
IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

Map

Development

Guide

V4.3

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

415.

10October2003

This

edition

of

this

document

applies

to

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization,

version

4.3,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

document,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

How

to

use

this

manual

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

New

in

release

4.3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Part

1.

Maps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Introduction

to

map

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

About

data

mapping

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Maps:

A

closer

look

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Tools

for

map

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Overview

of

map

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Chapter

2.

Creating

maps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Overview

of

Map

Designer

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Creating

a

map:

Basic

steps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Specifying

standard

attribute

transformations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Saving

maps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Checking

completion

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Mapping

standards

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Chapter

3.

Working

with

maps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Opening

and

closing

a

map

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Providing

map

property

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Using

map

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Finding

information

in

a

map

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Finding

and

replacing

text

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Printing

a

map

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Deleting

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Using

execution

order

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Importing

and

exporting

maps

from

InterChange

Server

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Chapter

4.

Compiling

and

testing

maps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Validating

a

map

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Compiling

a

map

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Compiling

a

set

of

maps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Testing

maps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Doing

advanced

debugging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Testing

maps

that

contain

relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Debugging

maps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Chapter

5.

Customizing

a

map

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Customizing

transformation

steps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Importing

Java

packages

to

Interchange

Server

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 136

Using

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

Reusing

map

instances

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Handling

exceptions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Creating

custom

data

validation

levels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Understanding

map

execution

contexts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

©

Copyright

IBM

Corp.

2003

iii

Part

2.

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Chapter

6.

Introduction

to

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

What

is

a

relationship?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Relationships:

A

closer

look

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Overview

of

the

relationship

development

process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Chapter

7.

Creating

relationship

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Overview

of

Relationship

Designer

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Creating

relationship

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Defining

identity

relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Defining

lookup

relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Creating

the

relationship

table

schema

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

Copying

relationship

and

participant

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

Renaming

relationship

or

participant

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

Specifying

advanced

relationship

settings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

Deleting

a

relationship

definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Optimizing

a

relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Chapter

8.

Implementing

relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Implementing

a

relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Using

lookup

relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

Using

simple

identity

relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Using

composite

identity

relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Managing

child

instances

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Setting

the

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Performing

foreign

key

lookups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Loading

and

unloading

relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Part

3.

Mapping

API

Reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Chapter

9.

BaseDLM

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

getDBConnection()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

getRelConnection()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

implicitDBTransactionBracketing()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

isTraceEnabled()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

logError(),

logInfo(),

logWarning()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

raiseException()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

releaseRelConnection()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

trace()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Chapter

10.

BusObj

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Exceptions

and

exception

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

Syntax

for

traversing

hierarchical

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

copy()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

duplicate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

equalKeys()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

equals()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

equalsShallow()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

exists()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

getType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

getVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

isBlank()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

isKey()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

isNull()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

iv

Map

Development

Guide

isRequired()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

keysToString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

set()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

setContent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

setDefaultAttrValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

setKeys()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

setLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

setVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

setWithCreate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

toString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

validData()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

Deprecated

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

Chapter

11.

BusObjArray

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

addElement()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

duplicate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

elementAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

equals()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

getElements()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

getLastIndex()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

max()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

maxBusObjArray()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

maxBusObjs()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

min()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

minBusObjArray()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

minBusObjs()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

removeAllElements()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

removeElement()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

removeElementAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

setElementAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

size()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

sum()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

swap()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

toString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Chapter

12.

CwDBConnection

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

beginTransaction()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

commit()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

executePreparedSQL()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

executeSQL()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

executeStoredProcedure()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

getUpdateCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

hasMoreRows()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

inTransaction()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

isActive()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

nextRow()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

release()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

rollBack()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

Chapter

13.

CwDBStoredProcedureParam

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

CwDBStoredProcedureParam()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

getParamType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

getValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Chapter

14.

DtpConnection

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

beginTran()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

commit()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

executeSQL()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

execStoredProcedure()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

getUpdateCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Contents

v

hasMoreRows()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

inTransaction()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

nextRow()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

rollBack()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Chapter

15.

DtpDataConversion

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

getType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

isOKToConvert()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

toBoolean()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

toDouble()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

toFloat()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

toInteger()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

toPrimitiveBoolean()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

toPrimitiveDouble()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

toPrimitiveFloat()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

toPrimitiveInt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

toString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Chapter

16.

DtpDate

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

DtpDate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

addDays()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

addWeekdays()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

addYears()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

after()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

before()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

calcDays()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

calcWeekdays()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

get12MonthNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

get12ShortMonthNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

get7DayNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

getCWDate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

getDayOfMonth()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

getDayOfWeek()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

getHours()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

getIntDay()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

getIntDayOfWeek()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

getIntMilliSeconds()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

getIntMinutes()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

getIntMonth()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

getIntSeconds()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

getIntYear()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

getMSSince1970()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

getMaxDate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

getMaxDateBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

getMinDate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

getMinDateBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

getMinutes()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

getMonth()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

getNumericMonth()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

getSeconds()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

getShortMonth()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

getYear()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

set12MonthNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

set12MonthNamesToDefault()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

set12ShortMonthNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

set12ShortMonthNamesToDefault()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

set7DayNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 330

set7DayNamesToDefault()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 330

toString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 330

vi

Map

Development

Guide

Chapter

17.

DtpMapService

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

runMap()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Chapter

18.

DtpSplitString

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

DtpSplitString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

elementAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

firstElement()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

getElementCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

getEnumeration()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

lastElement()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

nextElement()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

prevElement()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

reset()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

Chapter

19.

DtpUtils

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

padLeft()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

padRight()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

stringReplace()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

truncate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Chapter

20.

IdentityRelationship

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

addMyChildren()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

deleteMyChildren()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

foreignKeyLookup()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

foreignKeyXref()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

maintainChildVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 352

maintainCompositeRelationship()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 354

maintainSimpleIdentityRelationship()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

updateMyChildren()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 358

Chapter

21.

MapExeContext

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

getConnName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

getInitiator()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

getOriginalRequestBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

setConnName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

setInitiator()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

setLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

Deprecated

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

Chapter

22.

Participant

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Participant()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

getBusObj(),

getString(),

getLong(),

getInt(),

getDouble(),
getFloat(),

getBoolean()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

getInstanceId()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

getParticipantDefinition()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 372

getRelationshipDefinition()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 372

set()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

setInstanceId()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

setParticipantDefinition()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

setRelationshipDefinition()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Chapter

23.

Relationship

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

addParticipant()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 378

create()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 380

deactivateParticipant()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

deactivateParticipantByInstance()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

deleteParticipant()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

deleteParticipantByInstance()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

Contents

vii

getNewID()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

retrieveInstances()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

retrieveParticipants()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

updateParticipant()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

updateParticipantByInstance()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

Deprecated

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Chapter

24.

UserStoredProcedureParam

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

UserStoredProcedureParam()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

getParamDataTypeJavaObj()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 394

getParamDataTypeJDBC()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

getParamIndex()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

getParamIOType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

getParamName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

getParamValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

setParamDataTypeJavaObj()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

setParamDataTypeJDBC()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

setParamIndex()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

setParamIOType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

setParamName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 400

setParamValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 400

Part

4.

Appendixes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 401

Appendix

A.

Message

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Message

location

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Format

for

map

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

Maintaining

the

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

Operations

that

use

message

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

Appendix

B.

Attribute

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

viii

Map

Development

Guide

About

this

document

The

IBM(R)

WebSphere(R)

Business

Integration

Express

for

Item

Synchronization

product

includes

Interchange

Server

Express,

the

associated

Toolset

Express

product,

the

Item

Synchronization

collaboration,

and

a

set

of

software

integration

adapters.

Together

they

provide

business

process

integration

and

connectivity

among

leading

e-business

technologies

and

enterprise

applications

as

well

as

integration

with

the

UCCnet

GLOBALregistry.

This

document

provides

an

introduction

to

the

use

of

maps

and

relationships

and

describes

how

to

use

Map

Designer

Express

and

Relationship

Designer

Express

for

creating

and

modifying

maps

and

relationships.

Audience

This

document

is

for

connector

developers,

collaboration

developers,

and

IBM

WebSphere

consultants

who

create

or

modify

business

object

definitions

or

maps.

How

to

use

this

manual

This

manual

is

organized

as

follows.

Part

I:

Maps

Chapter

1,

“Introduction

to

map

development”

Is

an

overview

of

maps

and

the

Business

Integration

Express

for

Item

Synchronization

mapping

tools.

Chapter

2,

“Creating

maps”

Provides

an

introduction

to

the

use

of

Map

Designer

Express

for

the

creation

and

modification

of

maps.

Chapter

3,

“Working

with

maps”

Describes

some

advanced

features

of

Map

Designer

Express

that

you

might

use

after

creating

maps.

Chapter

4,

“Compiling

and

testing

maps”

Describes

how

to

compile

a

map

into

its

executable

form

and

how

to

run

a

test

run

to

verify

the

map’s

correctness.

Chapter

5,

“Customizing

a

map”

Describes

how

to

implement

maps.

Part

II:

Relationships

Chapter

6,

“Introduction

to

Relationships”

Provides

an

introduction

to

relationships,

including

the

kinds

of

relationships

that

Business

Integration

Express

for

Item

Synchronization

supports

and

the

way

the

system

implements

a

relationship.

Chapter

7,

“Creating

relationship

definitions”

Provides

an

introduction

to

the

use

of

Relationship

Designer

Express

for

the

creation

and

modification

of

relationship

definitions.

Chapter

8,

“Implementing

relationships”

Describes

how

to

implement

relationships.

Part

III:

Mapping

API

Reference

©

Copyright

IBM

Corp.

2003

ix

Chapter

9,

“BaseDLM

class”;
Chapter

10,

“BusObj

class”;
Chapter

11,

“BusObjArray

class”;
Chapter

12,

“CwDBConnection

class”;
Chapter

13,

“CwDBStoredProcedureParam

class”;
Chapter

14,

“DtpConnection

class”;
Chapter

15,

“DtpDataConversion

class”;
Chapter

17,

“DtpMapService

class”;
Chapter

18,

“DtpSplitString

class”;
Chapter

19,

“DtpUtils

class”;
Chapter

20,

“IdentityRelationship

class”;
Chapter

21,

“MapExeContext

class”;
Chapter

22,

“Participant

class”;
Chapter

23,

“Relationship

class”;
Chapter

24,

“UserStoredProcedureParam

class”

Contain

reference

pages

for

methods

of

classes

in

the

Mapping

API.

Appendix

A,

“Message

files”

Appendix

B,

“Attribute

properties”

Related

documents

The

complete

set

of

documentation

describes

the

features

and

components

common

to

all

installations

of

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization,

and

includes

reference

material

on

specific

components.

You

can

download,

install,

and

view

the

documentation

at

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

InfoCenter,

located

at:

http://www.ibm.com/websphere/wbiitemsync/express/infocenter

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

italic

or

italic

Indicates

a

variable

name,

title

name,

or

new

term

the

first

time

that

it

appears

blue

outline

A

blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

ProductDir

Represents

the

directory

where

the

product

is

installed.

x

Map

Development

Guide

http://www.ibm.com/websphere/wicsserver/infocenter

New

in

this

release

This

section

describes

the

new

and

changed

features

of

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

4.3

and

its

associated

tools

for

map

and

relationship

development,

which

are

covered

in

this

document.

New

in

release

4.3

This

is

the

first

release

of

Map

Designer

Express

and

Relationship

Designer

Express

as

part

of

the

IBM

Web

Sphere

Business

Integration

Express

for

Item

Synchronization

release.

©

Copyright

IBM

Corp.

2003

xi

xii

Map

Development

Guide

Part

1.

Maps

©

Copyright

IBM

Corp.

2003

1

2

Map

Development

Guide

Chapter

1.

Introduction

to

map

development

This

chapter

provides

an

overview

of

data

mapping,

introduces

the

tools

you

use

to

implement

maps,

and

describes

map

and

relationship

definitions.

This

chapter

covers

the

following

topics:

v

“About

data

mapping”

on

page

3

v

“Maps:

A

closer

look”

on

page

5

v

“Tools

for

map

development”

on

page

7

v

“Overview

of

map

development”

on

page

10

About

data

mapping

Data

mapping

is

the

process

of

transforming

(or

mapping)

data

from

one

application-specific

format

to

another.

Mapping

is

central

to

the

process

of

transferring

information

between

different

applications,

and

for

providing

collaborations

(business

processes)

that

are

independent

of

specific

applications.

By

mapping

data

between

application-specific

business

objects

and

generic

business

objects,

WebSphere

creates

the

environment

that

allows

for

the

use

of

“best

of

breed”

applications.

The

WebSphere

business

integration

system

provides

a

modular

and

extensible

architecture

for

easy

maintenance

of

your

maps.

The

WebSphere

map

development

system

provides

comprehensive

support

for

mapping

between

business

objects,

including

the

following

capabilities:

v

Transforming

data

values

from

one

or

more

attributes

in

a

source

business

object

to

one

or

more

attributes

in

a

destination

business

object

v

Establishing

and

maintaining

relationships

between

data

entities

that

are

equivalent

but

are

represented

differently

and

cannot

be

directly

transformed

v

Enabling

access

to

external

mapping

resources,

such

as

third-party

mapping

products

and

databases

for

performing

queries

When

data

mapping

is

set

up

among

differing

applications,

an

event

occurrence

in

one

application

is

performed

in

any

other

application

to

which

it

is

mapped.

An

event

occurrence

can

be

when

data

is

created,

retrieved,

updated,

or

deleted.

Mapping

uses

maps

that

define

the

transfer

(or

transformation)

of

data

between

the

source

and

destination

business

objects.

In

the

map

development

environment,

data

is

mapped

from

an

application-specific

business

object

to

a

generic

business

object

or

from

a

generic

business

object

to

an

application-specific

business

object.

Table

1

lists

the

types

of

mapping

required.

Table

1.

Mapping

requirements

Direction

of

business

object

Source

business

object

Destination

business

object

Type

of

map

Connector

to

collaboration

Application-specific

Generic

Inbound

map

Collaboration

to

connector

Generic

Application-specific

Outbound

map

©

Copyright

IBM

Corp.

2003

3

Figure

1

illustrates

how

mapping

occurs

at

run

time,

using

a

fictionalized

Employee

Management

collaboration

as

an

example.

Map

App A
Employee

Generic
Employee

InterChange Server Express

Map

App A
Connector Controller

App A App B

Collaboration1

Generic
Employee

App B
Employee

App B
Connector Controller

App A
Employee

Business Object

App A
Connector

App B
Connector

App B
Employee

Business Object
1 8

2 3 4 6 75

The

Employee

Management

collaboration

(Collaboration1)

receives

an

Employee

business

object

from

the

source

connector

(App

A),

then

sends

an

Employee

business

object

to

the

destination

connector

(App

B).

Figure

1

illustrates

the

following

sequence

occurs

(the

numbers

here

correspond

to

the

numbers

in

the

figure):

1.

An

event

occurs

in

App

A.

The

App

A

connector

produces

an

App

A

Employee

business

object

and

sends

it

to

the

App

A

connector

controller.

2.

The

App

A

connector

controller

sends

the

App

A

Employee

business

object

to

the

Employee

Management

collaboration

(Collaboration1),

which

resides

on

InterChange

Server

Express,

for

mapping.

The

request

includes

the

name

of

the

data

map

that

the

server

must

use,

based

on

the

map

name

specified

in

the

connector

configuration.

3.

The

inbound

map

returns

the

generic

Employee

business

object

to

the

App

A

connector

controller.

4.

The

App

A

connector

controller

checks

the

collaborations

that

have

subscriptions

to

the

generic

Employee

business

object.

In

this

case,

Collaboration1

has

a

subscription,

so

the

connector

controller

hands

the

business

object

to

Collaboration1.

5.

The

collaboration

performs

some

processing,

then

produces

another

generic

Employee

business

object

as

output,

which

it

sends

to

the

App

B

connector

controller.

6.

The

App

B

connector

controller

sends

the

generic

business

object

to

InterChange

Server

Express,

requesting

mapping

to

the

App

B

Employee

business

object.

Figure

1.

Data

mapping

at

run

time

4

Map

Development

Guide

7.

The

outbound

map

returns

the

application-specific

Employee

business

object

to

the

App

B

connector

controller.

8.

The

App

B

connector

controller

passes

the

App

B

Employee

object

to

the

App

B

connector,

which

can

then

pass

the

data

in

the

business

object

into

App

B.

The

figure

shows

two

types

of

maps

in

use:

v

One

inbound

map

from

the

App

A

Employee

business

object

to

the

generic

Employee

business

object

used

by

the

collaboration

v

One

outbound

map

from

the

generic

Employee

business

object

to

the

App

B

Employee

business

object

The

Employee

data

moves

in

only

one

direction—from

Application

A

toward

Application

B.

If

you

want

to

exchange

the

Employee

data

in

both

directions

between

both

applications,

two

more

maps

are

required:

v

An

inbound

map

from

the

application-specific

business

object

of

Application

B

to

the

generic

business

object

v

An

outbound

map

from

the

generic

business

object

to

the

application-specific

business

object

of

Application

A

Maps:

A

closer

look

As

Table

2

shows,

a

map

is

a

two-part

entity,

consisting

of

a

map

definition

and

a

run-time

object.

Map

definition

You

define

a

map

to

the

map

development

system

with

a

map

definition.

Map

definitions

are

stored

in

projects

in

System

Manager.

The

Map

Designer

Express

tool

provides

dialogs

to

assist

in

the

creation

of

the

map

definitions

(often

referred

to

simply

as

maps).

It

also

handles

storing

the

completed

map

definition

in

projects

in

System

Manager.

For

more

information

on

how

to

use

Map

Designer

Express

to

create

map

definitions,

see

“Creating

a

map:

Basic

steps”

on

page

28.

The

map

definition

provides

the

following

information

about

the

map:

v

The

map

name

v

The

source

and

destination

objects

of

the

map

v

The

map

transformations

Map

definition

name

A

map

definition

is

simply

a

template

or

description

of

the

map.

It

provides

information

on

how

to

transform

attributes

of

one

business

object

to

another.

Therefore,

the

name

of

the

map

definition

should

identify

the

direction

of

the

map

and

the

business

objects

it

transforms.

Source

and

destination

business

objects

Maps

consist

of

one

or

more

source

business

objects

and

one

or

more

destination

business

objects.

The

source

business

objects

are

the

ones

to

be

transformed;

the

destination

business

objects

are

the

ones

that

are

generated

with

data

from

the

source

business

objects.

Map

transformations

The

rest

of

the

map

consists

of

a

series

of

transformation

steps.

A

transformation

step

is

a

segment

of

Java

code

that

returns

the

value

of

a

destination

attribute.

A

Chapter

1.

Introduction

to

map

development

5

map

contains

one

transformation

step

for

each

destination

attribute

that

is

transformed.

Transformations

are

implemented

as

Java

code

and

are

therefore

stored

in

a

Java

source

(.java)

file.

Table

2

shows

some

of

the

transformations

you

can

perform

on

a

destination

business

object.

Standard

transformations

include

Set

Value,

Move,

Join,

Split,

Submap,

and

Cross-Reference.

You

can

create

custom

transformations

with

graphical

function

blocks.

Table

2.

Transformations

of

a

map

Transformation

Description

For

more

information

Standard

transformations

Transformations

for

which

Map

Designer

Express

can

autogenerate

code

Set

Value

Specifying

a

value

for

a

destination

attribute

“Specifying

a

value

for

an

attribute”

on

page

36

Move

(Copy)

Copying

a

source

attribute

to

a

destination

attribute

“Copying

a

source

attribute

to

a

destination

attribute”

on

page

37

Join

Joining

two

or

more

source

attributes

into

a

single

destination

attribute

“Joining

attributes”

on

page

38

Split

Splitting

a

source

attribute

into

two

or

more

destination

attributes

“Splitting

attributes”

on

page

40

Submap

Calling

a

map

for

a

child

business

object

“Transforming

with

a

submap”

on

page

41

Cross-Reference

Maintaining

identity

relationships

for

the

business

objects

“Cross-referencing

identity

relationships”

on

page

45

Custom

transformations

Creating

a

transformation

other

than

one

of

the

standard

transformations

listed

above

“Creating

a

Custom

transformation”

on

page

46

When

a

clear

correspondence

exists

between

the

source

attribute

and

destination

attribute,

the

transformation

step

simply

copies

the

source

value

to

the

destination

attribute.

Other

transformations

can

involve

calculations,

string

manipulations,

and

data

type

conversions.

Figure

2

illustrates

some

typical

kinds

of

attribute

transformations:

FirstName

LastName

Address

City

State_Prov

ZipCode

Source Destination

CustomerName

Address1

Address2

City

StateProv

ZipPostal

Split

Key:

Join

District

Move1
2

3

2

1

1

1

3

As

Figure

2

shows,

attributes

from

the

source

business

object

are

typically:

v

Copied

to

a

destination

attribute

(City,

StateProv,

ZipPostal).

Figure

2.

Typical

attribute

transformations

6

Map

Development

Guide

v

Split

into

multiple

destination

attributes

(CustomerName).

v

Joined

into

one

destination

attribute

(Address1,

Address2).

v

Ignored

when

the

destination

object

has

no

equivalent

attribute

(District).

For

simple

transformations

such

as

copying

a

value

into

an

attribute,

splitting

a

value

into

two

or

more

attributes,

or

joining

two

or

more

values

into

one

attribute,

you

can

specify

the

step

graphically

and

Map

Designer

Express

generates

the

Java

code.

For

more

complex

transformations,

you

can

customize

the

transformation

with

a

graphical

editor.

Map

instance

The

map

definition

is

a

template

for

the

run-time

instantiation

of

the

map,

the

map

instance.

During

map

execution,

the

Map

Development

system

creates

instances

of

the

map

based

on

the

map

definition

and

the

transformation

code.

Each

map

instance

provides

the

following

information:

v

Basic

functionality

such

as

logging,

tracing,

connections,

and

exception

handling

through

methods

of

the

BaseDLM

class

v

The

map

execution

context

For

more

information,

see

“Understanding

map

execution

contexts”

on

page

146.

Tools

for

map

development

Table

3

shows

the

two

graphical

design

tools

of

mapping.

Table

3.

Principal

components

of

data

mapping

system

Design

tool

Mapping

component

Description

Map

Designer

Express

Map

Uses

Java

code

to

specify

how

to

transform

attributes

from

one

or

more

source

business

objects

to

one

or

more

destination

business

objects.

You

typically

create

one

map

for

each

source

business

object

you

want

to

transform,

though

you

can

also

break

up

a

map

into

several

submaps.

Relationship

Designer

Express

Relationship

Establishes

an

association

between

two

or

more

data

entities

in

the

Map

Development

system.

Relationship

definitions

most

often

associate

two

or

more

business

objects.

You

use

relationship

definitions

to

transform

data

that

is

equivalent

across

business

objects

but

is

represented

differently.

For

example,

a

state

code

for

the

state

of

Michigan

might

be

represented

as

MI

in

one

application

and

MICH

in

another.

This

data

is

equivalent

but

is

represented

differently

in

each

application.

Most

maps

use

one,

or

a

few,

relationship

definitions.

These

graphical

tools

run

on

Windows

2000

and

Windows

XP.

Therefore,

these

platforms

are

for

map

development.

System

Manager

is

an

additional

tool

that

is

provided

for

map

development.

It

provides

graphical

windows

to

configure

a

map

instance

as

well

as

configure

a

relationship

object.

Map

Designer

Express

Map

Designer

Express

creates

and

compiles

maps.

You

can

launch

Map

Designer

Express

from

System

Manager

by

selecting

Map

Designer

Express

from

the

Tools

Chapter

1.

Introduction

to

map

development

7

menu.

For

other

ways

to

launch

Map

Designer

Express,

see

“Starting

Map

Designer

Express”

on

page

14..

Map

Designer

Express

provides

a

tab

window

to

view

map

information.

This

window

displays

one

of

four

tabs:

Table

tab,

Diagram

tab,

Messages

tab,

or

Test

tab.

Figure

3

shows

a

map

displayed

in

the

Diagram

tab

of

Map

Designer

Express.

For

information

on

how

to

use

Map

Designer

Express

to

create

a

map,

see

Chapter

2,

“Creating

maps,”

on

page

13.

Relationship

Designer

Express

Relationship

Designer

Express

creates

relationship

definitions

and

the

table

schemas

that

store

the

run-time

relationship

instance

data.

You

can

launch

Relationship

Designer

Express

from

System

Manager

by

selecting

Relationship

Designer

Express

from

the

Tools

menu.

Figure

4

shows

several

relationships

Figure

3.

Map

Designer

Express

8

Map

Development

Guide

displayed

in

Relationship

Designer

Express.

For

more

information

on

how

to

use

Relationship

Designer

Express,

see

Chapter

7,

“Creating

relationship

definitions,”

on

page

167.

System

Manager

System

Manager

is

a

graphical

tool

that

provides

an

interface

to

InterChange

Server

Express

and

the

repository.

System

Manager

provides

the

means

to

manage

maps

and

configure

a

map

definition.

You

can:

v

Set

some

general

properties

of

a

map

definition,

including

its

trace

level

and

data

validation

level.

v

Display

the

source

and

destination

business

objects

of

a

map.

v

Compile

a

map

definition.

For

more

information

on

how

to

use

System

Manager

to

perform

these

mapping

tasks,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

Note:

System

Manager

provides

ways

to

start

up

Map

Designer

Express.

For

more

information,

see

“Starting

Map

Designer

Express”

on

page

14..

System

Manager

also

provides

the

means

to

manage

relationships.

You

can:

v

Set

some

general

properties

of

a

relationship,

including

the

location

of

its

relationship

tables.

v

Display

the

participants

of

the

relationship.

Note:

System

Manager

also

provides

ways

to

start

up

Relationship

Designer

Express.

For

more

information,

see

“Starting

Relationship

Designer

Express”

on

page

167..

Figure

4.

Relationship

Designer

Express

Chapter

1.

Introduction

to

map

development

9

Overview

of

map

development

This

section

provides

an

overview

of

map

development,

which

includes

the

following

high-level

tasks:

1.

Installing

and

setting

up

the

map

development

software

and

installing

the

Java

Development

Kit.

2.

Designing

and

implementing

the

map.

Setting

up

the

development

environment

Requirements:

Before

you

start

the

development

process,

the

following

must

be

true:

v

The

map

development

software

is

installed

on

a

machine

that

you

can

access.

For

information

on

how

to

install

and

start

up

the

map

development

software

system,

see

your

system

installation

guide.

v

The

IBM

Java

Development

Kit

(JDK)

is

installed

from

the

product

CD.

Be

sure

to

update

the

PATH

environment

variable

to

include

the

installed

Java

directory.

Restart

InterChange

Server

Express

after

you

have

updated

the

path.

v

System

Manager

is

running.

For

information

on

starting

up

System

Manager,

see

your

system

installation

guide.

v

Map

Designer

Express

is

open

and

connected

to

System

Manager.

For

information

on

how

to

start

Map

Designer

Express,

see

“Overview

of

Map

Designer

Express”

on

page

13.

Designing

and

implementing

the

map

To

design

and

implement

maps

you

need

to

do

the

following:

1.

Learn

the

data

formats

used

by

all

business

objects

involved

in

the

map.

2.

Create

the

map

within

Map

Designer

Express.

3.

Customize

any

required

transformation

rule.

4.

Define

any

relationships

within

Relationship

Designer

Express

that

the

map

needs.

5.

Customize

the

mapping

transformation

to

perform

relationship

management.

6.

Implement

error

and

message

handling

if

appropriate.

7.

Generate

the

.java

file

and

compiled

code.

The

compiled

code

is

an

executable

Java

class.

For

more

information,

see

“Map

development

files”

on

page

11.

8.

Test

and

debug

the

map,

recoding

as

necessary.

Figure

4

provides

a

visual

overview

of

map

development

and

provides

a

quick

reference

to

chapters

where

you

can

find

information

on

specific

topics.

Tip:

If

a

team

of

people

is

available

for

map

development,

the

major

tasks

of

developing

a

map

can

be

done

in

parallel

by

different

members

of

the

10

Map

Development

Guide

development

team.

Task Steps:

Create the map

Refer to:

Customize the map

Add the relationships
(if needed)

Chapter 2

Chapter 3

Chapter 7

Chapter 2

Chapter 8

Test and debug

Chapter 5

• Create the map definition

•

•

• Validate and compile the map
• Implement error and message handling

•

•

• Create the relationship definition

• Customize the map by adding
relationship-management transformation

• Recompile the map

• Test map

• Modify the map as needed

Create the simple transformations

Use custom transformation rules to
meet your transformation requirements

Recompile the map

Add any required complex
transformations

Map

development

files

The

following

information

forms

the

basis

of

the

map:

v

When

you

compile

a

map,

Map

Designer

Express

generates

two

types

of

files

(.java,

.class)

or

an

optional

message

file

(.txt)

if

map-specified

messages

are

defined

in

the

map.

These

files

are

saved

in

the

project

in

System

Manager.

v

Map

Designer

Express

generates

a

map

definition

when

you

save

a

map

to

the

project

in

System

Manager.

This

map

definition

contains

general

information

about

the

map

(such

as

map

properties)

as

well

as

information

about

how

the

destination

attributes

are

mapped.

Attention:

Do

not

modify

the

mapname.java

file.

If

you

do,

your

changes

are

not

reflected

in

the

map

design,

which

is

stored

in

the

project

in

System

Manager.

Therefore,

these

changes

are

not

editable

in

Map

Designer

Express.

Map

Designer

Express

reads

only

the

map

definition.

Relationship

Designer

Express

also

stores

relationship

definitions

in

XML

format

in

System

Manager.

At

deployment,

System

Manager

creates

table

schemas

in

the

relationship

database

to

contain

the

relationship

run-time

instance

data.

For

each

relationship,

you

can

specify

the

location

of

all

its

relationship

tables.

The

default

location

for

these

tables

is

the

IBM

WebSphere

InterChange

Server

Express

repository.

Table

4

lists

the

file

types

that

Map

Designer

Express

can

generate

(.java,

.class,

.cwm,

.bo,

.txt)

and

their

locations

relative

to

the

System

Manager

workplace.

Figure

5.

Overview

of

the

map

development

task

Chapter

1.

Introduction

to

map

development

11

Table

4.

Map

file

types

File

type

Description

Location

relative

to

System

Manager

workspace

.java

Generated

Java

code,

created

by

Map

Designer

Express

when

you

compile

a

map.

Stored

in

ProjectName\Maps\Src.

.class

Compiled

Java

code,

created

by

Map

Designer

Express

when

you

compile

a

map.

Stored

in

ProjectName\Maps\Classes.

.cwm

Map

definition

file,

generated

by

Map

Designer

Express

when

you

save

a

map

definition.

Saved

to

ProjectName\Maps

when

″Saved″

to

System

Manager.

.bo

Plain

text

file,

used

to

save

and

load

test

run

data

and

to

save

test

run

results.

You

can

save

these

files

to

any

location.

.txt

Message

file,

created

by

Map

Designer

Express

from

information

in

the

Messages

tab

when

it

compiles

the

map.

Stored

in

ProjectName\Maps\Messages.

12

Map

Development

Guide

Chapter

2.

Creating

maps

This

chapter

describes

how

to

use

the

Map

Designer

Express

to

create

maps.

Note:

This

chapter

frequently

uses

the

terms

map

and

map

definition

interchangeably.

When

the

term

map

is

used,

it

refers

to

the

map

definition

(what

is

accessed

through

Map

Designer

Express).

This

chapter

covers

the

following

topics:

v

“Overview

of

Map

Designer

Express”

on

page

13

v

“Creating

a

map:

Basic

steps”

on

page

28

v

“Specifying

standard

attribute

transformations”

on

page

35

v

“Saving

maps”

on

page

47

v

“Checking

completion”

on

page

49

v

“Mapping

standards”

on

page

50

For

background

information

on

how

the

WebSphere

business

integration

system

uses

maps,

see

Chapter

1,

“Introduction

to

map

development,”

on

page

3.

Overview

of

Map

Designer

Express

Map

Designer

Express

is

a

graphical

development

tool

for

creating

and

modifying

maps.

A

map

is

made

up

of

a

series

of

transformation

steps

that

define

how

to

calculate

the

value

for

each

attribute

in

the

destination

business

object.

Creating

a

map

is

the

process

of

specifying

the

transformation

steps

for

each

destination

attribute

that

you

want

to

transform.

Using

Map

Designer

Express,

you

can

specify

simple

transformation

steps,

such

as

copying

a

source

attribute

to

a

destination

attribute

of

the

same

data

type,

interactively

using

drag-and-drop.

Map

Designer

Express

automatically

generates

the

Java

code

necessary

to

perform

the

transformation.

To

assist

with

other

common

transformations,

such

as

splitting

a

source

attribute

into

multiple

destination

attributes

or

joining

multiple

source

attributes

into

a

single

destination

attribute,

Map

Designer

Express

prompts

you

for

information,

such

as

the

delimiter

on

which

to

split

or

join,

then

generates

the

necessary

Java

code.

To

specify

more

complex

transformations,

you

can

define

activities

graphically

using

the

Activity

Editor

in

a

custom

transformation

rule.

This

section

provides

the

following

information

as

an

overview

to

Map

Designer

Express:

v

“Starting

Map

Designer

Express”

on

page

14

v

“Working

in

projects”

on

page

14

v

“Layout

of

Map

Designer

Express”

on

page

14

v

“Assigning

preferences”

on

page

19

v

“Customizing

the

main

window”

on

page

21

v

“Using

Map

Designer

Express

functionality”

on

page

23

©

Copyright

IBM

Corp.

2003

13

Starting

Map

Designer

Express

To

launch

Map

Designer

Express,

you

can

do

any

of

the

following:

v

From

System

Manager,

you

can:

–

Select

Map

Designer

Express

from

the

Tools

menu.

–

Click

a

map

folder

in

a

project

to

enable

the

Map

Designer

Express

icon

in

the

System

Manager

toolbar.

Then

click

the

Map

Designer

Express

icon.

–

Right-click

the

map

folder

in

a

project

and

select

Create

New

Map

from

the

Context

menu.

–

Right-double-click

a

map

to

start

Map

Designer

Express

with

the

selected

map

opened.
v

From

a

development

tool,

such

as

Business

Object

Designer

Express,

you

can

–

Select

Map

Designer

Express

from

the

Tools

menu.

–

Click

the

Map

Designer

Express

icon

in

the

Programs

toolbar.
v

Using

a

system

shortcut:

Start-->Programs-->IBM

WebSphere

Business

Integration

Express

for

Item

Sync

v4.3-->Toolset

Express-->Development-->Map

Designer

Express

Important:

For

Map

Designer

Express

to

be

able

to

access

maps

stored

in

System

Manager,

Map

Designer

Express

must

be

connected

to

an

instance

of

System

Manager.

The

preceding

steps

assume

that

you

have

already

started

System

Manager.

If

you

have

not

started

System

Manager,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization

for

more

information.

If

System

Manager

is

already

running,

Map

Designer

Express

will

automatically

connect

to

it.

Map

Designer

Express

displays

in

its

own

application

window.

You

can

launch

more

than

one

instance

of

Map

Designer

Express

at

a

time

to

edit

more

than

one

map.

Working

in

projects

Map

Designer

Express

views,

edits,

and

modifies

maps

stored

in

System

Manager

on

a

project

basis.

A

project

is

simply

a

logical

grouping

of

entities

for

managing

and

deployment

purposes.

System

Manager

allows

you

to

create

multiple

projects.

When

Map

Designer

Express

establishes

a

connection

to

System

Manager,

it

obtains

a

list

of

business

objects

that

are

defined

in

the

current

project.

If

you

add

or

delete

a

business

object

using

Business

Object

Designer

Express,

System

Manager

notifies

Map

Designer

Express,

which

dynamically

updates

the

list

of

business

object

definitions.

Before

you

can

work

on

a

map,

you

select

which

project

the

map

is

in

by

entering

the

name

of

the

project

in

the

Open

a

Map

from

a

Project

dialog.

Before

you

switch

to

another

project,

you

need

to

save

the

maps

you

modified

in

the

current

project.

For

more

information

on

opening

a

map

from

a

project

and

saving

a

map

in

a

project,

see

“Opening

a

map

from

a

project

in

System

Manager”

on

page

52

and

“Saving

a

map

to

a

project”

on

page

47,

respectively.

Layout

of

Map

Designer

Express

When

you

first

open

Map

Designer

Express

without

specifying

a

map,

the

Map

Designer

Express

tab

window

is

empty

and

the

output

window

does

not

display.

When

you

open

an

existing

map,

the

Map

Designer

Express

window

displays

the

Map

tabs

in

the

tab

window.

14

Map

Development

Guide

Table

5

describes

each

of

the

components

in

the

Map

Designer

Express

main

window.

Table

5.

Components

of

the

Map

Designer

Express

window

Window

area

Description

For

more

information

Menus

Provide

options

to

access

Map

Designer

Express

functionality.

“Main

menus

of

Map

Designer

Express”

on

page

23

Toolbar

Actually

contains

three

separate

toolbars,

each

of

which

provides

a

set

of

icons

to

access

Map

Designer

Express

functionality.

“Map

Designer

Express

toolbars”

on

page

26

Map

Designer

Express

tab

window

Displays

map

information

for

an

open

map

in

one

of

four

Map

tabs.

“Table

tab”

on

page

15

“Diagram

tab”

on

page

17

“Messages

tab”

on

page

18

“Test

tab”

on

page

18

Output

Window

Displays

results

from

the

compilation

of

a

map

and

other

status

messages.

If

the

output

window

is

not

currently

displaying

when

Map

Designer

Express

generates

a

status

message,

it

opens

this

window

automatically.

You

can

clear

the

contents

of

the

output

window

with

the

Clear

Output

option

of

the

View

menu.

Tip:

You

can

control

whether

the

output

window

pane

displays

as

part

of

the

main

window

of

Map

Designer

Express

with

the

Output

window

option

of

the

View

menu.

N/A

Status

Bar

Displays

Map

Designer

Express

status

messages.

Tip:

You

can

control

whether

the

status

bar

displays

as

part

of

the

Map

Designer

Express

window

with

the

Status

Bar

option

of

the

View

menu.

N/A

The

following

sections

describe

the

general

layout

of

each

of

the

tabs

that

display

in

Map

Designer

Express’s

tab

window.

Table

tab

The

Table

tab

of

Map

Designer

Express

displays

mapping

information

in

a

tabular

format

that

lists

all

mapping

attributes

and

transformations.

The

Table

tab

consists

of

the

following

areas:

v

Attribute

Transformation

Table

v

Business

Objects

Pane

Attribute

transformation

table:

The

attribute

transformation

table

presents

in

a

tabular

format

all

transformations

associated

with

the

map.

Table

6

shows

the

columns

that

make

up

this

table.

Chapter

2.

Creating

maps

15

Table

6.

Columns

of

the

Attribute

Transformation

Table

Column

name

Description

Exec.

Order

The

execution

order

for

the

destination

attribute.

When

you

add

a

transformation

to

the

end

of

this

table,

Map

Designer

Express

automatically

assigns

its

execution

order

as

the

last

in

the

table.

You

can

change

the

execution

order

of

an

attribute

by

typing

the

desired

order

number

in

the

Exec.

Order

field.

Note:

You

can

specify

how

Map

Designer

Express

handles

the

execution

order

of

destination

attributes

with

the

option

Defining

Map:

automatically

adjust

execution

order.

By

default,

this

option

is

disabled.

When

the

option

is

enabled,

Map

Designer

Express

automatically

adjusts

the

execution

order

of

other

attributes.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20.

Source

Attribute

The

name

of

the

source

attribute

for

the

transformation.

This

field

provides

a

combo

box

that

contains

a

list

of

all

source

and

destination

business

objects

with

their

attributes

listed

under

them.

Click

the

appropriate

source

attribute

from

this

list.

You

can

select

multiple

source

attributes

by

clicking

the

Multiple

Attributes

entry

in

the

combo

box

list.

Map

Designer

Express

displays

the

Multiple

Attributes

dialog

from

which

you

can

select

the

attributes.

Note:

You

can

specify

how

Map

Designer

Express

displays

the

source

attribute

name

with

the

option

Defining

Map:

show

full

attribute

path.

By

default,

this

option

is

disabled

and

Map

Designer

Express

displays

all

source

attribute

names

as

...AttrName.

When

the

option

is

enabled,

Map

Designer

Express

displays

the

full

attribute

path:

ObjSrcBusObj.AttrName.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20.

Source

Type

The

data

type

of

the

source

attribute.

This

field

is

read-only.

Destination

Attribute

The

name

of

the

destination

attribute

for

the

transformation.

This

field

provides

a

combo

box

that

contains

a

list

of

all

source

and

destination

business

objects

with

their

attributes

listed

under

them.

Click

the

appropriate

destination

attribute

from

this

list.

Note:

You

can

specify

how

Map

Designer

Express

displays

the

destination

attribute

name

with

the

option

Defining

Map:

show

full

attribute

path.

By

default,

this

option

is

disabled

and

Map

Designer

Express

displays

all

destination

attribute

names

as

...AttrName.

When

the

option

is

enabled,

Map

Designer

Express

displays

the

full

attribute

path:

ObjDestBusObj.AttrName.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20.

Dest.

Type

The

data

type

of

the

destination

attribute.

This

field

is

read-only.

Transformation

Rule

The

transformation

rule

and

code

for

this

attribute’s

transformation

step.

This

field

provides

a

combo

box

that

contains

a

list

of

standard

transformations:

v

None

(no

transformation)

v

Join

v

Move

v

Split

v

Set

Value

v

Submap

v

Cross-Reference

v

Custom

Click

the

appropriate

transformation

from

this

list

to

enter

it

in

the

field.

For

more

information,

see

“Specifying

standard

attribute

transformations”

on

page

35.

16

Map

Development

Guide

Table

6.

Columns

of

the

Attribute

Transformation

Table

(continued)

Column

name

Description

Comment

An

informational

description

of

the

attribute’s

transformation.

See

“Setting

comments

in

the

comment

field

of

the

attribute”

on

page

50.

Defining

a

map

from

the

Table

tab:

To

define

a

map

from

the

Table

tab,

follow

these

general

steps:

1.

Click

in

an

empty

cell

in

the

Source

Attribute

column.

From

the

available

combo

box,

click

the

source

attribute

to

transform.

2.

Click

in

the

corresponding

cell

in

the

Destination

Attribute

column.

Click

the

destination

attribute

from

the

available

combo

box.

3.

Click

in

the

corresponding

cell

in

the

Transformation

Rule

column.

This

column

provides

a

combo

box:

v

For

a

standard

transformation

(Join,

Move,

Split,

Set

Value,

Submap,

or

Cross-Reference),

select

the

associated

option

from

the

list.

Map

Designer

Express

generates

code

for

these

standard

transformations.

You

can

customize

this

code

as

needed.

For

more

information,

see

“Specifying

standard

attribute

transformations”

on

page

35.

v

For

a

transformation

that

is

not

in

this

combo

box,

select

Custom

from

the

list

and

add

the

custom

Java

code

in

the

Activity

Editor.

For

more

information,

see

“Creating

a

Custom

transformation”

on

page

46.
4.

Click

in

the

corresponding

cell

in

the

Comment

column.

For

more

information,

see

“Setting

comments

in

the

comment

field

of

the

attribute”

on

page

50.

Business

Objects

Pane:

The

business

objects

pane

presents

in

a

list

all

source

and

destination

business

objects

associated

with

the

map.

Its

left

area

displays

the

source

business

objects;

its

right

area

displays

the

destination

business

objects.

If

the

map

contains

a

temporary

business

object,

the

business

objects

pane

contains

three

areas:

Source

Business

Object,

Temporary

Business

Object,

and

Destination

Business

Object.

Tip:

You

can

control

whether

the

business

objects

pane

displays

as

part

of

the

Table

tab

with

the

Business

Objects

Pane

option

of

the

View

menu.

Diagram

tab

The

Diagram

tab

of

Map

Designer

Express

provides

a

drag-and-drop

interface

for

defining

and

reviewing

the

transformations.

You

view

and

design

maps

in

the

map

workspace,

which

displays

on

the

right

side

of

the

window.

The

Diagram

tab

consists

of

the

following

areas:

v

Business

object

browser,

which

displays

in

the

project

pane,

on

the

leftmost

part

of

the

window.

This

browser

uses

a

hierarchical

format

to

list

the

business

objects

in

the

project

in

System

Manager

when

Map

Designer

Express

is

connected

to

System

Manager.

To

refresh

the

list

of

business

objects

in

the

business

object

browser,

right-click

in

the

business

object

browser

and

select

Refresh

All

from

the

Context

menu.

Map

Designer

Express

queries

System

Manager

and

updates

the

business

object

browser

with

the

current

business

objects.

Note:

If

you

add

or

delete

a

business

object

from

the

project

in

System

Manager,

System

Manager

dynamically

updates

the

list

of

business

object

definitions.

Chapter

2.

Creating

maps

17

Tip:

You

can

control

whether

the

business

object

browser

displays

as

part

of

the

Diagram

view

with

the

Project

Pane

option

of

the

View

pull-down

menu.

v

Map

workspace,

which

always

displays

the

information

about

the

current

map.

When

you

open

a

map,

the

map

workspace

displays

a

business

object

window

for

each

source

and

destination

business

object

used

in

the

map.

Each

business

object

window

lists

some

or

all

attributes

defined

in

the

business

object,

depending

on

what

viewing

mode

is

currently

selected.

In

the

case

of

a

destination

business

object

or

temporary

business

object,

the

business

object

window

also

lists

the

transformation

rule

and

comments

associated

with

the

attribute.

In

the

map

workspace,

you

can

add,

delete,

or

modify

transformations

in

the

map.

Lines

connecting

attributes

represent

the

transformations

between

the

attributes.

Tip:

You

can

control

which

attributes

display

in

the

source

and

destination

business

objects

in

the

Diagram

tab

with

the

options

of

the

View--->Diagram

submenu.

This

submenu

allows

you

to

select

whether

to

display

all

attributes,

only

linked

(mapped)

attributes,

or

only

unlinked

(unmapped)

attributes.

Messages

tab

The

Messages

tab

displays

the

map’s

messages.

A

message

consists

of

a

message

ID

and

its

associated

message

text.

The

Messages

tab

is

divided

into

two

panes.

The

top

pane

is

the

message

grid,

which

consists

of

three

columns:

Message

ID

column,

Message

column,

and

Explanation

column

(for

comments

for

the

entire

message

file).

The

bottom

or

Description

pane

is

for

entering

plain

text.

When

you

enter

text

into

the

Description

pane,

the

text

is

added

to

the

top

of

the

generated

message

file

as

comments.

Map

Designer

Express

saves

any

change

made

to

the

map’s

messages

in

the

project

of

System

Manager.

For

more

information

on

messages

and

how

to

use

them,

see

Appendix

A,

“Message

files,”

on

page

403.

For

information

about

the

format

of

messages,

see

“Format

for

map

messages”

on

page

405..

When

you

compile

a

new

map,

Map

Designer

Express

generates

an

external

message

file,

based

on

the

information

entered

in

the

Messages

tab.

This

message

file

is

saved

in

the

message

directory.

Attention:

You

must

make

all

changes

to

a

map’s

messages

through

the

Messages

tab

of

Map

Designer

Express.

Do

not

use

an

external

text

editor

to

make

changes

to

the

generated

message

file.

Any

changes

made

from

the

external

editor

will

not

be

visible

to

Map

Designer

Express

because

they

will

not

be

stored

in

the

map

definition

of

the

project.

Furthermore,

such

changes

will

be

overwritten

the

next

time

you

compile

the

map.

Test

tab

The

Test

tab

provides

an

interface

for

testing

maps

and

viewing

the

results.

In

this

tab,

you

can

run

tests

to

verify

that

transformations

are

working

properly.

The

Test

tab

consists

of

the

following

areas:

v

Test

path

diagram

The

test

path

diagram

at

the

top

of

the

window

shows

the

map

test

as

a

series

of

icons:

18

Map

Development

Guide

–

The

Source

Testing

Data

arrow

indicates

the

direction

of

the

map

transformation

and

is

labeled

with

the

business

object

type

for

the

source

business

object

that

is

participating

in

the

map

test.

–

The

Map

icon

represents

the

currently

open

map,

which

is

used

in

the

test.

–

The

Destination

Testing

Data

arrow

indicates

the

direction

of

the

map

transformation

and

is

labeled

with

the

business

object

type

for

the

destination

business

object

that

results

from

the

map

test.
v

Source

Testing

Data

pane

The

source

testing

data

area

in

the

lower

left

window

uses

a

hierarchical

format

to

list

the

attributes

of

the

source

business

object

that

participates

in

the

map.

Click

the

plus

symbol

(+)

next

to

a

source

business

object

to

expand

it.

In

this

area,

you

enter

test

data

for

the

source

business

object.

v

Destination

Testing

Data

pane

The

destination

testing

data

area

in

the

lower

right

window

uses

a

hierarchical

format

to

list

the

attributes

of

the

destination

business

object

that

results

from

the

map.

Click

the

plus

symbol

(+)

next

to

a

business

object

to

expand

it.

In

this

area,

you

view

test

results

data

for

the

destination

business

object.

Note:

Map

Designer

Express

displays

results

from

the

test

run

of

the

map

in

the

output

window.

For

more

information

on

how

to

use

the

Test

tab,

see

“Testing

maps”

on

page

72.

Assigning

preferences

Map

Designer

Express

provides

the

Preferences

dialog

to

allow

you

to

customize

behavior

of

the

Map

Designer

Express

tool.

To

display

the

Preferences

dialog:

v

From

the

View

menu,

select

Preferences.

v

Use

the

keyboard

shortcut

of

Ctrl+U.

Figure

6

shows

the

Preferences

dialog.

Chapter

2.

Creating

maps

19

Map

Designer

Express

saves

preference

settings

in

the

Windows

registry.

Therefore,

they

remain

in

effect

for

the

current

Map

Designer

Express

session

and

future

sessions.

The

Preferences

dialog

provides

the

following

tabs:

v

General

v

Validation

v

Key

Mapping

Specifying

General

Preferences

The

General

tab

of

the

Preferences

dialog

displays

the

general

preferences

you

can

specify

for

how

Map

Designer

Express

manages

maps.

Table

7.

General

Map

Designer

Express

Preferences

General

Preference

Description

For

more

information

Open

Map

validate

map

when

open

When

this

option

is

enabled,

Map

Designer

Express

validates

the

map

when

it

opens

it.

Recommendation:

If

a

map

uses

business

objects

with

many

attributes,

that

is,

more

than

a

thousand

attributes,

enabling

this

option

may

result

in

the

map

taking

a

long

time

to

open.

If

that

is

the

case,

and

it

is

not

desirable,

you

should

disable

this

option.

“Opening

a

map”

on

page

51

Delete

Map

close

map

before

delete

When

this

option

is

enabled,

Map

Designer

Express

always

closes

the

currently

open

map

before

displaying

the

Delete

Map

dialog.

“Deleting

maps”

on

page

64

always

display

warning

message

When

this

option

is

enabled,

Map

Designer

Express

always

displays

a

confirmation

before

deleting

a

map.

“Deleting

maps”

on

page

64

Compile

Map

save

map

before

compile

When

this

option

is

enabled,

Map

Designer

Express

always

saves

the

current

map

to

the

project

in

System

Manager

before

compiling

it.

“Compiling

a

map”

on

page

70

Defining

Map

automatically

adjust

execution

order

When

this

option

is

enabled,

Map

Designer

Express

automatically

renumbers

the

execution

order

of

destination

attributes

in

the

Table

tab

when

execution

order

of

an

existing

attribute

changes.

“Using

execution

order”

on

page

66

show

full

attribute

path

When

this

option

is

enabled,

Map

Designer

Express

shows

the

full

attribute

path

for

the

names

of

source

and

destination

attributes

in

the

Table

tab.

“Table

tab”

on

page

15

show

business

object

instance

name

When

this

option

is

enabled,

Map

Designer

Express

displays

the

names

of

the

source

and

destination

business

object

and

their

variable

names.

When

this

option

is

disabled,

Map

Designer

Express

omits

the

names

of

the

business

object

variables

in

both

the

Table

and

Diagram

tabs.

“Generating

business

object

variables”

on

page

140

Figure

6.

Preferences

dialog

20

Map

Development

Guide

Specifying

Validation

The

Validation

tab

of

the

Preferences

dialog

provides

options

you

can

choose

for

Map

Designer

Express

to

perform

validations

on

the

map

when

you

save

the

map.

The

options

are

as

follows:

v

Show

warning

if

verb

not

mapped

v

Show

warning

if

key

attribute

not

mapped

v

Show

warning

if

required

attribute

not

mapped

v

Show

warning

if

child

business

object

not

mapped

Map

Designer

Express

will

do

the

selected

validation

as

deep

as

there

are

other

transformation

rules

in

that

level.

Example:

If

path

a.b.c

is

mapped,

then

Map

Designer

Express

will

perform

these

validations

on

business

objects

level

a,

a.b,

and

a.b.c.

For

more

information,

see

“Validating

a

map”

on

page

69..

Specifying

Key

Mappings

The

Key

Mapping

tab

of

the

Preferences

dialog

displays

the

key

mappings

for

several

standard

transformations

in

the

Diagram

tab.

Table

8.

Key

Mapping

Map

Designer

Express

Preferences

Key

map

Description

For

more

information

Move/Join/Submap

Key

map

to

use

when

creating

a

Move,

Join,

or

Submap

transformation.

Map

Designer

Express

distinguishes

between

the

transformations

by

the

type

and

number

of

source

attributes:

v

Move—one

source

attribute

that

is

not

a

child

business

object

“Copying

a

source

attribute

to

a

destination

attribute”

on

page

37

v

Join—more

than

one

source

attribute

that

is

not

a

child

business

object

“Joining

attributes”

on

page

38

v

Submap—one

or

more

source

attributes

that

are

a

child

business

object

“Transforming

with

a

submap”

on

page

41

Split

Key

map

to

use

when

creating

a

Split

transformation.

“Splitting

attributes”

on

page

40

Cross-Reference

Key

map

to

use

for

maintaining

identity

relationships

“Cross-referencing

identity

relationships”

on

page

45

Custom

Key

map

to

use

when

creating

a

Custom

transformation.

“Creating

a

Custom

transformation”

on

page

46

The

Key

Mapping

tab

provides

the

following

functionality:

v

To

change

a

key

mapping,

click

in

the

appropriate

transformation

field

and

select

the

desired

key

map

for

this

transformation

from

the

combo

box.

Click

OK.

v

To

return

key

mappings

to

their

default

values,

click

Use

Default

and

then

click

OK.

Customizing

the

main

window

Map

Designer

Express

provides

the

following

ways

to

customize

its

main

window:

v

“Choosing

how

windows

display”

on

page

22

v

“Floating

a

dockable

window”

on

page

22

Chapter

2.

Creating

maps

21

Choosing

how

windows

display

When

you

first

open

Map

Designer

Express

without

specifying

a

map,

the

main

window

is

empty

with

the

toolbars

and

status

bar

visible.

When

you

open

a

map,

Map

Designer

Express

displays

the

Diagram

tab

in

the

tab

window

and

opens

the

output

window.

By

default,

Map

Designer

Express

displays

each

of

the

map

tabs

as

follows:

v

Table

tab—the

business

objects

pane

displays

under

the

attribute

transformation

table.

v

Diagram

tab—the

map

workspace

area

displays

and

is

empty.

v

Messages

and

Test

tabs—as

described

in

“Messages

tab”

on

page

18

and

“Test

tab”

on

page

18,

respectively.

You

can

customize

the

appearance

of

the

main

window

and

the

Map

tabs

with

options

from

the

View

menu.

Table

9

describes

the

options

of

the

View

pull-down

menu

and

how

they

affect

the

appearance

of

the

Map

Designer

Express

window.

Table

9.

View

menu

options

for

Map

Designer

Express

window

customization

View

menu

option

Element

displayed

Toolbars

A

submenu

with

options

for

each

of

the

Map

Designer

Express

toolbars:

v

Standard

toolbar

v

Designer

toolbar

v

Programs

toolbar

Status

Bar

A

single-line

pane

in

which

Map

Designer

Express

displays

status

information.

Business

Objects

Pane

A

pane

that

displays

the

source

and

destination

business

objects

in

the

Table

tab

of

Map

Designer

Express.

Project

Pane

A

pane

that

displays

the

business

object

browser

in

the

Diagram

tab

of

Map

Designer

Express.

Diagram

A

submenu

with

options

for

which

attributes

to

display

in

the

source

and

destination

business

objects

in

the

business

object

windows

of

the

Diagram

tab:

v

All

Attributes

v

Linked

Attributes

v

Unlinked

Attributes

The

Designer

toolbar

also

provides

icons

for

displaying

these

attributes.

Output

Window

A

small

window

across

the

bottom

of

the

Map

Designer

Express

window.

The

Clear

Output

option

of

the

View

menu

clears

all

text

in

the

output

window.

Tip:

When

a

menu

option

appears

with

a

check

mark

to

the

left,

the

associated

element

displays.

To

turn

off

display

of

the

element,

select

the

associated

menu

option.

The

check

mark

disappears

to

indicate

that

the

element

does

not

currently

display.

Conversely,

you

can

turn

on

display

of

an

undisplayed

element

by

selecting

the

associated

menu

option.

In

this

case,

the

check

mark

appears

beside

the

displaying

element.

Floating

a

dockable

window

Map

Designer

Express

supports

the

following

features

as

dockable

windows:

v

Toolbars

in

the

main

window:

–

Standard

toolbar

–

Designer

toolbar

22

Map

Development

Guide

–

Programs

toolbar

For

more

information

about

the

features

of

these

toolbars,

see

“Map

Designer

Express

toolbars”

on

page

26.

v

Output

Window

v

Find

Control

pane.

For

more

information,

see

“Finding

information

in

a

map”

on

page

60.

Tip:

By

default,

a

dockable

window

is

usually

placed

along

the

edge

of

the

main

window

and

moves

as

part

of

the

main

window.

When

you

float

a

dockable

window,

you

detach

it

from

the

main

window,

allowing

it

to

function

as

an

independent

window.

To

float

a

dockable

window,

hold

down

the

left

mouse

button,

grab

the

border

of

the

window

and

drag

it

onto

the

main

window

or

desktop.

Using

Map

Designer

Express

functionality

You

can

access

Map

Designer

Express’s

functionality

using

any

of

the

following:

v

The

pull-down

menus

at

the

top

of

the

window

v

The

icons

in

the

toolbars

v

Keyboard

shortcuts

Main

menus

of

Map

Designer

Express

Map

Designer

Express

provides

the

following

pull-down

menus:

v

File

menu

v

Edit

menu

v

View

menu

v

Debug

menu

v

Tools

menu

v

Help

menu

The

following

sections

describe

the

options

of

each

of

these

menus.

Functions

of

the

File

menu:

The

File

pull-down

menu

of

Map

Designer

Express

provides

the

options

shown

in

Table

10.

Table

10.

Options

of

the

File

menu

in

Map

Designer

Express

File

menu

option

Description

For

more

information

New...

Creates

a

new

map

file,

clearing

any

existing

map

from

the

map

workspace

“Creating

a

map:

Basic

steps”

on

page

28

Open

(submenu)

A

submenu

that

provides

options

for

opening

an

existing

map

“Opening

a

map”

on

page

51

Close

Closes

the

current

map

“Closing

a

map”

on

page

53

Save

(submenu)

A

submenu

that

provides

options

for

saving

the

current

map

to

the

same

name

“Saving

maps”

on

page

47

Save

As

(submenu)

A

submenu

that

provides

options

for

saving

the

current

map

to

a

name

different

from

the

map

“Saving

maps”

on

page

47

Delete...

Deletes

a

specified

map

“Deleting

objects”

on

page

63

Validate

Map

Validates

the

current

map

“Validating

a

map”

on

page

69

Compile

Compiles

the

current

map

“Compiling

a

map”

on

page

70

Chapter

2.

Creating

maps

23

Table

10.

Options

of

the

File

menu

in

Map

Designer

Express

(continued)

File

menu

option

Description

For

more

information

Compile

with

Submap(s)

Compiles

the

current

map

and

its

submaps

“Compiling

a

map”

on

page

70

Compile

All...

Compiles

all

or

a

subset

of

maps

defined

“Compiling

a

set

of

maps”

on

page

71

Create

Map

Document...

Creates

HTML

files

that

describe

the

map

between

business

objects

“Creating

a

map

document”

on

page

58

View

Map

Document...

Displays

the

HTML

map-document

file

in

your

HTML

browser

“Viewing

a

map

document”

on

page

60

Print

Setup...,

Print

Preview,

Print...

Standard

Windows

print

options

so

you

can

preview,

print,

and

configure

a

print

job

“Printing

a

map”

on

page

62

Exit

Exits

Map

Designer

Express

N/A

Functions

of

the

Edit

menu:

The

Edit

pull-down

menu

of

Map

Designer

Express

provides

the

following

options:

v

Standard

Windows

edit

options—Cut,

Copy,

and

Paste

v

Delete

Current

Selection—Deletes

the

currently

selected

object

v

Select

All—In

the

Diagram

tab,

selects

all

transformations

between

the

source

and

destination

business

objects

v

Insert

Row—Inserts

a

row

before

the

current

row

in

the

attribute

transformation

table

of

the

Table

tab

v

Add

Business

Object—Displays

the

Add

Business

Object

dialog

to

add

business

objects

(source,

destination,

and

temporary)

to

the

map

v

Delete

Business

Object—Displays

the

Delete

Business

Object

dialog

to

delete

a

business

object

v

Find—Searches

an

attribute

name

or

transformation

code

for

text

or

transformation

code

for

unmapped

attributes

v

Replace—searches

and

replaces

in

custom

Java

code

or

comments

v

Map

Properties—Displays

the

Map

Properties

window

Functions

of

the

View

menu:

The

View

pull-down

menu

of

Map

Designer

Express

provides

the

following

options:

v

Business

Objects

Pane—When

enabled,

Map

Designer

Express

displays

the

source

and

destination

business

objects

at

the

bottom

pane

of

the

Table

tab

in

the

Map

Designer

Express

window

v

Diagram—A

submenu

that

provides

options

for

determining

which

attributes

display

in

the

business

object

windows

of

the

Diagram

tab

v

Project

Pane—Always

enabled,

Map

Designer

Express

displays

the

business

object

browser

as

the

left

pane

of

the

Diagram

tab

in

the

Map

Designer

Express

window

v

Clear

Output—Clears

the

contents

of

the

output

window

v

Output

Window—When

enabled,

Map

Designer

Express

displays

status

messages,

including

messages

about

opening,

validating,

saving,

compiling,

and

test

running

the

map

v

Toolbars—A

submenu

that

provides

options

for

displaying

the

Map

Designer

Express

toolbars:

Standard,

Designer,

and

Programs

v

Status

Bar—When

enabled,

Map

Designer

Express

displays

its

single-line

status

message

at

the

bottom

of

the

main

window

24

Map

Development

Guide

v

Preferences—Displays

the

Preferences

dialog,

from

which

you

can

set

Map

Designer

Express

preferences

For

information

on

View

menu

options

that

control

display,

see

“Choosing

how

windows

display”

on

page

22.

Functions

of

the

Debug

menu:

The

Debug

pull-down

menu

provides

access

to

the

debugging

facilities

of

Map

Designer

Express.

It

provides

the

following

options:

v

Run

Test—Connects

to

a

server

and

starts

the

test

run

of

a

map

that

is

opened

from

a

project

v

Continue—Continues

execution

after

it

stops

at

a

breakpoint

v

Step

Over—Continues

execution

after

it

stops

at

a

breakpoint,

but

stops

execution

before

executing

the

next

attribute

v

Stop

Test

Run--Stops

the

test

run

of

a

map

v

Advanced--A

submenu

that

provides

options

for

connecting

to

a

server

for

testing

a

map

that

resides

in

the

server

(Attach)

and

disconnecting

from

a

server

and

closing

a

map

(Detach)

v

Toggle

Breakpoint—Sets

a

breakpoint

in

a

map,

which

pauses

execution

just

before

the

selected

attribute’s

transformation

v

Breakpoints—Displays

all

breakpoints

for

the

map

v

Clear

All

Breakpoints—Clears

all

breakpoints

in

the

map

For

more

information

about

the

use

of

Map

Designer

Express

testing

and

debugging

facilities,

see

“Testing

maps”

on

page

72.

Functions

of

the

Tools

menu:

The

Tools

pull-down

menu

of

Map

Designer

Express

provides

options

to

start

each

of

the

tools:

v

Map

Designer

Express

v

Business

Object

Designer

Express

v

Relationship

Designer

Express

Functions

of

the

Help

Menu:

Map

Designer

Express

provides

a

standard

Help

menu

with

the

following

options:

v

Help

Topics

v

Documentation

v

About

Map

Designer

Express

Context

menu

The

Context

menu

is

a

shortcut

menu

that

is

available,

by

right-clicking,

from

numerous

places,

such

as

the

transformation

rule

column,

row

header

in

the

Table

view,

child

business

object

in

the

source

testing

pane,

or

edit

box

in

a

dialog.

A

menu

opens

that

contains

useful

commands,

which

change

depending

on

where

you

click.

Example:

Clicking

in

the

transformation

rule

column

opens

a

Context

menu

that

provides

the

following

options:

v

Open—Opens

the

corresponding

dialog

box

for

the

transformation

rule,

such

as

Join,

Split,

and

Submap.

For

custom

transformations,

opens

the

Activity

Editor.

v

Open

in

New

Window—For

custom

transformations,

opens

a

new

instance

of

the

Activity

Editor

to

show

the

detail

of

the

transformation

rule.

Chapter

2.

Creating

maps

25

v

View

Source—Shows

the

transformation’s

corresponding

Java

code

in

the

Activity

Editor.

The

code

will

always

be

read-only.

Note:

The

default

action

when

you

double-click

the

transformation

cell

is

Open.

If

Open

is

not

available

for

that

transformation,

then

a

message

saying

that

the

action

is

not

available

is

displayed

in

the

status

bar.

Map

Designer

Express

toolbars

Map

Designer

Express

provides

three

toolbars

with

common

tasks

you

need

to

perform:

v

Standard

toolbar

v

Designer

toolbar

v

Programs

toolbar

These

toolbars

are

dockable;

that

is,

you

can

detach

them

from

the

palette

of

the

main

window

and

float

them

over

the

main

window

or

the

desktop.

Tip:

To

identify

the

purpose

of

each

toolbar

button,

roll

over

each

button

with

your

mouse

cursor.

Standard

toolbar:

Figure

7

shows

the

Standard

toolbar.

The

following

list

provides

the

function

of

each

Standard

toolbar

button,

left

to

right:

1.

New

map

2.

Open

3.

Save

to

project

4.

Open

from

file

5.

Save

to

file

6.

Find

in

map

7.

Print

map

8.

Cut

9.

Copy

10.

Paste

11.

Delete

12.

Help

Designer

toolbar:

Figure

8

shows

the

Designer

toolbar.

The

following

list

provides

the

function

of

each

Designer

toolbar

button,

left

to

right:

1.

Add

Business

Object

Figure

7.

Standard

toolbar

Figure

8.

Designer

toolbar

26

Map

Development

Guide

2.

Validate

3.

Compile

4.

Run

Test

5.

Continue

6.

Step

over

7.

Toggle

Breakpoints

8.

Clear

All

Breakpoints

9.

All

Attributes

10.

Linked

Attributes

11.

Unlinked

Attributes

Programs:

Figure

9

shows

the

Programs

toolbar.

The

following

list

provides

the

function

of

each

Programs

toolbar

button,

left

to

right:

1.

Map

Designer

Express

2.

Business

Object

Designer

Express

3.

Relationship

Designer

Express

Keyboard

shortcuts

Map

Designer

Express

provides

the

keyboard

shortcuts

shown

in

Table

11

for

many

of

the

menu

options.

Table

11.

Keyboard

shortcuts

for

Map

Designer

Express

Keyboard

shortcut

Description

For

more

information

Ctrl+E

Save

the

current

map

definition

to

a

map

definition

file

“Saving

a

map

to

a

file”

on

page

48

Ctrl+F

Display

Find

control

panel

to

locate

text

or

unlinked

attributes

in

the

map

(use

Ctrl+H

for

replace)

“Finding

information

in

a

map”

on

page

60

Ctrl+H

Display

Replace

dialog

to

find

and

replace

text

in

customized

Java

Code

and

comments

of

transformation

rules.

“Finding

and

replacing

text”

on

page

62

Ctrl+I

Open

a

map

definition

file

“Opening

a

map

from

a

file”

on

page

53

Ctrl+M

View

a

map

document

“Viewing

a

map

document”

on

page

60

Ctrl+N

Display

the

New

Map

wizard

to

create

a

new

map

“Creating

a

map:

Basic

steps”

on

page

28

Ctrl+O

Open

a

map

definition

from

the

project

in

System

Manager

“Opening

a

map

from

a

project

in

System

Manager”

on

page

52

Ctrl+P

Print

the

map

definition

“Printing

a

map”

on

page

62

Ctrl+S

In

Map

Designer

Express

main

window—Save

the

current

map

definition

to

the

project

in

System

Manager

“Saving

a

map

to

a

project”

on

page

47

Ctrl+U

Display

the

Preferences

dialog

to

set

Map

Designer

Express

preferences

“Assigning

preferences”

on

page

19

Ctrl+Alt+F

Save

the

current

map

definition

to

a

map

definition

file

with

a

different

name

(Save

As)

“Saving

a

map

to

a

file”

on

page

48

Figure

9.

Programs

toolbar

Chapter

2.

Creating

maps

27

Table

11.

Keyboard

shortcuts

for

Map

Designer

Express

(continued)

Keyboard

shortcut

Description

For

more

information

Ctrl+Alt+S

Save

the

current

map

definition

to

the

project

in

System

Manager

with

a

different

name

(Save

As)

“Saving

a

map

to

a

project”

on

page

47

Ctrl+Shift+P

Display

the

Print

Setup

dialog

to

specify

information

for

printing

the

map

definition

“Printing

a

map”

on

page

62

Ctrl+Enter

Display

the

Map

Properties

dialog,

from

which

you

can

set

general

and

business

object

properties

for

the

map

“Providing

map

property

information”

on

page

54

F7

Compile

the

current

map

“Compiling

a

map”

on

page

70

Alt+F4

Close

the

current

map

“Closing

a

map”

on

page

53

Del

Delete

the

currently

selected

entity

N/A

F1

Display

context-sensitive

help

for

the

current

dialog

or

window

N/A

Ctrl+F7

Compile

all

or

a

subset

of

maps

defined

in

System

Manager

“Compiling

a

set

of

maps”

on

page

71

F8

During

a

test

run,

continue

a

paused

map

by

executing

until

the

end

of

the

map

or

another

active

breakpoint

“Processing

breakpoints”

on

page

78

F9

Toggle

the

state

of

a

breakpoint

for

a

transformation

rule

“Setting

breakpoints”

on

page

75

F10

During

a

test

run,

continue

a

paused

map

by

executing

the

next

single

step

“Processing

breakpoints”

on

page

78

Creating

a

map:

Basic

steps

Map

Designer

Express

provides

a

New

Map

wizard

to

assist

you

in

creating

a

map

definition.

Follow

these

basic

steps

to

create

a

new

map:

1.

Create

a

new

map

file

with

the

New

Map

wizard.

Specify

the

project,

the

source

and

destination

business

objects,

and

the

name

for

the

new

map.

For

help

in

running

the

New

Map

wizard,

see

“Creating

the

map

definition”

on

page

29.

2.

Set

the

verb

for

each

destination

business

object.

In

most

cases,

destination

business

objects

have

the

same

verb

as

source

business

objects.

You

can

also

set

the

value

of

the

verb

always

to

be

a

specific

value.

For

help

setting

the

verb,

see

“Setting

the

destination

business

object

verb”

on

page

35.

3.

Specify

the

transformation

steps

for

each

destination

attribute

that

you

want

to

map.

How

you

do

this

depends

on

what

kind

of

transformation

is

required.

For

more

information

on

specifying

transformation

steps,

see

“Specifying

standard

attribute

transformations”

on

page

35.

4.

Specify

the

comment

for

the

destination

attribute.

Although

this

information

is

optional,

it

greatly

improves

readability

of

the

map

information

in

Map

Designer

Express.

For

more

information,

see

“Setting

comments

in

the

comment

field

of

the

attribute”

on

page

50.

5.

Save,

validate,

and

compile

the

map.

For

more

information

on

saving,

see

“Saving

maps”

on

page

47.

For

information

on

compiling,

see

“Compiling

a

map”

on

page

70..

6.

Test

and

debug

the

map.

For

more

information

on

testing

and

debugging,

see

“Testing

maps”

on

page

72..

28

Map

Development

Guide

Creating

the

map

definition

Map

Designer

Express

provides

a

New

Map

wizard

to

assist

in

the

creation

of

a

map

definition.

To

create

a

map

definition:

1.

Start

the

New

Map

wizard

in

any

of

the

following

ways:

v

Select

New

from

the

File

menu

to

create

a

new

map.

v

Use

the

keyboard

shortcut

of

Ctrl+N.

v

In

the

Standard

toolbar,

click

the

New

Map

button.

Result:

Map

Designer

Express

displays

the

first

window

of

the

New

Map

wizard.

2.

From

the

list

box,

select

the

name

of

the

project

for

which

you

want

to

create

the

map.

3.

Select

the

business

object

you

will

use

as

the

source

business

object

for

the

map.

You

can

select

one

or

more

source

business

objects

by

clicking

in

the

Use

Figure

10.

Welcome

window

of

New

Map

wizard

Chapter

2.

Creating

maps

29

column

of

each

desired

business

object.

Then

click

Next

to

continue.

Tip:

To

locate

a

particular

business

object,

enter

its

name

in

the

Find

field.

The

up

and

down

arrows

scroll

through

the

business

object

list.

Click

Next

to

continue.

The

New

Map

wizard

does

not

require

that

you

specify

the

source

business

object.

You

can

click

Next

without

selecting

the

source

business

object

to

postpone

specifying

this

business

object

definition.

You

can

specify

it

at

a

later

time

in

the

map

workspace

of

the

Diagram

tab.

For

more

information,

see

“Creating

the

source

and

destination

business

objects”

on

page

32.

Note:

If

you

add

or

delete

a

business

object

from

System

Manager,

it

dynamically

updates

the

list

of

business

object

definitions.

4.

Select

the

business

object

type

you

will

use

as

the

destination

business

object

for

the

map.

You

can

select

one

or

more

destination

business

objects

by

clicking

Figure

11.

Selecting

source

business

objects

30

Map

Development

Guide

in

the

Use

column

of

each

desired

business

object.

Then

click

Next

to

continue.

Tip:

To

locate

a

particular

business

object,

enter

its

name

in

the

Find

field.

The

up

and

down

arrows

scroll

through

the

business

object

list.

Click

Next

to

continue.

The

New

Map

wizard

does

not

require

that

you

specify

the

destination

business

object.

You

can

click

Next

without

selecting

the

destination

business

object

to

postpone

specifying

this

business

object

definition.

You

can

specify

it

at

a

later

time

in

the

map

workspace

of

the

Diagram

tab.

For

more

information,

see

“Creating

the

source

and

destination

business

objects”

on

page

32.

Note:

If

you

add

or

delete

a

business

object

from

System

Manager,

it

dynamically

updates

the

list

of

business

object

definitions.

Figure

12.

Selecting

destination

business

objects

Chapter

2.

Creating

maps

31

5.

Specify

the

name

to

associate

with

the

map.

Rule:

Map

names

can

be

up

to

80

alphanumeric

characters

and

underscores

(_).

Map

Designer

Express

does

enforce

some

naming

restrictions.

For

example,

it

does

not

allow

certain

punctuation

symbols,

such

as

a

period,

a

left

brace

([),

a

right

brace

(]),

a

single

quotation

mark,

a

double

quotation

mark,

or

a

space

in

the

map

name.

The

New

Map

wizard

does

not

require

that

you

specify

the

map

name.

You

can

click

Finish

without

entering

the

map

name

to

postpone

naming

this

map

definition.

When

you

save

the

map,

Map

Designer

Express

prompts

you

with

the

Save

Map

As

dialog

for

you

to

specify

the

required

map

name.

For

more

information,

see

“Saving

a

map

to

a

project”

on

page

47.

Specify

whether

the

map

is

an

inbound

or

outbound

map.

This

map

role

is

needed

for

automatically

generating

relationship

codes.

6.

Click

Finish

to

save

the

new

map

definition

with

the

specified

source

and

destination

business

objects.

Result:

Map

Designer

Express

displays

the

new

map’s

information

in

its

Diagram

tab.

Creating

the

source

and

destination

business

objects

If

you

do

not

specify

the

map’s

source

and

destination

business

objects

from

the

New

Map

wizard,

you

can

specify

them

from

either

of

the

following:

v

From

the

Add

Business

Object

dialog

v

From

the

Diagram

tab

in

the

business

object

browser

From

the

Add

Business

Object

dialog

You

can

add

a

source

or

destination

business

object

to

a

map

from

the

General

tab

of

the

Add

Business

Object

dialog.

You

display

the

Add

Business

Object

dialog

in

any

of

the

following

ways:

v

Select

Add

Business

Object

from

the

Edit

menu

of

Map

Designer

Express.

Figure

13.

Saving

new

map

32

Map

Development

Guide

v

In

the

Designer

toolbar,

click

the

Add

Business

Object

button.

v

From

the

Table

tab,

right-click

in

the

empty

area

of

the

business

objects

pane

and

select

Add

Business

Object

from

the

Context

menu.

v

From

the

Diagram

tab,

right-click

in

the

map

workspace

and

select

Add

Business

Object

from

the

Context

menu.

Through

the

General

tab

of

the

Add

Business

Object

dialog,

you

specify

the

source

and

destination

business

objects.

The

General

tab

provides

the

following

functionality:

v

To

specify

a

source

business

object:

–

Click

the

business

object

in

the

business

object

list.

–

Click

the

Add

to

Source

button.
v

To

specify

a

destination

business

object:

–

Click

the

business

object

in

the

business

object

list.

–

Click

the

Add

to

Destination

button.
v

To

locate

a

particular

business

object,

enter

its

name

in

the

Find

field.

The

up

and

down

arrows

scroll

through

the

business

object

list.

v

To

close

the

dialog,

click

Done.

From

the

map

workspace

From

the

Diagram

tab,

you

can

add

a

source

or

destination

business

object

to

a

map

by

dragging

a

business

object

definition

from

the

business

object

browser

onto

the

map

workspace

as

follows:

v

Drag

the

source

business

object

to

the

left

side

of

the

map

workspace.

The

business

object

displays

and

its

title

starts

with

Src.

v

Drag

the

destination

business

object

to

the

right

side

of

the

map

workspace.

The

business

object

displays

and

its

title

starts

with

Dest.

Note:

A

dotted-line

boundary

divides

the

left

and

right

halves

of

the

workspace

and

identifies

the

source

and

destination

portions

of

the

map

workspace.

Be

sure

to

carefully

drop

objects

in

the

appropriate

place.

Chapter

2.

Creating

maps

33

Figure

14

shows

the

source

and

destination

business

objects

in

the

map

workspace.

Tip:

Alternatively,

you

can

create

the

source

and

destination

business

objects

by

right-clicking

the

business

object

in

the

business

object

browser;

selecting

Copy

from

the

Context

menu;

then

right-clicking

in

the

map

workspace

and

selecting

Paste

As

Input

Object

or

Paste

As

Output

Object.

Map

Designer

Express

creates

a

window,

called

a

business

object

window,

for

the

source

and

destination

objects.

The

title

bar

of

this

window

displays

the

business

object

instance

name.

For

help

interpreting

the

title

bar

of

the

business

object

window,

see

“Using

generated

business

object

variables

and

attributes”

on

page

140..

The

business

object

window

for

the

source

business

object

contains

columns

for

the

name

and

data

type

of

each

source

attribute.

The

business

object

window

for

the

destination

business

object

contains

columns

for

the

name,

data

type,

transformation

rule

(which

identifies

the

transformation

step),

and

an

optional

comment.

If

you

make

a

mistake

by

dragging

the

wrong

business

object

or

making

it

an

output

object

instead

of

input,

you

can

delete

the

object

from

the

map

workspace

and

try

again.

To

delete

a

business

object

from

the

map

workspace,

you

can

either:

v

Select

the

business

object

to

delete

and

use

the

Delete

Current

Selection

option

from

the

Edit

menu

(or

press

the

Del

key).

Figure

14.

Defining

Source

and

Destination

business

objects

34

Map

Development

Guide

v

Right-click

the

title

bar

of

the

business

object’s

window

and

select

Delete

from

the

Context

menu.

Setting

the

destination

business

object

verb

The

verb

indicates

how

the

system

should

process

the

business

object’s

data.

When

a

map

executes,

the

system

needs

to

know

what

verb

to

assign

to

each

destination

business

object

it

creates.

If

a

map

has

only

one

source

business

object

and

one

destination

business

object,

the

verb

for

the

destination

business

object

is

usually

the

same

as

the

verb

for

the

source

business

object.

In

this

case,

you

need

to

copy

the

verb

from

the

source

business

object

to

the

destination

business

object

(see

Figure

14

on

page

34),

by

defining

a

Move

transformation

rule

with

the

source

attribute

as

the

source

business

object’s

verb

and

the

destination

attribute

as

the

destination

business

object’s

verb.

For

more

information,

see

“Copying

a

source

attribute

to

a

destination

attribute”

on

page

37.

Tip:

You

can

also

drag-and-drop

the

verb

from

the

source

business

object

to

the

destination

business

object

to

define

the

value

of

the

verb.

If

a

map

has

a

destination

business

object

with

a

verb

that

is

not

found

in

the

source

business

object,

you

need

to

set

the

verb

to

a

constant

value,

by

defining

a

Set

Value

transformation

rule

with

the

destination

attribute

as

the

destination

business

object’s

verb.

In

the

Set

Value

dialog

box,

enter

the

constant

verb

value.

For

more

information,

see

“Specifying

a

value

for

an

attribute”

on

page

36.

Maps

sometimes

have

more

than

one

source

or

destination

business

object,

and

these

objects

can

have

several

child

business

objects.

In

these

cases,

you

must

consider

carefully

which

verb

to

assign

to

each

destination

business

object.

Some

destination

business

objects

might

require

some

custom

logic

to

set

the

verb

based

on

the

verbs

of

one

or

more

source

business

objects.

Specifying

standard

attribute

transformations

You

can

specify

several

standard

attribute

transformations

interactively

in

Map

Designer

Express.

Table

12

shows

the

standard

transformations

that

you

can

specify

in

Map

Designer

Express.

Table

12.

Common

attribute

transformations

Name

Transformation

step

Purpose

Set

Value

“Specifying

a

value

for

an

attribute”

on

page

36

For

an

attribute

in

the

destination

business

object

that

is

not

found

in

the

source

business

object

but

is

required

in

the

destination

application

Move

“Copying

a

source

attribute

to

a

destination

attribute”

on

page

37

For

an

attribute

that

is

the

same

in

both

the

source

and

destination

business

objects

Join

“Joining

attributes”

on

page

38

For

an

attribute

in

the

destination

business

object

that

is

a

combination

of

several

attributes

in

the

source

business

object

Chapter

2.

Creating

maps

35

Table

12.

Common

attribute

transformations

(continued)

Name

Transformation

step

Purpose

Split

“Splitting

attributes”

on

page

40

For

an

attribute

in

the

destination

business

object

that

is

either:

v

Only

one

part

of

an

attribute

in

the

source

business

object

v

Made

up

of

several

fields,

but

with

different

delimiters

from

those

in

the

source

business

object

Submap

“Transforming

with

a

submap”

on

page

41

For

attributes

in

the

source

and

destination

business

objects

that

contain

child

business

objects

Cross-Reference

“Cross-referencing

identity

relationships”

on

page

45

For

maintaining

the

identity

relationships

for

the

business

objects

Custom

“Creating

a

Custom

transformation”

on

page

46

For

an

attribute

that

requires

transformations

not

provided

by

the

automatically

generated

transformations

In

the

Diagram

tab,

you

can

select

which

attributes

display

in

the

business

object

windows

with

the

options

of

the

View-->Diagram

menu.

You

can

choose

to

display

all

attributes,

only

linked

(mapped)

attributes,

or

only

unlinked

(unmapped)

attributes.

Tip:

Attributes

appear

in

the

same

order

that

they

appear

in

the

business

object

definition.

To

locate

a

particular

attribute

in

a

long

list

of

attributes,

select

Find

from

the

Edit

menu

(or

use

the

keyboard

shortcut

of

Ctrl+F).

For

more

information,

see

“Finding

information

in

a

map”

on

page

60.

Specifying

a

value

for

an

attribute

Some

destination

attribute

values

do

not

depend

on

a

source

attribute

and

can

be

filled

in

with

a

constant

value.

This

is

especially

true

if

the

destination

business

object

contains

many

attributes

that

are

not

found

in

the

source

business

object

but

are

required

in

the

destination

application.

Some

examples

of

default

values

for

attributes

are

CustomerStatus

=

"active"

or

AddressType

=

"business".

This

type

of

transformation

is

called

a

Set

Value

transformation.

You

set

the

value

of

a

destination

attribute

with

the

Set

Value

dialog,

shown

in

Figure

15.

You

can

display

the

Set

Value

dialog

from

either

of

the

following

Map

tabs:

v

From

the

Table

tab:

–

Select

the

destination

attribute

whose

value

you

want

to

set.

–

Click

Set

Value

from

the

list

in

the

Transformation

Rule

column.
v

From

the

Diagram

tab:

–

Select

the

destination

attribute

whose

value

you

want

to

set.

–

Click

Set

Value

from

the

list

in

the

Rule

column

of

the

destination

business

object.
v

If

a

Set

Value

transformation

is

already

defined,

you

can

display

the

Set

Value

dialog

to

reconfigure

the

transformation,

including

modifying

its

transformation

code

in

either

of

the

following

ways:

–

Double-click

the

corresponding

cell

of

the

transformation

rule

column.

–

Click

the

Set

Value

bitmap

icon

contained

in

the

transformation

rule

column.

36

Map

Development

Guide

Through

the

Set

Value

dialog,

you

set

the

constant

value

to

assign

to

the

destination

attribute.

The

Set

Value

dialog

provides

the

following

functionality:

v

To

specify

the

constant

value,

enter

it

in

the

Value

field.

For

numeric

values,

simply

enter

the

number

and

make

sure

that

the

String

Value

check

box

is

not

selected.

For

string

values,

enter

the

string

value

in

the

Value

field

and

select

the

String

Value

check

box.

Note:

The

Set

Value

dialog

uses

the

Examples

area

to

show

how

the

resulting

destination

attribute

will

look.

v

To

view

the

generated

code,

click

View

Code...

Result:

Map

Designer

Express

brings

up

the

Activity

Editor

in

Java

view,

containing

a

sample

of

the

transformation

code

in

read-only

mode

for

the

destination

attribute.

v

To

confirm

the

transformation

setting,

click

OK.

Copying

a

source

attribute

to

a

destination

attribute

The

simplest

kind

of

transformation

step

is

a

copy

of

one

source

attribute

into

a

corresponding

destination

attribute.

This

type

of

transformation

is

called

a

Move

transformation.

You

perform

a

move

transformation

from

either

of

the

following

map

tabs:

v

From

the

Table

tab:

–

Select

the

source

attribute.

–

Select

the

destination

attribute.

–

Click

Move

from

the

list

in

the

Transformation

Rule

column.
v

From

the

Diagram

tab:

–

Select

the

source

attribute.

–

Use

Ctrl+Drag

to

move

to

the

destination

attribute;

that

is,

hold

down

the

Ctrl

key

and

drag

the

attribute

onto

the

destination

attribute

in

the

destination

business

object

window.

Continue

to

hold

down

the

Ctrl

key

until

after

you

release

the

mouse

button;

otherwise,

the

operation

does

not

succeed.

Map

Designer

Express

creates

a

blue

arrow

from

the

source

to

the

destination

object.

If

the

transformation

involves

a

single

source

attribute

that

is

not

a

Figure

15.

Set

Value

dialog

Chapter

2.

Creating

maps

37

child

business

object,

Map

Designer

Express

assumes

that

the

transformation

is

a

Move

and

automatically

assigns

Move

to

the

Rule

column

of

the

destination

attribute.

Note:

You

can

customize

the

key

sequence

used

to

initiate

a

Move

transformation

in

the

Diagram

tab

from

the

Key

Mapping

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

Key

Mappings”

on

page

21.

Result:

Map

Designer

Express

generates

the

code

to

copy

the

value

of

the

source

attribute

to

the

destination

attribute.

If

the

source

and

destination

attributes

are

of

different

data

types,

Map

Designer

Express

determines

whether

a

type

conversion

is

possible,

and

if

so,

generates

the

code

to

convert

the

source

type

to

the

destination

type.

If

a

type

conversion

is

not

possible,

or

might

result

in

data

loss,

Map

Designer

Express

displays

a

dialog

box

for

you

to

confirm

or

cancel

the

operation.

If

you

want

to

see

a

sample

of

the

generated

code

for

the

Move

transformation,

in

the

Context

menu

of

the

rule

column,

select

View

Source.

Joining

attributes

You

can

concatenate,

or

join,

the

values

from

more

than

one

source

attribute

into

a

single

destination

attribute.

This

type

of

transformation

is

called

a

Join

transformation.

For

instance,

the

source

business

object

might

store

the

area

code,

telephone

number,

and

extension

in

separate

attributes,

while

the

destination

business

object

stores

these

values

together

in

one

attribute.

In

addition

to

joining

the

attributes,

you

can

reorder

them

and

insert

delimiters,

parentheses,

or

other

characters.

For

instance,

when

joining

separate

area

code

and

telephone

number

attributes

into

a

single

attribute,

you

might

want

to

insert

parentheses

around

the

area

code.

Tip:

The

attributes

you

want

to

join

can

sometimes

be

located

in

more

than

one

source

business

object,

such

as

in

a

parent

business

object

and

one

of

its

child

business

objects.

You

can

also

join

an

attribute

with

a

variable

you

have

defined.

(To

learn

about

defining

variables,

see

“Using

temporary

variables”

on

page

142.)

You

join

multiple

source

attributes

into

one

destination

attribute

with

the

Join

dialog,

shown

in

Figure

16.

