data validation level

	Understanding map execution contexts
	Calling contexts
	Original-request business objects

	Part 2. Relationships
	Chapter 6. Introduction to Relationships
	What is a relationship?
	Lookup relationships
	Identity relationships

	Relationships: A closer look
	Relationships
	Participants

	Overview of the relationship development process

	Chapter 7. Creating relationship definitions
	Overview of Relationship Designer Express
	Starting Relationship Designer Express
	Working with projects
	Layout of Relationship Designer Express
	Customizing the main window
	Using the Relationship Designer Express functionality

	Creating relationship definitions
	Defining identity relationships
	Relating child business objects

	Defining lookup relationships
	Creating the relationship table schema
	Copying relationship and participant definitions
	Copying relationship definitions in the current project
	Copying participant definitions in the current project

	Renaming relationship or participant definitions
	Specifying advanced relationship settings
	Advanced settings for relationship definitions
	Advanced settings for participant definitions
	Advanced settings for attributes
	Global default settings

	Deleting a relationship definition
	Optimizing a relationship
	Defining a dynamic relationship
	Defining a static relationship

	Chapter 8. Implementing relationships
	Implementing a relationship
	Using lookup relationships
	Creating lookup relationship definitions
	Populating lookup tables with data
	Customizing map transformations for a lookup relationship

	Using simple identity relationships
	Creating simple identity relationship definitions
	Accessing identity relationship tables
	Defining transformation rules for a simple identity relationship

	Using composite identity relationships
	Creating composite identity relationship definitions
	Determining the relationship action
	Customizing map rules for a composite identity relationship

	Managing child instances
	Creating the parent/child relationship definition
	Handling updates to the parent business object

	Setting the verb
	Conditionally setting the destination verb
	Setting the source child verb

	Performing foreign key lookups
	Using the Foreign Key Lookup function block
	Using the Foreign Key Cross-Reference function block
	Tips for using the Foreign Key Cross-Reference and Foreign Key Lookup function blocks

	Loading and unloading relationships
	Unloading a relationship definition
	Loading a relationship definition

	Part 3. Mapping API Reference
	Chapter 9. BaseDLM class
	getDBConnection()
	getName()
	getRelConnection()
	implicitDBTransactionBracketing()
	isTraceEnabled()
	logError(), logInfo(), logWarning()
	raiseException()
	releaseRelConnection()
	trace()

	Chapter 10. BusObj class
	Exceptions and exception types
	Syntax for traversing hierarchical business objects
	Specifying an attribute of basic type
	Specifying an attribute in a child business object
	Specifying an attribute in a child of a child business object
	Specifying an attribute in an element of an array of child business objects

	copy()
	duplicate()
	equalKeys()
	equals()
	equalsShallow()
	exists()
	getBoolean(), getDouble(), getFloat(), getInt(), getLong(), get(), getBusObj(), getBusObjArray(), getLongText(), getString()
	getLocale()
	getType()
	getVerb()
	isBlank()
	isKey()
	isNull()
	isRequired()
	keysToString()
	set()
	setContent()
	setDefaultAttrValues()
	setKeys()
	setLocale()
	setVerb()
	setWithCreate()
	toString()
	validData()
	Deprecated methods

	Chapter 11. BusObjArray class
	addElement()
	duplicate()
	elementAt()
	equals()
	getElements()
	getLastIndex()
	max()
	maxBusObjArray()
	maxBusObjs()
	min()
	minBusObjArray()
	minBusObjs()
	removeAllElements()
	removeElement()
	removeElementAt()
	setElementAt()
	size()
	sum()
	swap()
	toString()

	Chapter 12. CwDBConnection class
	beginTransaction()
	commit()
	executePreparedSQL()
	executeSQL()
	executeStoredProcedure()
	getUpdateCount()
	hasMoreRows()
	inTransaction()
	isActive()
	nextRow()
	release()
	rollBack()