You

display

the

Join

dialog

in

either

of

the

following

ways:

v

From

the

Table

tab:

–

Select

the

source

attributes

to

join.

Tip:

You

can

click

Multiple

Attributes

in

the

combo

box

to

display

the

Multiple

Attributes

dialog.

In

this

dialog,

you

can

check

multiple

source

attributes.

To

locate

a

particular

business

object,

enter

its

name

in

the

Find

field.

The

up

and

down

arrows

scroll

through

the

business

object

list.

Once

you

have

selected

the

source

attributes,

click

OK

to

close

the

dialog.

–

Select

the

single

destination

attribute.

–

Click

Join

from

the

list

in

the

Transformation

Rule

column.
v

From

the

Diagram

tab:

–

Select

two

or

more

source

attributes.

38

Map

Development

Guide

–

Use

Ctrl+Drag

to

move

to

the

destination

attribute;

that

is,

hold

down

the

Ctrl

key

and

drag

the

selected

source

attributes

to

the

destination

attribute.

Continue

to

hold

down

the

Ctrl

key

until

after

you

release

the

mouse

button;

otherwise,

the

operation

does

not

succeed.

If

the

transformation

involves

more

than

one

source

attribute,

Map

Designer

Express

assumes

that

the

transformation

is

a

Join.

It

automatically

assigns

Join

to

the

Rule

column

of

the

destination

attribute

and

displays

the

Join

dialog.

Note:

You

can

customize

the

key

sequence

used

to

initiate

a

Join

transformation

in

the

Diagram

tab

from

the

Key

Mapping

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

Key

Mappings”

on

page

21.

If

a

Join

transformation

is

already

defined,

you

can

use

the

Join

dialog

to

reconfigure

the

transformation,

including

modifying

its

transformation

code,

in

either

of

the

following

ways:

v

Double-click

the

corresponding

cell

of

the

transformation

rule

column.

v

Click

the

Join

bitmap

icon

contained

in

the

transformation

rule

column.

Through

the

Join

dialog,

you

build

an

expression

to

concatenate

the

source

attributes

by

adding

delimiters,

grouping

with

parentheses,

and

reordering

the

attributes

if

necessary.

The

Join

dialog

provides

the

following

functionality:

v

To

insert

a

delimiter

or

parenthesis,

enter

it

in

the

Delimiter

field

associated

with

the

attribute.

Do

not

put

quotation

marks

around

delimiters.

The

delimiter

you

enter

is

appended

to

the

associated

attribute.

For

leading

delimiters,

enter

the

delimiters

in

the

Delimiters

field

of

the

initial

blank

line.

Note:

The

Join

dialog

uses

the

Examples

area

to

show

how

the

resulting

string

will

look

after

the

join.

v

To

modify

a

delimiter

or

parenthesis

you

have

entered,

click

in

the

Delimiter

field

and

edit

as

appropriate.

Figure

16.

Join

dialog

Chapter

2.

Creating

maps

39

v

To

reorder

a

delimiter

or

the

attributes,

click

the

left-most

column

to

select

the

row,

then

click

Move

Up

or

Move

Down

to

move

the

whole

row

up

or

down.

v

To

view

the

generated

code,

click

View

Code...

Result:

Map

Designer

Express

brings

up

the

Activity

Editor

in

Java

view,

containing

a

sample

of

the

transformation

code

in

read-only

mode

for

the

destination

attribute.

v

To

confirm

the

transformation

setting,

click

OK.

Splitting

attributes

To

split

a

source

attribute

into

two

or

more

destination

attributes,

you

specify

the

transformation

for

each

destination

attribute

separately.

This

type

of

transformation

is

called

a

Split

transformation.

For

instance,

to

split

a

source

attribute,

such

as

phone_number,

into

three

separate

destination

attributes,

such

as

area_code,

tel_number,

and

extension,

you

specify

the

transformations

for

area_code,

tel_number,

and

extension

separately.

You

split

a

source

attribute

into

multiple

destination

attributes

with

the

Split

dialog,

shown

in

Figure

17.

You

display

the

Split

dialog

in

any

of

the

following

ways:

v

From

the

Table

tab:

–

Select

the

single

source

attribute

to

split.

–

Select

one

of

the

desired

destination

attributes.

–

Click

Split

from

the

list

in

the

Transformation

Rule

column.

–

Repeat

these

steps

for

each

destination

attribute

that

receives

a

segment

of

the

source

attribute.
v

From

the

Diagram

tab

–

Select

the

single

source

attribute

to

split.

–

Use

Alt+Drag

to

move

to

one

of

the

destination

attributes;

that

is,

hold

down

the

Alt

key

and

drag

the

source

attribute

to

one

of

the

destination

attributes.

If

the

transformation

involves

more

than

one

destination

attribute,

Map

Designer

Express

assumes

that

the

transformation

is

a

Split.

It

automatically

assigns

Split

to

the

Rule

column

of

the

destination

attribute

and

displays

the

Split

dialog.

–

Repeat

these

steps

for

each

destination

attribute

that

receives

a

segment

of

the

source

attribute.

Note:

You

can

customize

the

key

sequence

used

to

initiate

a

Split

transformation

from

the

Key

Mapping

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

Key

Mappings”

on

page

21.

If

a

Split

transformation

is

already

defined,

you

can

use

the

Split

dialog

to

reconfigure

the

transformation,

including

modifying

its

transformation

code,

in

either

of

the

following

ways:

v

Double-click

the

corresponding

cell

of

the

transformation

rule

column.

40

Map

Development

Guide

v

Click

the

Split

bitmap

icon

contained

in

the

transformation

rule

column.

Through

the

Split

dialog,

you

split

an

expression

into

segments

that

are

separated

by

a

delimiter.

Each

segment

is

identified

with

an

index

number,

with

the

first

segment

having

an

index

number

of

zero

(0).

The

Split

dialog

provides

the

following

functionality:

v

To

identify

the

delimiter

by

which

to

parse

the

source

attribute,

enter

it

in

the

Delimiter

field.

Do

not

put

quotation

marks

around

delimiters.

You

can

specify

one

or

more

delimiters

in

this

field.

The

transformation

uses

each

of

the

specified

delimiters

to

parse

the

string

into

segments.

For

example,

to

split

LastName,FirstName,

specify

“,”

as

the

delimiter,

LastName

as

segment

0

(the

first

segment)

and

FirstName

as

segment

1

(the

second

segment).

Note:

The

Split

dialog

uses

the

Examples

area

to

show

how

the

source

attribute

string

looks

and

to

indicate

which

segment

is

currently

being

accessed.

The

accessed

segment

displays

in

bold

and

red.

v

To

modify

a

delimiter

or

parenthesis

you

have

entered,

click

in

the

Delimiter

field

and

edit

as

appropriate.

v

To

identify

the

segment

of

the

source

attribute

that

is

copied

to

the

destination

attribute,

enter

its

index

number

in

the

Sub-string

Index

field.

v

To

view

the

generated

code,

click

View

Code...

Result:

Map

Designer

Express

brings

up

the

Activity

Editor

in

Java

view,

containing

a

sample

of

the

transformation

code

in

read-only

mode

for

the

destination

attribute.

v

To

confirm

the

transformation

setting,

click

OK.

Transforming

with

a

submap

A

submap

is

a

map

that

is

called

from

within

another

map,

called

the

main

map.

This

section

provides

the

following

information

about

submaps:

v

“Uses

for

submaps”

v

“Specifying

a

Submap

transformation”

on

page

43

Uses

for

submaps

You

can

call

a

submap

to

obtain

a

value

for

any

destination

attribute,

but

submaps

are

most

commonly

used

for

the

following:

Figure

17.

Split

dialog

Chapter

2.

Creating

maps

41

v

To

modularize

a

map

v

To

specify

transformations

between

child

business

objects

Improving

map

modularity:

Using

submaps

can

improve

the

modularity

of

your

maps

by

isolating

common

transformations

that

can

be

reused

in

more

than

one

map.

For

example,

a

Customer

business

object

might

have

an

Address

child

business

object

that

is

also

a

child

of

an

Order

business

object.

If

you

create

a

submap

for

the

Address

business

object,

you

can

reuse

the

submap

in

both

the

Customer

and

Order

business

object

maps.

Figure

18

illustrates

how

a

submap,

MyAddrToGenAddr,

can

be

reused

by

two

different

maps.

Transforming

child

business

objects:

When

the

source

and

destination

attributes

contain

multiple-cardinality

child

business

objects,

it

is

useful

to

use

a

submap

to

specify

their

transformations.

Typical

examples

of

multiple-cardinality

child

business

objects

are

the

multiple

addresses

of

a

customer

or

the

multiple

line

items

in

an

order.

In

the

simplest

case,

you

transform

each

source

child

business

object

into

a

single

destination

child

business

object,

in

a

one-to-one

relationship.

Figure

19

illustrates

the

use

of

submaps

for

an

Employee

business

object

and

its

child

business

array

that

contains

instances

of

EmployeeAddress.

Figure

18.

Using

submaps

for

modularity

42

Map

Development

Guide

A

submap

can

be

associated

with

a

conditional

statement

that

governs

whether

it

executes.

For

example,

consider

Figure

20:

the

Order

business

object

has

an

OrderLine

attribute

that

contains

a

multiple-cardinality

child

business

object,

OrderLine.

The

OrderLine

business

object

has

a

DeliverySchedule

attribute

that

contains

a

multiple-cardinality

child

business

object,

DelSched.

OrderLine[2]

Order

OrderLine

DeliverSched[2]
DeliverSched[1]

DeliverSched[0]

OrderLine[1]

ched

OrderLine[0]

DeliverSched

DeliverSched[2] DeliverSched[2]
DeliverSched[1] DeliverSched[1]

DeliverSched[0] DeliverSched[0]

ched

Some

conditions

that

can

be

written

in

the

map

for

Order

can:

v

Execute

the

submap

that

transforms

the

OrderLine

attribute

in

Order

only

if

a

different

attribute

in

Order

has

a

particular

value.

v

Execute

the

submap

that

transforms

the

DeliverSched

attribute

in

OrderLine

only

if

a

different

attribute

in

OrderLine

has

a

particular

value.

v

Execute

the

submap

that

transforms

the

DeliverSched

attribute

in

OrderLine

only

if

an

attribute

in

Order

has

a

particular

value.

Specifying

a

Submap

transformation

Perform

the

following

steps

to

create

a

Submap

transformation.

1.

Create

the

map

that

you

want

to

use

as

a

submap.

Employee

Address[2]

App_Empl

AppAddr[2]

AppAddr[1]

AppAddr[0]

Address[1]

Address[0]

Figure

19.

One-to-one

transformation

of

child

business

object

arrays

Figure

20.

Source

business

object

with

multiple-cardinality

child

business

object

Chapter

2.

Creating

maps

43

You

do

this

in

the

same

way

that

you

create

and

save

any

other

map.

IBM

naming

conventions

suggest

that

submap

names

begin

with

the

string

“Sub_”.

2.

Save

the

submap

to

the

project

in

System

Manager

and

compile

the

submap.

3.

Specify

the

Submap

transformation

on

the

attribute

in

the

parent

business

object

that

needs

to

call

the

submap.

This

source

attribute

contains

a

child

business

object

that

is

mapped

to

a

destination

attribute

that

contains

a

child

business

object.

You

specify

that

a

submap

needs

to

be

called

with

the

Submap

dialog,

shown

in

Figure

21.

You

display

the

Submap

dialog

in

either

of

the

following

ways:

v

From

the

Table

tab:

–

In

the

parent

map,

select

a

source

attribute

(which

is

a

child

business

object).

–

Select

the

desired

destination

attribute

(which

is

also

a

child

business

object).

–

Click

Submap

from

the

list

in

the

Transformation

Rule

column.

–

Repeat

these

steps

for

each

source

attribute

that

is

a

source

business

object

for

the

submap

and

each

destination

attribute

that

is

a

destination

business

object

for

this

submap.
v

From

the

Diagram

tab

–

In

the

parent

map,

select

the

source

attribute

(which

is

a

child

business

object).

–

Use

Ctrl+Drag

to

move

to

the

destination

attribute;

that

is,

hold

down

the

Ctrl

key

and

drag

the

source

attribute

onto

the

destination

attribute.

Continue

to

hold

down

the

Ctrl

key

until

after

you

release

the

mouse

button;

otherwise,

the

operation

does

not

succeed.

If

the

transformation

involves

a

source

attribute

that

is

a

child

business

object,

Map

Designer

Express

assumes

that

the

transformation

is

a

Submap.

It

automatically

assigns

Submap

to

the

Rule

column

of

the

destination

attribute

and

displays

the

Submap

dialog.

Note:

You

can

customize

the

key

sequence

used

to

initiate

a

Submap

transformation

from

the

Key

Mapping

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

Key

Mappings”

on

page

21.

If

a

Submap

transformation

is

already

defined,

you

can

use

the

Submap

dialog

to

reconfigure

the

transformation,

including

modifying

its

transformation

code,

in

either

of

the

following

ways:

v

Double-click

the

corresponding

cell

of

the

transformation

rule

column.

44

Map

Development

Guide

v

Click

the

Submap

bitmap

icon

contained

in

the

transformation

rule

column.

Through

the

Submap

dialog,

you

specify

the

name

of

the

submap

to

call.

The

Submap

dialog

provides

the

following

functionality:

v

To

identify

the

submap

to

call,

select

its

name

from

the

list

in

the

Map

area.

The

map

list

displays

maps

that

meet

the

following

conditions:

–

The

submap

has

the

same

business

object

definitions

for

its

source

and

destination

business

objects

as

the

source

and

destination

attribute

you

have

selected.

Tip:

To

locate

a

particular

submap,

enter

its

name

in

the

Find

field.

The

up

and

down

arrows

scroll

through

the

business

object

list.

v

To

specify

a

condition

for

the

submap,

enter

it

in

the

Condition

area

of

the

Submap

dialog.

You

can

enter

the

condition

now

or

simply

dismiss

the

dialog

and

enter

the

condition

in

the

destination

attribute’s

generated

code.

v

To

view

the

generated

code,

click

View

Code...

Result:

Map

Designer

Express

brings

up

the

Activity

Editor

in

Java

view,

containing

a

sample

of

the

transformation

code

in

read-only

mode

for

the

destination

attribute.

v

To

confirm

the

transformation

setting,

click

OK.

Cross-referencing

identity

relationships

In

some

cases,

the

source

attribute

may

need

to

reference

a

relationship

table

to

find

out

what

value

to

set

in

the

destination

attribute.

This

can

be

done

using

a

Cross-Reference

transformation.

Perform

the

following

steps

to

use

a

cross-reference

transformation:

1.

Select

the

source

and

destination

attributes

in

any

of

the

ways

previously

described

for

other

transformation.

Both

have

to

be

business

objects.

2.

Select

Cross-Reference

in

the

corresponding

transformation

cell.

Figure

21.

Submap

dialog

Chapter

2.

Creating

maps

45

Result:

The

Cross-Reference

dialog

appears:

3.

In

this

dialog,

select

the

relationship

name

from

the

list.

Result:

The

Participant

combo

box

will

be

populated

with

all

participants

from

the

selected

relationship.

The

Business

Object

combo

box,

by

default,

will

be

populated

according

to

the

mapping

role

defined

in

the

map

property.

You

can

change

the

combo

boxes.

Creating

a

Custom

transformation

In

a

Custom

transformation,

you

use

the

Activity

Editor

to

customize

the

activity

for

the

transformation

graphically.

Perform

the

following

steps

to

define

a

custom

transformation

from

either

the

Table

or

Diagram

tab:

v

From

the

Table

tab

–

Select

the

source

attribute.

–

Select

the

desired

destination

attribute.

–

Click

Custom

from

the

list

in

the

Transformation

Rule

column.
v

From

the

Diagram

tab

–

Select

the

source

attribute.

–

Select

the

desired

destination

attribute.

–

Drag

the

source

attribute

onto

the

destination

attribute

in

the

destination

business

object

window.

Note:

You

can

customize

the

key

sequence

used

to

initiate

a

Custom

transformation

from

the

Key

Mapping

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

Key

Mappings”

on

page

21.

Result:

Map

Designer

Express

displays

the

Activity

Editor

with

a

graphical

view.

For

more

information

on

the

Activity

Editor,

see

“Using

the

Activity

Editor”

on

page

87.

Figure

22.

Cross-Reference

dialog

46

Map

Development

Guide

If

a

custom

transformation

is

already

defined,

you

can

modify

its

transformation

code

in

either

of

the

following

ways:

v

Double-click

the

corresponding

cell

of

the

transformation

rule

column.

v

Click

the

Custom

bitmap

icon

contained

in

the

transformation

rule

column.

Saving

maps

To

preserve

the

map

definition

for

use

at

a

later

time,

you

must

save

the

map.

Before

Map

Designer

Express

saves

a

map,

it

first

validates

the

map.

For

more

information,

see

“Validating

a

map”

on

page

69.

Map

Designer

Express

provides

two

ways

to

save

the

current

map:

v

“Saving

a

map

to

a

project”

on

page

47

v

“Saving

a

map

to

a

file”

on

page

48

Important:

For

Map

Designer

Express

to

be

able

to

save

a

map,

a

map

must

currently

be

open.

Saving

a

map

to

a

project

A

map

definition

stores

map

information

in

a

project

in

System

Manager.

This

map

definition

contains

the

following

information

for

a

map:

v

The

general

map

information,

which

includes

map

properties

v

The

map

design,

which

includes

the

transformation

mappings.

v

The

custom

transformation

code

To

save

a

map

to

a

project

in

System

Manager,

you

can

perform

any

of

the

actions

shown

in

Table

13..

Table

13.

Saving

a

map

to

the

project

If

you

want

to

.

.

.

Then

.

.

.

Save

the

map

definition

to

the

name

of

the

currently

open

map.

Use

any

of

the

following:

v

Select

To

Project

from

the

File

-->

Save

submenu.

v

Use

the

keyboard

shortcut

Ctrl+S.

v

In

the

Standard

toolbar,

click

the

Save

Map

to

Project

button).

Save

the

map

definition

to

a

name

different

from

the

currently

open

map.

Use

any

of

the

following:

v

Select

To

Project

from

the

File-->

Save

As

submenu.

v

Use

the

keyboard

shortcut

Ctrl+Alt+S.

Result:

Map

Designer

Express

displays

the

Save

Map

As

dialog

in

which

you

can

specify

the

map

name.

Chapter

2.

Creating

maps

47

When

you

save

the

map,

Map

Designer

Express

saves

the

map

definition

and

map

content

to

the

project

in

System

Manager.

It

saves

the

map

content

as

XML

data.

Note:

You

can

specify

whether

Map

Designer

Express

automatically

saves

a

map

to

the

project

in

System

Manager

before

compiling

the

map

with

the

option

Compile

Map:

save

map

before

compile.

By

default,

this

option

is

enabled.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20.

Tip:

To

rename

an

existing

map,

select

To

Project

from

the

File-->

Save

As

submenu.

Saving

a

map

to

a

file

A

map

definition

can

be

stored

as

text

in

an

operating-system

file,

called

a

map

definition

file.

A

map

definition

file

contains

the

complete

map

definition;

that

is,

this

file

uses

Extended

Markup

Language

(XML)

format

to

represent

the

following

parts

of

a

map

definition:

v

The

general

map

information,

which

includes

map

properties

v

The

map

content,

which

includes

the

transformation

mappings

in

an

uncompressed

format

Recommendation:

Map

Designer

Express

creates

a

map

definition

file

with

a

.cwm

extension.

You

should

follow

a

naming

convention

for

your

map

definition

files,

such

as.

using

the

file

extension

(.cwm)

to

distinguish

them.

Figure

23.

Save

As

dialog

48

Map

Development

Guide

You

import

a

map

definition

into

Map

Designer

Express

by

opening

an

existing

map

definition

file.

For

more

information,

see

“Opening

a

map

from

a

file”

on

page

53.

You

can

save

the

currently

open

map

to

a

map

definition

file

in

any

of

the

ways

shown

in

Table

14.

Table

14.

Saving

a

map

to

a

map

definition

File

If

you

want

to

.

.

.

Then

.

.

.

Save

the

map

to

the

name

of

the

currently

open

map

in

the

format:

MapName.cwm

(where

MapName

is

the

name

of

the

currently

open

map)

Note:

Map

Designer

Express

will

always

open

the

File

Save

dialog

if

you

do

not

open

the

currently

opened

map

from

file.

Use

any

of

the

following:

v

Select

To

File

from

the

File-->

Save

submenu.

v

Use

the

keyboard

shortcut

Ctrl+E.

v

In

the

Standard

toolbar,

click

the

Save

Map

to

File

button

(see

Figure

23).

Save

the

map

to

a

specified

map

definition

file.

Map

Designer

Express

displays

a

dialog

box

to

allow

you

to

select

the

file

name.

Use

either

of

the

following:

v

Select

To

File

from

the

File-->

Save

As

submenu.

v

Use

the

keyboard

shortcut

Ctrl+Alt+F.

Note:

When

you

select

the

To

File

option

from

the

File-->Save

or

File-->Save

As

menus,

Map

Designer

Express

displays

a

dialog

box

to

allow

you

to

select

the

file

name.

This

file

name

identifies

the

file.

It

is

not

necessarily

the

name

of

the

map.

Example:

You

can

save

MapA

in

a

file

named

fileA.cwm.

This

fileA

file

contains

the

map

definition

for

MapA.

When

Map

Designer

Express

opens

the

fileA

map

definition

file,

it

displays

the

MapA

map

definition.

Tip:

Exporting

a

map

copies

only

the

map.

Checking

completion

When

you

are

mapping

two

large

business

objects,

it

is

easy

to

overlook

some

required

attributes.

You

can

search

for

attributes

that

are

not

yet

mapped

to

make

sure

that

you

have

specified

all

desired

transformations.

Such

attributes

are

called

unlinked

attributes.

Perform

the

following

step

to

check

completion:

v

Select

Find

from

the

Edit

menu

and

click

the

Unlinked

attributes

option

in

the

Find

control

pane.

Result:

Map

Designer

Express

displays

a

list

of

attributes

for

which

there

is

no

transformation

code.

For

more

information,

see

“Finding

information

in

a

map”

on

page

60.

Note:

Once

the

code

is

completed,

you

must

compile

and

test

it.

For

information

on

compiling

a

map,

see

“Compiling

a

map”

on

page

70.

For

information

on

testing

a

map,

see

“Testing

maps”

on

page

72.

Chapter

2.

Creating

maps

49

Mapping

standards

This

section

provides

the

following

procedural

standards

for

maps:

v

“Tips

on

mapping

individual

attributes”

v

“Setting

comments

in

the

comment

field

of

the

attribute”

Tips

on

mapping

individual

attributes

If

the

attribute

mapping

does

not

include

relationship

management,

copy

the

source

attribute

to

the

destination

attribute

(see

“Copying

a

source

attribute

to

a

destination

attribute”

on

page

37).

Important:

Do

not

map

the

ObjectEventid

attribute.

InterChange

Server

Express

reserves

the

ObjectEventId

for

its

own

processing

purposes.

Any

custom

code

that

has

ObjectEventId

as

destination

attribute

will

not

execute

properly.

Setting

comments

in

the

comment

field

of

the

attribute

Attribute

comments

can

improve

the

readability

of

your

map.

However,

Map

Designer

Express

does

not

automatically

generate

a

comment

for

an

attribute.

Table

15

provides

some

suggested

standards

for

attribute

comments

based

on

the

type

of

transformation

associated

with

the

destination

attribute.

Table

15.

Settings

for

the

Attribute

Comment

Situation

Setting

for

Attribute

Comment

If

the

child

business

object

is

not

mapped

=No

mapping

Set

Value

transformation

=SET

VALUE(value)

Move

transformation

=MOVE

Join

transformation

=JOIN(srcAttr1,

srcAttr2,

...)

Split

transformation

=SPLIT(srcAttr[index])

For

child

business

objects,

when

the

mapping

is

done

without

calling

a

submap

to

indicate

the

object

has

to

be

expanded

to

see

its

attributes

=Mapping

here

If

the

code

to

call

the

submap

is

generated

=SUBMAP(mapName)

Custom

transformation

that

is

not

one

of

those

listed

above

=CUSTOM(summary)

If

the

attribute’s

code

does

not

contain

anything

except

setting

the

verb

=SET

VERB

50

Map

Development

Guide

Chapter

3.

Working

with

maps

This

chapter

describes

some

advanced

features

of

Map

Designer

Express

that

you

might

use

after

creating

maps.

The

chapter

covers

the

following

topics:

v

“Opening

and

closing

a

map”

on

page

51

v

“Providing

map

property

information”

on

page

54

v

“Using

map

documents”

on

page

56

v

“Finding

information

in

a

map”

on

page

60

v

“Finding

and

replacing

text”

on

page

62

v

“Printing

a

map”

on

page

62

v

“Deleting

objects”

on

page

63

v

“Using

execution

order”

on

page

66

Opening

and

closing

a

map

Map

Designer

Express

displays

one

map

at

a

time

within

the

tab

window.

This

map

is

called

the

current

map

(sometimes

called

the

“currently

open

map”).

You

can

control

which

map

is

the

current

map

with

the

following

Map

Designer

Express

procedures:

v

“Opening

a

map”

v

“Closing

a

map”

on

page

53

Opening

a

map

A

map

must

be

open

in

Map

Designer

Express

before

you

can

view

its

information

in

a

Map

tab

or

modify

this

information.

When

Map

Designer

Express

opens

a

map,

if

the

validate

map

when

open

preference

is

enabled,

it

first

performs

a

set

of

validations

on

this

map.

Note:

You

can

specify

whether

Map

Designer

Express

validates

a

map

when

it

opens

it,

with

the

option

Open

Map:

validate

map

when

open.

By

default,

this

option

is

enabled.

If

this

preference

is

enabled

when

a

map

that

uses

big

business

objects

(that

is,

thousands

of

attributes)

is

opened,

Map

Designer

Express

may

take

a

long

time

to

open

the

map.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20.

The

validations

that

Map

Designer

Express

performs

on

the

map

are

as

follows:

v

Ensures

that

each

business

object

definition

that

the

map

uses

is

defined

in

the

project

in

System

Manager.

v

Ensures

that

every

attribute

in

the

map

exists

in

the

specified

business

object

definition,

as

defined

in

the

project

in

System

Manager.

v

Ensures

that

the

type

of

each

attribute

in

the

map

matches

its

type

in

the

specified

business

object

definition,

as

defined

in

the

project

in

System

Manager.

v

Validates

transformations:

©

Copyright

IBM

Corp.

2003

51

–

Ensures

execution

order

is

correct;

that

is,

that

execution

order

is

unique,

positive,

and

consecutive.

–

Ensures

that

no

attributes

have

cyclic

dependencies

on

each

other.

If

any

cyclic

transformations

are

found,

Map

Designer

Express

displays

the

cyclic

rules

in

the

output

window.

–

Checks

transformation

information:

Move

transformation—only

one

source

attribute

is

involved.

Join

transformation—more

than

one

source

attribute

is

involved.

Split

transformation—only

one

source

attribute

is

involved;

split

index

is

greater

than

or

equal

to

zero;

split

delimiter

is

not

empty.

Set

Value

transformation—no

source

attribute

is

involved;

a

value

has

been

specified.

Submap

transformation—at

least

one

source

attribute

is

involved;

submap

name

is

specified.

Cross-Reference

transformation—only

one

source

attribute

is

involved.

Map

Designer

Express

provides

the

following

ways

to

open

a

map:

v

“Opening

a

map

from

a

project

in

System

Manager”

on

page

52

v

“Opening

a

map

from

a

file”

on

page

53

Opening

a

map

from

a

project

in

System

Manager

Perform

the

following

steps

to

open

a

map

from

a

project

in

System

Manager:

1.

Open

the

Open

a

Map

from

a

Project

dialog

in

any

of

the

following

ways:

v

Select

From

Project

from

the

File-->Open

submenu.

v

Use

the

keyboard

shortcut

of

Ctrl+O.

v

In

the

Standard

toolbar,

click

the

Open

Map

from

Project

button.

Result:

Map

Designer

Express

displays

the

Open

Map

dialog.

52

Map

Development

Guide

2.

Select

the

project.

3.

Select

the

map’s

name

from

the

list

of

maps

currently

defined

in

the

project

in

System

Manager.

Tip:

To

locate

a

particular

map

name,

enter

its

name

in

the

Find

field.

The

up

and

down

arrows

scroll

through

the

map

list.

4.

Click

the

Open

button

to

open

the

map

from

the

project.

Opening

a

map

from

a

file

A

map

definition

can

be

stored

in

XML

format

in

an

operating-system

file

called

a

map

definition

file.

To

create

a

map

definition

file,

you

save

the

map

as

a

map

design

file

(.cwm)

in

Map

Designer

Express.

For

more

information,

see

“Saving

a

map

to

a

file”

on

page

48.

When

you

open

a

map

definition

file,

you

open

the

map

in

Map

Designer

Express.

Perform

the

following

steps

to

open

a

map

definition

file:

1.

Open

the

Open

a

Map

from

a

File

dialog

in

any

of

the

following

ways:

v

Select

From

File

from

the

File-->

Open

submenu.

v

Use

the

keyboard

shortcut

of

Ctrl+I.

v

In

the

Standard

toolbar,

click

the

Open

Map

from

File

button.

Result:

The

Open

file

with

Map

dialog

box

appears.

2.

Select

the

map

definition

file

you

want

to

open.

The

file

must

be

a

.cwm

file

created

by

Map

Designer

Express.

Result:

Map

Designer

Express

opens

the

map

definition

file.

The

map

information

appears

in

the

Map

tabs.

Important:

Opening

the

map

in

Map

Designer

Express

does

not

automatically

save

the

map

to

the

project.

To

save

this

map

to

the

project,

continue

to

step

3.

3.

Save

the

map

to

the

project

in

System

Manager.

For

more

information,

see

“Saving

a

map

to

a

project”

on

page

47.

Rule:

You

must

save

the

map

to

the

project

in

System

Manager

for

it

to

be

compiled.

To

compile

the

map,

select

Compile

from

the

File

menu.

For

more

information,

see

“Testing

maps”

on

page

72.

Closing

a

map

Perform

one

of

the

following

actions

to

close

the

current

map,

which

is

displaying

in

the

tab

window:

v

Open

a

new

map

in

any

of

the

ways

discussed

in

“Opening

a

map”

on

page

51.

Result:

Map

Designer

Express

closes

the

current

map

before

it

opens

a

new

one.

v

Select

Close

from

the

File

menu.

Result:

Map

Designer

Express

closes

the

current

map

and

clears

the

tab

window.

To

make

a

new

map

current,

you

can

either

create

a

new

map

or

open

an

existing

map.

v

Exit

from

Map

Designer

Express

in

any

of

the

following

ways:

–

Select

Exit

from

the

File

menu.

–

Use

the

keyboard

shortcut

of

Alt+F4.

Figure

24.

Open

Map

dialog

Chapter

3.

Working

with

maps

53

Result:

Map

Designer

Express

automatically

closes

the

current

map

before

it

exits.

Note:

If

you

have

changed

the

current

map

since

it

was

last

saved,

Map

Designer

Express

displays

a

confirmation

box

to

confirm

the

map

closure.

Providing

map

property

information

Map

Designer

Express

provides

the

Map

Properties

dialog

(see

Figure

25)

to

display

and

specify

property

information

for

a

map.

To

display

the

Map

Properties

dialog,

take

any

of

the

following

actions:

v

From

the

Edit

menu,

select

Map

Properties.

v

Use

the

keyboard

shortcut

of

Ctrl+Enter.

v

In

the

map

workspace

of

the

Diagram

tab,

right-click

and

select

Map

Properties

from

the

Context

menu.

The

Map

Properties

dialog

provides

the

following

tabs:

v

General

tab

v

Business

Objects

tab

Figure

25

shows

the

General

tab

of

the

Map

Properties

dialog.

Figure

25.

General

tab

of

Map

properties

dialog

54

Map

Development

Guide

Defining

General

Property

information

The

General

tab

of

the

Map

Properties

dialog

displays

the

general

property

information

shown

in

Table

16.

Table

16.

General

Map

Property

Information

General

Map

Property

Description

For

more

information

Map

name

Identifies

the

map

whose

properties

the

dialog

displays.

This

field

is

initialized

when

you

create

a

new

map

and

is

not

an

editable

field.

N/A

Mapping

role

Identifies

the

purpose

of

the

map.

Possible

values

of

mapping

roles

are:

v

Application-specific

to

generic

v

Generic

to

application-specific

v

Other

(for

maps

that

do

not

have

a

specific

mapping

direction

associated

with

them)

Note:

For

previously

defined

maps

that

do

not

have

this

property

information,

the

combo

box

will

be

empty.

This

is

permissible

as

long

as

you

do

not

use

any

Relationship

transformation

rules.

When

you

first

create

a

Relationship

transformation

rule

and

this

value

is

empty,

Map

Designer

Express

will

prompt

you

for

this

value.

Run-time

properties

These

map

properties

(trace

level,

data

validation

level,

implicit

database

transaction,

and

fail

on

invalid

data)

apply

to

the

map

instance

at

run

time.

You

can

specify

these

properties

here

in

the

General

tab

of

Map

Designer

Express’s

Map

Properties

dialog

or

from

the

Map

Properties

window

that

System

Manager

provides.

The

changes

are

made

to

the

local

file

system.

Deploying

the

map

to

the

server

will

not

update

the

run-time

instance.

Note:

You

can

update

these

map

properties

dynamically

from

the

server

component

management

view

by

right-clicking

on

a

map

and

selecting

the

properties

from

the

Context

menu.

The

changes

will

be

automatically

updated

to

the

server.

For

more

information,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

Trace

level

Sets

the

trace

level

for

the

map.

“Adding

trace

messages”

on

page

409

Data

validation

level

Allows

you

to

check

each

operation

in

a

map

and

log

an

error

when

data

in

the

incoming

business

object

cannot

be

transformed.

“Creating

custom

data

validation

levels”

on

page

146

Implicit

Database

transaction

Determines

whether

InterChange

Server

Express

uses

implicit

transaction

bracketing

for

transactions

over

its

connections.

Fail

on

invalid

data

Determines

whether

map

execution

fails

if

data

is

invalid.

“Creating

custom

data

validation

levels”

on

page

146

Defining

business

objects

The

Business

Objects

tab

of

the

Map

Properties

dialog

displays

information

about

the

map’s

business

objects.

It

lists

the

source

and

destination

business

objects

as

well

as

any

temporary

business

object

that

might

be

defined.

For

more

information,

see

“Generating

business

object

variables”

on

page

140.

Chapter

3.

Working

with

maps

55

Using

map

documents

Map

Designer

Express

supports

creation

of

a

map

document,

which

allows

you

to

see

all

transformations

in

a

single

map

or

between

two

maps.

While

checking

a

map,

you

might

want

to

view

all

of

its

transformations

in

a

single

operation,

rather

than

opening

and

viewing

each

attribute

separately.

To

do

so,

you

can

create

a

map

document

that

contains

all

transformations.

A

map

document

provides

you

with

an

automated

way

to

document

native-map

transformations.

This

section

provides

the

following

information:

v

A

description

of

the

two

HTML

files

that

make

up

a

map

document

v

How

to

create

a

new

map

document

v

How

to

view

a

map

document

v

How

to

print

out

a

map

document

What

Is

a

map

document?

A

map

document

consists

of

two

HTML

files

that

describe

all

transformations

of

a

map

(or

set

of

maps):

v

A

map-table

file

that

describes

the

map

transformations

in

a

tabular

format.

The

map-table

file

has

the

name

mapDoc.HTM.

v

A

Java-code

file

that

contains

the

code

of

the

map

transformations.

The

Java-code

file

has

the

name

mapDocJavaCode.HTM.

In

both

these

HTML

files,

mapDoc

is

the

user-specified

name

of

the

map

document.

The

map

document

can

include

information

for

all

attributes,

only

those

attributes

that

have

map

transformations,

or

only

those

attributes

that

do

not

have

map

transformations

(unlinked

attributes).

If

you

specify

all

attributes,

the

map

document

also

contains

a

list

of

unlinked

attributes

in

the

source

and

destination

business

objects.

The

following

sections

describe

the

format

of

the

two

HTML

files

of

a

map

document.

Map-table

file

format

The

map-table

file,

mapDoc.html,

describes

the

map

transformations

in

a

tabular

format:

v

If

the

map

document

describes

only

one

map,

Map

Designer

Express

creates

a

single-map

map

table.

v

If

the

map

document

describes

two

maps,

Map

Designer

Express

creates

a

multiple-map

map

table.

Single-map

map

table:

A

single-map

map

table

describes

the

mapping

flow

in

a

single

map;

that

is,

it

describes

the

transformations

between

a

source

and

destination

business

object.

The

single-map

map

table

has

the

following

columns:

v

Source

Attribute

shows

the

names

of

the

source

business

object’s

attributes.

v

Transformation

Rule

describes

the

kind

of

mapping

transformation

between

the

attribute

in

the

source

business

object

(in

the

column

to

the

left)

and

the

attribute

in

the

destination

business

object

(in

the

column

to

the

right).

The

transformations

listed

in

this

column

are

hypertext

links

to

the

location

of

the

attribute

in

the

mapDocJavaCode.HTM

Java-code

file

for

the

map.

56

Map

Development

Guide

v

Destination

Attribute

shows

the

names

of

the

destination

business

object’s

attributes.

Figure

26

shows

the

HTML

file

that

contains

a

single-map

map

table.

Note:

If

you

enabled

the

Comment

check

box

Create

Map

Document

dialog,

the

map

table

contains

a

fourth

column

called

Comment,

which

shows

the

comment

for

each

of

the

destination

attributes

in

the

table.

Multiple-map

map

table:

A

multiple-map

map

table

describes

the

mapping

flow

between

two

maps;

that

is,

it

describes

the

transformations

in

the

inbound

map

(between

the

application-specific

and

generic

business

object)

and

an

outbound

map

(between

the

generic

and

application-specific

business

object).

The

multiple-map

map

table

has

the

following

columns:

v

Source

Attribute

shows

the

names

of

the

application-specific

business

object’s

attributes.

v

The

first

Transformation

Rule

column

describes

the

kind

of

mapping

transformation

between

the

attribute

in

the

application-specific

business

object

(in

the

column

to

the

left)

and

the

attribute

in

the

generic

business

object

(in

the

column

to

the

right).

The

transformations

listed

in

this

column

are

hypertext

links

to

the

location

of

the

attribute

in

the

mapDocJavaCode.HTM

Java-code

file

for

the

inbound

(application-specific

to

generic)

map.

v

Common

Attribute

shows

the

names

of

the

generic

business

object’s

attributes.

v

The

second

Transformation

Rule

column

describes

the

kind

of

mapping

transformation

between

the

attribute

in

the

generic

business

object

(in

the

column

to

the

left)

and

the

attribute

in

the

application-specific

business

object

(in

Figure

26.

Single-map

map

table

Chapter

3.

Working

with

maps

57

the

column

to

the

right).

The

transformations

listed

in

this

column

are

hypertext

links

to

the

location

of

the

attribute

in

the

mapDocJavaCode.HTM

Java-code

file

for

the

outbound

(generic

to

application-specific)

map.

v

Destination

Attribute

shows

the

names

of

the

application-specific

business

object’s

attributes.

Figure

27

shows

the

HTML

file

that

contains

a

multiple-map

map

table.

Java-Code

file

format

The

Java-code

file,

mapDocJavaCode.html,

provides

more

detailed

information

about

the

map.

It

contains

the

Java

code

that

performs

the

transformations.

This

code

is

in

standard

program

format.

The

Java-code

file

is

useful

when

you

want

to

view

all

map

transformations

in

a

single

operation,

rather

than

opening

and

viewing

each

attribute

separately.

Creating

a

map

document

Perform

the

following

steps

to

create

a

map

document:

1.

Open

the

Create

Map

Document

dialog

by

selecting

Create

Map

Documents

from

the

File

menu.

Result:

Map

Designer

Express

displays

the

Create

Map

Document

dialog

(see

Figure

28).

2.

Select

the

map-document

configuration

options

from

the

Create

Map

Document

dialog:

v

Specify

the

project.

v

Specify

the

maps

that

are

involved

in

the

map

document.

Figure

27.

Multiple-map

map

table

58

Map

Development

Guide

Guideline:

If

you

do

not

check

the

“Show

mapping

flow

with

two

maps”

check

box,

you

can

select

only

one

map

from

the

drop-down

list.

The

drop-down

list

includes

all

maps

currently

defined.

If

a

map

is

currently

open,

its

name

appears

by

default.

If

you

check

the

“Show

mapping

flow

with

two

maps”

check

box,

the

second

drop-down

list

is

enabled.

This

second

drop-down

list

provides

only

those

maps

that

share

the

same

generic

business

object

as

the

first

map.

From

this

list,

you

can

select

the

name

of

the

second

map

to

include

in

the

map

document.

v

Specify

the

attributes

in

the

destination

business

object

to

include

in

the

map

document.

Click

the

appropriate

radio

button

to

indicate

whether

to

include

all

attributes,

only

mapped

attributes,

or

only

unmapped

attributes

in

the

map

document.

v

Specify

a

name

for

the

new

map

document.

Guideline:

You

can

click

the

Browse

button

to

find

a

location

for

the

map-document

file.

Map

Designer

Express

automatically

appends

the

suffix

.HTM

to

the

map-document

name

you

enter.

Therefore,

you

do

not

need

to

specify

a

file

extension.
3.

To

initiate

creation

of

the

map

document,

select

one

of

the

following

options:

v

Click

Save

to

save

the

selected

maps

in

a

map

document.

v

Click

Save/View

to

save

the

selected

maps

in

a

map

document

and

view

this

new

map

document

in

an

HTML

browser.

Figure

28

shows

the

Create

Map

Document

dialog.

Figure

28.

Create

Map

Document

dialog

Chapter

3.

Working

with

maps

59

When

you

create

a

map

document,

Map

Designer

Express

creates

the

map

document

as

a

Hypertext

Markup

Language

(HTML)

file

(mapDoc.html)

and

a

related

Java

code

file

(mapDocJavaCode.html)

where

mapDoc

is

the

map-document

name

you

specified

in

the

Map

Document

Configuration

dialog.

Viewing

a

map

document

You

can

view

a

map

document

in

any

of

the

following

ways:

v

Open

an

existing

map

document

in

either

of

the

following

ways:

–

Select

the

View

Map

Document

option

of

Map

Designer

Express’s

File

menu.

–

Use

the

keyboard

shortcut

Ctrl+M.

Result:

The

Open

dialog

displays

the

available

map-document

files.

Specify

the

HTML

map

document

to

read

and

click

Open.

v

Open

a

new

map

document

by

clicking

Save/View

on

the

Map

Document

Configuration

dialog.

v

Go

into

the

directory

that

contains

the

map

document

files

and

double-click

the

desired

file.

Result:

Map

Designer

Express

invokes

your

browser

to

display

the

HTML

map-document

file

that

you

selected.

In

addition,

you

can

view

the

Java

code

associated

with

a

particular

transformation

by

clicking

the

entry

in

the

Mapping

Action

column

of

the

map

table.

Your

browser

displays

the

corresponding

Java

code

segments

that

implement

the

mapping

between

the

associated

source

and

destination

attributes.

Printing

a

map

document

Perform

the

following

steps

to

print

a

map-document

file:

1.

View

the

desired

file

in

your

HTML

browser.

For

more

information,

see

“Viewing

a

map

document”

on

page

60.

2.

Print

the

displaying

HTML

file

from

the

browser.

Select

the

Print

option

of

the

browser’s

File

menu,

use

the

keyboard

shortcut

(Ctrl+P),

or

select

the

Print

icon

from

the

Standard

tool

bar.

Finding

information

in

a

map

You

can

use

Map

Designer

Express’s

search

facility

to

perform

the

following

searches:

v

Search

for

text

in

an

attribute

name

or

in

the

attribute’s

transformation

code.

v

Search

for

unlinked

attributes.

Perform

the

following

steps

to

find

information

in

a

map.

Initiate

a

find

in

any

of

the

following

ways:

v

Select

Find

from

the

Edit

menu.

v

Use

the

keyboard

shortcut

Ctrl+F.

v

In

the

Standard

toolbar,

click

the

Find

button.

Result:

Map

Designer

Express

displays

the

Find

control

pane

(see

Figure

29)

60

Map

Development

Guide

From

the

Find

control

pane,

select

one

of

the

radio

buttons

in

the

What

to

find?

area

to

indicate

which

kind

of

search

you

want

to

perform:

v

To

search

for

text:

–

Click

the

Text

radio

button.

–

Enter

the

text

to

search

for

in

the

Find

field.

You

can

enter

multiple

words

and

spaces

if

necessary.

–

Indicate

where

to

search

for

the

text

by

selecting

one

or

more

options

in

the

Find

area:

Attribute—search

the

attribute

names

for

the

specified

text.

Code—search

the

attributes’

transformation

code

for

the

specified

text.

You

can

select

either

Attribute

or

Code,

or

both

of

those

options.

Case

Sensitive—make

the

text

search

case

sensitive.

To

find

only

instances

of

the

text

that

have

the

same

case

that

you

typed,

select

Case

Sensitive.

Restriction:

You

cannot

search

on

data

types

or

comments.

–

Click

Find

to

initiate

the

search.
v

To

search

for

unlinked

attributes:

–

Click

the

Unlinked

Attributes

radio

button.

The

Find

control

pane

deactivates

the

fields

in

the

Find

area.

–

Click

Find

to

initiate

the

search.

Result:

Map

Designer

Express

displays

the

search

results

in

the

Find

Results

area.

You

can

click

any

attribute

name

to

automatically

select

that

attribute

in

the

map.

Click

Close

to

close

the

Find

control

pane.

Find results area,
where the search
facility displays the
search results.

Find area, where you
specify where to
search and whether
the search is case
sensitive.

Choose what to find
by clicking one of these
radio buttons

Figure

29.

Find

Control

Pane

Chapter

3.

Working

with

maps

61

Finding

and

replacing

text

Using

Map

Designer

Express’s

Find

and

Replace

capability,

you

can

search

for

specified

text

in

the

comments

of

a

transformation

rule

and

replace

it

with

other

specified

text.

Perform

the

following

steps

to

find

and

replace

text.

1.

Initiate

a

find

and

replace

in

any

of

the

following

ways:

v

Select

Replace

from

the

Edit

menu.

v

Use

the

keyboard

shortcut

Ctrl+H.

Result:

Map

Designer

Express

displays

the

Replace

dialog.

2.

In

the

Replace

dialog,

enter

the

text

to

search

for

in

the

Find

what

field

and

the

text

to

replace

it

in

the

Replace

with

field.

Select

Match

case,

as

necessary.

3.

Click

Find

Next

to

initiate

the

search.

Result:

The

Table

view

will

be

activated

and

the

text

will

appear

in

the

comment

column

in

the

Table

view.

4.

Click

Replace

to

replace

the

match

with

the

new

text.

Guideline:

You

can

replace

all

similar

matches

with

one

action

by

clicking

Replace

All.

5.

To

continue

finding

and

replacing

the

specified

text,

instance

by

instance,

repeat

steps

3

and

4.

Printing

a

map

Map

Designer

Express

allows

you

to

print

a

map.

It

creates

a

tabular

representation

of

the

map,

much

like

the

map

appears

in

the

Table

tab.

You

can

print

a

map

in

any

of

the

following

ways:

v

Select

Print

from

the

File

menu

to

print

the

current

map.

v

Use

the

keyboard

shortcut

of

Ctrl+P.

v

In

the

Standard

toolbar,

click

the

Print

button.

Map

Designer

Express

also

supports

the

following

standard

print

tasks:

v

Print

Preview—select

Print

Preview

from

the

File

menu

to

preview

the

page

layout

for

the

current

map.
v

Print

Setup

–

Select

Print

Setup

from

the

File

menu

to

display

the

Print

Setup

dialog,

where

you

can

configure

information

such

as

printer

setting,

paper

size

and

orientation.

–

Use

the

keyboard

shortcut

of

Ctrl+Shift+P.

Figure

30.

Replace

dialog

62

Map

Development

Guide

Guideline:

When

Map

Designer

Express

performs

the

print

or

print-preview

task,

it

copies

the

attribute

transformation

table

in

the

Table

tab.

Before

you

print,

you

can

adjust

the

width

of

the

individual

columns

and

height

of

individual

rows

in

the

attribute

transformation

table

to

make

the

whole

map

fit

on

one

page

or

to

customize

the

print

result.

Deleting

objects

This

section

provides

information

on

how

to

delete

the

following

objects:

v

“Deleting

map

transformation

steps”

v

“Deleting

business

objects”

v

“Deleting

maps”

on

page

64

Deleting

map

transformation

steps

Deleting

a

map

transformation

step

includes

three

components:

v

Deleting

the

transformation

code

v

Deleting

the

comment

v

Deleting

the

data

flow

arrow

Perform

the

following

steps

to

delete

the

transformation

step:

v

From

the

Table

tab:

Select

the

attribute

line

to

delete

by

clicking

in

the

leftmost

column

(the

column

to

the

left

of

Exec.

Order)

and

doing

one

of

the

following

actions:

–

Right-click

and

select

Delete

Row

from

the

Context

menu.

–

Select

the

Delete

Current

Selection

option

from

the

Edit

menu.

–

Use

the

keyboard

shortcut

of

Del.

Result:

Map

Designer

Express

automatically

deletes

any

incomplete

transformations

when

you

save

the

map.

v

From

the

Diagram

tab:

Select

the

data

flow

arrow

and

select

either

of

the

following

menu

options:

–

The

Delete

Current

Selection

option

from

the

Edit

menu

–

The

keyboard

shortcut

of

Del

–

The

Delete

option

from

the

map

workspace’s

Context

menu

Result:

A

dialog

asks

you

whether

to

delete

the

associated

data

flow

arrow.

Click

Yes

and

Map

Designer

Express

displays

a

second

confirmation

asking

if

you

want

to

delete

the

associated

code:

Click

Yes

and

all

three

items

are

deleted.

Deleting

business

objects

Perform

the

following

steps

to

delete

a

business

object

from

a

map:

1.

Display

the

Delete

Business

Object

dialog

in

any

of

the

following

ways:

v

Select

the

Delete

Business

Object

option

of

the

Edit

menu.

v

From

the

Table

tab,

perform

either

of

the

following

actions:

–

Right-click

in

the

empty

area

of

the

business

objects

pane

and

select

Delete

Business

Object

from

the

Context

menu.

Chapter

3.

Working

with

maps

63

–

Right-click

the

business

object

in

the

business

objects

pane

(click

the

name

in

the

cell)

and

select

Delete

<BusObjName>

(where

BusObjName

is

the

name

of

the

selected

business

object.)

Result:

The

Delete

Business

Object

dialog

displays.

2.

Through

the

Delete

Business

Object

dialog,

you

specify

which

business

objects

you

want

to

delete

from

the

map.

The

Delete

Business

Object

dialog

provides

the

following

functionality:

v

To

delete

a

business

object:

–

Check

the

business

object

in

the

business

object

list.

–

Click

the

Delete

button.
v

To

locate

a

particular

business

object,

enter

its

name

in

the

Find

field.

The

up

and

down

arrows

scroll

through

the

business

object

list.

v

To

close

the

dialog,

click

Done.

Deleting

maps

Perform

the

following

steps

to

delete

a

map

from

the

project

in

System

Manager:

1.

Select

the

Delete

option

from

the

File

menu.

Figure

31.

Delete

Business

Object

dialog

64

Map

Development

Guide

Result:

Map

Designer

Express

displays

the

Delete

Map

dialog,

as

Figure

32

shows.

Note:

If

a

map

is

currently

open,

Map

Designer

Express

closes

this

map

before

it

displays

the

Delete

Map

dialog.

You

can

specify

whether

Map

Designer

Express

closes

any

currently

open

map

with

the

option

Delete

Map:

close

map

before

delete.

By

default,

this

option

is

enabled.

If

the

option

is

disabled,

Map

Designer

Express

provides

a

confirmation

prompt

if

you

select

the

currently

open

map

from

the

Delete

Map

dialog.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20.

2.

Enter

the

project

name.

3.

Select

the

map

or

maps

you

want

to

delete.

From

the

Delete

Map

dialog,

you

can:

v

Select

a

single

map

by

clicking

on

the

map

name

in

the

list.

v

Select

multiple

maps

by

holding

down

the

Ctrl

or

Shift

key

and

clicking

on

the

map

names.

v

Locate

a

particular

business

object

by

entering

its

name

in

the

Find

field.

The

up

and

down

arrows

scroll

through

the

business

object

list.
4.

Click

the

Delete

button

to

delete

the

maps.

Result:

Map

Designer

Express

displays

a

confirmation

box

for

the

delete.

Note:

You

can

specify

whether

Map

Designer

Express

confirms

the

deletion

of

a

map

with

the

option

Delete

Map:

always

display

warning

message.

By

default,

this

option

is

enabled.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20.

Figure

32.

Delete

Map

dialog

Chapter

3.

Working

with

maps

65

Using

execution

order

By

default,

map

execution

occurs

in

the

order

that

the

destination

attributes

appear

in

the

Table

tab.

Only

destination

attributes

that

have

transformations

are

executed.

Often,

the

execution

order

is

the

order

in

which

the

destination

attributes

are

defined

in

the

destination

business

object.

Figure

33

shows

an

execution

order

of

the

map

A-to-B

in

which

destination

attributes

are

executed

in

the

order

they

are

defined.

Attr1

Attr2

Attr3

Attr4

Attr5

Attr6

Attr7

Dest - B

Attr1

Attr2

Attr3

Attr4

Attr5

Attr6

Attr7

Execution Order

B Attr1
B Attr2
B Attr3
B Attr4
B Attr5
B Attr6
B Attr7

Src - A

Note:

Figure

33

assume

that

all

destination

attributes

have

transformation

code.

However,

certain

attributes

might

have

dependencies

in

their

execution

order.

To

ensure

that

the

transformation

code

of

certain

attributes

is

executed

before

the

transformation

code

of

other

ones,

you

can

specify

the

order

of

their

execution.

You

can

change

the

execution

order

to

specify

data

flow.

For

example,

suppose

in

the

map

A-to-B

that

Attr7

needs

to

execute

immediately

after

Attr3

(in

other

words,

Attr7

needs

to

execute

before

Attr4).

Figure

34

shows

how

a

sequence

specification

in

the

destination

business

operation

changes

the

sequence.

Attr1

Attr2

Attr3

Attr4

Attr5

Attr6

Attr7

Dest - B

Attr1

Attr2

Attr3

Attr4

Attr5

Attr6

Attr7

B Attr1
B Attr2
B Attr3
B Attr7
B Attr4
B Attr5
B Attr6

Execution Order
Src - A

You

can

specify

an

explicit

execution

sequence

that

overrides

the

default

order

from

the

Table

tab

of

Map

Designer

Express.

To

specify

the

sequence

of

Figure

33.

Default

execution

order

Figure

34.

Changing

execution

order

66

Map

Development

Guide

transformations

between

two

destination

attributes

in

the

Table

tab,

click

in

the

Exec.

Order

field

for

the

destination

attribute

whose

execution

order

you

want

to

change

and

enter

the

desired

execution

order

value.

Note:

You

can

specify

whether

Map

Designer

Express

renumbers

the

execution

order

for

any

attributes

affected

by

this

change

with

the

option

Defining

Map:

automatically

adjust

execution

order.

By

default,

this

option

is

disabled.

When

the

option

is

enabled,

Map

Designer

Express

automatically

adjusts

the

execution

order

of

other

attributes.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20..

By

default,

the

Table

tab

displays

attributes

in

the

order

their

transformations

are

defined.

You

can

then

choose

to

display

these

mapped

attributes

by

their

execution

order,

their

attribute

names,

or

ordered

by

any

other

column

of

the

attribute

transformation

table.

Just

click

the

heading

of

the

column

to

order

the

attributes

by

that

column’s

value.

Important:

If

you

click

the

row

header

of

the

transformation

and

drag-and-drop

the

transformation

to

a

new

position,

you

change

the

order

in

which

the

transformation

rule

is

displayed.

However,

this

action

does

not

affect

its

execution

order.

Importing

and

exporting

maps

from

InterChange

Server

Express

With

the

repos_copy

utility,

you

can

load

and

unload

specified

map

definitions

in

the

repository

with

the

-e

option.

A

map

repository

file

is

the

file

that

the

repos_copy

utility

creates

when

it

extracts

a

map

definition

from

the

repository

into

a

.jar

file.

This

file

contains

a

map

definition

in

an

IBM

WebSphere

InterChange

Server

Express-defined

.jar

format.

Recommendation:

You

should

use

the

.jar

file

extension

for

the

map

repository

file.

For

example,

the

following

repos_copy

command

unloads

(exports)

the

ClCwCustomer

(ClarifyBusOrg

to

generic

Customer)

map

definition

from

the

repository

of

an

InterChange

Server

Express

named

dexter

into

a

map

repository

file:

repos_copy

-eMap:ClCwCustomer+BusObj:Customer+BusObj:Clarify_Customer

-oNM_ClCwCustomer.jar

-sdexter

-pnull

-uadmin

You

can

create

one

repository

file

that

contains

all

map

definition

files,

including:

v

Main

map

definitions

v

Submap

definitions

v

Files

for

both

directions,

if

applicable.

For

example,

to

copy

all

related

map

definitions

for

the

ClarifyBusOrg/Customer

mapping

into

a

map

repository

file,

use

the

following

repos_copy

command:

repos_copy

-eMap:ClCwCustomer+Map:CwClCustomer

-oNM_ClCwCustomer_and_CwClCustomer.jar

-sdexter

-pnull

-uadmin

If

you

are

reusing

a

submap

in

several

maps,

create

a

separate

repos_copy

file

for

it

instead

of

putting

it

in

the

main

text

file.

Chapter

3.

Working

with

maps

67

You

can

also

use

repos_copy

to

load

(import)

a

map

definition

into

the

repository

from

a

map

repository

file.

The

following

repos_copy

command

loads

the

ClCwCustomer

map

definition

into

the

repository

of

an

InterChange

Server

Express

named

testing:

repos_copy

-iNM_ClCwCustomer.jar

-stesting

-uadmin

-pnull

This

repos_copy

command

assumes

that

the

ClCwCustomer

and

CwClCustomer

map

definitions

do

not

currently

exist

in

the

repository.

If

they

do

exist,

this

command

fails

to

load

these

new

map

definitions.

You

can

use

one

of

the

-a

options

of

repos_copy

to

choose

how

to

handle

duplicate

map

definitions:

-ai

Skip

over

duplicate

map

definitions

during

the

load

-ar

Overwrite

any

duplicate

map

definitions

with

the

map

definition

in

the

map

repository

file.

-arp

Interactively

query

the

user

whether

to

overwrite

any

duplicate

map

definitions

with

the

map

definition

in

the

map

repository

file.

Note:

In

Production

mode,

the

maps

will

be

automatically

compiled.

You

can

also

use

repos_copy

to

load

and

unload

relationship

definitions

in

the

repository.

For

more

information,

see

“Loading

and

unloading

relationships”

on

page

221..

68

Map

Development

Guide

Chapter

4.

Compiling

and

testing

maps

This

chapter

describes

how

to

validate,

compile,

and

test

maps

using

Map

Designer

Express.

v

“Validating

a

map”

on

page

69

v

“Compiling

a

map”

on

page

70

v

“Compiling

a

set

of

maps”

on

page

71

v

“Testing

maps”

on

page

72

v

“Debugging

maps”

on

page

85

Validating

a

map

Map

Designer

Express’s

validation

process

verifies

the

accuracy

of

the

map’s

data

flow

by

performing

the

following

checks:

v

Ensures

that

the

map

has

no

incomplete

transformation

steps.

v

Ensures

that

indexes

to

business

object

arrays

are

properly

sequenced,

starting

from

zero

(0).

v

Provides

a

warning

if

any

transformation

step

maps

to

the

ObjectEventId

attribute.

v

Validates

transformations:

–

Makes

sure

execution

order

is

correct;

that

is,

that

execution

order

is

unique,

positive,

and

consecutive.

–

Ensures

that

no

attributes

have

cyclic

dependencies

on

each

other.

If

any

cyclic

transformations

are

found,

Map

Designer

Express

displays

the

cyclic

rules

in

the

output

window.

–

Checks

transformation

information:

Move

transformation—only

one

source

attribute

is

involved.

Join

transformation—more

than

one

source

attribute

is

involved.

Split

transformation—only

one

source

attribute

is

involved;

split

index

is

greater

than

or

equal

to

zero;

split

delimiter

is

not

empty.

Set

Value

transformation—no

source

attribute

is

involved;

a

value

has

been

specified.

Submap

transformation—at

least

one

source

attribute

is

involved;

submap

name

is

specified.

Cross-Reference

transformation—only

one

source

attribute

is

involved.

Map

Designer

Express

automatically

validates

a

map

when

you

save

it.

You

can

also

choose

to

validate

the

map

by

performing

either

of

the

following

actions:

v

Select

Validate

Map

from

the

File

menu.

v

In

the

Designer

toolbar,

click

the

Validate

button.

At

this

point,

if

you

have

specified

any

options

on

the

Validation

tab

of

the

Preferences

dialog,

Map

Designer

Express

will

issue

a

warning

if

the

specific

condition

is

not

mapped.

For

more

information

on

setting

dependencies

between

attributes,

see

“Using

execution

order”

on

page

66.

©

Copyright

IBM

Corp.

2003

69

Compiling

a

map

When

it

compiles

a

map,

Map

Designer

Express

generates

a

.class

file

from

the

.java

file

that

holds

Java

code

for

the

map’s

transformations.

It

generates

this

.java

file

from

the

transformation

code

stored

as

part

of

the

map

definition

in

the

project.

Important:

To

be

able

to

compile

a

map,

the

Java

compiler

(javac)

must

exist

on

your

system

and

its

path

must

be

on

your

PATH

system

variable.

For

more

information,

see

“Setting

up

the

development

environment”

on

page

10..

From

within

Map

Designer

Express,

you

can

initiate

compilation

of

a

map

in

several

ways:

v

Compile

the

current

map

in

one

of

the

following

ways:

–

Select

Compile

from

the

File

menu.

–

Use

the

keyboard

shortcut

of

F7.

–

In

the

Designer

toolbar,

click

the

Compile

button.
v

Compile

the

current

map

and

any

submaps

that

this

map

is

using:

–

Select

Compile

with

Submap(s)

from

the

File

menu.
v

Compile

all

or

a

subset

of

maps

defined

in

System

Manager:

–

Select

Compile

All

from

the

File

menu.

–

Use

the

keyboard

shortcut

of

Ctrl+F7.

For

more

information,

see

“Compiling

a

set

of

maps”

on

page

71.

By

default,

Map

Designer

Express

saves

the

map

in

the

project

before

it

begins

the

compile

and

generates

the

Java

code

in

the

.java

file

and

.class

file.

If

any

message

file

is

needed,

Map

Designer

Express

will

also

generate

the

message

file.

Note:

You

can

specify

whether

Map

Designer

Express

automatically

saves

a

map

to

the

project

before

compiling

the

map

with

the

option

Compile

Map:

save

map

before

compile.

By

default,

this

option

is

enabled.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20.

To

compile,

Map

Designer

Express

calls

the

Java

compiler

on

the

map’s

Java

source

code

(.java

file).

The

actions

it

then

takes

depend

upon

whether

the

compilation

is

successful.

System

Manager

also

provides

several

ways

to

compile

a

map.

You

can

do

any

of

the

following:

v

Compile

a

single

map:

–

Highlight

the

desired

map

and

select

Compile

from

the

Component

menu.

–

Right-click

the

desired

map

and

select

Compile

from

the

Context

menu.
v

Compile

a

map

and

its

submaps:

–

Right-click

the

desired

map

and

select

Compile

with

Submap(s)

from

the

Context

menu.
v

Compile

all

maps

defined

in

the

project:

–

Highlight

the

Maps

folder

and

select

Compile

All

from

the

Component

menu.

70

Map

Development

Guide

Note:

You

will

need

to

select

which

map

folder

in

the

project

to

compile

all

maps

for

by

right-clicking

on

the

map

folder

and

selecting

Compile

All

from

the

Context

menu.

For

more

information

on

using

System

Manager

to

compile

a

map,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

A

successful

map

compilation

When

the

map

successfully

compiles,

Map

Designer

Express

takes

the

following

steps:

v

Compiles

the

Java

code

into

a

.java

file.

v

Displays

the

following

message

in

the

output

window

at

the

bottom

of

each

Map

tab

to

indicate

that

there

are

no

errors

during

compilation:

Compilation

is

successful.

An

unsuccessful

map

compilation

If

an

error

occurs

during

compilation,

Map

Designer

Express

generates

error

messages

and

displays

them

in

the

output

window

at

the

bottom

of

the

screen.

Unless

an

output

window

is

already

open,

Map

Designer

Express

opens

one

at

the

bottom

of

the

Map

tab

to

display

these

compilation

messages.

When

a

compile

error

occurs,

the

output

window

displays

the

error

message

with

the

problematic

attribute

name

and

line

number

in

blue.

Click

the

hyperlink

to

navigate

to

the

problematic

area

in

the

Java

view

in

Activity

Editor.

Tip:

You

can

clear

the

output

window

of

messages

by

choosing

Clear

Output

from

the

View

menu.

Some

errors

are

easy

to

detect,

while

others

are

not.

Compiling

a

set

of

maps

Using

the

Compile

All

option

on

the

File

menu,

you

can

compile

all

maps

in

your

System

Manager,

or

a

subset

of

maps.

Perform

the

following

steps

to

compile

a

set

of

maps:

1.

Select

Compile

All

from

the

File

menu.

Result:

Map

Designer

Express

displays

the

Compile

All

Maps

window.

2.

Select

the

project

to

compile

maps

for.

3.

Select

the

maps

to

compile.

Guideline:

Checking

any

check

box

at

the

root

will

automatically

check

all

its

child

check

boxes.

Thus,

when

you

select

a

project,

all

maps

in

that

project

are

selected.

To

select

only

a

subset

of

maps,

deselect

the

appropriate

Compile

check

boxes.

Chapter

4.

Compiling

and

testing

maps

71

Figure

35

illustrates

the

Compile

All

Maps

window.

Result:

Map

Designer

Express

displays

the

success

or

failure

of

each

map’s

compilation

in

the

output

window.

You

might

want

to

enlarge

the

size

of

the

output

window

before

starting

the

compilation

process

so

you

can

see

more

of

the

compilation

status

messages.

Testing

maps

You

can

test

a

map’s

transformation

steps

by

providing

sample

data

for

the

source

business

object

and

executing

a

test

run

of

the

map.

A

test

run

is

map

execution

that

does

not

involve

an

event

sent

by

a

connector

or

a

call

sent

by

an

access

client;

the

map

executes

within

Map

Designer

Express.

Map

Designer

Express

provides

a

separate

tab,

the

Test

tab

in

the

Map

Designer

Express

window

to

test

maps

and

view

test

results.

Note:

When

a

map

is

selected

from

Testing

Environment

for

further

debugging,

Testing

Environment

will

launch

Map

Designer

Express,

giving

Map

Designer

Express

the

input

business

objects

to

the

map

under

testing.

This

section

describes

how

to

set

up

and

execute

a

test

run,

using

these

steps:

v

“Preparing

to

run

the

test”

on

page

73

v

“Creating

test

data”

on

page

73

v

“Setting

breakpoints”

on

page

75

Figure

35.

Compile

All

Maps

window

72

Map

Development

Guide

v

“Running

the

test

map”

on

page

77

v

“Viewing

test

run

results”

on

page

79

v

“Changing

the

map

and

re-executing”

on

page

79

Note:

An

alternative

testing

strategy,

which

is

not

covered

in

detail,

is

to

set

breakpoints

in

the

map

and

to

send

a

triggering

event

from

the

connector,

which

causes

the

map

to

execute.

Preparing

to

run

the

test

Before

running

the

test,

perform

the

following

steps:

1.

Open

the

map

to

debug

from

the

project.

2.

If

the

map

has

not

been

compiled

since

the

last

modification,

compile

it

by

choosing

Compile

from

the

File

menu.

For

more

information,

see

“Compiling

a

map”

on

page

70.

3.

If

the

Test

tab

of

Map

Designer

Express

is

not

currently

displaying

in

the

tab

window,

select

the

Test

tab.

Creating

test

data

Every

time

you

test

a

map,

you

must

load

data

into

the

source

business

object.

To

do

this,

use

the

Source

Testing

Data

pane

in

the

Test

tab

(see

Figure

36).

The

Source

Testing

Data

pane

allows

you

to

specify

the

following

test

information:

v

The

calling

context—indicates

the

map

execution

context

for

the

map

run.

v

The

generic

business

object—provides

test

data

for

the

generic

business

object

when

testing

the

SERVICE_CALL_RESPONSE

calling

context

for

an

identity

relationship.

v

The

test

data—data

for

the

attributes

of

the

source

business

object.

Important:

The

calling

context

and

generic

business

object

are

required

only

for

testing

relationships

within

maps.

For

more

information,

see

“Testing

maps

that

contain

relationships”

on

page

80.

Testing

the

map

for

the

first

time

When

you

test

the

map

for

the

first

time,

you

must

manually

enter

the

values

of

the

attributes

in

the

Source

Testing

Data

pane.

The

following

sections

provide

information

about

how

to

enter

this

data:

v

“Test

data

for

the

source

business

object”

on

page

73

v

“Test

data

for

a

child

business

object”

on

page

74

Test

data

for

the

source

business

object:

To

create

source

business

object

data

for

the

first

time,

follow

these

rules:

v

To

set

the

verb,

select

it

from

the

verb

combo

box

in

the

verb

row.

v

To

assign

a

value

to

a

source

attribute,

type

it

into

the

attribute’s

Value

column.

You

do

not

have

to

provide

values

for

all

attributes.

v

To

assign

a

value

to

a

relationship

attribute,

specify

the

appropriate

value

in

the

Value

column

and

make

sure

you

also

specify

the

correct

calling

context.

For

more

information,

see

“Testing

maps

that

contain

relationships”

on

page

80.

v

To

assign

values

to

a

child

business

object,

right-click

the

child

object

and

select

the

Add

Instance

option

from

the

Context

menu.

For

more

information,

see

“Test

data

for

a

child

business

object”

on

page

74.

v

To

assign

default

values

to

the

source

attributes

attribute,

select

the

source

business

object

and

select

Reset

from

the

Context

menu.

Chapter

4.

Compiling

and

testing

maps

73

v

If

you

are

testing

relationships,

make

sure

to

set

the

ObjectEventIds

of

the

source

parent

object

and

all

child

objects

that

participate

in

the

relationships.

To

save

the

values

you

have

entered

for

future

test

runs,

create

a

business

object

(.bo)

file

by

selecting

the

source

business

object

and

performing

either

of

the

following

actions:

v

Click

the

Save

To

button

in

the

Source

Testing

Data

pane.

v

Select

Save

To

from

the

Context

menu.

When

prompted,

enter

a

file

name

where

these

values

will

be

stored.

Result:

The

next

time

you

test

this

map,

you

can

click

the

Load

From

button

and

the

attributes

will

be

filled

in

automatically

from

the

business

object

file.

Test

data

for

a

child

business

object:

If

the

source

business

object

has

child

business

objects

and

you

want

to

specify

test

data

for

the

child

attributes,

you

must

first

create

an

instance

for

each

child

object

you

need.

To

do

so,

perform

the

following

steps:

1.

Right-click

the

child

business

object

name

and

select

Add

Instance

from

the

Context

menu.

When

you

expand

the

object,

you

see

the

instance

that

Map

Designer

Express

has

created.

Guideline:

The

first

instance

you

add

has

an

index

number

of

zero.

You

can

have

as

many

instances

as

you

want

(as

long

as

the

child

attribute

has

multiple-cardinality).

2.

Click

the

plus

symbol

(+)

beside

the

instance

index

number

to

expand

the

child

business

object.

Result:

When

you

expand

the

object,

you

see

the

child

attributes

for

this

instance.

3.

To

create

data

for

the

child

business

object

instance,

follow

these

rules:

Figure

36.

Source

Testing

Data

pane

of

the

Test

tab

74

Map

Development

Guide

v

To

set

the

verb

for

the

child

business

object,

select

it

from

the

verb

combo

box

in

the

verb

row.

v

To

specify

a

value

for

a

child

attribute,

select

it

and

enter

the

value

in

the

Value

column.

v

If

the

name

of

the

attribute

is

followed

by

(N),

the

attribute

contains

a

multiple-cardinality

child

business

object

and

you

can

add

more

instances.

To

add

a

child

business

object

to

the

end

of

the

array,

right-click

the

last

index

and

select

Add

Instance

from

the

Context

menu.

v

Modify

the

values

of

as

many

instances

as

you

want.

Add

and

remove

instances

as

follows:

–

To

add

an

instance,

right-click

the

child

instance

name

and

select

Add

Instance.

–

To

delete

an

instance,

right-click

the

instance

name

of

the

child

instance

you

want

to

delete

and

select

Remove

Instance.

–

To

delete

all

instances,

right-click

the

child

instance

name

and

select

Remove

All

Instances.

This

option

is

only

enabled

if

the

child

business

object

has

multiple-cardinality.

Testing

the

map

in

subsequent

runs

For

subsequent

test

runs,

Map

Designer

Express

reuses

the

previously

specified

test

data.

You

can

take

any

of

the

following

actions

on

this

data:

v

Leave

all

test

data

as

it

is.

v

Modify

values

for

any

individual

attributes

by

changing

the

appropriate

entries

of

the

Values

column.

Tip:

If

you

modify

the

data,

remember

to

resave

any

business

object

(.bo)

file.

v

Load

a

set

of

values

from

a

business

object

(.bo)

file.

To

load

attribute

values

from

a

business

object

file,

select

the

source

business

object

and

perform

either

of

the

following

actions:

–

Click

the

Load

From

button

in

the

Source

Testing

Data

pane.

–

Select

Load

From

from

the

Context

menu.

When

prompted,

enter

the

name

of

the

business

object

file

to

be

loaded.

v

Return

all

source

destination

values

to

their

defined

default

values

by

selecting

the

source

business

object

and

selecting

the

Reset

option

from

the

Context

menu.

Setting

breakpoints

When

you

set

a

breakpoint,

map

execution

pauses

just

before

the

transformation

of

the

destination

attribute

on

which

the

breakpoint

is

set.

The

use

of

breakpoints

lets

you

step

through

map

execution

and

check

the

sequence

and

the

results

of

individual

operations.

You

can

set

as

many

breakpoints

as

you

like.

Guideline:

Breakpoints

are

not

part

of

the

map’s

definition.

You

set

breakpoints

on

the

map

after

the

map

is

opened

in

Map

Designer

Express,

and

when

the

map

is

debugged

(either

with

Debug-->Run

Test...

or

Debug-->Advanced-->Attach...).

Breakpoints

have

no

effect

on

the

map

when

the

map

is

not

debugged

from

Map

Designer

Express.

Note:

You

can

only

set

a

breakpoint

on

a

destination

attribute

that

has

a

transformation

defined

for

it.

To

set

a

breakpoint,

you

can

use

any

one

of

the

following

methods:

Chapter

4.

Compiling

and

testing

maps

75

v

Right-click

a

destination

attribute

in

the

Destination

Testing

Data

pane

and

select

Set

Breakpoint

from

the

Context

menu.

If

the

destination

source

attribute

is

not

yet

expanded,

you

can

expand

it

with

either

of

the

following

commands:

–

Click

the

plus

symbol

(+)

next

to

the

destination

business

object.

–

Select

the

destination

business

object

and

select

Expand

from

the

Context

menu.

Note:

The

Context

menu

of

the

destination

business

object

also

provides

a

Collapse

option.
v

Select

Toggle

Breakpoint

from

the

Debug

menu.

v

Use

the

keyboard

shortcut

of

F9.

v

In

the

Designer

toolbar,

click

the

Toggle

Breakpoint

button.

Note:

The

Toggle

Breakpoint

option

toggles

a

breakpoint

definition

on

and

off.

If

the

breakpoint

is

not

currently

set,

Toggle

Breakpoint

sets

it.

If

the

breakpoint

is

currently

set,

Toggle

Breakpoint

removes

it.

Result:

Map

Designer

Express

displays

a

dark

circle

next

to

the

destination

attribute

on

which

the

breakpoint

is

set,

as

shown

in

Figure

37.

Once

you

set

the

breakpoint,

the

execution

of

the

map

instance

pauses

at

this

breakpoint

and

you

can

see

the

current

status

of

the

map.

Unless

you

specify

at

least

one

breakpoint,

the

map

executes

and

finishes

with

the

message:

Test

run

finished

Rule:

You

must

always

provide

values

for

the

source

data

associated

with

the

destination

attributes

where

you

set

the

breakpoints.

Otherwise,

the

transformation

rule

will

run

normally

and

the

breakpoints

will

execute

normally,

but

the

Figure

37.

Breakpoint

set

76

Map

Development

Guide

destination

value

will

usually

be

empty,

depending

on

what

transformation

rule

is

defined.

For

more

information,

see

“Creating

test

data”

on

page

73.

To

view

all

breakpoints

for

the

map,

select

Breakpoints

from

the

Debug

menu.

Result:

Map

Designer

Express

displays

the

Breakpoints

dialog

(see

Figure

38).

From

the

Breakpoints

dialog,

you

can

perform

any

of

the

following

actions:

v

Locate

a

destination

attribute

on

which

a

breakpoint

is

set—double-click

the

breakpoint

name.

Tip:

To

locate

a

particular

breakpoint,

enter

its

name

in

the

Find

field.

The

up

and

down

arrows

scroll

through

the

business

object

list.

In

the

Destination

Testing

Data

pane,

Map

Designer

Express

highlights

the

destination

attribute.

v

Remove

a

breakpoint—in

the

Breakpoints

area,

select

the

breakpoint

to

remove

and

click

the

Delete

button.

You

can

also

remove

a

breakpoint

by

performing

any

of

the

following

actions:

–

Right-click

a

destination

attribute

in

the

Destination

Testing

Data

pane

and

select

Clear

Breakpoint

from

the

Context

menu.

–

Use

any

of

the

commands

for

the

Toggle

Breakpoint

option

on

an

existing

breakpoint.

For

more

information,

see

“Setting

breakpoints”

on

page

75.
v

Clear

all

breakpoints

that

display

in

the

Breakpoints

area—click

the

Clear

All

button.

You

can

also

clear

all

breakpoints

by

performing

any

of

the

following

actions:

–

Select

Clear

All

Breakpoints

from

the

Debug

menu.

–

In

the

Designer

toolbar,

click

the

Clear

All

Breakpoints

button.

Running

the

test

map

Once

you

have

entered

the

source

test

data

and

set

any

desired

breakpoints,

you

are

ready

to

test

the

map.

To

run

a

map

test

involves

the

following

steps:

1.

“Starting

the

test

run”

on

page

78

2.

“Processing

breakpoints”

on

page

78

(if

any

breakpoints

have

been

set)

Figure

38.

Breakpoints

dialog

of

the

test

tab

Chapter

4.

Compiling

and

testing

maps

77

Starting

the

test

run

To

start

the

test

run,

perform

the

following

steps:

1.

Do

any

of

the

following

actions:

v

Select

Run

Test

from

the

Debug

menu.

v

In

the

Designer

toolbar,

click

the

Run

Test

button.

Result:

The

Connect

to

IBM

WebSphere

InterChange

Server

Express

dialog

box

will

display

and

allow

you

to

connect

to

the

server

for

testing.

2.

In

the

dialog,

enter

the

server

name,

user

name,

and

password.

3.

Specify

whether

you

want

to

deploy

the

map

and

dependent

business

objects

for

the

test

run.

Guideline:

Deploying

a

minimum

set

of

business

objects

to

the

server

for

testing

will

minimize

debugging

initialization

time.

Result:

Execution

of

the

map

starts.

Map

Designer

Express

displays

the

following

message

in

the

output

window:

Starting

test

run...

Processing

breakpoints

Map

execution

pauses

when

it

reaches

a

destination

attribute

where

you

have

set

a

breakpoint.

When

the

breakpoint

is

reached,

Map

Designer

Express

takes

the

following

actions:

1.

Highlights

the

destination

attribute

on

which

the

breakpoint

was

set

and

displays

a

dark

circle

with

a

yellow

arrow

next

to

it.

2.

Displays

the

following

message

in

the

output

window:

Test

Run

stopped

at

attribute

AttrName

(next

transformation-->

"Rule").

Tip:

With

map

execution

paused,

you

can

examine

the

values

of

the

destination

attributes

that

have

been

processed

so

far

by

looking

in

the

Value

column

of

the

Destination

Testing

Data

pane.

3.

Processes

the

breakpoint

and

continues

map

execution,

when

you

do

either

of

the

following

actions:

v

Proceed

to

the

next

breakpoint

or

the

end

of

the

map,

whichever

comes

first.

To

continue

map

execution,

perform

any

of

the

following

actions:

–

Select

Continue

from

the

Debug

menu.

–

Use

the

keyboard

shortcut

of

F8.

–

In

the

Designer

toolbar,

click

the

Continue

button.
v

Execute

this

destination

attribute,

then

stop

before

executing

the

next

attribute.

To

continue

map

execution

for

only

one

more

step,

perform

any

of

the

following

actions:

–

Select

Step

Over

from

the

Debug

menu.

Tip:

Select

this

option

to

watch

the

code

execute

attribute

by

attribute.

–

Use

the

keyboard

shortcut

of

F10.

–

In

the

Designer

toolbar,

click

the

Step

Over

button.

Result:

When

the

execution

of

the

test

run

is

finished

without

any

run-time

errors,

Map

Designer

Express

displays

the

following

message

in

the

output

window:

Test

run

finished.

78

Map

Development

Guide

Viewing

test

run

results

Test

run

results

display

in

the

destination

business

object,

which

is

in

the

Destination

Testing

Data

pane.

Values

resulting

from

the

map

transformations

are

visible

in

the

Values

column

of

this

table.

You

can

view

test

run

results

by

either:

v

“Watching

the

process”

v

“Viewing

results

after

execution”

Watching

the

process

During

a

test

run

that

has

test

data

and

breakpoints,

you

can

watch

as

the

destination

business

object

fills

with

values.

Values

appear

in

the

Values

column

in

the

Destination

Testing

Data

pane

as

they

are

processed.

When

map

execution

is

paused

on

a

breakpoint,

all

destination

attributes

before

that

attribute

in

the

execution

order

have

values

displayed.

To

view

the

transformations

as

they

occur:

v

Set

a

breakpoint

on

the

second

destination

attribute

and

step

through

map

execution

with

the

Step

Over

option.

The

map

will

be

read-only.

Viewing

results

after

execution

To

view

test

run

results

when

the

map

has

already

executed,

examine

the

destination

business

object

in

the

Destination

Testing

Data

pane.

To

save

the

test

results:

v

Highlight

the

destination

business

object

and

select

Save

To

from

the

Context

menu.

Result:

Map

Designer

Express

saves

the

values

of

the

destination

attributes

in

a

business

object

(.bo)

file.

Changing

the

map

and

re-executing

As

you

test

the

map,

you

might

discover

the

need

to

change

the

map.

To

edit

the

map

and

then

continue

the

test,

perform

the

following

steps:

1.

Switch

to

either

the

Table

or

Diagram

tab

to

view

the

map

transformations.

2.

Make

the

edits

to

fix

the

errors.

3.

Recompile

the

map.

4.

Continue

the

testing

process

by

switching

back

to

the

Test

tab.

5.

Begin

a

new

test

run.

Important:

1.

Make

sure

you

complete

the

test

run,

either

with

success

or

failure,

before

you

attempt

to

recompile

the

map.

2.

After

you

modify

the

map,

be

sure

to

deploy

the

map

to

the

server

for

the

change

to

be

reflected

in

the

server.

Doing

advanced

debugging

Besides

debugging

maps

that

are

stored

in

local

projects,

you

can

also

directly

debug

a

map

that

resides

in

the

server.

Perform

the

following

steps

to

do

so:

1.

Select

Debug-->Advanced-->Attach.

Result:

The

Connect

to

WebSphere

InterChange

Server

Express

dialog

displays.

2.

Enter

the

Server

name,

User

name,

and

Password;

and

click

Connect.

Result:

Map

Designer

Express

displays

a

list

of

new

maps

on

that

server.

3.

Select

the

map

you

want

to

attach

to.

Chapter

4.

Compiling

and

testing

maps

79

Result:

The

map

opens

in

Map

Designer

Express

in

Read-only

mode.

4.

Set

breakpoints

in

the

map

to

have

the

server

pause

map

execution

at

a

certain

transformation

rule.

Result:

When

a

breakpoint

is

hit

on

the

server,

you

can

step

over

or

continue

map

execution,

as

usual.

The

resulting

business

object

values

will

display

in

the

Destination

Test

Data

pane.

5.

Stop

the

debugging

session

at

any

time

using

Debug-->Advanced-->Detach.

Result:

Map

Designer

Express

will

close

the

map.

Testing

maps

that

contain

relationships

When

you

test

a

map

that

contains

a

relationship

transformation,

you

need

to

provide

the

following

information

in

addition

to

the

test

data:

v

The

calling

context

Part

of

a

map’s

execution

context

includes

a

calling

context.

Many

of

the

relationship

methods

in

the

Mapping

API

use

this

calling

context

to

determine

what

action

to

take

during

the

mapping.

For

this

reason,

if

you

are

testing

a

relationship

attribute

in

a

map,

you

usually

must

specify

the

appropriate

calling

context

for

the

transformation.

v

The

generic

business

object

definition

When

you

test

the

SERVICE_CALL_RESPONSE

calling

context

for

an

identity

relationship,

you

need

to

specify

the

maps

generic

business

object

so

that

the

test

run

can

locate

the

generic

key

value

in

the

relationship.

You

specify

this

information

in

the

Source

Testing

Data

pane

of

the

Test

tab.

Tip:

If

the

width

of

the

Source

Testing

Data

pane

is

not

enough

to

let

you

see

the

complete

menu

options

of

the

Calling

Context

combo

box,

you

can

expand

the

size

of

this

area

by

putting

the

cursor

over

the

right-hand

boundary

until

you

see

the

following

symbol

<-||->

and

drag

the

boundary

to

the

right.

If

you

are

testing

Relationships,

select

the

appropriate

generic

object

from

the

list

of

business

objects,

select

Calling

Context,

and

set

the

ObjectEventIds

for

the

parent

and

child

objects

that

match

the

ones

you

already

set

in

the

Test

Data

screen.

The

calling

context

you

need

to

provide

and

whether

you

need

to

specify

a

generic

business

object

depend

on

the

type

of

relationship

you

are

testing.

This

section

provides

information

on

the

following:

v

“Testing

an

identity

relationship”

v

“Testing

a

lookup

relationship”

on

page

83

Testing

an

identity

relationship

To

test

point-to-point

mapping

(from

Application

1

to

Application

2)

for

an

identity

relationship

you

use

three

maps:

v

An

inbound

map

from

Application

1’s

application-specific

business

object

to

a

generic

business

object—App1_to_Generic

v

An

outbound

map

from

the

generic

business

object

to

Application

2’s

application-specific

business

object—Generic_to_App2

v

An

inbound

map

from

Application

2’s

application-specific

business

object

to

the

generic

business

object—App2_to_Generic

Figure

39

shows

an

example

of

a

point-to-point

communication

of

customer

data

between

a

Clarify

application

and

an

SAP

application.

If

each

application

uses

a

80

Map

Development

Guide

unique

key

value

to

identify

customers,

these

three

business

objects

can

be

related

with

an

identity

relationship.

Therefore,

each

map

includes

a

cross-reference

transformation

rule.

As

each

of

these

maps

executes,

these

relationship

methods

access

the

calling

context

to

determine

the

actions

to

take.

To

test

the

Create

verb,

you

need

to

verify

that

a

new

application-specific

key

value

in

Application

1

(Clarify

application

in

Figure

39)

causes

a

new

generic

key

value

to

be

added

for

the

generic

business

object

and

a

new

application-specific

key

value

in

Application

2

(SAP

application

in

Figure

39).

Therefore,

testing

involves

three

steps:

1.

Test

the

inbound

map,

App1_to_Generic,

to

send

in

a

new

key

value

from

Application

1

and

ensure

that

a

new

key

value

is

generated

for

the

generic

business

object.

Follow

the

steps

in

Table

17.

Table

17.

Testing

the

App1-to-Generic

map

for

an

identity

relationship

To

set

up

test

run

To

verify

test

run

1.

Set

the

calling

context

to

EVENT_DELIVERY

or

ACCESS_REQUEST

by

choosing

the

appropriate

calling

context

from

the

Calling

Context

combo

box.

2.

Enter

the

application-specific

value

in

the

key

of

the

source

business

object.

This

value

is

unique

for

the

key

attribute(s)

in

the

Application1

application.

3.

Run

the

test.

4.

Read

the

resulting

generic

key

value

in

the

destination

business

object,

which

has

been

added

to

the

relationship

table

for

the

App1/Generic

identity

relationship.

5.

Save

the

destination

business

object

data

in

a

.bo

file

(e.g.

App1_to_Generic.bo)

by

selecting

the

destination

business

object

and

choosing

Save

To

from

the

Context

menu.

SAP_Customer
to

Generic

Inbound Map

SERVICE_CALL_RESPONSE

Clarify_Site SAP_Customer

Inbound Map Outbound Map

Customer

Application-Specific
Business Object

Application-Specific
Business Object

EVENT_DELIVERY
or

ACCESS_REQUEST SERVICE_CALL_REQUEST

Generic
Business
Object

Clarify_Site
to

Customer

Customer
to

SAP_Customer

Figure

39.

Maps

involved

in

point-to-point

testing

of

an

identity

relationship

Chapter

4.

Compiling

and

testing

maps

81

2.

Test

the

outbound

map,

Generic_to_App2,

to

ensure

that

the

new

generic

key

value

is

sent

to

Application

2.

To

test

an

identify

relationship

in

the

outbound

Generic_to_App2

map,

you

must

provide

the

generic

key

value

in

your

source

Test

Data.

You

might

want

to

do

either

of

the

following,

but

they

are

both

wrong:

v

Put

an

arbitrary

number

into

the

generic

business

object’s

primary

key

attribute,

then

run

the

map.

v

Create

the

record

directly

in

the

relationship

table.

In

both

cases,

Map

Designer

Express

generates

the

RelationshipRuntimeException

or

NullPointerException.

The

error

occurs

because

the

generic

key

value

has

to

be

in

the

system

for

the

SERVICE_CALL_REQUEST

to

work

properly,

and

the

relationship

table

is

not

the

only

place

the

generic

key

value

is

stored.

The

correct

solution

is

to

first

run

an

inbound

EVENT_DELIVERY

(or

ACCESS_REQUEST)

map

that

uses

the

same

identity

relationship

(as

described

in

step

1).

Follow

the

steps

in

Table

18

to

test

the

outbound

Generic_to_App2

map.

Table

18.

Testing

the

generic-to-app2

map

for

an

identity

relationship

To

set

up

test

run

To

verify

test

run

1.

Set

the

calling

context

to

SERVICE_CALL_REQUEST

by

choosing

this

calling

context

from

the

Calling

Context

combo

box.

2.

Load

the

generic

business

object

with

the

test

results

from

the

previous

step

(e.g.

App1_to_Generic.bo).

3.

Run

the

test.

4.

Read

the

resulting

application-specific

key

value

in

the

destination

business

object,

which

is

empty

because

Application

2

has

not

generated

its

key

value

yet.

5.

Save

the

destination

business

object

data

in

a

.bo

file

(e.g.

Generic_to_App2.bo)

by

selecting

the

destination

business

object

and

choosing

Save

To

from

the

Context

menu.

3.

Test

the

inbound

map,

app2_to_generic,

to

verify

that

the

new

key

value

from

Application

2

is

associated

with

the

new

generic

key

value.

When

the

calling

context

is

SERVICE_CALL_RESPONSE,

an

identity

relationship

must

cross-reference

the

ID

in

the

application-specific

business

object

to

the

ID

in

the

generic

business

object.

Therefore,

for

this

test,

you

must

specify

the

generic

business

object

definition.

Follow

the

steps

in

Table

19.

82

Map

Development

Guide

Table

19.

Testing

the

App2_to_Generic

map

for

an

identity

relationship

To

set

up

test

run

To

verify

test

run

1.

Set

the

calling

context

to

SERVICE_CALL_RESPONSE

by

choosing

this

calling

context

from

the

Calling

Context

combo

box.

2.

Set

the

generic

business

object

by

choosing

the

name

of

the

appropriate

generic

business

object

from

the

Generic

Business

Object

combo

box.

Map

Designer

Express

adds

the

specified

generic

business

object

to

the

Source

Testing

Data

pane.

3.

Load

the

application-specific

business

object

with

the

test

results

from

the

previous

step

(e.g.

Generic_to_App2.bo).

4.

In

the

application-specific

business

object,

enter

an

application-specific

value

in

the

key

of

the

business

object.

5.

In

the

generic

business

object,

enter

the

generic

key

value

associated

with

the

Application1

key.

This

value

should

be

the

same

key

value

generated

for

the

generic

business

object

in

the

EVENT_DELIVERY/ACCESS_REQUEST

test

(step

1).

6.

Run

the

test.

7.

Read

the

resulting

generic

key

value

in

the

destination

business

object,

which

should

be

the

same

value

you

entered

in

the

generic

source

business

object.

8.

You

can

use

Relationship

Manager

to

verify

that

the

correct

application-specific

key

values

are

associated

with

this

generic

key

value

for

this

identity

relationship.

For

more

information

on

Relationship

Manager,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

Testing

for

other

verbs

involves

similar

steps.

For

more

detailed

information

on

the

actions

of

relationship

methods

for

an

identity

relationship,

see

Chapter

8,

“Implementing

relationships,”

on

page

187.

Testing

a

lookup

relationship

To

test

point-to-point

mapping

(from

Application

1

to

Application

2)

for

a

lookup

relationship

you

use

two

maps:

v

From

Application

1’s

application-specific

business

object

to

a

generic

business

object—App1_to_Generic

v

From

the

generic

business

object

to

Application

2’s

application-specific

business

object—Generic_to_App2

Figure

40

shows

an

example

of

a

point-to-point

communication

of

customer

data

between

a

Clarify

application

and

an

SAP

application.

If

each

application

uses

a

special

static

code

to

identify

geographic

states,

these

three

business

objects

can

be

related

with

a

lookup

relationship.

Therefore,

each

map

includes

custom

transformations

that

do

static

lookups.

For

more

information,

see

the

″Static

Lookup″

activity

example

in

“Example

3

of

using

the

Activity

Editor”

on

page

133.

As

each

of

these

maps

executes,

these

relationship

methods

access

the

calling

context

to

determine

the

actions

to

take.

Chapter

4.

Compiling

and

testing

maps

83

To

test

the

Create

verb,

you

need

to

verify

that

an

existing

application-specific

lookup

value

in

Application

1

(Clarify

application

in

Figure

40)

causes

the

associated

generic

lookup

value

to

be

added

to

the

generic

business

object

and

the

associated

application-specific

lookup

value

in

Application

2

(SAP

application

in

Figure

40)

to

be

added

to

its

business

object.

Therefore,

testing

involves

two

steps:

1.

Test

the

inbound

map,

App1_to_Generic,

to

send

in

an

existing

lookup

value

from

Application1

and

ensure

that

the

associated

generic

lookup

value

is

obtained

for

the

generic

business

object.

Follow

the

steps

in

Table

20.

Table

20.

Testing

the

App1-to-Generic

map

for

a

lookup

relationship

To

set

up

test

run

To

verify

test

run

1.

Set

the

calling

context

to

EVENT_DELIVERY

or

ACCESS_REQUEST

by

choosing

the

appropriate

calling

context

from

the

Calling

Context

combo

box.

2.

Enter

the

application-specific

value

in

the

lookup

field

of

the

source

business

object.

This

value

is

an

existing

lookup

value

whose

data

is

already

loaded

in

the

App1/Generic

relationship

table.

3.

Run

the

test.

4.

Read

the

resulting

generic

lookup

value

in

the

destination

business

object,

which

has

been

obtained

to

the

relationship

table

for

the

App1/Generic

lookup

relationship.

5.

Save

the

business

object

data

in

a

.bo

file

(e.g.

App1_to_Generic.bo)

by

highlighting

the

destination

business

object

and

choosing

Save

To

from

the

Context

menu.

2.

Test

the

outbound

map,

Generic_to_App2,

to

send

in

the

generic

lookup

value

and

ensure

that

the

associated

lookup

value

is

obtained

for

Application

2.

Follow

the

steps

in

Table

21.,

Table

21.

Testing

the

Generic-to-App2

Map

for

a

lookup

relationship

To

set

up

test

run

To

verify

test

run

1.

Set

the

calling

context

to

SERVICE_CALL_REQUEST

by

choosing

this

calling

context

from

the

Calling

Context

combo

box.

2.

Load

the

generic

business

object

with

the

test

results

from

the

previous

step

(e.g.

App1_to_Generic.bo).

3.

Run

the

test.

4.

Read

the

resulting

application-specific

key

value

in

the

destination

business

object,

which

contains

the

Application

2

lookup

value.

5.

Save

the

business

object

data

in

a

.bo

file

(e.g.

Generic_to_App2.bo)

by

highlighting

the

destination

business

object

and

choosing

Save

To

from

the

Context

menu.

Clarify_Site SAP_Customer

Inbound Map Outbound Map

Customer

Application-Specific
Business Object

Application-Specific
Business Object

EVENT_DELIVERY
or

ACCESS_REQUEST SERVICE_CALL_REQUEST

Generic
Business Object

Clarify_Site
to

Customer

Customer
to

SAP_Customer

Figure

40.

Maps

involved

in

point-to-point

testing

of

a

lookup

relationship

84

Map

Development

Guide

Note:

A

lookup

relationship

can

be

tested

for

the

SERVICE_CALL_RESPONSE

calling

context.

However,

this

case

usually

only

is

required

if

the

map

is

doing

something

else

that

requires

the

lookup

data.

The

relationship

methods

for

a

lookup

relationship

in

the

Mapping

API

never

write

data

to

a

relationship

table.

Debugging

maps

This

section

provides

the

following

information

about

debugging

a

map:

v

“Resolving

run-time

errors”

v

“Debugging

tips”

For

information

on

how

to

test

relationships,

see

“Testing

maps

that

contain

relationships”

on

page

80.

Resolving

run-time

errors

Even

if

your

map

compiled

successfully,

you

can

get

a

run-time

error

during

the

map

execution

in

the

Debugger.

Example:

You

have

an

outbound

map

with

the

generic

business

object

on

one

side

and

an

application

specific

business

object

on

the

other

side.

Let

us

assume

that

this

map

has

an

identity

relationship

in

it.

1.

Go

to

the

Test

tab

and

select

the

calling

context

SERVICE_CALL_REQUEST.

2.

Select

the

verb

″Update.″

3.

Run

the

test.

Result:

An

error

message

like

the

one

below

displays:

Exception

at

step

17,

attribute

<attribute

name>,java.lang.nullpointerexception

This

exception

is

happening

because

the

map

is

trying

to

update

an

entry

in

the

repository

that

is

not

created

in

the

first

place.

Ideally,

you

should

ensure

that

the

sequence

of

steps

is

correct.

You

should

look

at

the

database

for

relationship

entries

pertaining

to

the

map

in

question.

You

should

then

draw

the

conclusions

based

on

whether

it

is

ready

for

SERVICE_CALL_REQUEST

or

not.

Debugging

tips

This

section

provides

the

following

tips

for

making

the

debugging

of

a

map

easier:

v

“Using

logging

messages”

v

“Writing

safe

mapping

code”

on

page

86

Using

logging

messages

Use

the

logInfo()

method

for

tracking

the

map

execution.

It

takes

a

String

as

an

argument,

which

is

sent

on

the

InterChange

Server

Express

log.

You

need

to

type

it

in

Activity

Editor

for

the

attribute

whose

execution

needs

to

be

tracked.

To

make

sure

that

the

submap

is

executed,

create

a

custom

transformation

rule

and

use

the

″Log

Information″

function

block

to

customize

the

activity.

You

might

not

always

want

to

see

this

message.

If

this

is

the

case,

change

the

DataValidationLevel

property

of

the

map.

To

set

the

DataValidationLevel,

select

the

Map

Properties

option

from

the

Edit

menu

of

Map

Designer

Express

and

change

0

to

1

or

a

greater

number.

The

settings

are

as

follows:

Chapter

4.

Compiling

and

testing

maps

85

0

No

data

validation

1

IBM

data

validation

level

2

or

greater

User-defined

data

validation

Writing

safe

mapping

code

If

you

customize

your

transformation

rule

in

Activity

Editor,

you

are

not

guaranteed

that

it

will

work

properly

during

run

time.

To

make

sure

that

the

map

continues

executing

when

an

error

occurs

and

you

get

a

notification

of

an

error,

use

the

″Catch

Error″

function

block

in

Activity

Editor

and

handle

the

error

appropriately.

86

Map

Development

Guide

Chapter

5.

Customizing

a

map

This

chapter

provides

information

to

use

for

customizing

maps.

This

chapter

covers

the

following

topics:

v

“Customizing

transformation

steps”

on

page

87

v

“Importing

Java

packages

to

Interchange

Server

Express”

on

page

136

v

“Using

variables”

on

page

140

v

“Reusing

map

instances”

on

page

144

v

“Handling

exceptions”

on

page

144

v

“Creating

custom

data

validation

levels”

on

page

146

v

“Understanding

map

execution

contexts”

on

page

146

Customizing

transformation

steps

Map

Designer

Express

provides

two

ways

to

generate

Java

code:

v

Using

the

Activity

Editor

v

Defining

transformation

rules

using

standard

transformations

Using

the

Activity

Editor

Using

the

Activity

Editor,

you

can

specify

the

flow

of

activities

for

a

specific

transformation

rule

graphically,

without

knowing

programming

or

Java

code.

For

each

transformation

rule

in

Map

Designer

Express,

you

can

display

one

activity

and

its

subactivities.

You

can

view

the

associated

attribute’s

transformation

code

graphically,

modify

it,

and

have

the

tool

generate

the

corresponding

Java

code.

You

launch

the

Activity

Editor

directly

from

Map

Designer

Express

(see

“Starting

the

Activity

Editor”

on

page

87).

At

startup,

the

Activity

Editor

communicates

with

System

Manager

to

discover

the

set

of

activities

allowed.

After

you

have

finished

designing

the

activity

for

a

particular

transformation

rule,

you

save

the

changes

in

the

Activity

Editor,

and

they

are

communicated

to

Map

Designer

Express.

This

section

contains

the

following

topics

on

the

Activity

Editor:

v

“Starting

the

Activity

Editor”

on

page

87

v

“Layout

of

the

Activity

Editor”

on

page

88

v

“Using

the

Activity

Editor

functionality”

on

page

88

v

“Working

in

Graphical

view”

on

page

91

v

“Identifying

supported

function

blocks”

on

page

95

v

“Example

1

of

using

the

Activity

Editor”

on

page

122

v

“Example

2

of

using

the

Activity

Editor”

on

page

126

v

“Working

in

Java

view”

on

page

135

Starting

the

Activity

Editor

You

launch

the

Activity

Editor

through

the

transformation

rule

column

of

the

Table

or

Diagram

tabs

of

Map

Designer

Express.

There

are

two

ways

to

access

information

in

this

transformation

rule

column:

v

Double-click

the

attribute’s

corresponding

cell

of

the

transformation

rule

column.

©

Copyright

IBM

Corp.

2003

87

v

Click

the

bitmap

icon

in

the

corresponding

cell

of

the

transformation

rule

column.

Transformation

code

is

generated

from

one

of

the

standard

transformations

that

Map

Designer

Express

provides

on

the

combo

box

of

the

transformation

rule

column.

When

you

double-click

the

attribute’s

transformation

rule

cell

or

click

the

mapping

rule

icon,

the

type

of

transformation

determines

what

Map

Designer

Express

displays:

v

For

the

Custom

transformation,

Map

Designer

Express

brings

up

the

Activity

Editor

on

the

transformation

code.

v

For

all

other

standard

transformations

(Join,

Set

Value,

Split,

and

Submap,

Cross-Reference),

Map

Designer

Express

displays

the

transformation’s

dialog.

Click

the

View

Code...

button

on

this

dialog

to

bring

up

the

Activity

Editor.

The

Activity

Editor

appears

with

the

attribute

name

in

the

title

bar.

You

can

open

multiple

instances

of

the

Activity

Editor

at

the

same

time.

Layout

of

the

Activity

Editor

The

Activity

Editor

has

two

main

views:

Graphical

view

and

Java

view.

Depending

on

the

nature

of

the

activity,

at

any

given

time,

only

one

view

is

visible.

Thus,

if

Map

Designer

Express

invokes

the

Activity

Editor

to

display

a

graphical

activity,

the

Activity

Editor

will

startup

with

the

Graphical

view.

If

you

choose

to

translate

this

graphical

activity

into

Java

code,

the

Java

view

will

display

in

place

of

the

Graphical

view.

Figure

44

on

page

92

and

Figure

68

on

page

136

show

the

layout

of

the

Graphical

and

Java

views,

respectively,

of

the

Activity

Editor.

Both

views

have

common

Window

elements,

as

described

in

Table

22..

Table

22.

Common

Window

elements

Window

element

Description

Title

Bar

Contains

the

name

of

the

application

(Activity

Editor),

application

icon,

and

the

main

activity’s

name.

Menu

Contains

the

primary

menus.

Tool

Bar

Contains

dockable

toolbars

with

shortcuts

to

various

functions

and

tools.

Document

Display

Area

Displays

the

representation

of

the

activity

definition.

It

is

organized

with

a

workbook

look.

Status

Bar

Displays

status

information

and

some

handy

shortcuts.

Using

the

Activity

Editor

functionality

You

can

access

the

Activity

Editor’s

functionality

using

any

of

the

following:

v

The

pull-down

menus

at

the

top

of

the

window

v

The

Context

menu

v

Keyboard

shortcuts

v

The

icons

in

the

toolbars

Main

menus

and

keyboard

shortcuts:

The

Activity

Editor

provides

the

following

pull-down

menus:

v

File

menu

88

Map

Development

Guide

v

Edit

menu

v

View

menu

v

Tools

menu

v

Help

menu

The

following

sections

describe

the

options

of

each

of

these

menus

and

their

associated

keyboard

shortcuts.

Functions

of

the

File

menu:

The

File

pull-down

menu

of

the

Activity

Editor

provides

the

following

options:

v

Save

[Ctrl+S]--Saves

the

activity

to

Map

Designer

Express.

v

Print

Setup...

[Ctrl+Shift+P]--Brings

up

the

Print

Setup

dialog

box

for

changing

the

printer

and

printing

options.

v

Print

Preview--Switches

the

editor

to

print

preview

mode.

v

Print...

[Ctrl+P]--Brings

up

the

Print

dialog

box

for

printing

the

current

activity.

v

Close

--Closes

the

Activity

Editor.

Functions

of

the

Edit

menu:

The

Edit

pull-down

menu

of

the

Activity

Editor

provides

the

following

options:

v

Cut

[Ctrl+X]--Deletes

the

selected

item

and

copies

it

to

the

clipboard.

v

Copy

[Ctrl+C]--Copies

the

selected

item

to

the

clipboard.

v

Paste

[Ctrl+P]--Pastes

the

object

in

the

clipboard

to

the

cursor

position

if

they

are

compatible.

v

Delete

[Del]--Deletes

the

selected

item.

v

Select

All

[Ctrl+A]--Selects

all

items.

v

Find...

[Crtl+F]--Finds

the

specific

text

in

the

editing

area.

v

Goto

Line...

[Ctrl+G]--Goes

to

a

specific

line.

Functions

of

the

View

menu:

The

View

pull-down

menu

of

the

Activity

Editor

provides

the

following

options:

v

Design

mode--Toggles

between

Design

mode

and

Quick

view

mode.

(Only

one

mode

is

enabled

at

a

single

time.)

v

Quick

view

mode--Toggles

between

Quick

view

mode

and

Design

mode.

(Only

one

mode

is

enabled

at

a

single

time.)

v

Go

To--A

submenu

that

provides

the

following

options:

–

Back

[Alt+Left

Arrow]--Goes

backward

in

the

navigation

history

in

Graphical

view.

–

Forward

[Alt+Right

Arrow]--Goes

forward

in

the

navigation

history

in

Graphical

view.

–

Up

One

Level--Shows

the

diagram

at

one

level

up.

–

Home

[Alt+Home]--Goes

to

the

top-level

diagram

in

Graphical

view.
v

Zoom

In

[Ctrl++]--Magnifies

content

in

the

editor.

v

Zoom

Out

[Ctrl+-]--Shrinks

content

in

the

editor.

v

Zoom

To...

[Crtl+M]--Displays

the

Zoom

dialog

box

for

a

zoom

factor.

v

Library

window--Toggles

the

Library

window

on

and

off.

v

Content

window--Toggles

the

Content

window

on

and

off.

v

Properties

window--Toggles

the

Properties

window

on

and

off.

v

Toolbars--A

submenu

that

provides

toolbars

(Standard,

Graphics,

and

Java)

that

toggle

on

and

off.

Chapter

5.

Customizing

a

map

89

v

Status

Bar--Toggles

the

status

bar

on

and

off.

v

Preferences...

{Ctrl+U]--Opens

the

Preferences

dialog

box

for

changing

the

default

behavior

of

the

editor.

Functions

of

the

Tools

menu:

The

Tools

pull-down

menu

of

the

Activity

Editor

provides

the

following

option:

v

Translate

[Ctrl+T]--Translates

the

current

activity

to

Java

code

and

brings

up

the

Java

view.

Functions

of

the

Help

menu:

The

Help

pull-down

menu

of

the

Activity

Editor

provides

the

following

options:

v

Help

Topics

[F1]--Opens

the

context-sensitive

Help

topics

v

Documentation--Opens

the

IBM

WebSphere

InterChange

Server

Express

documentation.

Context

menu:

The

Context

menu

provides

options

for

performing

many

tasks

on

the

editing

canvas.

To

access

the

Context

menu,

right-click

the

editing

canvas.

The

Context

menu

provides

the

following

options:

v

New

Constant--Creates

a

new

Constant

container

on

the

canvas.

v

Add

Label--Creates

a

new

label

component

on

the

canvas.

v

Add

Description--Creates

a

new

description

component

on

the

canvas.

v

Add

Comment--Creates

a

new

comment

component

on

the

canvas.

v

Add

To

do--Creates

a

new

component

for

entering

some

reminder

in

the

activity.

v

Add

To

My

Collection--Creates

a

new

group

in

the

Library

window

for

reuse.

Toolbar

elements:

The

toolbars

provide

direct

access

to

various

features

and

functions

of

the

Activity

Editor.

The

functions

of

the

toolbar

buttons

are

the

same

as

their

corresponding

menu

items.

The

Activity

Editor

supports

two

toolbars:

v

Standard

toolbar

v

Graphics

toolbar

Tip:

To

identify

the

function

of

each

toolbar

button,

roll

over

each

button

with

your

mouse

cursor.

Standard

toolbar:

Figure

41

shows

the

Standard

toolbar.

Table

23

provides

the

function

of

each

Standard

toolbar

button

(left

to

right)

and

the

corresponding

menu

command.

Table

23.

Functions

of

Standard

toolbar

buttons

Function

Corresponding

menu

command

Save

Activity

File-->Save

Print

Activity

File-->Print...

Cut

Edit-->Cut

Copy

Edit-->Copy

Figure

41.

Activity

Editor

Standard

toolbar

90

Map

Development

Guide

Table

23.

Functions

of

Standard

toolbar

buttons

(continued)

Function

Corresponding

menu

command

Paste

Edit-->Paste

Delete

Edit-->Delete

Help

Help-->Help

Topics

Graphics

toolbar:

Figure

42

shows

the

Graphics

toolbar.

Table

24

provides

the

function

of

each

Graphics

toolbar

button

(left

to

right)

and

the

corresponding

menu

command.

Table

24.

Functions

of

Graphics

toolbar

buttons

Function

Corresponding

menu

command

Back

View-->Go

To-->Back

Forward

View-->Go

To-->Forward

Up

One

Level

View-->Go

To-->Up

One

Level

Home

View-->Go

To-->Home

Zoom

In

View-->Zoom

In

Zoom

Out

View-->Zoom

Out

Status

bar

elements:

The

Activity

Editor

also

provides

a

Status

bar,

as

shown

in

Figure

43.

Table

25

describes

the

functionality

of

each

Status

bar

element,

left

to

right.

Table

25.

Functions

of

Status

bar

elements

Element

Function

Zoom:

100%

Edit

box

for

specifying

a

zooming

percentage

Ready

Status

message

10.9

Navigation

pane

showing

the

current

position

of

the

I-bar

in

the

Java

editor

>>

(Shown

in

Quick

view

mode)

<<

(Shown

in

Design

mode)

Toggle

between

Design

mode

and

quick

view

mode

Working

in

Graphical

view

If

Map

Designer

Express

opens

the

Activity

Editor

with

an

activity

definition

that

has

a

graphical

nature,

the

Activity

Editor

will

display

the

activity

definition

in

graphical

view

in

one

of

two

available

display

modes:

Design

mode

or

Quick

view

mode.

Figure

42.

Activity

Editor

Graphics

toolbar

Figure

43.

Activity

Editor

Status

bar

Chapter

5.

Customizing

a

map

91

v

Design

mode:

In

Design

mode,

the

Activity

Editor

resembles

a

regular

application--in

addition

to

the

editing

area,

it

contains

a

menu

bar,

toolbars,

and

other

control

bars

that

support

your

editing

needs

during

the

design

stage

of

the

activity

definition.

Figure

44

shows

the

Graphical

view

in

Design

mode.

This

view

contains

a

main

activity

editing

area

(the

activity

workbook

window)

and

three

supporting

windows,

as

follows:

–

Library

window---A

dockable

control

bar

containing

a

tree

view

of

the

available

function

blocks,

and

optionally,

the

named

groups.

The

function

blocks

are

arranged

in

folders

according

to

their

purpose,

and

you

can

expand

them

to

show

the

actual

function

blocks.

You

can

view

the

function

blocks

in

the

Library

window

under

their

corresponding

folder,

or

as

icons

in

the

Content

window.

Additionally,

the

Library

window

contains

folders

for

adding

system

elements

to

the

graphical

canvas

(System

folder),

for

customizing

the

library

(Library

folder),

for

grouping

components

(My

Collection

folder),

and

for

listing

global

variables

accessible

to

the

current

activity--typically,

the

source

and

destination

business

object,

and

the

global

variable

cwExecCtx

(Variables

folder).

–

Content

window--A

dockable

control

bar

containing

a

large

icon

list

of

the

available

function

blocks

under

the

currently

selected

folder

in

the

Library

window.

You

can

select

a

function

block

to

view

its

description

and

properties

in

the

Properties

window,

or

drag-and-drop

a

function

block

onto

the

editing

canvas

to

create

part

of

the

activity

flow.

–

Properties

window--A

dockable

control

bar

containing

the

properties

of

the

selected

component

in

a

gridlike

layout.

Different

components

may

have

different

properties.

Your

interaction

with

the

grid

depends

on

the

nature

of

the

individual

property.

Some

properties

may

be

editable;

some

may

be

read-only,

while

some

properties

may

present

a

drop-down

combo-box

for

your

selection.

In

each

case,

the

Properties

window

presents

the

property

with

appropriate

actions.
v

Quick

view

mode:

In

Quick

view

mode,

the

Activity

Editor

resembles

a

control

bar--with

only

the

editing

area

displayed;

all

other

supporting

windows,

the

menu

bar,

and

the

toolbars

are

hidden.

Figure

44.

Graphical

view

in

Design

mode

92

Map

Development

Guide

Figure

45

shows

the

Graphical

view

in

Quick

view

mode.

Initially,

when

an

activity

definition

that

has

a

graphical

nature

opens,

the

Activity

Editor

displays

the

top-level

view

of

the

definition

in

a

tabbed

window.

Inside

the

tab

window

is

the

editing

canvas,

which

is

also

known

as

the

activity

canvas

or

graphical

canvas.

Working

with

activity

definitions:

You

define

and

modify

activity

definitions

on

the

editing

canvas

using

the

canvas

components.

The

following

list

identifies

the

canvas

components

and

briefly

describes

how

to

use

them

to

define

and

modify

activity

definitions.

For

detailed

steps

for

defining

and

modifying

activity

definitions,

see

“Example

1

of

using

the

Activity

Editor”

on

page

122,

“Example

2

of

using

the

Activity

Editor”

on

page

126,

and

“Example

3

of

using

the

Activity

Editor”

on

page

133.

v

Function

blocks--define

the

behavior

of

an

activity.

You

drag

and

drop

them

from

the

Library

window

or

Content

window

onto

the

editing

canvas.

Each

function

block

has

a

set

of

predefined

inputs

and

outputs.

Result:

The

Activity

Editor

displays

a

little

icon

for

each

of

the

input

and

output

going

into

or

coming

out

of

the

block.

These

ports

serve

as

connecting

points

for

linking

between

the

function

block

and

other

components.

Outgoing

ports

can

connect

to

multiple

connection

links,

but

incoming

ports

can

only

connect

to

one

connection

link.

The

name

of

the

input

and

output

displays

beside

the

connection

ports.

You

can

choose

to

show

or

hide

these

port

names

using

the

option

in

the

Preference

dialog.

For

a

list

of

supported

functional

blocks,

organized

in

tables

according

to

category,

see

“Identifying

supported

function

blocks”

on

page

95.

Note:

In

addition

to

the

standard

function

blocks

that

Activity

Editor

provides,

you

can

import

your

own

Java

library

for

use

as

function

blocks

in

Activity

Editor.

Importing

custom

Jar

libraries

into

activity

settings

will

enable

any

public

methods

in

the

Jar

library

to

be

used

as

function

blocks

in

Activity

Editor.

For

more

information,

see

“Importing

Java

packages

to

Interchange

Server

Express”

on

page

136.

v

Connection

links--define

the

flow

of

activity

between

various

components

in

the

canvas.

Example:

To

specify

that

the

output

of

function

block

A

should

go

to

the

input

of

function

block

B,

click

and

hold

down

the

left

mouse

button

on

the

outgoing

Figure

45.

Graphical

view

in

Quick

view

mode

Chapter

5.

Customizing

a

map

93

port

of

function

block

A,

and

while

continuing

to

hold

down

the

left

mouse

button,

move

the

cursor

onto

the

incoming

port

of

function

block

B,

and

release

the

left

mouse

button.

This

will

create

a

connection

link

from

function

block

A’s

out-port

to

function

block

B’s

in-port.

If

function

block

B’s

in-port

is

already

connected

with

another

connection

link,

the

newer

connection

link

will

replace

the

existing

connection

link.

Graphically,

the

connection

link

will

appear

as

a

right-angled

line

between

components.

v

Label,

Description,

Comment,

and

To

Do

tags--identify

each

activity

or

subactivity

or

serve

as

some

reminder

in

the

activity:

–

To

start

editing

them,

single

click

around

the

center.

Result:

The

cursor

will

change

to

an

I-beam.

Type

the

text.

All

the

editing

components

will

wrap

the

line

if

the

line

is

longer

than

the

display

area.

If

you

want

to

start

a

new

line,

press

Enter.

–

To

resize

the

text

input

field,

hold

down

the

left

mouse

button

in

the

lower

right-hand

corner

of

the

tag.

Result:

The

cursor

will

change

to

the

resize

cursor.

Move

the

cursor

to

resize

the

editing

pad.

Restriction:

Each

of

these

editing

components

has

a

minimize

size,

so

the

components

cannot

be

resized

to

be

smaller

than

a

certain

size.

Figure

46

shows

resizing

a

label

tag

and

entering

multiple

lines

of

text.

Label

line 1
line 2

–

To

move

the

tag

around

the

canvas,

click

the

edge

of

the

component

to

drag-and-drop

it.
v

New

Constant

icon--defines

a

constant

value

that

you

set

and

use

as

input

to

function

blocks

or

ports.

When

you

drag-and-drop

the

New

Constant

icon

from

the

Library

window

or

Content

window

onto

the

editing

canvas,

the

Activity

Editor

displays

a

Constant

icon

as

the

container

for

the

constant

value.

A

text

edit

box

displays

on

top

of

the

icon

for

you

to

enter

the

value

of

the

Constant.

To

revise

this

value,

double-click

the

Constant

icon

and

enter

the

new

value.

Constants

contain

one

outgoing

port.

Note:

The

Constant

is

the

only

editing

component

that

accepts

only

a

single

line.

This

is

because

the

constant

will

be

translated

to

a

Java

code

string,

and

the

system

does

not

know

how

to

translate

multi-line

constant

input

to

a

Java

code

string.

If

multi-line

input

is

required,

use

the

″\n″

value

to

separate

between

lines

in

the

Constant.

Example:

The

value

″line1\nline2″

will

tell

the

system

to

output

the

text

in

two

lines.

Grouping

components:

Once

you

have

dragged-and-dropped

components

onto

the

canvas

to

define

the

desired

activity

flow,

you

can

select

and

save

the

whole

or

part

of

this

activity

flow

as

a

named

group.

Then

later

on,

you

can

reuse

this

Figure

46.

Resizing

a

label

and

entering

multiple

lines

of

text

94

Map

Development

Guide

named

group

in

another

activity

definition

just

like

a

regular

function

block.

The

following

procedure

describes

the

steps

to

take.

Before

you

begin:

You

need

to

enable

″Show

child

functions

in

Library

window″

in

the

Preference

dialog

to

display

the

added

group.

Perform

the

following

steps:

1.

Select

one

or

more

graphical

components

in

the

canvas.

2.

Right-click

the

canvas

to

open

the

Context

menu

and

select

Add

to

My

Collection.

3.

In

the

dialog

that

pops

up,

enter

a

name,

a

description,

and

select

an

icon

to

represent

this

group.

Result:

The

added

group

will

appear

in

the

Library

window

under

My

Collection.

Identifying

supported

function

blocks

The

supported

function

blocks

are

organized

into

the

following

categories:

v

General/APIs/Business

Object

Array

v

General/APIs/Business

Object/Array

v

General/APIs/Business

Object/Constants

v

General/APIs/Business

Object

v

General/APIs/Database

Connection

v

General/APIs/Identity

Relationship

v

General/APIs/Maps/Constants

v

General/APIs/Maps/Exception

v

General/APIs/Maps

v

General/APIs/Participant/Array

v

General/APIs/Participant/Constants

v

General/APIs/Participant

v

General/APIs/Relationship

v

General/Date

v

General/Date/Formats

v

General/Logging

and

Tracing

v

General/Logging

and

Tracing/Log

Error

v

General/Logging

and

Tracing/Log

Information

v

General/Logging

and

Tracing/Log

Warning

v

General/Logging

and

Tracing/Trace

v

General/Mapping

v

General/Math

v

General/Properties

v

General/Relationship

v

General/String

v

General/Utilities

v

General/Utilities/Vector

The

following

tables

identify

the

function

blocks

in

each

category

and

the

acceptable

values

for

their

inputs

and

outputs.

Chapter

5.

Customizing

a

map

95

Table

26.

General/APIs/Business

Object

Array

Name

Description

Inputs

and

outputs

with

acceptable

values

Add

Element

Adds

a

business

object

to

this

business

object

API:

BusObjArray.addElement()

Inputs:

v

business

object

array--BusObjArray

v

element--BusObj

Duplicate

Creates

a

business

object

array

exactly

like

the

original

one.

API:

BusObjArray.duplicate()

Inputs:

original--BusObjArray

Outputs:

duplicate--BusObjArray

Equals

Compares

business

object

array

1’s

and

business

object

array

2’s

values,

to

determine

whether

they

are

equal.

API:

BusObjArray.equals()

Inputs:

v

array

1--BusObjArray

v

array

2--BusObjArray

Outputs:

equal?--

boolean

Get

Element

At

Retrieves

a

single

business

object

by

specifying

its

position

in

the

business

object

array.

API:

BusObjArray.elementAt()

Inputs:

v

business

object

array--BusObjArray

v

index--int

Outputs:

element--BusObj

Get

Elements

Retrieves

the

contents

of

this

business

object

array.

API:

BusObjArray.getElements()

Inputs:

business

object

array--BusObjArray

Outputs:

element--BusObj[]

Get

Last

Index

Retrieves

the

last

available

index

from

a

business

object

array.

API:

BusObjArray.getLast

Index()

Inputs:

business

object

array--BusObjArray

Outputs:

last

index--int

Is

Business

Object

Array

Tests

whether

value

is

a

business

objet

array

(BusObjArray).

Inputs:

value--Object

Outputs:

result--boolean

Max

attribute

value

Retrieves

the

maximum

values

for

the

specified

attribute

among

all

elements

in

this

business

object

array.

API:

BusObjArray.max()

Inputs:

v

business

object

array--BusObjArray

v

attribute--String

Outputs:

max--String

Min

attribute

value

Retrieves

the

minimum

value

for

the

specified

attribute

among

all

elements

in

this

business

object

array.

API:

BusObjArray.min()

Inputs:

v

business

object

array--BusObjArray

v

attribute--String

Outputs:

min--String

Remove

All

elements

Removes

all

elements

fro

the

business

object

array.

API:

BusObjArray.removeAllElements()

Inputs:

business

object

array--BusObjArray

Remove

Element

Removes

a

business

object

element

from

a

business

object

array.

API:

BusObjArray.removeElement()

Inputs:

v

business

object

array--BusObjArray

v

element--BusObj

Remove

Element

At

Removes

an

element

at

a

particular

position

in

this

business

object

array.

API:

BusObjArray.removeElementAt()

Inputs:

v

business

object

array--BusObjArray

v

index--int

96

Map

Development

Guide

Table

26.

General/APIs/Business

Object

Array

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Set

Element

At

Sets

the

value

of

a

business

object

in

the

business

object

array.

API:

BusObjArray.setElementAt()

Inputs:

v

business

object

array--BusObjArray

v

index--int

v

element--BusObj

Size

Gets

the

number

of

elements

i

this

business

object

array.

API:

BusObjArray.size()

Inputs:

business

object

array--BusObjArray

Outputs:

size--int

Sum

Adds

the

values

of

the

specified

attribute

for

all

business

objects

in

this

business

object

array.

API:

BusObjArray.sum()

Inputs:

v

business

object

array--BusObjArray

v

attribute--String

Outputs:

sum--double

Swap

Reverses

the

positions

of

two

business

objects

in

this

business

object

array.

API:

BusObjArray.swap()

Inputs:

v

business

object

array--BusObjArray

v

index

1--int

v

index

2--int

To

String

Retrieves

the

values

in

this

business

object

array

as

a

single

string.

API:

BusObjArray.to

String()

Inputs:

business

object

array--BusObjArray

Outputs:

string--String

Table

27.

General/APIs/Business

Object/Array

Name

Description

Inputs

and

outputs

with

acceptable

values

Get

BusObj

At

Retrieves

the

element

at

the

specified

index

in

the

business

object

array.

Inputs:

v

array--BusObj[]

v

index--int

Outputs:

business

object--BusObj

New

Business

Object

Array

Creates

a

new

business

object

array.

Inputs:

size--int

Outputs:

array--BusObj[]

Set

BusObj

At

Sets

the

element

at

the

specified

index

in

the

business

object

array.

Inputs:

v

array--BusObj[]

v

index--int

v

business

object--BusObj

Size

Retrieves

the

size

of

the

business

object

array

Inputs:

array--BusObj[]

Outputs:

size--int

Table

28.

General/APIs/Business

Object/Constants

Name

Description

Inputs

and

outputs

with

acceptable

values

Verb:

Create

Business

object

verb

″Create″.

Outputs:

Create--String

Verb:

Delete

Business

object

verb

″Delete″.

Outputs:

Delete--String

Verb:

Retrieve

Business

object

verb

″Retrieve″.

Outputs:

Retrieve--String

Verb:

Update

Business

object

verb

″Update″.

Outputs:

Update--String

Chapter

5.

Customizing

a

map

97

Table

29.

General/APIs/Business

Object

Name

Description

Inputs

and

outputs

with

acceptable

values

Copy

Copies

all

attribute

values

from

the

input

business

object.

API:

BusObj.copy()

Inputs:

v

copy

to--BusObj

v

copy

from--BusObj

Duplicate

Creates

a

business

object

exactly

like

the

original

one.

API:

BusObj.duplicate()

Inputs:original--BusObj

Outputs:

duplicate--BusObj

Equal

Keys

Compares

business

object

1’s

and

business

object

2’s

values,

to

determine

whether

they

are

equal.

API:

BusObj.equalKeys()

Inputs:

v

business

object

1--BusObj

v

business

object

2--BusObj

Outputs:

key

values

equal?--

boolean

Equals

Compares

business

object

1’s

and

business

object

2’s

values,

including

child

business

objects,

to

determine

whether

they

are

equal.

API:

BusObj.equals()

Inputs:

v

business

object

1--BusObj

v

business

object

2--BusObj

Outputs:

equal?--

boolean

Exists

Checks

for

the

existence

of

a

business

object

attribute

with

a

specified

name.

API:

BusObj.exists()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

exists?--

boolean

Get

Boolean

Retrieves

the

value

of

a

single

attribute,

as

a

boolean,

from

a

business

object.

API:

BusObj.getBoolean()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--

boolean

Get

Business

Object

Retrieves

the

value

of

a

single

attribute,

as

a

BusObj,

from

a

business

object.

API:

BusObj.getBusObj()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--BusObj

Get

Business

Object

Array

Retrieves

the

value

of

a

single

attribute,

as

a

BusObj

Array,

from

a

business

object.

API:

BusObj.getBusObjArray()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--BusObjArray

Get

Business

Object

Type

Retrieves

the

name

of

the

business

object

definition

on

which

this

business

object

was

based.

API:

BusObj.getType()

Inputs:

business

object--BusObj

Outputs:

type--String

Get

Double

Retrieves

the

value

of

a

single

attribute,

as

a

double,

from

a

business

object.

API:

BusObj.getDouble()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--double

98

Map

Development

Guide

Table

29.

General/APIs/Business

Object

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Get

Float

Retrieves

the

value

of

a

single

attribute,

as

a

float,

from

a

business

object.

API:

BusObj.getFloat()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--float

Get

Int

Retrieves

the

value

of

a

single

attribute,

as

an

integer,

from

a

business

object.

API:

BusObj.getInt()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--int

Get

Long

Retrieves

the

value

of

a

single

attribute,

as

a

long,

from

a

business

object.

API:

BusObj.getLong()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--long

Get

Long

Text

Retrieves

the

value

of

a

single

attribute,

as

a

long

text,

from

a

business

object.

API:

BusObj.getLongText()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--String

Get

Object

Retrieves

the

value

of

a

single

attribute,

as

an

object,

from

a

business

object.

API:

BusObj.get()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--Object

Get

String

Retrieves

the

value

of

a

single

attribute,

as

a

string,

from

a

business

object.

API:

BusObj.getString()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

value--String

Get

Verb

Retrieves

this

business

object’s

verb.

API:

BusObj.getVerb()

Inputs:

business

object--BusObj

Outputs:

verb--String

Is

Blank

Finds

out

whether

the

value

of

an

attribute

is

set

to

a

zero-length

string.

API:

BusObj.isBlank()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

blank?--boolean

Is

Business

Object

Tests

whether

the

value

is

a

business

object

(BusObj).

Inputs:

value--Object

Outputs:

result--boolean

Is

Key

Finds

out

whether

a

business

object’s

attribute

is

defined

as

a

key

attribute.

API:

BusObj.isKey()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

key?--boolean

Chapter

5.

Customizing

a

map

99

Table

29.

General/APIs/Business

Object

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Is

Null

Finds

out

whether

the

value

of

a

business

object’s

attribute

is

null.

API:

BusObj.isNull()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

null?--boolean

Is

Required

Finds

out

whether

a

business

object’s

attribute

is

defined

as

a

required

attribute..

API:

BusObj.isRequired()

Inputs:

v

business

object--BusObj

v

attribute--String

Outputs:

required?--boolean

Iterate

Children

Iterates

through

the

child

business

object

array.

Inputs:

v

business

object--BusObj

v

attribute--String

v

current

index--int

v

current

element--BusObj

Key

to

String

Retrieves

the

values

of

a

business

object’s

primary

key

attributes

as

a

string.

API:

BusObj.keysToString()

Inputs:business

object--BusObj

Outputs:

key

string--String

New

Business

Object

Creates

a

new

business

object

instance

(BusObj)

of

the

specified

type.

API:

Collaboration.BusObj()

Inputs:

type--String

Outputs:

business

object--BusObj

Set

Content

Sets

the

contents

of

this

business

object

to

another

business

object.

The

two

business

objects

will

own

the

content

together.

Changes

made

to

one

business

object

will

be

reflected

in

the

other

business

object.

API:

BusObj.setContent()

Inputs:

v

business

object--BusObj

v

content--BusObj

Set

Default

Attribute

Values

Sets

all

attributes

to

their

default

values.

API:

BusObj.setDefaultAttrValues()

Inputs:business

object--BusObj

Set

Keys

Sets

the

values

of

the

″to″

business

object’s

key

attributes

to

the

values

of

the

key

attributes

in

″from″

business

object.

API:

BusObj.setKeys()

Inputs:

v

from

business

object--BusObj

v

to

business

object--BusObj

Set

Value

with

Create

Sets

the

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type,

creating

an

object

for

the

value

if

one

does

not

already

exist.

API:

BusObj.setWithCreate()

Inputs:

v

business

object--BusObj

v

attribute--String

v

value--BusObj,

BusObjArray,

Object

Set

Verb

Sets

the

verb

of

a

business

object.

API:

BusObj.setVerb()

Inputs:

v

business

object--BusObj

v

verb--String

Set

Verb

with

Create

Sets

the

verb

of

a

child

business

object,

creating

the

child

business

object

if

one

does

not

already

exist.

API:

BusObj.setVerbWithCreate()

Inputs:

v

business

object--BusObj

v

attribute--String

v

verb--String

100

Map

Development

Guide

Table

29.

General/APIs/Business

Object

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Set

Value

Sets

a

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type.

API:

BusObj.set()

Inputs:

v

business

object--BusObj

v

attribute--String

v

value--boolean,

double,

float,

int,

long,

Object,

String,

BusObj

Shallow

Equals

Compares

business

object

1

and

business

object

2’s

values,

excluding

child

business

objects,

to

determine

whether

they

are

equal.

API:

BusObj.equalsShallow()

Inputs:

v

business

object

1--BusObj

v

business

object

2--BusObj

Outputs:

equal?--boolean

To

String

Gets

the

values

of

all

attributes

in

a

business

object

as

string.

API:

BusObj.toString()

Inputs:

business

object--BusObj

Outputs:

string--String

Valid

Data

Checks

whether

the

specified

value

is

a

valid

type

for

a

specified

attribute.

API:

BusObj.validData()

Inputs:

v

business

object--BusObj

v

attribute--String

v

value--Object,

BusObj,

BusObjArray,

String,

long,

int,

double,

float,

boolean

Outputs:

valid?--boolean

Table

30.

General/APIs/Database

connection

Name

Description

Inputs

and

outputs

with

acceptable

values

Begin

Transaction

Begins

an

explicit

transaction

for

the

current

connection.

API:

CwDBConnection.beginTransaction()

Inputs:

database

connection--
CwDBConnection

Commit

Commits

the

active

transaction

associated

with

the

current

connection.

API:

CwDBConnection.commit()

Inputs:

database

connection--
CwDBConnection

Execute

Prepared

SQL

Executes

a

prepared

SQL

Query

by

specifying

its

syntax.

API:

CwDBConnection.executePreparedSQL()

Inputs:

v

database

connection--CwDBConnection

v

query--String

Outputs:

equal?--

boolean

Execute

Prepared

SQL

with

Parameter

Executes

a

prepared

SQL

query

by

specifying

its

syntax

with

the

specified

parameters.

API:CwDBConnection.executePreparedSQL()

Inputs:

v

database

connection--CwDBConnection

v

query--String

v

parameters--java.util.Vector

Execute

SQL

Executes

a

static

SQL

query

by

specifying

its

syntax.

API:

CwDBConnection.executeSQL()

Inputs:

v

database

connection--CwDBConnection

v

query--String

Execute

SQL

with

Parameter

Executes

a

static

SQL

query

by

specifying

its

syntax

with

the

specified

parameters..

API:

CwDBConnection.executeSQL()

Inputs:

v

database

connection--CwDBConnection

v

query--String

v

parameters--java.util.Vector

Chapter

5.

Customizing

a

map

101

Table

30.

General/APIs/Database

connection

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Execute

Stored

Procedure

Executes

an

SQL

stored

procedure

by

specifying

its

name

and

parameter

array.

API:

CwDBConnection.executeStored

Procedure()

Inputs:

v

database

connection--CwDBConnection

v

query--String

v

parameters--java.util.Vector

Get

Database

Connection

Establishes

a

connection

to

a

database

and

returns

a

CwDBConnection()

object.

API:

BaseDLM.getDBConnection()

or

BaseCollaboration.getDBConnection()

Inputs:

connection

pool

name--String

Outputs:

database

connection--
CwDBConnection

Get

Database

Connection

with

Transaction

Establishes

a

connection

to

a

database

and

returns

a

CwDBConnection()

object.

API:

BaseDLM.getDBConnection()

or

BaseCollaboration.getDBConnection()

Inputs:

v

connection

pool

name--String

v

implicit

transaction--boolean

Outputs:database

connection--
CwDBConnection

Get

Next

Row

Gets

the

next

row

from

the

query

result.

API:

CwDBConnection.nextRow()

Inputs:

database

connection--
CwDBConnection

Outputs:

row--java.util.Vector

Get

Update

Count

Gets

the

number

of

rows

affected

by

the

last

write

operation

to

the

database.

API:

CwDBConnection.getUpdateCount()

Inputs:

database

connection--
CwDBConnection

Outputs:

count--int

Has

More

Rows

Determines

whether

the

query

result

has

more

rows

to

process.

API:

CwDBConnection.hasMoreRows()

Inputs:

database

connection--
CwDBConnection

Outputs:

more

rows?--boolean

In

Transaction

Determines

whether

a

transaction

is

in

progress

in

the

current

connection.

API:

CwDBConnection.inTransaction()

Inputs:

database

connection--
CwDBConnection

Outputs:

in

transaction?--boolean

Is

Active

Determines

whether

the

current

connectio

is

active.

API:

CwDBConnection.isActive()

Inputs:

database

connection--
CwDBConnection

Outputs:

is

active?--boolean

Release

Releases

use

of

the

current

connection,

returning

it

to

its

connection

pool.

API:

CwDBConnection.release()

Inputs:

database

connection--
CwDBConnection

Roll

Back

Rolls

back

the

active

transaction

associated

with

the

current

connection.

API:

CwDBConnection.rollback()

Inputs:

database

connection--
CwDBConnection

102

Map

Development

Guide

Table

31.

General/APIs/Identity

Relationship

Name

Description

Inputs

and

outputs

with

acceptable

values

Add

My

Children

Adds

the

specified

child

instances

to

a

parent/child

relationship

for

an

identity

relationship.

API:

IdentityRelationship.addMyChildren()

Inputs:

v

map--BaseDLM

v

parentChildRelDefName--String

v

parentParticipantDefName--String

v

parentBusObj--BusObj

v

childParticipantDefName--String

v

childBusObjList--BusObj,BusObjArray

Delete

All

My

Chidren

Removes

all

child

instances

to

a

parent/child

relationship

for

an

identity

relationship

belonging

to

the

specified

parent.

API:

IdentityRelationship.deleteMyChildren()

Inputs:

v

map--BaseDLM

v

parentChildRelDefName--String

v

parentParticipantDefName--String

v

parentBusObj--BusObj

v

childParticipantDefName--String

Delete

My

Children

Removes

the

specified

child

instances

to

a

parent/child

relationship

for

an

identity

relationship

belonging

to

the

specified

parent.

API:

IdentityRelationship.deleteMyChildren()

Inputs:

v

map--BaseDLM

v

parentChildRelDefName--String

v

parentParticipantDefName--String

v

parentBusObj--BusObj

v

childParticipantDefName--String

v

childBusObjList--BusObj,BusObjArray

Foreign

Key

Cross-Reference

Performs

a

lookup

in

the

relationship

table

in

the

relationship

database

based

on

the

foreign

key

of

the

source

business

object,

adding

a

new

relationship

instance

in

the

foreign

relationship

table

if

the

foreign

key

does

not

exist.

API:

IdentityRelationship.foreignKeyXref()

Inputs:

v

map--BaseDLM

v

RelDefName--String

v

appParticipantDefName--String

v

genParticipantDefName--String

v

appSpecificBusObj--BusObj

v

appForeignAttr--String

v

genericBusObj--BusObj

v

genForeignAttr--String

Foreign

Key

Lookup

Performs

a

lookup

in

a

foreign

relationship

table

based

on

the

foreign

key

of

the

source

business

object,

failing

to

find

a

relationship

instance

if

the

foreign

key

does

not

exist

in

the

foreign

relationship

table..

API:

IdentityRelationship.foreignKeyLookup()

Inputs:

v

map--BaseDLM

v

relDefName--String

v

appParticipantDefName--String

v

appSpecificBusObj--BusObj

v

appForeignAttr--String

v

genericBusObj--BusObj

v

genForeignAttr--String

Chapter

5.

Customizing

a

map

103

Table

31.

General/APIs/Identity

Relationship

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Maintain

child

Verb

Sets

the

child

business

object

verb

based

on

the

map

execution

context

and

the

verb

of

the

parent

business

object.

API:

IdentityRelationship.maintainChildVerb()

Inputs:

v

map--BaseDLM

v

relDefName--String

v

appSpecificParticipantName--String

v

genericParticipantName--String

v

appSpecificObj--BusObj

v

appSpecificChildObj--String

v

genericObj--BusObj

v

genericChildObj--String

v

to_Retrieve--boolean

v

Is_Composite--boolean

Maintain

Composite

Relationship

Maintains

a

composite

identity

relationship

from

within

the

parent

map.

API:

IdentityRelationship.maintain

CompositeRelationship()

Inputs:

v

map--BaseDLM

v

relDefName--String

v

participantDefName--String

v

appSpecificBusObj--BusObj

v

genericBusObjList--BusObj,

BusObjArray

Maintain

Simple

Identity

Relationship

Maintains

a

simple

identity

relationship

from

within

either

a

parent

or

child

map.

API:

IdentityRelationship.maintain

Simple

Identity

Relationship()

Inputs:

v

map--BaseDLM

v

relDefName--String

v

participantDefName--String

v

appSpecificBusObj--BusObj

v

genericBusObj--BusObj

Update

My

Children

Adds

and

deletes

child

instances

in

a

specified

parent/child

relationship

of

an

identity

relationship

as

necessary.

API:

IdentityRelationship.updateMyChildren()

Inputs:

v

map--BaseDLM

v

parentChildRelDefName--String

v

parentParticipantDef--String

v

parentBusObj--BusObj

v

childParticipantDef--String

v

childAttrName--String

v

childIdentityRelDefName--String

v

childIdentityParticipantDefName--String

Table

32.

General/APIs/Maps/Constants

Name

Description

Inputs

and

outputs

with

acceptable

values

Calling

Context:

ACCESS

_REQUEST

An

access

client

has

sent

an

access

request

from

an

external

application

to

InterChange

Server

Express.

API:

MapExeContext.ACCESS_REQUEST

Outputs:

ACCESS_REQUEST--String

Calling

Context:

ACCESS

_RESPONSE

The

source

business

object

is

sent

back

to

the

source

access

client

in

response

to

a

subscription

delivery

request.

API:

MapExeContext.ACCESS_RESPONSE

Outputs:

ACCESS_RESPONSE--String

104

Map

Development

Guide

Table

32.

General/APIs/Maps/Constants

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Calling

Context:

EVENT

_DELIVERY

A

connector

has

sent

an

event

from

the

application

to

InterChange

Server

Express

(event-triggered

flow).

API:

MapExeContext.EVENT_DELIVERY

Outputs:

EVENT_DELIVERY--String

Calling

Context:

SERVICE_CALL

_FAILURE

A

collaboration’s

service

call

request

has

failed.

As

such,

corrective

action

might

need

to

be

performed.

API:

MapExeContext.SERVICE_CALL_FAILURE

Outputs:

SERVICE_CALL_FAILURE

--String

Calling

Context:

SERVICE_CALL

_REQUEST

A

collaboration

is

sending

a

business

object

down

to

the

application

through

a

service

call

request.

API:

MapExeContext.SERVICE_CALL_REQUEST

Outputs:

SERVICE_CALL_REQUEST

--String

Calling

Context:

SERVICE_CALL

_RESPONSE

A

business

object

was

received

from

the

application

as

a

result

of

a

successful

response

to

a

collaboration

service

call

request.

API:

MapExeContext.SERVICE_CALL

_RESPONSE

Outputs:

SERVICE_CALL_RESPONSE

--String

Table

33.

General/APIs/Maps/Exception

Name

Description

Inputs

and

outputs

with

acceptable

values

Raise

Map

Exception

Raises

a

map

run-time

exception.

API:

raiseException()

Inputs:

v

map--BaseDLM

v

exception

type--String

v

message--String

Raise

Map

Exception

1

Raises

a

map

run-time

exception.

API:

raiseException()

Inputs:

v

map--BaseDLM

v

exception

type--String

v

message--String

v

parameter

1--String

Raise

Map

Exception

2

Raises

a

map

run-time

exception.

API:

raiseException()

Inputs:

v

map--BaseDLM

v

exception

type--String

v

message--String

v

parameter

1--String

v

parameter

2--String

Raise

Map

Exception

3

Raises

a

map

run-time

exception.

API:

raiseException()

Inputs:

v

map--BaseDLM

v

exception

type--String

v

message--String

v

parameter

1--String

v

parameter

2--String

v

parameter

3--String

Chapter

5.

Customizing

a

map

105

Table

33.

General/APIs/Maps/Exception

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Raise

Map

Exception

4

Raises

a

map

run-time

exception.

API:

raiseException()

Inputs:

v

map--BaseDLM

v

exception

type--String

v

message--String

v

parameter

1--String

v

parameter

2--String

v

parameter

3--String

v

parameter

4--String

Raise

Map

Exception

5

Raises

a

map

run-time

exception.

API:

raiseException()

Inputs:

v

map--BaseDLM

v

exception

type--String

v

message--String

v

parameter

1--String

v

parameter

2--String

v

parameter

3--String

v

parameter

4--String

v

parameter

5--String

Raise

Map

RunTimeEntity

Exception

Raises

a

map

run-time

exception.

API:

raiseException()

Inputs:

v

map--BaseDLM

v

exception--RunTimeEntityException

Table

34.

General/APIs/Maps

Name

Description

Inputs

and

outputs

with

acceptable

values

Get

Adapter

Name

Retrieves

the

adapter

name

associated

with

the

current

map

instance..

API:

MapExeContext.getConnName()

Inputs:

map--BaseDLM

Outputs:

adapter

name--String

Get

Calling

Context

Retrieves

the

calling

context

associated

with

the

current

map

instance..

API:

MapExeContext.getInitiator()

Inputs:

map--BaseDLM

Outputs:

calling

context--String

Get

Original

Request

Business

Object

Retrieves

the

original-request

business

object

associated

with

the

current

map

instance..

API:

MapExeContext.getOriginalRequestBO()

Inputs:

map--BaseDLM

Outputs:

original

business

object--BusObj

Table

35.

General/APIs/Participant/Array

Name

Description

Inputs

and

outputs

with

acceptable

values

Get

Participant

At

Retrieves

the

element

at

the

specified

index

in

the

participant

array.

Inputs:

v

array--
Server.RelationshipServices.Participant[]

v

index--int

Outputs:

participant--
Server.RelationshipServices.Participant

106

Map

Development

Guide

Table

35.

General/APIs/Participant/Array

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

New

Participant

Array

Creates

a

new

participant

array

with

the

specified

size.

Inputs:

size--int

Outputs:

array--
Server.RelationshipServices.Participant[]

Set

Participant

At

Sets

the

element

at

the

specified

index

in

the

participant

array.

Inputs:

v

array--
Server.RelationshipServices.Participant[]

v

index--int

v

participant--
Server.RelationshipServices.Participant

Size

Retrieves

the

size

of

the

participant

array.

Inputs:

array--
Server.RelationshipServices.Participant[]

Outputs:

size--int

Table

36.

General/APIs/Participant/Constants

Name

Description

Inputs

and

outputs

with

acceptable

values

Participant:

INVALID

_INSTANCE_ID

Participant

constant

indicating

the

participant

ID

is

invalid..

API:

Participant.INVALID_INSTANCE_ID

Outputs:

INVALID_INSTANCE_ID--int

Table

37.

General/APIs/Participant

Name

Description

Inputs

and

outputs

with

acceptable

values

Get

Boolean

Data

Retrieves

the

data

associated

with

the

Participant

object.

API:

Participant.getBoolean()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

data--boolean

Get

Business

Object

Data

Retrieves

the

data

associated

with

the

Participant

object.

API:

Participant.getBusObj()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

data--BusObj

Get

Double

Data

Retrieves

the

data

associated

with

the

Participant

object.

API:

Participant.getDouble()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

data--double

Get

Float

Data

Retrieves

the

data

associated

with

the

Participant

object.

API:

Participant.getFloat()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

data--float

Get

Instance

ID

Retrieves

the

relationship

instance

ID

of

the

relationship

in

which

the

participant

instance

is

participating.

API:

Participant.getInstanceId()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

instance

ID--int

Get

Int

Data

Retrieves

the

data

associated

with

the

Participant

object.

API:

Participant.getInt()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

data--int

Chapter

5.

Customizing

a

map

107

Table

37.

General/APIs/Participant

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Get

Long

Data

Retrieves

the

data

associated

with

the

Participant

object.

API:

Participant.getLong()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

data--long

Get

Participant

Name

Retrieves

the

participant

definition

name

from

which

the

participant

instance

is

created.

API:

Participant.getParticipantDefinition()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

name--String

Get

Relationship

Name

Retrieves

the

name

of

the

relationship

definition

in

which

the

participant

instance

is

participating.

API:

Participant.getRelationshipDefinition()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

name--String

Get

String

Data

Retrieves

the

data

associated

with

the

Participant

object.

API:

Participant.getString()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

data--String

New

Participant

Creates

a

new

participant

instance

with

no

relationship

instance.

API:

Participant()

Inputs:

v

relDefName--String

v

partDefName--String

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Output:

participant--
Server.RelationshipServices.Participant

New

Participant

in

Relationship

Creates

a

new

participant

instance

for

adding

to

an

existing

participant

in

a

relationship

instance.

API:

RelationshipServices.Participant()

Inputs:

v

relDefName--String

v

partDefName--String

v

instanceId--int

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Output:

participant--
Server.RelationshipServices.Participant

Set

Data

Sets

the

data

associated

with

the

participant

instance.

API:

Participant.set()

Inputs:

v

participant--
Server.RelationshipServices.Participant

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Set

Instance

ID

Sets

the

instance

ID

of

the

relationship

in

which

the

participant

instance

is

participating.

API:

Participant.setInstanceId()

Inputs:

v

participant--
Server.RelationshipServices.Participant

v

id--int

Set

Participant

Defnition

Sets

the

participant

definition

name

from

which

the

participant

instance

is

created.

API:

Participant.setParticipantDefinition()

Inputs:

v

participant--
Server.RelationshipServices.Participant

v

partDefName--String

Set

Relationship

Definition

Sets

the

relationship

definition

in

which

the

participant

instance

is

participating.

API:

Participant.setRelationshipDefinition()

Inputs:

v

participant--
Server.RelationshipServices.Participant

v

relDefName--String

108

Map

Development

Guide

Table

38.

General/APIs/Relationship

Name

Description

Inputs

and

outputs

with

acceptable

values

Add

Participant

Adds

an

existing

participant

object

to

a

relationship

instance.

API:

Relationship.addParticipant()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

result

instance

ID--int

Add

Participant

Data

Adds

a

new

participant

to

an

existing

relationship

instance.

API:

Relationship.addParticipant()

Inputs:

v

relDefName--String

v

partDefName--String

v

instanceId--int

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Outputs:

result

instance

ID--int

Add

Participant

Data

to

new

Relationship

Adds

a

participant

to

a

new

relationship

instance.

API:

Relationship.addParticipant()

Inputs:

v

relDefName--String

v

partDefName--String

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Outputs:

result

instance

ID--int

Create

Relationship

Creates

a

new

relationship

instance.

API:

Relationship.create()

Inputs:

v

relDefName--String

v

partDefName--String

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Outputs:

instance

ID--int

Create

Relationship

with

Participant

Creates

a

new

relationship

instance.

API:

Relationship.create()

Inputs:

participant--
Server.RelationshipServices.Participant

Outputs:

instance

ID--int

Deactivate

Participant

Deactivates

a

participant

from

one

or

more

relationship

instances.

API:

Relationship.deactivate

Participant()

Inputs:

participant--
Server.RelationshipServices.Participant

Deactivate

Participant

By

Data

Deactivates

a

participant

from

one

or

more

relationship

instances.

API:

Relationship.deactivate

Participant()

Inputs:

v

relDefName--String

v

partDefName--String

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Deactivate

Participant

by

Instance

Deactivates

a

participant

from

a

specific

relationship

instance.

API:

Relationship.deactivate

ParticipantByInstance()

Inputs:

v

relDefName--String

v

partDefName--String

v

instanceId--int

Chapter

5.

Customizing

a

map

109

Table

38.

General/APIs/Relationship

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Deactivate

Participant

By

Instance

Data

Deactivates

a

participant

from

a

specific

relationship

instance

with

the

data

associated

with

the

participant.

API:

Relationship.deactivate

ParticipantByInstance()

Inputs:

v

relDefName--String

v

partDefName--String

v

instanceId--int

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Delete

Participant

Removes

a

participant

instance

from

one

or

more

relationship

instances.

API:

Relationship.deleteParticipant()

Inputs:

participant--
Server.RelationshipServices.Participant

Delete

Participant

By

Instance

Removes

a

participant

from

a

specific

relationship

instance.

API:

Relationship.deleteParticipanByInstancet()

Inputs:

v

relDefName--String

v

partDefName--String

v

instanceId--int

Delete

Participant

By

Instance

Data

Removes

a

participant

from

a

specific

relationship

instance

with

the

dta

associated

with

the

participant.

API:

Relationship.deleteParticipanByInstancet()

Inputs:

v

relDefName--String

v

partDefName--String

v

instanceId--int

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Delete

Participant

with

Data

Removes

a

participant

instance

from

one

or

more

relationship

instances.

API:

Relationship.deleteParticipant()

Inputs:

v

relDefName--String

v

partDefName--String

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Get

Next

Instance

ID

Returns

the

next

available

relationship

instance

ID

for

a

relationship,

based

on

the

relationship

definition

name.

API:

Relationship.getNewID()

Inputs:

relDefName--String

Outputs:

ID--int

Retrieve

Instances

Retrieves

zero

or

more

IDs

of

relationship

instances

which

contain

the

given

participant(s).

API:

Relationship.retrieveInstances()

Inputs:

v

relDefName--String

v

partDefName--String,String[]

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Outputs:

instance

IDs--int

Retrieve

Instances

for

Participant

Retrieves

zero

or

more

IDs

of

relationship

instances

which

contain

a

given

participant.

API:

Relationship.retrieveInstances()

Inputs:

v

relDefName--String

v

partData--BusObj,

String,

long,

int,

double,

float,

boolean

Outputs:

instance

IDs--int

110

Map

Development

Guide

Table

38.

General/APIs/Relationship

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Retrieve

Participants

Retrieves

zero

or

more

participants

from

a

relationship

instance.

API:

Relationship.retrieveParticipants()

Inputs:

v

relDefName--String

v

partDefName--String,

String[]

v

instanceId--int

Outputs:

participant

instances--
Server.RelationshipServices.Participant[]

Retrieve

Participants

with

ID

Retrieves

zero

or

more

participants

from

a

relationship

instance.

API:

Relationship.retrieveParticipants()

Inputs:

v

relDefName--String

v

instanceId--int

Outputs:

participant

instances--
Server.RelationshipServices.Participant[]

Update

Participant

Updates

a

participant

in

one

or

more

relationhip

instances.

API:

Relationship.updateParticipant()

Inputs:

v

relDefName--String

v

partDefName--String

v

partData--BusObj

Update

Participant

By

Instance

Updates

a

participant

in

a

specific

relationship

instance.

API:

Relationship.updateParticipantByInstance()

Inputs:

v

relDefName--String

v

partDefName--String,

String[]

v

instanceId--int

Update

Participant

By

Instance

Data

Updates

a

participant

in

a

specific

relationship

instance

with

the

data

associated

with

the

participant.

API:

Relationship.updateParticipantByInstance()

Inputs:

v

relDefName--String

v

partDefName--String

v

instanceId--int

v

partData--BusObj,

String

Table

39.

General/Date

Name

Description

Inputs

and

outputs

with

acceptable

values

Add

Day

Adds

additional

days

to

the

from

date.

Inputs:

v

from

date--String

v

date

format--String

v

day

to

add--int

Outputs:

to

date--

String

Add

Month

Adds

additional

months

to

the

from

date.

Inputs:

v

from

date--String

v

date

format--String

v

month

to

add--int

Outputs:

to

date--

String

Add

Year

Adds

additional

years

to

the

from

date.

Inputs:

v

from

date--String

v

date

format--String

v

year

to

add--int

Outputs:

to

date--

String

Chapter

5.

Customizing

a

map

111

Table

39.

General/Date

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Date

After

Compares

two

dates

and

determines

whether

Date

1

is

after

Date

2.

Inputs:

v

Date

1--String

v

Date

1

format--String

v

Date

2--String

v

Date

2

format--String

Outputs:

Is

Date

1

after

Date

2?--

boolean

Date

Before

Compares

two

dates

and

determines

whether

Date

1

is

before

Date

2.

Inputs:

v

Date

1--String

v

Date

1

format--String

v

Date

2--String

v

Date

2

format--String

Outputs:

Is

Date

1

before

Date

2?--

boolean

Date

Equals

Compares

two

dates

and

determines

whether

they

are

equal.

Inputs:

v

Date

1--String

v

Date

1

format--String

v

Date

2--String

v

Date

2

format--String

Outputs:

Are

they

equal?--

boolean

Format

Change

Changes

a

date

format.

Inputs:

v

date--String

v

input

format--String

v

output

format--String

Outputs:

formatted

date--String

Get

Day

Returns

the

numeric

day

of

month

based

on

date

expression.

Inputs:

v

Date--String

v

Format--String

Outputs:

Day--int

Get

Month

Returns

the

numeric

month

of

year

based

on

date

expression.

Inputs:

v

Date--String

v

Format--String

Outputs:

Month--int

Get

Year

Returns

the

numeric

year

based

on

date

expression.

Inputs:

v

Date--String

v

Format--String

Outputs:

Year--int

112

Map

Development

Guide

Table

39.

General/Date

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Get

Year

Month

Day

Given

an

input

date,

extracts

the

Year/Month/Day

parts

from

the

input

date

respectively.

Inputs:

v

Date--String

v

Format--String

Outputs:

v

Year--int

v

Month--int

v

Day--int

Now

Gets

today’s

date.

Inputs:

format--String

Outputs:

now--String

Table

40.

General/Date/Formats

Name

Description

Inputs

and

outputs

with

acceptable

values

yyyy-MM-dd

Date

format

of

yyyy-MM-dd

Example:

2003-02-25

Outputs:

format--String

yyyyMMdd

Date

format

of

yyyyMMdd

Example:

20030225

Outputs:

format--String

yyyyMMdd

HH:mm:ss

Date

format

of

yyyyMMdd

HH:mm:ss

Example:

20030225

12:36:40

Outputs:

format--String

Table

41.

General/Logging

and

Tracing

Name

Description

Inputs

and

outputs

with

acceptable

values

Log

error

Sends

the

specified

error

message

to

the

ICS

log

file.

Inputs:

message--String,

byte,

short,

int,

long,

float,

double

Log

error

ID

Sends

the

error

message

associated

with

the

specified

ID

to

the

ICS

log

file.

Inputs:

ID--String,

byte,

short,

int,

long,

float,

double

Log

information

Sends

the

specified

information

message

to

the

ICS

log

file.

Inputs:

message--String,

byte,

short,

int,

long,

float,

double

Log

information

ID

Sends

the

information

message

associated

with

the

specified

ID

to

the

ICS

log

file.

Inputs:

ID--String,

byte,

short,

int,

long,

float,

double

Log

warning

Sends

the

specified

warning

message

to

the

ICS

log

file

Inputs:

message--String,

byte,

short,

int,

long,

float,

double

Log

warning

ID

Sends

the

warning

message

associated

with

the

specified

ID

to

the

ICS

log

file.

Inputs:

ID--String,

byte,

short,

int,

long,

float,

double

Trace

Sends

the

specified

trace

message

to

the

ICS

log

file.

Inputs:

message--String,

byte,

short,

int,

long,

float,

double

Table

42.

General/Logging

and

Tracing/Log

Error

Name

Description

Inputs

and

outputs

with

acceptable

values

Log

error

ID

1

Formats

the

error

message

associated

with

the

specified

ID

with

the

parameter

and

send

it

to

the

ICS

log

file.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

parameter--String,

byte,

short,

int,

long,

float,

double

Chapter

5.

Customizing

a

map

113

Table

42.

General/Logging

and

Tracing/Log

Error

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Log

error

ID

2

Formats

the

error

message

associated

with

the

specified

ID

with

the

parameters

and

send

it

to

the

ICS

log

file.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

parameter

1--String,

byte,

short,

int,

long,

float,

double

v

parameter

2--String,

byte,

short,

int,

long,

float,

double

Log

error

ID

3

Formats

the

error

message

associated

with

the

specified

ID

with

the

parameters

and

send

it

to

the

ICS

log

file.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

parameter

1--String,

byte,

short,

int,

long,

float,

double

v

parameter

2--String,

byte,

short,

int,

long,

float,

double

v

parameter

3--String,

byte,

short,

int,

long,

float,

double

Table

43.

General/Logging

and

Tracing/Log

Information

Name

Description

Inputs

and

outputs

with

acceptable

values

Log

information

ID

1

Formats

the

information

message

associated

with

the

specified

ID

with

the

parameter

and

send

it

to

the

ICS

log

file.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

parameter--String,

byte,

short,

int,

long,

float,

double

Log

information

ID

2

Formats

the

information

message

associated

with

the

specified

ID

with

the

parameters

and

send

it

to

the

ICS

log

file.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

parameter

1--String,

byte,

short,

int,

long,

float,

double

v

parameter

2--String,

byte,

short,

int,

long,

float,

double

Log

information

ID

3

Formats

the

information

message

associated

with

the

specified

ID

with

the

parameters

and

send

it

to

the

ICS

log

file.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

parameter

1--String,

byte,

short,

int,

long,

float,

double

v

parameter

2--String,

byte,

short,

int,

long,

float,

double

v

parameter

3--String,

byte,

short,

int,

long,

float,

double

Table

44.

General/Logging

and

Tracing/Log

Warning

Name

Description

Inputs

and

outputs

with

acceptable

values

Log

warning

ID

1

Formats

the

warning

message

associated

with

the

specified

ID

with

the

parameter

and

send

it

to

the

ICS

log

file.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

parameter--String,

byte,

short,

int,

long,

float,

double

114

Map

Development

Guide

Table

44.

General/Logging

and

Tracing/Log

Warning

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Log

warning

ID

2

Formats

the

warning

message

associated

with

the

specified

ID

with

the

parameters

and

send

it

to

the

ICS

log

file.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

parameter

1--String,

byte,

short,

int,

long,

float,

double

v

parameter

2--String,

byte,

short,

int,

long,

float,

double

Log

warning

ID

3

Formats

the

warning

message

associated

with

the

specified

ID

with

the

parameters

and

send

it

to

the

ICS

log

file.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

parameter

1--String,

byte,

short,

int,

long,

float,

double

v

parameter

2--String,

byte,

short,

int,

long,

float,

double

v

parameter

3--String,

byte,

short,

int,

long,

float,

double

Table

45.

General/Logging

and

Tracing/Trace

Name

Description

Inputs

and

outputs

with

acceptable

values

Trace

ID

1

Formats

the

trace

message

associated

with

the

specified

ID

with

the

parameter

and

display

it

if

tracing

is

set

to

the

specified

level

or

a

higher

level.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

level--String,

byte,

short,

int,

long,

float,

double

v

parameter--String,

byte,

short,

int,

long,

float,

double

Trace

ID

2

Formats

the

trace

message

associated

with

the

specified

ID

with

the

parameters

and

display

it

if

tracing

is

set

to

the

specified

level

or

a

highter

level.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

level--String,

byte,

short,

int,

long,

float,

double

v

parameter

1--String,

byte,

short,

int,

long,

float,

double

v

parameter

2--String,

byte,

short,

int,

long,

float,

double

Trace

ID

3

Formats

the

trace

message

associated

with

the

specified

ID

with

the

parameters

and

display

it

if

tracing

is

set

to

the

specified

level

or

a

highter

level.

Inputs:

v

ID--String,

byte,

short,

int,

long,

float,

double

v

level--String,

byte,

short,

int,

long,

float,

double

v

parameter

1--String,

byte,

short,

int,

long,

float,

double

v

parameter

2--String,

byte,

short,

int,

long,

float,

double

v

parameter

3--String,

byte,

short,

int,

long,

float,

double

Chapter

5.

Customizing

a

map

115

Table

45.

General/Logging

and

Tracing/Trace

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Trace

on

Level

Displays

the

trace

message

if

tracing

is

set

to

the

specified

level

or

a

higher

level.

Inputs:

v

message--String,

byte,

short,

int,

long,

float,

double

v

level--String,

byte,

short,

int,

long,

float,

double

Table

46.

General/Mapping

Name

Description

Inputs

and

outputs

with

acceptable

values

Run

Map

Executes

the

specified

map

with

the

current

calling

context.

Inputs:

v

Map

Name--String

v

Source

Business

Objects--BusObj,

BusObj[]

Outputs:

Map

Results--BusObj,

BusObj[]

Run

Map

with

Context

Executes

the

specified

map

with

the

calling

context

specified.

Inputs:

v

Map

Name--String

v

Source

Business

Objects--BusObj,

BusObj[]

v

calling

context--String

Outputs:

Map

Results--BusObj,

BusObj[]

Table

47.

General/Math

Name

Description

Inputs

and

outputs

with

acceptable

values

Absolute

value

a=abs(b)

API:

Math.abs()

Inputs:

b--byte,

short,

int,

long,

float,

double

Outputs:

a--byte,

short,

int,

long,

float,

double

Ceiling

Returns

the

next

highest

integer

that

is

greater

than

or

equal

to

the

specified

numeric

expression.

Inputs:

number--String,

float,

double

Outputs:

ceiling--int

Divide

a=b/c

Inputs:

v

b--byte,

short,

int,

long,

float,

double

v

c--byte,

short,

int,

long,

float,

double

Outputs:

a--byte,

short,

int,

long,

float,

double

Equal

Is

value

1

equal

to

value

2?

Inputs:

v

value

1--String,

byte,

short,

int,

long,

float,

double

v

value

2--String,

byte,

short,

int,

long,

float,

double

Outputs:

are

they

equal?--boolean

Floor

Returns

the

next

lowest

integer

that

is

greater

than

or

equal

to

the

specified

numeric

expression.

Inputs:

number--String,

float,

double

Outputs:

floor--int

116

Map

Development

Guide

Table

47.

General/Math

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Greater

than

Is

value

1

greater

than

value

2?

Inputs:

v

value

1--byte,

short,

int,

long,

float,

double

v

value

2--byte,

short,

int,

long,

float,

double

Outputs:

result--boolean

Greater

than

or

Equal

Is

value

1

greater

than

or

equal

to

value

2?

Inputs:

v

value

1--byte,

short,

int,

long,

float,

double

v

value

2--byte,

short,

int,

long,

float,

double

Outputs:

result--boolean

Less

than

result=value

1

is

less

than

value

2?

Inputs:

v

value

1--byte,

short,

int,

long,

float,

double

v

value

2--byte,

short,

int,

long,

float,

double

Outputs:

result--boolean

Less

than

or

equal

Is

value

1

less

than

or

equal

to

value

2?

Inputs:

v

value

1--byte,

short,

int,

long,

float,

double

v

value

2--byte,

short,

int,

long,

float,

double

Outputs:

result--boolean

Maximum

a=max(b,

c)

API:

Math.max()

Inputs:

v

b--byte,

short,

int,

long,

float,

double

v

c--byte,

short,

int,

long,

float,

double

Outputs:

a--byte,

short,

int,

long,

float,

double

Minimum

a=min(b,

c)

API:

Math.min()

Inputs:

v

b--byte,

short,

int,

long,

float,

double

v

c--byte,

short,

int,

long,

float,

double

Outputs:

a--byte,

short,

int,

long,

float,

double

Minus

a=b-c

Inputs:

v

b--byte,

short,

int,

long,

float,

double

v

c--byte,

short,

int,

long,

float,

double

Outputs:

a--byte,

short,

int,

long,

float,

double

Multiply

a=b*c

Inputs:

v

b--byte,

short,

int,

long,

float,

double

v

c--byte,

short,

int,

long,

float,

double

Outputs:

a--byte,

short,

int,

long,

float,

double

Not

Equal

result=is

value

1

not

equal

to

value

2?

Inputs:

v

value

1--String,

byte,

short,

int,

long,

float,

double

v

value

2--String,

byte,

short,

int,

long,

float,

double

Outputs:

are

they

not

equal?--boolean

Chapter

5.

Customizing

a

map

117

Table

47.

General/Math

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Not

a

Number

Returns

true

if

input

is

not

a

number.

Inputs:

input--String

Outputs:

is

not

a

number--boolean

Number

to

String

Converts

a

numeric

expression

to

a

character

expression.

Inputs:

number--String,

short,

int,

long,

float,

double

Outputs:

string--String

Plus

a=b+c

Inputs:

v

b--byte,

short,

int,

long,

float,

double

v

c--byte,

short,

int,

long,

float,

double

Outputs:

a--byte,

short,

int,

long,

float,

double

Round

Rounds

a

numeric

expression

down

to

the

next

lowest

integer

if

<5;

otherwise,

the

integer

is

rounded

up.

Inputs:

number--String,

float,

double

Outputs:

rounded

number--int

String

to

Number

Converts

a

character

expression

to

a

numeric

expression.

API:

Math.type()

Inputs:

string--String

Outputs:

String,

short,

int,

long,

float,

double

Table

48.

General/Properties

Name

Description

Inputs

and

outputs

with

acceptable

values

Get

Property

Retrieves

the

specified

configuration

property

value.

Inputs:

property

name--String

Outputs:

property

value--String

Table

49.

General/Relationship

Name

Description

Inputs

and

outputs

with

acceptable

values

Maintain

Identity

Relationship

Maintain

Identity

Relationship

with

the

maintainSimpleIdentityRelationship()

Relationship

API.

Inputs:

v

relationship

name--String

v

participant

name--String

v

Generic

Business

Object--String

v

Application-Specific

Business

Object--String

v

calling

context--String

Static

Lookup

Look

up

a

static

value

in

the

relationship.

Inputs:

v

relationship

name--String

v

participant

name--String

v

inbound?--boolean

v

source

value--String

Outputs:

lookup

value--String

118

Map

Development

Guide

Table

50.

General/String

Name

Description

Inputs

and

outputs

with

acceptable

values

Append

Text

Appends

the

″in

string2″

to

the

end

of

the

string

″in

string

1.″

Inputs:

v

in

string

1--String

v

in

string

2--String

Outputs:

result--String

If

Returns

the

first

value

if

condition

is

true

and

the

second

value

if

condition

is

false.

Inputs:

v

condition--boolean,

Boolean

v

value

1--String

v

value

2--String

Outputs:

result--String

Is

Empty

Returns

the

second

value

if

the

first

value

is

empty.

Inputs:

v

value

1--String

v

value

2--String

Outputs:

result--String

Is

NULL

Returns

the

second

value

if

the

first

value

is

null.

Inputs:

v

value

1--String

v

value

2--String

Outputs:

result--String

Left

Fill

Returns

a

string

of

the

specifed

length;

fills

the

left

with

indicated

value.

Inputs:

v

string--String

v

fill

string--String

v

length--int

Outputs:

filled

string--String

Left

String

Returns

the

left

portion

of

string

for

the

specified

number

of

positions.

Inputs:

v

string--String

v

length--int

Outputs:

left

string--String

Lower

Case

Changes

all

characters

to

Lower

Case

letters

Inputs:

fromString--String

Outputs:

toString--String

Object

To

String

Gets

a

string

representation

of

the

object.

Inputs:

object--Object

Outputs:

string--String

Repeat

Returns

a

character

string

that

contains

a

specified

character

expression

repeated

a

specified

number

of

times.

Inputs:

v

repeating

string--String

v

repeat

count--int

Outputs:

result--String

Replace

Replaces

part

of

a

string

with

indicated

value

data.

Inputs:

v

input--String

v

old

string--String

v

new

string--String

Outputs:

replaced

string--String

Chapter

5.

Customizing

a

map

119

Table

50.

General/String

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Right

Fill

Returns

a

string

of

the

specified

length;

fills

the

right

with

indicated

value.

Inputs:

v

string--String

v

fill

string--String

v

length--int

Outputs:

filled

string--String

Right

String

Returns

the

right

portion

of

string

for

the

specified

number

of

positions.

Inputs:

v

string--String

v

length--int

Outputs:

right

string--String

Substring

by

position

Returns

a

portion

of

the

string

based

on

start

and

end

parameters.

Inputs:

v

string--String

v

start

positon--int

v

end

position--int

Outputs:

substring--String

Substring

by

value

Returns

a

portion

of

the

string

based

on

start

and

end

parameters.

The

substring

will

not

include

the

start

and

end

value.

Inputs:

v

string--String

v

start

value--int

v

end

value--int

Outputs:

substring--String

Text

Equal

Compares

the

strings

″inString1″

and

″inString2″

and

determine

whether

they

are

the

same.

Inputs:

v

inString1--String

v

inString2--String

Outputs:

are

they

equal?--boolean

Text

Equal

Ignore

Case

Compares

the

strings

″inString1″

and

″inString2″

lexicographically,

ignoring

case

considerations.

Inputs:

v

inString1--String

v

inString2--String

Outputs:

are

they

equal?--boolean

Text

Length

Finds

the

total

number

of

characters

in

a

String

Inputs:

str--String

Outputs:

length---byte,

short,

int,

long,

float,

double

Trim

Left

Trims

the

specified

number

of

characters

from

the

left

side

of

the

string.

Inputs:

v

input--String

v

trim

length--int

Outputs:

result--String

Trim

Right

Trims

the

specified

number

of

characters

from

the

right

side

of

the

string.

Inputs:

v

input--String

v

trim

length--int

Outputs:

result--String

Trim

Text

Trims

white

spaces

before

and

after

string

Inputs:

in

string--String

Outputs:

trimmed

string--String

120

Map

Development

Guide

Table

50.

General/String

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Upper

Case

Changes

all

characters

into

Upper

Case

letters

Inputs:

fromString--String

Outputs:

toString--String

Table

51.

General/Utilities

Name

Description

Inputs

and

outputs

with

acceptable

values

Catch

Error

Catches

all

the

Exceptions

thrown

in

the

current

activity

and

its

subactivities.

(Double-click

the

function

block

icon

in

the

canvas

to

define

the

subactivity.)

Inputs:

v

Error

Name--String

v

Error

Message--String

Catch

Error

Type

Catches

the

specified

Exception

type

thrown

in

the

current

activity

and

its

subactivities.

(Double-click

the

function

block

icon

in

the

canvas

to

define

the

subactivity.)

Inputs:

v

error

type--String

v

Error

Message--String

Condition

If

″Condition″

is

true,

executes

the

subactivity

defined

in″True

Action″;

otherwise,

executes

the

subactivity

defined

in

″False

Action.″

(Double-click

the

function

block

icon

in

the

canvas

to

define

the

subactivity.)

Inputs:

Condition--boolean

Loop

Repeats

the

subactivity

until

″Condition″

is

false.

(Double-click

the

function

block

icon

in

the

canvas

to

define

the

subactivity.)

Inputs:

Condition--boolean

Move

Attribute

in

Child

Moves

the

value

from

″from

attribute″

to

″to

attribute″.

Inputs:

v

source

parent--BusObj

v

source

child

BO

attribute--string

v

from

attribute--String

v

destination

parent--BusObj

v

destination

child

BO

attribute--String

v

to

attribute--String

Raise

Error

Throws

a

new

Java

Exception

with

the

given

message.

Inputs:

message--String

Raise

Error

Type

Throws

the

specified

Java

Exception

with

the

given

message.

Inputs:

v

error

type--String

v

message--String

Table

52.

General/Utilities/Vector

Name

Description

Inputs

and

outputs

with

acceptable

values

Add

Element

Adds

the

specified

element

to

the

end

of

the

vector,

increasing

its

size

by

one.

Inputs:

vector--java.util.Vector

Outputs:

element--Object

Get

Element

Gets

the

element

at

the

specified

index

in

the

Vector

object.

Inputs:

v

vector--java.util.Vector

v

index--int

Outputs:

element--Object

Chapter

5.

Customizing

a

map

121

Table

52.

General/Utilities/Vector

(continued)

Name

Description

Inputs

and

outputs

with

acceptable

values

Iterate

Vector

Iterates

through

the

vector

object.

Inputs:

v

vector--java.util.Vector

v

current

index--int

v

current

element--Object

New

Vector

Creates

a

new

Vector

object.

Outputs:

vector--java.util.Vector

Size

Gets

the

number

of

elements

in

this

vector.

Inputs:

vector--java.util.Vector

Outputs:

size--int

To

Array

Gets

the

array

representation

containing

all

of

the

elements

in

this

vector.

Inputs:

vector--java.util.Vector

Outputs:

array--Object[]

Example

1

of

using

the

Activity

Editor

The

following

example

illustrates

the

steps

for

using

Activity

Editor

to

change

the

source

attribute’s

value

to

all

uppercase

and

assign

the

change

to

the

destination

attribute.

Perform

the

following

steps:

1.

From

the

Diagram

tab,

drag

the

source

attribute

onto

the

destination

attribute

to

create

a

Custom

transformation

rule.

Then

click

the

icon

of

the

Custom

transformation

rule

to

open

Activity

Editor.

Example:

Figure

47

shows

the

Custom

transformation

we

are

using

in

this

example.

The

source

attribute

is

ObjClarify_contact.LastName,

and

the

destination

attribute

is

ObjContact.LastName.

Result:

Activity

Editor

opens.

For

more

information

on

creating

Custom

and

other

transformations,

see

Chapter

2,

“Creating

maps,”

on

page

13..

Figure

47.

Custom

transformation

rule

122

Map

Development

Guide

2.

Select

a

category

in

the

Library

window

(top

left)

to

show

the

available

function

blocks

in

that

category

in

the

Content

window

(bottom

left).

Figure

48

shows

the

available

functions

blocks

for

the

″String″

category;

the

source

and

destination

attributes

in

our

example

are

displayed

as

icons

in

the

graphical

canvas.

3.

To

use

any

of

the

function

blocks

in

the

activity,

drag

the

function

block

from

the

tree

in

the

Library

window

and

drop

it

onto

the

activity

canvas;

or

alternatively,

drag

the

icon

from

the

Content

window

and

drop

it

onto

the

activity

canvas.

Example:

In

our

example,

we

want

to

change

the

source

attribute

to

all

uppercase

letters,

so

we

will

drag-and-drop

the

Upper

Case

function

block

in

the

String

category

from

the

Content

window

onto

the

activity

canvas,

as

shown

in

Figure

49..

Figure

48.

Function

blocks

in

String

category

and

icons

for

source

and

destination

attributes

Figure

49.

Dragging

the

Upper

Case

function

block

Chapter

5.

Customizing

a

map

123

4.

After

you

drop

a

function

block

on

the

activity

canvas,

you

can

move

it

around

the

canvas

by

selecting

the

function

block

icon

and

dragging

and

dropping

it

at

the

desired

position.

When

the

function

block

is

in

place,

you

are

ready

to

connect

the

inputs

and

outputs

of

the

function

block

to

define

the

flow

of

execution.

Example:

In

our

example,

we

want

to

convert

the

attribute

value

of

ObjClarify_Contact.LastName

to

all

uppercase

letters.