	Chapter 13. CwDBStoredProcedureParam class
	CwDBStoredProcedureParam()
	getParamType()
	getValue()

	Chapter 14. DtpConnection class
	beginTran()
	commit()
	executeSQL()
	execStoredProcedure()
	getUpdateCount()
	hasMoreRows()
	inTransaction()
	nextRow()
	rollBack()

	Chapter 15. DtpDataConversion class
	getType()
	isOKToConvert()
	toBoolean()
	toDouble()
	toFloat()
	toInteger()
	toPrimitiveBoolean()
	toPrimitiveDouble()
	toPrimitiveFloat()
	toPrimitiveInt()
	toString()

	Chapter 16. DtpDate class
	DtpDate()
	addDays()
	addWeekdays()
	addYears()
	after()
	before()
	calcDays()
	calcWeekdays()
	get12MonthNames()
	get12ShortMonthNames()
	get7DayNames()
	getCWDate()
	getDayOfMonth()
	getDayOfWeek()
	getHours()
	getIntDay()
	getIntDayOfWeek()
	getIntMilliSeconds()
	getIntMinutes()
	getIntMonth()
	getIntSeconds()
	getIntYear()
	getMSSince1970()
	getMaxDate()
	getMaxDateBO()
	getMinDate()
	getMinDateBO()
	getMinutes()
	getMonth()
	getNumericMonth()
	getSeconds()
	getShortMonth()
	getYear()
	set12MonthNames()
	set12MonthNamesToDefault()
	set12ShortMonthNames()
	set12ShortMonthNamesToDefault()
	set7DayNames()
	set7DayNamesToDefault()
	toString()

	Chapter 17. DtpMapService class
	runMap()

	Chapter 18. DtpSplitString class
	DtpSplitString()
	elementAt()
	firstElement()
	getElementCount()
	getEnumeration()
	lastElement()
	nextElement()
	prevElement()
	reset()

	Chapter 19. DtpUtils class
	padLeft()
	padRight()
	stringReplace()
	truncate()

	Chapter 20. IdentityRelationship class
	addMyChildren()
	deleteMyChildren()
	foreignKeyLookup()
	foreignKeyXref()
	maintainChildVerb()
	maintainCompositeRelationship()
	maintainSimpleIdentityRelationship()
	updateMyChildren()

	Chapter 21. MapExeContext class
	getConnName()
	getInitiator()
	getLocale()
	getOriginalRequestBO()
	setConnName()
	setInitiator()
	setLocale()
	Deprecated methods

	Chapter 22. Participant class
	Participant()
	getBusObj(), getString(), getLong(), getInt(), getDouble(),getFloat(), getBoolean()
	getInstanceId()
	getParticipantDefinition()
	getRelationshipDefinition()
	set()
	setInstanceId()
	setParticipantDefinition()
	setRelationshipDefinition()

	Chapter 23. Relationship class
	addParticipant()
	create()
	deactivateParticipant()
	deactivateParticipantByInstance()
	deleteParticipant()
	deleteParticipantByInstance()
	getNewID()
	retrieveInstances()
	retrieveParticipants()
	updateParticipant()
	updateParticipantByInstance()
	Deprecated methods

	Chapter 24. UserStoredProcedureParam class
	UserStoredProcedureParam()
	getParamDataTypeJavaObj()
	getParamDataTypeJDBC()
	getParamIndex()
	getParamIOType()
	getParamName()
	getParamValue()
	setParamDataTypeJavaObj()
	setParamDataTypeJDBC()
	setParamIndex()
	setParamIOType()
	setParamName()
	setParamValue()

	Part 4. Appendixes
	Appendix A. Message files
	Message location
	Format for map messages
	Message format
	Message parameters
	Comments

	Maintaining the files
	Operations that use message files
	Raising exceptions
	Logging messages
	Adding trace messages

	Appendix B. Attribute properties
	Notices
	Programming interface information
	Trademarks and service marks

	Index