We

can

do

this

by

connecting

the

output

of

the

icon

for

ObjClarify_Contact.LastName

to

the

input

of

the

Upper

Case

function

block.

To

do

this,

move

the

mouse

cursor

to

the

output

of

the

icon

of

port

ObjClarify_Contact.LastName.

Result:

The

shape

of

the

icon

will

change

to

an

arrow

to

indicate

that

you

can

initiate

a

link

at

that

point,

as

shown

in

Figure

50..

5.

When

the

mouse

icon

is

changed

to

an

arrow,

hold

down

the

mouse

button

and

move

the

mouse

to

the

input

of

the

Upper

Case

function

block,

and

release

the

mouse

button.

A

connection

link

will

be

drawn

to

connect

the

input

and

outputs.

To

indicate

that

the

result

of

the

Upper

Case

function

block

should

be

assigned

to

the

destination

attribute

(in

our

example,

ObjContact.LastName),

repeat

the

same

steps

to

drag-and-drop

from

the

output

of

the

Upper

Case

function

block

to

the

input

of

the

ObjContact.LastName

port

icon.

Figure

51

shows

the

Figure

50.

Cursor

as

arrow

at

output

port

of

ObjClarify_Contact.LastName

124

Map

Development

Guide

connection

links.

Result:

We

have

defined

an

activity

which

will

take

the

value

of

the

source

attribute,

uppercase

it,

and

set

the

upper-cased

value

to

the

destination

attribute.

6.

Save

the

activity

by

selecting

To

Project

or

To

File

from

the

File-->Save

submenu

or

by

clicking

the

Save

Map

to

Project

or

Save

Map

to

File

button

in

the

Standard

toolbar.

7.

To

see

an

example

of

the

Java

code

that

will

be

generated

by

this

activity,

click

the

Java

tab.

Result:

The

Java

tab

will

be

activated

with

the

sample

Java

code,

as

shown

in

Figure

52..

Figure

51.

Upper

Case

function

block

with

connection

links

Figure

52.

Java

tab

with

code

Chapter

5.

Customizing

a

map

125

Example

2

of

using

the

Activity

Editor

The

following

example

illustrates

the

steps

for

using

Activity

Editor

to

change

the

source

value’s

date

format

to

a

different

format

and

assign

it

to

the

destination

attribute.

Perform

the

following

steps:

1.

From

the

Diagram

tab,

drag

the

source

attribute

onto

the

destination

attribute

to

create

a

Custom

transformation

rule.

Then

click

the

icon

of

the

Custom

transformation

rule

to

open

Activity

Editor.

Example:

Figure

53

shows

the

Custom

transformation

we

are

using

in

this

example.

The

source

attribute

is

ObjClarify_QuoteSchedule.PriceProgExpireDate,

and

the

destination

attribute

is

ObjARInvoice.GLPostingDate.

Result:

Activity

Editor

opens.

For

more

information

on

creating

Custom

and

other

transformations,

see

Chapter

2,

“Creating

maps,”

on

page

13..

2.

Select

a

category

in

the

Library

window

(top

left)

to

show

the

available

function

blocks

in

that

category

in

the

Content

window

(bottom

left).

Figure

54

shows

the

available

functions

blocks

for

the

″Date″

category;

the

source

and

destination

attributes

in

our

example

are

displayed

as

icons

in

the

Figure

53.

Custom

transformation

rule

126

Map

Development

Guide

graphical

canvas.

3.

To

use

any

of

the

function

blocks

in

the

activity,

drag

the

function

block

from

the

tree

in

the

Library

window

and

drop

it

onto

the

activity

canvas;

or

alternatively,

drag

the

icon

from

the

Content

window

and

drop

it

onto

the

activity

canvas.

Example:

In

our

example,

we

want

to

change

the

date

format

of

the

source

attribute

from

″yyyyMMdd″

to

″yyyy.MM.dd

G

’at’

HH:mm:ss

z″

and

assign

it

to

the

destination

attribute;

so

we

will

drag-and-drop

the

Format

Change

function

block

in

the

Date

category

from

the

Content

window

onto

the

activity

canvas,

as

shown

in

Figure

55..

Note:

A

date

formatted

with

″yyyyMMdd″

looks

like

this:

″20030227″;

a

date

formatted

with

″yyyy.MM.dd

G

’at’

HH:mm:ss

z″

looks

like

this

″2003.02.27

AD

at

00:00:00

PDT″.

Figure

54.

Function

blocks

in

Date

category

and

icons

for

source

and

destination

attributes

Figure

55.

Dragging

the

Date

Format

Change

function

block

Chapter

5.

Customizing

a

map

127

4.

After

you

drop

a

function

block

on

the

activity

canvas,

you

can

move

it

around

the

canvas

by

selecting

the

function

block

icon

and

dragging

and

dropping

it

at

the

desired

position.

When

the

function

block

is

in

place,

you

are

ready

to

connect

the

inputs

and

outputs

of

the

function

block

to

define

the

flow

of

execution.

Example:

In

our

example,

we

want

to

change

the

date

format

of

the

source

attribute

ObjClarify_QuoteSchedule.PriceProgExpireDate.

We

will

do

this

by

connecting

the

output

of

the

port

icon

for

ObjClarify_QuoteSchedule.PriceProgExpireDate

to

the

date

input

of

the

Format

Change

function

block.

To

do

this,

move

the

mouse

cursor

to

the

output

of

the

icon

of

port

ObjClarify_QuoteSchedule.PriceProgExpireDate.

Result:

The

shape

of

the

icon

will

change

to

an

arrow

to

indicate

that

you

can

initiate

a

link

at

that

point,

as

shown

in

Figure

56..

5.

When

the

mouse

icon

is

changed

to

an

arrow,

hold

down

the

mouse

button

and

move

the

mouse

to

the

date

input

of

the

Format

Change

function

block,

and

release

the

mouse

button.

A

connection

link

will

be

drawn

to

connect

the

input

and

outputs.

To

indicate

that

the

result

of

the

Format

Change

function

block

should

be

assigned

to

the

destination

attribute

ObjARInvoice.GLPostingDate,

repeat

the

same

steps

to

drag-and-drop

from

the

output

of

the

Format

Change

function

block

to

the

input

of

the

ObjARInvoice.GLPostingDate

port

icon.

Figure

57

Figure

56.

Cursor

as

arrow

at

output

port

of

ObjClarify_QuoteSchedule.PriceProgExpireDate

128

Map

Development

Guide

shows

the

connection

links.

Result:

Now

we

have

instructed

the

Format

Change

function

block

to

take

the

input

from

the

attribute

ObjClarify_QuoteSchedule.PriceProgExpireDate,

change

its

date

format,

and

assign

the

result

to

the

attribute

ObjARInvoice.GLPostingDate.

However,

we

still

need

to

let

the

Format

Change

function

block

know

what

the

original

date

format

is

and

what

resulting

format

we

want.

6.

Example:

In

our

example,

if

the

source

attribute

ObjClarify_QuoteSchedule.PriceProgExpireDate

is

in

the

date

format

of

yyyMMDD

(that

is,

20030227),

we

can

use

the

predefined

Date

Format

function

block

yyyyMMdd.

Drag-and-drop

the

yyyyMMdd

function

block

onto

the

activity

canvas

and

connect

the

format

output

of

the

yyyyMMdd

function

block

to

the

input

format

of

the

Format

Change

function

block.

Result:

This

will

specify

that

the

input

format

of

the

date

is

in

yyyyMMdd

format,

as

shown

in

Figure

58..

Figure

57.

Date

Format

Change

function

block

with

connection

links

Chapter

5.

Customizing

a

map

129

7.

Activity

Editor

provides

three

predefined

Date

formats:

yyyyMMDD

HH:mm:ss,

yyyyMMDD,

and

yyyy-MM-dd.

If

the

desired

date

format

is

not

one

of

the

three

predefined

formats,

you

can

specify

the

date

format

you

want

by

using

a

Constant.

A

Constant

is

a

graphical

component

in

which

you

enter

text

directly

and

use

the

text

as

input

to

function

blocks

or

ports.

Example:

In

our

example,

we

want

the

Format

Change

function

block

to

change

the

date

format

to

yyyy.MM.dd

G

’at’

Hh″mm″ss

z.

This

is

not

one

of

the

predefined

formats,

so

we

will

create

a

New

Constant

component

in

the

activity

canvas

by

dragging

and

dropping

the

New

Constant

icon

(located

under

the

System

category)

from

the

Content

window

to

the

activity

canvas.

Figure

59

shows

the

result

of

this

action.

8.

To

specify

a

constant

with

the

value

yyyy.MM.dd

G

’at’

Hh″mm″ss

z,

click

the

editable

area

of

the

Constant

component

in

the

activity

canvas

and

enter

the

text

yyyy.MM.dd

G

’at’

Hh"mm"ss

z.

By

default,

any

Constant

component

will

have

the

type

String

(shown

in

the

Properties

window

when

the

Constant

component

is

selected).

However,

you

can

change

the

type

of

the

Constant

by

selecting

the

Constant

and

using

the

combo

box

in

the

Properties

window.

Figure

58.

Input

Date

Format

Figure

59.

New

Constant

icon

dropped

on

the

activity

canvas

130

Map

Development

Guide

Figure

60

shows

the

New

Constant

icon

with

the

text

value

entered.

9.

To

continue

to

specify

that

we

want

the

output

format

of

the

Format

Change

function

block

as

yyyy.MM.dd

G

’at’

Hh″mm″ss

z,

we

define

a

connection

link

between

the

Constant

component

and

the

output

format

of

the

Format

Change

function

block

Result:

We

have

completed

the

activity

definition

that

will

change

the

date

format

of

the

source

attribute

to

a

new

date

format

and

assign

it

to

the

destination

attribute.

10.

To

add

a

comment

or

description

to

remind

us

later

what

this

activity

does,

we

can

add

a

Description

component

to

the

activity

and

enter

a

description.

Tip:

Use

the

Context

menu

in

the

graphical

canvas

and

select

Add

Description,

or

drag

the

New

Description

icon

under

the

System

folder

in

the

Content

window

and

drop

it

onto

the

activity

canvas.

Figure

61

shows

how

to

add

the

Description

component

using

the

Context

menu.

Figure

60.

New

Constant

with

text

entered

Chapter

5.

Customizing

a

map

131

Result:

The

Description

component

will

be

created

in

the

graphical

canvas.

11.

Enter

the

description

in

the

Description

component

by

clicking

on

the

editable

area

of

the

component

and

typing

directly

into

the

component.

You

can

resize

the

Description

by

clicking

and

moving

the

lower

right-hand

corner

of

the

Description

component.

Figure

62

shows

adding

the

Description.

12.

Save

the

activity

by

selecting

To

Project

or

To

File

from

the

File-->Save

submenu

or

by

clicking

the

Save

Map

to

Project

or

Save

Map

to

File

button

in

the

Standard

toolbar.

Figure

63

shows

saving

the

activity.

Figure

61.

Adding

a

Description

using

the

Context

menu

Figure

62.

Adding

the

Description

Figure

63.

Saving

the

activity

132

Map

Development

Guide

Example

3

of

using

the

Activity

Editor

The

following

example

illustrates

using

the

Static

Lookup

relationship

function

block

in

Activity

Editor.

In

the

WebSphere

InterChange

Server

Express,

a

static

lookup

relationship

normally

consists

of

two

or

more

relationship

tables.

For

example,

consider

a

system

that

consists

of

three

end-applications,

as

shown

in

Figure

64.

Each

of

these

three

applications

has

a

different

representation

for

″State″

information,

as

shown

in

Table

53.

Table

53.

Application-specific

representation

of

state

information

SAP

application

PeopleSoft

application

Clarify

application

California

CA

01

State1

Washington

WA

02

State2

Hawaii

HI

03

State3

Delaware

DE

04

State4

When

state

information

is

sent

to

the

WebSphere

business

integration

system

from

the

SAP

application,

SAP

specified-state

code

is

sent

to

ICS.

But

when

ICS

needs

to

pass

this

information

to

other

applications,

the

state

information

has

to

be

converted

to

the

format

that

the

target

application

understands.

In

order

to

do

this,

the

system

needs

a

generic

representation

of

the

″State″

information.

With

the

generic

representation,

the

system

can

process

business

logics

in

a

generic,

unified

manner;

and

the

generic

representation

will

be

converted

to

the

application-specific

format

only

when

needed.

Thus,

in

the

preceding

example,

we

would

create

a

static

lookup

relationship

for

doing

this

″State″

conversion,

with

the

application-specific

data

as

WebSphere

business

integration-managed

participants.

With

this

setup,

a

generic

ID

is

used

to

represent

the

state

information

in

the

WebSphere

business

integration

system.

Table

54

shows

this

representation.

Table

54.

Generic

representation

of

state

information

Generic

ID

SAP

application

PeopleSoft

application

Clarify

application

California

1

CA

01

State1

Washington

2

WA

02

State2

Hawaii

3

HI

03

State3

Delaware

4

DE

04

State4

Figure

64.

Static

Lookup

relationship

with

three

end-applications

Chapter

5.

Customizing

a

map

133

Application-specific

data

is

converted

to

the

generic

ID

as

it

enters

the

ICS

system,

and

the

generic

ID

is

converted

to

application-specific

data

as

it

exits

the

system.This

data

conversion

is

shown

in

Figure

65.

The

ID

conversion

is

usually

done

in

maps

that

convert

application-specific

business

objects

to

generic

business

objects,

or

vice

versa.

For

example

in

the

SAP-to-Generic

map,

we

would

do

a

static

lookup

for

the

data

″CA″

and

convert

it

to

the

generic

representation

that

ICS

understands,

″1″.

And

in

the

Generic-to-Clarify

map,

we

would

instead

do

a

static

lookup

for

the

generic

data

″1″

and

convert

it

to

″State1″.

In

either

map,

only

one

static

lookup

is

required.

Figure

66

shows

how

to

use

the

Static

Lookup

function

block

to

convert

the

SAP-specified

state

data

to

the

ICS

generic

state

data

for

processing

in

ICS.

StateRel

SapPrt

true

ObjSAP.State

ObjGeneric.State

relationship name

participant name

inbound?

source value

lookup value

Static Lookup

Similarly,

the

Static

Lookup

function

block

is

used

to

convert

the

ICS-generic

state

data

to

Clarify-specific

state

data

in

the

Generic-to-Clarify

map.

This

is

shown

in

Figure

65.

Data

conversion

from

application-specific

to

generic

to

application-specific

Figure

66.

Using

static

lookup

function

block

to

convert

SAP-specific

state

data

to

ICS-generic

state

data

134

Map

Development

Guide

Figure

67.

StateRel

ClarifyPrt

false

ObjGeneric.State

ObjClarify.State

relationship name

participant name

inbound?

source value

lookup value

Static Lookup

Normally,

in

a

static

lookup

relationship,

we

convert

application-specific

data

to

generic

data,

or

generic

data

to

application-specific

data.

In

these

scenarios,

only

one

Static

Lookup

function

block

is

used.

But

in

the

special

cases

where

you

want

to

directly

lookup

a

name-value

pair,

then

two

Static

Lookup

function

blocks

are

required.

For

more

information

on

defining

and

using

static

relationships,

see

Chapter

7,

“Creating

relationship

definitions,”

on

page

167.

Working

in

Java

view

If

Map

Designer

Express

opens

the

Activity

Editor

with

an

activity

definition

that

contains

only

custom

Java

code,

the

Activity

Editor

displays

the

activity

definition

in

Java

view.

Similar

to

Graphical

view,

the

Activity

Editor

is

available

in

Java

view

in

two

display

modes:

Design

mode

and

Quick

view

mode.

v

Design

mode:

In

Design

mode,

the

Java

view

of

the

Activity

Editor

contains

the

main

Java

WordPad

for

viewing

and

editing

custom

Java

code

to

provide

the

definition

for

the

activity.

The

WordPad

is

contained

in

a

tabbed

window

area.

In

addition

to

the

regular

editing

options

in

a

WordPad

(Cut,

Copy,

Paste,

Delete,

Select

All,

Undo,

Redo),

the

Java

WordPad

provides

syntax

highlighting

for

the

Java

Programming

language.

By

default,

comments

are

green,

string

literals

are

pink,

and

keywords

are

blue.

Tip:

You

can

customize

the

syntax

highlighting

schemes

in

the

Preference

dialog.

Figure

67.

Using

static

lookup

function

block

to

convert

ICS-generic

state

data

to

Clarify-specific

state

data

Chapter

5.

Customizing

a

map

135

Figure

68

shows

the

Java

view

in

Design

mode.

v

Quick

view

mode:

In

Quick

view

mode,

the

Java

view

only

displays

the

WordPad.

Figure

69

shows

the

Java

view

in

Quick

view

mode.

Tip:

To

change

from

Quick

view

mode

to

Design

mode,

click

the

>>

button

on

the

status

bar.

If

you

do

not

see

the

>>

button,

resize

the

Quick

view

window

horizontally

until

the

button

appears.

Importing

Java

packages

to

Interchange

Server

Express

In

addition

to

using

the

standard

function

blocks

that

Activity

Editor

provides,

Map

Designer

allows

you

to

import

your

own

Java

library

for

use

as

function

blocks

in

Activity

Editor.

Importing

custom

Jar

libraries

into

activity

settings

will

enable

any

public

methods

in

the

Jar

library

to

be

used

as

function

blocks

in

Activity

Editor.

Figure

68.

Java

view

in

Design

mode

Figure

69.

Java

view

in

Quick

view

mode

136

Map

Development

Guide

Steps

for

importing

Jar

libraries

as

activity

function

blocks

Before

you

begin:

You

need

to

export

your

Java

classes

into

a

.jar

file.

Perform

the

following

steps

to

import

a

Jar

library

into

Activity

Editor:

1.

In

System

Manager,

open

the

Activity

Settings

view

by

clicking

Window-->Show

View-->Other...

and

selecting

Activity

Settings

from

the

category

WebSphere

Business

Integration

system

Manager.

2.

Right-click

BuildBlock

Libraries

and

select

Add

Library.

Figure

70

shows

the

Activity

Settings

view

for

adding

a

custom

Jar

library.

3.

In

the

Open

File

dialog

box,

navigate

to

your

custom

.jar

files

and

select

Open.

System

Manager

will

try

to

import

your

custom

.jar

file

for

use

as

function

blocks

in

Activity

Editor.

If

the

file

is

imported

properly,

the

name

of

your

custom

.jar

file

will

appear

under

BuildBlock

Libraries

in

the

Activity

Settings

view.

Tip:

After

you

import

your

custom

.jar

files

into

Activity

Settings,

when

your

maps

and

collaboration

template

compile

in

System

Manager,

the

custom

.jar

file

will

automatically

be

included

into

the

compile

CLASSPATH.

To

prepare

InterChange

Server

Express

for

compilation,

make

sure

that

its

CLASSPATH

includes

your

custom.jar

file.

For

information

on

setting

up

Interchange

Server

Express

for

importing

your

custom

.jar

files,

see

“Importing

third-party

classes

to

Interchange

Server

Express”

on

page

139.

Result:

When

you

open

Activity

Editor,

the

custom

Jar

library

will

be

listed

in

the

Library

window

under

My

Library

in

Activity

Editor.

By

default,

available

custom

function

blocks

are

listed

according

to

their

package

structure.

You

can

use

them

in

an

activity

the

same

way

as

standard

function

blocks.

Rule:

After

you

change

any

settings

in

the

Activity

settings

view,

you

must

restart

Map

Designer

Express

for

the

change

to

take

effect

in

Activity

Editor.

Customizing

display

settings

of

custom

Jar

libraries

You

can

customize

the

display

settings

of

the

function

blocks

imported

to

Activity

Editor,

such

as

its

name

and

icon,

by

changing

the

custom

Jar

library’s

properties.

Perform

the

following

steps

to

do

this:

v

Display

the

Properties

window

for

the

custom

Jar

library

by

right-clicking

on

your

custom

Jar

library

listed

under

BuildBlock

Libraries

in

the

Activity

Settings

view

in

System

Manager.

Result:

When

the

Properties

window

for

the

custom

Jar

library

is

opened,

it

will

list

the

available

function

blocks

in

this

custom

library

in

a

tree

structure

on

the

right-hand

side

of

the

dialog.

The

available

function

blocks

are

listed

as

child

nodes

under

the

Java

class

and

package

that

contain

them.

Figure

70.

Activity

Settings

view

Chapter

5.

Customizing

a

map

137

For

the

Java

package

and

classes,

you

can

customize

the

display

name

of

the

entry

and

whether

Activity

Editor

should

display

this

Java

package/class

in

the

My

Library

tree

structure

by

changing

the

check

box

″Hide

level

in

tree

display.″

If

this

option

is

enabled,

Activity

Editor

will

not

display

this

entry

in

the

My

Library

subtree.

This

option

is

usually

useful

when

the

Java

methods

in

your

custom

Jar

library

are

in

a

Java

class

that

is

in

a

package

many

levels

deep,

and

enabling

this

option

can

better

organize

your

My

Library

subtree

in

Activity

Editor.

Figure

71

shows

the

dialog

for

customizing

the

Jar

library

display.

For

those

Java

methods

used

as

function

blocks

in

Activity

Editor,

you

can

specify

the

function

block

display

name,

description,

icon,

and

parameter’s

display

name

in

the

Properties

window.

When

you

choose

to

import

an

icon

for

the

function

block,

the

icon

that

you

choose

will

be

copied

into

the

Activity

Settings

folder

and

will

be

available

for

other

function

blocks

in

the

same

package

to

use.

Recommendation:

If

you

choose

to

import

an

icon

for

your

function

block

to

use,

the

icon

should

be

32

pixels

by

32

pixels

in

size

and

should

be

in

.bmp

format.

The

color

depth

of

the

icon

can

be

up

to

24-bit.

Figure

71.

Properties

dialog

for

customizing

Jar

library

display

138

Map

Development

Guide

Figure

72

shows

the

Properties

dialog

for

customizing

the

Jar

library

function

block

display.

Rule:

After

you

change

any

settings

in

the

Activity

settings

view,

you

must

restart

Map

Designer

Express

for

the

change

to

take

effect

in

Activity

Editor.

Importing

third-party

classes

to

Interchange

Server

Express

If

the

imported

classes

are

in

a

third-party

package

rather

than

in

the

JDK,

in

order

to

set

up

the

server

compile,

you

must

add

them

to

the

path

of

the

imported

classes

in

the

JCLASSES

variable.

Recommendation:

You

should

use

some

mechanism

to

differentiate

those

classes

in

JCLASSES

that

are

standard

from

those

that

are

custom.

Example:

You

can

create

a

new

variable

to

hold

only

those

custom

classes

and

append

this

new

variable

to

JCLASSES,

by

performing

the

following

steps:

1.

Create

a

new

map

property,

such

as

one

called

DEPENDENCIES.

2.

Place

the

CwMacroUtils.jar

in

its

own

directory.

Example:

Create

a

dependencies

directory

below

the

product

directory

and

place

the

jar

file

in

it.

3.

Add

the

dependencies

directory

to

the

file

used

to

start

ICS

(by

default,

start_server.bat

or

CWSharedEnv.sh),

which

is

located

in

the

bin

directory

below

the

product

directory.

For

example,

add

the

following

entry

for

UNIX:

set

DEPENDENCIES=$ProductDir/dependencies/CwMacroUtils.jar

Add

the

following

entry

for

Windows:

set

DEPENDENCIES="%ProductDirS%"\dependencies\

CwMacroUtils.jar

4.

Add

DEPENDENCIES

to

the

JCLASSES

entry:

For

UNIX,

add:

set

JCLASSES=$JCLASSES:ExistingJarFiles:$DEPENDENCIES

For

Windows,

add:

Figure

72.

Properties

dialog

for

customizing

Jar

library

function

block

display

Chapter

5.

Customizing

a

map

139

set

JCLASSES=ExistingJarFiles;%DEPENDENCIES%

5.

In

each

map

that

uses

the

classes,

include

the

PackageName.ClassName

specified

in

the

CwMacroUtils.jar

file.

6.

Restart

ICS

to

make

the

methods

available

to

the

maps.

Guidelines:

When

importing

a

custom

class,

you

may

get

an

error

message

indicating

that

the

software

could

not

find

the

custom

class.

If

this

occurs,

check

the

following:

v

Check

that

the

custom

class

is

part

of

a

package.

It

is

good

programming

practice

for

custom

classes

to

be

placed

in

a

package.

Make

sure

that

the

custom

class

code

includes

a

correct

package

statement

and

that

it

is

placed

at

the

beginning

of

the

source

file,

prior

to

any

class

or

interface

declarations.

v

Be

sure

that

you

have

updated

the

CLASSPATH

environment

variable

to

include

the

path

to

the

package

containing

the

custom

class,

or

to

the

custom

class

itself

if

it

is

not

in

a

package.

Example:

When

importing

a

custom

class,

you

might

create

a

folder

called

%ProductDir%\lib\com\<ProductDir>\package,

where

package

is

the

name

of

your

package.

Then,

place

your

custom

class

file

under

the

folder

you

just

created.

Finally,

in

the

CLASSPATH

variable

in

the

start_server.bat

file,

include

the

path

%ProductDir%\lib.

Using

variables

A

variable

is

a

placeholder

for

a

value

in

the

Java

code.

This

section

provides

the

following

information

about

using

variables

in

transformation

code:

v

“Using

generated

business

object

variables

and

attributes”

v

“Using

temporary

variables”

on

page

142

Using

generated

business

object

variables

and

attributes

This

section

provides

information

about

generating

business

object

variables

for

the

source

and

destination

business

objects.

Generating

business

object

variables

When

you

add

a

business

object

to

the

map,

Map

Designer

Express

automatically

generates

the

following:

v

An

instance

name

The

instance

name

that

Map

Designer

Express

generates

is

a

system-declared

local

variable

that

you

can

use

to

refer

to

this

business

object

in

the

mapping

code.

It

is

prepended

with

the

letters

Obj,

which

is

followed

by

the

name

of

the

business

object

definition.

Example:

If

you

add

Customer

to

the

map,

its

instance

name

is

ObjCustomer.

Map

Designer

Express

generates

an

instance

name

for

both

the

source

and

destination

business

objects.

v

An

index

for

the

business

object

within

a

business

object

array

(if

the

business

object

is

multiple-cardinality)

The

business

object

index

represents

the

order

of

this

source

or

destination

business

object.

The

index

number

of

the

first

source

and

destination

business

objects

in

a

map

is

zero.

Additional

business

objects

take

the

next

available

index

number,

such

as

1,

2,

3,

and

so

on.

When

the

map

is

executed,

the

index

number

represents

the

position

of

the

business

object

in

the

array

that

is

passed

into

the

map

(source

business

objects)

or

returned

by

the

map

(destination

business

objects).

140

Map

Development

Guide

Map

Designer

Express

displays

this

information

in

the

following

locations:

v

In

the

Business

Objects

tab

of

the

Map

Properties

dialog

Right-click

the

title

bar

of

the

business

object

window

and

select

Properties

from

the

Context

menu.

The

Map

Properties

dialog

appear

with

the

Business

Objects

tab

displaying

and

the

selected

business

object

highlighted

in

the

list.

This

tab

displays

both

the

instance

name

and

its

index

within

the

business

object

array

(if

the

business

object

is

multiple

cardinality).

v

In

the

Table

tab—in

the

business

object

pane

v

In

the

Diagram

tab—in

the

title

bar

of

the

business

object

window

in

the

following

format:

The

title

bar

displays

the

instance

name

for

the

business

object.

Note:

You

can

specify

whether

Map

Designer

Express

displays

the

names

of

the

variables

for

the

source

and

destination

business

objects

with

the

option

Defining

Map:

show

business

object

instance

name.

By

default,

this

option

is

enabled

and

Map

Designer

Express

displays

these

variable

names

(ObjBusObj)

in

both

the

Table

and

Diagram

tabs.

When

the

option

is

disabled,

Map

Designer

Express

only

displays

the

names

of

the

source

and

destination

business

objects.

You

can

change

the

setting

of

this

option

on

the

General

tab

of

the

Preferences

dialog.

For

more

information,

see

“Specifying

General

Preferences”

on

page

20.

You

can

modify

these

business

object

variables

from

the

Business

Objects

tab

of

the

Map

Properties

dialog

(see

Figure

73).

The Business Objects area
contains the name of each
business object variable.

To modify the index or instance
name, highlight the business
object in the Business Objects
area and change the
appropriate field in the
Properties area.

You

can

display

the

Business

Objects

tab

of

the

Map

Properties

dialog

in

any

of

the

following

ways:

v

From

the

Edit

menu,

select

Map

Properties.

For

information

on

other

ways

to

display

the

Map

Properties

dialog,

see

“Providing

map

property

information”

on

page

54.

The

General

tab

of

the

Map

Properties

dialog

box

appears.

Click

the

Business

Objects

tab.

Figure

73.

Business

Objects

Tab

of

the

Map

Properties

Dialog

Chapter

5.

Customizing

a

map

141

v

From

the

Diagram

tab,

right-click

the

business

object

window

and

select

Properties

from

the

Context

menu.

Using

temporary

variables

Map

Designer

Express

lets

you

create

temporary

variables

that

can

be

accessed

in

transformation

steps

throughout

the

map;

that

is;

temporary

variables

are

global

to

the

map.

For

example,

you

can

calculate

a

value

in

one

transformation

step,

store

it

in

a

temporary

variable,

and

reference

the

variable

in

another

transformation

step.

This

is

especially

useful

if

a

certain

calculation

is

performed

repeatedly;

you

can

perform

the

calculation

once,

store

the

result

in

a

temporary

variable,

and

retrieve

the

value

as

needed

(for

example,

with

a

Move

transformation).

Temporary

variables

are

defined

within

a

temporary

business

object.

You

create

a

temporary

business

object

from

the

Temporary

tab

of

the

Add

Business

Object

dialog.

To

display

the

Add

Business

Object

dialog,

perform

the

following

steps:

1.

Select

Add

Business

Object

from

the

Edit

menu.

For

information

on

other

ways

to

display

the

Add

Business

Object

dialog,

see

“From

the

Add

Business

Object

dialog”

on

page

32.

Result:

The

General

tab

of

the

Add

Business

Object

Properties

dialog

box

appears.

2.

Click

the

Temporary

tab.

Figure

74

shows

the

Temporary

tab

of

the

Add

Business

Object

dialog.

Through

the

Temporary

tab

of

the

Add

Business

Object

dialog,

you

specify

the

temporary

variables.

To

define

a

temporary

variable:

1.

Map

Designer

Express

generates

the

temporary

business

object’s

name

and

displays

it

in

the

Name

field.

This

field

is

read-only.

The

first

generated

name

is

ObjTemporary.

2.

Click

in

the

Attribute

field.

Result:

A

new

row

appears

in

the

variables

table.

Enter

the

name

of

the

temporary

variable.

Figure

74.

Temporary

tab

of

the

Add

Business

Object

dialog

142

Map

Development

Guide

Note:

Do

not

create

two

temporary

variables

with

the

same

name.

3.

Click

the

Type

field

and

select

the

temporary

variable’s

data

type

from

the

pull-down

list.

Note:

To

be

compatible

with

the

ICS

data

type

scheme,

all

temporary

variables

have

an

internal

type

String.

The

data

type

specified

in

the

Add

Business

Object

dialog

will

affect

only

how

the

variable

is

initialized.

If

you

want

to

write

custom

Java

code

to

assign

values

to

the

temporary

variable,

the

value

has

to

be

converted

to

a

String

first.

4.

Repeat

steps

2

and

3

for

each

of

the

temporary

variables

you

need

in

the

map.

5.

Click

the

Add

Temporary

Business

Object

button.

6.

You

can

either

define

another

temporary

business

object

or

click

Done

to

finish.

Once

Map

Designer

Express

creates

the

temporary

business

object,

this

business

object

appears

in

the

Table

and

Diagram

tabs

with

the

map’s

other

business

objects,

as

follows:

v

From

the

Table

tab:

–

The

business

object

pane

adds

a

new

area

for

the

temporary

business

object.

You

can

right-click

the

name

of

the

temporary

business

object

to

get

a

Context

menu

that

provides

options

to

edit

and

delete

this

business

object.

–

The

temporary

business

object

and

its

attributes

appear

in

the

combo

boxes

of

the

Source

Attribute

and

Dest.

Attribute

columns

in

the

attribute

transformation

table.
v

From

the

Diagram

tab,

the

map

workspace

adds

a

new

business

object

window

for

the

temporary

business

object.

This

Temporary

business

object

window

has

many

of

the

same

characteristics

as

a

business

object

window.

Variables

you

create

appear

in

the

variables

table

just

like

attributes

in

a

business

object.

This

business

object

window

provides

a

Rule

and

Comment

column

where

you

can

add

the

temporary

variable’s

transformation

code

and

comment,

respectively.

You

can

right-click

in

the

title

bar

of

the

Temporary

business

object

window

to

get

a

Context

menu

that

provides

options

to

edit

and

delete

this

business

object,

as

well

as

its

properties.

To

specify

a

value

for

the

variable,

copy

the

value

from

a

business

object

attribute

to

the

variable

by

holding

down

the

Ctrl

key

and

dragging

the

attribute

onto

the

variable

name.

You

can

also

split

and

join

attributes

into

a

variable.

Note:

A

temporary

business

object

also

appears

in

the

Business

Object

tab

of

the

Map

Properties

dialog.

You

use

the

temporary

variable

in

a

transformation

step

in

this

way:

v

In

the

Diagram

tab:

–

Click

the

row

header

(left-most)

column

of

the

temporary

attribute.

–

Copy

the

variable

value

to

an

attribute

by

holding

the

Ctrl

key

and

dragging

the

variable

onto

the

attribute.

Important:

Because

a

temporary

variable

is

a

global

variable,

you

must

explicitly

initialize

a

temporary

variable

to

null

when

using

the

Map

Instance

Reuse

option.

Otherwise,

the

value

of

the

temporary

variable

from

a

previous

execution

of

the

map

instance

can

incorrectly

be

used

as

the

value

of

the

temporary

variable

in

subsequent

executions

of

the

same

Chapter

5.

Customizing

a

map

143

map.

When

you

do

not

use

the

Map

Instance

Reuse

option,

the

InterChange

Server

Express

system

automatically

initializes

temporary

variables

between

separate

invocations

of

the

map.

Reusing

map

instances

Typically,

the

map

development

system

creates

an

instance

of

a

map

to

process

each

transformation

of

data

between

the

source

and

destination

business

objects.

When

the

instance

completes

the

handling

of

the

transformation,

the

system

frees

up

its

resources.

To

reduce

memory

usage,

the

IBM

system

recycles

an

instance

of

a

map

instance

by

caching

it

and

reusing

it

when

the

same

type

of

map

is

instantiated

at

some

later

time.

When

the

IBM

system

can

recycle

an

existing

map

instance,

it

can

avoid

the

overhead

of

map

instantiation,

thereby

improving

overall

system

performance

and

memory

use.

The

map

development

system

automatically

caches

a

map

instance;

that

is,

a

map

instance

uses

the

Map

Instance

Reuse

option

by

default.

Requirement:

The

Map

Instance

Reuse

option

imposes

the

following

requirement

on

the

map:

If

your

map

requires

global

variables,

avoid

initializing

these

global

variables

at

declaration

time.

Instead,

ensure

that

the

global

variables

are

always

initialized

at

a

map

node,

preferably

the

first

transformation

(attribute)

node

in

a

map.

Attention:

A

map

containing

global

variables

that

are

not

initialized

at

the

first

transformation

node

cannot

safely

be

recycled

because

the

variable

values

in

the

cached

map

instance

persist

when

the

instance

is

reused.

When

the

cached

map

instance

is

reused

and

begins

execution,

each

global

variable

contains

the

value

from

the

end

of

the

previous

use

of

the

map

instance.

If

you

cannot

define

your

map

so

that

it

meets

the

preceding

restrictions,

you

must

disable

the

Map

Instance

Reuse

option

for

this

map.

To

disable

this

option,

remove

the

check

mark

from

the

Map

instance

reuse

box,

which

appears

in

the

map’s

Map

Properties

window

in

System

Manager.

This

window

also

allows

you

to

specify

the

size

of

the

map-instance

pool.

For

more

information

on

the

Map

Properties

window

of

System

Manager,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

Note:

Deploying

the

map

to

the

server

will

not

update

the

run-time

instance.

You

can

update

the

map

properties

dynamically

from

the

server

component

management

view

by

right-clicking

on

the

map

and

selecting

the

properties

from

the

Context

menu.

The

changes

will

be

automatically

updated

to

the

server.

Handling

exceptions

An

exception

represents

an

occurrence

that,

if

not

handled

explicitly

within

the

map,

stops

the

map’s

execution.

During

the

execution

of

a

map,

run-time

exceptions

can

occur.

When

you

define

a

custom

transformation

rule,

you

can

use

the

″Catch

Error″

function

block

to

trap

any

run-time

exception.

Once

you

catch

a

particular

exception,

you

can

determine

how

to

handle

this

exception.

144

Map

Development

Guide

Relationship

exceptions

When

using

relationships

in

a

map,

several

exceptions

can

occur.

All

of

these

exceptions

are

subclasses

of

RelationshipRuntimeException.

If

you

are

not

concerned

about

the

kind

of

exception,

but

simply

want

to

catch

them

all,

you

can

catch

RelationshipRuntimeException.

Otherwise,

you

can

catch

any

of

the

following

exceptions

for

specific

cases:

v

RelationshipRuntimeDataAccessException—thrown

if

a

problem

occurs

while

accessing

the

relationship

database.

You

might

catch

this

exception

in

any

method

call

from

the

Relationship

or

Participant

class.

v

RelationshipRuntimeDuplicateIdentityEntryException—thrown

if

you

try

to

add

a

participant

to

an

identity

relationship

with

the

same

relationship

instance

ID

as

an

existing

relationship

instance.

You

might

catch

this

exception

in

addMyChildren()

and

create()

method

calls.

v

RelationshipRuntimeUserErrorException—is

an

abstract

exception.

It

is

thrown

only

if

a

RelationshipRuntimeMetaDataErrorException

or

RelationshipRuntimeGeneralUserErrorException

occurs.

You

might

catch

this

exception

in

any

method

call

from

the

Relationship

or

Participant

class

during

map

development.

Once

the

map

is

debugged,

you

can

remove

the

handlers

for

this

exception.

v

RelationshipRuntimeMetaDataErrorException—thrown

if

an

error

occurs

while

manipulating

the

meta-data

associated

with

participant

instances,

such

as

the

relationship

name

or

participant

definition

name.

You

might

catch

this

exception

in

any

method

call

that

adds,

modifies,

or

deletes

participant

instances.

v

RelationshipRuntimeGeneralUserErrorException—thrown

if

there

is

an

error

in

the

run-time

data

supplied

with

a

Relationship

or

Participant

class

method

call.

Example:

The

exception

is

thrown

if

you

pass

a

business

object

of

the

wrong

type

to

the

create()

method.

Figure

75

illustrates

the

relationship

run-time

exception

hierarchy.

Any

exception

you

catch

automatically

catches

those

that

are

lower

in

the

hierarchy.

However,

if

an

exception

lower

in

the

hierarchy

is

thrown,

you

cannot

know

exactly

which

one

it

is

unless

you

catch

it

specifically.

RelationshipRuntimeException

RelationshipRuntimeDataAccessException

RelationshipRuntimeUserErrorException

RelationshipRuntimeDuplicateIdentityEntryException

RelationshipRuntimeMetaDataErrorException

RelationshipRuntimeGeneralUserErrorException

Figure

75.

Relationship

run-time

exceptions

Chapter

5.

Customizing

a

map

145

Example:

If

you

catch

RelationshipRuntimeUserErrorException,

you

automatically

also

catch

RelationshipRuntimeMetaDataErrorException

and

RelationshipRuntimeGeneralUserErrorException.

However,

you

cannot

easily

know

which

one

of

these

was

actually

thrown,

unless

you

test

the

exception

with

the

instance

of

operator.

The

exception

you

choose

to

catch

depends

on

how

specific

you

want

your

exception

handling

to

be.

Creating

custom

data

validation

levels

When

values

are

mapped

from

one

business

object

to

another

based

on

transformation

code,

incorrect

data

can

result.

The

data

validation

feature

checks

each

operation

in

a

map

and

logs

an

error

when

data

in

the

incoming

business

object

cannot

be

transformed

to

data

in

the

outgoing

business

object

according

to

certain

rules.

Example:

Suppose

that

a

map

transforms

a

string

value

in

the

source

business

object

to

an

integer

value

in

the

destination

business

object.

This

type

conversion

works

properly

when

an

incoming

string

value

represents

an

integer

(for

example,

“1234”

represents

the

integer

1234).

However,

the

conversion

does

not

work

properly

if

the

string

value

does

not

represent

an

integer

(for

example,

“ABCD”

might

indicate

invalid

data).

Coding

a

data

validation

level

The

map

development

system

defines

data

validation

levels

0

and

1;

levels

2

and

greater

are

available

for

you

to

define.

Table

55

summarizes

the

data

validation

levels:

Table

55.

Data

Validation

Levels

Level

Description

0

Default;

no

data

validation

1

IBM-defined

data

type

checks

2

and

greater

User-defined

validation

checks

Understanding

map

execution

contexts

Each

map

instance

executes

within

a

specific

execution

context

that

is

set

by

the

connector

controller.

The

Mapping

API

represents

the

map

execution

context

with

an

instance

of

the

MapExeContext

class.

For

every

map

that

Map

Designer

Express

generates,

the

map’s

execution

context

is

accessible

through

a

system-defined

variable

named

cwExecCtx.

You

can

reference

this

variable

in

the

Variables

folder

in

the

Activity

Editor.

Calling

contexts

The

calling

context

indicates

the

purpose

for

the

current

map

execution.

When

transforming

relationship

attributes,

you

usually

need

to

take

actions

based

on

the

map’s

calling

context.

Table

56

lists

the

valid

constants

for

calling

contexts.

146

Map

Development

Guide

Table

56.

Calling

contexts

Calling-context

constant

Description

EVENT_DELIVERY

The

source

business

object(s)

being

mapped

are

event(s)

from

an

application,

sent

from

a

connector

to

InterChange

Server

Express

in

response

to

a

subscription

request

(event-triggered

flow).

ACCESS_REQUEST

The

source

business

object(s)

being

mapped

are

calls

from

an

application,

sent

from

an

access

client

to

InterChange

Server

Express

(call-triggered

flow).

ACCESS_RESPONSE

The

source

business

object(s)

being

mapped

are

sent

back

to

the

access

client

in

response

to

a

subscription

delivery

request.

SERVICE_CALL_REQUEST

The

source

business

object(s)

being

mapped

are

sent

from

InterChange

Server

Express

to

an

application,

through

a

connector.

SERVICE_CALL_RESPONSE

The

source

business

object(s)

being

mapped

are

sent

back

to

InterChange

Server

Express

from

an

application

as

a

response

to

a

successful

service

call

request.

SERVICE_CALL_FAILURE

The

source

business

object(s)

being

mapped

are

sent

back

to

InterChange

Server

Express

from

an

application

after

a

failed

service

call

request.

You

can

reference

these

calling

contexts

as

constants

in

the

MapExeContext

object

that

is

available

in

every

map

that

Map

Designer

Express

creates.

Example:

You

reference

the

SERVICE_CALL_REQUEST

calling

context

as

MapExeContext.SERVICE_CALL_REQUEST.

Figure

76

illustrates

when

each

of

the

calling

context

occurs

in

an

event-triggered

flow.

Event-triggered

flow

is

initiated

when

a

connector

sends

an

event

to

a

collaboration

in

InterChange

Server

Express.

SERVICE_CALL_RESP

EVENT_DELIVE SERVICE_CALL_RE
InterChange

Express
Server

Source
Connector

Destination
Connector

As

Figure

76

shows,

any

mapping

request

coming

from

a

connector

to

InterChange

server

(that

is,

a

map

from

application-specific

business

object

to

generic

business

object)

has

a

calling

context

of

EVENT_DELIVERY.

Any

mapping

request

coming

from

InterChange

server

to

a

connector

(that

is,

a

map

from

generic

business

object

to

application-specific

business

object)

has

a

calling

context

of

SERVICE_CALL_REQUEST.

Mapping

requests

sent

by

connectors

in

response

to

a

collaboration’s

service

call

request

can

have

contexts

of

SERVICE_CALL_RESPONSE

or

SERVICE_CALL_FAILURE.

Figure

76.

Calling

contexts

in

an

event-triggered

flow

Chapter

5.

Customizing

a

map

147

Figure

77

illustrates

when

each

of

the

calling

contexts

occurs

in

a

call-triggered

flow.

Call-triggered

flow

is

initiated

when

an

access

client

sends

a

direct

Server

Access

Interface

call

to

a

collaboration

in

InterChange

Server

Express.

As

Figure

77

shows,

any

mapping

request

coming

from

an

access

client

to

InterChange

server

(that

is,

a

map

from

application-specific

business

object

to

generic

business

object)

has

a

calling

context

of

ACCESS_REQUEST.

Any

mapping

request

coming

from

InterChange

Server

Express

to

an

access

client

(that

is,

a

map

from

generic

business

object

to

application-specific

business

object)

has

a

calling

context

of

ACCESS_RESPONSE.

Original-request

business

objects

Another

important

part

of

the

map’s

context

is

the

original-request

business

object.

This

business

object

is

the

one

that

has

initiated

the

map

execution.

Table

57

shows

the

calling

contexts

and

the

associated

original-request

business

object.

Table

57.

Calling

contexts

and

their

associated

original-request

business

objects

Calling

context

Original-request

business

object

Original-request

business

object

from

example

EVENT_DELIVERY,

ACCESS_REQUEST

Application-specific

business

object

that

came

in

from

the

application

AppA-specific

SERVICE_CALL_REQUEST,

SERVICE_CALL_FAILURE

Generic

business

object

that

was

sent

down

from

InterChange

Server

Express

Generic

SERVICE_CALL_RESPONSE

Generic

business

object

that

was

sent

down

by

the

SERVICE_CALL_REQUEST

Generic

ACCESS_RESPONSE

Application-specific

business

object

that

came

in

from

the

access

request

initially

AppA-specific

For

example,

the

generic

business

object

is

the

original-request

business

object

for

maps

that

execute

with

a

calling

context

of

SERVICE_CALL_RESPONSE,

SERVICE_CALL_FAILURE,

or

SERVICE_CALL_REQUEST.

These

maps

use

the

generic

business

object

to

store

relationship

instance

IDs

for

the

relationship

attributes

being

transformed.

Having

the

relationship

instance

IDs

is

necessary

for

the

map

to

look

up

the

relationship

instance

and

fill

in

the

relevant

participant

data

for

newly

created

or

updated

objects.

Example:

The

following

example

illustrates

how

this

might

work

in

a

customer

synchronization

scenario.

Suppose

you

are

using

the

system

to

keep

data

SERVICE_CALL_RESPO

ACCESS_REQUE SERVICE_CALL_REQ
InterChange

Express
Server

Access
Client

Destination
Connector

ACCESS_RESPONSE

Figure

77.

Calling

contexts

in

a

call-triggered

flow

148

Map

Development

Guide

synchronized

between

Application

A

and

Application

B.

Both

applications

store

customer

data,

and

the

customer

ID

attributes

are

managed

using

a

relationship.

For

the

purposes

of

this

example,

details

about

the

collaborations

and

connectors

involved

are

omitted.

When

a

new

customer

is

added

in

Application

A:

1.

A

map

transforms

an

AppA-specific

business

object

to

a

generic

business

object

with

a

calling

context

of

EVENT_DELIVERY.

When

transforming

the

customer

ID

attribute,

the

map

creates

a

new

relationship

instance

in

the

customer

ID

relationship

table

and

inserts

the

new

relationship

instance

ID

into

the

customer

ID

attribute

of

the

generic

business

object.

2.

A

map

transforms

the

generic

business

object

to

a

AppB-specific

business

object

with

a

calling

context

of

SERVICE_CALL_REQUEST.

No

changes

occur

to

the

relationship

tables.

Application

B

successfully

adds

the

new

customer

to

the

application.

3.

A

map

transforms

the

AppB-specific

business

object

to

a

generic

business

object

with

a

calling

context

of

SERVICE_CALL_RESPONSE.

The

context

for

this

map

execution

includes

the

generic

business

object

generated

in

step

1.

The

reason

for

this

execution

is

to

fill

in

the

new

participant

data

for

the

relationship

instance

created

in

step

1.

In

this

case,

the

new

participant

data

is

the

customer

ID

for

the

new

customer

added

to

application

B.

Figure

78

illustrates

when

the

map

execution

for

each

step

occurs

for

a

call-triggered

flow

that

successfully

adds

a

new

customer

ID

to

Application

B.

InterChange

Express
Server

Application A
Connector

Application B
Connector

1. AppA-specific to
Generic,

2. Generic to AppB-
specific

3. AppB-specific to
Generic

Figure

78.

Example

of

Calling

Contexts

Chapter

5.

Customizing

a

map

149

150

Map

Development

Guide

Part

2.

Relationships

©

Copyright

IBM

Corp.

2003

151

152

Map

Development

Guide

Chapter

6.

Introduction

to

Relationships

This

chapter

provides

an

overview

of

WebSphere

business

integration

relationships

and

the

relationship

development

process.

This

chapter

covers

the

following

topics:

v

“What

is

a

relationship?”

on

page

153

v

“Relationships:

A

closer

look”

on

page

159

v

“Overview

of

the

relationship

development

process”

on

page

165

What

is

a

relationship?

When

attributes

in

a

source

and

destination

business

object

contain

equivalent

data

that

is

represented

differently,

the

transformation

step

employs

a

relationship.

A

relationship

establishes

an

association

between

data

from

two

or

more

business

objects.

Each

business

object

is

called

a

participant

in

the

relationship.

The

data

that

you

typically

transform

using

relationships

are:

v

ID

numbers,

such

as

a

customer

ID

or

product

ID

v

Other

values

represented

as

codes,

such

as

country,

currency,

or

marital

status

Suppose

application

A

uses

sequential

integers

for

customer

IDs,

and

application

B

uses

generated

customer

codes.

TashiCo

has

a

customer

ID

of

806

in

application

A

and

A100

in

application

B.

To

transfer

customer

ID

data

between

applications

A

and

B,

you

can

create

a

relationship

among

the

application

A

customer

business

object,

the

generic

customer

business

object,

and

the

application

B

customer

business

object,

based

on

the

customer

ID

attributes.

This

relationship

establishes

an

association

between

customers

from

application

A

and

application

B,

based

on

the

key

attributes

of

their

customer

business

objects.

In

Figure

79,

each

box

represents

a

participant

in

a

relationship

called

CustIden.

Relationships

are

classified

into

the

following

categories

based

on

the

type

of

data

in

the

participant

and

the

number

of

instances

of

each

participant

that

can

be

related:

Application A

CustIden

Participant

Application B

Participant

Generic Customer

Participant

Figure

79.

Relationship

with

three

participants

©

Copyright

IBM

Corp.

2003

153

v

A

lookup

relationship

establishes

an

association

between

data,

such

as

attributes

in

business

objects.

The

data

can

be

related

on

a

one-to-one,

one-to-many,

or

many-to-many

basis.

Lookup

relationships

typically

transform

non-key

attributes

whose

values

are

represented

with

codes,

such

as

marital

status

or

currency

code.

Use

a

lookup

relationship

if

these

attribute

values

are

static;

that

is,

new

values

are

not

often

added

or

existing

values

removed.

v

An

identity

relationship

establishes

an

association

between

business

objects

or

other

data

on

a

one-to-one

basis.

For

each

relationship

instance,

there

can

be

only

one

instance

of

each

participant.

Identity

relationships

typically

transform

the

key

attributes

of

business

objects,

such

as

ID

numbers

and

product

codes.

The

relationship

in

Figure

79

is

an

example

of

an

identity

relationship.

Use

an

identity

relationship

if

key

values

are

dynamic;

that

is,

key

values

are

frequently

added

or

existing

values

are

removed.

v

A

non-identity

relationship

establishes

an

association

between

business

objects

or

other

data

on

a

one-to-many

or

many-to-many

basis.

For

each

relationship

instance,

there

can

be

one

or

more

instances

of

each

participant.

An

example

of

a

non-identity

relationship

is

an

RMA-to-Order

transformation,

in

which

a

single

RMA

(Return

Materials

Authorization)

business

object

can

yield

one

or

more

Order

business

objects.

Lookup

relationships

A

lookup

relationship

relates

two

pieces

of

non-key

data.

For

example,

in

a

Clarify_Site

to

Customer

map,

you

might

transform

attributes

whose

values

are

represented

by

codes

or

abbreviations,

such

as

SiteStatus,

using

a

lookup

relationship.

In

a

lookup

relationship,

there

is

one

participant

for

each

application-specific

business

object.

The

CustLkUp

relationship

in

Figure

80

establishes

a

lookup

relationship

between

customer

status

codes

from

Clarify

and

SAP

applications.

Each

box

represents

a

participant

in

the

CustLkUp

lookup

relationship.

Notice

that

this

relationship

has

two

participants,

one

for

each

application-specific

business

object.

Note:

Because

a

lookup

relationship

does

not

indicate

which

attributes

are

being

related,

its

participants

use

a

special

type

called

Data.

For

more

information,

see

“Participant

type”

on

page

164.

Suppose

that

the

Clarify

application

represents

an

inactive

customer

with

a

site

status

of

Inactive

while

in

SAP

the

corresponding

value

is

05.

Although

these

customer

status

codes

are

different,

they

represent

the

same

status,

as

Figure

81

shows.

CustLkUp

SAPLkUpClarLkUp

Type: Data Type: Data
Type: DataSAPLkUp

Figure

80.

CustLkUp

lookup

relationship

definition

154

Map

Development

Guide

Table

58

shows

the

steps

needed

to

create

a

lookup

relationship.

Table

58.

Steps

for

creating

a

lookup

relationship

Creation

step

For

more

information

1.

Define

a

lookup

relationship

in

Relationship

Designer

Express.

“Defining

lookup

relationships”

on

page

176

2.

Customize

mapping

code

to

maintain

the

lookup

relationship.

“Using

lookup

relationships”

on

page

188

3.

Test

the

lookup

relationship

to

verify

that

it

is

implemented

correctly.

“Testing

a

lookup

relationship”

on

page

83

Identity

relationships

An

identity

relationship

establishes

an

association

between

business

objects

or

other

data

on

a

one-to-one

basis.

To

maintain

a

one-to-one

relationship,

each

business

object

must

have

a

key;

that

is,

the

object

contains

at

least

one

attribute

(a

key

attribute)

whose

value

uniquely

identities

the

object.

If

both

business

objects

contain

a

key,

they

can

participate

in

an

identity

relationship.

The

WebSphere

business

integration

system

supports

the

following

kinds

of

identity

relationships:

v

“Simple

identity

relationships”

v

“Composite

identity

relationships”

on

page

157

Both

kinds

of

identity

relationships

involve

relating

business

object

attributes.

Therefore,

each

participant

in

an

identity

relationship

has

a

business

object

as

its

participant

type.

For

more

information

on

participant

types,

see

“Participant

type”

on

page

164.

Simple

identity

relationships

A

simple

identity

relationship

relates

two

business

objects

through

a

single

key

attribute;

that

is,

each

business

object

contains

a

single

value

that

uniquely

identifies

the

object.

Suppose

the

CustIden

relationship

(see

Figure

79)

is

further

refined

to

establish

an

association

between

customers

from

the

Clarify

and

SAP

applications,

based

on

the

key

attributes

of

their

customer

business

objects.

In

Figure

82,

each

box

represents

a

participant

in

this

customer

identity

relationship.

Notice

that

this

relationship

has

a

participant

for

each

application-specific

business

object

and

the

generic

business

object.

ClarLkUp

Data
Active

Inactive

Fired

Retired

SAPLkUp

Data
03

04

05

02

Figure

81.

Relationship

data

for

the

CustLkUp

lookup

relationship

Chapter

6.

Introduction

to

Relationships

155

The

TashiCo

company

is

identified

with

a

key

value

of

A100

in

the

Clarify

application

while

this

same

company

is

identified

with

a

key

value

of

806

in

the

SAP

application.

Although

these

application

IDs

are

different,

they

represent

the

same

customer,

as

Figure

83

shows.

Therefore,

the

following

maps

use

a

simple

identity

relationship

to

maintain

the

transformations

between

the

key

attributes:

v

The

inbound

maps

(between

the

Clarify

application-specific

business

object

and

the

generic

Customer

business

object)

use

a

simple

identity

relationship

to

maintain

the

transformation

between

the

SiteID

attribute

of

the

Clarify_Site

business

object

and

generic

CustomerID

attribute

of

the

generic

Customer

business

object.

v

The

outbound

maps

(between

the

generic

Customer

business

object

and

the

SAP

application-specific

business

object)

also

use

a

simple

identity

relationship

to

maintain

the

transformation

between

the

RefID

attribute

of

the

SAP_Customer

business

object

and

the

generic

CustomerID

attribute

of

the

generic

Customer

object.

Table

59

shows

the

steps

needed

to

create

a

simple

identity

relationship.

Table

59.

Steps

for

creating

a

simple

identity

relationship

Creation

step

For

more

information

1.

Define

a

simple

identity

relationship

in

Relationship

Designer

Express.

“Defining

identity

relationships”

on

page

174

2.

Customize

mapping

code

to

maintain

the

simple

identity

relationship.

“Using

simple

identity

relationships”

on

page

191

Type:
Attributes:

Clarify_Site

SiteID

CustIden

ClarCust

Type:
Attributes:

SAP_Customer

RefID

SAPCust

Type:
Attributes:

Customer

CustomerID

CWCust

Figure

82.

CustIden

simple

identity

relationship

definition

Clarify_Sit
SiteID
A100

A106

B312

C004

SAP_Custom
RefID
803

806

712

788

Figure

83.

Relationship

data

for

the

custIden

simple

identity

relationship

156

Map

Development

Guide

Table

59.

Steps

for

creating

a

simple

identity

relationship

(continued)

Creation

step

For

more

information

3.

Test

the

simple

identity

relationship

to

verify

that

it

is

implemented

correctly.

“Testing

an

identity

relationship”

on

page

80

Composite

identity

relationships

A

composite

identity

relationship

relates

two

business

objects

through

a

composite

key.

As

the

term

“composite”

indicates,

a

composite

key

is

a

key

that

consists

of

several

attributes.

Values

for

all

attributes

are

needed

to

uniquely

identify

the

object.

A

composite

key

consists

of

a

unique

key

from

a

parent

business

object

and

a

nonunique

key

from

a

child

business

object.

Suppose

a

particular

order

from

TashiCo

in

the

Clarify

application

is

identified

with

a

key

value

of

8765.

This

same

order

in

the

SAP

application

is

identified

with

a

key

value

of

0003411.

Because

these

two

order

numbers

uniquely

identify

the

same

order,

their

key

attributes

are

related

with

a

simple

identity

relationship.

However,

an

order

also

contains

order

lines.

If

all

participating

applications

identify

these

order

lines

with

a

unique

value,

a

simple

identity

relationship

can

maintain

their

transformations.

However,

it

is

often

the

case

that

an

application

uses

only

the

line

number

to

identify

an

order-line

item.

That

is,

each

order

contains

a

line

item

identified

with

1,

with

any

subsequent

items

numbered

2,

3,

and

so

on.

These

line

numbers

do

not

uniquely

identify

the

order-line

items.

To

uniquely

identify

such

items,

the

application

uses

a

composite

key

that

consists

of

the

order

number

(from

the

parent

order

business

object)

and

the

line

number

(from

the

child

order-line

business

object).

In

Figure

84,

the

OrdrLine

relationship

establishes

a

relationship

between

order

lines

from

the

Clarify

and

SAP

applications,

based

on

their

composite

key

attributes:

the

unique

key

attribute

of

their

parent

order

business

object

combined

with

the

order-line

number

in

their

child

order-line

business

object.

Each

box

represents

a

participant

in

the

OrdrLine

composite

identity

relationship.

Notice

that

each

participant

has

two

attributes.

Chapter

6.

Introduction

to

Relationships

157

Suppose

the

Clarify

application

(represented

by

the

participant

ClarOrder

in

Figure

84)

uses

sequential

integers

to

identify

order-line

items,

while

the

SAP

application

uses

the

line

number

to

identify

these

items.

The

Clarify

application

uniquely

identifies

each

order-line

item.

Therefore,

the

maps

between

the

Clarify

application-specific

business

object

and

the

generic

Order

business

object

(represented

by

the

participant

CWOrder)

can

use

a

simple

identity

relationship

to

maintain

the

transformation

of

the

order-line

items.

However,

the

SAP

application

(represented

by

the

participant

SAPOrder)

identifies

order-line

items

with

their

line

number.

Its

items

are

not

uniquely

identified:

every

order

contains

a

line

item

identified

with

1,

with

any

subsequent

items

numbered

2,

3,

and

so

on.

To

uniquely

identify

the

third

order-line

item

of

Order

0003411,

you

need

to

use

a

composite

key,

which

includes

both

the

order

number

(0003411)

and

the

item

number

(3).

Therefore,

the

maps

between

the

SAP

application-specific

business

object

and

the

generic

Order

business

object

must

use

a

composite

identity

relationship

to

maintain

the

transformation

of

the

order-line

items.

The

third

line

item

from

the

TashiCo

order

(8765)

is

identified

in

the

Clarify

application

with

the

simple

key

value

of

1171.

However,

this

same

line

item

is

identified

in

the

SAP

application

with

a

composite

key

value

of

0003411

(order

number)

and

3

(line

number).

Although

these

order

lines

are

identified

differently,

they

represent

the

same

order

line

item,

as

Figure

85

shows.

Type: Clarify_SFAQuote
Attributes:
QuoteObjId

Clarify_QuoteLine

Type: Clarify_QuoteLine
Attributes: QuoteLineId

OrdrLine

ClarOr der

Type: SAP_Order
Attributes:
OrderId

SAP_OrderLineItem

Type: SAP_OrderLineItem
Attributes: LineItemId

SAPOrder

Type: Order
Attributes:
OrderId

OrderLineItem

Type: OrderLineItem
Attributes: LineItemId

CWOrder

Figure

84.

OrdrLine

composite

identity

relationship

definition

158

Map

Development

Guide

Table

60

shows

the

steps

needed

to

create

a

composite

identity

relationship.

Table

60.

Steps

for

creating

a

composite

identity

relationship

Creation

step

For

more

information

1.

Define

a

composite

identity

relationship

in

Relationship

Designer

Express.

“Defining

identity

relationships”

on

page

174

2.

Customize

mapping

code

to

maintain

the

composite

identity

relationship.

“Using

composite

identity

relationships”

on

page

202

3.

Test

the

composite

identity

relationship

to

verify

that

it

is

implemented

correctly.

“Testing

an

identity

relationship”

on

page

80

Relationships:

A

closer

look

To

understand

the

types

of

relationships

that

the

WebSphere

business

integration

system

supports,

you

must

understand

how

IBM

implements

the

following

concepts:

v

“Relationships”

v

“Participants”

on

page

163

Relationships

As

Table

61

shows,

a

relationship

is

a

two-part

entity,

consisting

of

a

repository

entity

and

a

run-time

object.

Table

61.

Parts

of

a

relationship

Repository

entity

Run-time

object

Relationship

definition

Relationship

instance

Relationship

definition

You

define

a

relationship

to

the

WebSphere

business

integration

system

with

a

relationship

definition.

Relationship

definitions

identify

each

participant

and

specify

how

the

participants

are

related.

In

Figure

79,

CustIden

is

the

relationship

definition

and

it

includes

information

about

the

three

participants,

Application

A,

Application

B,

and

Generic

Customer.

The

system

stores

relationship

definitions

in

the

repository.

The

Relationship

Designer

Express

tool

provides

dialogs

to

help

you

create

the

relationship

definitions.

Using

this

tool,

you

also

store

the

completed

relationship

definition

in

the

repository.

Clarify_SF AQuote
QuoteObjId

8764

8765

8765

8765

8766

8766

SAP_Order
OrderId

0003409

0003410

0003410

0003411

0003411

0003411

Clarify_QuoteLine

1168

1169

1170

1171

1172

1173

SAP_OrderLineItem

1

1

2

1

2

3

Figure

85.

Relationship

data

for

the

OrdrLine

composite

identity

relationship

Chapter

6.

Introduction

to

Relationships

159

Tip:

For

more

information

on

how

to

use

Relationship

Designer

Express

to

create

relationship

definitions,

see

“Customizing

the

main

window”

on

page

170.

The

relationship

definition

provides

the

following

information

about

the

relationship:

v

The

relationship

name

v

The

name

of

the

relationship

database

Relationship

definition

name:

A

relationship

definition

is

simply

a

template,

or

description,

of

the

relationship;

it

is

not

an

actual

business

object.

Therefore,

the

name

of

the

relationship

definition

should

not

be

the

name

of

the

associated

business

object.

Relationship

database:

The

relationship

database

holds

the

relationship

tables

for

a

relationship.

The

relationship

uses

these

relationship

tables

to

keep

track

of

the

related

application-specific

values.

For

more

information,

see

“Relationship

tables”

on

page

161.

To

access

the

relationship

database

at

run

time,

the

system

must

have

the

following

information:

v

The

type

of

database

management

system

(DBMS)

that

manages

the

relationship

database

v

The

name

and

password

of

the

user

account

that

accesses

the

relationship

database

v

The

location

of

the

relationship

database

By

default,

the

relationship

database

is

the

WebSphere

business

integration

system

repository;

that

is,

Relationship

Designer

Express

creates

all

relationship

tables

in

the

repository.

Relationship

Designer

Express

allows

you

to

specify

the

location

of

relationship

tables

in

either

of

the

following

ways:

v

Change

the

default

location

of

relationship

databases

of

every

relationship.

For

more

information,

see

“Global

default

settings”

on

page

182.

v

Customize

the

location

of

each

relationship’s

tables

as

part

of

the

process

of

creating

a

relationship

definition.

For

more

information,

see

“Advanced

settings

for

relationship

definitions”

on

page

179.

Relationship

instance

The

relationship

definition

is

a

template

for

the

run-time

instantiation

of

the

relationship,

called

the

relationship

instance.

During

map

execution,

the

system

creates

instances

of

the

relationship

based

on

the

relationship

definition

and

using

the

values

from

the

actual

business

objects

being

transformed.

For

example,

the

relationship

data

for

the

CustLkUp

lookup

relationship

(see

Figure

81)

shows

that

a

customer

status

of

Inactive

in

a

Clarify

application

is

the

same

as

a

customer

status

of

05

in

an

SAP

application.

Although

these

status

codes

are

different,

they

represent

the

same

customer

status

and

therefore

are

in

the

same

relationship

instance,

as

Figure

86

shows.

160

Map

Development

Guide

A

relationship

instance

is

represented

in

the

Mapping

API

by

an

instance

of

the

Relationship

or

IdentityRelationship

class.

To

locate

a

relationship

instance,

the

system

requires

the

following

information:

v

A

relationship

table

to

identify

which

table

contains

the

relationship

instances

for

a

particular

participant

v

A

relationship

instance

ID

to

identify

the

actual

relationship

instance

within

the

relationship

table

Relationship

tables:

A

relationship

table

is

a

database

table

that

holds

the

relationship

run-time

data

for

one

participant

in

a

relationship.

InterChange

Server

Express

stores

relationship

instances

in

relationship

tables,

with

one

table

(sometimes

called

a

participant

table)

storing

information

for

one

participant

in

the

relationship.

For

example,

for

the

CustLkUp

lookup

relationship

in

Figure

80,

InterChange

Server

Express

requires

two

participant

tables,

as

shown

in

Figure

86.

When

you

create

a

relationship

definition,

Relationship

Designer

Express

automatically

creates

the

table

schemas

that

the

relationship

requires;

that

is,

it

creates

the

relationship

tables

with

the

necessary

columns

for

each

participant.

At

run

time,

these

tables

hold

the

data

for

the

relationship

instances.

Note:

For

an

identity

relationship,

InterChange

Server

Express

automatically

populates

the

relationship

tables.

For

a

lookup

relationship,

you

must

populate

the

relationship

tables

with

data.

For

more

information,

see

“Populating

lookup

tables

with

data”

on

page

189.

To

access

a

relationship

table

at

run

time,

the

system

must

have

the

following

information:

v

The

name

of

the

relationship

table

Because

a

relationship

table

is

associated

with

a

participant,

the

name

of

this

table

is

defined

as

part

of

the

participant

definition.

By

default,

any

relationship

table

has

a

name

of

the

form:

RelationshipDefName_ParticipantDefName

Relationship

Designer

Express

allows

you

to

customize

the

name

of

a

relationship

table

as

part

of

the

process

of

creating

a

participant

definition.

For

more

information,

see

“Advanced

settings

for

participant

definitions”

on

page

180.

v

The

name

of

the

database

that

contains

the

relationship

table

The

name

of

the

relationship

database

is

set

as

part

of

the

relationship

definition.

By

default,

the

relationship

database

is

the

system

repository.

For

more

information,

see

“Advanced

settings

for

relationship

definitions”

on

page

179.

ClarLkUp
Data

Active

Inactive

Fired

Retired

SAPLkUp
Data

03

04

05

02

Relationship
Instance

Figure

86.

One

Relationship

instance

for

the

CustLkUp

relationship

Chapter

6.

Introduction

to

Relationships

161

In

map-transformation

steps,

relationship

tables

are

managed

using

methods

in

the

Relationship,

IdentityRelationship,

and

Participant

classes.

Some

Mapping

API

methods

automatically

manage

relationship

tables.

You

can

also

explicitly

access

these

relationship

tables

to

obtain

this

relationship

data.

Relationship

instance

ID:

The

WebSphere

business

integration

system

uniquely

identifies

each

relationship

instance

by

assigning

it

a

unique

integer

value,

called

a

relationship

instance

ID.

This

instance

ID

allows

the

system

to

correlate

the

participant

values.

In

general,

given

any

participant

in

a

relationship,

you

can

retrieve

the

data

for

any

other

participant

in

the

relationship

by

specifying

the

relationship

instance

ID.

For

example,

for

the

relationship

between

customer

status

codes

of

a

Clarify

application

and

an

SAP

application,

the

WebSphere

business

integration

system

assigns

a

relationship

instance

ID

to

each

relationship

instance

of

the

lookup

relationship.

Figure

87

shows

how

instance

ID

47

associates

the

Clarify

customer

status

of

Inactive

with

the

SAP

customer

status

value

of

05.

Notice

that

this

relationship

is

basically

the

same

as

the

one

in

Figure

86,

with

the

addition

of

the

relationship

instance

ID.

Figure

87

shows

the

use

of

relationship

instance

IDs

in

a

lookup

relationship.

Instance

ID

47

associates

the

two

application-specific

participants,

ClarLkUp

and

SAPLkUp.

The

WebSphere

business

integration

system

also

uses

a

relationship

instance

ID

for

the

relationship

between

participants

in

an

identity

relationship.

In

the

CustIden

relationship

(see

Figure

82),

this

instance

ID

associates

the

customer

IDs

stored

in

the

SiteID

attribute

of

the

Clarify_Site

business

object,

the

CustomerID

attribute

of

the

generic

Customer

business

object,

and

the

RefID

attribute

of

the

SAP_Customer

business

object.

Figure

88

shows

how

the

relationship

instance

data

for

each

participant

of

the

CustIden

relationship

is

associated

using

the

relationship

instance

ID.

In

Figure

88,

the

relationship

table

for

the

CWCust

participant

is

included

for

clarity,

though

the

table

is

not

strictly

necessary.

In

fact,

relationship

tables

for

the

InstanceID

46

47

48

49

ClarLkUp
InstanceID

45

46

47

48

SAPLkUp

Relationship
Instance

47

Data

Active

Inactive

Fired

Retired

Data

03

04

05

02

Figure

87.

A

lookup

relationship

with

relationship

instance

IDs

InstanceID

116

117

118

119

ClarCust
SiteID

A100

A106

B312

C004

InstanceID

114

115

116

117

CWCust
CustomerID

14

18

07

22

InstanceID

115

116

117

118

SAPCust
RefID

803

806

712

788

Figure

88.

A

customer

identity

relationship

with

relationship

instance

IDs

162

Map

Development

Guide

participant

representing

the

generic

business

object

in

any

relationship

are

necessary

only

if

you

want

to

generate

a

generic

ID

for

the

associated

attribute

in

the

generic

business

object.

The

relationship

in

Figure

88

generates

a

generic

ID

(07)

for

the

CustomerID

attribute

in

the

generic

Customer

business

object.

You

can

simplify

your

relationship

definition

and

increase

performance

by

eliminating

the

relationship

tables

for

the

participant

that

represents

the

generic

business

object.

You

do

this

by

checking

the

managed

option

for

the

participant

when

you

create

the

relationship

definition.

See

“Advanced

settings

for

participant

definitions”

on

page

180

for

more

information

about

this

setting.

Figure

89

shows

how

relationship

instance

data

is

associated

in

the

CustIden

relationship

when

the

Managed

setting

is

specified

for

the

CWCust

participant.

The

WebSphere

business

integration

system

stores

the

relationship

instance

ID

in

the

relationship

table

for

each

participant.

As

Figure

87

through

Figure

89

show,

each

relationship

table

in

a

relationship

has

a

column

that

contains

the

relationship

instance

ID.

ICS

Express

automatically

creates

the

instance

ID

column

when

it

creates

the

table

schema.

Participants

A

relationship

contains

participants,

which

describe

the

entities

participating

in

the

relationship.

As

Table

62

shows,

a

participant

is

a

two-part

entity,

consisting

of

a

repository

definition

and

a

run-time

object.

Table

62.

Parts

of

a

participant

Repository

entity

Run-time

object

Participant

definition

Participant

instance

Participant

definitions

The

relationship

definition

contains

a

list

of

participant

definitions.

For

instance,

the

CustIden

relationship

definition

in

Figure

82

associates

customer

business

objects

in

Clarify

and

SAP

and

contains

these

participant

definitions:

SAPCust,

CWCust,

and

ClarCust.

The

WebSphere

business

integration

system

stores

participant

definitions

in

the

repository.

The

Relationship

Designer

Express

tool

provides

dialogs

to

help

you

create

the

participant

definitions.

Using

this

tool,

you

also

store

the

completed

participant

definition

in

the

repository.

The

participant

definition

provides

the

following

information

about

the

participant:

v

The

participant

name

v

The

participant

type

InstanceID

116

117

118

119

ClarCust
SiteID

A100

A106

B312

C004

InstanceID

115

116

117

118

SAPCust
RefID

803

806

712

788

Figure

89.

An

identity

relationship

Instance

with

no

generic

table

Chapter

6.

Introduction

to

Relationships

163

v

The

name

of

the

participant

table

and

stored

procedures

Participant

definition

name:

A

participant

definition

is

simply

a

template,

or

description,

of

the

participant;

it

is

not

an

actual

business

object.

Therefore,

the

name

of

the

participant

definition

should

not

be

the

name

of

the

associated

business

object.

Participant

type:

Like

the

attributes

in

a

business

object

definition,

the

participants

in

a

relationship

definition

have

an

associated

type.

The

participant

type

specifies

the

kind

of

data

associated

with

instances

of

the

participant.

The

participant

type

can

be

one

of

the

following:

v

The

name

of

a

business

object

definition

Relationships

with

participants

of

this

type

establish

an

association

between

entire

business

objects.

In

this

case,

you

specify

the

attributes

of

the

business

object

that

relate

the

participant

to

the

other

participants

in

the

relationship.

The

attributes

you

choose,

usually

the

key

attributes

of

the

business

object,

become

the

participant

instance

identifiers.

v

The

word

Data.

In

the

participant

definition,

Data

represents

a

supported

attribute

data

type,

such

as

String,

long,

int,

double,

float,

or

boolean.

You

specify

Data

as

the

type

for

participants

in

relationships

that

establish

associations

between

specific

attributes

in

business

objects.

Participants

in

lookup

relationships

have

a

participant

type

of

Data.

For

information

on

how

to

define

the

type

of

a

participant,

see

“Creating

relationship

definitions”

on

page

173.

Participant

table

and

stored

procedures:

For

every

participant,

ICS

Express

creates

the

following

database

entities:

v

A

participant

table

to

hold

the

relationship

instance

IDs

and

the

associated

participant’s

application-specific

value

v

Stored

procedures

to

perform

Retrieve

(Select),

Insert,

Delete,

and

Update

operations

on

the

participant

table

By

default,

Relationship

Designer

Express

assigns

names

of

the

following

form

to

the

participant’s

table

and

stored

procedure:

RelName_ParticipantName_X,

where

RelName

is

the

name

of

the

relationship

definition,

ParticipantName

is

the

name

of

the

participant

definition,

and

X

is

T

for

the

participant

table

or

SP

for

the

stored

procedure.

By

default,

Relationship

Designer

Express

creates

the

relationship

tables

in

the

WebSphere

business

integration

system

repository.

Relationship

Designer

Express

allows

you

to

customize

the

names

of

the

participant

table

and

stored

procedures.

For

more

information

on

naming

the

participant

table

and

stored

procedures,

see

“Advanced

settings

for

participant

definitions”

on

page

180.

Participant

instances

The

participant

definition

is

a

template

for

the

run-time

instantiation

of

the

participant,

called

the

participant

instance.

During

map

execution,

the

WebSphere

business

integration

system

creates

instances

of

the

participant

based

on

the

participant

definition

and

the

attribute

values

from

the

actual

business

objects

being

transformed.

The

WebSphere

business

integration

system

stores

participant

instances

as

a

column

in

the

participant’s

relationship

table.

For

example,

for

the

CustIden

164

Map

Development

Guide

relationship

in

Figure

82,

the

ClarCust

participant

has

a

column

called

SiteID

in

its

participant

table

to

hold

the

values

of

its

participant

instances.

The

SAPCust

participant

has

a

RefID

column

in

its

participant

table

to

hold

the

values

of

its

participant

instances.

Each

participant

instance

contains

the

following

information:

v

Name

of

the

relationship

definition

v

Relationship

instance

ID

v

Name

of

the

participant

definition

v

Data

to

associate

with

the

participant

A

participant

instance

is

represented

in

the

Mapping

API

by

an

instance

of

the

Participant

class.

Overview

of

the

relationship

development

process

A

relationship

in

the

WebSphere

business

integration

system

is

a

two-part

entity:

v

A

relationship

definition,

stored

in

the

repository,

to

define

the

participants

v

Code

within

a

map

to

implement

the

relationship

by

accessing

the

relationship

tables

To

define

a

relationship

in

the

WebSphere

business

integration

system,

you

must

perform

the

following

basic

steps:

1.

Determine

the

type

of

relationship

you

need.

2.

Within

Relationship

Designer

Express,

define

a

relationship

definition

and

define

the

composite

participants.

3.

Within

Map

Designer

Express,

customize

the

transformation

rule,

if

necessary,

to

maintain

the

relationship.

4.

Recompile

the

affected

maps.

5.

Deploy

the

relationships

and

maps

to

InterChange

Server

Express

with

the

Create

Schema

option.

6.

Ensure

that

the

relationship

database(s)

exists

and

is

defined

correctly

within

the

relationship

definition.

7.

Populate

relationship

tables

for

any

lookup

relationships.

8.

Optionally,

populate

other

relationship

tables

with

test

data

for

the

testing

phase.

9.

For

each

map,

start

all

relationships

in

the

map.

10.

Test

the

relationship

with

the

Test

Connector.

Be

sure

to

set

the

appropriate

calling

context

as

part

of

each

of

the

tests.

Figure

90

provides

a

visual

overview

of

the

relationship

development

process

and

provides

a

quick

reference

to

chapters

where

you

can

find

information

on

specific

topics.

Note

that

if

a

team

of

people

is

available

for

map

development,

the

major

tasks

of

developing

a

map

can

be

done

in

parallel

by

different

members

of

the

development

team.

Chapter

6.

Introduction

to

Relationships

165

Task: Steps:

Define the
relationship

•
•
•

Create the relationship definition
• Create the participant definitions

Generate the table schemas

Refer to:

Customize the map

Populate
relationship tables

Activate the
relationship

• Add relationship-management code to
the appropriate maps

• Implement error and message handling
• Validate and compile the map

• Populate the relationship tables for all
lookup relationships

• Populate any other relationship tables
with test data (optional)

• Start the relationship from System
Manager

Chapter 7

Chapter 8

Chapter 4

Chapter 8

Test and debug
the map

• Test the map
• Before recoding, stop the relationship
• Recode as needed
• Before retesting, start the relationship

Determine the type
of relationship

• Determine what type of relationship
you need to use: lookup, identity
custom

, Chapter 6

Figure

90.

Overview

of

the

Relationship

Development

Task

166

Map

Development

Guide

Chapter

7.

Creating

relationship

definitions

This

chapter

describes

how

to

create

and

modify

relationship

definitions

using

Relationship

Designer

Express.

For

background

information

on

how

the

WebSphere

business

integration

system

uses

relationships

in

mapping,

see

Chapter

6,

“Introduction

to

Relationships,”

on

page

153.

For

help

customizing

relationships

in

maps,

see

Chapter

5,

“Customizing

a

map,”

on

page

87.

This

chapter

covers

the

following

topics:

v

“Overview

of

Relationship

Designer

Express”

on

page

167

v

“Creating

relationship

definitions”

on

page

173

v

“Defining

identity

relationships”

on

page

174

v

“Defining

lookup

relationships”

on

page

176

v

“Creating

the

relationship

table

schema”

on

page

178

v

“Copying

relationship

and

participant

definitions”

on

page

178

v

“Renaming

relationship

or

participant

definitions”

on

page

179

v

“Specifying

advanced

relationship

settings”

on

page

179

v

“Deleting

a

relationship

definition”

on

page

183

v

“Optimizing

a

relationship”

on

page

184

Overview

of

Relationship

Designer

Express

Relationship

Designer

Express

is

a

graphical

development

tool

for

creating

and

modifying

relationship

definitions.

A

relationship

definition

establishes

an

association

between

two

or

more

participants.

You

create

a

relationship

definition

by

specifying

the

participants

in

the

relationship

and

defining

the

data

source

and

other

properties

associated

with

each

participant.

This

section

provides

the

following

information

as

an

overview

to

Relationship

Designer

Express:

v

“Starting

Relationship

Designer

Express”

on

page

167

v

“Working

with

projects”

on

page

168

v

“Layout

of

Relationship

Designer

Express”

on

page

169

v

“Customizing

the

main

window”

on

page

170

v

“Using

the

Relationship

Designer

Express

functionality”

on

page

171

Starting

Relationship

Designer

Express

To

launch

Relationship

Designer

Express,

you

can

do

any

of

the

following:

v

From

System

Manager,

you

can

–

Select

Relationship

Designer

Express

from

the

Tools

menu.

–

Click

a

Relationship

folder

in

a

project

to

enable

the

Relationship

Designer

Express

icon

in

the

System

Manager

toolbar.

Then

click

the

Relationship

Designer

Express

icon.

–

Right-click

the

Relationships

folder

in

a

project

and

select

Relationship

Designer

Express

from

the

Context

menu.

–

Right-click

a

relationship

in

the

Dynamic

or

Static

folder

and

select

Edit

Definitions

from

the

Context

menu.

©

Copyright

IBM

Corp.

2003

167

Result:

Relationship

Designer

Express

launches

and

highlights

the

selected

relationship.
v

From

a

development

tool,

such

as

Business

Object

Designer,

Map

Designer

Express,

or

Process

Designer,

you

can

either:

–

Select

Relationship

Designer

Express

from

the

Tools

menu.

–

Click

the

Relationship

Designer

Express

icon

in

the

Programs

toolbar:
v

Using

a

system

shortcut:

Start-->Programs-->IBM

WebSphere

Business

Integration

Express

for

Item

Sync

v4.3

-->Toolset

Express-->Development-->Relationship

Designer

Express

Important:

For

Relationship

Designer

Express

to

be

able

to

access

relationships

stored

in

System

Manager,

Relationship

Designer

Express

must

be

connected

to

an

instance

of

System

Manager.

The

preceding

steps

assume

that

you

have

already

started

System

Manager.

If

you

have

not

started

System

Manager,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization

for

more

information.

If

System

Manager

is

already

running,

Relationship

Designer

Express

will

automatically

connect

to

it.

Working

with

projects

System

Manager

is

the

only

tool

that

interacts

with

the

server.

It

imports

and

exports

entities

(relationships,

maps)

between

InterChange

Server

Express

and

System

Manager

projects.

Various

tools,

such

as

Relationship

Designer

Express,

connect

to

System

Manager

and

view,

edit,

and

modify

these

entities

on

a

project

basis.

A

project

is

simply

a

logical

grouping

of

entities

for

managing

and

deployment

purposes.

Once

entities

are

deployed

to

the

InterChange

Server

Express,

the

project

they

originated

from

no

longer

has

any

meaning.

System

Manager

allows

you

to

create

multiple

projects.

Before

you

can

work

on

a

relationship,

you

must

select

which

project

the

relationship

is

in.

To

select

a

project

to

work

with,

perform

the

following

steps:

1.

Select

Switch

to

Project

from

the

File

menu.

2.

Select

the

name

of

the

project

in

the

Switch

to

Project

submenu.

Result:

You

can

now

work

with

the

relationships

in

that

project.

Before

you

can

switch

to

yet

another

project,

you

are

prompted

to

save

the

relationships

you

modified

in

the

current

project.

168

Map

Development

Guide

Figure

91

shows

the

Switch

to

Project

option

for

browsing

a

project.

When

Relationship

Designer

Express

establishes

a

connection

to

System

Manager,

it

obtains

a

list

of

business

objects

that

are

defined

in

the

current

project.

This

list

assists

you

with

defining

participants.

If

you

add

or

delete

a

business

object

using

Business

Object

Designer,

System

Manager

notifies

Relationship

Designer

Express,

which

dynamically

updates

the

list

of

business

object

definitions.

Layout

of

Relationship

Designer

Express

In

the

Relationship

Designer

Express

window,

a

list

of

relationship

definitions

stored

in

the

current

project

appears

on

the

left

side.

In

this

relationship

definition

list,

the

contents

of

each

relationship

definition

appear

in

a

hierarchical

format

similar

to

the

Windows

Explorer.

You

can

expand

the

relationship

name

by

clicking

on

the

plus

symbol

(+)

beside

its

name

to

see

a

list

of

its

participant

definitions,

participant

types,

and

associated

attributes.

Figure

92

shows

a

relationship

definition

list.

Figure

91.

Browsing

a

project

Chapter

7.

Creating

relationship

definitions

169

The

Participant

Types

window

shows

a

list

of

available

data

types

in

the

current

project

that

you

can

associate

with

a

participant.

Figure

93

shows

the

main

window

of

Relationship

Designer

Express,

with

both

the

Relationship

Definition

list

and

the

Participant

Types

window.

Customizing

the

main

window

Relationship

Designer

Express

provides

the

following

ways

to

customize

its

main

window:

v

“Choosing

windows

to

display”

on

page

170

v

“Floating

a

dockable

window”

on

page

171

Choosing

windows

to

display

When

you

first

open

Relationship

Designer

Express,

only

the

relationship

definition

list

displays

in

the

main

window.

The

Participant

Types

window

does

not

display.

You

can

customize

the

appearance

of

the

main

window

with

options

from

the

View

pull-down

menu.

Table

63

describes

the

options

of

the

View

menu

and

how

they

affect

the

appearance

of

the

Relationship

Designer

Express

main

window.

Table

63.

View

menu

options

for

main

window

customization

View

menu

option

Element

displayed

Participant

Types

The

Participant

Types

window

displays

Toolbar

The

Standard

toolbar,

which

provides

the

main

functionality

for

Relationship

Designer

Express

Status

Bar

A

single-line

pane

in

which

Relationship

Designer

Express

displays

status

information

Figure

92.

Relationship

definition

list

Figure

93.

Relationship

Designer

Express

main

window

170

Map

Development

Guide

When

a

menu

option

appears

with

a

check

mark

to

the

left,

the

associated

element

displays.

To

turn

off

display

of

the

element,

select

the

associated

menu

option.

The

check

mark

disappears

to

indicate

that

the

element

does

not

currently

display.

Conversely,

you

can

turn

on

display

of

an

undisplayed

element

by

choosing

the

associated

menu

option.

In

this

case,

the

check

mark

appears

beside

the

displaying

element.

Floating

a

dockable

window

Relationship

Designer

Express

supports

the

following

portions

of

the

main

window

as

dockable

windows:

v

Standard

toolbar

v

Participant

Types

window

By

default,

a

dockable

window

is

usually

placed

along

the

edge

of

the

main

window

and

moves

as

part

of

the

main

window.

When

you

float

a

dockable

window,

you

detach

it

from

the

main

window,

allowing

it

to

function

as

an

independent

window.

To

float

a

dockable

window,

hold

down

the

left

mouse

button,

grab

the

border

of

the

window

and

drag

it

onto

the

main

window

or

desktop.

Using

the

Relationship

Designer

Express

functionality

You

can

access

Relationship

Designer

Express’s

functionality

using

any

of

the

following:

v

The

pull-down

menus

at

the

top

of

the

window

v

The

Context

menu

v

Keyboard

shortcuts

v

The

icons

in

the

toolbars

Main

menus

of

Relationship

Designer

Express

Relationship

Designer

Express

provides

the

following

pull-down

menus:

v

File

menu

v

Edit

menu

v

View

menu

v

Tools

menu

v

Help

menu

The

following

sections

describe

the

options

of

each

of

these

menus.

Keyboard

shortcuts

are

available

for

some

of

these

options,

as

indicated.

Functions

of

the

File

menu:

The

File

pull-down

menu

of

Relationship

Designer

Express

displays

the

options

shown

in

Table

64.

Except

for

the

Switch

to

Project

option,

all

File

menu

options

affect

objects

in

the

current

project.

Table

64.

File

menu

options

in

Relationship

Designer

Express

File

menu

option

Description

For

more

information

New

(Ctrl+N)

Creates

a

new

relationship

definition

“Creating

relationship

definitions”

on

page

173

Switch

to

Project...

(Ctrl+S)

A

submenu

with

a

list

of

other

projects

“Working

with

projects”

on

page

168

Save

Saves

the

current

relationship

definition

to

a

file

“Creating

relationship

definitions”

on

page

173

Save

All

Saves

all

open

relationship

definitions

N/A

Chapter

7.

Creating

relationship

definitions

171

Table

64.

File

menu

options

in

Relationship

Designer

Express

(continued)

File

menu

option

Description

For

more

information

Add

Participant

Definition

Adds

a

new

participant

definition

to

the

current

relationship

definition

“Creating

relationship

definitions”

on

page

173

Functions

of

the

Edit

menu:

The

Edit

pull-down

menu

of

Relationship

Designer

Express

displays

the

following

options:

v

Rename—renames

the

relationship

definition

v

Copy

(Ctrl+C)—Copies

the

current

relationship

definition.

v

Paste

(Ctrl+V)—Pastes

the

copied

relationship

definition.

v

Cut

(Ctrl+X)—Deletes

the

current

relationship

definition.

v

Advanced

Settings...—Displays

the

Advanced

Settings

window.

Functions

of

the

View

menu:

The

View

pull-down

menu

of

Relationship

Designer

Express

displays

the

following

options:

v

Participant

Types—Displays

the

Participant

Types

window.

v

Expand

Tree—Displays

the

members

of

the

current

level

of

the

relationship

definition

list

(same

as

clicking

on

the

plus

symbol

beside

the

name

of

the

level).

v

Collapse

Tree—Condenses

the

current

level

of

the

relationship

definition

list

so

that

its

members

do

not

display

(same

as

clicking

on

the

minus

symbol

beside

the

name

of

the

level).

v

Toolbar—When

on,

Relationship

Designer

Express

displays

the

Standard

toolbar.

v

Status

Bar—When

on,

Relationship

Designer

Express

can

display

its

single-line

status

message

at

the

bottom

of

the

main

window.

For

information

on

the

View

menu

options

that

control

display,

see

“Choosing

windows

to

display”

on

page

170.

Tools

menu

functions:

The

Tools

pull-down

menu

of

Relationship

Designer

Express

provides

options

to

start

each

of

the

WebSphere

business

integration

tools:

v

Relationship

Manager

v

Map

Designer

Express

v

Business

Object

Designer

Express

Help

Menu

functions:

Relationship

Designer

Express

provides

a

standard

Help

menu

with

the

following

options:

v

Help

Topics

(F1)

v

Documentation

v

About...

Note:

A

Context

menu

provides

shortcuts

to

useful

commands

and

is

available

by

right-clicking.

Its

options

change

depending

on

where

you

click

Relationship

Designer

Express

toolbar

Relationship

Designer

Express

provides

a

Standard

toolbar

for

common

tasks

you

need

to

perform.

This

toolbar

is

dockable;

that

is,

you

can

detach

it

from

the

palette

of

the

main

window

and

float

it

over

the

main

window

or

the

desktop.

Figure

94

shows

the

Relationship

Designer

Express

Standard

toolbar.

172

Map

Development

Guide

The

following

list

provides

the

function

of

each

Standard

toolbar

button,

left

to

right:

v

New

Relation

v

Save

Relation

v

New

Participant

v

Copy

v

Paste

v

Help

Creating

relationship

definitions

Perform

the

following

steps

to

create

a

relationship

definition:

1.

Create

a

relationship

name

with

one

of

the

following:

v

Select

New

Relationship

Definition

from

the

File

menu.

v

Use

the

keyboard

shortcut

Ctrl+N.

v

In

the

Standard

toolbar,

click

the

New

Relation

button.
2.

Name

the

icon

for

the

relationship

definition.

Rule:

Relationship

definition

names

can

be

up

to

8

characters

long,

can

contain

only

letters

and

numbers,

and

must

begin

with

a

letter.

3.

Create

a

participant

definition

for

each

business

object

to

be

related.

To

do

so,

select

the

relationship

definition

name

and

perform

one

of

the

following

actions:

v

Select

Add

Participant

Definition

from

the

File

menu.

v

In

the

Standard

toolbar,

click

the

New

Participant

button.
4.

For

each

participant

definition,

name

the

icon

for

the

participant

definition.

Rule:

Participant

definition

names

can

be

up

to

8

characters

long,

can

contain

only

letters

and

numbers,

and

must

begin

with

a

letter.

5.

Associate

a

data

type

with

each

participant

by

dragging

the

type

from

the

Participant

Types

window

onto

the

participant

definition.

Tip:

To

display

the

Participant

Types

window,

select

Participant

Types

from

the

View

menu.

v

To

associate

a

business

object

data

type,

drag

the

business

object

definition

from

the

Participant

Types

window.

The

participants

in

an

identity

relationship

use

business

object

definitions

as

their

participant

type.

For

more

information,

see

“Defining

identity

relationships”

on

page

174.

v

To

associate

a

Java

data

type,

drag

the

Data

participant

type

from

the

Participant

Types

window.

In

the

relationship

definition,

the

Data

participant

type

represents

all

data

types

other

than

business

object

types.

The

participants

in

a

lookup

relationship

use

Data

as

their

participant

type.

For

more

information,

see

“Defining

lookup

relationships”

on

page

176.
6.

For

participant

types

that

are

business

object

definitions,

add

or

change

the

attributes

to

associate

with

the

participant.

The

attributes

you

select

become

the

basis

on

which

the

business

objects

are

related.

Figure

94.

Relationship

Designer

Express

Standard

toolbar

Chapter

7.

Creating

relationship

definitions

173

7.

Save

the

relationship

definition

with

one

of

the

following:

v

Select

Save

Relationship

Definition

from

the

File

menu.

v

Use

the

keyboard

shortcut

Ctrl+S.

v

In

the

Standard

toolbar,

click

the

Save

Relation

button.
8.

Before

executing

a

map

that

uses

the

relationship

definition,

perform

the

following

steps:

v

Activate

the

relationship.

After

the

relationship

is

deployed

to

ICS

Express,

this

new

relationship

is

not

activated.

However,

for

the

Mapping

API

methods

to

be

able

to

access

the

relationship

tables,

a

relationship

table

must

be

active.

To

activate

the

relationship,

click

the

relationship

name

in

System

Manager

and

select

the

Start

option

from

the

Component

menu.

For

more

information

about

starting

and

stopping

a

relationship,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

v

Compile

and

deploy

the

map

that

uses

the

relationship.

If

the

map

is

deployed

and

compiled

successfully

in

ICS

Express,

ICS

Express

creates

the

executable

map

code

and

activates

the

map.

For

more

information,

see

“Compiling

a

map”

on

page

70.

Note:

If

you

create

or

make

a

change

to

a

relationship

definition,

you

must

first

stop

the

relationship

through

the

System

Manager

Relationship

menu,

make

the

change

to

the

relationship,

and

then

restart

the

relationship.

Defining

identity

relationships

An

identity

relationship

establishes

an

association

between

two

or

more

business

objects

on

a

one-to-one

basis.

That

is,

for

a

given

relationship

instance,

there

can

be

only

one

instance

of

each

participant.

You

typically

create

an

identity

relationship

to

transform

the

key

attributes

in

a

business

object,

such

as

customer

or

product

ID.

For

more

background

information,

see

“Identity

relationships”

on

page

155.

InterChange

Server

Express

supports

the

kinds

of

identity

relationships

shown

in

Table

65.

Table

65.

Kinds

of

Identity

relationships

Identity

relationship

type

Description

For

more

information

Simple

identity

relationship

Relates

two

business

objects

through

a

single

key

attribute

“Using

simple

identity

relationships”

on

page

191

Composite

identity

relationship

Relates

two

business

objects

through

a

composite

key

(made

up

of

more

than

one

attribute)

“Using

composite

identity

relationships”

on

page

202

To

define

an

identity

relationship

using

Relationship

Designer

Express,

perform

the

following

steps:

1.

Create

a

relationship

definition

and

the

participant

definitions

by

following

Steps

1-4

in

“Creating

relationship

definitions”

on

page

173.

Guideline:

Create

a

participant

definition

for

each

business

object

to

be

related.

Identity

relationships

require

participants

for

the

generic

business

object

as

well

as

the

application-specific

business

objects.

2.

Associate

a

business

object

with

each

participant

definition

by

dragging

the

business

object

definition

from

the

Participant

Types

window

onto

the

participant

definition.

You

can

release

the

drag

button

when

the

plus

symbol

(+)

appears

in

the

Relationship

Designer

Express

main

window.

For

174

Map

Development

Guide

information

on

how

to

open

the

Participant

Types

window,

see

step

5

in

“Creating

relationship

definitions”

on

page

173.

For

identity

relationships,

the

participant

type

is

a

business

object.

Every

identity

relationship

has

a

participant

with

a

participant

type

of

the

generic

business

object

plus

one

participant

for

each

application-specific

business

object.

3.

For

each

business

object

that

you

associate

with

a

participant

definition,

add

the

attributes

that

relate

the

business

object

with

the

other

participants.

To

do

so,

expand

the

associated

business

object

in

the

Participant

Types

window,

select

an

attribute,

and

drag

it

onto

the

business

object

in

the

main

Relationship

Designer

Express

window.

The

attributes

you

select

become

the

basis

of

the

relationship

between

the

business

objects.

For

identity

relationships,

the

attributes

are

usually

the

key

attributes

of

each

business

object

definition.

The

type

of

the

key

determines

the

kind

of

identity

relationship:

v

For

a

single

key,

use

a

simple

identity

relationship.

Each

participant

can

consist

of

only

one

attribute:

the

unique

key

of

the

business

object.

For

more

information,

see

“Creating

the

child

relationship

definition”

on

page

201..

v

For

a

composite

key,

use

a

composite

identity

relationship.

Specify

a

composite

key

by

adding

each

key

attribute

in

the

order

in

which

it

appears

in

the

composite

key.

Each

participant

can

contain

several

attributes:

usually,

the

unique

key

from

the

parent

business

object

and

at

least

one

attribute

from

the

child

business

object

(within

the

parent

business

object).

When

deployed

to

the

server,

the

relationship

is

saved

in

a

table,

the

name

of

which

is

the

concatenation

of

the

attributes

in

the

order

in

which

they

appear

in

the

participant

definition.

For

more

information,

including

the

index

size

limitations

of

some

databases,

see

“Creating

composite

identity

relationship

definitions”

on

page

202..
4.

Highlight

the

relationship

definition

name

and

select

Advanced

Settings

from

the

Edit

menu.

Initially,

the

Advanced

Settings

window

displays

the

relationship

definition

settings,

as

Figure

96

on

page

180

shows.

a.

Modify

the

relationship

definition

settings

as

follows:

v

Under

Relationship

type,

check

the

Identity

box.

Result:

This

setting

tells

InterChange

Server

Express

to

process

the

relationship

as

an

identity

relationship

by

setting

a

uniqueness

constraint

on

the

relationship

instance

ID

and

the

key

attributes

for

each

participant.

This

action

guarantees

a

one-to-one

correspondence

between

all

participants

in

each

relationship

instance.

v

If

you

want

the

relationship

tables

to

reside

in

a

database

other

than

the

default

database

(the

WebSphere

business

integration

system

repository,

by

default),

enter

the

appropriate

database

information

in

the

DBMS

Settings

area

of

the

window.

For

more

information,

see

“Advanced

settings

for

relationship

definitions”

on

page

179.
b.

Modify

the

advanced

settings

for

the

participant

definition.

v

In

the

object

browser

of

the

Advanced

Settings

window,

expand

the

relationship

definition

and

highlight

the

participant

definition

that

represents

the

generic

business

object

to

display

the

participant

definition

settings

(see

Figure

97

on

page

181).

Check

the

box

labeled

IBM

WebSphere

Business

Integration

Express

for

Item

Sync-

managed.

Result:

This

action

tells

Relationship

Designer

Express

not

to

create

relationship

tables

for

the

generic

business

object.

When

you

maintain

the

Chapter

7.

Creating

relationship

definitions

175

relationship

with

the

maintainSimpleIdentityRelationship()

method,

the

WebSphere

business

integration

system

uses

the

relationship

instance

IDs

stored

in

the

application-specific

relationship

tables

to

transform

the

relationship

attributes.

v

If

you

want

to

customize

the

name

for

this

participant’s

relationship

table

or

stored

procedure,

enter

the

name

in

the

appropriate

field

in

the

window.

For

more

information,

see

“Advanced

settings

for

participant

definitions”

on

page

180.
c.

Click

OK

to

close

the

Advanced

Settings

window.
5.

Save

the

relationship

definition

as

described

in

steps

7-8

in

“Creating

relationship

definitions”

on

page

173.

Relating

child

business

objects

When

you

create

identity

relationships,

the

business

objects

you

are

relating

often

have

child

business

objects.

For

instance,

some

customer

business

objects

have

child

business

objects

for

storing

address

information.

A

child

business

object

can

participate

in

the

kinds

of

relationships

that

Table

66

shows.

Table

66.

Relationships

for

child

business

objects

Condition

of

child

business

object

Kind

of

relationship

For

more

information

The

key

for

the

child

business

object

uniquely

identifies

the

child

beyond

the

context

of

its

parent

Simple

identity

relationship

“Coding

a

child-level

simple

identity

relationship”

on

page

201

The

key

for

the

child

business

object

does

not

uniquely

identify

it

beyond

the

context

of

its

parent

Composite

identity

relationship

To

maintain

the

child

business

objects

during

an

Update

operation

as

part

of

the

identity

relationship

Parent/child

relationship

“Managing

child

instances”

on

page

207

If

the

child

is

a

multiple-cardinality

child

business

object,

you

can

change

the

index

to

make

the

participant

reference

a

specific

child.

To

do

so,

select

the

child’s

key

attribute,

right-click,

and

select

Change

Index

from

the

Context

menu.

If

the

source

and

destination

children

in

a

map

correspond

one

to

one,

the

index

is

not

significant

and

you

do

not

need

to

change

it.

However,

if

the

map

transforms

the

children

in

any

other

way,

you

can

enter

a

specific

index

number.

For

example,

if

the

child

business

objects

represent

addresses

and

the

third

source

address

corresponds

to

the

first

destination

address,

you

can

change

the

indexes

to

2

and

0,

respectively.

Defining

lookup

relationships

A

lookup

relationship

associates

data

that

is

equivalent

across

business

objects

but

may

be

represented

in

different

ways.

In

this

case,

given

a

value

in

one

business

object,

the

relationship

can

look

up

its

equivalent

in

the

relationship

tables

for

another

business

object.

The

most

common

example

of

attributes

that

might

require

lookups

are

codes

(EmployeeType,

PayLevel,

OrderStatus)

and

abbreviations

(State,

Country,

Currency).

For

more

background

information,

see

“Lookup

relationships”

on

page

154.

When

you

create

a

relationship

definition

for

a

lookup,

you

add

a

participant

definition

for

each

business

object

that

contains

the

attributes

you

want

to

relate.

176

Map

Development

Guide

However,

you

do

not

associate

the

actual

business

object

definitions

or

attribute

names

with

the

participant

definitions.

Instead,

you

specify

Data

as

the

participant

type

for

each

participant

definition.

To

define

a

lookup

relationship

using

Relationship

Designer

Express,

perform

the

following

steps:

1.

Create

a

relationship

definition

and

the

participant

definitions

by

following

Steps

1-4

in

“Creating

relationship

definitions”

on

page

173.

Create

a

participant

definition

for

each

business

object

to

be

related.

2.

For

each

participant

definition,

specify

Data

as

the

participant

type

by

dragging

the

Data

participant

type

from

the

Participant

Types

window

onto

the

participant

definition.

In

the

relationship

definition,

the

Data

participant

type

represents

all

data

types

other

than

business

object

types.

When

you

create

the

map

and

work

with

instances

of

the

relationship

using

methods

in

the

Relationship,

IdentityRelationship,

and

Participant

classes,

you

can

use

data

of

any

of

the

supported

Java

data

types,

such

as

String,

int,

long,

float,

double,

or

boolean.

3.

Make

a

note

of

the

table

name

for

storing

the

lookup

values

for

each

participant

definition.

You

need

to

know

the

table

name

so

you

can

populate

the

tables

with

the

lookup

values

for

each

participant

definition.

Or,

if

you

already

have

tables

containing

the

lookup

values,

you

can

replace

the

generated

table

name

with

your

own

table

name.

To

retrieve

the

table

names

for

each

participant

definition

in

the

relationship

definition,

or

to

specify

your

own

table

names:

a.

Select

the

participant

definition

and

select

Advanced

Settings

from

the

Edit

menu.

Result:

The

Advanced

Setting

dialog

box

appears

showing

the

storage

settings

for

that

participant.

See

“Specifying

advanced

relationship

settings”

on

page

179

for

more

information

on

these

settings.

b.

Write

down

the

storage

settings

for

the

participant,

or

overwrite

the

settings

with

your

own

table

information.

c.

Repeat

step

3a

and

step

3b

for

each

participant

definition.

d.

Click

OK

to

close

the

Advanced

Settings

dialog

box.

Figure

95.

Advanced

Settings

dialog

Chapter

7.

Creating

relationship

definitions

177

4.

Save

the

relationship

definition

as

described

in

steps

7-8

in

“Creating

relationship

definitions”

on

page

173.

To

create

the

relationship

tables,

check

the

Create

Schema

box

in

the

Deploy

Project

dialog

in

System

Manager.

For

more

information

about

when

to

create

the

run-time

schema,

see“Creating

the

relationship

table

schema”

on

page

178.

5.

Using

the

information

you

gathered

in

step

3,

populate

the

relationship

tables

with

the

lookup

values

for

each

participant,

or

add

your

own

tables

of

lookup

values

to

the

database.

For

more

information,

see

“Populating

lookup

tables

with

data”

on

page

189.

Creating

the

relationship

table

schema

For

each

relationship

definition

you

create,

InterChange

Server

Express

uses

the

following

database

objects

to

maintain

the

run-time

data

for

instances

of

the

relationship:

v

Tables

in

the

relationship

database

hold

the

data

of

the

relationship

instances.

v

Stored

procedures

in

the

relationship

database

maintain

the

relationship

tables.

For

information,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

Copying

relationship

and

participant

definitions

Relationship

Designer

Express

allows

you

to

copy

the

following:

v

Relationship

definitions

v

Participant

definitions

Copying

relationship

definitions

in

the

current

project

To

create

a

new

relationship

definition

that

is

similar

to

an

existing

one,

you

can

copy

the

existing

definition

and

modify

it

to

suit

your

needs.

You

can

also

copy

a

participant

definition

from

a

relationship

definition

and

paste

it

into

the

same

relationship

definition

or

into

another

one.

To

copy

a

relationship

definition,

perform

the

following

steps:

1.

Select

the

relationship

definition

you

want

to

copy

(for

example,

CustToClient)

and

select

Save

Relationship

Definition

from

the

File

menu.

2.

Select

the

relationship

definition

you

want

to

copy

and

select

Copy

from

the

Edit

menu.

3.

Select

the

Project

name

(root

tree

node)

and

select

Paste

from

the

Edit

menu.

Result:

Relationship

Designer

Express

creates

a

new

relationship

definition

with

a

name

of

Copy

of

CustToClient.

The

definition

name

appears

in

edit

mode.

4.

Enter

a

new

name

for

the

relationship

definition,

then

press

Enter.

5.

To

save

the

new

definition

to

the

repository,

select

Save

Relationship

Definition

from

the

File

menu

(or

use

the

keyboard

shortcut

Ctrl+S).

Tip:

To

copy

a

relationship

definition

from

one

InterChange

Server

Express

to

another,

use

the

repos_copy

command.

The

repos_copy

command

copies

objects

into

and

out

of

the

InterChange

Server

Express

repository.

For

more

information

on

using

repos_copy,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

178

Map

Development

Guide

Copying

participant

definitions

in

the

current

project

To

copy

a

participant

definition:

1.

Select

the

relationship

definition

to

which

the

participant

definition

you

want

to

copy

belongs

and

select

Save

Relationship

Definition

from

the

File

menu.

2.

Select

the

participant

definition

you

wish

to

copy

and

select

Copy

from

the

Edit

menu.

3.

Select

the

relationship

definition

to

which

you

want

to

copy

the

participant

definition

and

select

Paste

from

the

Edit

menu.

Result:

Relationship

Designer

Express

creates

a

new

participant

definition

with

a

name

of

Copy.

The

definition

name

appears

in

edit

mode.

4.

Enter

a

new

name

for

the

participant

definition,

and

then

press

Enter.

Renaming

relationship

or

participant

definitions

You

can

rename

a

relationship

or

participant

definition

before

you

save

it

to

the

repository.

To

change

a

definition’s

name

after

you

have

saved

it,

you

must

copy

the

definition

to

a

new

name

and

delete

the

old

name.

For

help

copying

definitions,

see

“Copying

relationship

and

participant

definitions”

on

page

178.

Specifying

advanced

relationship

settings

For

each

relationship

definition

you

create,

Relationship

Designer

Express

maintains

advanced

settings

that

affect

the

storage

and

processing

of

the

relationship

instance

data.

Note:

If

you

change

any

database-related

setting,

such

as

a

login

account

name,

password,

or

a

table

name

after

creating

the

relationship

table

schemas,

you

must

re-create

the

relationship

table

schemas

using

System

Manager

for

your

changes

to

take

effect.

To

view

or

change

the

settings,

select

Advanced

Settings

from

the

Edit

menu.

In

the

Advanced

Settings

dialog,

the

settings

that

appear

on

the

right

side

differ

depending

on

which

of

the

following

items

you

have

selected

on

the

left:

v

Relationship

definition

v

Participant

definition

v

Attribute

Advanced

settings

for

relationship

definitions

To

view

or

change

the

settings

for

a

relationship

definition,

select

the

relationship

name.

The

following

illustration

shows

an

example

of

the

advanced

settings

at

this

Chapter

7.

Creating

relationship

definitions

179

level:

Select the relationship
definition name to view or
change its settings.

Table

67

summarizes

the

settings

available

for

relationship

definitions.

Default

values

for

the

DBMS

settings

come

from

the

Global

Default

Settings

dialog

box

described

in

“Global

default

settings”

on

page

182:

Table

67.

Summary

of

advanced

settings

for

relationship

definitions

Setting

Description

Relationship

type

Identity

When

this

option

is

enabled,

relationship

is

an

identity

relationship.

For

more

information,

see

“Defining

identity

relationships”

on

page

174.

Static

When

this

option

is

enabled,

relationship

is

a

static

relationship.

For

more

information,

see

“Defining

lookup

relationships”

on

page

176.

Cached

When

the

Static

field

is

enabled,

this

field

is

enabled.

Check

this

field

to

have

the

relationship

tables

cached

in

memory.

For

more

information,

see

“Optimizing

a

relationship”

on

page

184.

Version

This

field

is

read-only.

Versions

for

relationship

definitions

are

not

supported

in

this

release.

DBMS

Settings

URL

The

JDBC

path

where

the

relationship

tables

for

this

relationship

definition

are

located.

The

default

location

for

all

relationship

tables

is

specified

in

Global

Default

Settings

(see

182).

Login

The

user

name

for

logging

in

to

the

relationship

database.

Password

The

password

for

logging

in

to

the

relationship

database.

Type

The

relationship

database

type,

such

as

SQL

Server

or

DB2.

Note:

If

you

specify

a

database

for

the

relationship

tables

that

is

different

from

the

InterChange

Server

Express’s

repository

database,

you

might

need

to

increase

the

setting

for

the

maximum

number

of

connection

pools

that

the

server

can

create.

The

server

configuration

parameter

that

specifies

the

number

of

connection

pools

is

MAX_CONNECTION_POOLS.

The

default

value

is

10.

Advanced

settings

for

participant

definitions

To

view

or

change

the

settings

for

participant

definitions,

select

the

participant

definition

name.

The

following

illustration

shows

an

example

of

the

advanced

Figure

96.

Advanced

settings

for

a

relationship

definition

180

Map

Development

Guide

settings

at

this

level:

Table

68

summarizes

the

settings

available

for

participant

definitions.

Table

68.

Summary

of

advanced

settings

for

participant

definitions

Setting

Description

Table

name

Name

of

the

relationship

table

in

the

relationship

database

containing

the

relationship

data

for

this

participant

instance.

Rule:

If

your

relationship

database

is

a

DB2

database,

you

must

use

up

to

a

maximum

of

18

characters

in

the

relationship

table

names.

Although

table

names

do

not

have

a

limit

in

DB2,

index

names

do.

Because

Relationship

Designer

Express

generates

index

names

for

the

relationship

tables

based

on

their

table

names,

relationship

table

names

for

a

DB2

database

must

be

18

characters

or

less.

Stored

procedure

name

Name

of

the

stored

procedure

that

maintains

the

relationship

table.

IBM

WBI

managed

If

checked,

prevents

relationship

tables

from

being

created

for

this

participant.

Check

this

setting

only

when:

v

The

business

object

associated

with

this

participant

definition

is

a

generic

business

object.

v

There

is

only

one

attribute

associated

with

the

participant

and

it

is

a

key

attribute.

Figure

97.

Advanced

settings

for

a

participant

definition

Chapter

7.

Creating

relationship

definitions

181

Advanced

settings

for

attributes

To

view

or

change

the

advanced

settings

for

an

attribute,

select

the

attribute.

The

following

illustration

shows

an

example

of

the

advanced

settings:

For

attributes,

the

only

setting

available

is

the

attribute

column

name.

The

column

name

is

the

name

of

the

column

in

the

relationship

table

that

contains

the

values

for

the

selected

attribute.

It

is

typically

the

same

as

the

attribute

name.

You

might

want

to

change

the

column

name

if

you

are

using

tables

you

created

instead

of

the

default

tables

that

the

Relationship

Designer

Express

creates.

Global

default

settings

When

you

save

a

new

relationship

definition

and

create

the

relationship

table

schemas,

Relationship

Designer

Express

must

know

the

location

of

the

database

for

the

relationship

tables,

the

type

of

database,

and

how

to

access

the

database

with

a

valid

user

name

and

password.

Relationship

Designer

Express

maintains

default

values

for

these

settings,

which

it

uses

for

all

new

relationship

definitions

you

create.

Once

a

relationship

definition

is

created,

these

settings

are

stored

with

the

relationship

definition,

and

you

can

change

the

settings

for

each

relationship

definition

individually.

By

default,

the

database

name

and

access

information

is

the

same

one

used

by

the

InterChange

Server

Express

repository.

If

you

want

to

store

your

relationship

tables

in

another

location,

you

can

modify

the

global

settings.

To

view

or

change

the

global

default

settings,

perform

the

following

steps:

1.

In

Relationship

Designer

Express,

select

Advanced

Settings

from

the

Edit

menu.

Result:

The

Advanced

Settings

dialog

box

appears.

2.

Click

the

Global

defaults

button.

Figure

98.

Advanced

settings

for

attributes

182

Map

Development

Guide

Result:

The

Global

Default

Settings

dialog

box

appears.

Table

69

describes

the

global

default

settings

for

relationships.

Table

69.

Relationship

global

default

settings

Setting

Description

URL

The

JDBC

path

where

the

relationship

database

is

located.

The

default

is

the

InterChange

Server

Express’s

repository

database.

Login

The

user

name

for

logging

in

to

the

relationship

database.

Password

The

password

for

logging

in

to

the

relationship

database.

Type

The

relationship

database

type,

such

as

SQL

Server

or

DB2.

Note:

If

you

specify

a

database

for

the

relationship

tables

that

is

different

from

the

InterChange

Server

Express’s

repository

database,

you

might

need

to

increase

the

setting

for

the

maximum

number

of

connection

pools

that

the

server

can

create.

The

server

configuration

parameter

that

specifies

the

number

of

connection

pools

is

MAX_CONNECTION_POOLS.

The

default

value

is

10.

3.

When

you

are

finished

viewing

or

making

changes,

click

OK

to

save

or

Cancel

to

exit

without

saving.

Note:

Changes

that

you

make

to

the

global

default

settings

apply

only

to

new

relationship

definitions.

They

do

not

affect

existing

relationships.

If

you

want

to

change

the

settings

for

an

existing

relationship,

see

“Specifying

advanced

relationship

settings”

on

page

179.

Deleting

a

relationship

definition

The

Relationship

Designer

Express

allows

you

to

delete

a

relationship

definition

listed

in

its

main

window

by

highlighting

the

definition

and

choosing

Delete

from

the

Edit

menu

or

right-clicking

on

the

definition

and

choosing

Delete.

Figure

99.

Global

Default

Settings

dialog

Chapter

7.

Creating

relationship

definitions

183

Optimizing

a

relationship

By

default,

each

relationship’s

relationship

tables

are

stored

in

the

relationship

database.

Each

time

a

relationship

retrieves

or

modifies

run-time

data,

it

uses

SQL

statements

to

access

this

database.

If

the

relationship

tables

are

accessed

frequently,

these

accesses

can

have

a

significant

impact

on

performance

in

terms

of

CPU

usage

and

InterChange

Server

Express

resources.

As

part

of

the

design

of

a

relationship,

you

can

determine

whether

to

cache

these

relationship

tables

into

memory.

To

make

this

decision,

you

need

to

determine

how

frequently

the

relationship’s

run-time

data

changes.

The

WebSphere

business

integration

system

allows

you

to

categorize

your

relationship

in

one

of

two

ways:

v

Dynamic

relationship—a

relationship

whose

run-time

data

changes

frequently;

that

is,

its

relationship

tables

have

frequent

Insert,

Update,

or

Delete

operations.

All

relationships

are

dynamic

by

default.

v

Static

relationship—a

relationship

whose

run-time

data

undergoes

very

minimal

change;

that

is,

its

relationship

tables

have

very

few

Insert,

Update,

or

Delete

operations.

For

example,

because

lookup

tables

store

information

such

as

codes

and

status

values,

their

data

very

often

is

static.

Such

tables

make

good

candidates

for

being

cached

in

memory.

Note:

The

WebSphere

business

integration

System

Manager

categorizes

relationships

into

these

same

two

categories.

When

you

expand

the

Relationships

folder,

System

Manager

displays

two

subfolders:

Dynamic

and

Static.

You

define

whether

a

relationship

is

dynamic

or

static

from

the

Advanced

Setting

dialog

for

the

relationship

definition.

The

following

sections

summarize

how

to

define

a

dynamic

and

static

relationship

from

this

dialog.

For

information

on

how

to

display

the

Advanced

Setting

dialog,

see

“Specifying

advanced

relationship

settings”

on

page

179.

Defining

a

dynamic

relationship

For

a

dynamic

relationship,

InterChange

Server

Express

accesses

the

run-time

data

from

its

relationship

tables

in

the

relationship

database.

By

default,

InterChange

Server

Express

assumes

a

relationship

is

dynamic.

Therefore,

you

do

not

have

to

take

any

special

steps

to

define

a

dynamic

relationship:

v

For

an

identity

relationship,

click

Identity

from

the

Advanced

Settings

dialog,

as

described

in

“Defining

identity

relationships”

on

page

174.

v

For

a

lookup

relationship,

make

sure

Identity

is

not

checked,

as

described

in

“Defining

lookup

relationships”

on

page

176.

Note:

For

a

dynamic

relationship,

do

not

click

the

Static

or

Cached

field

on

the

Advanced

Settings

dialog.

System

Manager

lists

all

dynamic

relationships

in

the

folder

labeled

Dynamic

under

the

Relationships

folder.

Defining

a

static

relationship

For

a

static

relationship,

InterChange

Server

Express

can

access

the

run-time

data

from

cached

relationship

tables.

With

caching

enabled

for

the

static

relationship,

InterChange

Server

Express

stores

a

copy

of

the

relationship

tables

in

memory.

When

making

the

decision

to

cache

relationship

tables,

try

to

balance

the

following

conditions:

184

Map

Development

Guide

v

Performance

usually

improves

if

you

let

InterChange

Server

Express

cache

the

relationship

tables

in

memory.

In

this

case,

the

server

does

not

need

to

use

SQL

statements

to

access

the

relationship

database

for

the

run-time

data.

Instead,

it

can

access

memory

for

this

data,

which

is

much

faster.

If

the

run-time

data

for

a

static

relationship

is

not

currently

in

memory,

InterChange

Server

Express

reads

the

appropriate

relationship

tables

from

the

database

into

memory

when

the

data

is

first

accessed.

For

future

accesses,

InterChange

Server

Express

uses

the

cached

version

of

the

tables.

However,

once

the

table

is

read

into

memory,

InterChange

Server

Express

must

maintain

consistency

between

the

relationship

tables

in

the

database

and

the

cached

tables.

For

Update,

Insert,

and

Delete

operations,

InterChange

Server

Express

must

modify

both

the

database

tables

and

the

cached

tables.

This

double

update

can

be

very

performance

intensive.

When

you

determine

whether

to

cache

a

relationship’s

tables,

consider

the

expected

lifetime

and

refresh

rate

of

the

data.

v

Memory

usage

increases

when

relationship

tables

are

cached

in

memory.

The

amount

of

memory

used

is

roughly

equivalent

to

the

size

of

all

in-memory

tables.

Recommendation:

You

should

not

cache

a

relationship

table

that

contains

more

than

1000

rows.

Important:

InterChange

Server

Express

does

not

check

for

excessive

memory

usage.

You

must

ensure

that

memory

usage

remains

within

the

limits

that

your

system

imposes.

To

define

a

static

relationship,

display

the

Advanced

Settings

dialog

(see

Figure

96)

for

the

relationship

definition

and

set

the

Static

field

from

this

dialog

as

follows:

v

For

an

identity

relationship,

enable

both

the

Identity

and

Static

fields.

For

more

information

on

the

use

of

the

Identity

field,

see

“Defining

identity

relationships”

on

page

174.

v

For

a

lookup

relationship,

enable

the

Static

field

(not

the

Identity

field).

When

the

Static

field

is

enabled,

the

Advanced

Settings

dialog

also

enables

the

Cached

field.

The

Cached

field

allows

you

to

control

when

InterChange

server

actually

caches

the

relationship’s

table:

v

When

Cached

is

enabled,

InterChange

server

can

cache

the

relationship

tables

for

a

static

relationship.

It

caches

all

relationship

tables

involved

in

the

relationship.

v

When

Cached

is

disabled,

InterChange

Server

Express

does

not

cache

the

relationship

tables

in

memory.

Instead,

it

uses

the

tables

in

the

relationship

database

for

future

accesses.

You

can

only

control

caching

for

a

relationship

that

is

defined

as

static.

Note:

After

you

change

a

relationship’s

static

or

cached

state

from

the

Advanced

Settings

dialog,

make

sure

you

save

the

relationship

definition

for

the

change

to

be

stored

in

the

project.

Note:

You

can

modify

the

cached

and

reload

relationship

properties

from

the

server

component

management

view.

To

do

this,

right-click

the

static

relationship

and

select

the

properties

from

the

Context

menu.

v

Cached—controls

caching

of

the

relationship’s

tables.

Chapter

7.

Creating

relationship

definitions

185

v

Reload—tells

InterChange

Server

Express

to

reread

the

relationship’s

tables

into

memory.

For

more

information

on

caching

and

reloading

relationship

tables,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

186

Map

Development

Guide

Chapter

8.

Implementing

relationships

Relationship

attributes

are

those

you

transform

using

relationships.

You

do

not

transform

relationship

attributes

by

dragging

from

source

attribute

to

destination

attribute.

Instead,

you

create

a

Custom

transformation

and

customize

the

transformation

rule

for

the

destination

relationship

attribute

using

the

function

blocks

in

Activity

Editor.

This

chapter

describes

how

to

develop

code

within

a

map

to

implement

the

different

kinds

of

relationships.

Note:

This

chapter

assumes

that

you

have

already

created

the

relationship

definitions

for

the

relationships.

For

information,

see

Chapter

7,

“Creating

relationship

definitions,”

on

page

167.

v

“Implementing

a

relationship”

on

page

187

v

“Using

lookup

relationships”

on

page

188

v

“Using

simple

identity

relationships”

on

page

191

v

“Using

composite

identity

relationships”

on

page

202

v

“Managing

child

instances”

on

page

207

v

“Setting

the

verb”

on

page

210

v

“Performing

foreign

key

lookups”

on

page

216

v

“Loading

and

unloading

relationships”

on

page

221

Implementing

a

relationship

Once

you

have

created

a

relationship

definition

within

Relationship

Designer

Express,

you

are

ready

to

implement

the

relationship

within

the

map.

Note:

See

Chapter

7,

“Creating

relationship

definitions,”

on

page

167

for

instructions

about

how

to

create

relationship

definitions.

To

implement

a

relationship,

you

use

the

relationship

function

blocks

in

the

map’s

destination

object.

Table

70

shows

the

function

blocks

to

use.

Table

70.

Relationship

function

blocks

Kind

of

relationship

Function

block

For

more

information

Lookup

General/APIs/Relationship/Retrieve

Instances

General/APIs/Relationship/Retrieve

Participants

“Using

lookup

relationships”

on

page

188

Simple

identity

General/APIs/Identity

Relationship/Maintain

Simple

Identity

Relationship

General/APIs/Identity

Relationship/Maintain

Child

Verb

“Using

simple

identity

relationships”

on

page

191

Composite

Identity

General/APIs/Identity

Relationship/Maintain

Composite

Relationship

General/APIs/Identity

Relationship/Maintain

Child

Verb

General/APIs/Identity

Relationship/Update

My

Children

(optional)

“Using

composite

identity

relationships”

on

page

202

©

Copyright

IBM

Corp.

2003

187

Table

70.

Relationship

function

blocks

(continued)

Kind

of

relationship

Function

block

For

more

information

Custom

General/APIs/Relationship/Create

Relationship

General/APIs/Identity

Relationship/Add

My

Children

General/APIs/Relationship/Add

Participant

When

transforming

relationship

attributes,

a

map

needs

to

know

the

calling

context

of

the

map.

To

determine

calling

context,

the

map

needs

the

following

information

from

the

map

execution

context:

v

The

map’s

calling

context,

which

is

part

of

the

map

execution

context

For

more

information,

see

“Calling

contexts”

on

page

146..

v

The

verb,

which

is

part

of

the

business

object

These

two

factors

tell

the

map

what

actions

need

to

be

taken

on

the

relationship

tables.

Using

lookup

relationships

A

lookup

relationship

associates

data

that

is

equivalent

across

business

objects

but

may

be

represented

in

different

ways.

The

following

sections

describe

the

steps

for

using

lookup

relationships:

v

“Creating

lookup

relationship

definitions”

v

“Populating

lookup

tables

with

data”

on

page

189

v

“Customizing

map

transformations

for

a

lookup

relationship”

on

page

191

Note:

For

background

information,

see

“Lookup

relationships”

on

page

154..

Creating

lookup

relationship

definitions

Lookup

relationship

definitions

differ

from

identity

relationship

definitions

in

that

the

participant

types

are

not

business

objects

but

of

the

type

Data

(the

first

selection

in

the

participant

types

list).

For

more

information

on

how

to

create

a

relationship

definition

for

a

lookup

relationship,

see

“Defining

lookup

relationships”

on

page

176.

For

example,

suppose

you

create

a

lookup

relationship

called

StatAdtp

for

the

AddressType

values.

In

Figure

100,

each

box

represents

a

participant

in

the

StatAdtp

lookup

relationship.

Notice

that

each

participant

in

this

relationship

is

of

type

Data.

StatAdtp

PsftAdtp SAPAdtp
Type: Data Type: Data

Figure

100.

The

StatAdtp

lookup

relationship

definition

188

Map

Development

Guide

Because

a

lookup

relationship

does

not

indicate

which

attributes

are

being

related,

you

can

use

one

lookup

relationship

definition

for

transforming

several

attributes.

In

fact,

you

can

use

one

lookup

relationship

definition

for

every

attribute

that

requires

a

lookup,

regardless

of

the

business

object

being

transformed.

However,

because

only

one

set

of

tables

is

created

for

each

relationship

definition,

using

one

relationship

definition

for

all

lookup

relationships

would

make

the

tables

large

and

hard

to

maintain.

A

better

strategy

might

be

to

create

one

lookup

relationship

definition

per

common

unit

of

data,

such

as

country

code

or

status.

This

way,

each

set

of

relationship

tables

contains

information

related

by

meaning.

Relationships

defined

this

way

are

also

more

modular

because

you

can

add

new

participants,

as

you

support

new

collaborations

or

applications,

and

reuse

the

same

relationship

definition.

For

instance,

suppose

you

create

a

lookup

relationship

definition

for

country

code

to

transform

Clarify_Site

business

objects

to

SAP_Customer.

Later

on,

if

you

add

new

collaborations

or

a

new

application,

you

can

reuse

the

same

relationship

definition

for

every

transformation

involving

a

country

code.

Populating

lookup

tables

with

data

When

you

deploy

the

lookup

relationship

definition

with

the

option

Create

Schema

enabled,

Interchange

Server

Express

generates

a

relationship

table

(also

called

a

lookup

table)

for

each

participant.

Each

lookup

table

has

a

name

of

the

form:

RelationshipDefName_ParticipantDefName

When

you

save

the

StatAdtp

relationship

definition

(see

Figure

100)

with

the

option

Create

Schema

enabled,

Interchange

Server

Express

generates

the

following

two

lookup

tables:

v

StatAdtp_PsftAdtp_T

v

StatAdtp_SAPAdtp_T

A

lookup

table

contains

a

column

for

the

relationship

instance

ID

(INSTANCEID)

and

its

associated

participant

instance

data

(data).

Figure

101

shows

the

lookup

tables

for

the

PsftAdtp

and

SAPAdtp

participants

in

the

StatAdtp

lookup

relationship.

These

two

lookup

tables

use

the

relationship

instance

ID

to

correlate

the

participants.

For

example,

the

instance

ID

of

116

correlates

the

PsftAdtp

value

of

Fired

and

the

SAPAdtp

value

of

04.

Unlike

relationship

tables

that

hold

data

for

identity

relationships,

lookup

tables

do

not

get

populated

automatically.

You

must

populate

these

tables

by

inserting

data

into

their

columns.

You

can

populate

a

lookup

table

in

either

of

the

following

ways:

StatAdtp_PsftAdtp_T StatAdtp_SAPAdtp_T

PsftAdtp SAPAdtp
INSTANCEID

114

115

116

117

Active

data

Inactive

Fired

Retired

INSTANCEID

115

116

117

118

03

data

04

05

02

Figure

101.

Relationship

tables

for

the

CustLkUp

lookup

relationship

Chapter

8.

Implementing

relationships

189

v

Create

a

script

that

contains

SQL

INSERT

statements

to

fill

the

lookup

table

with

the

desired

data.

v

Use

Relationship

Manager

to

add

rows

to

the

lookup

table.

Inserting

participant

instances

with

SQL

You

can

insert

participant

data

into

a

lookup

table

with

the

SQL

statement

INSERT.

This

method

is

useful

when

you

need

to

add

many

rows

of

data

to

the

lookup

table.

You

can

create

the

syntax

for

one

INSERT

statement

and

then

use

the

editor

to

copy

and

paste

this

line

as

many

times

as

you

have

rows

to

insert.

In

each

line,

you

only

have

to

edit

the

data

to

be

inserted

(usually

in

a

VALUES

clause

of

the

INSERT

statement).

To

use

the

INSERT

statement,

you

must

know

the

name

of

the

lookup

relationship

table

and

its

columns.

Table

71

shows

the

column

names

in

a

lookup

table.

Table

71.

Columns

of

a

lookup

table

Column

in

lookup

table

Description

INSTANCEID

The

relationship

instance

ID.

data

The

participant

data

STATUS

Set

to

zero

(0)

when

the

participant

is

active

LOGICAL_STATE

Indicates

whether

the

participant

instance

has

been

logically

deleted

(zero

indicates

“no”)

TSTAMP

Date

of

last

modification

for

the

participant

instance.

Attention:

When

you

use

SQL

statements

to

insert

participant

data

into

a

lookup

table,

make

sure

you

provide

a

value

for

the

STATUS,

LOGICAL_STATE,

and

TSTAMP

columns.

All

values

are

required

for

IBM

WebSphere

business

integration

tools

to

function

correctly.

In

particular,

omission

of

the

TSTAMP

value

causes

Relationship

Manager

to

be

unable

to

retrieve

the

participant

data;

if

no

timestamp

value

exists,

Relationship

Manager

raises

an

exception.

Suppose

you

want

to

add

the

participant

data

in

to

the

relationship

table

that

contains

information

for

address

type,

shown

in

Table

72.

Table

72.

Sample

values

for

address

type

for

PsftAdtp

participant

INSTANCEID

STATUS

LOGICAL_STATE

TSTAMP

data

1

0

0

current

date

Home

2

0

0

current

date

Mailing

The

following

INSERT

statements

create

the

Table

72

participant

data

in

the

PstfAdtp

lookup

table:

INSERT

INTO

StatAdtp_PsftAdtp_T

(INSTANCEID,

STATUS,

LOGICAL_STATE,

TSTAMP,

data)

VALUES

(1,

0,

0,

getDate(),

’Home’)

INSERT

INTO

StatAdtp_PsftAdtp_T

(INSTANCEID,

STATUS,

LOGICAL_STATE,

TSTAMP,

data)

VALUES

(2,

0,

0,

getDate(),

’Mailing’)

190

Map

Development

Guide

Note:

The

preceding

INSERT

syntax

is

compatible

with

the

MicroSoft

SQL

Server

7.0.

If

you

are

using

another

database

server

for

your

relationship

table,

make

sure

you

use

INSERT

syntax

compatible

with

that

server.

Inserting

participant

instances

with

Relationship

Manager

Relationship

Manager

is

an

IBM

WebSphere

business

integration

tool

that

graphically

displays

run-time

data

in

a

relationship

table.

Relationship

Manager

is

useful

when

you

only

need

to

add

a

few

rows

to

the

lookup

table.

For

more

information

on

Relationship

Manager,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

Customizing

map

transformations

for

a

lookup

relationship

Once

you

have

created

the

relationship

definition

and

participant

definitions

for

the

lookup

relationship,

you

can

customize

the

map

transformation

rule

for

performing

the

lookups.

For

information

on

using

lookup

relationships,

see

“Example

3

of

using

the

Activity

Editor”

on

page

133.

Using

simple

identity

relationships

An

identity

relationship

establishes

an

association

between

business

objects

or

other

data

on

a

one-to-one

basis.

A

simple

identity

relationship

relates

two

business

objects

through

a

single

key

attribute.

The

following

sections

describe

the

steps

for

working

with

simple

identity

relationships:

v

“Creating

simple

identity

relationship

definitions”

v

“Accessing

identity

relationship

tables”

v

“Defining

transformation

rules

for

a

simple

identity

relationship”

on

page

201

Creating

simple

identity

relationship

definitions

Identity

relationship

definitions

differ

from

lookup

relationship

definitions

in

that

the

participant

types

are

business

objects,

not

of

the

type

Data

(the

first

selection

in

the

participant

types

list).

For

a

simple

identity

relationship,

the

relationship

consists

of

the

generic

business

object

and

at

least

one

application-specific

business

object.

The

participant

type

for

a

simple

identity

relationship

is

a

business

object

for

all

participants.

The

participant

attribute

for

every

participant

is

a

single

key

attribute

of

the

business

object.

(For

more

information

on

how

to

create

a

relationship

definition

for

a

simple

identity

relationship,

see

“Defining

identity

relationships”

on

page

174.)

Accessing

identity

relationship

tables

To

reference

a

simple

identity

relationship,

define

a

Cross-Reference

transformation

rule

between

the

application-specific

business

object

and

the

generic

business

object.

For

more

information,

see

“Cross-referencing

identity

relationships”

on

page

45.

For

example,

the

CustIden

relationship

(see

Figure

82)

transforms

a

SiteID

key

attribute

in

a

Clarify

customer

to

an

RefID

key

attribute

in

an

SAP

customer.

It

includes

maps

between

the

following

objects:

v

Inbound

map:

Clarify_Site

to

Customer

Obtain

from

the

ClarCust

relationship

table

the

relationship

instance

ID

that

is

associated

with

the

SiteID

key

value.

v

Outbound

map:

Customer

to

SAP_Customer

Obtain

from

the

SAPCust

relationship

table

the

RefID

key

value

that

is

associated

with

relationship

instance

ID.

Chapter

8.

Implementing

relationships

191

Figure

102

shows

how

to

use

the

CustIden

relationship

tables

to

transform

a

SiteID

value

of

A100

to

a

RefID

value

of

806.

The

maintainSimpleIdentityRelationship()

method

must

manage

the

relationship

tables

to

ensure

that

related

application-specific

keys

remain

associated

to

a

single

relationship

instance

ID.

At

a

high

level,

the

Cross-Reference

transformation

rule

generates

code

to

do

the

following:

1.

Perform

validations

on

the

arguments

that

are

passed

in.

If

an

argument

is

invalid,

the

method

throws

the

RelationshipRuntimeException

exception.

For

a

list

of

validations

that

the

Java

code

generated

by

the

Cross-Reference

transformation

performs,

see

the

maintainSimpleIdentityRelationship()

API

in

Chapter

20,

“IdentityRelationship

class,”

on

page

345.

2.

Takes

the

appropriate

actions

to

maintain

the

relationship

tables

based

on

the

calling

context,

which

includes

the

following

factors:

v

The

verb

of

the

business

object

The

Cross-Reference

transformation

obtains

this

verb

from

the

source

business

object.

For

inbound

maps,

the

source

is

the

application-specific

business

object;

for

outbound

maps,

the

source

is

the

generic

business

object.

Clarify_Site

Clarify_Site
to

Customer
A100 SAP_Customer806

SiteID = RefID =

Inbound Map

Customer
to

SAP_Customer

Outbound Map

InstanceID=

Customer

116

Application-Specific
Business Object

Application-Specific
Business Object

Generic
Business Object

InstanceID=
116

1

2 5

3 4

6

Relationship Database

InstanceID

116

117

118

119

A100

SiteID

A106

B312

C004

InstanceID

115

116

117

118

803

RefID

806

712

788

ClarCust SAPCust

Figure

102.

Using

relationship

tables

to

transform

a

SiteID

to

a

RefID

192

Map

Development

Guide

v

The

value

of

the

calling

context

The

Cross-Reference

transformation

rule

obtains

the

calling

context

from

the

map

execution

context

automatically.

This

transformation

deals

with

the

calling

contexts

shown

in

Table

73..

Table

73.

Calling

contexts

with

maintainSimpleIdentityRelationship()

Calling

context

Description

EVENT_DELIVERY

A

connector

has

sent

an

event

from

the

application

to

InterChange

Server

Express

(event-triggered

flow).

ACCESS_REQUEST

An

access

client

has

sent

an

access

request

from

an

external

application

to

InterChange

Server

Express.

SERVICE_CALL_REQUEST

A

collaboration

is

sending

a

business

object

down

to

the

application

through

a

service

call

request.

SERVICE_CALL_RESPONSE

A

business

object

was

received

from

the

application

as

a

result

of

a

successful

response

to

a

collaboration

service

call

request.

SERVICE_CALL_FAILURE

A

collaboration’s

service

call

request

has

failed.

As

such,

corrective

action

might

need

to

be

performed.

ACCESS_RESPONSE

The

source

business

object

is

sent

back

to

the

source

access

client

in

response

to

a

subscription

delivery

request.

The

following

sections

discuss

the

behavior

of

the

Cross-Reference

transformation

with

each

of

the

calling

contexts

in

Table

73..

EVENT_DELIVERY

and

ACCESS_REQUEST

calling

contexts

When

the

calling

context

is

EVENT_DELIVERY

or

ACCESS_REQUEST,

the

map

is

being

called

is

an

inbound

map;

that

is,

it

transforms

an

application-specific

business

object

to

a

generic

business

object.

A

connector

sends

the

EVENT_DELIVERY

calling

context;

an

access

client

sends

an

ACCESS_REQUEST

calling

context.

In

either

case,

the

inbound

map

receives

an

application-specific

business

object

as

input

and

returns

a

generic

business

object

as

output.

Therefore,

the

task

for

the

Cross-Reference

transformation

is

to

obtain

from

the

relationship

table

a

relationship

instance

ID

for

a

given

application-specific

key

value.

For

the

EVENT_DELIVERY

and

ACCESS_REQUEST

calling

contexts,

the

Java

code

generated

by

the

Cross-Reference

transformation

takes

the

following

actions:

1.

Locate

the

relationship

instance

in

the

relationship

table

that

matches

the

given

application-specific

business

object’s

key

value.

Table

74

shows

the

actions

that

the

Java

code

generated

by

the

Cross-Reference

transformation

takes

on

the

relationship

table

based

on

the

verb

of

the

application-specific

business

object.

2.

Obtain

the

instance

ID

from

the

retrieved

relationship

instance.

3.

Copy

the

instance

ID

into

the

generic

business

object.

Table

74.

Actions

for

the

EVENT_DELIVERY

and

ACCESS_REQUEST

Calling

Contexts

Verb

of

application-
specific

business

object

Action

Performed

by

maintainSimpleIdentityRelationship()

Create

Insert

a

new

entry

into

the

relationship

table

for

the

application-specific

business

object’s

key

value.

If

an

entry

for

this

key

value

already

exists,

retrieve

the

existing

one;

do

not

add

another

one

to

the

table.

Chapter

8.

Implementing

relationships

193

Table

74.

Actions

for

the

EVENT_DELIVERY

and

ACCESS_REQUEST

Calling

Contexts

(continued)

Verb

of

application-
specific

business

object

Action

Performed

by

maintainSimpleIdentityRelationship()

Update

Retrieve

the

relationship

entry

from

the

relationship

table

for

the

given

application-specific

business

object’s

key

value.

If

an

entry

for

this

key

value

does

not

exist,

add

one

to

the

table.

Delete

1.

Retrieve

the

relationship

entry

from

the

relationship

table

for

the

given

application-specific

business

object’s

key

value.

2.

Mark

the

relationship

entry

as

“deactive”.

Retrieve

Retrieve

the

relationship

entry

from

the

relationship

table

for

the

given

application-specific

business

object’s

key

value.

If

an

entry

for

this

key

value

does

not

exist,

throw

a

RelationshipRuntimeException

exception.

For

an

identity

relationship

that

supports

the

transformation

of

an

AppA

application-specific

business

object

to

AppB

application-specific

business

object,

Figure

103

shows

how

the

Java

code

generated

by

the

Cross-Reference

transformation

accesses

a

relationship

table

associated

with

the

AppA

participant

when

a

calling

context

is

EVENT_DELIVERY

(or

ACCESS_REQUEST)

and

the

AppA

application-specific

business

object’s

verb

is

either

Create

or

Update.

For

a

calling

context

of

EVENT_DELIVERY

(or

ACCESS_REQUEST)

and

an

application-specific

verb

of

either

a

Create

or

Update,

Figure

104

shows

the

write

that

the

Java

code

generated

by

the

Cross-Reference

transformation

makes

to

the

relationship

table

when

no

entry

exists

that

matches

the

AppA

application-specific

key

value.

AppA Obj

AppA
to

Generic
AppA ID = DDD

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCC

DDD

Inbound Map

InstanceID = 4

InterChange Server Express

Collaboration
(new or existing)

Active?

Y

Y

Y

Y

1. Does relationship id exist with:
AppA ID = DDD ?
- YES: Retrieve relationship instance
- NO: Create new relationship instance

2. Return InstanceID.•

1

2

Figure

103.

EVENT_DELIVERY

and

ACCESS_REQUEST

with

a

create

or

update

verb

194

Map

Development

Guide

For

a

calling

context

of

EVENT_DELIVERY

(or

ACCESS_REQUEST)

and

an

application-specific

verb

of

Delete,

Figure

105

shows

the

write

that

the

Java

code

generated

by

the

Cross-Reference

transformation

performs

on

the

AppA

relationship

table.

SERVICE_CALL_REQUEST

calling

context

When

the

calling

context

is

SERVICE_CALL_REQUEST,

the

map

is

being

called

is

an

outbound

map;

that

is,

it

transforms

a

generic

business

object

to

an

application-specific

business

object.

The

outbound

map

receives

a

generic

business

object

as

input

and

returns

an

application-specific

business

object

as

output.

Therefore,

the

task

for

the

Cross-Reference

transformation

is

to

obtain

from

the

relationship

table

an

application-specific

business

object’s

key

value

for

a

given

a

relationship

instance

ID

only

if

the

verb

is

Update,

Delete,

or

Retrieve.

The

Cross-Reference

transformation

does

not

obtain

the

application-specific

key

value

for

a

Create

verb.

Table

75

shows

the

action

that

the

Cross-Reference

transformation

takes

on

the

relationship

table

based

on

the

verb

of

the

generic

business

object.

Table

75.

Actions

for

the

SERVICE_CALL_REQUEST

calling

context

Verb

of

generic

business

object

Action

performed

by

the

Cross-Reference

transformation

Create

Take

no

action.

When

the

calling

context

is

SERVICE_CALL_RESPONSE,

the

method

actually

writes

a

new

entry

to

the

relationship

table.

For

more

information,

see

“SERVICE_CALL_RESPONSE

calling

context”

on

page

197.

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCC

DDD

Active?

Y

Y

Y

Y

InstanceID

1

2

3

AppA Relationship Table

AppA ID

AAA

BBB

CCC

Active?

Y

Y

Y

New
Relationship
Entry

Before Create After Create

Figure

104.

The

Write

to

the

relationship

table

for

a

new

relationship

entry

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCC

DDD

Active?

Y

N

Y

Y

“Deleted” Row
Before Delete After Delete

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCCDDD

Active?

Y

Y

Y

Y

Figure

105.

The

write

to

the

relationship

table

for

a

delete

verb

Chapter

8.

Implementing

relationships

195

Table

75.

Actions

for

the

SERVICE_CALL_REQUEST

calling

context

(continued)

Verb

of

generic

business

object

Action

performed

by

the

Cross-Reference

transformation

Update

Delete

Retrieve

1.

Obtain

the

generic

business

object’s

key

value

(the

relationship

instance

ID)

from

the

original-request

business

object

in

the

map

execution

context.

2.

Retrieve

the

entry

from

the

relationship

table

for

the

given

generic

business

object’s

key

value.

If

an

entry

for

this

key

value

does

not

exist,

throw

a

RelationshipRuntimeException

exception.

If

no

participants

are

found

when

the

verb

is

Retrieve,

throw

a

CxMissingIDException

exception.

3.

Obtain

the

application-specific

key

value

from

the

retrieved

relationship

entry.

4.

Copy

the

application-specific

key

value

into

the

application-specific

business

object.

As

Table

75

shows,

when

the

verb

is

Create,

the

Java

code

generated

by

the

Cross-Reference

transformation

does

not

write

a

new

entry

to

the

relationship

table.

It

does

not

perform

this

write

operation

because

it

does

not

yet

have

the

application-specific

key

value

that

corresponds

to

the

relationship

instance

ID.

When

the

connector

processes

the

application-specific

business

object,

it

notifies

the

application

of

the

need

to

insert

a

new

row

(or

rows).

If

this

insert

is

successful,

the

application

notifies

the

connector,

which

creates

the

appropriate

application-specific

business

object

with

a

Create

verb

and

the

application’s

key

value.

For

the

remaining

verbs

(Update,

Delete,

and

Retrieve),

the

Java

code

generated

by

the

Cross-Reference

transformation

performs

a

read

operation

on

the

relationship

table.

For

an

identity

relationship

that

supports

the

transformation

of

an

AppA

application-specific

business

object

to

AppB

application-specific

business

object,

as

Figure

106

shows

how

the

Cross-Reference

transformation

accesses

a

relationship

table

associated

with

the

AppB

participant

when

a

calling

context

is

SERVICE_CALL_REQUEST

and

the

generic

business

object’s

verb

is

Update,

Delete,

or

Retrieve.

AppB Obj

Generic
to

AppB
AppB ID = MMMM

InstanceID

1

2

3

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

Outbound Map

InstanceID = 3

InterChange ExpressServer

Collaboration
(existing)

Active?

Y

Y

Y

Figure

106.

SERVICE_CALL_REQUEST

with

an

update,

delete,

or

retrieve

verb

196

Map

Development

Guide

SERVICE_CALL_RESPONSE

calling

context

When

the

calling

context

is

SERVICE_CALL_RESPONSE,

the

map

is

being

called

is

an

inbound

map;

that

is,

it

transforms

an

application-specific

business

object

to

a

generic

business

object.

The

inbound

map

receives

an

application-specific

business

object

as

input

and

returns

a

generic

business

object

as

output.

The

SERVICE_CALL_RESPONSE

calling

context

is

important

for

the

Create

verb,

to

indicate

that

the

destination

application

was

able

to

create

a

unique

value

for

the

new

entity

and

the

connector

has

returned

an

application-specific

business

object.

The

task

for

the

Cross-Reference

transformation

rule

is

to

maintain

an

application-specific

business

object’s

key

value

in

the

relationship

table

for

an

existing

relationship

instance

ID.

For

the

SERVICE_CALL_RESPONSE

calling

context,

the

Java

code

generated

by

the

Cross-Reference

transformation

takes

the

following

actions:

1.

Determines

whether

the

generic

business

object

is

null:

v

For

the

Update,

Delete,

and

Retrieve

verbs,

the

transformation

throws

the

RelationshipRuntimeException

if

the

generic

business

object

is

null.

v

For

a

Create

verb,

a

null-valued

generic

business

object

is

valid.
2.

Locates

the

entry

in

the

relationship

table

that

matches

the

given

application-specific

business

object’s

key

value.

Table

76

shows

the

action

that

the

Java

code

generated

by

the

Cross-Reference

transformation

takes

on

the

relationship

table

based

on

the

verb

of

the

application-specific

business

object.

Table

76.

Actions

for

the

SERVICE_CALL_RESPONSE

calling

context

Verb

of

application-specific

business

object

Action

performed

by

maintainSimpleIdentityRelationship()

Create

For

the

given

application-specific

key,

insert

into

the

relationship

table

the

new

relationship

entry

containing

the

application-specific

business

object’s

key

value

and

its

associated

relationship

instance

ID.

The

method

obtains

the

relationship

instance

ID

from

the

original-request

business

object

in

the

map

execution

context

(cwExecCtx).

If

an

entry

for

this

key

value

already

exists,

retrieve

the

existing

one;

do

not

add

another

one

to

the

table.

Delete

1.

Retrieve

the

relationship

entry

from

the

relationship

table

for

the

given

application-specific

business

object’s

key

value.

2.

Mark

the

relationship

entry

as

“deactive.”

Update

Retrieve

the

relationship

entry

from

the

relationship

table

for

the

given

application-specific

business

object’s

key

value.

Retrieve

Retrieve

the

relationship

entry

from

the

relationship

table

for

the

given

application-specific

business

object’s

key

value.

For

an

identity

relationship

that

supports

the

transformation

of

an

AppA

application-specific

business

object

to

AppB

application-specific

business

object,

Figure

107

shows

how

the

Java

code

generated

by

the

Cross-Reference

transformation

accesses

a

relationship

table

associated

with

the

AppB

participant

when

a

calling

context

is

SERVICE_CALL_RESPONSE

and

the

AppB

application-specific

business

object’s

verb

is

Create.

Chapter

8.

Implementing

relationships

197

When

the

calling

context

is

SERVICE_CALL_RESPONSE

and

the

verb

is

Create,

the

inbound

map

has

been

invoked

by

the

connector

controller

in

response

to

the

following

actions:

v

The

connector

has

been

notified

that

the

application

has

inserted

a

new

row.

The

connector

sent

this

insert

request

to

the

application

when

it

received

the

application-specific

business

object

with

a

Create

verb

from

the

outbound

map.

This

outbound

map

had

a

calling

context

of

SERVICE_CALL_REQUEST.

When

the

calling

context

was

SERVICE_CALL_REQUEST,

the

Cross-Reference

transformation

could

not

write

a

new

relationship

instance

to

the

relationship

table

because

it

did

not

yet

have

the

application-specific

key

value

that

corresponded

to

the

instance

ID.

v

The

connector

has

generated

a

new

application-specific

business

object

based

on

the

values

in

the

new

application-specific

row

and

with

a

verb

of

Create.

The

connector

sends

this

application-specific

business

object

to

InterChange

Server

Express,

where

it

is

received

by

the

connector

controller.

v

The

connector

controller

has

called

the

inbound

map

to

convert

the

application-specific

business

object

to

a

generic

business

object.

The

inbound

map

contains

a

Cross-Reference

transformation

to

create

an

entry

in

the

relationship

table

for

the

new

application-specific

key.

For

a

calling

context

of

SERVICE_CALL_RESPONSE

and

an

application-specific

verb

of

Create,

Figure

108

shows

the

write

that

the

Java

code

generated

by

the

Cross-Reference

transformation

makes

to

the

relationship

table.

App B Obj

App B
to

Generic
AppB ID = NNNN

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Inbound Map

InstanceID = 4

InterChange Server Express

Collaboration
(new)

Figure

107.

SERVICE_CALL_RESPONSE

with

the

create

verb

198

Map

Development

Guide

The

Cross-Reference

transformation

must

associate

the

new

AppB

application-specific

key

with

its

equivalent

value

in

the

AppA

application.

For

the

EVENT_DELIVERY

or

ACCESS_REQUEST

calling

context,

the

Cross-Reference

transformation

could

just

generate

a

new

relationship

instance

ID.

However,

for

SERVICE_CALL_RESPONSE,

the

Cross-Reference

transformation

cannot

just

generate

a

new

instance

ID.

Instead,

it

must

assign

the

same

relationship

instance

ID

to

the

AppB

key

value

as

it

has

already

assigned

to

the

AppA

key

value.

The

method

obtains

the

instance

ID

associated

with

the

AppA

key

value

from

the

original-request

business

object,

which

is

part

of

the

map

execution

context.

In

Figure

108,

the

Java

code

generated

by

the

Cross-Reference

transformation

takes

the

following

steps

for

the

SERVICE_CALL_RESPONSE

calling

context

and

the

Create

verb:

v

Obtain

the

instance

ID

of

4

from

the

original-request

business

object

in

map

execution

context.

v

Create

a

new

entry

in

the

AppB

relationship

table

for

this

instance

ID

(4)

and

the

new

application-specific

key

(NNNN).

When

the

map

executions

with

both

the

EVENT_DELIVERY

(or

ACCESS_REQUEST)

and

SERVICE_CALL_RESPONSE

calling

contexts

(and

a

Create

verb)

are

complete,

the

relationship

tables

for

AppA

and

AppB

use

common

relationship

instance

IDs

to

associate

their

keys,

as

Figure

109

shows.

For

the

Update

and

Delete

verbs

(and

Retrieve,

if

the

instance

ID

already

exists

in

the

relationship

table),

the

Cross-Reference

transformation

just

retrieves

the

relationship

instance

ID

from

the

relationship

table.

For

a

calling

context

of

SERVICE_CALL_RESPONSE

and

an

application-specific

verb

of

Delete,

the

Cross-Reference

transformation

must

take

an

additional

step

to

deactivate

the

relationship

instance,

as

Figure

110

shows.

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Active?

Y

Y

Y

Y

“Inserted” Row

Before Create After Create

InstanceID

1

2

3

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

Active?

Y

Y

Y

Figure

108.

The

write

to

the

relationship

table

for

a

create

verb

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCC

DDD

Active?

Y

Y

Y

Y

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Active?

Y

Y

Y

Y

Relationship
Instance

Figure

109.

Creating

the

relationship

instance

Chapter

8.

Implementing

relationships

199

SERVICE_CALL_FAILURE

calling

context

When

the

calling

context

is

SERVICE_CALL_FAILURE,

the

map

is

being

called

is

an

inbound

map;

that

is

it

transforms

an

application-specific

business

object

to

a

generic

business

object.

For

SERVICE_CALL_FAILURE,

the

inbound

map

receives

an

null

application-specific

business

object

as

input

and

returns

a

generic

business

object

as

output.

The

SERVICE_CALL_FAILURE

calling

context

is

important

for

the

Create

verb;

it

indicates

that

the

destination

application

was

unable

to

create

a

unique

value

for

the

new

entity

and

therefore

the

connector

was

unable

to

return

an

application-specific

business

object.

The

task

for

the

Cross-Reference

transformation

is

the

same

for

all

verbs,

as

Table

77

shows.

Table

77.

Actions

for

the

SERVICE_CALL_FAILURE

calling

context

Verb

of

Application-Specific

business

object

Action

Performed

by

maintainSimpleIdentityRelationship()

Create

Delete

Update

Retrieve

1.

Obtain

the

key

value

(relationship

instance

ID)

from

the

generic

business

object.

This

generic

business

object

is

in

the

map

execution

context.

2.

Copy

the

retrieved

instance

ID

into

the

generic

business

object.

ACCESS_RESPONSE

calling

context

When

the

calling

context

is

ACCESS_RESPONSE,

the

map

is

being

called

is

an

outbound

map

as

a

result

of

a

call-triggered

flow.

It

transforms

a

generic

business

object

to

an

application-specific

business

object.

The

outbound

map

receives

a

generic

business

object

as

input

and

returns

an

application-specific

business

object

as

output.

Therefore,

the

task

for

the

Cross-Reference

transformation

is

the

same

for

all

verbs,

as

Table

78

shows.

Table

78.

Actions

for

the

ACCESS_RESPONSE

calling

context

Verb

of

generic

business

object

Action

Performed

by

maintainSimpleIdentityRelationship()

Create

Delete

Update

Retrieve

1.

Obtain

the

key

value

(relationship

instance

ID)

from

the

generic

business

object.

This

generic

business

object

is

in

the

map

execution

context.

2.

Convert

the

relationship

instance

ID

to

an

integer

value.

If

this

conversion

fails,

throw

an

exception.

3.

Copy

the

key

values

from

the

original-request

business

object

into

the

application-specific

business

object.

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Active?

Y

N

Y

Y

“Deleted” Row
Before Delete After Delete

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Active?

Y

Y

Y

Y

Figure

110.

The

write

to

the

relationship

table

for

SERVICE_CALL_RESPONSE

and

a

delete

verb

200

Map

Development

Guide

Because

the

original-request

business

object

for

ACCESS_RESPONSE

is

the

application-specific

business

object,

the

Cross-Reference

transformation

automatically

obtains

this

key

value

from

the

original-request

business

object

in

the

map

execution

context

(cwExecCtx).

The

Cross-Reference

transformation

can

perform

the

tasks

in

Table

78

as

long

as

it

has

access

to

the

original-request

business

object.

However,

in

some

cases,

it

might

not

have

access

to

this

business

object.

For

example,

if

the

Cross-Reference

transformation

is

processing

a

child

object

that

didn’t

exist

in

the

primary

request,

the

method

tries

to

retrieve

that

child

object’s

relationship

instance

ID.

If

the

method

can’t

find

the

relationship

instance,

it

just

populates

the

keys

of

this

child

object

with

the

CxIgnore

value.

Defining

transformation

rules

for

a

simple

identity

relationship

For

information

on

defining

a

Cross-Reference

relationship,

see

“Cross-referencing

identity

relationships”

on

page

45.

Coding

a

child-level

simple

identity

relationship

If

child

business

objects

have

a

unique

key

attribute,

you

can

relate

these

child

business

objects

in

a

simple

identity

relationship.

Coding

this

simple

identity

relationship

involves

the

following

steps:

v

“Creating

the

child

relationship

definition”

v

“Customizing

the

parent

map”

v

“Customizing

the

submap”

on

page

202

Creating

the

child

relationship

definition:

To

create

a

relationship

definition

for

a

simple

identity

relationship

between

child

business

objects,

take

the

following

steps:

1.

Create

a

participant

definition

whose

participant

type

is

the

child

business

object.

2.

Set

the

participant

attribute

to

the

key

attribute

of

the

child

business

object.

Expand

the

child

business

object

and

select

the

key

attribute.

3.

Repeat

steps

1

and

2

for

each

of

the

participants.

As

with

all

simple

identity

relationships,

this

relationship

contains

one

participant

for

the

generic

business

object

and

at

least

one

participant

for

an

application-specific

business

object.

Each

participant

contains

a

single

attribute:

the

key

of

the

business

object.

Customizing

the

parent

map:

In

the

map

for

the

parent

business

object

(the

main

map),

add

the

mapping

code

to

the

attribute

that

contains

the

child

business

object.

In

the

Activity

Editor

for

this

attribute,

take

the

following

steps

to

code

a

simple

identity

relationship:

1.

If

you

created

a

submap

for

the

child

object,

call

this

submap

from

the

child

attribute

of

the

main

map.

Usually

mapping

transformations

for

a

child

object

are

done

within

a

submap,

especially

if

the

child

object

has

multiple

cardinality.

2.

Use

the

General/APIs/Identity

Relationship/Maintain

Child

Verb

function

block

to

set

the

source

child

objects’

verbs

for

you.

The

last

parameter

of

the

General/APIs/Identity

Relationship/Maintain

Child

Verb

function

block

is

a

boolean

flag

to

indicate

whether

the

child

objects

are

participating

in

a

composite

relationship.

Make

sure

you

pass

a

value

of

false

as

the

last

argument

to

the

General/APIs/Identity

Relationship/Maintain

Child

Verb

function

block

because

this

child

object

participates

in

a

simple,

not

a

composite

identity

relationship.

If

the

child

object

has

a

submap,

call

the

Chapter

8.

Implementing

relationships

201

General/APIs/Identity

Relationship/Maintain

Child

Verb

function

block

before

the

call

to

the

submap.

For

more

information,

see

“Setting

the

source

child

verb”

on

page

213.

Note:

If

the

key

attribute

of

the

parent

business

object

also

participates

in

a

simple

identity

relationship,

define

a

Cross-Reference

transformation

in

the

main

map,

as

described

in

“Cross-referencing

identity

relationships”

on

page

45.

Customizing

the

submap:

In

the

submap,

perform

the

following

steps:

1.

Define

a

More

or

Set

Value

transformation

for

the

child

business

object.

2.

Define

a

Cross-Reference

transformation

for

the

child

business

object

and

specify

the

relationship

name

and

participant.

For

more

information,

see

“Cross-referencing

identity

relationships”

on

page

45.

Using

composite

identity

relationships

An

identity

relationship

establishes

an

association

between

business

objects

or

other

data

on

a

one-to-one

basis.

A

composite

identity

relationship

relates

two

business

objects

through

a

composite

key

attribute.

The

following

sections

describe

the

steps

for

working

with

composite

identity

relationships:

v

“Creating

composite

identity

relationship

definitions”

v

“Determining

the

relationship

action”

on

page

203

v

“Customizing

map

rules

for

a

composite

identity

relationship”

on

page

204

Creating

composite

identity

relationship

definitions

Identity

relationship

definitions

differ

from

lookup

relationship

definitions

in

that

the

participant

types

are

business

objects,

not

of

the

type

Data

(the

first

selection

in

the

participant

types

list).

As

with

a

simple

identity

relationship,

a

composite

identity

relationship:

v

The

relationship

consists

of

the

generic

business

object

and

at

least

one

application-specific

business

object.

v

The

participant

type

is

a

business

object

for

all

participants.

However,

for

a

composite

identity

relationship,

the

participant

attribute

for

every

participant

is

a

composite

key.

This

composite

key

usually

consists

of

a

unique

key

from

a

parent

business

object

and

a

nonunique

key

from

a

child

business

object.

To

create

a

relationship

definition

for

a

composite

identity

relationship,

take

the

following

steps:

1.

Create

a

participant

definition

whose

participant

type

is

the

parent

business

object.

2.

Set

the

first

participant

attribute

to

the

key

of

the

parent

business

object.

Expand

the

parent

business

object

and

select

the

key

attribute.

3.

Set

the

second

participant

attribute

to

the

key

of

the

child

attribute.

Expand

the

parent

business

object,

then

expand

the

child

attribute

within

the

parent.

Select

the

key

attribute

from

this

child

object.

4.

Repeat

steps

1-3

for

each

of

the

participants.

As

with

all

composite

identity

relationships,

this

relationship

contains

one

participant

for

the

generic

business

object

and

at

least

one

participant

for

a

application-specific

business

object.

Each

participant

consists

of

two

attributes:

the

key

of

the

parent

business

object

and

the

key

of

the

child

business

object

(from

the

attribute

within

the

parent

business

object).

202

Map

Development

Guide

Restriction:

To

manage

composite

relationships,

the

server

creates

internal

tables.

A

table

is

created

for

each

role

in

the

relationship.

A

unique

index

is

then

created

on

these

tables

across

all

key

attributes

of

the

relationship.

(In

other

words,

the

columns

which

correspond

to

the

key

attributes

of

the

relationship

are

the

participants

of

the

index.)

The

column

sizes

of

the

internal

tables

have

a

direct

relation

to

the

attributes

of

the

relationship

and

are

determined

by

the

value

of

the

MaxLength

attribute

for

the

relationship.

Databases

typically

have

restrictions

on

the

size

of

the

indexes

that

can

be

created.

For

instance,

DB2

has

an

index

limitation

of

1024

bytes

with

the

default

page

size.

Thus,

depending

on

the

MaxLength

attribute

of

a

relationship

and

the

number

of

attributes

in

a

relationship,

you

could

run

into

an

index

size

restriction

while

creating

composite

relationships.

Important:

v

You

must

ensure

that

appropriate

MaxLength

values

are

set

in

the

repository

file

for

all

key

attributes

of

a

relationship,

such

that

the

total

index

would

never

exceed

the

index

size

limitations

of

the

underlying

DBMS.

If

the

MaxLength

attribute

for

type

String

is

not

specified,

the

default

is

nvarchar(255)

in

the

SQLServer.

Thus,

if

a

relationship

has

N

Keys,

all

of

type

String

and

the

default

MaxLength

attribute

of

255

bytes,

the

index

size

would

be

((N*255)*2)

+

16

bytes.

You

can

see

that

you

would

exceed

the

SQLServer

7

limit

of

900

bytes

quite

easily

when

N

takes

values

of

>=2

for

the

default

MaxLength

value

of

255

bytes

for

type

String.

v

Remember,

too,

that

even

when

some

DBMS’es

support

large

indexes,

it

comes

at

the

cost

of

performance;

hence,

it

is

always

a

good

idea

to

keep

index

sizes

to

the

minimum.

For

more

information

on

how

to

create

a

relationship

definition

for

a

composite

identity

relationship,

see

“Defining

identity

relationships”

on

page

174.

Determining

the

relationship

action

Table

79

shows

the

activity

function

blocks

that

the

Mapping

API

provides

to

maintain

a

composite

identity

relationship

from

the

child

attribute

of

parent

source

business

object.

The

actions

that

these

methods

take

depends

on

the

source

object’s

verb

and

the

calling

context.

Table

79.

Maintaining

a

composite

identity

relationship

from

the

child

attribute

Activity

function

blocks

Purpose

General/APIs/Identity

Relationship/

Maintain

Child

Verb

Set

source

child

verb

correctly

General/APIs/Identity

Relationship/

Maintain

Composite

Relationship

Perform

appropriate

action

on

the

relationship

tables

Actions

of

General/APIs/Identity

Relationship/Maintain

Composite

Relationship

The

Maintain

Composite

Relationship

function

block

will

generate

Java

code

that

calls

the

mapping

API

maintainCompositeRelationship(),

which

will

manage

relationship

tables

for

a

composite

identity

relationship.

This

method

ensures

that

the

relationship

instances

contain

the

associated

application-specific

key

values

for

each

relationship

instance

ID.

This

method

automatically

handles

all

of

the

basic

adding

and

deleting

of

participants

and

relationship

instances

for

a

composite

identity

relationship.

Chapter

8.

Implementing

relationships

203

The

actions

that

maintainCompositeRelationship()

takes

are

based

on

the

value

of

the

business

object’s

verb

and

the

calling

context.

The

method

iterates

through

the

child

objects

of

a

specified

participant,

calling

the

maintainSimpleIdentityRelationship()

on

each

one

to

correctly

set

the

child

key

value.

As

with

maintainSimpleIdentityRelationship(),

the

action

that

maintainCompositeRelationship()

takes

is

based

on

the

following

information:

v

The

calling

context:

EVENT_DELIVERY,

ACCESS_REQUEST,

SERVICE_CALL_REQUEST,

SERVICE_CALL_RESPONSE,

SERVICE_CALL_FAILURE,

and

ACCESS_RESPONSE

v

The

verb

of

the

source

business

object:

Create,

Update,

Delete,

or

Retrieve

For

information

on

the

actions

that

maintainSimpleIdentityRelationship()

takes,

see

“Accessing

identity

relationship

tables”

on

page

191.

The

maintainCompositeRelationship()

method

deals

only

with

composite

keys

that

extend

to

only

two

nested

levels.

In

other

words,

the

method

cannot

handle

the

case

where

the

child

object’s

composite

key

depends

on

values

in

it

grandparent

objects.

For

example,

if

A

is

the

top-level

business

object,

B

is

the

child

of

A,

and

C

is

the

child

of

B,

the

two

methods

will

not

support

the

participant

definitions

for

the

child

object

C

that

are

as

follows:

v

The

participant

type

is

A

and

the

attributes

are:

key

attribute

of

A:

ID

key

attribute

of

B:

B[0].ID

key

attribute

of

C:

B[0].C[0].ID

v

The

participant

type

is

A

and

the

attributes

are:

key

attribute

of

A:

ID

key

attribute

of

C:

B[0].C[0].ID

To

access

a

grandchild

object,

these

methods

only

support

the

participant

definitions

that

are

as

follows:

v

The

participant

type

is

B

and

the

attributes

are:

key

attribute

of

B:

ID

key

attribute

of

C:

C[0].ID

v

The

participant

type

is

B

and

the

attributes

are:

key

attribute

of

B:

ID

first

key

attribute

of

C:

C[0].ID1

second

key

attribute

of

C:

C[0].ID2

Actions

of

General/APIs/Identity

Relationship/Maintain

Child

Verb

The

Maintain

Child

Verb

function

block

will

generate

Java

code

that

calls

the

mapping

API

maintainChildVerb(),

which

will

maintain

the

verb

of

the

child

objects

in

the

destination

business

object.

It

can

handle

child

objects

whose

key

attributes

are

part

of

a

composite

identity

relationship.

When

you

call

maintainChildVerb()

as

part

of

a

composite

relationship,

make

sure

that

its

last

parameter

has

a

value

of

true.

This

method

ensures

that

the

verb

settings

are

appropriate

given

the

verb

in

the

parent

source

object

and

the

calling

context.

For

more

information

on

the

actions

of

maintainChildVerb(),

see

“Setting

the

source

child

verb”

on

page

213.

Customizing

map

rules

for

a

composite

identity

relationship

Once

you

have

created

the

relationship

definition

and

participant

definitions

for

the

composite

identity

relationship,

you

can

customize

the

map

to

maintain

the

composite

identity

relationship.

A

composite

identity

relationship

manages

a

composite

key.

Therefore,

managing

this

kind

of

relationship

involves

management

204

Map

Development

Guide

of

both

parts

of

the

composite

key.

To

code

a

composite

identity

relationship,

you

need

to

customize

the

mapping

transformation

rules

for

both

the

parent

and

child

business

objects,

as

Table

80

shows.

Table

80.

Activity

function

blocks

for

a

composite

identity

relationship

Map

involved

Business

object

involved

Attribute

Activity

function

blocks

Main

Parent

business

object

Top-level

business

object

Use

a

Cross-Reference

transformation

rule

Child

attribute

(child

business

object)

General/APIs/Identity

Relationship/Maintain

Composite

Relationship

General/APIs/Identity

Relationship/Maintain

Child

Verb

General/APIs/Identity

Relationship/Update

My

Children

(optional)

Submap

Child

business

object

Key

attribute

(nonunique

key)

Define

a

Move

or

Set

Value

transformation

for

the

verb.

If

child

business

objects

have

a

nonunique

key

attribute,

you

can

relate

these

child

business

objects

in

a

composite

identity

relationship.

Customizing

this

composite

identity

relationship

involves

the

following

steps:

v

“Customizing

the

main

map”

v

“Managing

child

instances”

on

page

207

Customizing

the

main

map

In

the

map

for

the

parent

business

object

(the

main

map),

add

the

mapping

code

to

the

following

parent

attributes:

v

Map

the

verb

of

the

top-level

business

object

by

defining

a

Move

or

Set

Value

transformation

rule.

v

Define

a

Cross-Reference

transformation

between

the

top-level

business

objects.

v

Define

a

Custom

transformation

for

the

child

attribute

and

use

the

General/APIs/Identity

Relationship/Maintain

Composite

Relationship

function

block

in

Activity

Editor.

Coding

the

child

attribute:

The

child

attribute

of

the

parent

object

contains

the

child

business

object.

This

child

object

is

usually

a

multiple

cardinality

business

object.

It

contains

a

key

attribute

whose

value

identifies

the

child.

However,

this

key

value

is

not

required

to

be

unique.

Therefore,

it

does

not

uniquely

identify

one

child

object

among

those

for

the

same

parent

nor

is

it

sufficient

to

identify

the

child

object

among

child

objects

for

all

instances

of

the

parent

object.

To

uniquely

identify

such

a

child

object,

the

relationship

uses

a

composite

key.

In

the

composite

key,

the

parent

key

uniquely

identifies

the

parent

object.

The

combination

of

parent

key

and

child

key

uniquely

identifies

the

child

object.

In

the

map

for

the

parent

business

object

(the

main

map),

add

the

mapping

code

to

the

attribute

that

contains

the

child

business

object.

In

the

Activity

Editor

for

this

attribute,

take

the

following

steps

to

code

a

composite

identity

relationship:

1.

Define

a

Submap

transformation

for

the

child

business

object

attribute

of

the

main

map.

Usually

mapping

transformations

for

a

child

object

are

done

within

a

submap,

especially

if

the

child

object

has

multiple

cardinality.

2.

In

the

main

map,

define

a

Custom

transformation

rule

for

the

child

verb

and

use

the

General/APIs/Identity

Relationship/Maintain

Child

Verb

function

block

to

maintain

the

child

business

object’s

verb.

The

last

input

parameter

of

the

General/APIs/Identity

Relationship/Maintain

Child

Verb

function

block

is

a

boolean

flag

to

indicate

whether

the

child

objects

Chapter

8.

Implementing

relationships

205

are

participating

in

a

composite

relationship.

Make

sure

you

pass

a

value

of

true

as

the

last

argument

to

maintainChildVerb()

because

this

child

object

participates

in

a

composite,

not

a

simple

identity

relationship.

Make

sure

you

call

maintainChildVerb()

before

the

code

that

calls

the

submap.

For

more

information,

see

“Setting

the

source

child

verb”

on

page

213.

3.

To

maintain

this

composite

key

for

the

parent

source

object,

customize

the

mapping

rule

to

use

the

General/APIs/Identity

Relationship/Maintain

Composite

Relationship

function

block.

4.

To

maintain

the

relationship

tables

in

the

case

where

a

parent

object

has

an

Update

verb

caused

by

child

objects

being

deleted,

customize

the

mapping

rule

to

use

the

General/APIs/Identity

Relationship/Update

My

Children

function

block.

Tip:

Make

sure

the

transformation

rule

that

contains

the

Update

My

Children

function

block

has

an

execution

order

after

the

transformation

rule

that

contains

the

Maintain

Composite

Relationship

function

block.

Here

is

a

sample

of

how

the

map

can

be

customized

for

a

Composite

Identity

Relationship.

1.

In

the

main

map,

define

a

Custom

transformation

rule

between

the

child

business

object’s

verbs.

Use

the

General/APIs/Identity

Relationship/Maintain

Child

Verb

function

block

in

the

customized

activity

to

maintain

the

verb

for

the

child

business

objects.

The

goal

of

this

custom

activity

is

to

use

the

maintainChildVerb()

API

to

set

the

child

business

object

verb

based

on

the

map

execution

context

and

the

verb

of

the

parent

business

object.

Figure

111

shows

this

custom

activity.

2.

If

necessary,

define

a

Submap

transformation

rule

between

the

child

business

object

to

perform

any

mapping

necessary

in

the

child

level.

3.

Define

a

Custom

transformation

rule

between

the

top-level

business

objects.

Use

the

General/APIs/Identity

Relationship/Maintain

Composite

Relationship

function

block

in

the

customized

activity

to

maintain

the

composite

identity

relationship

for

this

map.

The

goal

of

this

custom

activity

is

to

use

the

maintainComposite

Relationship()

API

to

maintain

a

compositie

identity

relationship

within

the

map.

Figure

112

on

page

207

Figure

111.

Using

the

Maintain

Child

Verb

function

block

206

Map

Development

Guide

on

page

207

shows

this

custom

activity.

4.

Define

a

Custom

transformation

rule

mapping

from

the

source

top-level

business

object

to

the

destination

child

business

object

attribute.

Use

the

General/APIs/Identity

Relationship/Update

My

Children

function

block

in

the

customized

activity

to

maintain

the

child

instances

in

the

relationship.

The

goal

of

this

custom

activity

is

to

use

the

updateMyChildren()

API

to

add

or

delete

child

instances

in

the

specified

parent/child

relationship

of

the

identity

relationship.

Figure

113

shows

this

custom

activity.

Managing

child

instances

The

Activity

Editor

provides

the

function

blocks

in

Table

81

to

manage

child

object

instances

that

belong

to

a

parent

in

an

identity

relationship.

Table

81.

Function

blocks

for

Managing

Child

Instances

Function

block

Description

General/APIs/Identity

Relationship/Add

My

Children

Adds

child

relationship

instances

to

parent/child

relationship

tables

General/APIs/Identity

Relationship/Delete

My

Children

Deletes

child

relationship

instances

to

parent/child

relationship

tables

Figure

112.

Using

the

Maintain

Composite

Relationship

function

block

Figure

113.

Using

the

Update

My

Children

function

block

Chapter

8.

Implementing

relationships

207

Table

81.

Function

blocks

for

Managing

Child

Instances

(continued)

Function

block

Description

General/APIs/Identity

Relationship/Update

My

Children

Deletes

or

adds

child

relationship

instances

from

parent/child

relationship

tables.

Note:

The

most

common

use

of

the

function

blocks

in

Table

81

is

to

maintain

child

business

objects

in

custom

relationships

involving

composite

identity

relationships.

The

function

blocks

in

Table

81

assume

that

the

parent

business

object

being

passed

is

an

after-image;

that

is,

the

image

of

the

business

object

after

the

verb

operation

has

taken

place.

For

example,

if

a

business

object

has

an

Update

verb

with

the

update

caused

by

the

addition

of

new

child

objects,

these

new

child

objects

already

exist

in

the

business

object.

Similarly,

if

a

business

object

has

an

Update

verb

with

the

update

caused

by

the

deletion

of

child

objects,

the

business

object

already

has

these

child

objects

deleted.

This

section

provides

the

following

information

about

how

to

manage

child

instances:

v

“Creating

the

parent/child

relationship

definition”

v

“Handling

updates

to

the

parent

business

object”

on

page

209

Creating

the

parent/child

relationship

definition

A

parent/child

relationship

is

a

1-to-many

relationship

between

parent

(1)

and

child

(many)

business

objects.

A

parent/child

relationship

involves

the

following

participants:

v

A

participant

containing

the

key

attribute

of

that

parent

business

object

v

A

participant

containing

the

key

of

the

child

business

object

The

relationship

tables

for

a

parent/child

relationship

enable

the

function

blocks

in

Table

81

to

track

the

child

business

objects

associated

with

a

particular

parent

business

object.

To

create

a

relationship

definition

for

a

parent/child

relationship,

take

the

following

steps

in

Relationship

Designer

Express:

1.

Create

a

participant

definition

whose

participant

type

is

the

parent

business

object.

2.

Set

the

participant

attribute

to

the

key

of

the

parent

business

object.

Expand

the

parent

business

object

and

select

the

key

attribute.

3.

Create

a

participant

definition

whose

participant

type

is

the

child

business

object.

4.

Set

the

participant

attribute

to

the

key

of

the

child

attribute.

Expand

the

child

business

object

(not

the

child

attribute

with

the

parent

object)

and

select

the

key

attribute

from

this

child

object.

Note:

The

parent-child

relationship

needs

to

be

maintained

only

if

the

child

object

does

not

have

a

unique

key;

that

is,

the

child

object

only

exists

within

the

context

of

its

parent.

For

more

information,

see

“Defining

identity

relationships”

on

page

174.

208

Map

Development

Guide

Handling

updates

to

the

parent

business

object

This

section

provides

the

following

steps

to

ensure

that

child

objects

that

participate

in

a

composite

identity

relationship

are

correctly

managed

during

an

Update:

v

“Comparing

the

before-

and

after-images”

v

“Tips

on

using

Update

My

Children”

Comparing

the

before-

and

after-images

The

Update

My

Children

function

block

updates

the

relationship

tables

for

a

parent/child

relationship.

A

parent/child

relationship

is

needed

to

help

determine

whether

child

objects

have

been

added

to

or

deleted

from

a

parent

business

object.

For

a

given

parent

business

object,

this

method

makes

sure

that

the

following

images

of

the

business

object

match:

v

The

before-image

information

is

contained

in

the

relationship

tables

for

the

parent/child

relationship.

v

The

after-image

is

contained

in

parent

business

object.

For

the

map

to

detect

that

a

child

business

object

has

been

deleted,

it

must

determine

how

many

instances

of

the

child

object

of

this

type

that

the

parent

business

object

had

before

the

Update

(the

before-image)

and

compare

that

to

what

the

parent

object

presently

has

(the

after-image).

The

map

can

use

the

Update

My

Children

function

block

to

make

this

comparison

and

find

out

what

has

been

deleted

or

added.

When

Update

My

Children

compares

the

before-

and

after-images,

it

can

determine

whether

to

remove

the

associated

relationship

instances

from

the

relationship

tables

for

any

child

object

that

is

not

present

in

the

parent

business

object.

The

method

removed

relationship

instances

from

the

following

relationship

tables:

v

The

relationship

table

for

the

child

participant

in

the

parent/child

relationship

v

The

relationship

table

for

the

participant

in

the

composite

identity

relationship

that

contains

the

parent

and

child

objects

Note:

Although

Update

My

Children

can

also

add

instances

to

the

relationship

table

for

any

child

object

that

is

present

in

the

parent

business

object

(but

not

in

the

child

relationship

table),

it

does

not

need

to

when

called

in

the

context

of

a

composite

identity

relationship.

All

new

child

objects

for

the

parent

object

have

already

been

added

to

the

relationship

tables

by

the

Maintain

Composite

Relationship

function

block

For

more

information,

see

“Actions

of

General/APIs/Identity

Relationship/Maintain

Composite

Relationship”

on

page

203.

Tips

on

using

Update

My

Children

When

you

use

the

Update

My

Children

function

block

to

maintain

relationship

tables

for

a

child

object

involved

in

a

composite

identity

relationship,

keep

the

following

tips

in

mind:

v

Make

sure

you

use

the

Update

My

Children

function

block

after

the

Maintain

Composite

Relationship

function

block

and

that

you

have

set

the

appropriate

verbs

on

the

child

business

objects.

v

The

Update

My

Children

function

block

is

only

needed

to

track

child

objects

involved

in

composite

relationships.

Chapter

8.

Implementing

relationships

209

You

do

not

need

to

use

the

Update

My

Children

function

block

to

track

child

objects

involved

in

a

simple

identity

relationship.

For

more

information,

see

“Coding

a

child-level

simple

identity

relationship”

on

page

201.

v

The

Update

My

Children

function

block

(as

with

the

Maintain

Composite

Relationship

function

block)

deals

only

with

composite

keys

that

extend

to

only

two

nested

levels:

the

parent

and

its

immediate

children.

In

other

words,

the

method

cannot

handle

the

case

where

the

grandchild

object’s

composite

key

depends

on

values

in

it

grandparent

objects.

For

example,

if

A

is

the

top-level

business

object,

B

is

the

child

of

A,

and

C

is

the

child

of

B,

the

two

methods

will

not

support

the

participant

definitions

for

the

child

object

C

that

are

as

follows:

–

The

participant

type

is

A

and

the

attributes

are:

key

attribute

of

A:

ID

key

attribute

of

B:

B[0].ID

key

attribute

of

C:

B[0].C[0].ID

–

The

participant

type

is

A

and

the

attributes

are:

key

attribute

of

A:

ID

key

attribute

of

C:

B[0].C[0].ID

To

access

a

grandchild

object,

these

methods

only

support

the

participant

definitions

that

are

as

follows:

–

The

participant

type

is

B

and

the

attributes

are:

key

attribute

of

B:

ID

key

attribute

of

C:

C[0].ID

–

The

participant

type

is

B

and

the

attributes

are:

key

attribute

of

B:

ID

first

key

attribute

of

C:

C[0].ID1

second

key

attribute

of

C:

C[0].ID2

v

The

Update

My

Children

function

block

manages

the

parent/child

relationship

tables

for

the

EVENT_DELIVERY

and

SERVICE_CALL_RESPONSE

calling

contexts

only.

Execution

of

the

Update

My

Children

function

block

with

a

calling

context

of

SERVICE_CALL_REQUEST

or

ACCESS_RESPONSE

does

not

produce

any

changes

to

these

relationship

tables.

v

The

Update

My

Children

function

block

can

also

be

used

when

the

child

business

object

has

a

unique

ID;

that

is,

the

child

object

participates

in

a

simple

identity

relationship.

In

this

case,

you

must

still

define

the

parent/child

relationship

(see

“Creating

the

parent/child

relationship

definition”

on

page

208).

Setting

the

verb

This

section

contains

the

following

information

on

how

to

set

the

verb

of

a

business

object

participating

in

a

map:

v

“Conditionally

setting

the

destination

verb”

v

“Setting

the

source

child

verb”

on

page

213

Note:

For

general

information

about

how

to

set

the

verb

of

the

destination

business

object,

see

“Setting

the

destination

business

object

verb”

on

page

35.

Conditionally

setting

the

destination

verb

Usually,

you

just

set

the

destination

verb

to

the

value

of

the

source

verb

by

defining

a

Move

transformation.

(For

more

information

on

this

action,

see

“Setting

210

Map

Development

Guide

the

destination

business

object

verb”

on

page

35.)

However,

sometimes

the

source

application

sets

the

business

object

verb

in

an

unusual

manner;

for

example,

the

verb

is

set

to

Update

even

though

the

event

is

new.

As

another

example,

the

verb

is

always

set

to

Retrieve.

In

the

situations

like

these,

the

map

must

resets

the

destination

verb

to

the

one

that

corresponds

to

the

actual

event.

If

the

source

business

object’s

key

participates

in

a

relationship,

the

map

can

perform

a

static

lookup

in

the

relationship

table

to

determine

if

the

source

business

object

exists.

The

map

can

then

set

the

destination

verb

to

either

Update

or

Create

based

on

whether

the

corresponding

entry

is

found

in

the

table.

You

perform

this

static

lookup

in

much

the

same

way

as

accessing

a

lookup

relationship.

Table

82

shows

the

function

block

to

use

for

each

kind

of

static

lookup.

Table

82.

Checking

for

Existence

of

the

source

business

object

Type

of

source

business

object

Map

type

Function

block

Application-specific

Inbound

General/APIs/Relationship/

Retrieve

Instances

Generic

Outbound

General/APIs/Relationship/

Retrieve

Participants

Example

of

customizing

the

inbound

map

Here

is

an

example

of

how

an

inbound

map

can

conditionally

set

the

destination

verb

based

on

the

result

of

a

lookup:

1.

In

the

map,

define

a

Custom

transformation

between

the

source

business

object

and

the

destination

verb.

2.

In

the

Activity

of

this

Custom

Transformation,

perform

the

following

steps.

The

goal

of

this

activity

is

to

identify

the

number

of

instances

in

the

participant

of

the

relationship.

If

there

are

no

participant

instances

in

the

relationship,

the

destination

business

object

verb

should

be

Create;

otherwise,

the

verb

should

be

Update.

a.

Define

the

activity,

as

shown

in

Figure

114,

to

identify

the

number

of

instances

in

the

relationship

participant.

b.

Double-click

the

Condition

function

block

in

the

canvas

to

open

it.

Select

True

Action

to

define

the

action

to

take

when

the

condition

is

true.

Define

Figure

114.

Identifying

the

number

of

instances

in

the

relationship

participant

Chapter

8.

Implementing

relationships

211

the

True

Action

as

shown

in

Figure

115.

c.

Select

the

False

Action

to

define

the

action

to

take

when

the

number

of

participant

instances

is

not

zero.

Define

the

False

Action

as

shown

in

Figure

116.

Example

of

customizing

the

outbound

map

You

can

use

similar

steps

in

the

outbound

map

to

perform

a

static

lookup

based

on

the

primary

key

of

the

generic

object.

To

do

that,

you

need

to

replace

the

function

block

General/APIs

Relationship/Retrieve

Instances

with

the

function

block

General/APIs

Relationship/Retrieve

Participants.

Here

are

the

steps:

1.

In

the

map,

define

a

Custom

transformation

between

the

key

attribute

of

the

source

business

object

and

the

destination

verb.

2.

In

the

activity

of

this

Custom

transformation,

perform

the

following

steps.

The

goal

of

this

activity

is

to

identify

the

number

of

participants

of

the

relationship.

If

there

are

no

participant

instances

in

the

relationship

the

destination

business

object

verb

should

be

Create;

otherwise,

the

verb

should

be

Update.

Figure

115.

Defining

the

True

Action

Figure

116.

Defining

the

False

Action

212

Map

Development

Guide

a.

Define

the

activity,

as

shown

in

Figure

117,

to

identify

the

number

of

participants

in

the

relationship.

b.

Follow

steps

2b

and

2c,

described

in

“Example

of

customizing

the

inbound

map”

on

page

211.

Setting

the

source

child

verb

When

a

parent

source

business

object

has

child

business

objects,

the

value

of

the

source

child

verb

is

usually

the

same

as

that

of

the

parent

verb.

Therefore,

you

set

the

source

child

object’s

verb

by

defining

a

Move

transformation

from

the

parent

verb

to

the

child

verb.

However,

if

the

parent

object’s

verb

is

Update,

the

update

could

be

a

result

of

any

of

the

modifications

shown

in

Table

83.

Table

83.

Updating

a

parent

business

object

Update

task

Verb

in

child

object

Modifying

some

non-child

attribute

i

the

parent

object

Update

Modifying

some

attribute

in

a

child

object

Update

Adding

more

child

objects

Create

Deleting

existing

child

objects

Delete

All

of

the

modifications

Table

83

are

represented

by

a

verb

of

Update

in

the

parent

object.

However,

not

all

of

these

modifications

represent

an

Update

to

the

child

object.

The

value

of

the

source

child

verb

depends

on

what

action

was

taken

on

the

parent

verb.

When

the

child

object’s

key

participates

in

an

identity

relationship

(composite

or

simple),

the

source

child

verb

value

depends

not

just

on

the

parent

verb

but

also

on

the

calling

context.

In

such

cases,

use

the

Maintain

Child

Verb

function

block

to

handle

the

setting

of

the

verb

of

the

source

child

object.

This

section

provides

the

following

information

about

using

the

Maintain

Child

Verb

function

block

to

maintain

a

source

child

object

verb:

v

“Determining

the

child

verb

setting”

v

“Tips

for

using

the

Maintain

Child

Verb

function

block”

on

page

215

Determining

the

child

verb

setting

The

Maintain

Child

Verb

function

block

must

ensure

that

the

verb

settings

of

the

child

objects

in

the

source

business

object

are

appropriate

given

the

verb

in

the

parent

source

object

and

the

calling

context.

The

actions

that

this

method

takes

are

based

on

the

verb

in

the

parent

source

object

and

the

calling

context.

Figure

117.

Identifying

the

number

of

participants

in

the

relationship

Chapter

8.

Implementing

relationships

213

EVENT_DELIVERY

and

ACCESS_REQUEST

calling

Contexts:

When

the

calling

context

is

EVENT_DELIVERY

or

ACCESS_REQUEST,

the

map

is

being

called

is

an

inbound

map;

that

is,

it

transforms

an

application-specific

business

object

to

a

generic

business

object.

The

inbound

map

receives

an

application-specific

business

object

as

input

and

returns

a

generic

business

object

as

output.

For

EVENT_DELIEVERY

(or

ACCESS_REQUEST),

there

are

no

special

cases

to

handle

when

setting

the

child

verbs.

Therefore,

the

maintainChildVerb()

method

just

copies

the

parent

verb

to

the

child

verb

for

all

verb

values,

as

Table

84

shows.

Table

84.

Actions

for

the

EVENT_DELIVERY

and

ACCESS_REQUEST

calling

contexts

Verb

of

generic

business

object

Action

performed

by

the

Maintain

Child

Verb

function

block

Create

Delete

Update

Retrieve

Set

the

verbs

of

all

child

objects

in

the

source

object

to

the

verb

in

the

parent

source

object.

This

action

overwrites

any

existing

verb

in

the

child

object.

SERVICE_CALL_REQUEST

calling

context:

When

the

calling

context

is

SERVICE_CALL_REQUEST,

the

map

is

being

called

is

an

outbound

map;

that

is,

it

transforms

a

generic

business

object

to

an

application-specific

business

object.

The

outbound

map

receives

a

generic

business

object

as

input

and

returns

an

application-specific

business

object

as

output.

For

SERVICE_CALL_REQUEST,

the

Java

code

generated

by

the

Maintain

Child

Verb

function

block

handles

the

special

case

for

an

Update

verb:

If

the

change

to

the

parent

object

is

the

creation

of

new

child

objects,

the

Maintain

Child

Verb

function

block

changes

the

verb

to

Create

for

any

child

objects

that

do

not

currently

exist

in

the

relationship

tables,

as

Table

85

shows.

Table

85.

Actions

for

SERVICE_CALL_REQUEST

calling

context

Verb

of

generic

business

object

Action

performed

by

the

Maintain

Child

Verb

function

block

Create

Delete

Retrieve

Set

the

verbs

of

all

child

objects

in

the

source

object

to

the

verb

in

the

parent

source

object.

This

action

overwrites

any

existing

verb

in

the

child

object.

Update

1.

Retrieve

the

relationship

instance

from

the

child

relationship

table

for

the

given

generic

business

object’s

key

value.

2.

Set

the

verb

of

the

child

object

based

on

the

success

of

the

table

lookup:

v

If

a

relationship

instance

for

this

child

object

exists,

set

the

verb

of

the

child

object

to

Update.

v

If

a

relationship

instance

for

this

child

object

does

not

exist,

set

the

verb

of

the

child

object

to

Create.

SERVICE_CALL_RESPONSE

calling

context:

When

the

calling

context

is

SERVICE_CALL_RESPONSE,

the

map

is

being

called

is

an

inbound

map;

that

is

it

transforms

an

application-specific

business

object

to

a

generic

business

object.

The

inbound

map

receives

an

application-specific

business

object

as

input

and

returns

a

generic

business

object

as

output.

The

behavior

of

the

Maintain

Child

Verb

function

block

is

determined

by

the

second-to-last

parameter

of

the

method.

This

parameter

is

the

boolean

to_Retrieve

flag,

whose

value

indicates

whether

the

application

resets

or

preserves

child

objects’

verbs

when

processing

a

collaboration

request,

as

Table

86

shows.

214

Map

Development

Guide

Table

86.

Connector

behavior

Value

of

to_Retrieve

flag

Connector

behavior

true

Connector

sets

child

object

verbs

to

different

value

from

what

they

had

coming

into

the

application.

For

example,

if

a

business

object

comes

to

the

connector

with

a

parent

verb

of

Update

and

a

child

verb

of

Create,

the

connector

might

reset

all

child

object

verbs

to

their

parent

value

after

the

application

completes

the

operation.

In

this

case,

the

child

verb

would

be

changed

to

Update.

false

Connector

preserves

child

object

verbs.

For

example,

if

a

business

object

comes

to

the

connector

with

a

parent

verb

of

Update

and

a

child

verb

of

Create,

the

connector

preserves

all

child

object

verbs.

In

this

case,

the

child

verb

would

still

be

Create.

Note:

The

Java

code

generated

by

the

Maintain

Child

Verb

function

block

uses

the

value

of

the

to_Retrieve

parameter

only

when

it

processes

the

SERVICE_CALL_RESPONSE

calling

context.

If

the

to_Retrieve

argument

is

true,

the

Maintain

Child

Verb

function

block

performs

the

tasks

in

Table

87..

Table

87.

Actions

for

the

SERVICE_CALL_RESPONSE

calling

context

Verb

of

generic

business

object

Action

performed

by

the

Maintain

Child

Verb

function

block

Create

Delete

Retrieve

Update

Set

the

verbs

of

all

child

objects

in

the

source

object

to

the

verb

in

the

parent

source

object.

This

action

overwrites

any

existing

verb

in

the

child

object.

1.

Lookup

each

child

object

in

the

child

relationship

table.

2.

Set

the

verb

of

the

child

object

based

on

the

success

of

the

table

lookup:

v

If

a

relationship

instance

for

this

child

object

exists,

set

the

verb

of

the

child

object

to

Update.

v

If

a

relationship

instance

for

this

child

object

does

not

exist,

set

the

verb

of

the

child

object

to

Create.

Note:

If

you

are

unsure

of

the

behavior

of

your

application,

set

the

to_Retrieve

argument

to

true.

With

a

true

flag

value,

performance

might

be

affected

because

the

Java

code

generated

by

the

Maintain

Child

Verb

function

block

might

perform

an

unnecessary

lookup.

However,

it

is

usually

safer

to

have

an

unnecessary

lookup

than

to

have

an

incorrect

verb

setting

in

the

child

object.

Tips

for

using

the

Maintain

Child

Verb

function

block

The

Maintain

Child

Verb

function

block

maintains

the

verb

of

the

child

objects

in

the

source

business

object.

It

can

handle

child

objects

that

are

part

of

a

simple

or

a

composite

identity

relationship.

This

function

block

must

ensure

that

the

verb

settings

are

appropriate

given

the

verb

in

the

parent

source

object

and

the

calling

context.

Keep

the

following

tips

in

mind

when

using

the

Maintain

Child

Verb

function

block:

v

The

second

to

last

parameter

in

this

method

is

the

to_Retrieve

boolean

flag,

which

indicates

whether

the

application

resets

or

preserves

child

objects’

verbs.

Chapter

8.

Implementing

relationships

215

For

more

information

on

how

to

set

the

to_Retrieve

flag,

see

“SERVICE_CALL_RESPONSE

calling

context”

on

page

214.

v

The

last

parameter

in

this

method

is

the

is_Composite

boolean

flag,

which

indicates

whether

the

child

object

is

part

of

a

simple

or

composite

identity

relationship.

The

key

attribute

of

a

child

business

object

can

participate

in

either

of

the

following

kinds

of

identity

relationship:

–

As

a

unique

key

in

a

simple

identity

relationship

Set

the

value

of

the

is_Composite

flag

to

false.

–

As

a

nonunique

key

of

a

composite

key

in

a

composite

identity

relationship;

in

this

case,

the

other

part

of

the

composite

key

is

the

unique

key

in

the

parent

business

object.

Set

the

value

of

the

is_Composite

flag

to

true.
v

Make

sure

you

use

the

Maintain

Child

Verb

function

block

in

the

child

attribute

of

the

source

parent

map,

before

calling

the

submap.

For

multiple-cardinality

child

objects,

use

the

Maintain

Child

Verb

function

block

right

before

the

start

of

the

for

loop.

The

method

iterates

through

the

child

objects

to

set

the

child

verbs

correctly.

Performing

foreign

key

lookups

A

foreign

key

is

an

attribute

within

one

business

object

that

contains

the

key

value

of

another

business

object.

This

key

value

is

considered

“foreign”

to

the

source

business

object

because

it

identifies

some

other

business

object.

To

transform

a

foreign

key

in

a

source

business

object,

you

must

access

the

relationship

table

associated

with

the

business

object

that

the

foreign

key

references

(the

foreign

relationship

table).

From

this

foreign

relationship

table,

you

can

obtain

the

associated

key

value

for

the

foreign

key

of

the

destination

business

object.

The

Mapping

API

provides

the

methods

in

Table

88

to

perform

foreign

key

lookups.

Table

88.

Function

blocks

for

foreign

key

lookups

Function

block

Description

General/APIs/Identity

Relationship/Foreign

Key

Lookup

Performs

a

foreign

key

lookup,

failing

to

find

a

relationship

instance

if

the

foreign

key

does

not

exist

in

the

foreign

relationship

table.

General/APIs/Identity

Relationship/Foreign

Key

Cross-Reference

Performs

a

foreign

key

lookup,

adding

a

new

relationship

instance

in

the

foreign

relationship

table

if

the

foreign

key

does

not

exist.

Using

the

Foreign

Key

Lookup

function

block

The

Java

code

generated

by

the

Foreign

Key

Lookup

function

block

performs

a

lookup

in

a

foreign

relationship

table

for

the

foreign

key

of

the

source

business

object.

This

function

block

takes

the

following

actions:

1.

Verify

that

the

application-specific

participant

contains

a

single

key,

not

a

composite

key.

Determine

the

participant

type

of

the

application-specific

participant,

which

is

the

application-specific

business

object.

In

this

business

object,

verify

that

only

one

key

attribute

exists.

If

more

than

one

key

attribute

exists,

the

Foreign

Key

Lookup

function

block

does

not

know

which

application-specific

key

attribute

216

Map

Development

Guide

to

populate

with

the

application-specific

equivalent

of

the

generic

business

object’s

foreign

key.

Therefore,

it

throws

the

RelationshipRuntimeException

exception.

2.

Locate

the

relationship

instance

in

the

foreign

relationship

table

that

matches

the

value

of

the

foreign

key

in

the

generic

business

object.

3.

Obtain

the

application-specific

key

value

from

the

retrieved

relationship

instance.

4.

Copy

the

application-specific

key

value

into

the

foreign

key

of

the

application-specific

business

object.

The

Java

code

generated

by

the

Foreign

Key

Lookup

function

block

takes

these

actions

on

the

foreign

relationship

table

regardless

of

the

verb

in

the

source

business

object.

Using

the

Foreign

Key

Cross-Reference

function

block

As

with

the

Foreign

Key

Lookup

function

block,

the

Foreign

Key

Cross-Reference

function

block

performs

a

lookup

in

a

foreign

relationship

table

based

on

the

foreign

key

of

the

source

business

object.

However,

the

Foreign

Key

Cross-Reference

function

block

provides

the

additional

functionality

that

it

can

add

an

entry

to

the

foreign

relationship

table

if

the

lookup

fails.

The

following

sections

discuss

the

behavior

of

the

Foreign

Key

Cross-Reference

function

block

with

each

of

the

calling

contexts.

EVENT_DELIVERY,

ACCESS_REQUEST,

and

SERVICE_CALL_RESPONSE

calling

contexts

When

the

calling

context

is

EVENT_DELIVERY,

ACCESS_REQUEST,

or

SERVICE_CALL_RESPONSE,

the

map

is

being

called

is

an

inbound

map;

that

is,

it

transforms

an

application-specific

business

object

to

a

generic

business

object.

The

inbound

map

receives

an

application-specific

business

object

as

input

and

returns

a

generic

business

object

as

output.

Therefore,

the

task

for

the

Foreign

Key

Cross-Reference

function

block

is

to

obtain

from

the

foreign

relationship

table

the

generic

key

for

a

given

application-specific

key

value.

For

the

EVENT_DELIVERY,

ACCESS_REQUEST,

and

SERVICE_CALL_RESPONSE

calling

contexts,

the

Foreign

Key

Cross-Reference

function

block

takes

the

following

actions:

1.

Verify

that

the

generic

participant

contains

a

single

key,

not

a

composite

key.

Determine

the

participant

type

of

the

generic

participant,

which

is

the

generic

business

object.

In

this

business

object,

verify

that

only

one

key

attribute

exists.

If

more

than

one

key

attribute

exists,

the

Foreign

Key

Cross-Reference

function

block

does

not

know

which

generic

key

attribute

to

populate

with

the

generic

equivalent

of

the

application-specific

business

object’s

foreign

key.

Therefore,

it

throws

the

RelationshipRuntimeException

exception.

2.

Locate

the

relationship

instance

in

the

foreign

relationship

table

that

matches

the

value

of

the

foreign

key

in

the

application-specific

business

object.

Table

89

shows

the

actions

that

the

Foreign

Key

Cross-Reference

function

block

takes

on

the

foreign

relationship

table

based

on

the

verb

of

the

application-specific

business

object.

3.

Obtain

the

instance

ID

from

the

retrieved

relationship

instance.

Chapter

8.

Implementing

relationships

217

4.

Copy

the

instance

ID

into

the

foreign

key

of

the

generic

business

object.

Table

89.

Actions

for

EVENT_DELIVERY,

ACCESS_REQUEST,

and

SERVICE_CALL_RESPONSE

Verb

of

application-specific

business

object

Action

performed

by

the

Foreign

Key

Cross-Reference

function

block

Create

For

the

EVENT_DELIVERY

and

ACCESS_REQUEST

calling

contexts,

insert

a

new

relationship

entry

into

the

foreign

relationship

table

for

the

application-specific

business

object’s

key

value.

For

the

SERVICE_CALL_RESPONSE

calling

context,

insert

into

the

relationship

table

the

new

relationship

entry

containing

the

application-specific

business

object’s

key

value

and

its

associated

relationship

instance

ID.

The

method

obtains

the

relationship

instance

ID

from

the

original-request

business

object

in

the

map

execution

context

(cwExecCtx).

For

more

information

on

the

behavior

of

the

SERVICE_CALL_RESPONSE,

see

“SERVICE_CALL_RESPONSE

calling

context”

on

page

197.

If

an

entry

for

this

key

value

already

exists,

retrieve

the

existing

one;

do

not

add

another

one

to

the

table.

Update

Retrieve

the

relationship

entry

from

the

foreign

relationship

table

for

the

given

application-specific

business

object’s

foreign

key

value.

If

an

entry

for

this

foreign

key

value

does

not

exist,

insert

a

new

relationship

instance

into

the

foreign

relationship

table

for

the

application-specific

business

object’s

foreign

key

value.

Retrieve

Retrieve

the

relationship

entry

from

the

foreign

relationship

table

for

the

given

application-specific

business

object’s

foreign

key

value

Figure

118

shows

how

the

Foreign

Key

Cross-Reference

function

block

accesses

the

foreign

relationship

table

(for

App

Obj

C)

when

a

calling

context

is

EVENT_DELIVERY,

ACCESS_REQUEST,

or

SERVICE_CALL_RESPONSE

and

the

verb

for

the

application-specific

business

object

(App

Obj

A)

is

either

Create

or

Update.

218

Map

Development

Guide

Note:

The

Foreign

Key

Cross-Reference

function

block

only

adds

relationship

instances

to

the

foreign

relationship

table

for

inbound

maps.

SERVICE_CALL_REQUEST

calling

context

and

Foreign

Keys

When

the

calling

context

is

SERVICE_CALL_REQUEST,

the

map

is

being

called

is

an

outbound

map;

that

is,

it

transforms

a

generic

business

object

to

an

application-specific

business

object.

The

outbound

map

receives

a

generic

business

object

as

input

and

returns

an

application-specific

business

object

as

output.

For

the

SERVICE_CALL_REQUEST

calling

context,

the

Foreign

Key

Cross-Reference

function

block

takes

the

following

actions:

1.

Verify

that

the

application-specific

participant

contains

a

single

key,

not

a

composite

key.

Determine

the

participant

type

of

the

application-specific

participant,

which

is

the

application-specific

business

object.

In

this

business

object,

verify

that

only

one

key

attribute

exists.

If

more

than

one

key

attribute

exists,

the

Foreign

Key

Cross-Reference

function

block

does

not

know

which

application-specific

key

attribute

to

populate

with

the

application-specific

equivalent

of

the

generic

business

object’s

foreign

key.

Therefore,

it

throws

the

RelationshipRuntimeException

exception.

2.

Perform

the

task

outlined

in

Table

90,

based

on

the

verb

of

the

application-specific

business

object.

The

Foreign

Key

Cross-Reference

function

block

obtains

from

the

foreign

relationship

table

an

application-specific

business

object’s

key

value

for

a

given

a

relationship

instance

ID

only

if

the

verb

is

Update,

Delete,

or

Retrieve.

The

Foreign

Key

Cross-Reference

function

block

does

not

obtain

the

application-specific

key

value

for

a

Create

verb.

Table

90

shows

the

action

that

the

Foreign

Key

Cross-Reference

function

block

takes

on

the

foreign

relationship

table

based

on

the

verb

of

the

generic

business

object.

App Obj A
AppObjC

to
Generic

App ObjC ID = 1234

InstanceID

1

2

3

4

Relationship
App ObjC ID

8097

2341

6539

1234

Map

(new or existing)

Active?

Y

Y

Y

Y

1

2

App Obj C
(foreign key)

Generic Obj A

Generic Obj C
(foreign key)

Generic ObjA
InstanceID = 4

1. Does relationship id exist with:
App ObjCID=1234?

• YES: Retrieve relationship instance
• NO: Create new relationship instance

2. Return Instance ID.

Figure

118.

Foreign

key

lookup

for

a

create

or

update

verb

Chapter

8.

Implementing

relationships

219

Table

90.

Actions

for

the

SERVICE_CALL_REQUEST

calling

context

and

a

Foreign

Key

Verb

of

generic

business

object

Action

performed

by

the

Foreign

Key

Cross-Reference

function

block

Create

Take

no

action.

The

method

writes

a

new

relationship

instance

to

the

foreign

relationship

table

when

the

calling

context

is

SERVICE_CALL_RESPONSE.

For

more

information,

see

“EVENT_DELIVERY,

ACCESS_REQUEST,

and

SERVICE_CALL_RESPONSE

calling

contexts”

on

page

217.

Update

Delete

Retrieve

1.

Obtain

the

generic

business

object’s

key

value

(the

relationship

instance

ID)

from

the

original-request

business

object

in

the

map

execution

context.

2.

Retrieve

the

relationship

instance

from

the

foreign

relationship

table

for

the

given

generic

business

object’s

key

value.

If

a

relationship

instance

for

this

key

value

does

not

exist,

throw

a

RelationshipRuntimeException

exception.

If

no

participants

are

found

when

the

verb

is

Retrieve,

throw

a

CxMissingIDException

exception.

3.

Obtain

the

application-specific

key

value

from

the

retrieved

relationship

instance.

4.

Copy

the

application-specific

key

value

into

the

application-specific

business

object.

As

Table

90

shows,

when

the

verb

is

Create,

the

Foreign

Key

Cross-Reference

function

block

does

not

write

a

new

relationship

instance

to

the

relationship

table.

It

does

not

perform

this

write

operation

because

it

does

not

yet

have

the

application-specific

foreign

key

value

that

corresponds

to

the

instance

ID.

When

the

connector

processes

the

application-specific

business

object,

it

notifies

the

application

of

the

need

to

insert

a

new

row

(or

rows).

If

this

insert

is

successful,

the

application

notifies

the

connector,

which

creates

the

appropriate

application-specific

business

object

with

a

Create

verb

and

the

application’s

key

value.

Note:

For

the

SERVICE_CALL_REQUEST

calling

context,

the

Foreign

Key

Cross-Reference

function

block

manages

the

foreign

relationship

table

in

the

same

way

that

the

Maintain

Simple

Identity

Relationship

function

block

manages

a

relationship

table.

ACCESS_RESPONSE

calling

context

and

foreign

keys

When

the

calling

context

is

ACCESS_RESPONSE,

the

map

is

being

called

is

an

outbound

map;

that

is,

it

transforms

a

generic

business

object

to

an

application-specific

business

object.

The

outbound

map

receives

a

generic

business

object

as

input

and

returns

an

application-specific

business

object

as

output.

Therefore,

the

task

for

the

Foreign

Key

Cross-Reference

function

block

is

to

obtain

from

the

foreign

relationship

table

the

application-specific

key

for

a

given

generic

key

value.

For

the

ACCESS_RESPONSE

calling

context,

the

Foreign

Key

Cross-Reference

function

block

takes

the

following

actions:

1.

Verify

that

the

application-specific

participant

contains

a

single

key,

not

a

composite

key.

Determine

the

participant

type

of

the

application-specific

participant,

which

is

the

application-specific

business

object.

In

this

business

object,

verify

that

only

one

key

attribute

exists.

If

more

than

one

key

attribute

exists,

the

Foreign

Key

Cross-Reference

function

block

does

not

know

which

application-specific

key

attribute

to

populate

with

the

application-specific

equivalent

of

the

generic

business

object’s

foreign

key.

Therefore,

it

throws

the

RelationshipRuntimeException

exception.

2.

Locate

the

relationship

instance

in

the

foreign

relationship

table

that

matches

the

value

of

the

foreign

key

in

the

generic

business

object.

220

Map

Development

Guide

3.

Obtain

the

application-specific

key

value

from

the

retrieved

relationship

instance.

4.

Copy

the

application-specific

key

value

into

the

foreign

key

of

the

application-specific

business

object.

The

Foreign

Key

Cross-Reference

function

block

takes

these

actions

on

the

foreign

relationship

table

regardless

of

the

verb

in

the

generic

business

object.

Tips

for

using

the

Foreign

Key

Cross-Reference

and

Foreign

Key

Lookup

function

blocks

Keep

the

following

tips

in

mind

when

using

the

Foreign

Key

Cross-Reference

and

Foreign

Key

Lookup

function

blocks:

v

Put

the

call

to

the

Foreign

Key

Lookup

or

Foreign

Key

Cross-Reference

function

blocks

in

the

transformation

step

for

the

foreign

key

attribute

of

the

destination

business

object.

v

The

Foreign

Key

Lookup

and

Foreign

Key

Cross-Reference

function

blocks

do

not

support

composite

keys

as

the

foreign

key.

v

After

using

the

Foreign

Key

Lookup

function

block,

check

that

the

destination

foreign

key

attribute

does

not

contain

a

null

value.

A

null

foreign

key

value

indicates

that

the

Foreign

Key

Lookup

function

block

was

not

able

to

locate

the

corresponding

foreign

key

value

for

the

foreign

key

in

the

source

business

object.

To

indicate

this

condition,

log

message

number

5007

or

5008

(depending

on

whether

or

not

the

map

is

forced

to

fail)

and,

optionally,

throw

the

MapFailureException

exception

to

stop

the

map.

You

do

not

need

this

check

after

using

Foreign

Key

Cross-Reference

function

block

because

this

function

block

automatically

adds

an

entry

to

the

foreign

relationship

table

if

the

application-specific

key

value

does

not

exist.

v

If

any

of

the

child

object

attributes

require

the

use

of

the

Foreign

Key

Cross-Reference

function

block

or

the

Foreign

Key

Lookup

function

block

(but

not

the

Maintain

Simple

Identity

Relationship

function

block

or

the

Maintain

Composite

Relationship

function

block),

you

can

set

the

verb

of

the

source

child

object

by

defining

a

Move

transformation

from

the

source

parent

object’s

verb

to

the

child

business

object’s

verb.

Make

the

call

inside

the

for

loop,

just

before

the

runMap()

method

is

called.

Loading

and

unloading

relationships

With

the

repos_copy

utility,

you

can

load

and

unload

specified

relationship

definitions

in

the

repository.

Note:

You

can

also

use

repos_copy

to

load

and

unload

map

definitions

in

the

repository.

For

more

information,

see

“Importing

and

exporting

maps

from

InterChange

Server

Express”

on

page

67..

Unloading

a

relationship

definition

With

the

repos_copy

utility,

you

can

unload

specified

relationship

definitions

in

the

repository

with

the

-e

option.

A

relationship

repository

file

is

the

file

that

the

repos_copy

utility

creates

when

it

extracts

a

relationship

definition

from

the

repository

into

a

text

(.jar)

file.

For

example,

the

following

repos_copy

command

unloads

the

StateLk

relationship

definition

from

the

repository

of

an

InterChange

Server

Express

named

dexter

into

a

relationship

repository

file:

Chapter

8.

Implementing

relationships

221

repos_copy

-eRelationship:StateLk

-oRL_StateLookup.jar

-sdexter

-uadmin

-pnull

Attention:

A

relationship

is

not

a

first-class

entity.

Therefore,

its

name

space

is

separate

from

the

first-class

entities.

While

no

first-class

entities

can

have

the

same

name,

a

relationship

can

have

the

same

name

as

a

first-class

entity

(such

as

a

business

object

or

collaboration).

However,

if

a

relationship

definition

has

a

name

that

matches

any

existing

first-class

entity,

you

cannot

use

the

-e

option

of

repos_copy

to

unload

or

load

that

relationship

definition.

You

can

load

and

unload

the

entire

repository,

which

includes

relationship

definitions.

You

can

copy

several

the

relationship

definitions

into

one

relationship

repository

file.

For

example,

to

copy

both

the

StateLk

and

CustLkUp

relationship

definitions,

use

the

following

repos_copy

command:

repos_copy

–eRelationship:StateLk+Relationship:CustLkUp

–oRL_Lookup_Relationships.jar

–sdexter

-uadmin

-pnull

Loading

a

relationship

definition

You

can

also

use

repos_copy

to

load

a

relationship

definition

into

the

repository

from

a

relationship

repository

file.

The

following

repos_copy

command

loads

the

StateLk

relationship

definition

into

the

repository

of

an

InterChange

Server

Express

named

testing:

repos_copy

-iRL_StateLookup.jar

-stesting

-uadmin

-pnull

The

repos_copy

utility

performs

the

following

validations

when

it

loads

a

relationship

definition:

v

It

validates

the

Database

URL

of

the

relationship

definition

it

loads.

v

It

validates

that

any

dependent

objects

for

the

relationship

definition

already

exist

in

the

repository.

If

repos_copy

cannot

perform

both

of

these

validations,

it

cannot

load

the

relationship

definition.

However,

repos_copy

provides

special

command-line

options

to

suppress

or

restrict

these

validations,

as

the

following

sections

explain.

Validating

the

database

URL

The

repos_copy

utility

provides

the

-r

option

to

assist

in

loading

relationship

definitions

into

a

repository.

The

-r

option

tells

repos_copy

to

add

relationship

definitions

to

the

repository

without

creating

their

run-time

schemas.

When

repos_copy

backs

up

an

entire

repository

(with

the

-o

option),

some

of

the

information

in

the

resulting

repository

text

file

describes

relationship

definitions.

If

you

then

use

repos_copy

(without

the

-r

option)

to

load

a

different

repository

with

the

contents

of

this

repository

text

file,

repos_copy

might

generate

errors

of

the

following

format

when

it

attempts

to

load

the

relationship

definitions:

Server

error:

An

error

occurred

during

the

validation

of

the

runtime

database

connection

information

for

relationship

definition

Customer.

The

database

URL

used

is:

jdbc:weblogic:mssqlserver4:Cwrelns312@CWDEV:1433.

The

database

login

name

used

is:

crossworlds.

The

database

type

used

is:

W55s/wPE/l4=1.

Reason:

SqlServer.

The

cause

of

this

error

is

repos_copy’s

attempt

to

validate

the

URL

for

the

relationship

database.

Part

of

a

relationship’s

definition

is

the

Database

URL

of

the

relationship

database.

If

repos_copy

cannot

find

the

relationship

database,

it

generates

an

error

and

rolls

back

the

repository

load.

If

you

are

just

backing

up

and

restoring

on

the

same

222

Map

Development

Guide

InterChange

Server

Express

(with

the

same

relationship

databases),

you

do

not

need

to

include

the

-r

option.

Validation

of

the

relationship

database

URL

succeeds

because

the

database

URLs

can

be

located.

Therefore,

the

repository

load

(including

the

relationship

definitions)

is

successful.

However,

in

the

import

process

of

a

migration

when

you

are

moving

repository

data

from

one

machine

to

another,

the

-r

option

can

be

helpful.

If

you

execute

the

repos_copy

command

in

an

environment

that

cannot

locate

any

existing

relationship

databases

in

the

repository

data,

repos_copy

generates

the

validation

error.

To

suppress

this

validation,

include

the

-r

option

of

repos_copy

when

you

load

the

repository.

By

suppressing

this

validation,

repos_copy

can

successfully

add

the

relationship

definitions

to

the

repository.

It

uses

the

current

repository

database

as

the

location

for

the

relationship

database.

You

can

then

use

Relationship

Designer

Express

to

change

the

Database

URL

to

point

to

the

appropriate

location

of

each

relationship

database.

The

following

repos_copy

command

loads

the

StateLk

relationship

definition

into

the

repository,

suppressing

the

validation

of

its

Database

URL:

repos_copy

-rStateLk

-iRL_StateLookup.txt

-stesting

-uadmin

-pnull

Validating

dependent

objects

By

default,

repos_copy

validates

whether

all

dependent

objects

exist

when

it

loads

a

relationship

definition.

For

example,

it

checks

that

all

business

objects

involved

in

the

relationship

exist

in

the

repository.

If

all

dependent

objects

do

not

exist,

repos_copy

generates

an

error

and

rolls

back

the

repository

load.

In

the

repos_copy

command

window,

the

following

message

is

displayed:

Some

of

the

participants

for

relationships

were

missing.

For

more

info,

refer

to

InterChange

Server

Express

log

file.

Chapter

8.

Implementing

relationships

223

224

Map

Development

Guide

Part

3.

Mapping

API

Reference

©

Copyright

IBM

Corp.

2003

225

226

Map

Development

Guide

Chapter

9.

BaseDLM

class

The

methods

documented

in

this

chapter

operate

on

map

instances.

They

are

defined

on

the

IBM

WebSphere

InterChange

Server

Express-defined

class

BaseDLM.

The

BaseDLM

class

is

the

base

class

for

all

map

instances.

All

created

maps

are

subclasses

of

BaseDLM;

they

all

inherit

these

methods.

The

BaseDLM

class

provides

utility

methods

for

error

handling

and

debugging

in

maps,

and

establishing

a

connection

to

a

database.

All

methods

in

this

class

can

be

called

without

referring

to

the

class

name.

Table

91

summarizes

the

methods

of

the

BaseDLM

class.

Table

91.

BaseDLM

method

summary

Method

Description

Page

getDBConnection()

Establishes

a

connection

to

a

database

and

returns

a

CwDBConnection

object.

227

getName()

Retrieves

the

name

of

the

current

map.

229

getRelConnection()

Establishes

a

connection

to

a

relationship

database

and

returns

a

DtpConnection

object.

230

implicitDBTransactionBracketing()

Retrieves

the

transaction

programming

model

that

the

map

instance

uses

for

any

connection

it

obtains.

231

isTraceEnabled()

Compares

the

specified

trace

level

with

the

current

trace

level

of

the

map.

231

logError(),

logInfo(),

logWarning()

Sends

an

error,

information,

or

warning

message

to

the

InterChange

Server

log

file.

232

raiseException()

Raises

an

exception.

233

releaseRelConnection()

Releases

a

connection

to

a

relationship

database.

235

trace()

Generates

a

trace

message.

236

getDBConnection()

Establishes

a

connection

to

a

database

and

returns

a

CwDBConnection

object.

Syntax

CwDBConnection

getDBConnection(String

connectionPoolName)

CwDBConnection

getDBConnection(String

connectionPoolName,

boolean

implicitTransaction)

Parameters

connectionPoolName

The

name

of

a

valid

connection

pool.

The

method

connects

to

the

database

whose

connection

is

in

this

specified

connection

pool.

implicitTransaction

A

boolean

value

to

indicate

the

transaction

programming

model

to

use

for

the

database

associated

with

the

connection.

Valid

values

are:

true

Database

uses

implicit

transaction

bracketing

false

Database

uses

explicit

transaction

bracketing

©

Copyright

IBM

Corp.

2003

227

Return

values

Returns

a

CwDBConnection

object.

Exceptions

CwDBConnectionFactoryException

–

If

an

error

occurs

while

trying

to

establish

the

database

connection.

Notes

The

getDBConnection()

method

obtains

a

connection

from

the

connection

pool

that

connectionPoolName

specifies.

This

connection

provides

a

way

to

perform

queries

and

updates

to

the

database

associated

with

that

connection.

All

connections

in

a

particular

connection

pool

are

associated

with

the

same

database.

The

method

returns

a

CwDBConnection

object

through

which

you

can

execute

queries

and

manage

transactions

on

the

database.

See

the

methods

in

the

CwDBConnection

class

for

more

information.

By

default,

all

connections

use

implicit

transaction

bracketing

as

their

transaction

programming

model.

To

specify

a

transaction

programming

model

for

a

particular

connection,

provide

a

boolean

value

to

indicate

the

desired

transaction

programming

model

as

the

optional

implicitTransaction

argument

to

the

getDBConnection()

method.

The

following

getDBConnection()

call

specifies

explicit

transaction

bracketing

for

the

connection

obtained

from

the

ConnPool

connection

pool:

conn

=

getDBConnection("ConnPool",false);

The

connection

is

released

when

the

map

instance

finishes

execution.

You

can

explicitly

close

this

connection

with

the

release()

method.

You

can

determine

whether

a

connection

has

been

released

with

the

isActive()

method.

Examples

The

following

example

establishes

a

connection

to

the

database

associated

with

connections

in

the

CustConnPool

connection

pool.

It

then

uses

an

implicit

transaction

to

insert

and

update

rows

in

a

table

of

the

database.

CwDBConnection

connection

=

getDBConnection("CustConnPool");

//

Insert

a

row

connection.executeSQL("insert...");

//

Update

rows...

connection.executeSQL("update...");

Because

the

preceding

call

to

getDBConnection()

does

not

include

the

optional

second

argument,

this

connection

uses

implicit

transaction

bracketing

as

its

transaction

programming

model

(unless

the

transaction

programming

model

is

overridden

in

the

Map

Properties

dialog).

Therefore,

it

does

not

specify

explicit

transaction

boundaries

with

beginTransaction(),

commit(),

and

rollback().

In

fact,

an

attempt

to

call

one

of

these

transaction

methods

with

implicit

transaction

bracketing

generates

a

CwDBTransactionException

exception.

Note:

You

can

check

the

current

transaction

programming

model

with

the

implicitDBTransactionBracketing()

method.

The

following

example

also

establishes

a

connection

to

the

database

associated

with

connections

in

the

CustConnPool

connection

pool.

However,

it

specifies

the

228

Map

Development

Guide

use

of

explicit

transaction

bracketing

for

the

connection.

Therefore,

it

uses

an

explicit

transaction

to

contain

the

inserts

and

updates

on

rows

in

the

database

tables.

CwDBConnection

connection

=

getDBConnection("CustConnPool",

false);

//

Begin

a

transaction

connection.beginTransaction();

//

Insert

a

row

connection.executeSQL("insert...");

//

Update

rows...

connection.executeSQL("update...");

//

Commit

the

transaction

connection.commit();

//

Release

the

connection

connection.release();

The

preceding

call

to

getDBConnection()

includes

the

optional

implicitTransaction

argument

to

set

the

transaction

programming

model

to

explicit

transaction

bracketing.

Therefore,

this

examples

uses

the

explicit

transaction

calls

to

indicate

the

boundaries

of

the

transaction.

If

these

transaction

methods

are

omitted,

InterChange

Server

Express

handles

the

transaction

as

it

would

for

an

implicit

transaction.

See

also

Chapter

12,

“CwDBConnection

class”,

implicitDBTransactionBracketing(),

isActive(),

release()

getName()

Retrieves

the

name

of

the

current

map.

Syntax

String

getName()

Parameters

None.

Return

values

None.

Exceptions

None.

Examples

The

following

example

obtains

the

name

of

the

current

map

and

logs

an

informational

message:

String

mapName

=

getName();

logInfo(mapName

+

"

is

starting");

Chapter

9.

BaseDLM

class

229

getRelConnection()

Establishes

a

connection

to

a

relationship

database

and

returns

a

DtpConnection

object.

Syntax

DtpConnection

getRelConnection(String

relDefName)

Parameters

relDefName

A

relationship

definition

name.

The

method

connects

to

the

database

containing

the

relationship

tables

for

this

relationship

definition.

Return

values

Returns

a

DtpConnection

object.

Exceptions

DtpConnectionException

–

If

an

error

occurs

while

trying

to

establish

the

database

connection.

Notes

This

method

establishes

a

connection

to

the

database

that

contains

the

relationship

tables

used

by

the

relDefName

relationship,

and

provides

a

way

to

perform

queries

and

updates

to

the

relationship

database.

The

method

returns

a

DtpConnection

object

through

which

you

can

execute

queries

and

manage

transactions.

See

the

methods

in

the

DtpConnection

class

for

more

information.

The

connection

is

released

when

the

map

is

finished

executing.

You

can

explicitly

close

this

connection

with

the

releaseRelConnection()

method.

Examples

The

following

example

establishes

a

connection

to

the

database

containing

the

relationship

tables

for

the

SapCust

relationship.

It

then

uses

a

transaction

to

execute

a

query

for

inserting

rows

into

a

table

in

the

SapCust

relationship.

DtpConnection

connection

=

getRelConnection("SapCust");

//

begin

a

transaction

connection.beginTran();

//

insert

a

row

connection.executeSQL("insert...");

//

update

rows...

connection.executeSQL(“update...”);

//

commit

the

transaction

connection.commit();

See

also

getDBConnection(),

Chapter

14,

“DtpConnection

class”,

releaseRelConnection()

230

Map

Development

Guide

implicitDBTransactionBracketing()

Retrieves

the

transaction

programming

model

that

the

map

instance

uses

for

any

connection

it

obtains.

Syntax

boolean

implicitDBTransactionBracketing()

Parameters

None.

Return

values

A

boolean

value

to

indicate

the

transaction

programming

model

to

be

used

in

all

database

connections.

Notes

The

implicitDBTransactionBracketing()

method

returns

a

boolean

value

indicates

which

transaction

programming

model

the

map

instance

assumes

is

used

by

all

connections

that

it

obtains,

as

follows:

v

A

value

of

true

indicates

that

all

connections

use

implicit

transaction

bracketing.

v

A

value

of

false

indicates

that

all

connections

use

explicit

transaction

bracketing.

This

method

is

useful

before

obtaining

a

connection

to

see

whether

the

current

transaction

programming

model

is

appropriate

for

that

connection.

Note:

You

can

override

the

transaction

programming

model

for

a

particular

connection

with

the

getDBConnection()

method.

Examples

The

following

example

ensures

that

map

instance

uses

explicit

transaction

bracketing

for

the

database

associated

with

the

conn

connection:

if

(implicitDBTransactionBracketing())

CwDBConnection

conn

=

getDBConnection("ConnPool",

false);

See

also

getDBConnection()

isTraceEnabled()

Compares

the

specified

trace

level

with

the

current

trace

level

of

the

map.

Syntax

Boolean

isTraceEnabled(int

traceLevel)

Parameters

traceLevel

The

trace

level

to

compare

with

the

current

trace

level.

Return

values

Returns

true

if

the

current

system

trace

level

is

set

to

the

specified

trace

level;

returns

false

if

the

two

trace

levels

are

not

the

same.

Chapter

9.

BaseDLM

class

231

Notes

The

isTraceEnabled()

method

is

useful

in

determining

whether

or

not

to

log

a

trace

message.

Because

tracing

can

decrease

performance,

this

method

is

useful

in

the

development

phase

of

a

project.

Examples

if

(

isTraceEnabled(3)

)

{

trace("Print

this

level-3

trace

message");

}

logError(),

logInfo(),

logWarning()

Sends

an

error,

information,

or

warning

message

to

the

InterChange

Server

log

file.

Syntax

void

logError(String

message)

void

logError(int

messageNum)

void

logError(int

messageNum,

String

param

[,...])

void

logError(int

messageNum,

Object[]

paramArray)

void

logInfo(String

message)

void

logInfo(int

messageNum)

void

logInfo(int

messageNum,

String

param

[,...])

void

logInfo(int

messageNum,

Object[]

paramArray)

void

logWarning(String

message)

void

logWarning(int

messageNum)

void

logWarning(int

messageNum,

String

param

[,...])

void

logWarning(int

messageNum,

Object[]

paramArray)

Parameters

message

The

message

text.

messageNum

The

number

of

a

message

in

a

message

text

file.

param

A

single

parameter.

There

can

be

up

to

five

parameters,

separated

by

commas.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

paramArray

An

array

of

parameters.

Return

values

None.

Exceptions

None.

Notes

This

method

sends

a

message

to

the

InterChange

Server

Express’s

logging

destination.

The

logging

destination

can

be

a

file,

a

window,

or

both.

By

default,

the

logging

destination

is

the

file

InterchangeSystem.log.

You

can

change

the

logging

destination

by

entering

a

value

for

the

LOG_FILE

parameter

in

the

configuration

file,

InterchangeSystem.cfg.

The

parameter

value

can

be

a

file

name,

STDOUT

(which

writes

the

log

to

the

server’s

command

window),

or

both.

232

Map

Development

Guide

Within

each

set

of

methods:

v

The

first

form

is

self-contained

and

includes

all

of

the

text

necessary

to

generate

a

message.

v

The

second

form

generates

a

message

that

does

not

have

parameters.

v

The

third

form

contains

a

message

number

and

a

set

of

parameter

values.

v

The

fourth

form

uses

an

array

of

parameters.

All

forms

of

the

method

that

take

a

messageNum

parameter

require

the

use

of

a

message

file

that

is

indexed

by

message

number.

For

information

on

how

to

set

up

a

message

text

file,

refer

to

Appendix

A,

“Message

files,”

on

page

403.

Examples

The

following

example

logs

an

informational

message,

using

getString()

to

obtain

an

attribute

value

to

log

in

the

message.

logInfo("Item

shipped.

CustomerID:

"

+

fromCustomerBusObj.getString("CustomerID"));

The

following

example

logs

an

error

message

whose

text

is

contained

in

the

map

message

file.

The

message,

which

is

number

10

in

the

message

file,

takes

two

parameters:

customer

last

name

(LName

attribute)

and

customer

first

name

(FName

attribute).

logError(10,

customer.get(“LName”),

customer.get("FName");

The

following

example

logs

an

error

message

using

an

array

of

parameters.

For

the

purpose

of

illustration,

the

example

uses

an

array

with

just

two

parameters.

The

example

declares

the

array

args,

which

has

two

elements,

the

customer

ID

and

the

customer

name.

The

logError()

method

then

logs

an

error,

using

message

number

12

and

the

values

in

the

args

array.

Object[]

args

=

{

fromCustomerBusObj.getString("CustomerID"),

fromCustomerBusObj.getString("CustomerName");

}

logError(12,

args);

See

also

trace()

raiseException()

Raises

an

exception.

Syntax

void

raiseException(String

exceptionType,

String

message)

void

raiseException(String

exceptionType,

int

messageNum,

String

parameter[,...])

void

raiseException(RunTimeEntityException

exception)

Parameters

exceptionType

One

of

the

following

IBM

WebSphere

InterChange

Server

Express-defined

constants:

Chapter

9.

BaseDLM

class

233

AnyException

Any

type

of

exception

AttributeException

Attribute

access

problem.

For

example,

the

collaboration

called

getDouble()

on

a

String

attribute

or

called

getString()

on

a

nonexistent

attribute.

JavaException

Problem

with

Java

code

that

is

not

part

of

the

IBM

WebSphere

InterChange

Server

Express

API.

ObjectException

Business

object

passed

to

a

method

was

invalid

or

a

null

object

was

accessed.

OperationException

Service

call

was

improperly

set

up

and

could

not

be

sent.

ServiceCallException

Service

call

failed.

For

example,

a

connector

or

application

is

unavailable.

SystemException

Any

internal

error

within

the

IBM

WebSphere

InterChange

Server

Express

system.

message

A

text

string

that

embeds

the

exception

message

in

the

method

call.

messageNum

A

reference

to

a

numbered

message

in

the

map

message

file.

parameters

A

value

for

the

parameter

in

the

message

itself.

There

can

be

up

to

five

parameters

in

the

method

call.

exception

The

name

of

an

exception

object

variable.

Return

values

None.

Notes

The

raiseException()

method

has

three

forms:

v

The

first

form

of

the

method

creates

a

new

exception,

passing

an

exception

type

and

a

string.

Use

it

to

embed

a

message

into

the

method

call

itself.

v

The

second

form

creates

a

new

exception,

passing

an

exception

type

and

a

reference

to

a

message

in

the

map

message

file.

The

method

call

can

contain

up

to

five

parameters,

separated

with

commas.

v

The

third

form

raises

an

exception

object

that

the

map

has

previously

handled.

For

example,

a

transformation

step

might

get

an

exception,

assign

it

to

a

variable,

and

do

some

other

work.

Finally,

the

transformation

step

raises

the

exception.

Note:

All

forms

of

the

method

that

take

a

messageNum

parameter

require

the

use

of

a

message

file

that

is

indexed

by

message

number.

For

information

on

how

to

set

up

a

message

text

file,

refer

to

Appendix

A,

“Message

files,”

on

page

403.

234

Map

Development

Guide

Examples

The

following

example

uses

the

first

form

of

the

method

to

raise

an

exception

of

ServiceCallException

type.

The

text

is

embedded

in

the

method

call.

raiseException(ServiceCallException,

"Attempt

to

validate

Customer

failed.");

The

next

example

raises

an

exception

of

ServiceCallException

type.

The

message

in

the

message

file

is

as

follows:

23

Customer

update

failed

for

CustomerID={1}

CustomerName={2}

The

raiseException()

method

invokes

the

message,

retrieves

the

values

of

the

message

parameters

from

the

fromCustomer

variable,

and

passes

them

to

the

raiseException()

call.

raiseException(ServiceCallException,

23,

fromCustomer.getString("CustomerID"),

fromCustomer.getString("CustomerName"));

The

final

example

raises

a

previously

handled

exception.

The

system-defined

variable

currentException

is

an

exception

object

that

contains

the

exception.

raiseException(currentException);

releaseRelConnection()

Releases

a

connection

to

a

relationship

database.

Syntax

void

releaseRelConnection(Boolean

doCommit)

Parameters

doCommit

The

flag

that

indicates

whether

this

method

should

call

the

DtpConnection.commit()

method

before

it

releases

the

database

connection.

Return

values

None.

Exceptions

DtpConnectionException

–

If

an

error

occurs

while

trying

to

release

the

database

connection

or

if

the

requested

commit

or

rollback

has

failed.

Notes

The

releaseRelConnection()

method

releases

the

connection

for

this

specific

map.

It

commits

or

rolls

back

the

database

transactions

based

on

the

value

of

its

doCommit

argument,

as

follows:

v

If

doCommit

is

true,

releaseRelConnection()

assumes

it

was

called

after

the

successful

completion

of

the

operation

on

a

database

and

therefore

it

is

safe

to

commit

the

transaction.

v

If

doCommit

is

false,

releaseRelConnection()

assumes

it

was

called

as

the

result

of

an

exception

and

therefore

the

transaction

must

be

rolled

back.

Chapter

9.

BaseDLM

class

235

Once

releaseRelConnection()

has

performed

the

chosen

action

on

the

database

transaction,

it

releases

the

database

connection

that

the

current

thread

is

exclusively

using.

See

also

getRelConnection(),

release()

trace()

Generates

a

trace

message.

Syntax

void

trace(String

traceMsg)

void

trace(int

traceLevel,

String

traceMsg)

void

trace(int

traceLevel,

int

messageNum)

void

trace(int

traceLevel,

int

messageNum,

String

param

[,...])

void

trace(int

traceLevel,

int

messageNum,

Object[]

paramArray)

Parameters

traceLevel

The

tracing

level

that

causes

the

message

to

be

generated.

traceMsg

A

string

that

prints

to

the

trace

file.

messageNum

A

number

that

represents

a

message

in

the

map

message

file.

param

A

single

parameter.

You

can

add

additional

single

parameters,

separated

by

commas,

up

to

a

total

of

five.

paramArray

An

array

of

parameters.

Notes

The

trace()

method

generates

a

message

that

the

map

prints

if

tracing

is

turned

on.

This

method

has

five

forms:

v

The

first

form

takes

just

a

string

message

that

appears

when

tracing

is

set

to

any

level.

v

The

second

form

takes

a

trace

level

and

a

string

message

that

appears

when

tracing

is

set

to

the

specified

level

or

a

higher

level.

v

The

third

form

takes

a

trace

level

and

a

number

that

represents

a

message

in

the

map

message

file.

The

entire

message

text

appears

in

the

message

file

and

is

printed

as

it

is,

without

parameters,

when

tracing

is

set

to

the

specified

level

or

a

higher

level.

v

The

fourth

form

takes

a

trace

level,

a

number

that

represents

a

message

in

the

map

message

file,

and

one

or

more

parameters

to

be

used

in

the

message.

You

can

send

up

to

five

parameter

values

to

be

used

with

the

message

by

separating

the

values

with

commas.

v

The

fifth

form

takes

a

trace

level,

a

number

that

represents

a

message

in

the

map

message

file,

and

an

array

of

parameter

values.

Note:

All

forms

of

the

method

that

take

a

messageNum

parameter

require

the

use

of

a

message

file

that

is

indexed

by

message

number.

For

information

on

how

to

set

up

a

message

text

file,

refer

to

Appendix

A,

“Message

files,”

on

page

403.

You

can

set

the

trace

level

for

a

map

as

part

of

the

Map

Properties.

236

Map

Development

Guide

Examples

The

following

example

generates

a

Level

2

trace

message

and

supplies

the

text

of

the

message:

trace

(2,

"Starting

to

trace

at

Level

2");

The

following

example

prints

message

201

in

the

map

message

file

if

the

trace

level

is

2

or

higher.

The

message

has

two

parameters,

a

name

and

a

year,

for

which

this

method

call

passes

values.

trace(2,

201,

"DAVID",

"1961");

See

also

logError(),

logInfo(),

logWarning()

Chapter

9.

BaseDLM

class

237

238

Map

Development

Guide

Chapter

10.

BusObj

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

BusObj

class.

Note:

The

BusObj

class

is

used

for

both

collaboration

development

and

mapping;

check

the

Notes

section

for

each

method’s

usage

issues.

The

first

two

sections

of

this

chapter

explain

the

exceptions

listed

with

these

methods

and

how

to

specify

attributes

and

child

business

objects

in

a

hierarchical

business

object.

The

rest

of

the

sections

describe

the

methods

listed

in

Table

92.

Table

92.

BusObj

method

summary

Method

Description

Page

copy()

Copy

all

attribute

values

from

the

input

business

object

to

this

one.

241

duplicate()

Create

a

business

object

(BusObj

object)

exactly

like

this

one.

242

equalKeys()

Compare

this

business

object’s

key

attribute

values

with

those

in

the

input

business

object.

242

equals()

Compare

this

business

object’s

attribute

values

with

those

in

the

input

business

object,

including

child

business

objects.

243

equalsShallow()

Compare

this

business

object’s

attribute

values

with

those

in

the

input

business

object,

excluding

child

business

objects

from

the

comparison.

244

exists()

Check

for

the

existence

of

a

business

object

attribute

with

a

specified

name.

244

getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()

Retrieve

the

value

of

a

single

attribute

from

a

business

object.

245

getLocale()

Retrieve

the

locale

of

the

business

object’s

data.

247

getType()

Retrieve

the

name

of

the

business

object

definition

on

which

this

business

object

was

based.

247

getVerb()

Retrieve

this

business

object’s

verb.

247

isBlank()

Find

out

whether

the

value

of

an

attribute

is

set

to

a

zero-length

string.

248

isKey()

Find

out

whether

a

business

object’s

attribute

is

defined

as

a

key

attribute.

248

isNull()

Find

out

whether

the

value

of

a

business

object’s

attribute

is

null.

249

isRequired()

Find

out

whether

a

business

object’s

attribute

is

defined

as

a

required

attribute.

250

keysToString()

Retrieve

the

values

of

a

business

object’s

primary

key

attributes

as

a

string.

250

set()

Set

a

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type.

251

©

Copyright

IBM

Corp.

2003

239

Table

92.

BusObj

method

summary

(continued)

Method

Description

Page

setContent()

Set

the

contents

of

this

business

object

to

another

business

object.

252

setDefaultAttrValues()

Set

all

attributes

to

their

default

values.

253

setKeys()

Set

the

values

of

this

business

object’s

key

attributes

to

the

values

of

the

key

attributes

in

another

business

object.

253

setLocale()

Set

the

locale

of

the

current

business

object.

253

setVerb()

Set

the

verb

of

a

business

object.

254

setWithCreate()

Set

a

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type,

creating

an

object

for

the

value

is

one

does

not

already

exist.

254

toString()

Return

the

values

of

all

attributes

in

a

business

object

as

a

string.

255

validData()

Checks

whether

a

specified

value

is

a

valid

type

for

a

specified

attribute.

256

Exceptions

and

exception

types

Methods

for

which

exceptions

or

exception

types

are

listed

throw

the

CollaborationException

exception.

Some

methods

have

both

exceptions

and

exception

types

listed.

Both

of

these

relate

to

a

CollaborationException

object

and

differ

as

follows:

v

An

Exception

is

a

class

that

is

subclassed

from

CollaborationException.

If

there

is

a

subclassed

exception,

you

can

use

it

in

mapping

to

determine

more

closely

the

cause

of

the

problem.

v

An

Exception

type

is

a

piece

of

data

in

a

CollaborationException

object.

Collaboration

developers

use

this

exception

type

to

catch

exceptions

through

the

Designer

user

interface.

In

addition,

all

users

of

BusObj

can

use

this

field

to

determine

the

reason

for

a

failure

if

there

is

no

exception

class

thrown

that

is

more

detailed

than

CollaborationException.

Syntax

for

traversing

hierarchical

business

objects

When

you

are

writing

code

that

requires

that

you

traverse

hierarchical

business

objects,

you

need

to

use

the

syntax

that

lets

you

specify

attributes

in

elements

in

child

business

object

arrays

that

are

elements

of

child

business

object

arrays,

and

other

such

complexities.

This

chapter

specifies

the

syntax

to

use.

An

attribute

specification

can

be:

[[attributeName[index].]...]attributeName

This

syntax

expands

to

any

of

the

following

formats:

attributeName

attributeName[index].attributeName

attributeName[index]...

.attributeName

Note:

Do

not

use

the

period

(.)

when

creating

a

business

object

attribute

name.

If

a

business

object

attribute

has

a

period

within

its

name,

a

IBM

WebSphere

InterChange

Server

Express

Map

interprets

the

period

as

Java’s

dot

operator

240

Map

Development

Guide

and

imparts

special

meaning

to

it.

For

example,

“attribute.name”will

be

interpreted

as

“name”

being

a

field

or

method

for

the

“attribute”

object.

Specifying

an

attribute

of

basic

type

The

following

example

uses

the

busObj.get()

method

to

retrieve

a

basic

type

attribute

named

OrderID

from

the

business

object

orderObj.

orderObj.get("OrderID");

Specifying

an

attribute

in

a

child

business

object

The

following

example

assumes

that

orderObj

is

a

hierarchical

business

object.

One

of

its

attributes

is

CustomerInfo,

a

single-cardinality

child

business

object.

The

example

retrieves

the

customer

name

from

the

CustomerName

attribute

of

CustomerInfo.

orderObj.get("CustomerInfo.CustomerName");

Specifying

an

attribute

in

a

child

of

a

child

business

object

If

there

is

a

chain

of

child

business

objects,

in

which

CustomerInfo

is

a

child

of

orderObj

and

AddressInfo

is

a

child

of

CustomerInfo,

you

can

retrieve

city

information

from

AddressInfo

as

follows:

orderObj.get("CustomerInfo.AddressInfo.City");

Specifying

an

attribute

in

an

element

of

an

array

of

child

business

objects

You

can

also

refer

to

a

child

business

object

in

an

array

by

specifying

its

index

in

the

array.

The

first

element

in

the

array

always

begins

with

zero.

For

example,

the

following

example

retrieves

the

value

of

the

Quantity

attribute

from

the

third

child

business

object

in

an

array.

orderObj.get("LineItem[2].Quantity");

copy()

Copy

all

attribute

values

from

the

input

business

object

to

this

one.

Syntax

void

copy(BusObj

inputBusObj)

Parameters

inputBusObj

The

name

of

the

business

object

whose

attributes

values

are

copied

into

the

current

business

object.

Notes

The

copy()

method

copies

the

entire

business

object,

including

all

child

business

objects

and

child

business

object

arrays.

This

method

does

not

set

a

reference

to

the

copied

object.

Instead,

it

clones

all

attributes;

that

is,

it

creates

separate

copies

of

the

attributes.

Examples

The

following

example

copies

the

values

contained

in

sourceCustomer

to

destCustomer.

destCustomer.copy(sourceCustomer);

Chapter

10.

BusObj

class

241

The

following

example

creates

three

business

objects

(myBusObj,

myBusObj2,

and

mysettingBusObj)

and

sets

the

attr1

attribute

of

myBusObj

with

the

value

in

mysettingBusObj.

It

then

clones

all

attributes

of

myBusObj

to

myBusObj2.

BusObj

myBusObj

=

new

BusObj();

BusObj

myBusObj2

=

new

BusObj();

BusObj

mySettingBusObj

=

new

BusObj();

myBusObj.set("attr1",

mySettingBusObj);

myBusObj2.copy(myBusObj);

After

this

code

fragment

executes,

myBusObj.attr1

and

myBusObj2.attr1

are

both

set

to

the

mySettingBusObj

business

object.

However,

if

mySettingBusObj

is

changed

in

any

way,

myBusObj.attr1

changes

but

myBusObj2.attr1

does

not.

Because

the

attributes

of

myBusObj2

were

set

with

copy(),

their

values

were

cloned.

Therefore,

the

value

of

attr1

in

myBusObj2

is

still

the

original

mySettingBusObj.attr1

value

before

the

change.

duplicate()

Create

a

business

object

(BusObj

object)

exactly

like

this

one.

Syntax

BusObj

duplicate()

Return

values

The

duplicate

business

object.

Exceptions

CollaborationException—The

duplicate()

method

can

set

the

following

exception

type

for

this

exception:

ObjectException.

Notes

This

method

makes

a

clone

of

the

business

object

and

returns

it.

You

must

explicitly

assign

the

return

value

of

this

method

call

to

a

declared

variable

of

BusObj

type.

Examples

The

following

example

duplicates

sourceCustomer

in

order

to

create

destCustomer.

BusObj

destCustomer

=

sourceCustomer.duplicate();

equalKeys()

Compare

this

business

object’s

key

attribute

values

with

those

in

the

input

business

object.

Syntax

boolean

equalKeys(BusObjinputBusObj)

Parameters

inputBusObj

A

business

object

to

compare

with

this

business

object.

242

Map

Development

Guide

Return

values

Returns

true

if

the

values

of

all

key

attributes

are

the

same;

returns

false

if

they

are

not

the

same.

Exceptions

CollaborationException—The

equalKeys()

method

can

set

the

following

exception

type

for

this

exception:

v

ObjectException

–

Set

if

the

business

object

argument

is

invalid.

See

also

equalsShallow(),

equals()

Notes

This

method

performs

a

shallow

comparison;

that

is,

it

does

not

compare

the

keys

in

child

business

objects.

Examples

The

following

example

compares

the

key

values

of

order2

to

those

in

order1.

boolean

areEqual

=

order1.equalKeys(order2);

equals()

Compare

this

business

object’s

attribute

values

with

those

in

the

input

business

object,

including

child

business

objects.

Syntax

-boolean

equals(Object

inputBusObj)

Parameters

inputBusObj

A

business

object

to

compare

with

this

business

object.

Return

values

Returns

true

if

the

values

of

all

attributes

are

the

same;

otherwise,

returns

false.

Exceptions

CollaborationException—The

equals()

method

can

set

the

following

exception

type

for

this

exception:

v

ObjectException

–

Set

if

the

business

object

argument

is

invalid.

Notes

This

method

compares

this

business

object’s

attribute

values

with

those

in

the

input

business

object.

If

the

business

objects

are

hierarchical,

the

comparison

includes

all

attributes

in

the

child

business

objects.

Note:

Passing

in

the

business

object

as

an

Object

ensures

that

this

equals()

method

overrides

the

Object.equals()

method.

In

the

comparison,

a

null

value

is

considered

equivalent

to

any

value

to

which

it

is

compared

and

does

not

prevent

a

return

of

true.

Chapter

10.

BusObj

class

243

See

also

equalsShallow(),

equalKeys()

Examples

The

following

example

compares

all

attributes

of

order2

to

all

attributes

of

order1

and

assigns

the

result

of

the

comparison

to

the

variable

areEqual.

The

comparison

includes

the

attributes

of

child

business

objects,

if

any.

boolean

areEqual

=

order1.equals(order2);

equalsShallow()

Compare

this

business

object’s

attribute

values

with

those

in

the

input

business

object,

excluding

child

business

objects

from

the

comparison.

Syntax

boolean

equalsShallow(BusObj

inputBusObj)

Parameters

inputBusObj

A

business

object

to

compare

with

this

business

object.

Return

values

Returns

true

if

the

values

of

all

attributes

are

the

same;

otherwise,

returns

false.

Exceptions

CollaborationException—The

equalsShallow()

method

can

set

the

following

exception

type

for

this

exception:

v

ObjectException

–

Set

if

the

business

object

argument

is

invalid.

See

also

equals(),

equalKeys()

Examples

The

following

example

compares

attributes

of

order2

with

attributes

of

order1,

excluding

the

attributes

of

child

business

objects,

if

any.

boolean

areEqual

=

order1.equalsShallow(order2);

exists()

Check

for

the

existence

of

a

business

object

attribute

with

a

specified

name.

Syntax

boolean

exists(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

Return

values

Returns

true

if

the

attribute

exists;

otherwise,

returns

false

if

the

attribute

does

not

exist.

244

Map

Development

Guide

Examples

The

following

example

checks

whether

business

object

order

has

an

attribute

called

Notes.

boolean

notesAreHere

=

order.exists(“Notes”);

getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()

Retrieve

the

value

of

a

single

attribute

from

a

business

object.

Syntax

Object

get(String

attribute)

Object

get(int

position)

boolean

getBoolean(String

attribute)

double

getDouble(String

attribute)

float

getFloat(String

attribute)

int

getInt(String

attribute)

long

getLong(String

attribute)

Object

get(String

attribute)

BusObj

getBusObj(String

attribute)

BusObjArray

getBusObjArray(String

attribute)

String

getLongText(String

attribute)

String

getString(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

position

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

value

of

the

specified

attribute.

Exceptions

CollaborationException—These

get

methods

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

-

Set

if

an

attribute

access

problem

occurs.

For

example,

this

exception

can

be

caused

if

the

collaboration

calls

getDouble()

on

a

String

attribute

that

does

not

consist

of

digits

or

calls

getString()

on

a

nonexistent

attribute.

Notes

The

get()

method

retrieves

an

attribute

value

from

the

current

business

object.

It

returns

a

copy

of

the

attribute

value.

It

does

not

return

an

object

reference

to

this

attribute

in

the

source

business

object.

Therefore,

any

change

to

attribute

value

in

the

source

business

object

is

not

made

to

the

value

that

get()

returns.

Each

time

this

method

is

called,

it

returns

a

new

copy

(clone)

of

the

attribute.

The

get()

method

provides

the

following

forms:

v

The

first

form

returns

a

value

of

the

type

specified

in

the

method

name.

For

example,

getBoolean()

returns

a

boolean

value,

getBusObj()

returns

a

BusObj

value,

getDouble()

returns

a

double

value,

and

so

on.

However,

getLongText()

returns

a

String

object

because

the

WebSphere

InterChange

Server

Express

Chapter

10.

BusObj

class

245

longtext

type

is

a

String

object

with

no

maximum

size.

Use

these

forms

to

retrieve

attributes

with

specific

basic

or

WebSphere

InterChange

Server

Express-defined

data

types.

These

methods

provide

the

ability

to

access

an

attribute

value

by

specifying

the

name

of

the

attribute.

v

The

second

form,

get()

retrieves

the

value

of

an

attribute

of

any

type.

You

can

cast

the

returned

value

to

the

appropriate

value

of

the

attribute

type.

This

method

provides

the

ability

to

access

an

attribute

value

by

specifying

either

the

name

of

the

attribute

or

the

attribute’s

index

position

within

the

business

object

attribute

list.

Examples

The

following

example

illustrates

how

get()

returns

a

copy

(clone)

of

the

attribute

value

instead

of

an

object

reference:

BusObj

mySettingBusObj

=

new

BusObj();

BusObj

myBusObj

=

new

BusObj();

myBusObj.set("attr1",

mySettingBusObj);

BusObj

Extract

=

myBusObj.get("attr1");

After

this

code

fragment

executes,

if

you

change

the

Extract

business

object,

mySettingBusObj

does

not

change

because

the

get()

call

returned

a

copy

of

the

attr1

attribute.

The

following

example

uses

getBusObj()

to

retrieve

a

child

business

object

containing

a

customer

address

from

the

customer

business

object

and

assign

it

to

the

variable

address.

BusObj

address

=

customer.getBusObj("Address");

The

following

example

uses

getString()

to

retrieve

the

value

of

the

CustomerName

attribute.

The

business

object

variable

is

sourceCustomer.

String

customerName

=

sourceCustomer.getString("CustomerName");

The

following

example

uses

getInt()

to

retrieve

the

Quantity

values

from

two

business

objects

whose

variables

are

item1

and

item2.

The

example

then

computes

the

sum

of

both

quantities.

int

sumQuantity

=

item1.getInt("Quantity")

+

item2.getInt("Quantity");

The

following

example

retrieves

the

attribute

Item

from

the

business

object

variable

order.

The

attribute

Item

is

a

business

object

array.

BusObjArray

items

=

order.getBusObjArray("Item");

The

following

example

gets

the

CustID

attribute

value

from

the

source

business

object

and

sets

the

Customer

value

in

the

destination

business

object

to

match.

destination.set("Customer",

source.get("CustID"));

The

following

example

accesses

an

attribute

value

using

the

attribute’s

ordinal

position

within

the

attribute

list:

for

i=0;

i<maxAttrCount;

i++)

{

String

strValue

=

(String)myBusObj.get(i);

...

246

Map

Development

Guide

getLocale()

Retrieve

the

locale

associated

with

the

business

object’s

data.

Syntax

java.util.Locale

getLocale()

Parameters

None.

Return

values

A

Java

Locale

object

that

contains

information

about

the

business

object’s

locale.

This

Locale

object

must

be

an

instance

of

the

java.util.Locale

class.

Notes

The

getLocale()

method

returns

the

locale

associated

with

the

data

in

a

business

object.

This

locale

is

often

different

from

the

collaboration

locale

in

which

the

collaboration

is

executing.

See

also

getLocale()

(BaseCollaboration

class),

setLocale()

getType()

Retrieve

the

name

of

the

business

object

definition

on

which

this

business

object

was

based.

Syntax

String

getType()

Return

values

The

name

of

a

business

object

definition.

Notes

The

type

of

a

business

object,

in

terms

of

this

method,

is

the

name

of

the

business

object

definition

from

which

the

business

object

was

created.

Returns

The

following

example

retrieves

the

type

of

a

business

object

called

sourceShipTo.

String

typeName

=

sourceShipTo.getType();

The

following

example

copies

a

triggering

event

into

a

new

business

object

of

the

appropriate

type.

BusObj

source

=

new

BusObj(triggeringBusObj.getType());

getVerb()

Retrieve

this

business

object’s

verb.

Chapter

10.

BusObj

class

247

Syntax

String

getVerb()

Return

values

The

name

of

a

verb,

such

as

Create,

Retrieve,

Update,

or

Delete.

Notes

In

collaboration

development,

this

method

is

useful

for

scenarios

that

handle

multiple

types

of

incoming

events.

The

first

action

node

in

a

scenario

calls

getVerb().

The

outgoing

transition

links

from

that

action

node

then

test

the

contents

of

the

returned

string,

so

that

each

outgoing

transition

link

is

the

start

of

an

execution

path

that

handles

one

of

the

possible

verbs.

Examples

The

following

example

obtains

the

verb

from

a

business

object

called

orderEvent

and

assigns

it

to

a

variable

called

orderVerb.

String

orderVerb

=

orderEvent.getVerb();

isBlank()

Find

out

whether

the

value

of

an

attribute

is

set

to

a

zero-length

string.

Syntax

boolean

isBlank(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

Returns

Returns

true

if

the

attribute

value

is

a

zero-length

string;

returns

false

otherwise.

Notes

A

zero-length

string

can

be

compared

to

the

string

″″.

It

is

different

from

a

null,

whose

presence

is

detected

by

the

isNull()

method.

If

a

collaboration

needs

to

retrieve

an

attribute

value

and

then

do

something

with

it,

it

can

call

isBlank()

and

isNull()

to

check

that

it

has

a

value

before

retrieving

the

value.

Examples

The

following

example

checks

whether

the

Material

attribute

of

the

sourcePaperClip

business

object

is

a

zero-length

string.

boolean

key

=

sourcePaperClip.isBlank(“Material”);

isKey()

Find

out

whether

a

business

object’s

attribute

is

defined

as

a

key

attribute.

Syntax

boolean

isKey(String

attribute)

248

Map

Development

Guide

Parameters

attribute

The

name

of

an

attribute.

Return

values

Returns

true

if

the

attribute

is

a

key

attribute;

returns

false

if

it

is

not

a

key

attribute.

Examples

The

following

example

determines

whether

the

CustID

attribute

of

the

customer

business

object

is

a

key

attribute.

boolean

keyAttr

=

(customer.isKey("CustID"));

isNull()

Find

out

whether

the

value

of

a

business

object’s

attribute

is

null.

Syntax

boolean

isNull(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

Return

values

Returns

true

if

the

attribute

value

is

null;

returns

false

if

it

is

not

null.

Notes

A

null

indicates

no

value,

in

contrast

to

a

zero-length

string

value,

which

is

detected

by

calling

isBlank().

Test

an

object

with

isNull()

before

using

it,

because

if

the

object

is

null,

the

operation

could

fail.

An

attribute

value

can

be

null

under

these

circumstances:

v

The

attribute

value

was

explicitly

set

to

null.

An

attribute

value

can

be

set

to

null

using

the

set()

method.

v

The

attribute

value

was

never

set.

At

instantiation

of

a

new

business

objects,

all

attribute

values

are

initialized

with

a

null.

If

the

attribute

value

has

not

been

set

between

the

time

of

creation

and

the

time

of

the

isNull()

call,

the

value

is

still

null.

v

The

null

was

inserted

during

mapping.

When

a

collaboration

is

processing

a

business

object

received

from

a

connector,

the

mapping

process

might

have

inserted

the

null.

The

mapping

process

converts

the

application-specific

business

object

received

from

the

connector

to

the

generic

business

object

handled

by

the

collaboration.

For

each

attribute

in

the

generic

business

object

that

has

no

equivalent

in

the

application-specific

object,

the

map

inserts

a

null

value.

Tip:

Always

call

isNull()

before

performing

an

operation

on

an

attribute

that

is

a

child

business

object

or

child

business

object

array,

because

Java

does

not

allow

operations

on

null

objects.

Chapter

10.

BusObj

class

249

Examples

The

following

example

checks

whether

the

Material

attribute

of

the

sourcePaperClip

business

object

has

a

null

value.

boolean

key

=

sourcePaperClip.isNull(“Material”);

The

following

example

checks

whether

the

CustAddr

attribute

of

the

contract1

business

object

is

null

before

retrieving

it.

The

attribute

retrieval

proceeds

only

if

the

isNull()

check

is

false,

showing

that

the

attribute

is

not

null.

if

(!

contract1.isNull("CustAddr“))

{

BusObj

customerAddress

=

contract1.getBusObj(“CustAddr”);

//do

something

with

the

“customerAddress”

business

object

}

isRequired()

Find

out

whether

a

business

object’s

attribute

is

defined

as

a

required

attribute.

Syntax

boolean

isRequired(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

Return

values

Returns

true

if

the

attribute

is

required;

returns

false

if

it

is

not

required.

Notes

If

an

attribute

is

defined

as

required,

it

must

have

a

value

and

the

value

must

not

be

a

null.

Examples

The

following

example

logs

a

warning

if

a

required

attribute

has

a

null

value.

if

(

(customer.isRequired(“Address”))

&&

(customerBusObj.isNull(“Address))

)

{

logWarning(12,

“Address

is

required

and

cannot

be

null.“);

}

else

{

//do

something

else

}

keysToString()

Retrieve

the

values

of

a

business

object’s

primary

key

attributes

as

a

string.

Syntax

String

keysToString()

Return

values

A

String

object

containing

all

the

key

values

in

a

business

object,

concatenated,

and

ordered

by

the

ordinal

value

of

the

attributes.

250

Map

Development

Guide

Notes

The

output

from

this

method

contains

the

name

of

the

attribute

and

its

value.

Multiple

values

are

primary

key

attribute

values,

concatenated

and

separated

by

spaces.

For

example,

if

there

is

one

primary

key

attribute,

SS#,

this

could

be

the

output:

SS#=100408394

If

the

primary

key

attributes

are

FirstName

and

LastName,

this

could

be

the

output:

FirstName=Nina

LastName=Silk

Examples

The

following

example

returns

the

values

of

key

attributes

of

the

business

object

represented

by

the

variable

name

fromOrder.

String

keyValues

=

fromOrder.keysToString();

set()

Set

a

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type.

Syntax

void

set(String

attribute,

Object

value)

void

set(int

position,

Object

value)

void

set(String

attribute,

boolean

value)

void

set(String

attribute,

double

value)

void

set(String

attribute,

float

value)

void

set(String

attribute,

int

value)

void

set(String

attribute,

long

value)

void

set(String

attribute,

Object

value)

void

set(String

attribute,

String

value)

Parameters

attribute

The

name

of

the

attribute

to

set.

position

An

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

value

An

attribute

value.

Exceptions

CollaborationException—The

set()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException—Set

if

an

attribute

access

problem

occurs.

Notes

The

set()

method

sets

an

attribute

value

in

the

current

business

object.

This

method

sets

an

object

reference

to

the

value

parameter

when

it

assigns

the

value

to

the

attribute.

It

does

not

clone

the

attribute

value

from

the

source

business

object.

Therefore,

any

changes

to

value

in

the

source

business

object

are

also

made

to

the

attribute

in

the

business

object

that

calls

set().

The

set()

method

provides

the

following

forms:

v

The

first

form

sets

a

value

of

the

type

specified

by

the

method’s

second

parameter

type.

For

example,

set(String

attribute,

boolean

value)

sets

an

attribute

Chapter

10.

BusObj

class

251

with

a

boolean

value,

set(String

attribute,

double

value)

sets

an

attribute

with

a

double

value,

and

so

on.

Use

this

form

to

set

attributes

with

specific

basic

or

WebSphere

InterChange

Server

Express-defined

data

types.

These

methods

provide

the

ability

to

access

an

attribute

value

by

specifying

the

name

of

the

attribute.

v

The

second

form

sets

the

value

of

an

attribute

of

any

type.

You

can

send

in

any

data

type

as

the

attribute

value

because

the

attribute-value

parameter

is

of

type

Object.

For

example,

to

set

an

attribute

that

is

of

BusObj

or

LongText

object,

use

this

form

of

the

method

and

pass

in

the

BusObj

or

LongText

object

as

the

attribute

value.

This

form

of

the

set()

method

provides

the

ability

to

access

an

attribute

value

by

specifying

either

the

name

of

the

attribute

or

the

attribute’s

index

position

within

the

business

object

attribute

list.

Examples

The

following

example

sets

the

LName

attribute

in

toCustomer

to

the

value

Smith.

toCustomer.set("LName",

"Smith");

The

following

example

illustrates

how

set()

assigns

an

object

reference

instead

of

cloning

the

value:

BusObj

BusObj

myBusObj

=

new

BusObj();

BusObj

mySettingBusObj

=

new

BusObj();

myBusObj.set("attr1",

mySettingBusObj);

After

this

code

fragment

executes,

the

attr1

attribute

of

myBusObj

is

set

to

the

mySettingBusObj

business

object.

If

mySettingBusObj

is

changed

in

any

way,

myBusObj.attr1

is

changed

in

the

exact

manner

because

set()

makes

an

object

reference

to

mySettingBusObj

when

it

sets

the

attr1

attribute;

it

does

not

create

a

static

copy

of

mySettingBusObj.

The

following

example

sets

an

attribute

value

using

the

attribute’s

ordinal

position

within

the

attribute

list:

for

i=0;

i<maxAttrCount;

i++)

{

myBusObj.set(i,

strValue);

...

setContent()

Set

the

contents

of

this

business

object

to

another

business

object.

Syntax

void

setContent(BusObj

BusObj)

Parameters

BusObj

The

business

object

whose

values

are

used

to

set

values

of

this

business

object.

Exceptions

CollaborationException—The

setContent()

method

can

set

one

of

the

following

exception

types

for

this

exception:

v

AttributeException

–

Set

if

an

attribute

access

problem

occurs.

252

Map

Development

Guide

v

ObjectException

–

Set

if

the

business

object

argument

is

invalid.

Examples

The

following

example

sets

the

contents

of

the

instance

variable

for

the

output

object

ObjOutput1

to

the

contents

of

the

business

object

rDstBO[0].

ObjOutput1.setContent(rDstBO[0]);

setDefaultAttrValues()

Set

all

attributes

to

their

default

values.

Syntax

void

setDefaultAttrValues()

Notes

A

business

object

definition

can

include

default

values

for

attributes.

The

method

sets

the

values

of

this

business

object’s

attributes

to

the

values

specified

as

defaults

in

the

definition.

Examples

The

following

example

sets

the

values

of

the

PaperClip

business

object

to

their

default

values:

PaperClip.setDefaultAttrValues();

setKeys()

Set

the

values

of

this

business

object’s

key

attributes

to

the

values

of

the

key

attributes

in

another

business

object.

Syntax

void

setKeys(BusObj

inputBusObj)

Parameters

inputBusObj

The

business

object

whose

values

are

used

to

set

values

of

another

business

object

Exceptions

CollaborationException—The

setKeys()

method

can

set

one

of

the

following

exception

types

for

this

exception:

v

AttributeException

–

Set

if

an

attribute

access

problem

occurs.

v

ObjectException

–

Set

if

the

business

object

argument

is

invalid.

Examples

The

following

example

sets

the

key

values

in

the

business

object

helpdeskCustomer

to

the

key

values

in

the

business

object

ERPCustomer.

helpdeskCustomer.setKeys(ERPCustomer);

setLocale()

Set

the

locale

of

the

current

business

object.

Chapter

10.

BusObj

class

253

Syntax

void

setLocale(java.util.Locale

locale

Parameters

locale

The

Java

Locale

object

that

contains

the

information

about

the

locale

to

assign

to

the

business

object.

This

Locale

object

must

be

an

instance

of

the

java.util.Locale

class.

Return

values

None.

Notes

The

setLocale()

method

assigns

a

locale

to

the

data

associated

with

a

business

object.

The

locale

might

be

different

from

the

collaboration

locale

in

which

the

collaboration

executes.

See

also

getLocale()

setVerb()

Set

the

verb

of

a

business

object.

Syntax

void

setVerb(String

verb)

Parameters

verb

The

verb

of

the

business

object.

Notes

The

setVerb()

method

is

used

only

in

mapping.

Note:

Do

not

use

this

method

in

collaboration

development,

where

you

must

set

the

verb

of

an

outgoing

business

object

interactively

by

filling

in

the

properties

of

a

service

call.

Examples

The

following

example

sets

the

verb

Delete

on

the

business

object

contactAddress.

contactAddress.setVerb("Delete");

setWithCreate()

Set

a

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type,

creating

an

object

for

the

value

is

one

does

not

already

exist.

Syntax

void

setWithCreate(String

attributeName,

BusObj

busObj)

void

setWithCreate(String

attributeName,

BusObjArray

busObjArray)

void

setWithCreate(String

attributeName,

Object

value)

254

Map

Development

Guide

Parameters

attributeName

The

name

of

the

attribute

to

set.

busObj

The

business

object

to

insert

into

the

target

attribute.

busObjArray

The

business

object

array

to

insert

into

the

target

attribute.

value

The

object

to

insert

into

the

target

attribute.

This

object

needs

to

be

one

of

the

following

types:

BusObj,

BusObjArray,

Object.

Exceptions

CollaborationException—The

setWithCreate()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException—Set

if

an

attribute

access

problem

occurs.

Notes

If

the

object

provided

is

a

BusObj

and

the

target

attribute

contains

multi-cardinality

child

business

object,

the

BusObj

is

appended

to

the

BusObjArray

as

its

last

element.

If

the

target

attribute

contains

a

BusObj,

however,

this

business

object

replaces

the

previous

value.

Examples

The

following

example

sets

an

attribute

called

ChildAttrAttr

to

the

value

5.

The

attribute

is

found

in

a

business

object

contained

in

myBO’s

attribute,

ChildAttr.

If

the

childAttr

business

object

does

not

exist

at

the

time

of

the

call,

this

method

call

creates

it.

myBO.setWithCreate("childAttr.childAttrAttr",

"5");

toString()

Return

the

values

of

all

attributes

in

a

business

object

as

a

string.

Syntax

String

toString()

Return

values

A

String

object

containing

all

attribute

values

in

a

business

object.

Notes

The

string

that

results

from

a

call

to

this

method

is

similar

to

the

following

example:

Name:

GenEmployee

Verb:

Create

Type:

AfterImage

Attributes:

(Name,

Type,

Value)

LastName:String,

Davis

FirstName:String,

Miles

SS#:String,

041-33-8989

Salary:Float,

15.00

ObjectEventId:String,

MyConnector_922323619411_1

Chapter

10.

BusObj

class

255

Examples

The

following

example

returns

a

string

containing

the

attribute

values

of

the

business

object

variable

fromOrder.

String

values

=

fromOrder.toString();

validData()

Checks

whether

a

specified

value

is

a

valid

type

for

a

specified

attribute.

Syntax

boolean

validData(String

attributeName,

Object

value)

boolean

validData(String

attributeName,

BusObj

value)

boolean

validData(String

attributeName,

BusObjArray

value)

boolean

validData(String

attributeName,

String

value)

boolean

validData(String

attributeName,

long

value)

boolean

validData(String

attributeName,

int

value)

boolean

validData(String

attributeName,

double

value)

boolean

validData(String

attributeName,

float

value)

boolean

validData(String

attributeName,

boolean

value)

Parameters

attributeName

The

attribute.

value

The

value.

Returns

true

or

false

(boolean

return)

Notes

Checks

the

compatibility

of

the

value

passed

in

with

the

target

attribute

(as

specified

by

attributeName).

These

are

the

criteria:

for

primitive

types

(String,

long,

int,

double,

float,

boolean)

the

value

must

be

convertible

to

the

data

type

of

the

attribute

for

a

BusObj

the

value

must

have

the

same

type

as

that

of

the

target

attribute

for

a

BusObjArray

the

value

must

point

to

a

BusObj

or

BusObjArray

with

the

same

(business

object

definition)

type

as

that

of

the

attribute

for

an

Object

the

value

must

be

of

type

String,

BusObj,

or

BusObjArray.

The

corresponding

validation

rules

are

then

applied.

Deprecated

methods

Some

methods

in

the

BusObj

class

were

supported

in

earlier

versions

but

are

no

longer

supported.

These

deprecated

methods

will

not

generate

errors,

but

CrossWorlds

recommends

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

Table

93

lists

the

deprecated

methods

for

the

BusObj

class.

If

you

have

not

used

Map

Designer

Express

before,

ignore

this

section.

256

Map

Development

Guide

Table

93.

Deprecated

methods,

BusObj

Class

Former

Method

Replacement

getCount()

BusObjArray.size()

getKeys()

keysToString()

getValues()

toString()

not

standard

Java

NOT

operator,

“!”

set(BusObj

inputBusObj)

copy()

All

methods

that

took

a

child

business

object

or

child

business

object

array

as

an

input

argument

Get

a

handle

to

the

child

business

object

or

business

object

array

and

use

the

methods

of

the

BusObj

or

BusObjArray

class

The

setVerb()

method,

which

was

previously

listed

as

deprecated,

is

now

restored

for

use

in

mapping.

Do

not

use

it

within

a

collaboration.

Chapter

10.

BusObj

class

257

258

Map

Development

Guide

Chapter

11.

BusObjArray

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

IBM

WebSphere

InterChange

Server

Express-defined

class

BusObjArray.

The

BusObjArray

class

encapsulates

an

array

of

business

objects.

In

a

hierarchical

business

object,

an

attribute

is

a

reference

to

an

array

of

child

business

objects

when

its

cardinality

is

equal

to

n.

Operations

on

the

BusObjArray

class

can

return

either

a

BusObjArray

object

or

an

actual

array

of

business

objects.

Note:

The

BusObjArray

class

is

used

for

both

collaboration

development

and

mapping;

check

the

Notes

section

for

each

method’s

usage

issues.

Table

94

lists

the

methods

of

the

BusObjArray

class.

Table

94.

BusObjArray

method

summary

Method

Description

Page

addElement()

Add

a

business

object

to

this

business

object

array.

260

duplicate()

Create

a

business

object

array

(BusObjArray

object)

exactly

like

this

one.

260

elementAt()

Retrieve

a

single

business

object

by

specifying

its

position

in

this

business

object

array.

261

equals()

Compare

another

business

object

array

with

this

one.

261

getElements()

Retrieve

the

contents

of

this

business

object

array.

262

getLastIndex()

Retrieve

the

last

available

index

from

a

business

object

array.

262

max()

Retrieve

the

maximum

value

for

the

specified

attribute

among

all

elements

in

this

business

object

array.

262

maxBusObjArray()

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

a

business

object

array

(BusObjArray

object).

263

maxBusObjs()

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

264

min()

Retrieve

the

minimum

value

for

the

specified

attribute

among

the

business

objects

in

this

array.

265

minBusObjArray()

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

a

BusObjArray

object.

266

minBusObjs()

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

267

removeAllElements()

Remove

all

elements

from

this

business

object

array.

268

removeElement()

Remove

a

business

object

element

from

a

business

object

array.

268

removeElementAt()

Remove

an

element

at

a

particular

position

in

this

business

object

array.

269

©

Copyright

IBM

Corp.

2003

259

Table

94.

BusObjArray

method

summary

(continued)

Method

Description

Page

setElementAt()

Set

the

value

of

a

business

object

in

a

business

object

array.

269

size()

Return

the

number

of

elements

in

this

business

object

array.

270

sum()

Adds

the

values

of

the

specified

attribute

for

all

business

objects

in

this

business

object

array.

270

swap()

Reverse

the

positions

of

two

business

objects

in

this

business

object

array.

Keep

in

mind

that

the

first

element

in

the

array

is

zero

(0),

the

second

is

1,

the

third

is

2,

and

so

on.

270

toString()

Retrieve

the

values

in

this

business

object

array

as

a

single

string.

271

Note:

See

“Exceptions

and

exception

types”

on

page

240

for

an

important

clarification

on

exception

handling

with

this

class.

The

section

applies

to

exceptions

in

BusObjArray

and

BusObj

only.

addElement()

Add

a

business

object

to

this

business

object

array.

Syntax

void

addElement(BusObj

element)

Parameters

element

A

business

object

to

add

to

the

array.

Exceptions

CollaborationException—The

addElement()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Examples

The

following

example

uses

the

getBusObjArray()

method

to

retrieve

an

array

of

business

objects

called

itemList

from

the

business

object

order.

The

array

is

assigned

to

items,

and

then

a

new

business

object

is

added

to

items.

BusObjArray

items

=

order.getBusObjArray("itemList");

items.addElement(new

BusObj("oneItem"));

duplicate()

Create

a

business

object

array

(BusObjArray

object)

exactly

like

this

one.

Syntax

BusObjArray

duplicate()

Return

values

A

business

object

array.

260

Map

Development

Guide

Examples

The

following

example

duplicates

the

items

array,

creating

newItems.

BusObjArray

newItems

=

items.duplicate();

elementAt()

Retrieve

a

single

business

object

by

specifying

its

position

in

this

business

object

array.

Syntax

BusObj

elementAt(int

index)

Parameters

index

The

array

element

to

retrieve.

The

first

element

in

the

array

is

zero

(0),

the

second

is

1,

the

third

is

2,

and

so

on.

Exceptions

CollaborationException—The

elementAt()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Examples

The

following

example

retrieves

the

11th

business

object

in

the

items

array

and

assigns

it

to

the

Item

variable.

BusObj

Item

=

items.elementAt(10);

equals()

Compare

another

business

object

array

with

this

one.

Syntax

boolean

equals(BusObjArray

inputBusObjArray)

Parameters

inputBusObjArray

A

business

object

array

to

compare

with

this

business

object

array.

Notes

The

comparison

between

the

two

business

object

arrays

checks

the

number

of

elements

and

their

attribute

values.

Examples

The

following

example

uses

equals()

to

set

up

a

conditional

loop,

the

inside

of

which

is

not

shown.

if

(items.equals(newItems))

{

...

}

Chapter

11.

BusObjArray

class

261

getElements()

Retrieve

the

contents

of

this

business

object

array.

Syntax

BusObj[]

getElements()

Exceptions

CollaborationException—The

getElements()

method

can

set

the

following

exception

type

for

this

exception:

v

ObjectException

–

Set

if

one

of

the

elements

is

not

valid.

Examples

The

following

example

prints

the

elements

of

the

items

array.

BusObj[]

elements

=

items.getElements();

for

(int

i=0,

i<elements.length;

i++)

{

trace(1,

elements[i].toString());

}

getLastIndex()

Retrieve

the

last

available

index

from

a

business

object

array.

Syntax

int

getLastIndex()

Returns

The

last

index

to

the

last

element

in

this

BusObjArray.

Notes

Previously,

the

size()

method

was

used

to

do

this.

That

is,

the

user

would

use

the

size()

of

the

business

object

array

to

retrieve

the

last

index

available

in

a

BusObjArray.

Unfortunately,

this

approach

yields

incorrect

data

if

the

BusObjArray

contains

gaps.

Like

all

Java

arrays,

BusObjArray

is

a

zero

relative

array.

This

means

that

the

size()

method

will

return

1

greater

than

the

getLastIndex()

method.

Examples

The

following

example

retrieves

the

last

index

in

the

business

object

array.

int

lastElementIndex

=

items.getLastIndex();

max()

Retrieve

the

maximum

value

for

the

specified

attribute

among

all

elements

in

this

business

object

array.

Syntax

String

max(String

attr)

262

Map

Development

Guide

Parameters

attr

A

variable

that

refers

to

an

attribute

in

the

business

object.

The

attribute

must

be

one

of

these

types:

String,

LongText,

Integer,

Float,

and

Double.

Returns

The

maximum

value

of

the

specified

attribute

in

the

form

of

a

string,

or

null

if

the

value

for

that

attribute

is

null

for

all

elements

in

this

BusObjArray.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

max()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

max()

method

looks

for

the

maximum

value

for

the

specified

attribute

among

the

business

objects

in

this

BusObjArray.

For

example,

if

three

employee

objects

are

used,

and

the

attribute

is

“Salary”

which

is

of

type

“Float,”

it

will

return

the

string

representing

the

largest

salary.

If

the

value

of

the

specified

attribute

for

an

element

in

BusObjArray

is

null,

then

that

element

is

ignored.

If

the

value

of

the

specified

attribute

is

null

for

all

elements,

then

null

is

returned.

When

the

attribute

type

is

of

type

String,

max()

returns

the

attribute

value

that

is

the

longest

string

lexically.

Examples

String

maxSalary

=

items.max("Salary");

maxBusObjArray()

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

a

business

object

array

(BusObjArray

object).

Syntax

BusObjArray

maxBusObjArray(String

attr)

Parameters

attr

A

String,

LongText,

Integer,

Float,

or

Double

variable

that

refers

to

an

attribute

in

a

business

object

in

the

business

object

array.

Returns

A

list

of

business

objects

in

the

form

of

BusObjArray

or

null.

Chapter

11.

BusObjArray

class

263

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

maxBusObjArray()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

maxBusObjArray()

method

finds

one

or

more

business

objects

with

the

maximum

value

for

the

specified

attribute,

and

returns

these

business

objects

in

a

BusObjArray

object.

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

method

determines

the

largest

value

for

Salary

in

all

the

Employee

business

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

largest

Salary

value,

the

method

returns

all

of

those

business

objects.

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

longest

string

lexically.

Examples

BusObjArray

boarrayWithMaxSalary

=

items.maxBusObjArray("Salary");

maxBusObjs()

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

Syntax

BusObj[]

maxBusObjs(String

attr)

Parameters

attr

A

String,

LongText,

Integer,

Float,

or

Double

variable

that

refers

to

an

attribute

in

the

business

object.

Returns

A

list

of

business

objects

in

the

form

of

a

BusObj[]

or

null.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

264

Map

Development

Guide

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

maxBusObjs()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

maxBusObjs()

method

finds

one

or

more

business

objects

with

the

maximum

value

for

the

specified

attribute,

and

returns

these

business

objects

as

an

array

of

BusObj

objects.

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

method

determines

the

largest

value

for

Salary

in

all

the

Employee

business

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

largest

Salary

value,

the

method

returns

all

of

those

business

objects.

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

longest

string

lexically.

Examples

BusObj[]

bosWithMaxSalary

=

items.maxBusObjs("Salary");

min()

Retrieve

the

minimum

value

for

the

specified

attribute

among

the

business

objects

in

this

array.

Syntax

String

min(String

attr)

Parameters

attr

A

String,

LongText,

Integer,

Float,

or

Double

variable

that

refers

to

an

attribute

in

the

business

object.

Returns

The

minimum

value

of

the

specified

attribute

in

the

form

of

a

string,

or

null

if

the

value

for

that

attribute

is

null

for

all

elements

in

this

BusObjArray.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

min()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Chapter

11.

BusObjArray

class

265

Notes

The

min()

method

looks

for

the

minimum

value

for

the

specified

attribute

among

the

business

objects

in

this

business

object

array.

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

method

determines

the

smallest

value

for

Salary

in

all

the

Employee

business

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

lowest

Salary

value,

the

method

returns

all

of

those

business

objects.

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

shortest

string

lexically.

Examples

String

minSalary

=

items.min("Salary");

minBusObjArray()

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

a

BusObjArray

object.

Syntax

BusObjArray

minBusObjArray(String

attr)

Parameters

attr

A

String,

LongText,

Integer,

Float,

or

Double

variable

that

refers

to

an

attribute

in

the

business

object.

Returns

A

list

of

business

objects

in

the

form

of

BusObjArray

or

null.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

minBusObjArray()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

minBusObjArray()

method

finds

one

or

more

business

objects

with

the

minimum

value

for

the

specified

attribute,

and

returns

these

business

objects

in

a

BusObjArray

object.

266

Map

Development

Guide

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

method

determines

the

smallest

value

for

Salary

in

all

the

Employee

business

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

smallest

Salary

value,

the

method

returns

all

of

those

business

objects.

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

shortest

string

lexically.

Examples

BusObjArray

boarrayWithMinSalary

=

items.minBusObjArray("Salary");

minBusObjs()

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

Syntax

BusObj[]

minBusObjs(String

attr)

Parameters

attr

A

String,

LongText,

Integer,

Float,

or

Double

variable

that

refers

to

an

attribute

in

the

business

object.

Returns

A

list

of

business

objects

in

the

form

of

a

BusObj[]

or

null.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

minBusObjs()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

minBusObjs()

method

finds

one

or

more

business

objects

with

the

maximum

value

for

the

specified

attribute,

and

returns

these

business

objects

as

an

array

of

BusObj

objects.

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

method

determines

the

smallest

value

for

Salary

in

all

the

Employee

business

Chapter

11.

BusObjArray

class

267

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

smallest

Salary

value,

the

method

returns

all

of

those

business

objects.

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

shortest

string

lexically.

Examples

BusObj[]

bosWithMinSalary

=

items.minBusObjs("Salary");

removeAllElements()

Remove

all

elements

from

this

business

object

array.

Syntax

void

removeAllElements()

Examples

The

following

example

removes

all

elements

of

the

array

items.

items.removeAllElements();

removeElement()

Remove

a

business

object

element

from

a

business

object

array.

Syntax

void

removeElement(BusObj

element)

Parameters

elementReference

A

variable

that

refers

to

an

element

of

the

array.

Exceptions

CollaborationException—The

removeElement()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Notes

After

you

delete

an

element

from

the

array,

the

array

resizes,

changing

the

indexes

of

existing

elements.

Examples

The

following

example

deletes

the

element

Child1

from

the

business

object

array

items.

items.removeElement(Child1);

268

Map

Development

Guide

removeElementAt()

Remove

an

element

at

a

particular

position

in

this

business

object

array.

Syntax

void

removeElementAt(int

index)

Notes

After

an

element

is

removed

from

the

array,

the

array

resizes,

possibly

changing

the

indexes

of

existing

elements.

Parameters

index

The

element

index.

Exceptions

CollaborationException—The

removeElementAt()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Examples

The

following

example

deletes

the

sixth

business

object

in

the

array

items.

items.removeElementAt(5);

setElementAt()

Set

the

value

of

a

business

object

in

a

business

object

array.

Syntax

void

setElementAt

(int

index,

BusObj

element)

Parameters

index

An

integer

representing

the

array

position.

The

first

element

in

the

array

is

zero

(0),

the

second

is

1,

the

third

is

2,

and

so

on.

inputBusObj

The

business

object

containing

the

values

to

which

you

want

to

set

the

array

element.

Exceptions

CollaborationException—The

setElementAt()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Notes

This

method

sets

the

values

of

the

business

object

at

a

specified

array

position

to

the

values

of

an

input

business

object.

Examples

The

following

example

creates

a

new

business

object

of

type

Item

and

adds

it

to

the

array

items,

as

the

fourth

element.

items.setElementAt(5,

new

BusObj("Item"));

Chapter

11.

BusObjArray

class

269

size()

Return

the

number

of

elements

in

this

business

object

array.

Syntax

int

size()

Notes

Like

all

Java

arrays,

BusObjArray

is

a

zero

relative

array.

This

means

that

the

size()

method

will

return

1

greater

than

the

getLastIndex()

method.

Examples

The

following

example

returns

the

number

of

elements

in

the

array

items.

int

size

=

items.size();

sum()

Adds

the

values

of

the

specified

attribute

for

all

business

objects

in

this

business

object

array.

Syntax

double

sum(String

attrName)

Parameters

attr

A

variable

that

refers

to

an

attribute

in

the

business

object.

The

attribute

must

be

of

type

Integer,

Float,

or

Double.

Returns

The

sum

of

the

specified

attribute

from

the

list

of

the

business

objects.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

sum()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Examples

double

sumSalary

=

items.sum("Salary");

swap()

Reverse

the

positions

of

two

business

objects

in

this

business

object

array.

Keep

in

mind

that

the

first

element

in

the

array

is

zero

(0),

the

second

is

1,

the

third

is

2,

and

so

on.

270

Map

Development

Guide

Syntax

void

swap(int

index1,

int

index2)

Parameters

index1

The

array

position

of

one

element

you

want

to

swap.

index2

The

array

position

of

the

other

element

you

want

to

swap.

Examples

The

following

example

uses

swap()

to

reverse

the

positions

of

BusObjA

and

BusObjC

in

the

following

array:

BusObjA BusObjB BusObjC

swap(0,2);

The

result

of

the

swap()

call

is

the

following

array:

BusObjC BusObjB BusObjA

toString()

Retrieve

the

values

in

this

business

object

array

as

a

single

string.

Syntax

String

toString()

Examples

The

following

example

uses

toString()

to

retrieve

the

contents

of

the

items

business

object

array

and

then

uses

logInfo()

to

write

the

contents

to

the

log

file.

logInfo(items.toString());

Chapter

11.

BusObjArray

class

271

272

Map

Development

Guide

Chapter

12.

CwDBConnection

class

The

CwDBConnection

class

provides

methods

for

executing

SQL

queries

in

a

database.

Queries

are

performed

through

a

connection,

which

is

obtained

from

a

connection

pool.

To

instantiate

this

class,

you

must

call

getDBConnection()

in

the

BaseDLM

class.

All

maps

are

derived

or

subclassed

from

BaseDLM

so

they

have

access

to

getDBConnection().

Table

95

summarizes

the

methods

in

the

CwDBConnection

class.

Table

95.

CwDBConnection

method

summary

Method

Description

Page

beginTransaction()

Begins

an

explicit

transaction

for

the

current

connection.

273

commit()

Commits

the

active

transaction

associated

with

the

current

connection.

274

executeSQL()

Executes

a

static

SQL

query

by

specifying

its

syntax

and

an

optional

parameter

array.

276

executePreparedSQL()

Executes

a

prepared

SQL

query

by

specifying

its

syntax

and

an

optional

parameter

array.

275

executeStoredProcedure()

Executes

an

SQL

stored

procedure

by

specifying

its

name

and

parameter

array.

278

getUpdateCount()

Returns

the

number

of

rows

affected

by

the

last

write

operation

to

the

database.

279

hasMoreRows()

Determines

whether

the

query

result

has

more

rows

to

process.

279

inTransaction()

Determines

whether

a

transaction

is

in

progress

in

the

current

connection.

280

isActive()

Determines

whether

the

current

connection

is

active.

280

nextRow()

Retrieves

the

next

row

from

the

query

result.

281

release()

Releases

use

of

the

current

connection,

returning

it

to

its

connection

pool.

281

rollBack()

Rolls

back

the

active

transaction

associated

with

the

current

connection.

282

beginTransaction()

Begins

an

explicit

transaction

for

the

current

connection.

Syntax

void

beginTransaction()

Parameters

None.

Return

values

None.

Exceptions

CwDBConnectionException

–

If

a

database

error

occurs.

©

Copyright

IBM

Corp.

2003

273

Notes

The

beginTransaction()

method

marks

the

beginning

of

a

new

explicit

transaction

in

the

current

connection.

The

beginTransaction(),

commit()

and

rollBack()

methods

together

provide

management

of

transaction

boundaries

for

an

explicit

transaction.

This

transaction

contains

SQL

queries,

which

include

the

SQL

statements

INSERT,

DELETE,

or

UPDATE,

and

a

stored

procedure

that

includes

one

of

these

SQL

statements.

If

you

do

not

use

beginTransaction()

to

specify

the

beginning

of

the

explicit

transaction,

the

database

executes

each

SQL

statement

as

a

separate

transaction.

Important:

Only

use

beginTransaction()

if

the

connection

uses

explicit

transaction

bracketing.

If

the

connection

uses

implicit

transaction

bracketing,

use

of

beginTransaction()

results

in

a

CwDBTransactionException

exception.

Before

beginning

an

explicit

transaction,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

Make

sure

that

this

connection

uses

explicit

transaction

bracketing.

Examples

The

following

example

uses

a

transaction

to

execute

a

query

for

inserting

rows

into

a

table

in

the

database

associated

with

connections

in

the

CustDBConnPool.

CwDBConnection

connection

=

getDBConnection("CustDBConnPool",

false);

//

Begin

a

transaction

connection.beginTransaction();

//

Insert

a

row

connection.executeSQL("insert...");

//

Commit

the

transaction

connection.commit();

//

Release

the

connection

connection.release();

See

also

commit(),

getDBConnection(),

inTransaction(),

rollBack()

commit()

Commits

the

active

transaction

associated

with

the

current

connection.

Syntax

void

commit()

Parameters

None.

Return

values

None.

Exceptions

CwDBConnectionException

–

If

a

database

error

occurs.

274

Map

Development

Guide

Notes

The

commit()

method

ends

the

active

transaction

by

committing

any

changes

made

to

the

database

associated

with

the

current

connection.

The

beginTransaction(),

commit()

and

rollBack()

methods

together

provide

management

of

transaction

boundaries

for

an

explicit

transaction.

This

transaction

contains

SQL

queries,

which

include

the

SQL

statements

INSERT,

DELETE,

or

UPDATE,

and

a

stored

procedure

that

includes

one

of

these

SQL

statements.

Important:

Only

use

commit()

if

the

connection

uses

explicit

transaction

bracketing.

If

the

connection

uses

implicit

transaction

bracketing,

use

of

commit()

results

in

a

CwDBTransactionException

exception.

If

you

do

not

end

an

explicit

transaction

with

commit()

(or

rollback())

before

the

connection

is

released,

InterChange

Server

Express

implicitly

ends

the

transaction

based

on

the

success

of

the

map.

If

the

map

is

successful,

ICS

commits

this

database

transaction.

If

the

map

is

not

successful,

ICS

implicitly

rolls

back

the

database

transaction.

Regardless

of

the

success

of

the

map,

ICS

logs

a

warning.

Before

beginning

an

explicit

transaction,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

Make

sure

that

this

connection

uses

explicit

transaction

bracketing.

Examples

For

an

example

of

committing

a

transaction,

see

the

example

for

beginTransaction().

See

also

beginTransaction(),

getDBConnection(),

inTransaction(),

rollBack()

executePreparedSQL()

Executes

a

prepared

SQL

query

by

specifying

its

syntax

and

an

optional

parameter

array.

Syntax

void

executePreparedSQL(String

query)

void

executePreparedSQL(String

query,

Vector

queryParameters)

Parameters

query

A

string

representation

of

the

SQL

query

to

execute

in

the

database.

queryParameters

A

Vector

object

of

arguments

to

pass

to

parameters

in

the

SQL

query.

Return

values

None.

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Chapter

12.

CwDBConnection

class

275

Notes

The

executePreparedSQL()

method

sends

the

specified

query

string

as

a

prepared

SQL

statement

to

the

database

associated

with

the

current

connection.

The

first

time

it

executes,

this

query

is

sent

as

a

string

to

the

database,

which

compiles

the

string

into

an

executable

form

(called

a

prepared

statement),

executes

the

SQL

statement,

and

returns

this

prepared

statement

to

executePreparedSQL().

The

executePreparedSQL()

method

saves

this

prepared

statement

in

memory.

Use

executePreparedSQL()

for

SQL

statements

that

you

need

to

execute

multiple

times.

The

executeSQL()

method

does

not

save

the

prepared

statement

and

is

therefore

useful

for

queries

you

need

to

execute

only

once.

Important:

Before

executing

a

query

with

executePreparedSQL(),

you

must

obtain

a

connection

to

the

desired

database

by

generating

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

The

SQL

statements

you

can

execute

include

the

following

(as

long

as

you

have

the

necessary

database

permissions):

v

The

SELECT

statement

to

request

data

from

one

or

more

database

tables

Use

the

hasMoreRows()

and

nextRow()

methods

to

access

the

retrieved

data.

v

SQL

statements

that

modify

data

in

the

database

–

INSERT

–

DELETE

–

UPDATE

If

the

connection

uses

explicit

transaction

bracketing,

you

must

explicitly

start

each

transaction

with

beginTransaction()

and

end

it

with

either

commit()

or

rollback().

v

The

CALL

statement

to

execute

a

prepared

stored

procedures

with

the

limitation

that

this

stored

procedure

cannot

use

any

OUT

parameters

To

execute

stored

procedures

with

OUT

parameters,

use

the

executeStoredProcedure()

method.

See

also

beginTransaction(),

commit(),

executeSQL(),

executeStoredProcedure(),

getDBConnection(),

hasMoreRows(),

nextRow(),

rollBack()

executeSQL()

Executes

a

static

SQL

query

by

specifying

its

syntax

and

an

optional

parameter

array.

Syntax

void

executeSQL(String

query)

void

executeSQL(String

query,

Vector

queryParameters)

Parameters

query

A

string

representation

of

the

SQL

query

to

execute

in

the

database.

queryParameters

A

Vector

object

of

arguments

to

pass

to

parameters

in

the

SQL

query.

276

Map

Development

Guide

Return

values

None.

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Notes

The

executeSQL()

method

sends

the

specified

query

string

as

a

static

SQL

statement

to

the

database

associated

with

the

current

connection.

This

query

is

sent

as

a

string

to

the

database,

which

compiles

the

string

into

an

executable

form

and

executes

the

SQL

statement,

without

saving

this

executable

form.

Use

executeSQL()

for

SQL

statements

that

you

need

to

execute

only

once.

The

executePreparedSQL()

method

saves

the

executable

form

(called

a

prepared

statement)

and

is

therefore

useful

for

queries

you

need

to

execute

multiple

times.

Important:

Before

executing

a

query

with

executeSQL(),

you

must

obtain

a

connection

to

the

desired

database

by

generating

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

The

SQL

statements

you

can

execute

include

the

following

(as

long

as

you

have

the

necessary

database

permissions):

v

The

SELECT

statement

to

request

data

from

one

or

more

database

tables

Use

the

hasMoreRows()

and

nextRow()

methods

to

access

the

retrieved

data.

v

SQL

statements

that

modify

data

in

the

database

–

INSERT

–

DELETE

–

UPDATE

If

the

connection

uses

explicit

transaction

bracketing,

you

must

explicitly

start

each

transaction

with

beginTransaction()

and

end

it

with

either

commit()

or

rollback().

v

The

CALL

statement

to

statically

execute

a

stored

procedures

with

the

limitation

that

this

stored

procedure

cannot

use

any

OUT

parameters

To

execute

stored

procedures

with

OUT

parameters,

use

the

executeStoredProcedure()

method.

Examples

The

following

example

executes

a

query

for

inserting

rows

into

an

accounting

database

whose

connections

reside

in

the

AccntConnPool

connection

pool.

CwDBConnection

connection

=

getDBConnection("AccntConnPool");

//

Begin

a

transaction

connection.beginTransaction();

//

Insert

a

row

connection.executeSQL("insert...");

//

Commit

the

transaction

connection.commit();

//

Release

the

database

connection

connection.release();

For

a

more

complete

code

sample

that

selects

data

from

a

relationship

table,

see

Chapter

12.

CwDBConnection

class

277

See

also

executePreparedSQL(),

executeStoredProcedure(),

getDBConnection(),

hasMoreRows(),

nextRow()

executeStoredProcedure()

Executes

an

SQL

stored

procedure

by

specifying

its

name

and

parameter

array.

Syntax

void

executeStoredProcedure(String

storedProcedure,

Vector

storedProcParameters)

Parameters

storedProcedure

The

name

of

the

SQL

stored

procedure

to

execute

in

the

database.

storedProcParameters

A

Vector

object

of

parameters

to

pass

to

the

stored

procedure.

Each

parameter

is

an

instance

of

the

CwDBStoredProcedureParam

class.

For

more

information

on

how

to

pass

parameters

through

this

array,

see

Return

values

None.

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Notes

The

executeStoredProcedure()

method

sends

a

call

to

the

specified

storedProcedure

to

the

database

associated

with

the

current

connection.

This

method

sends

the

stored-procedure

call

as

a

prepared

SQL

statement;

that

is,

the

first

time

it

executes,

this

stored-procedure

call

is

sent

as

a

string

to

the

database,

which

compiles

the

string

into

an

executable

form

(called

a

prepared

statement),

executes

the

SQL

statement,

and

returns

this

prepared

statement

to

executeStoredProcedure().

The

executeStoredProcedure()

method

saves

this

prepared

statement

in

memory.

Important:

Before

executing

a

stored

procedure

with

executeStoredProcedure(),

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

To

handle

any

data

that

the

stored

procedure

returns,

use

the

hasMoreRows()

and

nextRow()

methods.

You

can

also

use

the

executeSQL()

or

executePreparedSQL()

method

to

execute

a

stored

procedure

as

long

as

this

stored

procedure

does

not

contain

OUT

parameters.

If

the

stored

procedure

uses

OUT

parameters,

you

must

use

executeStoredProcedure()

to

execute

it.

Unlike

with

executeSQL()

or

executePreparedSQL(),

you

do

not

have

to

pass

in

the

full

SQL

statement

to

execute

the

stored

procedure.

With

executeStoredProcedure(),

you

need

to

pass

in

only

the

name

of

the

stored

procedure

and

a

Vector

parameter

array

of

CwDBStoredProcedureParam

objects.

The

executeStoredProcedure()

method

can

278

Map

Development

Guide

determine

the

number

of

parameters

from

the

storedProcParameters

array

and

builds

the

calling

statement

for

the

stored

procedure.

See

also

executePreparedSQL(),

executeSQL(),

getDBConnection(),

hasMoreRows(),

nextRow()

getUpdateCount()

Returns

the

number

of

rows

affected

by

the

last

write

operation

to

the

database.

Syntax

int

getUpdateCount()

Parameters

None.

Return

values

Returns

an

int

representing

the

number

of

rows

affected

by

the

last

write

operation.

Exceptions

CwDBConnectionException

–

If

a

database

error

occurs.

Notes

The

getUpdateCount()

method

indicates

how

many

rows

have

been

modified

by

the

most

recent

update

operation

in

the

database

associated

with

the

current

connection.

This

method

is

useful

after

you

send

an

UPDATE

or

INSERT

statement

to

the

database

and

you

want

to

determine

the

number

of

rows

that

the

SQL

statement

has

affected.

Important:

Before

using

this

method,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class

and

send

a

query

that

updates

the

database

with

either

the

executeSQL()

or

executePreparedSQL()

method

from

the

CwDBConnection

class.

See

also

executePreparedSQL(),

executeSQL(),

getDBConnection()

hasMoreRows()

Determines

whether

the

query

result

has

more

rows

to

process.

Syntax

boolean

hasMoreRows()

Parameters

None.

Return

values

Returns

true

if

more

rows

exist.

Chapter

12.

CwDBConnection

class

279

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Notes

The

hasMoreRows()

method

determines

whether

the

query

result

associated

with

the

current

connection

has

more

rows

to

be

processed.

Use

this

method

to

retrieve

results

from

a

query

that

returns

data.

Such

queries

include

a

SELECT

statement

and

a

stored

procedure.

Only

one

query

can

be

associated

with

the

connection

at

a

time.

Therefore,

if

you

execute

another

query

before

hasMoreRows()

returns

false,

you

lose

the

data

from

the

initial

query.

See

also

executePreparedSQL(),

executeSQL(),

nextRow()

inTransaction()

Determines

whether

a

transaction

is

in

progress

in

the

current

connection.

Syntax

boolean

inTransaction()

Parameters

None.

Return

values

Returns

true

if

a

transaction

is

currently

active

in

the

current

connection;

returns

false

otherwise.

Exceptions

CwDBConnectionException

–

If

a

database

error

occurs.

Notes

The

inTransaction()

method

returns

a

boolean

value

that

indicates

whether

the

current

connection

has

an

active

transaction;

that

is,

a

transaction

that

has

been

started

but

not

ended.

Important:

Before

beginning

a

transaction,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

See

also

beginTransaction(),

commit(),

getDBConnection(),

rollBack()

isActive()

Determines

whether

the

current

connection

is

active.

Syntax

boolean

isActive()

280

Map

Development

Guide

Parameters

None.

Return

values

Returns

true

if

the

current

connection

is

active;

returns

false

if

this

connection

has

been

released.

Exceptions

None.

See

also

getDBConnection(),

release()

nextRow()

Retrieves

the

next

row

from

the

query

result.

Syntax

Vector

nextRow()

Parameters

None.

Return

values

Returns

the

next

row

of

the

query

result

as

a

Vector

object.

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Notes

The

nextRow()

method

returns

one

row

of

data

from

the

query

result

associated

with

the

current

connection.

Use

this

method

to

retrieve

results

from

a

query

that

returns

data.

Such

queries

include

a

SELECT

statement

and

a

stored

procedure.

Only

one

query

can

be

associated

with

the

connection

at

a

time.

Therefore,

if

you

execute

another

query

before

nextRow()

returns

the

last

row

of

data,

you

lose

the

query

result

from

the

initial

query.

See

also

hasMoreRows(),

executePreparedSQL(),

executeSQL(),

executeStoredProcedure()

release()

Releases

use

of

the

current

connection,

returning

it

to

its

connection

pool.

Syntax

void

release()

Parameters

None.

Chapter

12.

CwDBConnection

class

281

Return

values

None.

Exceptions

CwDBConnectionException

Notes

The

release()

method

explicitly

releases

use

of

the

current

connection

by

the

map

instance.

Once

released,

the

connection

returns

to

its

connection

pool,

where

it

is

available

for

other

components

(maps

or

collaborations)

that

require

a

connection

to

the

associated

database.

If

you

do

not

explicitly

release

a

connection,

the

map

instance

implicitly

releases

it

at

the

end

of

the

current

map

run.

Therefore,

you

cannot

save

a

connection

in

a

static

variable

and

reuse

it.

Attention:

Do

not

use

the

release()

method

if

a

transaction

is

currently

active.

With

implicit

transaction

bracketing,

ICS

does

not

end

the

database

transaction

until

it

determines

the

success

or

failure

of

the

map.

Therefore,

use

of

this

method

on

a

connection

that

uses

implicit

transaction

bracketing

results

in

a

CwDBTransactionException

exception.

If

you

do

not

handle

this

exception

explicitly,

it

also

results

in

an

automatic

rollback

of

the

active

transaction.

You

can

use

the

inTransaction()

method

to

determine

whether

a

transaction

is

active.

See

also

getDBConnection(),

inTransaction(),

isActive()

rollBack()

Rolls

back

the

active

transaction

associated

with

the

current

connection.

Syntax

void

rollBack()

Parameters

None.

Return

values

None.

Exceptions

CwDBConnectionException

–

If

a

database

error

occurs.

Notes

The

rollback()

method

ends

the

active

transaction

by

rolling

back

any

changes

made

to

the

database

associated

with

the

current

connection.

The

beginTransaction(),

commit()

and

rollBack()

methods

together

provide

management

of

transaction

boundaries

for

an

explicit

transaction.

This

transaction

contains

SQL

queries,

which

include

the

SQL

statements

INSERT,

DELETE,

or

UPDATE,

and

a

stored

procedure

that

includes

one

of

these

SQL

statements.

If

the

roll

back

fails,

rollback()

throws

the

CwDBTransactionException

exception

and

logs

an

error.

282

Map

Development

Guide

Important:

Only

use

rollback()

if

the

connection

uses

explicit

transaction

bracketing.

If

the

connection

uses

implicit

transaction

bracketing,

use

of

rollback()

results

in

a

CwDBTransactionException

exception.

If

you

do

not

end

an

explicit

transaction

with

rollback()

(or

commit())

before

the

connection

is

released,

InterChange

Server

Express

implicitly

ends

the

transaction

based

on

the

success

of

the

map.

If

the

map

is

successful,

ICS

commits

this

database

transaction.

If

the

map

is

not

successful,

ICS

implicitly

rolls

back

the

database

transaction.

Regardless

of

the

success

of

the

map,

ICS

logs

a

warning.

Before

beginning

an

explicit

transaction,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

Make

sure

that

this

connection

uses

explicit

transaction

bracketing.

See

also

beginTransaction(),

commit(),

getDBConnection(),

inTransaction()

Chapter

12.

CwDBConnection

class

283

284

Map

Development

Guide

Chapter

13.

CwDBStoredProcedureParam

class

A

CwDBStoredProcedureParam

object

describes

a

single

parameter

for

a

stored

procedure.

Table

96

summarizes

the

methods

in

the

CwDBStoredProcedureParam

class.

Table

96.

CwDBStoredProcedureParam

method

summary

Method

Description

Page

CwDBStoredProcedureParam()

Constructs

a

new

instance

of

CwDBStoredProcedureParam

that

holds

argument

information

for

the

parameter

of

a

stored

procedure.

285

getParamType()

Retrieves

the

in/out

type

of

the

current

stored-procedure

parameter

as

an

integer

constant.

286

getValue()

Retrieves

the

value

of

the

current

stored-procedure

parameter.

287

CwDBStoredProcedureParam()

Constructs

a

new

instance

of

CwDBStoredProcedureParam

that

holds

argument

information

for

the

parameter

of

a

stored

procedure.

Syntax

CwDBStoredProcedureParam(int

paramType,

String

paramValue);

CwDBStoredProcedureParam(int

paramType,

int

paramValue);

CwDBStoredProcedureParam(int

paramType,

Integer

paramValue);

CwDBStoredProcedureParam(int

paramType,

Long

paramValue);

CwDBStoredProcedureParam(int

paramType,

double

paramValue);

CwDBStoredProcedureParam(int

paramType,

Double

paramValue);

CwDBStoredProcedureParam(int

paramType,

float

paramValue);

CwDBStoredProcedureParam(int

paramType,

Float

paramValue);

CwDBStoredProcedureParam(int

paramType,

BigDecimal

paramValue);

CwDBStoredProcedureParam(int

paramType,

boolean

paramValue);

CwDBStoredProcedureParam(int

paramType,

Boolean

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Date

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Time

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Timestamp

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Blob

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Clob

paramValue);

CwDBStoredProcedureParam(int

paramType,

byte[]

paramValue);

CwDBStoredProcedureParam(int

paramType,

Array

paramValue);

CwDBStoredProcedureParam(int

paramType,

Struct

paramValue);

Parameters

paramType

The

in/out

parameter

type

of

the

associated

stored-procedure

parameter.

paramValue

The

argument

value

to

send

to

the

stored

procedure.

This

value

is

one

of

the

following

Java

data

types

©

Copyright

IBM

Corp.

2003

285

Return

values

Returns

a

new

CwDBStoredProcedureParam

object

to

hold

the

argument

information

for

one

argument

in

the

declaration

of

the

stored

procedure.

Exceptions

None.

Notes

The

CwDBStoredProcedureParam()

constructor

creates

a

CwDBStoredProcedureParam

instance

to

describe

one

parameter

for

a

stored

procedure.

Parameter

information

includes

the

following:

v

The

parameter’s

in/out

type

The

constructor’s

first

argument

initializes

this

in/out

parameter

type.

For

a

list

of

valid

in/out

parameter

types,

see

Table

97.

v

The

parameter

value

The

constructor’s

second

argument

initializes

this

parameter

value.

The

CwDBStoredProcedureParam

class

provides

one

form

of

its

constructor

for

each

of

the

parameter-value

data

types

it

supports.

You

provide

a

Java

Vector

of

stored-procedure

parameters

to

the

executeStoredProcedure()

method,

which

creates

a

stored-procedure

call

from

a

stored-procedure

name

and

the

parameter

vector,

and

sends

this

call

to

the

database

associated

with

the

current

connection.

See

also

executeStoredProcedure()

getParamType()

Retrieves

the

in/out

type

of

the

current

stored-procedure

parameter

as

an

integer

constant.

Syntax

int

getParamType()

Parameters

None.

Return

values

Returns

the

in/out

type

of

the

associated

CwDBStoredProcedureParam

parameter.

Exceptions

None.

Notes

The

getParamType()

method

returns

the

in/out

parameter

type

of

the

current

stored-procedure

parameter.

The

in/out

parameter

type

indicates

how

the

stored

procedure

uses

the

parameter.

The

CwDBStoredProcedureParam

class

represents

each

in/out

type

as

a

constant,

as

Table

97

shows.

286

Map

Development

Guide

Table

97.

Parameter

In/Out

Types

Parameter

in/out

type

Description

In/Out

type

constant

IN

parameter

An

IN

parameter

is

input

only;

that

is,

the

stored

procedure

accepts

its

value

as

input

but

does

not

use

the

parameter

to

return

a

value.

PARAM_IN

OUT

parameter

An

OUT

parameter

is

output

only;

that

is,

the

stored

procedure

does

not

read

its

value

as

input

but

does

use

the

parameter

to

return

a

value.

PARAM_OUT

INOUT

parameter

An

INOUT

parameter

is

input

and

output;

that

is,

the

stored

procedure

accepts

its

value

as

input

and

also

uses

the

parameter

to

return

a

value.

PARAM_INOUT

See

also

CwDBStoredProcedureParam(),

getValue()

getValue()

Retrieves

the

value

of

the

current

stored-procedure

parameter.

Syntax

Object

getValue()

Parameters

None.

Return

values

Returns

the

value

of

the

associated

CwDBStoredProcedureParam

parameter

as

a

Java

Object.

Exceptions

None.

Notes

The

getValue()

method

returns

the

parameter

value

as

a

Java

Object

(such

as

Integer,

Double,

or

String).

If

the

value

returned

to

an

OUT

parameter

is

the

JDBC

NULL,

getParamValue()

returns

the

null

constant.

See

also

CwDBStoredProcedureParam(),

getParamType()

Chapter

13.

CwDBStoredProcedureParam

class

287

288

Map

Development

Guide

Chapter

14.

DtpConnection

class

The

DtpConnection

class

is

part

of

the

Data

Transformation

Package

(DTP).

It

provides

methods

for

executing

SQL

queries

on

the

relationship

database.

To

instantiate

this

class,

you

must

call

getRelConnection()

in

the

BaseDLM

class.

All

maps

are

derived

or

subclassed

from

BaseDLM

so

they

have

access

to

getRelConnection().

Important:

The

DtpConnection

class

and

its

methods

are

supported

for

backward

compatibility

only.

These

deprecated

methods

will

not

generate

errors,

but

you

should

avoid

using

them

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

In

new

map

development,

use

the

CwDBConnection

class

and

its

methods

to

establish

a

database

connection.

Table

98

summarizes

the

methods

in

the

DtpConnection

class.

Table

98.

DtpConnection

method

summary

Method

Description

Page

beginTran()

Begins

an

SQL

transaction

for

the

relationship

database.

289

commit()

Commits

the

current

transaction

in

the

relationship

database.

290

executeSQL()

Executes

a

SQL

query

in

the

relationship

database

by

specifying

a

CALL

statement.

291

execStoredProcedure()

Executes

an

SQL

stored

procedure

in

the

relationship

database

by

specifying

its

name

and

parameter

array.

292

getUpdateCount()

Returns

the

number

of

rows

affected

by

the

last

write

operation

to

the

relationship

database.

293

hasMoreRows()

Determines

whether

the

query

result

has

more

rows

to

process.

293

inTransaction()

Determines

whether

a

transaction

is

in

progress

in

the

relationship

database.

294

nextRow()

Retrieves

the

next

row

in

the

query

result

vector.

294

rollBack()

Rolls

back

the

current

transaction

in

the

relationship

database.

295

beginTran()

Begins

an

SQL

transaction

for

the

relationship

database.

Syntax

void

beginTran()

Parameters

None.

Return

values

None.

©

Copyright

IBM

Corp.

2003

289

Exceptions

DtpConnectionException

–

If

a

database

error

occurs.

Notes

The

beginTran(),

commit()

and

rollBack()

methods

together

provide

transaction

support

for

SQL

queries.

Before

beginning

a

transaction,

you

must

create

a

DtpConnection

object

with

the

getRelConnection()

method

from

the

BaseDLM

class.

Examples

The

following

example

uses

a

transaction

to

execute

a

query

for

inserting

rows

into

a

table

in

the

SapCust

relationship.

DtpConnection

connection

=

getRelConnection("SapCust");

//

begin

a

transaction

connection.beginTran();

//

insert

a

row

connection.executeSQL("insert...");

//

commit

the

transaction

connection.commit();

See

also

commit(),

getRelConnection(),

inTransaction(),

rollBack()

commit()

Commits

the

current

transaction

in

the

relationship

database.

Syntax

void

commit()

Parameters

None.

Return

values

None.

Exceptions

DtpConnectionException

–

If

a

database

error

occurs.

Notes

The

beginTran(),

commit()

and

rollBack()

methods

together

provide

transaction

support

for

SQL

queries.

Before

beginning

a

transaction,

you

must

create

a

DtpConnection

object

with

the

getRelConnection()

method

from

the

BaseDLM

class.

290

Map

Development

Guide

Examples

The

following

example

uses

a

transaction

to

execute

a

query

for

inserting

rows

into

a

table

in

the

SapCust

relationship.

DtpConnection

connection

=

getRelConnection("SapCust");

//

begin

a

transaction

connection.beginTran();

//

insert

a

row

connection.executeSQL("insert...");

//

commit

the

transaction

connection.commit();

See

also

beginTran(),

getRelConnection(),

inTransaction(),

rollBack()

executeSQL()

Executes

a

SQL

query

in

the

relationship

database

by

specifying

a

CALL

statement.

Syntax

void

executeSQL(String

query)

void

executeSQL(String

query,

Vector

queryParameters)

Parameters

query

The

SQL

query

to

run

in

the

relationship

database.

queryParameters

A

Vector

object

of

arguments

to

pass

to

parameters

in

the

SQL

query.

Return

values

None.

Exceptions

DtpConnectionException

–

If

a

database

error

occurs.

Notes

Before

executing

a

query

with

executeSQL(),

you

must

create

a

DtpConnection

object

with

the

getRelConnection()

method

from

the

BaseDLM

class.

The

SQL

statements

you

can

execute

include

INSERT,

SELECT,

DELETE,

and

UPDATE.

You

can

also

execute

stored

procedures

with

the

limitation

that

this

stored

procedure

cannot

use

any

OUT

parameters.

To

execute

stored

procedures

with

OUT

parameters,

use

the

execStoredProcedure()

method.

Examples

The

following

example

executes

a

query

for

inserting

rows

into

a

table

in

the

SapCust

relationship.

DtpConnection

connection

=

getRelConnection("SapCust");

//

begin

a

transaction

connection.beginTran();

Chapter

14.

DtpConnection

class

291

//

insert

a

row

connection.executeSQL("insert...");

//

commit

the

transaction

connection.commit();

//

release

the

database

connection

releaseRelConnection(true);

See

also

execStoredProcedure(),

getRelConnection(),

hasMoreRows(),

nextRow()

execStoredProcedure()

Executes

an

SQL

stored

procedure

in

the

relationship

database

by

specifying

its

name

and

parameter

array.

Syntax

void

execStoredProcedure(String

storedProcedure,

Vector

storedProcParameters)

Parameters

storedProcedure

The

name

of

the

SQL

stored

procedure

to

run

in

the

relationship

database.

storedProcParameters

A

Vector

object

of

parameters

to

pass

to

the

stored

procedure.

Each

parameter

is

an

instance

of

the

UserStoredProcedureParam

class.

For

more

information

on

how

to

pass

parameters

through

this

array,

see

Return

values

None.

Exceptions

DtpConnectionException

–

If

a

database

error

occurs.

Notes

Before

executing

a

stored

procedure

with

execStoredProcedure(),

you

must

create

a

DtpConnection

object

with

the

getRelConnection()

method

from

the

BaseDLM

class.

You

can

also

use

the

executeSQL()

method

to

execute

a

stored

procedure

as

long

as

this

stored

procedure

does

not

contain

OUT

parameters.

If

the

stored

procedure

uses

OUT

parameters,

you

must

use

execStoredProcedure()

to

execute

it.

Unlike

with

executeSQL(),

you

do

not

have

to

pass

in

the

full

SQL

statement

to

execute

the

stored

procedure.

With

execStoredProcedure(),

you

need

to

pass

in

only

the

name

of

the

stored

procedure

and

a

Vector

parameter

array

of

UserStoredProcedureParam

objects.

The

execStoredProcedure()

method

can

determine

the

number

of

parameters

from

the

storedProcParameters

array

and

builds

the

calling

statement

for

the

stored

procedure.

292

Map

Development

Guide

See

also

executeSQL(),

getRelConnection(),

hasMoreRows(),

nextRow()

getUpdateCount()

Returns

the

number

of

rows

affected

by

the

last

write

operation

to

the

relationship

database.

Syntax

int

getUpdateCount()

Parameters

None.

Return

values

Returns

an

int

representing

the

number

of

rows

affected

by

the

last

write

operation.

Exceptions

DtpConnectionException

–

If

a

database

error

occurs.

Notes

Before

using

this

method,

you

must

create

a

DtpConnection

object

with

the

getRelConnection()

method

from

the

BaseDLM

class.

This

method

is

useful

after

you

send

an

UPDATE

or

INSERT

statement

on

the

relationship

database

and

you

want

to

determine

the

number

of

rows

that

the

SQL

statement

has

affected.

See

also

executeSQL(),

getRelConnection()

hasMoreRows()

Determines

whether

the

query

result

has

more

rows

to

process.

Syntax

boolean

hasMoreRows()

Parameters

None.

Return

values

Returns

true

if

more

rows

exist.

Exceptions

DtpConnectionException

–

If

a

database

error

occurs.

Chapter

14.

DtpConnection

class

293

Notes

The

hasMoreRows()

method

determines

whether

the

query

associated

with

the

current

relationship

database

has

more

rows

to

be

processed.

Use

this

method

to

retrieve

results

from

a

query

that

returns

data.

Such

queries

include

a

SELECT

statement

and

a

stored

procedure.

Only

one

query

can

be

associated

with

the

connection

at

a

time.

Therefore,

if

you

execute

another

query

before

hasMoreRows()

returns

false,

you

lose

the

data

from

the

initial

query.

See

also

nextRow(),

executeSQL(),

getUpdateCount()

inTransaction()

Determines

whether

a

transaction

is

in

progress

in

the

relationship

database.

Syntax

boolean

inTransaction()

Parameters

None.

Return

values

Returns

“True”

if

a

transaction

is

in

progress.

Exceptions

DtpConnectionException

–

If

a

database

error

occurs.

Notes

Before

beginning

a

transaction,

you

must

create

a

DtpConnection

object

with

the

getRelConnection()

method

from

the

BaseDLM

class.

See

also

beginTran(),

commit(),

getRelConnection(),

rollBack()

nextRow()

Retrieves

the

next

row

in

the

query

result

vector.

Syntax

Vector

nextRow()

Parameters

None.

Return

values

Returns

the

next

row

of

the

query

result

as

a

Vector

object.

Exceptions

DtpConnectionException

–

If

a

database

error

occurs.

294

Map

Development

Guide

Notes

The

nextRow()

method

returns

one

row

of

data

from

the

query

associated

with

the

current

relationship

database.

Use

this

method

to

retrieve

results

from

a

query

that

returns

data.

Such

queries

include

a

SELECT

statement

and

a

stored

procedure.

Only

one

query

can

be

associated

with

the

connection

at

a

time.

Therefore,

if

you

execute

another

query

before

nextRow()

returns

the

last

row

of

data,

you

lose

the

data

from

the

initial

query.

See

also

hasMoreRows(),

executeSQL(),

getUpdateCount()

rollBack()

Rolls

back

the

current

transaction

in

the

relationship

database.

Syntax

void

rollBack()

Parameters

None.

Return

values

None.

Exceptions

DtpConnectionException

–

If

a

database

error

occurs.

Notes

The

beginTran(),

commit()

and

rollBack()

methods

together

provide

transaction

support

for

SQL

queries.

Before

beginning

a

transaction,

you

must

create

a

DtpConnection

object

with

the

getRelConnection()

method

from

the

BaseDLM

class.

See

also

beginTran(),

commit(),

getRelConnection(),

inTransaction()

Chapter

14.

DtpConnection

class

295

296

Map

Development

Guide

Chapter

15.

DtpDataConversion

class

One

of

the

most

common

tasks

in

business

object

mapping

is

the

conversion

of

attribute

values

from

one

data

type

to

another,

a

process

called

data

conversion.

The

DtpDataConversion

class

provides

a

simple

way

to

perform

data

conversions.

The

data

type

classes

in

the

java.lang

package

contain

some

conversion

methods,

but

all

possible

conversions

are

not

supported.

The

DtpDataConversion

class

consolidates

many

data

conversion

methods

into

one

class

and

it

supports

the

most

common

conversions

that

you

perform

in

maps.

The

getType()

and

isOKToConvert()

methods

make

it

easy

to

determine

whether

specific

conversions

are

possible.

All

methods

in

this

class

are

declared

as

static.

Table

99

summarizes

the

methods

of

the

DtpDataConversion

class.

Table

99.

DtpDataConversion

method

summary

Method

Description

Page

getType()

Determines

the

data

type

of

a

value.

297

isOKToConvert()

Determines

whether

it

is

possible

to

convert

a

value

from

one

data

type

to

another.

298

toBoolean()

Converts

a

Java

object

to

a

Boolean

object.

300

toDouble()

Converts

an

object

or

primitive

data

type

to

a

Double

object.

301

toFloat()

Converts

an

object

or

primitive

data

type

to

a

Float

object.

301

toInteger()

Converts

an

object

or

primitive

data

type

to

an

Integer

object.

302

toPrimitiveBoolean()

Converts

a

String

or

Boolean

object

to

the

primitive

boolean

data

type.

303

toPrimitiveDouble()

Converts

an

object

or

primitive

data

type

to

the

primitive

double

data

type.

303

toPrimitiveFloat()

Converts

an

object

or

primitive

data

type

to

the

primitive

float

data

type.

304

toPrimitiveInt()

Converts

an

object

or

primitive

data

type

to

the

primitive

int

data

type.

304

toString()

Converts

an

object

or

primitive

data

type

to

a

String

object.

305

getType()

Determines

the

data

type

of

a

value.

Syntax

int

getType(Object

objectData)

int

getType(int

integerData)

int

getType(float

floatData)

int

getType(double

doubleData)

int

getType(boolean

booleanData)

Parameters

objectData

Any

Java

object.

©

Copyright

IBM

Corp.

2003

297

integerData

Any

primitive

int

variable.

floatData

Any

primitive

float

variable.

doubleData

Any

primitive

double

variable.

booleanData

Any

primitive

boolean

variable.

Return

values

Returns

an

integer

representing

the

data

type

of

the

parameter

you

pass.

You

can

interpret

the

return

value

by

comparing

it

to

one

of

these

constants

which

are

declared

as

static

and

final

in

the

DtpDataConversion

class:

INTEGER_TYPE

The

data

is

a

primitive

int

value

or

Integer

object.

STRING_TYPE

The

data

is

a

String

object.

FLOAT_TYPE

The

data

is

a

primitive

float

value

or

Float

object.

DOUBLE_TYPE

The

data

is

a

primitive

double

value

or

Double

object.

BOOL_TYPE

The

data

is

a

primitive

boolean

value

or

Boolean

object.

DATE_TYPE

The

data

is

a

Date

object.

LONGTEXT_TYPE

The

data

is

a

LongText

object.

UNKNOWN_TYPE

The

data

is

of

an

unknown

type.

Exceptions

None.

Notes

You

can

use

the

return

values

from

getType()

in

the

OKToConvert()

method

to

determine

whether

a

conversion

is

possible

between

two

given

data

types.

Examples

int

conversionStatus

=

DtpDataConversion.isOKToConvert(

DtpDataConversion.getType(srcObject),

DtpDataConversion.getType(destObject));

switch(conversionStatus)

{

case

DtpDataConversion.OKTOCONVERT:

//

go

ahead

and

convert

break;

case

DtpDataConversion.POTENTIALDATALOSS:

//

convert,

then

check

value

break;

case

DtpDataConversion.CANNOTCONVERT:

//

return

an

error

break;

}

See

also

isOKToConvert()

isOKToConvert()

Determines

whether

it

is

possible

to

convert

a

value

from

one

data

type

to

another.

298

Map

Development

Guide

Syntax

int

isOKToConvert(int

srcDatatype,

int

destDataType)

int

isOKToConvert(String

srcDataTypeStr,

String

destDataTypeStr)

Parameters

srcDataType

Integer

returned

by

getType(),

which

represents

the

data

type

of

the

source

value

that

you

want

to

convert.

destDataType

Integer

returned

by

getType(),

which

represents

the

data

type

to

which

you

want

to

convert

the

source

value.

srcDataTypeStr

String

containing

the

data

type

name

for

the

source

value

that

you

want

to

convert.

Possible

values

are:

Boolean,

boolean,

Double,

double,

Float,

float,

Integer,

int,

and

String.

destDataTypeStr

String

containing

the

data

type

name

to

which

you

want

to

convert

the

source

value.

Possible

values

are:

Boolean,

boolean,

Double,

double,

Float,

float,

Integer,

int,

and

String.

Return

values

Returns

an

integer

specifying

whether

it

is

possible

to

convert

a

value

of

the

source

data

type

to

a

value

of

the

destination

data

type.

You

can

interpret

the

return

value

by

comparing

it

to

one

of

these

constants,

which

are

declared

as

static

and

final

in

the

DtpDataConversion

class:

OKTOCONVERT

You

can

convert

from

the

source

to

the

destination

data

type.

POTENTIALDATALOSS

You

can

convert,

but

there

is

a

potential

for

data

loss

if

the

source

value

contains

unconvertable

characters

or

must

be

truncated

to

fit

the

destination

data

type.

CANNOTCONVERT

The

source

data

type

cannot

be

converted

to

the

destination

data

type.

Exceptions

None.

Notes

The

getType()

method

returns

an

integer

representing

the

data

type

of

the

value

you

pass

as

a

parameter.

You

use

the

first

form

of

isOKToConvert()

together

with

getType()

to

determine

whether

a

data

conversion

between

two

attributes

is

possible.

In

your

isOKToConvert()

method

call,

use

getType()

on

both

the

source

and

destination

attributes

to

generate

the

srcDataType

and

destDataType

parameters.

The

second

form

of

the

method

accepts

String

values

containing

the

data

type

names

for

the

source

and

destination

data.

Use

this

form

of

the

method

if

you

know

what

the

data

types

are,

and

you

want

to

check

whether

you

can

perform

a

conversion.

Table

100

shows

the

possible

conversions

for

each

combination

of

source

and

destination

data

type.

In

the

table:

Chapter

15.

DtpDataConversion

class

299

v

OK

means

you

can

convert

the

source

type

to

the

destination

type

with

no

data

loss.

v

DL

means

you

can

convert,

but

data

loss

might

occur

if

the

source

contains

unconvertable

characters

or

must

be

truncated

to

fit

the

destination

type.

v

NO

means

you

cannot

convert

the

a

value

from

source

data

type

to

the

destination

data

type.

Table

100.

Possible

Conversions

Between

Data

Types

D

E

S

T

I

N

A

T

I

O

N

SOURCE

int,

Integer

String

float,

Float

double,

Double

boolean

Boolean

Date

Longtext

int

Integer

OK

OK

OK

OK

NO

NO

OK

String

DL1

OK

DL1

DL1

DL2

DL

OK

float,

Float

DL3

OK

OK

OK

NO

NO

OK

double,

Double

DL3

OK

DL3

OK

NO

NO

OK

boolean,

Boolean

NO

OK

NO

NO

OK

NO

OK

Date

NO

OK

NO

NO

NO

OK

OK

Longtext

DL1

DL3

DL1

DL1

DL2

DL

OK

1When

converting

a

String

or

Longtext

value

to

any

numeric

type,

the

String

or

Longtext

value

can

contain

only

numbers

and

decimals.

You

must

remove

any

other

characters,

such

as

currency

symbols,

from

the

String

or

Longtext

value

before

converting.

Otherwise,

a

DtpIncompatibleFormatException

will

be

thrown.

2When

converting

a

String

or

Longtext

value

to

Boolean,

the

value

of

the

String

or

Longtext

should

be

“true”

or

“false”.

Any

string

that

is

not

“true”

(case

does

not

matter)

will

be

considered

false.

3Because

the

source

data

type

supports

greater

precision

than

the

destination

data

type,

the

value

might

be

truncated.

Examples

if

(DtpDataConversion.isOKToConvert(getType(mySource),

getType(myDest))==

DtpDataConversion.OKTOCONVERT)

//

map

these

attributes

else

//

skip

these

attributes

See

also

getType()

toBoolean()

Converts

a

Java

object

to

a

Boolean

object.

Syntax

Boolean

toBoolean(Object

objectData)

Boolean

toBoolean(boolean

booleanData)

Parameters

objectData

A

Java

object

that

you

want

to

convert

to

Boolean.

The

only

object

currently

supported

is

String.

booleanData

Any

primitive

boolean

variable.

300

Map

Development

Guide

Return

values

Returns

a

Boolean

object.

Exceptions

DtpIncompatibleFormatException

–

If

the

source

data

type

cannot

be

converted

to

Boolean.

Examples

Boolean

MyBooleanObj

=

DtpDataConversion.toBoolean(MyStringObj);

See

also

getType(),

isOKToConvert(),

toPrimitiveBoolean()

toDouble()

Converts

an

object

or

primitive

data

type

to

a

Double

object.

Syntax

Double

toDouble(Object

objectData)

Double

toDouble(int

integerData)

Double

toDouble(float

floatData)

Double

toDouble(double

doubleData)

Parameters

objectData

A

Java

object.

The

objects

currently

supported

are:

Float,

Integer,

and

String.

integerData

Any

primitive

int

variable.

floatData

Any

primitive

float

variable.

doubleData

Any

primitive

double

variable.

Return

values

Returns

a

Double

object.

Exceptions

DtpIncompatibleFormatException

–

If

the

source

data

type

cannot

be

converted

to

Double.

Examples

Double

myDoubleObj

=

DtpDataConversion.toDouble(myInteger);

See

also

getType(),

isOKToConvert(),

toPrimitiveDouble()

toFloat()

Converts

an

object

or

primitive

data

type

to

a

Float

object.

Chapter

15.

DtpDataConversion

class

301

Syntax

Float

toFloat(Object

objectData)

Float

toFloat(int

integerData)

Float

toFloat(float

floatData)

Float

toFloat(double

doubleData)

Parameters

objectData

A

Java

object.

The

objects

currently

supported

are:

Double,

Integer,

and

String.

integerData

Any

primitive

int

variable.

floatData

Any

primitive

float

variable.

doubleData

Any

primitive

double

variable.

Return

values

Returns

a

Float

object.

Exceptions

DtpIncompatibleFormatException

–

If

the

source

data

type

cannot

be

converted

to

Float.

Examples

Float

myFloatObj

=

DtpDataConversion.toFloat(myInteger);

See

also

getType(),

isOKToConvert(),

toPrimitiveFloat()

toInteger()

Converts

an

object

or

primitive

data

type

to

an

Integer

object.

Syntax

Integer

toInteger(Object

objectData)

Integer

toInteger(int

integerData)

Integer

toInteger(float

floatData)

Integer

toInteger(double

doubleData)

Parameters

objectData

A

Java

object.

The

objects

currently

supported

are:

Double,

Float,

and

String.

integerData

Any

primitive

int

variable.

floatData

Any

primitive

float

variable.

doubleData

Any

primitive

double

variable.

Return

values

Returns

an

Integer

object.

302

Map

Development

Guide

Exceptions

DtpIncompatibleFormatException

–

If

the

source

data

type

cannot

be

converted

to

Integer.

Examples

Integer

myIntegerObj

=

DtpDataConversion.toInteger(myFloat);

See

also

getType(),

isOKToConvert(),

toPrimitiveInt()

toPrimitiveBoolean()

Converts

a

String

or

Boolean

object

to

the

primitive

boolean

data

type.

Syntax

boolean

toPrimitiveBoolean(Object

objectData)

Parameters

objectData

A

String

or

Boolean

object

that

you

want

to

convert

to

the

primitive

boolean

data

type.

Return

values

Returns

a

primitive

boolean

value.

Exceptions

DtpIncompatibleFormatException

–

If

the

source

data

type

cannot

be

converted

to

boolean.

Examples

boolean

MyBoolean

=

DtpDataConversion.toPrimitiveBoolean(MyStringObj);

See

also

getType(),

isOKToConvert(),

toBoolean()

toPrimitiveDouble()

Converts

an

object

or

primitive

data

type

to

the

primitive

double

data

type.

Syntax

double

toPrimitiveDouble(Object

objectData)

double

toPrimitiveDouble(int

integerData)

double

toPrimitiveDouble(float

floatData)

Parameters

objectData

A

Java

object.

The

objects

currently

supported

are:

Double,

Float,

Integer,

and

String.

integerData

Any

primitive

int

variable.

floatData

Any

primitive

float

variable.

Chapter

15.

DtpDataConversion

class

303

Return

values

Returns

a

primitive

double

value.

Exceptions

DtpIncompatibleFormatException

–

If

the

source

data

type

cannot

be

converted

to

double.

Examples

double

myDouble

=

DtpDataConversion.toPrimitiveDouble(myObject);

See

also

getType(),

isOKToConvert(),

toDouble()

toPrimitiveFloat()

Converts

an

object

or

primitive

data

type

to

the

primitive

float

data

type.

Syntax

float

toPrimitiveFloat(Object

objectData)

float

toPrimitiveFloat(int

integerData)

float

toPrimitiveFloat(double

doubleData)

Parameters

objectData

A

Java

object.

The

objects

currently

supported

are:

Double,

Float,

Integer,

and

String.

integerData

Any

primitive

int

variable.

doubleData

Any

primitive

double

variable.

Return

values

Returns

a

primitive

float

value.

Exceptions

DtpIncompatibleFormatException

–

If

the

source

data

type

cannot

be

converted

to

float.

Examples

float

myFloat

=

DtpDataConversion.toPrimitiveFloat(myInteger);

See

also

getType(),

isOKToConvert(),

toFloat()

toPrimitiveInt()

Converts

an

object

or

primitive

data

type

to

the

primitive

int

data

type.

304

Map

Development

Guide

Syntax

int

toPrimitiveInteger(Object

objectData)

int

toPrimitiveInteger(float

floatData)

int

toPrimitiveInteger(double

doubleData)

Parameters

objectData

A

Java

object.

The

objects

currently

supported

are:

Double,

Float,

Integer,

and

String.

floatData

Any

primitive

float

variable.

doubleData

Any

primitive

double

variable.

Return

values

Returns

a

primitive

int

value.

Exceptions

DtpIncompatibleFormatException

–

If

the

source

data

type

cannot

be

converted

to

integer.

Examples

int

myInt

=

DtpDataConversion.toPrimitiveInt(myObject);

See

also

getType(),

isOKToConvert(),

toInteger()

toString()

Converts

an

object

or

primitive

data

type

to

a

String

object.

Syntax

String

toString(Object

objectData)

String

toString(int

integerData)

String

toString(float

floatData)

String

toString(double

doubleData)

Parameters

objectData

A

Java

object.

The

objects

currently

supported

are:

Double,

Float,

and

Integer.

integerData

Any

primitive

int

variable.

floatData

Any

primitive

float

variable.

doubleData

Any

primitive

double

variable.

Return

values

Returns

a

String

object.

Exceptions

DtpIncompatibleFormatException

–

If

the

source

data

type

cannot

be

converted

to

String.

Chapter

15.

DtpDataConversion

class

305

Examples

String

myString

=

DtpDataConversion.toString(myObject);

See

also

getType(),

isOKToConvert()

306

Map

Development

Guide

Chapter

16.

DtpDate

class

The

DtpDate

class

compares

time

and

date

values,

sets

their

formats,

and

returns

components

of

a

time

and

date

value.

The

static

(class)

methods

operate

on

the

class

name.

The

static

methods

take

a

set

of

business

objects

and

return

the

earliest

or

latest

dates

or

the

business

objects

that

contain

the

earliest

or

latest

dates.

Instance

methods

operate

on

a

date

object.

You

pass

a

date

value

to

the

DtpDate

constructor

and

you

can

then

manipulate

the

resulting

date

object.

Instance

methods

let

you

retrieve,

format,

and

change

the

values

associated

with

the

date.

You

can

also

set

the

formats

in

which

you

want

to

handle

dates.

The

data

conversion

methods

are

useful

when

one

application

stores

dates

in

one

format

and

another

application

stores

dates

in

another

format.

For

example,

SAP

might

send

a

date

in

the

format

26/8/1999

15:23:20

but

Clarify

might

need

the

date

in

the

format

August

26,

1999

15:23:20.

The

values

passed

to

the

DtpDate

class

must

follow

these

rules:

Day

A

number

from

1

to

30.

If

a

separator

between

the

month,

year,

and

date

is

not

present

in

the

date-time

string

and

the

date

is

in

a

numeric

format,

single

characters

must

be

preceded

by

a

zero

(0),

as

in

01

Month

A

number

from

1

to

12,

a

name

such

as

January

or

February,

or

an

abbreviated

(3

character)

month

name

such

as

Jan

or

Feb.

If

a

separator

between

the

month,

year,

and

date

is

not

present

in

the

date-time

string

and

the

date

is

in

a

numeric

format,

single

characters

must

be

preceded

by

a

zero

(0),

as

in

01.

Year

A

4-digit

number.

Hour

A

value

in

the

range

01

to

23,

representing

24-hour

format.

AM

or

PM

designations

are

not

allowed.

Minutes

A

number

in

the

range

01

to

59.

Seconds

A

number

in

the

range

01

to

59.

Table

101

summarizes

the

methods

in

the

DtpDate

class.

Note

that

static

and

instance

methods

are

separated

in

this

table

but

are

in

alphabetical

order

in

the

chapter.

Table

101.

DtpDate

method

summary

Method

Description

Page

Constructor

DtpDate()

Parse

the

date

according

to

the

format

specified.

309

Static

methods

getMaxDate()

From

a

list

of

business

objects,

return

the

latest

date

as

a

DtpDate

object.

321

getMinDate()

From

a

list

of

business

objects,

return

the

earliest

date

as

a

DtpDate

object.

323

getMaxDateBO()

From

a

list

of

business

objects,

return

those

that

contain

the

latest

date.

322

getMinDateBO()

From

a

list

of

business

objects,

return

those

that

contain

the

earliest

date.

325

©

Copyright

IBM

Corp.

2003

307

Table

101.

DtpDate

method

summary

(continued)

Method

Description

Page

Instance

methods

addDays()

Add

the

specified

number

of

days

to

this

date.

310

addWeekdays()

Add

the

specified

number

of

weekdays

to

this

date.

311

addYears()

Add

the

specified

number

of

years

to

this

date.

312

after()

Check

whether

this

date

follows

the

date

passed

in

as

the

input

parameter.

313

before()

Check

whether

this

date

precedes

the

date

passed

in

as

the

parameter.

314

calcDays()

Calculate

the

number

of

days

between

this

date

and

another

date.

314

calcWeekdays()

Calculate

the

number

of

weekdays

between

this

date

and

another

date.

315

get12MonthNames()

Return

the

current

short-name

representation

of

the

twelve

months

for

this

date.

316

get12ShortMonthNames()

Return

the

current

full-name

representation

of

the

twelve

months

for

this

date.

316

get7DayNames()

Return

the

current

names

for

the

seven

days

in

the

week

for

this

date.

316

getCWDate()

Reformats

this

date

into

the

IBM

generic

date

format.

317

getDayOfMonth()

Return

the

day

of

the

month

for

this

date.

317

getDayOfWeek()

Return

the

day

of

the

week

for

this

date.

318

getHours()

Return

the

hours

value

for

this

date.

318

getIntDay()

Return

the

day

of

the

week

in

this

date

as

an

integer.

318

getIntDayOfWeek()

Return

the

day

of

the

week

for

this

date.

319

getIntMilliSeconds()

Return

the

milliSeconds

value

from

this

date.

319

getIntMinutes()

Return

the

minutes

value

in

this

date

as

an

integer.

319

getIntMonth()

Return

the

month

in

this

date

as

an

integer.

320

getIntSeconds()

Return

the

seconds

in

this

date

as

an

integer.

320

getIntYear()

Return

the

year

in

this

date

as

an

integer.

320

getMSSince1970()

Return

the

number

of

milliseconds

between

January

1,

1970

00:00:00

and

this

date.

321

getMinutes()

Return

the

minutes

value

from

this

date.

326

getMonth()

Return

the

full

name

representation

of

the

month

in

this

date.

326

getNumericMonth()

Return

the

month

value

from

this

date

in

numeric

format.

326

getSeconds()

Return

the

seconds

value

from

this

date

as

a

string.

327

getShortMonth()

Return

the

short

name

representation

of

the

month

name

from

this

date.

327

getYear()

Return

the

year

value

in

this

date.

328

set12MonthNames()

Change

the

full-name

representation

for

the

twelve

month

names

for

this

date.

328

set12MonthNamesToDefault()

Restore

the

full-name

representation

for

the

twelve

month

names

to

the

default

values

for

this

date.

329

set12ShortMonthNames()

Change

the

short-name

representation

of

the

twelve

month

names

for

this

date.

329

set12ShortMonthNamesToDefault()

Restore

the

short-name

representation

of

the

twelve

month

names

to

the

default

values

for

this

date.

329

308

Map

Development

Guide

Table

101.

DtpDate

method

summary

(continued)

Method

Description

Page

set7DayNames()

Change

the

names

of

the

seven

days

in

the

week

for

this

date.

330

set7DayNamesToDefault()

Restore

the

names

of

the

seven

days

in

the

week

to

the

default

values

for

this

date.

330

toString()

Return

the

date

in

a

specified

format

or

the

default

format.

330

DtpDate()

Parse

the

date

according

to

the

format

specified.

Syntax

public

DtpDate()

public

DtpDate(String

dateTimeStr,

String

format)

public

DtpDate(String

dateTimeStr,

String

format,

String[]

monthNames,

String[]

shortMonthNames)

public

DtpDate(long

msSince1970,

boolean

isLocalTime)

Parameters

dateTimeStr

The

date-time

in

the

form

of

a

string.

format

The

date

format.

See

Notes

for

details.

monthNames

An

array

of

strings

representing

the

full

12

month

names.

If

null,

the

default

value

is

January,

February,

March,

and

so

on.

shortMonthNames

An

array

of

strings

representing

the

short

month

name.

If

this

is

null

but

monthNames

is

not

null,

this

value

is

the

first

3

letters

of

the

full

month

names,

such

as

Jan,

Feb,

Mar,

Apr,

and

so

on.

msSince1970

The

number

of

milliseconds

since

January

1,

1970

00:00:00.

isLocalTime

Set

this

to

true

if

the

time

is

already

a

local

time,

or

to

false

otherwise.

Return

values

None

Exceptions

DtpDateException

-

When

the

constructor

encounters

parsing

errors.

This

may

occur

if

the

date

is

not

in

the

specified

format.

Notes

The

first

form

of

the

constructor

does

not

take

any

parameters.

It

assigns

the

current

date

on

the

system

to

the

new

DtpDate

object.

It

does

not

throw

DtpDateException.

Chapter

16.

DtpDate

class

309

The

second

and

the

third

forms

of

the

constructor

parse

the

date

according

to

the

specified

date

format

and

extract

out

the

day,

month,

year,

hour,

minute,

and

second

values.

These

can

be

retrieved

and

reformatted

later

with

other

DtpDate

methods.

For

example,

a

month

can

be

retrieved

in

one

of

the

following

formats:

v

The

full-name

representation

(the

default

format):

January,

February,

March,

April,

May,

June,

July,

August,

September,

October,

November,

and

December

v

The

numeric

format:

1-12

v

The

short-name

representation,

which

consists

of

the

first

three

letters

of

each

month

name:

Jan,

Feb,

Mar,

Apr,

May,

Jun,

Jul,

Aug,

Sep,

Oct,

Nov,

Dec

The

retrieved

data

does

not

depend

of

the

context

of

the

other

data.

You

can

change

the

full-name

and

short-name

representations

of

the

month

in

the

following

ways:

v

With

the

set12MonthNames()

and

set12ShortMonthNames()methods

respectively

v

By

passing

the

representation

as

a

parameter

into

the

third

form

of

the

DtpDate()

constructor

The

fourth

form

of

the

constructor

takes

the

number

of

milliseconds

since

January

1,

1970

00:00:00.

Many

applications

represent

the

date

in

this

manner.

Date

format

In

the

date

format,

the

date

always

precedes

the

time.

The

time

is

optional.

If

it

is

missing

in

a

date-time

string,

the

hours,

minutes,

and

seconds

have

a

default

value

of

00.

The

date

format

uses

the

following

case

sensitive

key

letters:

D

day

M

month

Y

year

h

hours

m

minutes

s

seconds

These

key

letters

may

be

separated

by

a

separator

such

as

“/”

or

“-”.

Examples

The

following

examples

show

the

DtpDate()

constructor

creating

new

date

objects

aDate,

date2,

and

date3:

Dtpdate

aDate

=

new

DtpDate("5/21/1997

15:23:01",

"M/D/Y

h:m:s");

DtpDate

date2

=

new

DtpDate("05211997

152301",

"MDY

hms");

DtpDate

date3

=

new

DtpDate("Jan

10,

1999

10:00:00",

"M

D,

Y

h:m:s");

The

following

date

format

results

in

the

DtpDateException

being

thrown:

h:m:s

D/M/Y

addDays()

Add

the

specified

number

of

days

to

this

date.

310

Map

Development

Guide

Syntax

public

DtpDate

addDays(int

numberOfDays)

Parameters

numberOfDays

An

integer

number.

If

it

is

a

negative

number,

the

new

date

will

be

the

date

numberOfDays

days

before

the

current

instance

of

DtpDate.

Return

values

A

new

DtpDate

object.

Exceptions

DtpDateException

Notes

The

addDays()

method

adds

the

specified

number

of

days

to

this

date.

You

can

use

the

get()

methods

to

retrieve

information

about

the

resulting

new

date.

The

DtpDate

object

returned

inherits

all

the

properties

of

the

current

object

of

DtpDate,

such

as

month

names,

date

format,

and

so

on.

The

new

date

will

be

adjusted

to

be

a

valid

date.

For

example,

adding

five

days

to

January

29,

1999

00:00:00

results

in

February

03,

1999

00:00:00,

and

adding

-30

days

results

in

December

30,

1998

00:00:00.

Adding

days

does

not

affect

the

time

of

day.

Examples

try

{

DtpDate

toDay

=

new

DtpDate();

DtpDate

tomorrow

=

toDay.addDays(1);

System.out.println("Tomorrow

is

"

+

tomorrow.getDayOfMonth()

+

"/"

+

tomorrow.getNumericMonth()

+

"/"

+

tomorrow.getYear()

+

"

"

+

tomorrow.getHours()

+

":"

+

tomorrow.getMinutes()

+

":"

+

tomorrow.getSeconds());

}

catch

(

DtpDateException

date_e

)

{

System.out.println(date_e.getMessage());

}

See

also

addWeekdays(),

addYears()

addWeekdays()

Add

the

specified

number

of

weekdays

to

this

date.

Syntax

public

DtpDate

addWeekdays(int

numberOfWeekdays)

Chapter

16.

DtpDate

class

311

Parameters

numberOfWeekdays

An

integer

number.

If

it

is

a

negative

number,

the

new

date

will

be

the

date

that

is

numberOfWeekdays

weekdays

before

the

date

represented

by

the

current

DtpDate

object.

Return

values

A

new

DtpDate

object.

Exceptions

DtpDateException

Notes

The

addWeekdays()

method

adds

the

specified

number

of

weekdays

to

this

date.

You

can

then

use

the

get

methods

to

retrieve

the

information

of

the

resulting

new

date.

The

DtpDate

returned

will

inherit

all

the

properties

of

the

current

instance

of

DtpDate,

such

as

month

names,

date

format,

and

so

on.

Only

Monday,

Tuesday,

Wednesday,

Thursday,

and

Friday,

or

the

equivalent

values,

are

considered

to

be

weekdays.

Monday

is

considered

to

be

the

first

day

of

the

week.

Examples

try

{

DtpDate

toDay

=

new

DtpDate("8/2/1999

00:00:00",

"M/D/Y

h:m:s");

DtpDate

fiveWeekdaysLater

=

toDay.addWeekdays(5);

//

The

new

date

should

be

8/9/1999

00:00:00

System.out.println("Next

month

is

"

+

fiveWeekdaysLater.getDayOfMonth()

+

"/"

+

fiveWeekdaysLater.getNumericMonth()

+

"/"

+

fiveWeekdaysLater.getYear()

+

"

"

+

fiveWeekdaysLater.getHours()

+

":"

+

fiveWeekdaysLater.getMinutes()

+

":"

+

fiveWeekdaysLater.getSeconds());

}

catch

(

DtpDateException

date_e

)

{

System.out.println(date_e.getMessage());

}

See

also

addDays(),

addYears()

addYears()

Add

the

specified

number

of

years

to

this

date.

Syntax

public

DtpDate

addYears(int

numberOfYears)

312

Map

Development

Guide

Parameters

numberOfYears

An

integer

number.

If

it

is

a

negative

number,

the

new

date

will

be

the

date

that

is

numberOfYears

years

before

the

current

DtpDate

object.

Return

values

A

new

DtpDate

object.

Notes

The

addYears()

method

adds

the

specified

number

of

years

to

this

date.

You

can

then

use

the

get()

methods

to

retrieve

the

information

of

the

resulting

new

date.

The

DtpDate

returned

inherits

all

the

properties

of

the

current

instance

of

DtpDate,

such

as

month

names,

date

format,

and

so

on.

Examples

DtpDate

toDay

=

new

DtpDate();

DtpDate

lastYear=

toDay.addYears(-1);

System.out.println("Next

month

is

"

+

lastYear.getDayOfMonth()

+

"/"

+

lastYear.getNumericMonth()

+

"/"

+

lastYear.getYear()

+

"

"

+

lastYear.getHours()

+

":"

+

lastYear.getMinutes()

+

":"

+

lastYear.getSeconds());

See

also

addDays(),

addWeekdays()

after()

Check

whether

this

date

follows

the

date

passed

in

as

the

input

parameter.

Syntax

public

boolean

after(DtpDate

date)

Parameters

date

The

date

to

compare

with

this

date.

Return

values

Return

true

if

this

date

follows

the

date

passed

in,

and

false

if

this

date

precedes

the

data

passed

in.

Exceptions

DtpDateException

Examples

try

{

DtpDate

toDay

=

new

DtpDate();

DtpDate

tomorrow

=

yesterday.addDays(-1);

//

isAfter

should

be

false.

boolean

isAfter

=

yesterday.after(today)

}

Chapter

16.

DtpDate

class

313

catch

(

DtpDateException

date_e

)

{

System.out.println(date_e.getMessage());

}

See

also

before()

before()

Check

whether

this

date

precedes

the

date

passed

in

as

the

parameter.

Syntax

public

boolean

before(DtpDate

date)

Parameters

date

The

date

to

compare

with

this

date.

Return

values

Return

true

if

this

date

precedes

the

date

passed

in,

and

false

if

this

date

follows

the

data

passed

in.

Exceptions

DtpDateException

Examples

try

{

DtpDate

toDay

=

new

DtpDate();

DtpDate

tomorrow

=

yesterday.addDays(-1);

//

isBefore

should

be

true.

boolean

isBefore

=

yesterday.before(today)

}

catch

(

DtpDateException

date_e

)

{

System.out.println(date_e.getMessage());

}

See

also

after()

calcDays()

Calculate

the

number

of

days

between

this

date

and

another

date.

Syntax

public

int

calcDays(DtpDate

date)

Parameters

date

The

date

to

compare

with

this

date.

314

Map

Development

Guide

Return

values

An

int

representing

the

number

of

days.

This

is

always

a

positive

number.

Exceptions

DtpDateException

Notes

The

calcDays()

method

calculates

the

difference

in

the

number

of

days

between

this

date

and

another

date.

The

result

is

always

a

whole

number

of

days.

The

difference

between

19990615

00:30:59

and

19990615

23:59:59

is

0

days,

and

the

difference

between

19990615

23:59:59

and

19990616

00:01:01

is

1

day.

Examples

try

{

DtpDate

toDay

=

new

DtpDate();

DtpDate

tomorrow

=

toDay.addDays(1);

int

days

=

today.caldDays(tomorrow);

}

catch

(

DtpDateException

date_e

)

{

System.out.println(date_e.getMessage());

}

See

also

calcWeekdays()

calcWeekdays()

Calculate

the

number

of

weekdays

between

this

date

and

another

date.

Syntax

public

int

calcWeekdays(DtpDate

date)

Parameters

date

The

date

to

compare

with

this

date.

Return

values

An

int

representing

the

number

of

weekdays.

This

is

always

a

positive

number.

Exceptions

DtpDateException

Notes

The

calcWeekdays()

method

calculates

the

number

of

weekdays

between

this

date

and

another

date.

The

difference

between

Friday

and

Saturday

is

0,

and

between

Friday

and

Monday

is

1.

Weekdays

are

assumed

to

be

Monday

through

Friday

or

the

equivalent

values.

A

weekday

is

not

the

same

as

a

business

day,

since

a

holiday

can

fall

on

a

weekday.

Chapter

16.

DtpDate

class

315

Examples

try

{

DtpDate

toDay

=

new

DtpDate();

DtpDate

tomorrow

=

toDay.addDays(1);

int

days

=

today.caldWeekdays(tomorrow);

}

catch

(

DtpDateException

date_e

)

{

System.out.println(date_e.getMessage());

}

See

also

calcDays()

get12MonthNames()

Return

the

current

full-name

representation

of

the

twelve

months

for

this

date.

Syntax

public

String[

]

get12MonthNames()

Return

values

An

array

of

String

objects

containing

the

effective

names

of

the

twelve

months.

Examples

DtpDate

toDay

=

new

DtpDate();

String[]

toDay.get12MonthNames();

See

also

set12MonthNames(),

set12MonthNamesToDefault()

get12ShortMonthNames()

Return

the

current

short-name

representation

of

the

twelve

months

for

this

date.

Syntax

public

String[

]

get12ShortMonthNames()

Return

values

An

array

of

String

objects

containing

the

effective

short

names

of

the

twelve

months.

Examples

DtpDate

toDay

=

new

DtpDate();

String[]

toDay.get12ShortMonthNames();

See

also

set12ShortMonthNames(),

set12ShortMonthNamesToDefault()

get7DayNames()

Return

the

current

names

for

the

seven

days

in

the

week

for

this

date.

316

Map

Development

Guide

Syntax

public

String[

]

get7DayNames()

Return

values

An

array

of

String

objects

containing

the

effective

names

for

the

seven

days

of

the

week.

Examples

DtpDate

toDay

=

new

DtpDate();

String[]

toDay.get7DayNames();

See

also

set7DayNames(),

set7DayNamesToDefault()

getCWDate()

Reformats

this

date

into

the

IBM

generic

date

format.

Syntax

public

String

getCWDate()

Return

values

A

string

representing

the

date

in

the

IBM

WebSphere

InterChange

Server

Express

generic

business

object

format.

The

format

is

YMD

hms.

Examples

of

this

format

are:

v

19990615

150701

v

19990831

114122

Notes

The

IBM

generic

date

format

takes

the

form:

YYYYMMDD

HHMMSS

Examples

DtpDate

toDay

=

new

DtpDate();

String

genericDate

=

toDay.getCWDate();

getDayOfMonth()

Return

the

day

of

the

month

for

this

date.

Syntax

public

String

getDayOfMonth()

Return

values

The

string

representing

the

day

of

the

month,

such

as

01,

20,

30,

and

so

on.

Examples

DtpDate

toDay

=

new

DtpDate();

String

dayOfMonth

=

toDay.getDayOfMonth();

Chapter

16.

DtpDate

class

317

See

also

getIntDay()

getDayOfWeek()

Return

the

day

of

the

week

for

this

date.

Syntax

public

String

getDayOfWeek()

Return

values

A

string

indicating

day

of

the

week,

such

as

Monday,

Tuesday,

and

so

on.

Examples

DtpDate

toDay

=

new

DtpDate();

String

dayOfWeek

=

toDay.getDayOfWeek();

See

also

getIntDayOfWeek()

getHours()

Return

the

hours

value

for

this

date.

Syntax

public

String

getHours()

Return

values

The

string

representing

the

hour

value

which

will

be

between

00

and

23.

Examples

DtpDate

toDay

=

new

DtpDate();

String

hours

=

toDay.getHours();

getIntDay()

Return

the

day

of

the

month

in

this

date

as

an

integer.

Syntax

public

int

getIntDay()

Return

values

An

int

value

which

is

the

day

of

the

month.

Examples

DtpDate

toDay

=

new

DtpDate();

int

day

=

toDay.getIntDay();

See

also

getDayOfMonth()

318

Map

Development

Guide

getIntDayOfWeek()

Return

the

day

of

the

week

in

this

date

as

an

integer.

Syntax

public

int

getIntDayOfWeek()

Return

values

An

int

value

which

is

the

day

of

the

week.

The

possible

values

are

0

(Monday),

1

(Tuesday),

2

(Wednesday),

3

(Thursday),

4

(Friday),

5

(Saturday),

or

6

(Sunday).

Examples

DtpDate

toDay

=

new

DtpDate();

int

dayOfWeek

=

toDay.getIntDayOfWeek();

See

also

getDayOfWeek()

getIntMilliSeconds()

Return

the

milliSeconds

value

from

the

date.

Syntax

public

int

getIntMilliSeconds()

Return

values

An

int

value

which

is

the

milliseconds

The

range

is

0-999.

Examples

DtpDate

toDay

=

new

DtpDate();

int

millisecs

=

toDay.getIntMilliSeconds();

getIntMinutes()

Return

the

minutes

value

in

this

date

as

an

integer.

Syntax

public

int

getIntMinutes()

Return

values

An

int

value

which

is

the

minutes.

The

range

is

0-59.

Examples

DtpDate

toDay

=

new

DtpDate();

int

mins

=

toDay.getIntMinutes();

See

also

getMinutes()

Chapter

16.

DtpDate

class

319

getIntMonth()

Return

the

month

in

this

date

as

an

integer.

Syntax

public

int

getIntMonth()

Return

values

An

int

value

which

is

the

month.

The

range

is

1

(January)

-

12

(December).

Examples

DtpDate

toDay

=

new

DtpDate();

int

month

=

toDay.getIntMonth();

See

also

getMonth(),

getNumericMonth()

getIntSeconds()

Return

the

seconds

in

this

date

as

an

integer.

Syntax

public

int

getIntSeconds()

Return

values

An

int

value

which

is

the

seconds.

The

range

is

0-59.

Examples

DtpDate

toDay

=

new

DtpDate();

int

secs

=

toDay.getIntSeconds();

See

also

getSeconds(),

getMSSince1970()

getIntYear()

Return

the

year

in

this

date

as

an

integer.

Syntax

public

int

getIntYear()

Return

values

An

int

value

which

is

the

year.

Examples

DtpDate

toDay

=

new

DtpDate();

int

year

=

toDay.getIntYear();

See

also

getYear()

320

Map

Development

Guide

getMSSince1970()

Return

the

number

of

milliseconds

between

January

1,

1970

00:00:00

and

this

date.

Syntax

public

long

getMSSince1970()

Return

values

An

integer

number.

It

may

be

negative

if

this

date

is

before

January

1,

1970

00:00:00.

Exceptions

DtpDateException

Examples

try

{

DtpDate

toDay

=

new

DtpDate();

long

ms

=

toDay.getMSSince1970();

}

catch

(

DtpDateException

date_e

)

{

System.out.println(date_e.getMessage());

}

See

also

getSeconds()

getMaxDate()

From

a

list

of

business

objects,

return

the

latest

date

as

a

DtpDate

object.

Syntax

public

static

DtpDate

getMaxDate(BusObjArray

boList,

String

attr,

String

dateFormat)

Parameters

boList

A

list

of

business

objects.

attr

The

attribute

of

the

business

object

to

use

when

doing

the

comparison.

The

attribute

must

be

of

type

Date.

dateFormat

This

is

the

date

format.

See

DtpDate()

for

more

details.

If

this

is

null,

it

is

assumed

that

the

date

is

the

number

of

milliseconds

since

1970.

Return

values

A

DtpDate

object

that

contains

the

max

date.

Exceptions

DtpIncompatibleBOTypeException

-

When

the

business

objects

in

the

list

are

not

the

same

business

object

type.

Chapter

16.

DtpDate

class

321

DtpUnknownAttributeException

-

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

DtpUnsupportedAttributeTypeException

-

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

above.

All

of

these

exceptions

are

subclasses

of

RunTimeEntityException.

Notes

The

getMaxDate()

method

scans

through

the

list

of

business

objects

looking

for

the

business

object

with

the

latest

date,

and

returns

that

date

in

the

form

of

a

DtpDate

object.

Tip:

This

method

is

a

static

method.

In

the

date

evaluation,

Jan

1,

2004

000000

is

later

than

Jan

1,

2002

000000,

which

is

later

than

Jan

1,

1999

000000

The

date

information

is

assumed

to

be

stored

in

the

attribute

name

passed

into

the

method.

If

an

object

has

null

date

information,

it

is

ignored.

If

all

of

the

objects

have

null

date

information,

null

is

returned.

Examples

try

{

DtpDate

maxDate

=

DtpDate.getMaxDate(bos,

"Start

Date",

"D/M/Y

h:m:s");

}

catch

(

RunTimeEntityException

err

)

{

System.out.println(err.getMessage());

}

See

also

getMinDate(),

getMaxDateBO()

getMaxDateBO()

From

a

list

of

business

objects,

return

those

that

contain

the

latest

date.

Syntax

public

static

BusObj[]

getMaxDateBO(BusObj[]

boList,

String

attr,

String

dateFormat)

public

static

BusObj[]

getMaxDateBO(BusObjArray

boList,

String

attr,

String

dateFormat)

Parameters

boList

A

list

of

business

objects.

It

can

be

either

an

array

of

BusObj

or

an

instance

of

BusObjArray.

These

business

objects

must

be

of

the

same

business

object

type.

attr

The

attribute

of

the

business

object

to

compare

with.

The

attribute

must

be

of

type

Date.

322

Map

Development

Guide

dateFormat

This

is

the

date

format.

See

DtpDate()

for

more

details.

If

this

is

null,

it

is

assumed

that

the

date

is

the

number

of

milliseconds

since

1970.

Return

values

An

array

of

business

objects

that

have

the

latest

date.

Exceptions

All

of

these

three

exceptions

are

subclasses

of

RunTimeEntityException.

DtpIncompatibleBOTypeException

-

When

the

business

objects

in

the

list

are

not

the

same

business

object

type.

DtpUnknownAttributeException

-

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

DtpUnsupportedAttributeTypeException

-

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

above.

DtpDateException

-

When

the

date

format

is

invalid.

Notes

The

getMaxDateBO()

method

scans

through

the

list

of

business

objects

looking

for

the

business

object

with

the

latest

date

and

returns

that

business

object.

If

multiple

business

objects

have

the

same

max

date,

all

objects

with

that

date

are

returned.

Tip:

This

method

is

a

static

method.

In

the

evaluation

of

which

date

is

earliest,

Jan

1,

2004

000000

is

later

than

Jan

1,

2002

000000,

which

is

later

than

Jan

1,

1999

000000.

The

date

information

is

assumed

to

be

stored

in

the

attribute

name

passed

into

the

method.

If

an

object

has

null

date

information,

that

object

is

ignored.

If

all

of

the

objects

have

null

date

information,

null

is

returned.

Examples

try

{

BusObj[]

max

=

DtpDate.getMaxDateBO(bos,

"Start

Date",

"D/M/Y

h:m:s");

}

catch

(

RunTimeEntityException

err

)

{

System.out.println(err.getMessage());

}

See

also

getMaxDate(),

getMinDateBO()

getMinDate()

From

a

list

of

business

objects,

return

the

earliest

date

as

a

DtpDate

object.

Chapter

16.

DtpDate

class

323

Syntax

public

static

DtpDate

getMinDate(BusObjArray

boList,

String

attr,

String

dateFormat)

Parameters

boList

A

list

of

business

objects.

attr

The

attribute

of

the

business

object

to

use

when

doing

the

comparison.

The

attribute

must

be

of

type

Date.

dateFormat

The

date

format.

See

DtpDate()

for

more

details.

If

this

is

null,

it

is

assumed

that

the

date

is

the

number

of

milliseconds

since

1970.

Return

values

A

DtpDate

object

which

contains

the

earliest

date.

Exceptions

DtpIncompatibleBOTypeException

-

When

the

business

objects

in

the

list

are

not

the

same

business

object

type.

DtpUnknownAttributeException

-

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

DtpUnsupportedAttributeTypeException

-

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

above.

All

of

these

exceptions

are

subclasses

of

RunTimeEntityException.

Notes

The

getMinDate()

method

scans

through

the

list

of

business

objects

looking

for

the

business

object

with

the

earliest

date,

and

return

that

date

in

the

form

of

a

DtpDate

object.

Tip:

This

method

is

a

static

method.

In

the

evaluation

of

dates,

Jan

1,

1999

000000

is

earlier

than

Jan

1,

2002

000000,

which

is

earlier

than

Jan

1,

2004

000000.

The

date

information

is

assumed

to

be

stored

in

the

attribute

name

passed

into

the

method.

If

an

object

has

null

date

information,

it

is

ignored.

If

all

objects

have

null

date

information,

null

is

returned.

Examples

try

{

DtpDate

minDate

=

DtpDate.getMinDate(bos,

"Start

Date",

"D/M/Y

h:m:s");

}

catch

(

RunTimeEntityException

err

)

{

System.out.println(err.getMessage());

}

See

also

getMaxDate(),

getMinDateBO()

324

Map

Development

Guide

getMinDateBO()

From

a

list

of

business

objects,

return

those

that

contain

the

earliest

date.

Syntax

public

static

BusObj[]

getMinDateBO(BusObj[]

boList,

String

attr,

String

dateFormat)

public

static

BusObj[]

getMinDateBO(BusObjArray

boList,

String

attr,

String

dateFormat)

Parameters

boList

A

list

of

business

objects.

attr

The

attribute

of

the

business

object

to

use

when

doing

the

comparison.

The

attribute

must

be

of

type

Date.

dateFormat

The

date

format.

See

DtpDate()

for

more

details.

If

this

is

null,

it

is

assumed

that

the

date

is

the

number

of

milliseconds

since

1970.

Return

values

An

array

of

business

objects

that

have

the

date.

Exceptions

DtpIncompatibleBOTypeException

-

When

the

business

objects

in

the

list

are

not

the

same

business

object

type.

DtpUnknownAttributeException

-

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

DtpUnsupportedAttributeTypeException

-

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

above.

DtpDateException

-

When

the

date

format

is

invalid.

All

of

these

exceptions

are

subclass

of

RunTimeEntityException.

Notes

The

getMinDateBO()

method

scans

through

the

list

of

business

objects

looking

for

the

business

object

with

the

earliest

date

and

returns

that

date

in

the

form

of

a

DtpDate

object.

Tip:

This

method

is

a

static

method.

In

the

evaluation

of

the

earliest

date,

Jan

1,

2004

000000

is

later

than

Jan

1,

2002

000000

which

is

later

than

Jan

1,

1999

000000.

The

date

information

is

assumed

to

be

stored

in

the

attribute

name

passed

into

the

method.

If

an

object

has

null

date

information,

it

is

ignored.

If

all

of

the

objects

have

null

date

information,

null

is

returned.

Examples

try

{

BusObj[]

min

=

DtpDate.getMinDateBO(bos,

"Start

Date",

"D/M/Y

h:m:s");

Chapter

16.

DtpDate

class

325

}

catch

(

RunTimeEntityException

err

)

{

System.out.println(err.getMessage());

}

See

also

getMinDate(),

getMaxDateBO()

getMinutes()

Return

the

minutes

value

from

this

date.

Syntax

public

String

getMinutes()

Return

values

The

string

representing

the

minutes.

The

return

value

is

between

00

and

59.

See

also

getIntMinutes()

getMonth()

Return

the

full

name

representation

of

the

month

in

this

date.

Syntax

public

String

getMonth()

Return

values

The

name

of

the

month,

such

as

January,

February,

and

so

on.

See

also

getIntMonth(),

getNumericMonth(),

getShortMonth()

getNumericMonth()

Return

the

month

value

from

this

date

in

numeric

format.

Syntax

public

String

getNumericMonth()

Return

values

The

string

in

the

numeric

form

for

the

month,

such

as

01,

02,

and

so

on.

Examples

DtpDate

toDay

=

new

DtpDate();

System.out.println("Today

is

"

+

toDay.getDayOfMonth()

+

"/"

+

toDay.getNumericMonth()

+

"/"

326

Map

Development

Guide

+

toDay.getYear()

+

"

"

+

toDay.getHours()

+

":"

+

toDay.getMinutes()

+

":"

+

toDay.getSeconds());

See

also

getIntMonth(),

getMonth()

getSeconds()

Return

the

seconds

value

from

this

date

as

a

string.

Syntax

public

String

getSeconds()

Return

values

The

string

representing

the

seconds.

The

return

value

is

between

00

and

59.

Examples

DtpDate

toDay

=

new

DtpDate();

System.out.println("Today

is

"

+

toDay.getDayOfMonth()

+

"/"

+

toDay.getNumericMonth()

+

"/"

+

toDay.getYear()

+

"

"

+

toDay.getHours()

+

":"

+

toDay.getMinutes()

+

":"

+

toDay.getSeconds());

See

also

getIntSeconds()

getShortMonth()

Return

the

short

name

representation

of

the

month

name

from

this

date.

Syntax

public

String

getShortMonth()

Return

values

The

name

of

the

month

in

the

short

format,

such

as

Jan,

Feb,

and

so

on.

Examples

DtpDate

toDay

=

new

DtpDate();

DtpDate

lastYear=

toDay.addYears(-1);

System.out.println("Next

month

is

"

+

lastYear.getShortMonth()

+

"

"

+

lastYear.getDayOfMonth()

+

",

"

+

lastYear.getYear()

+

"

"

+

lastYear.getHours()

+

":"

+

lastYear.getMinutes()

+

":"

+

lastYear.getSeconds());

See

also

getMonth(),

set12ShortMonthNames(),

set12ShortMonthNamesToDefault()

Chapter

16.

DtpDate

class

327

getYear()

Return

the

year

value

in

this

date.

Syntax

public

String

getYear()

Return

values

The

string

representing

the

year.

The

year

value

includes

the

century.

Examples

are

1998

and

2004.

Examples

DtpDate

toDay

=

new

DtpDate();

DtpDate

lastYear=

toDay.addYears(-1);

System.out.println("Next

month

is

"

+

lastYear.getDayOfMonth()

+

"/"

+

lastYear.getNumericMonth()

+

"/"

+

lastYear.getYear()

+

"

"

+

lastYear.getHours()

+

":"

+

lastYear.getMinutes()

+

":"

+

lastYear.getSeconds());

See

also

getIntYear()

set12MonthNames()

Change

the

full-name

representation

for

the

twelve

month

names

for

this

date.

Syntax

public

void

set12MonthNames(String[]

monthNames,

boolean

resetShortMonth)

Parameters

monthNames

An

array

of

String

containing

the

twelve

month

names.

The

first

element

is

the

first

month

of

the

year

and

the

last

element

is

the

last

month

of

the

year.

resetShortMonthNames

By

default,

the

short

month

names

are

the

first

three

characters

of

the

full

month

names.

If

this

flag

is

set

to

true,

the

short

month

names

will

change

based

on

the

new

full

month

names.

If

it

is

set

to

false,

this

method

will

not

change

the

short

month

names.

Return

values

None.

Exceptions

DtpDateException

-

When

the

month

names

passed

in

are

not

exactly

12

names.

See

also

get12MonthNames(),

set12MonthNamesToDefault()

328

Map

Development

Guide

set12MonthNamesToDefault()

Restore

the

full-name

representation

for

the

twelve

month

names

to

the

default

values

for

this

date.

Syntax

public

void

set12MonthNamesToDefault()

Return

values

None.

Notes

The

default

names

are

January,

February,

March,

and

so

on.

See

also

get12MonthNames(),

set12MonthNames()

set12ShortMonthNames()

Change

the

short-name

representation

of

the

twelve

month

names

for

this

date.

Syntax

public

void

set12ShortMonthNames(String[]

shortMonths)

Parameters

shortMonths

A

list

of

business

objects.

Return

values

None.

Exceptions

DtpDateException

-

When

the

month

names

passed

in

are

not

exactly

12

names.

See

also

get12ShortMonthNames(),

set12ShortMonthNamesToDefault()

set12ShortMonthNamesToDefault()

Restore

the

short-name

representation

of

the

twelve

month

names

to

the

default

values

for

this

date.

Syntax

public

void

set12ShortMonthNamesToDefault()

Return

values

None

Notes

The

short

month

names

are

Jan,

Feb,

Mar,

and

so

on.

Chapter

16.

DtpDate

class

329

See

also

get12ShortMonthNames(),

set12ShortMonthNames()

set7DayNames()

Change

the

names

of

the

seven

days

in

the

week

for

this

date.

Syntax

public

void

set7DayNames(String[]

dayNames)

Parameters

dayNames

An

array

of

strings

containing

the

seven

days

in

a

week.

The

first

element

should

be

the

equivalent

of

Monday.

Return

values

None.

Exceptions

DtpDateException

-

When

exactly

seven

days

are

not

specified.

See

also

get7DayNames(),

set7DayNamesToDefault()

set7DayNamesToDefault()

Restore

the

names

of

the

seven

days

in

the

week

to

the

default

values

for

this

date.

Syntax

public

void

set7DayNamesToDefault()

Return

values

None.

Notes

The

default

names

are

Monday,

Tuesday,

Wednesday,

and

so

on.

See

also

get7DayNames(),

set7DayNames()

toString()

Return

the

date

in

a

specified

format

or

the

default

format.

Syntax

public

String

toString()

public

String

toString(String

format)

public

String

toString(String

format

boolean

twelveHr)

330

Map

Development

Guide

Parameters

format

The

date

format.

See

DtpDate()

for

more

details.

twelveHr

A

boolean

that,

if

set

to

true,

specifies

that

the

method

returns

12-hour

time

instead

of

24-hour

time.

Return

values

A

string

containing

the

date

information,

such

as:

19990930

053029

PM

Regardless

of

the

format

of

the

month

position,

the

output

string

is

always

a

2

character

integer

representation

(that

is,

01

for

January,

12

for

December,

and

so

forth).

Exceptions

DtpDateException

-

When

the

date

format

is

invalid.

Examples

try

{

DtpDate

toDay

=

new

DtpDate();

String

date

=

toDay.toString("Y/M/D

h:m:s");

}

catch

(

DtpDateException

date_e

)

{

System.out.println(date_e.getMessage());

}

Chapter

16.

DtpDate

class

331

332

Map

Development

Guide

Chapter

17.

DtpMapService

class

A

submap

is

a

map

that

you

call

from

within

another

map.

The

DtpMapService

class

provides

a

method

for

running

submaps.

Table

102

summarizes

the

method

in

the

DtpMapService

class.

Table

102.

DtpMapService

method

summary

Method

Description

Page

runMap()

Runs

the

map

you

specify.

333

runMap()

Runs

the

map

you

specify.

Syntax

BusObj[]

runMap(String

mapName,

String

mapType,

BusObj[]

srcBOs,

cwExecCtx)

Parameters

mapName

The

name

of

the

map

to

run.

mapType

The

type

of

the

map

to

run.

Use

the

following

constant

only,

which

is

defined

in

the

DtpMapService

class:

CWMAPTYPE

–

an

IBM

WebSphere

InterChange

Server

Express

map

srcBOs

An

array

of

business

objects

that

are

the

source

business

objects

for

mapName.

cwExecCtx

A

variable

that

contains

the

execution

context

for

the

current

map.

This

variable

is

defined

in

the

code

thatMap

Designer

Express

generates

for

every

map.

Return

values

Returns

an

array

of

business

objects

that

are

the

destination

business

objects

of

mapName.

Exceptions

MapFailureException

–

If

an

error

occurs

while

attempting

to

run

mapName.

MapNotFoundException

–

If

mapName

is

not

found

in

the

repository.

CxMissingIDException

–

See

maintainSimpleIdentityRelationship().

Notes

Use

the

runMap()

method

to

call

a

submap

from

within

another

map.

For

more

information

on

calling

submaps,

see

“Transforming

with

a

submap”

on

page

41.

Examples

The

following

code

calls

a

submap

to

map

an

application-specific

Address

business

object

to

the

generic

Address

business

object:

©

Copyright

IBM

Corp.

2003

333

//

Create

the

BusObj

Array

BusObj[]

rSrcBOs

=

new

BusObj[1];

rSrcBOs[0]

=

MyCustomerObj.MyAddressObj[0];

//

Make

the

call

to

the

map

service

OutObjName

=

DtpMapService.runMap(MyAppAddressToGenAddress,

DtpMapService.CWMAPTYPE,rSrcBOs,cwExecCtx);

See

also

“Transforming

with

a

submap”

on

page

41

334

Map

Development

Guide

Chapter

18.

DtpSplitString

class

The

DtpSplitString

class

provides

a

way

to

split

or

parse

a

string

into

tokens

and

retrieve

the

results.

This

class

is

useful

for

manipulating

formatted

strings

such

as

composite

keys,

dates,

or

telephone

numbers.

DtpSplitString

is

similar

to

the

StringTokenizer

class

in

the

java.util

package.

However,

when

working

with

IBM

WebSphere

InterChange

Server

Express

maps,

DtpSplitString

provides

these

advantages

over

StringTokenizer:

v

The

tokens

in

a

DtpSplitString

object

are

indexed.

This

makes

it

easy

to

extract

the

specific

tokens

you

are

interested

in.

For

example,

if

you

parse

a

telephone

number

(such

as

650-555-1111)

into

three

tokens

using

the

dash

(-)

as

a

delimiter,

you

can

extract

the

area

code

by

referencing

element

0

and

build

the

rest

of

the

telephone

number

by

concatenating

element

1

and

element

2.

v

A

DtpSplitString

object

allows

bidirectional

scrolling

of

the

tokens.

As

you

navigate

the

elements

using

nextElement()

and

prevElement()

all

the

elements

remain

available.

Table

103

summarizes

the

methods

in

the

DtpSplitString

class.

Table

103.

DtpSplitString

method

summary

Method

Description

Page

DtpSplitString()

Constructs

a

new

instance

of

DtpSplitString

and

parses

a

string

into

tokens.

335

elementAt()

Returns

an

element

in

the

DtpSplitString

object

at

the

position

you

specify.

336

firstElement()

Returns

the

element

in

the

DtpSplitString

object

at

position

zero.

336

getElementCount()

Returns

an

integer

containing

the

total

number

of

elements.

337

getEnumeration()

Returns

an

Enumeration

of

String

objects

where

each

String

is

one

of

the

parsed

tokens.

338

lastElement()

Returns

the

last

element

in

the

DtpSplitString

object.

338

nextElement()

Returns

the

next

element

in

the

DtpSplitString

object.

338

prevElement()

Returns

the

previous

element

in

the

DtpSplitString

object.

339

reset()

Resets

the

current

position

number

in

the

DtpSplitString

object

to

zero.

340

DtpSplitString()

Constructs

a

new

instance

of

DtpSplitString

and

parses

a

string

into

tokens.

Syntax

DtpSplitString(String

str,

String

delimiters)

Parameters

str

The

string

to

parse.

©

Copyright

IBM

Corp.

2003

335

delimiters

A

String

containing

the

delimiters

used

in

str.

There

can

be

more

than

one

delimiter,

but

each

delimiter

can

be

only

one

character

in

length.

Notes

DtpSplitString()

parses

str

into

tokens,

called

elements,

based

on

the

specified

delimiters.

After

calling

DtpSplitString(),

you

can

call

any

of

the

DtpSplitString

class

methods

to

select

and

retrieve

specific

elements.

Examples

DtpSplitString

MyString

=

new

DtpSplitString("This,is

a

test",",

");

elementAt()

Returns

an

element

in

the

DtpSplitString

object

at

the

position

you

specify.

Syntax

String

elementAt(int

nth)

Parameters

nth

The

position

of

the

element

to

extract

from

the

DtpSplitString

object.

The

position

of

the

first

element

is

zero.

Return

values

Returns

a

String

containing

the

element

at

the

nth

position.

Exceptions

DtpNoElementAtPositionException

–

If

you

specify

an

invalid

position

for

nth.

Notes

Elements

are

numbered

from

first

to

last

beginning

with

zero.

For

example,

if

the

delimiters

are

commas

and

spaces,

then

the

element

at

position

two

in

the

string,

"This,is

a

test"

is

"a".

The

elementAt()

method

returns

the

element

at

the

specified

position

but

does

not

change

the

current

element

position.

Examples

//

Create

a

DtpSplitString

object

DtpSplitString

MyString

=

new

DtpSplitString("This,is

a

test",",

");

//This

call

returns

"a"

public

String

MyString.elementAt(2);

See

also

getElementCount()

firstElement()

Returns

the

element

in

the

DtpSplitString

object

at

position

zero.

336

Map

Development

Guide

Syntax

String

firstElement()

Return

values

Returns

a

String

containing

the

element

at

position

zero.

Exceptions

DtpNoElementAtPositionException

–

If

there

are

no

elements.

Notes

Elements

in

the

DtpSplitString

object

are

numbered

from

first

to

last

beginning

with

zero.

Therefore,

the

first

element

is

at

position

zero.

The

firstElement()

method

returns

the

element

at

position

zero

but

does

not

change

the

current

element

position.

Examples

//

Create

a

DtpSplitString

object

DtpSplitString

MyString

=

new

DtpSplitString("This,is

a

test",",

");

//

This

call

returns

the

first

element

containing

"This"

String

anElement

=

MyString.firstElement();

See

also

lastElement()

getElementCount()

Returns

the

total

number

of

elements

in

the

DtpSplitString

object.

Syntax

int

getElementCount()

Return

values

Returns

an

integer

containing

the

total

number

of

elements.

Notes

Elements

are

numbered

from

first

to

last

beginning

with

zero.

If

getElementCount()

returns

6,

the

highest-numbered

element

is

5.

Examples

//

Create

a

DtpSplitString

object

DtpSplitString

MyString

=

new

DtpSplitString("This,is

a

test",",

");

//

This

call

returns

the

integer

4

String

numElements

=

MyString.getElementCount();

See

also

firstElement(),

lastElement()

Chapter

18.

DtpSplitString

class

337

getEnumeration()

Returns

an

Enumeration

of

String

objects

where

each

String

is

one

of

the

parsed

tokens.

Syntax

Enumeration

getEnumeration()

Return

values

Returns

an

Enumeration

object.

Notes

The

getEnumeration()

method

provides

another

way

to

process

the

parsed

tokens

in

a

DtpSplitString

object.

For

more

information

on

working

with

Enumeration

objects,

see

the

Java.Util

package.

lastElement()

Returns

the

last

element

in

the

DtpSplitString

object.

Syntax

String

lastElement()

Return

values

Returns

a

String

containing

the

last

element.

Exceptions

DtpNoElementAtPositionException

–

If

there

are

no

elements.

Notes

Elements

are

numbered

from

first

to

last

beginning

with

zero.

The

last

element

is

the

highest-numbered

element.

The

position

number

of

the

last

element

is

equivalent

to

getElementCount()-1.

The

lastElement()

method

returns

the

last

element

but

does

not

change

the

current

element

position.

Examples

//

Create

a

DtpSplitString

object

DtpSplitString

MyString

=

new

DtpSplitString("This,is

a

test",",

");

//

This

call

returns

the

last

element,

containing

"test"

String

anElement

=

MyString.lastElement();

See

also

firstElement(),

getElementCount()

nextElement()

Returns

the

next

element

in

the

DtpSplitString

object.

338

Map

Development

Guide

Syntax

String

nextElement()

Return

values

Returns

a

String

containing

the

next

element.

Exceptions

DtpNoElementAtPositionException

–

If

there

is

no

next

element.

Notes

The

first

time

you

call

nextElement(),

it

returns

the

element

at

position

zero.

In

subsequent

method

calls,

nextElement()

returns

the

element

at

position

one,

two,

three,

and

so

on.

You

can

use

nextElement(),

along

with

prevElement(),

to

navigate

the

elements

(tokens)

in

a

DtpSplitString

object.

Examples

//

Create

a

DtpSplitString

object

DtpSplitString

MyString

=

new

DtpSplitString("This,is

a

test",",

");

//

This

call

returns

element

0

containing

"This"

String

firstElement

=

MyString.nextElement()

//

This

call

returns

element

1

containing

"is"

String

secondElement

=

MyString.nextElement()

See

also

prevElement(),

reset()

prevElement()

Returns

the

previous

element

in

the

DtpSplitString

object.

Syntax

String

prevElement()

Return

values

Returns

a

String

containing

the

previous

element.

Exceptions

DtpNoElementAtPositionException

–

If

there

is

no

previous

element.

Notes

You

can

use

prevElement(),

along

with

nextElement(),

to

navigate

the

elements

(tokens)

in

a

DtpSplitString

object.

The

first

time

you

call

nextElement(),

the

element

position

is

zero.

Subsequent

calls

to

nextElement()increment

the

position

by

one.

The

prevElement()

method

returns

the

previous

element

and

decrements

the

element

position

by

one.

Chapter

18.

DtpSplitString

class

339

Examples

//

Create

a

DtpSplitString

object

DtpSplitString

MyString

=

new

DtpSplitString("This,is

a

test",",

");

//

This

call

returns

element

0

containing

"This"

String

firstElement

=

MyString.nextElement()

//

This

call

returns

element

1

containing

"is"

String

secondElement

=

MyString.nextElement()

//

This

call

returns

element

0

containing

"This"

String

anotherElement

=

MyString.prevElement()

See

also

nextElement()

reset()

Resets

the

current

position

number

in

the

DtpSplitString

object

to

zero.

Syntax

void

reset()

Return

values

None.

Notes

The

default

element

position

is

zero.

Each

time

you

call

nextElement(),

the

element

position

increments

by

one.

The

prevElement()

method

returns

the

previous

element

and

decrements

the

element

position

by

one.

You

can

use

reset()

to

reset

the

current

position

back

to

zero.

Examples

//

Create

a

DtpSplitString

object

DtpSplitString

MyString

=

new

DtpSplitString("This,is

a

test",",

");

//

This

call

returns

element

0

containing

"This"

String

firstElement

=

MyString.nextElement()

//

This

call

returns

element

1

containing

"is"

String

secondElement

=

MyString.nextElement()

//

Reset

the

position

to

zero

MyString.reset()

//

This

call

returns

element

0

containing

"This"

String

firstElement

=

MyString.nextElement()

See

also

nextElement(),

prevElement()

340

Map

Development

Guide

Chapter

19.

DtpUtils

class

The

DtpUtils

class

performs

several

general-purpose

operations.

Table

104

summarizes

the

methods

of

the

DtpUtils

class.

Table

104.

DtpUtils

method

summary

Method

Description

Page

padLeft()

Pads

the

string

with

the

specified

character.

341

padRight()

Pads

the

string

with

the

specified

character.

341

stringReplace()

Replaces

all

occurrences

of

a

pattern

within

a

string

with

another

pattern.

341

truncate()

Truncates

this

number.

343

padLeft()

Pads

the

string

with

the

specified

character.

Syntax

public

static

String

padLeft(String

src,

char

padWith,

int

totalLen)

Parameters

src

The

string

to

be

padded.

padWith

The

character

used

in

padding.

totalLen

The

new

size

of

the

string,

a

positive

number.

If

the

value

is

0,

smaller

than

the

size

of

the

original

string,

or

a

negative

number,

the

original

string

is

returned.

Return

values

A

new

padded

string.

Notes

Pads

the

string

with

a

specified

character.

Examples

The

following

call

returns

0000012345:

padLeft("12345",

’0’,

10);

The

following

call

returns

123456:

padLeft("123456",

’0’,

5);

padRight()

Pads

the

string

with

the

specified

character.

Syntax

public

static

String

padLeft(String

src,

char

padWith,

int

totalLen)

©

Copyright

IBM

Corp.

2003

341

Parameters

src

The

string

to

be

padded.

padWith

The

character

used

in

padding.

totalLen

The

new

size

of

the

string,

a

positive

number.

If

the

value

is

0,

smaller

than

the

size

of

the

original

string,

or

a

negative

number,

the

original

string

is

returned.

Return

values

A

new

padded

string.

Notes

Pads

the

string

with

a

specified

character.

Examples

The

following

call

returns

1234500000:

padRight("12345",

’0’,

10);

The

following

call

returns

123456:

padRight("123456",

’0’,

5);

stringReplace()

Replaces

all

occurrences

of

a

pattern

within

a

string

with

another

pattern.

Syntax

public

static

String

stringReplace(String

src,

String

oldpattern,

String

newPattern)

Parameters

src

The

string

to

change.

oldPattern

The

character

used

in

padding.

newPattern

The

string

pattern

to

use

in

replacement.

Return

values

A

new

string

with

the

new

pattern.

Notes

The

method

replaces

all

occurrences

of

the

value

specified

by

oldPattern

with

the

value

specified

by

newPattern.

For

single

character

replacement,

use

the

replace()

in

the

Java

String

class.

If

oldPattern

is

not

found,

the

original,

unmodified

string

is

returned.

Examples

The

following

results

in

youoyou

and

dad.

stringReplace("momomom

and

dad",

"mom",

"you");

342

Map

Development

Guide

truncate()

Truncates

this

number.

Syntax

public

static

double

truncate(Object

aNumber,

int

precision)

throws

DtpIncompatibleFormatException

public

static

double

truncate(float

aNumber,

int

precision)

public

static

double

truncate(double

aNumber,

int

precision)

public

static

int

truncate(Object

aNumber)

throws

DtpIncompatibleFormatException

public

static

int

truncate(float

aNumber)

public

static

int

truncate(double

aNumber)

Parameters

aNumber

A

number.

The

valid

types

are

String,

float,

and

double.

precision

The

number

of

digits

to

the

right

of

the

decimal

to

be

removed.

Return

values

A

double

or

int

number.

Notes

This

method

removes

digits

from

this

number,

starting

from

the

right.

The

first

three

forms

of

the

methods

truncate

the

number

by

removing

the

digits

to

the

right

of

the

decimal

place,

starting

from

the

right.

If

the

input

number

is

an

integer,

it

will

not

get

truncated.

The

number

of

type

Object

must

be

either

String,

Double

or

Float.

The

last

three

forms

of

the

methods

truncate

the

number

by

removing

all

digits

to

the

right

of

the

decimal

and

return

the

int

value.

Examples

The

following

returns

123.45:

truncate("123.4567",

2);

The

following

returns

123:

truncate(123.456,

4)

Chapter

19.

DtpUtils

class

343

344

Map

Development

Guide

Chapter

20.

IdentityRelationship

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

IdentityRelationship

class.

These

objects

represent

instances

of

identity

relationships.

The

IdentityRelationship

class

provides

additional

functionality

needed

when

accessing

the

repository

database.

It

combines

a

set

of

existing

APIs

into

methods

that

provide

ease

of

use

for

the

map

developer.

The

source

code

for

the

methods

in

the

IdentityRelationship

class

is

provided

and

can

be

used

as

is

in

the

IBM

WebSphere

InterChange

Server

Express

environment,

or

can

be

customized

to

fit

other

environments.

Table

105

lists

the

methods

of

the

IdentityRelationship

class.

Table

105.

IdentityRelationship

method

summary

Method

Description

Page

addMyChildren()

Adds

the

specified

child

instances

to

a

parent/child

relationship

for

an

identity

relationship.

345

deleteMyChildren()

Removes

the

specified

child

instances

to

a

parent/child

relationship

for

an

identity

relationship

belonging

to

the

specified

parent.

347

foreignKeyLookup()

Performs

a

lookup

in

a

foreign

relationship

table

based

on

the

foreign

key

of

the

source

business

object,

failing

to

find

a

relationship

instance

if

the

foreign

key

does

not

exist

in

the

foreign

relationship

table.

348

foreignKeyXref()

Performs

a

lookup

in

the

relationship

table

in

the

relationship

database

based

on

the

foreign

key

of

the

source

business

object,

adding

a

new

relationship

instance

in

the

foreign

relationship

table

if

the

foreign

key

does

not

exist.

350

maintainChildVerb()

Sets

the

child

business

object

verb

based

on

the

map

execution

context

and

the

verb

of

the

parent

business

object.

352

maintainCompositeRelationship()

Maintains

a

composite

identity

relationship

from

within

the

parent

map.

354

maintainSimpleIdentityRelationship()

Maintains

a

simple

identity

relationship

from

within

either

a

parent

or

child

map.

356

updateMyChildren()

Adds

and

deletes

child

instances

in

a

specified

parent/child

relationship

of

an

identity

relationship

as

necessary.

358

Note:

All

methods

in

the

IdentityRelationship

class

are

declared

as

static.

You

can

call

any

of

the

methods

in

this

class

from

an

existing

relationship

instance

or

by

referencing

the

IdentityRelationship

class:

IdentityRelationship.method,

where

method

is

the

name

of

a

method

in

Table

105.

addMyChildren()

Adds

the

specified

child

instances

to

a

parent/child

relationship

for

an

identity

relationship.

©

Copyright

IBM

Corp.

2003

345

Syntax

public

static

void

addMyChildren(String

parentChildRelDefName,

String

parentParticpntDefName,

BusObj

parentBusObj,

String

childParticpntDefName,

Object

childBusObjList,

CxExecutionContext

map_ctx)

Parameters

parentChildRelDefName

The

name

of

the

parent/child

relationship

definition.

parentParticpntDefName

The

name

of

the

participant

definition

that

represents

the

parent

business

object

in

the

parent/child

relationship.

parentBusObj

The

variable

that

contains

the

parent

business

object.

childParticpntDefName

The

name

of

the

participant

definition

that

represents

the

child

business

object

in

the

parent/child

relationship.

childBusObjList

The

variable

that

contains

child

business

object

or

objects

to

be

added

to

the

relationship.

This

parameter

can

be

either

a

single

generic

business

object

(BusObj)

or

an

array

of

generic

business

objects

(BusObjArray).

map_ctx

The

map

execution

context.

To

pass

the

map

execution

context,

use

the

cwExecCtx

variable,

which

Map

Designer

Express

defines

for

every

map.

Return

values

None.

Exceptions

RelationshipRuntimeException

Notes

The

addMyChildren()

method

adds

the

child

instances

in

childBusObjList

to

the

relationship

tables

of

the

parentChildRelDefName

relationship

definition.

This

method

is

useful

in

a

custom

relationship

involving

a

parent

business

object

with

a

unique

key.

When

a

parent

business

object

has

the

addition

of

new

child

objects,

use

addMyChildren()

to

compare

the

after-image

(in

parentBusObj)

with

the

before-image

(information

in

the

relationship

tables)

to

determine

which

child

objects

in

the

after-image

are

new.

For

each

new

child

object,

addMyChildren()

adds

a

child

instance

to

the

relationship

tables

for

the

parent

and

child

participants

(parentParticpntDefName

and

childParticpntDefName,

respectively).

If

the

parent

business

object

does

not

exist

in

the

relationship

table,

addMyChildren()

inserts

a

relationship

instance

for

this

parent

object.

The

addMyChildren()

method

requires

that

a

parent/child

relationship

be

defined

with

Relationship

Designer

Express.

For

information

on

how

to

create

this

kind

of

relationship,

see

“Creating

the

parent/child

relationship

definition”

on

page

208..

346

Map

Development

Guide

See

also

deleteMyChildren(),

updateMyChildren()

“Managing

child

instances”

on

page

207,.

deleteMyChildren()

Removes

the

specified

child

instances

to

a

parent/child

relationship

for

an

identity

relationship

belonging

to

the

specified

parent.

Syntax

void

deleteMyChildren(String

parentChildRelDefName,

String

parentParticpntDefName,

BusObj

parentBusObj,

String

childParticpntDefName,

Object

childBusObjList,

CxExecutionContext

map_ctx)

void

deleteMyChildren(String

parentChildRefDefName,

String

parentParticpntDefName,

BusObj

parentBusObj,

String

childParticpntDefName,

CxExecutionContext

map_ctx)

Parameters

parentChildRelDefName

The

name

of

the

parent/child

relationship

definition.

parentParticpntDefName

The

name

of

the

participant

definition

that

represents

the

parent

business

object

in

the

parent/child

relationship.

parentBusObj

The

variable

that

contains

the

parent

business

object.

childParticpntDefName

The

name

of

the

participant

definition

that

represents

the

child

business

object

in

the

parent/child

relationship.

childBusObjList

The

variable

that

contains

child

business

object

or

objects

to

be

deleted

from

the

relationship.

This

parameter

can

be

either

a

single

generic

business

object

(BusObj)

or

an

array

of

generic

business

objects

(BusObjArray).

map_ctx

The

map

execution

context.

To

pass

the

map

execution

context,

use

the

cwExecCtx

variable,

which

Map

Designer

Express

defines

for

every

map.

Return

values

None.

Exceptions

RelationshipRuntimeException

Notes

The

deleteMyChildren()

method

deletes

child

instances

from

a

parent/child

parentChildRelDefName

relationship

definition.

It

supports

the

following

forms:

v

The

first

form

of

the

method

removes

from

the

relationship

tables

for

the

parent

and

child

participants

those

child

instances

that

correspond

to

each

of

the

child

Chapter

20.

IdentityRelationship

class

347

business

objects

in

childBusObjList.

It

locates

a

child

instance

to

delete

by

matching

the

child

object’s

value

and

name,

as

well

as

the

parent

object’s

value

and

name.

v

The

second

form

of

the

method

removes

from

relationship

tables

for

the

parent

and

child

participants

all

child

instances

for

the

parentBusObj

parent

object.

It

locates

the

child

instance

to

delete

by

matching

the

parent

object’s

value

and

name.

This

method

is

useful

in

a

custom

relationship

involving

a

parent

business

object

with

a

unique

key.

When

a

parent

business

object

has

removed

child

objects,

use

deleteMyChildren()

to

compare

the

after-image

(in

parentBusObj)

with

the

before-image

(information

in

the

relationship

tables)

to

determine

which

child

objects

in

the

after-image

have

been

removed.

For

each

child

object,

deleteMyChildren()

removes

the

corresponding

child

instance

from

the

relationship

tables

for

the

parent

and

child

participants

(parentParticpntDefName

and

childParticpntDefName,

respectively).

The

deleteMyChildren()

method

requires

that

a

parent/child

relationship

be

defined

with

Relationship

Designer

Express.

For

information

on

how

to

create

this

kind

of

relationship,

see

“Creating

the

parent/child

relationship

definition”

on

page

208..

See

also

addMyChildren(),

updateMyChildren()

“Managing

child

instances”

on

page

207

foreignKeyLookup()

Performs

a

lookup

in

a

foreign

relationship

table

based

on

the

foreign

key

of

the

source

business

object,

failing

to

find

a

relationship

instance

if

the

foreign

key

does

not

exist

in

the

foreign

relationship

table.

Syntax

public

static

void

foreignKeyLookup(String

relDefName,

String

appParticpntDefName,

BusObj

appSpecificBusObj,

String

appForeignAttr,

BusObj

genericBusObj,

String

genForeignAttr,

CwExecutionContext

map_ctx)

Parameters

relDefName

The

name

of

the

simple

identity

relationship

that

manages

the

foreign

business

object.

appParticpntDefName

The

name

of

the

participant

definition

that

represents

the

application-specific

business

object

in

the

simple

identity

relationship.

The

type

of

this

participant

is

the

foreign

application-specific

business

object.

appSpecificBusObj

The

variable

that

contains

the

application-specific

business

object,

which

contains

the

reference

to

the

foreign

business

object.

348

Map

Development

Guide

appForeignAttr

The

name

of

the

attribute

in

the

application-specific

business

object

that

contains

a

key

value

for

the

foreign

business

object.

genericBusObj

The

variable

that

contains

the

generic

business

object

to

or

from

which

the

appSpecificObject

is

being

mapped.

genForeignAttr

The

name

of

the

attribute

name

in

the

generic

business

object

that

contains

the

generic

reference

to

a

foreign

business

object.

map_ctx

The

map

execution

context.

To

pass

the

map

execution

context,

use

the

cwExecCtx

variable,

which

Map

Designer

Express

defines

for

every

map.

Return

values

None.

Exceptions

RelationshipRuntimeException

Notes

The

foreignKeyLookup()

method

performs

a

foreign

key

lookup

on

the

relationship

table

for

the

AppParticpntDefName

participant;

that

is,

it

checks

the

foreign

relationship

table

for

a

relationship

instance

that

matches

the

value

in

the

foreign

key

of

the

appSpecificBusObj

business

object.

If

this

lookup

fails,

the

foreignKeyLookup()

method

just

sets

the

foreign

key

in

the

destination

business

object

to

null;

it

does

not

insert

a

row

in

the

foreign

relationship

table

(as

the

foreignKeyXref()

method

does).

This

method

can

be

used

in

both

inbound

and

outbound

maps.

Examples

On

the

Clarify_PartRequest

to

Requisition

object,

the

VendorId

field

is

a

foreign

key

lookup.

This

is

because

Purchasing

does

not

call

Vendor

Wrapper.

We

do

not

use

the

foreignKeyXref()

method

here

because

we

do

not

want

to

insert

a

row

if

the

lookup

fails.

if

(ObjCustomerRole.isNull("RoleId"))

{

logError(5003,

"OrderAssociatedCustomers.RoleId");

//

throw

new

MapFailureException("OrderAssociatedCustomers.RoleId

//

is

null");

}

try

{

IdentityRelationship.foreignKeyLookup("Customer",

"SAPCust",

ObjSAP_OrderPartners,

"PartnerId",

ObjCustomerRole,

"RoleId",

cwExecCtx);

}

catch

(RelationshipRuntimeException

re)

{

logWarning(re.getMessage());

}

if

(ObjSAP_OrderPartners.get("PartnerId")

==

null)

{

logError(5007,

"SAP_OrderPartners.PartnerId",

Chapter

20.

IdentityRelationship

class

349

"OrderAssociatedCustomers.RoleId",

"Customer",

"SAPCust",

strInitiator);

throw

new

MapFailureException("ForeignKeyLookup

failed");

}

See

also

foreignKeyXref()

“Performing

foreign

key

lookups”

on

page

216

foreignKeyXref()

Performs

a

lookup

in

the

relationship

table

in

the

relationship

database

based

on

the

foreign

key

of

the

source

business

object,

adding

a

new

relationship

instance

in

the

foreign

relationship

table

if

the

foreign

key

does

not

exist.

Syntax

public

static

void

foreignKeyXref(String

relDefName,

String

appParticpntDefName,

String

genParticpntDefName,

BusObj

appSpecificBusObj,

String

appForeignAttr,

BusObj

genericBusObj,

String

genForeignAttr,

CxExecutionContext

map_ctx)

Parameters

relDefName

The

name

of

the

simple

identity

relationship

name

that

manages

the

foreign

business

object.

appParticpntDefName

The

name

of

the

participant

definition

for

the

application-specific

business

object

in

the

simple

identity

relationship.

The

type

of

this

participant

is

the

foreign

application-specific

business

object.

genParticpntDefName

The

name

of

the

participant

definition

for

the

generic

business

object

in

the

simple

identity

relationship.

The

type

of

this

participant

is

the

foreign

generic

business

object.

appSpecificBusbj

The

application-specific

business

object

that

contains

the

reference

to

the

foreign

object.

appForeignAttr

The

name

of

the

attribute

in

the

application-specific

business

object

that

contains

a

key

value

for

the

foreign

business

object.

genericObject

The

generic

business

object

to

or

from

which

the

appSpecificObject

is

being

mapped.

genForeignAttr

The

name

of

the

attribute

name

in

the

generic

business

object

that

contains

the

generic

reference

to

a

foreign

business

object.

map_ctx

The

map

execution

context.

To

pass

the

map

execution

context,

use

the

cwExecCtx

variable,

which

Map

Designer

Express

defines

for

every

map.

Return

values

None.

350

Map

Development

Guide

Exceptions

RelationshipRuntimeException

Notes

The

foreignKeyXref()

method

performs

a

foreign

key

lookup

on

the

relationship

table

for

the

AppParticpntDefName

participant;

that

is,

it

checks

the

foreign

relationship

table

for

a

relationship

instance

that

matches

the

value

in

the

foreign

key

of

the

appSpecificBusObj

business

object.

If

this

lookup

fails,

the

foreignKeyXref()

method

adds

a

new

relationship

instance

for

the

application-specific

key

to

the

foreign

relationship

table;

it

does

not

just

set

the

foreign

key

in

the

destination

business

object

to

null

(as

the

foreignKeyLookup()

method

does).

This

method

can

be

used

in

both

inbound

and

outbound

maps.

The

foreignKeyXref()

method

performs

the

following

validations

on

arguments

that

are

passed

in:

v

Validate

the

name

of

the

relDefName

relationship

definition.

v

Validate

the

name

of

the

particpntDefName

participant

definition

for

the

application-specific

business

object.

v

Make

sure

that

the

relDefName

relationship

is

an

identity

relationship.

In

addition,

the

participant

definition

in

relDefName

that

represents

the

generic

business

object

must

be

defined

as

IBM

WebSphere

InterChange

Server

Express-managed.

For

more

information

on

how

to

specify

these

settings,

see

“Defining

identity

relationships”

on

page

174..

If

any

of

these

validations

fails,

foreignKeyXref()

throws

the

RelationshipRuntimeException

exception.

Once

the

arguments

are

validated,

the

action

that

foreignKeyXref()

takes

depends

on

the

following

information:

v

The

calling

context—in

the

map

execution

context,

passed

in

as

part

of

the

map_ctx

argument

(cwExecCtx)

v

The

verb—in

the

source

business

object

–

Application-specific

business

object

(appSpecificBusObj)

for

calling

contexts

EVENT_DELIVERY

(or

ACCESS_REQUEST)

and

SERVICE_CALL_RESPONSE

–

Generic

business

object

(genericBusObj)

for

calling

contexts

SERVICE_CALL_REQUEST

and

ACCESS_RESPONSE

The

foreignKeyXref()

method

handles

all

of

the

basic

adding

of

relationship

instances

in

the

foreign

relationship

table

for

the

appropriate

combination

of

calling

context

and

verb.

For

more

information

on

the

actions

that

foreignKeyXref()

takes,

see

“Using

the

Foreign

Key

Cross-Reference

function

block”

on

page

217..

Table

89

and

Table

90

provide

the

actions

for

each

of

the

calling

contexts.

Examples

On

the

Clarify_SFAQuote

to

Order

map,

the

CustomerId

field

is

a

foreign

key

lookup.

This

is

because

Sales

Order

Processing

Collab

calls

Customer

Wrapper.

if

(ObjSAP_OrderLineItem.get("SAP_OrderLineObjectIdentifier[0]")

!=

null)

{

if

(ObjSAP_OrderLineItem.getString(

"SAP_OrderLineObjectIdentifier[0].ObjectQualifier").equals("002"))

{

BusObj

temp

=

ObjSAP_OrderLineItem.getBusObj(

Chapter

20.

IdentityRelationship

class

351

"SAP_OrderLineObjectIdentifier[0]");

if

(temp.isNull("ItemId"))

{

logWarning(5003,

"SAP_OrderLineItem.SAP_OrderLineObjectIdentifier[1].ItemId");

}

else

{

try

{

IdentityRelationship.foreignKeyXref(

"Item",

"SAPMbasc",

"CWItba",

temp,

"ItemId",

ObjOrderLineItem,

"ItemId",

cwExecCtx);

}

catch

(RelationshipRuntimeException

re)

{

logWarning(re.getMessage());

}

if

(ObjOrderLineItem.get("ItemId")

==

null

)

{

logError(5009,

"OrderLineItem.ItemId",

"SAP_OrderLineItem.SAP_OrderLineObjectIdentifier.ItemId",

"Item",

"SAPMbasc",

strInitiator);

throw

new

MapFailureException("ForeignKeyXref()

failed");

}

}

}

}

See

also

foreignKeyLookup()

“Performing

foreign

key

lookups”

on

page

216

maintainChildVerb()

Sets

the

child

business

object

verb

based

on

the

map

execution

context

and

the

verb

of

the

parent

business

object.

Syntax

public

static

void

maintainChildVerb

(String

relDefName,

String

appSpecificParticpntName,

String

genericParticpntName,

BusObj

appSpecificObj,

String

appSpecificChildObj,

BusObj

genericObj,

String

genericChildObj,

CxExecutionContext

map_ctx,

boolean

to_Retrieve,

boolean

is_Composite)

352

Map

Development

Guide

Parameters

relDefName

The

name

of

the

identity

relationship

name

that

manages

the

child

business

object.

appSpecificParticpntName

The

name

of

the

application-specific

participant

definition.

genericParticpntName

The

name

of

the

generic

participant

definition.

appSpecificObj

The

application-specific

object

that

contains

the

child

object.

appSpecificChildObj

The

name

of

the

application

child

business

object.

genericObj

The

generic

business

object

to

or

from

which

the

appSpecificObject

is

being

mapped.

genericChildObj

The

name

of

the

generic

child

business

object.

ctx

The

execution

context.

to_Retrieve

The

flag

for

the

SERVICE_CALL_RESPONSE

logic.

When

the

condition

is

true,

update

the

verbs

of

the

child

business

objects.

If

false,

do

nothing.

isComposite

The

flag

that

indicates

whether

the

child

participant

uses

composite

keys.

If

the

condition

is

true,

keys

are

used;

if

false,

keys

are

not

used.

Return

values

None.

Exceptions

RelationshipRuntimeException—see

the

Notes

section

for

more

information

on

when

this

exception

is

thrown

ClassCastException

Notes

The

maintainChildVerb()

method

performs

the

following

validations

on

arguments

that

are

passed

in:

v

Validate

the

name

of

the

relDefName

relationship

definition.

v

Validate

the

name

of

the

participant

definitions

for

the

application-specific

business

object

(appSpecificParticpntName)

and

the

generic

business

object

(genericParticpntName).

v

Make

sure

that

the

application-specific

(appSpecificObject)

and

generic

business

objects

(genericObject)

are

not

null.

v

Make

sure

that

the

relDefName

relationship

is

an

identity

relationship.

In

addition,

the

participant

definition

in

relDefName

that

represents

the

generic

business

object

must

be

defined

as

IBM

WebSphere

InterChange

Server

Express-managed.

For

more

information

on

how

to

specify

these

settings,

see

“Defining

identity

relationships”

on

page

174.

Chapter

20.

IdentityRelationship

class

353

If

any

of

these

validations

fails,

maintainChildVerb()

throws

the

RelationshipRuntimeException

exception.

Once

the

arguments

are

validated,

the

action

that

maintainChildVerb()

takes

depends

on

the

following

information:

v

The

calling

context—in

the

map

execution

context,

passed

in

as

part

of

the

map_ctx

argument

(cwExecCtx)

v

The

verb—in

the

source

business

object

–

Application-specific

business

object

(appSpecificObj)

for

calling

contexts

EVENT_DELIVERY

(or

ACCESS_REQUEST)

and

SERVICE_CALL_RESPONSE

–

Generic

business

object

(genericObj)

for

calling

context

SERVICE_CALL_REQUEST

For

more

information

on

the

actions

that

maintainChildVerb()

takes,

see

“Determining

the

child

verb

setting”

on

page

213.

Table

84

through

Table

87

provide

the

actions

for

each

of

the

calling

contexts.

You

call

this

method

in

the

transformation

step

for

the

child

attribute

of

a

parent

object.

This

child

object

can

participant

in

either

v

In

the

transformation

step

for

the

key

attribute

of

a

submap

that

transforms

child

business

objects

if

the

child

business

objects

are

related

using

a

unique

key.

You

usually

use

maintainChildVerb()

to

set

the

verb

of

a

child

object

that

participates

in

a

composite

identity

relationship

(maintainCompositeRelationship()).

However,

you

can

also

call

it

to

set

the

verb

of

a

child

object

that

participates

in

a

simple

identity

relationship

(maintainSimpleIdentityRelationship()).

Examples

For

an

example

involving

maintainChildVerb(),

see

“Customizing

map

rules

for

a

composite

identity

relationship”

on

page

204.

See

also

maintainCompositeRelationship(),

maintainSimpleIdentityRelationship()

“Setting

the

source

child

verb”

on

page

213

maintainCompositeRelationship()

Maintains

a

composite

identity

relationship

from

within

the

parent

map.

Syntax

public

static

void

maintainCompositeRelationship(String

relDefName,

String

particpntDefName,

BusObj

appSpecificBusObj,

Object

genericBusObjList,

CxExecutionContext

map_ctx)

Parameters

relDefName

The

name

of

the

composite

identity

relationship

(as

defined

in

Relationship

Designer

Express)

in

which

the

parent

attribute

participates.

particpntDefName

The

name

of

the

participant

that

includes

the

composite

key.

This

participant

is

always

application-specific.

354

Map

Development

Guide

appSpecificBusObj

The

variable

that

contains

the

application-specific

business

object

used

in

this

map.

This

business

object

is

the

parent

business

object.

genericBusObjList

The

variable

that

contains

the

generic

business

object

or

objects

used

in

this

map,

each

generic

business

object

is

a

contained

child

business

object

of

the

generic

parent

object.

This

parameter

can

be

either

a

single

generic

business

object

(BusObj)

or

an

array

of

generic

business

objects

(BusObjArray).

map_ctx

The

map

execution

context.

To

pass

the

map

execution

context,

use

the

cwExecCtx

variable,

which

Map

Designer

Express

defines

for

every

map.

Return

values

None.

Exceptions

RelationshipRuntimeException

CxMissingIDException

If

a

participant

does

not

exist

in

the

relationship

tables

during

a

map

execution

with

a

verb

of

Retrieve

and

an

calling

context

of

SERVICE_CALL_REQUEST.

The

connector

sends

a

“service

call

request

failed”

message

to

the

collaboration

without

sending

the

business

object

to

the

application.

Notes

The

maintainCompositeRelationship()

method

maintains

the

relationship

table

associated

with

the

particpntDefName

participant

of

the

relDefName

composite

identity

relationship.

This

method

maintains

a

relationship

whose

participant

uses

keys

from

multiple

business

objects

at

different

levels

(a

composite

key).

Note:

The

maintainCompositeRelationship()

method

cannot

handle

the

case

where

the

child’s

composite

key

depends

on

its

grandparents.

For

more

information,

see

“Actions

of

General/APIs/Identity

Relationship/Maintain

Composite

Relationship”

on

page

203.

This

method

iterates

through

all

the

child

business

objects

in

the

appSpecificObj

parent

business

object,

maintaining

the

relationship

instances

in

the

partDefName

participant’s

relationship

table.

The

method

obtains

the

relationship

instance

IDs

from

the

array

of

generic

business

objects

that

it

receives

(genericObjs).

For

each

child

instance,

maintainCompositeRelationship()

calls

the

maintainSimpleIdentityRelationship()

method

to

perform

the

actual

relationship-table

management.

The

action

that

maintainSimpleIdentityRelationship()

takes

depends

on

the

following

information:

v

The

calling

context—in

the

map

execution

context,

passed

in

as

part

of

the

map_ctx

argument

(cwExecCtx)

v

The

verb—in

the

source

business

object,

which

is

either:

–

Application-specific

business

object

(appSpecificBusObj)

for

calling

contexts

EVENT_DELIVERY

(or

ACCESS_REQUEST)

and

SERVICE_CALL_RESPONSE

–

Generic

business

object

(one

element

of

the

genericBusObjList

array)

for

calling

contexts

SERVICE_CALL_REQUEST

and

ACCESS_RESPONSE

Chapter

20.

IdentityRelationship

class

355

For

more

information

on

the

actions

that

maintainSimpleIdentityRelationship()

takes,

see

“Accessing

identity

relationship

tables”

on

page

191.

Table

74

through

Table

78

provide

the

actions

for

each

of

the

calling

contexts.

Use

maintainCompositeRelationship()

in

conjunction

with

the

maintainChildVerb()

and

updateMyChildren()

methods

to

maintain

a

composite

relationship.

For

more

information,

see

“Customizing

map

rules

for

a

composite

identity

relationship”

on

page

204.

Examples

//

This

is

an

example

of

a

code

fragment

in

a

parent

map.

It

maintains

//

the

relationship

table

for

all

instances

of

a

child

object

type

for

//

this

application-specific

parent

object.

BusObjArray

secondLevel2

=

(BusObjArray)ObjFirstLevelBusObj2.get("MultiCardChild");

IdentityRelationship.maintainCompositeRelationship(

"CmposRel",

"AppSpPrt",

ObjFirstLevelBusObj2,

secondLevel2,

cwExecCtx);

IdentityRelationship.updateMyChildren(

"PCRel",

"Parent",

ObjFirstLevelBusObj2,

"Child",

"MultiCardChild",

"CmposRel",

"AppSpPrt",

cwExecCtx);

For

more

examples

involving

maintainCompositeRelationship(),

see

“Customizing

map

rules

for

a

composite

identity

relationship”

on

page

204.

See

also

updateMyChildren(),

maintainChildVerb(),

maintainSimpleIdentityRelationship()

“Using

composite

identity

relationships”

on

page

202

maintainSimpleIdentityRelationship()

Maintains

a

simple

identity

relationship

from

within

either

a

parent

or

child

map.

Syntax

public

static

void

maintainSimpleIdentityRelationship(

String

relDefName,

String

particpntDefName,

BusObj

appSpecificBusObj,

BusObj

genericBusObj,

CxExecutionContext

map_ctx)

Parameters

relDefName

The

name

of

the

simple

identity

relationship

(as

defined

in

Relationship

Designer

Express)

in

which

this

attribute

participates.

356

Map

Development

Guide

particpntDefName

The

name

of

the

participant

definition

that

represents

the

application-specific

business

object.

appSpecificBusObj

The

variable

that

contains

the

application-specific

business

object

used

in

this

map.

genericBusObj

The

variable

that

contains

the

generic

business

object

used

in

this

map.

map_ctx

The

map

execution

context.

To

pass

the

map

execution

context,

use

the

cwExecCtx

variable,

which

Map

Designer

Express

defines

for

every

map.

Return

values

None.

Exceptions

RelationshipRuntimeException

see

the

Notes

section

for

more

information

on

when

this

exception

is

thrown.

CxMissingIDException

If

a

participant

does

not

exist

in

the

relationship

tables

during

a

map

execution

with

a

verb

of

Retrieve

and

an

calling

context

of

SERVICE_CALL_REQUEST.

The

connector

sends

a

“service

call

request

failed”

message

to

the

collaboration

without

sending

the

business

object

to

the

application.

Notes

The

maintainSimpleIdentityRelationship()

method

maintains

the

relationship

table

associated

with

the

particpntDefName

participant

of

the

relDefName

simple

identity

relationship.

This

method

maintains

a

relationship

whose

participant

uses

unique

keys

from

multiple

business

objects

at

the

same

level.

The

maintainSimpleIdentityRelationship()

method

performs

the

following

validations

on

arguments

that

are

passed

in:

v

Validate

the

name

of

the

relDefName

relationship

definition.

v

Validate

the

name

of

the

particpntDefName

participant

definition

for

the

application-specific

business

object.

v

Make

sure

that

the

application-specific

(appSpecificBusObj)

and

generic

business

objects

(genericBusObj)

are

not

null.

v

Make

sure

that

the

relDefName

relationship

is

an

identity

relationship.

In

addition,

the

participant

definition

in

relDefName

that

represents

the

generic

business

object

must

be

defined

as

IBM

WebSphere

InterChange

Server

Express-managed.

For

more

information

on

how

to

specify

these

settings,

see

“Defining

identity

relationships”

on

page

174.

v

Make

sure

the

calling

context

is

valid

(see

Table

73

for

a

list

of

valid

calling

contexts).

v

Make

sure

that

the

application-specific

business

object’s

verb

is

supported.

It

must

be

one

of

the

following:

Create,

Update,

Delete,

Retrieve.

If

any

of

these

validations

fails,

maintainSimpleIdentityRelationship()

throws

the

RelationshipRuntimeException

exception.

Chapter

20.

IdentityRelationship

class

357

Once

the

arguments

are

validated,

the

action

that

maintainSimpleIdentityRelationship()

takes

depends

on

the

following

information:

v

The

calling

context—in

the

map

execution

context,

passed

in

as

part

of

the

map_ctx

argument

(cwExecCtx)

v

The

verb—in

the

source

business

object

–

Application-specific

business

object

(appSpecificBusObj)

for

calling

contexts

EVENT_DELIVERY

(or

ACCESS_REQUEST)

and

SERVICE_CALL_RESPONSE

–

Generic

business

object

(genericBusObj)

for

calling

contexts

SERVICE_CALL_REQUEST

and

ACCESS_RESPONSE

The

maintainSimpleIdentityRelationship()

method

handles

all

of

the

basic

adding

and

deleting

of

participants

and

relationship

instances

for

each

combination

of

calling

context

and

verb.

For

more

information

on

the

actions

that

maintainSimpleIdentityRelationship()

takes,

see

“Accessing

identity

relationship

tables”

on

page

191.

Table

74

through

Table

78

provide

the

actions

for

each

of

the

calling

contexts.

You

can

call

this

method

in

either

of

the

following

cases:

v

In

the

transformation

step

for

the

key

attribute

of

a

parent

object

v

In

the

transformation

step

for

the

key

attribute

of

a

submap

that

transforms

child

business

objects

if

the

child

business

objects

are

related

using

a

unique

key.

Use

maintainSimpleIdentityRelationship()

in

conjunction

with

the

maintainChildVerb()

method

to

maintain

a

simple

identity

relationship.

For

more

information,

see

“Defining

transformation

rules

for

a

simple

identity

relationship”

on

page

201.

Examples

The

following

example

maintains

the

simple

identity

relationship

between

the

Clarify_BusOrg

and

generic

Customer

business

objects

in

an

inbound

Clarify_BusOrg-to-Customer

map:

IdentityRelationship.maintainSimpleIdentityRelationship(

"CustIdentity",

"ClarBusOrg",

ObjClarify_BusOrg,

ObjCustomer,

cxExecCtx);

For

more

examples

involving

maintainSimpleIdentityRelationship(),

see

“Defining

transformation

rules

for

a

simple

identity

relationship”

on

page

201.

See

also

maintainChildVerb()

“Using

simple

identity

relationships”

on

page

191

updateMyChildren()

Adds

and

deletes

child

instances

in

a

specified

parent/child

relationship

of

an

identity

relationship

as

necessary.

358

Map

Development

Guide

Syntax

void

updateMyChildren(String

parentChildRelDefName,

String

parentParticpntDef,

BusObj

parentBusObj,

String

childParticpntDef,

String

childAttrName,

String

childIdentityRelDefName,

String

childIdentityParticpntDefName,

CxExecutionContext

map_ctx)

Parameters

parentChildRelDefName

The

name

of

the

parent/child

relationship

definition.

parentParticpntDefName

The

name

of

the

participant

definition

that

represents

the

parent

business

object

in

the

parent/child

relationship.

parentBusObj

The

variable

that

contains

the

parent

business

object.

childParticpntDefName

The

name

of

the

participant

definition

that

represents

the

child

business

object

in

the

parent/child

relationship.

childAttrName

The

name

of

the

attribute

in

the

parent

business

object

whose

type

is

the

child

object

name

that

participates

in

the

parent/child

relationship.

For

example,

in

a

customer-address

relationship,

if

the

parent

object

contains

an

Address1

attribute,

which

is

a

child

business

object

of

type

Address,

the

childAttrName

attribute

name

is

Address1.

childIdentityRelDefName

The

name

of

the

identity

relationship

in

which

the

child

business

object

participates.

childIdentityParticpntDefName

The

name

of

the

participant

definition

that

represents

the

child

business

object

in

the

identity

relationship.

map_ctx

The

map

execution

context.

To

pass

the

map

execution

context,

use

the

cwExecCtx

variable,

which

Map

Designer

Express

defines

for

every

map.

Return

values

None.

Exceptions

RelationshipRuntimeException

see

the

Notes

section

for

more

information

on

when

this

exception

is

thrown

Notes

The

updateMyChildren()

method

updates

the

child

instances

in

the

relationship

tables

of

the

parentChildRelDefName

and

childIdentityRelDefName

relationship

definitions.

This

method

is

useful

in

an

identity

relationship

when

a

parent

business

object

has

been

updated

as

a

result

of

the

addition

or

removal

of

child

objects.

Use

updateMyChildren()

to

compare

the

after-image

(in

parentBusObj)

with

the

before-image

(information

in

the

relationship

tables)

to

determine

which

child

objects

in

the

after-image

are

new

or

deleted.

Chapter

20.

IdentityRelationship

class

359

Note:

The

updateMyChildren()

method

cannot

handle

the

case

where

the

child’s

composite

key

depends

on

its

grandparents.

For

more

information,

see

“Tips

on

using

Update

My

Children”

on

page

209.

The

updateMyChildren()

method

performs

the

following

validations

on

arguments

that

are

passed

in:

v

Validate

the

name

of

the

parentChildrelDefName

relationship

definition

(first

argument).

v

Make

sure

that

the

parentChildRelDefName

relationship

is

a

parent/child

relationship

and

that

the

parentParticpntDefName

and

childParticpntDefName

are

part

of

the

parentChildRefDefName

relationship

definition.

v

Make

sure

that

the

childIdentityRelDefName

relationship

is

an

identity

relationship.

In

addition,

the

participant

definition

in

childIdentityRelDefName

that

represents

the

generic

business

object

must

be

defined

as

IBM

WebSphere

InterChange

Server

Express-

managed.

For

more

information

on

how

to

specify

these

settings,

see

“Defining

identity

relationships”

on

page

174.

v

Make

sure

that

the

childIdentityParticpntDefName

is

part

of

the

childIdentityRefDefName

relationship

definition

If

any

of

these

validations

fails,

updateMyChildren()

throws

the

RelationshipRuntimeException

exception.

Once

the

arguments

are

validated,

the

updateMyChildren()

method

adds

children

or

deletes

children

from

the

list

of

child

business

objects

that

belong

to

the

specified

parent

business

object

as

appropriate.

This

method

performs

one

of

the

following

tasks

to

the

relationship

tables

for

the

parent

and

child

participants

(parentParticpntDefName

and

childParticpntDefName,

respectively):

v

For

each

new

child

object,

updateMyChildren()

adds

a

child

instance.

This

method

does

not

add

to

the

child’s

relationship

table

because

all

the

business

objects

that

are

currently

associated

with

the

parent

object

have

already

been

maintained

when

maintainCompositeRelationship()

was

called.

v

For

each

deleted

child

object,

updateMyChildren()

removes

the

corresponding

child

instance.

This

method

removes

from

the

child’s

cross-reference

table

in

addition

to

the

parent/child

relationship

table.

The

updateMyChildren()

method

requires

that

a

parent/child

relationship

is

defined

with

Relationship

Designer

Express.

For

information

on

how

to

create

this

kind

of

relationship,

see

“Creating

the

parent/child

relationship

definition”

on

page

208.

Note:

If

the

child

business

object

has

a

unique

key,

the

child

participant’s

attribute

is

the

unique

key

of

the

child

object.

If

the

child

object

does

not

have

a

unique

key,

the

child

participant’s

attribute

is

this

nonunique

key.

Examples

For

an

example

involving

updateMyChildren()

in

conjunction

with

the

maintainCompositeRelationship()

method,

see

the

Examples

section

of

maintainCompositeRelationship().

For

more

examples

involving

updateMyChildren(),

see

“Customizing

map

rules

for

a

composite

identity

relationship”

on

page

204.

360

Map

Development

Guide

See

also

addMyChildren(),

deleteMyChildren(),

maintainCompositeRelationship(),

maintainSimpleIdentityRelationship()

“Handling

updates

to

the

parent

business

object”

on

page

209

Chapter

20.

IdentityRelationship

class

361

362

Map

Development

Guide

Chapter

21.

MapExeContext

class

The

MapExeContext

class

provides

methods

for

querying

and

setting

various

runtime

values

that

are

in

effect

during

map

execution.

Table

106

summarizes

the

methods

of

the

MapExeContext

class.

Table

106.

MapExeContext

method

summary

Method

Description

Page

getConnName()

Retrieves

the

connector

name

associated

with

the

current

map

instance.

363

getInitiator()

Retrieves

the

calling

context

associated

with

the

current

map

instance.

363

getLocale()

Retrieves

the

locale

associated

with

the

map

execution

context.

364

getOriginalRequestBO()

Retrieves

the

original-request

business

object

associated

with

the

current

map

instance.

365

setConnName()

Sets

the

connector

name

associated

with

the

current

map

instance.

366

setInitiator()

Sets

the

calling

context

associated

with

the

current

map

instance.

366

setLocale()

Sets

the

locale

associated

with

the

map

execution

context.

366

getConnName()

Retrieves

the

connector

name

associated

with

the

current

map

instance.

Syntax

String

getConnName()

Parameters

None.

Return

values

Returns

a

String

containing

the

connector

name.

Exceptions

None.

See

also

setConnName()

getInitiator()

Retrieves

the

calling

context

associated

with

the

current

map

instance.

Syntax

String

getInitiator()

©

Copyright

IBM

Corp.

2003

363

Parameters

None.

Return

values

Returns

a

static

constant

variable

representing

the

calling

context

for

the

execution

of

the

current

map

instance.

Calling

contexts

are

one

of

the

following

values:

EVENT_DELIVERY

The

source

business

objects

being

mapped

are

sent

from

an

application

to

InterChange

Server

Express

through

a

connector.

ACCESS_REQUEST

The

source

objects

being

mapped

are

sent

from

an

application

to

InterChange

Server

Express

through

an

access

client.

SERVICE_CALL_REQUEST

The

source

objects

being

mapped

are

sent

from

InterChange

Server

Express

to

an

application

through

a

connector.

SERVICE_CALL_RESPONSE

The

source

objects

being

mapped

are

sent

back

to

InterChange

Server

Express

from

an

application

through

a

connector

after

a

successful

service

call

request.

SERVICE_CALL_FAILURE

The

source

objects

being

mapped

are

sent

back

to

InterChange

Server

Express

from

an

application

through

a

connector

after

a

failed

service

call

request.

ACCESS_RESPONSE

The

source

objects

being

mapped

are

sent

back

from

InterChange

Server

Express

to

the

application

through

an

access

client.

Exceptions

None.

Notes

The

calling

context

is

part

of

the

map

execution

context.

For

more

information

on

how

calling

contexts

are

used

in

maps,

see

“Understanding

map

execution

contexts”

on

page

146.

Examples

In

the

following

example,

compare

the

map

run-time

initiator

with

the

constants

defined

in

the

MapExeContext

class:

String

sInitiator

=

null;

sInitiator

=

cwMapCtx.getInitiator();

if(sInitiator.equals(MapExeContext.EVENT_DELIVERY))

logInfo("**************Initiator

=

MapExeContext.EVENT_DELIVERY.");

See

also

getOriginalRequestBO(),

setInitiator()

getLocale()

Retrieves

the

locale

associated

with

the

map

execution

context.

364

Map

Development

Guide

Syntax

Locale

getLocale()

Parameters

None.

Return

values

Returns

a

Locale

object

that

contains

the

language

and

country

code

for

the

map

execution

context.

Exceptions

None.

Notes

This

method

must

be

run

on

the

map

variable

of

MapExeContext

type,

which

is

named

cwMapCtx

when

generated

by

the

system,

or

which

you

name

when

calling

a

map

in

an

environment

that

does

not

automatically

generate

map

code

(such

as

within

a

collaboration).

Examples

The

following

example

retrieves

the

locale

of

the

map

execution

context

into

a

variable

and

then

reports

it

with

a

trace

statement:

Locale

mapLocale

=

cwMapCtx.getLocale();

String

mapLocaleToString

=

mapLocale.toString();

trace(3,

"THE

MAP

LOCALE

IS:

"

+

mapLocaleToString);

See

also

setLocale()

getOriginalRequestBO()

Retrieves

the

original-request

business

object

associated

with

the

current

map

instance.

Syntax

BusObj

getOriginalRequestBO()

Parameters

None.

Return

values

Returns

the

original-request

business

object

for

the

map,

as

the

following

table

shows:

Calling

Contexts

Original-Request

Business

Object

EVENT_DELIVERY,

ACCESS_REQUEST

Application-specific

business

object

that

came

in

from

the

application

SERVICE_CALL_REQUEST,

SERVICE_CALL_FAILURE

Generic

business

object

that

was

sent

down

from

InterChange

Server

Express

SERVICE_CALL_RESPONSE

Generic

business

object

that

was

sent

down

by

the

SERVICE_CALL_REQUEST

Chapter

21.

MapExeContext

class

365

Calling

Contexts

Original-Request

Business

Object

ACCESS_RESPONSE

Application-specific

business

object

that

came

in

from

the

access

request

initially

Exceptions

None.

Notes

The

original-request

business

object

is

part

of

the

map

execution

context.

The

getOriginalRequestBO()

method

returns

the

original-request

business

object,

which

depends

on

the

map’s

calling

context.

For

more

information

on

how

this

business

object

is

used

in

maps,

see

“Original-request

business

objects”

on

page

148..

See

also

getInitiator()

setConnName()

Sets

the

connector

name

associated

with

the

current

map

instance.

Syntax

void

setConnName(String

connectorName)

Parameters

connectorName

Name

of

the

connector

Return

values

None.

Exceptions

None.

Notes

The

controller

for

the

connector

you

specify

must

be

running

in

InterChange

Server

Express.

See

also

getConnName()

setInitiator()

Sets

the

calling

context

associated

with

the

current

map

instance.

Syntax

void

setInitiator(String

callingContext)

366

Map

Development

Guide

Parameters

callingContext

String

containing

one

of

the

following

values:

EVENT_DELIVERY

The

source

objects

being

mapped

are

sent

from

an

application

through

a

connector

to

InterChange

Server

Express.

ACCESS_REQUEST

The

source

objects

being

mapped

are

sent

from

an

application

to

InterChange

Server

Express

through

an

access

client.

SERVICE_CALL_REQUEST

The

source

objects

being

mapped

are

sent

from

InterChange

Server

Express

to

an

application

through

a

connector.

SERVICE_CALL_RESPONSE

The

source

objects

being

mapped

are

sent

back

to

InterChange

Server

Express

from

an

application

through

a

connector

after

a

successful

service

call

request.

SERVICE_CALL_FAILURE

The

source

objects

being

mapped

are

sent

back

to

InterChange

Server

Express

from

an

application

through

a

connector

after

a

failed

service

call

request.

ACCESS_RESPONSE

The

source

objects

being

mapped

are

sent

back

from

InterChange

Server

Express

to

the

application

through

an

access

client.

Return

values

None.

Exceptions

None.

Notes

The

calling

context

is

part

of

the

map

execution

context.

The

calling

context

indicates

the

direction

in

which

the

source

business

object

is

being

mapped.

For

more

information

on

how

calling

contexts

are

used

in

maps,

see

“Understanding

map

execution

contexts”

on

page

146.

.

See

also

getInitiator()

setLocale()

Sets

the

locale

associated

with

the

map

execution

context.

Chapter

21.

MapExeContext

class

367

Syntax

void

setLocale(Locale

newLocale)

Parameters

newLocale

The

new

Locale

object

to

set

the

map

execution

context

to.

Return

values

None.

Exceptions

None.

Notes

This

method

must

be

run

on

the

map

variable

of

MapExeContext

type,

which

is

named

cwMapCtx

when

generated

by

the

system,

or

which

you

name

when

calling

a

map

in

an

environment

that

does

not

automatically

generate

map

code

(such

as

within

a

collaboration).

The

locale

of

the

business

object

produced

by

a

map

is

affected

by

the

local

of

the

map’s

execution

context.

If

you

change

the

locale

of

the

map

execution

context

as

part

of

the

map’s

logic,

therefore,

the

new

locale

is

copied

to

the

business

object.

This

is

done

when

the

user-modifiable

logic

is

finished

executing

(that

is,

when

the

transformations

visible

in

the

diagram

of

the

Map

Designer

Express

are

finished).

You

can

use

this

API

to

change

the

business

object

to

a

different

locale

than

the

one

it

had

when

it

entered

the

map.

Examples

The

code

below

defines

a

new

Locale

object,

sets

the

map

execution

context

to

that

new

Locale

value,

and

then

reports

the

map

execution

context

locale:

Locale

newLocale

=

new

Locale("ja",

"JP");

cwMapCtx.setLocale(newLocale);

trace(3,

"THE

MAP

LOCALE

IS

NOW:

"

+

cwMapCtx.getLocale().toString());

See

also

getLocale()

Deprecated

methods

Some

methods

in

the

MapExeContext

class

were

supported

in

earlier

versions

but

are

no

longer

supported.

These

deprecated

methods

will

not

generate

errors,

but

CrossWorlds

recommends

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

Table

107

lists

the

deprecated

method

for

the

MapExeContext

class.

If

you

have

not

used

Map

Designer

Express

before,

ignore

this

section.

Table

107.

Deprecated

Method,

MapExeContext

Class

Former

method

Replacement

getGenericBO()

getOriginalRequestBO()

368

Map

Development

Guide

Chapter

22.

Participant

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

Participant

class.

Participant

instances

are

used

in

relationship

instances.

Each

Participant

instance

contains

the

following

information:

v

name

of

the

relationship

definition

v

relationship

instance

ID

v

name

of

the

participant

definition

v

data

to

associate

with

the

participant

The

Participant

class

provides

methods

for

setting

and

retrieving

each

of

these

values

for

a

given

participant.

Table

108

summarizes

the

methods

of

the

Participant

class.

Table

108.

Participant

method

summary

Method

Description

Page

Participant()

Creates

a

new

Participant

instance.

369

getBusObj(),

getString(),

getLong(),

getInt(),

getDouble(),
getFloat(),

getBoolean()

Retrieves

the

data

associated

with

the

Participant

instance.

371

getInstanceId()

Retrieves

the

relationship

instance

ID

of

the

relationship

in

which

the

Participant

instance

is

participating.

371

getParticipantDefinition()

Retrieves

the

participant

definition

name

from

which

the

Participant

instance

is

created.

372

getRelationshipDefinition()

Retrieves

the

name

of

the

relationship

definition

in

which

the

Participant

instance

is

participating.

372

set()

Sets

the

data

associated

with

the

Participant

instance.

373

setInstanceId()

Sets

the

instance

ID

of

the

relationship

in

which

the

Participant

instance

is

participating.

373

setParticipantDefinition()

Sets

the

participant

definition

name

from

which

the

Participant

instance

is

created.

374

setRelationshipDefinition()

Sets

the

relationship

definition

in

which

the

Participant

instance

is

participating.

374

Participant()

Creates

a

new

Participant

instance.

©

Copyright

IBM

Corp.

2003

369

Syntax

To

add

a

new

participant

instance

to

an

existing

participant

in

a

relationship

instance:

Participant(String

relDefName,String

partDefName,

int

instanceId,BusObj

partData)

Participant(String

relDefName,String

partDefName,

int

instanceId,String

partData)

Participant(String

relDefName,String

partDefName,

int

instanceId,long

partData)

Participant(String

relDefName,String

partDefName,

int

instanceId,int

partData)

Participant(String

relDefName,String

partDefName,

int

instanceId,double

partData)

Participant(String

relDefName,String

partDefName,

int

instanceId,float

partData)

Participant(String

relDefName,String

partDefName,

int

instanceId,boolean

partData)

To

create

a

new

participant

instance

with

no

relationship

instance:

Participant(String

relDefName,String

partDefName,

BusObj

partData)

Participant(String

relDefName,String

partDefName,

String

partData)

Participant(String

relDefName,String

partDefName,

long

partData)

Participant(String

relDefName,String

partDefName,

int

partData)

Participant(String

relDefName,String

partDefName,

double

partData)

Participant(String

relDefName,String

partDefName,

float

partData)

Participant(String

relDefName,String

partDefName,

boolean

partData)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition

that

describes

the

participant.

instanceId

The

relationship

instance

ID

for

the

relationship

instance

to

receive

the

new

participant

instance.

participantData

Data

to

associate

with

the

participant

instance.

Can

be

one

of

the

following

data

types:

BusObj,

String,

long,

int,

double,

float,

boolean.

Return

values

Returns

new

participant

instance.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

Notes

This

method

is

the

Participant

class

constructor.

It

takes

the

following

forms:

v

The

first

form

of

the

constructor

adds

a

new

participant

instance

to

the

relationship

instance

identified

by

instanceId.

v

The

second

form

creates

a

new

participant

instance

with

no

associated

relationship

instance.

You

can

use

this

participant

instance

as

an

argument

to

IdentityRelationship.addMyChildren()

or

Relationship.create()

to

create

a

new

relationship

instance.

With

the

Relationship.create()

method,

having

no

relationship

instance

ID

is

a

requirement.

The

data

to

associate

with

the

participantData

parameter

depends

on

the

kind

of

relationship:

v

To

create

a

participant

instance

for

an

identity

relationship,

use

a

business

object

as

the

participantData

parameter.

370

Map

Development

Guide

v

To

create

a

participant

for

a

lookup

relationship,

use

any

of

the

following

data

types

for

the

participantData

parameter:

String,

long,

int,

double,

float,

boolean.

Examples

//

create

a

participant

instance

with

no

relationship

instance

ID

participant

p

=

new

Participant(myRelDef,myPartDef,myBusObj);

//

create

a

relationship

instance

int

relInstanceId

=

Relationship.addParticipant(p);

See

also

addMyChildren(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

getBusObj(),

getString(),

getLong(),

getInt(),

getDouble(),
getFloat(),

getBoolean()

Retrieves

the

data

associated

with

the

Participant

instance.

Syntax

BusObj

getBusObj()

String

getString()

long

getLong()

int

getInt()

double

getDouble()

float

getFloat()

boolean

getBoolean()

Return

values

Returns

the

data

associated

with

this

participant

instance.

This

data

value

is

of

the

type

included

in

the

method

name.

For

example,

getBoolean()

returns

a

boolean

value,

getBusObj()

returns

a

BusObj

value,

getDouble()

returns

a

double

value,

and

so

on.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

See

also

set(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

getInstanceId()

Retrieves

the

relationship

instance

ID

of

the

relationship

in

which

the

Participant

instance

is

participating.

Syntax

int

getInstanceId()

Chapter

22.

Participant

class

371

Return

values

Returns

an

integer

representing

the

instance

ID

of

the

relationship

instance

in

which

this

Participant

instance

is

participating.

If

the

Participant

instance

is

not

a

member

of

a

relationship

instance,

this

method

returns

the

constant,

INVALID_INSTANCE_ID.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

See

also

setInstanceId(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

getParticipantDefinition()

Retrieves

the

participant

definition

name

from

which

the

Participant

instance

is

created.

Syntax

String

getParticipantDefinition()

Return

values

Returns

a

String

containing

the

name

of

the

participant

definition

associated

with

this

participant

instance.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

See

also

setParticipantDefinition(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

getRelationshipDefinition()

Retrieves

the

name

of

the

relationship

definition

in

which

the

Participant

instance

is

participating.

Syntax

String

getRelationshipDefinition()

Return

values

Returns

a

String

containing

the

name

of

the

relationship

definition

in

which

this

participant

instance

participates.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

372

Map

Development

Guide

See

also

setRelationshipDefinition(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

set()

Sets

the

data

associated

with

the

Participant

instance.

Syntax

void

set(BusObj

partData)

void

set(String

partData)

void

set(long

partData)

void

set(int

partData)

void

set(double

partData)

void

set(float

partData)

void

set(boolean

partData)

Parameters

partData

Data

to

associate

with

the

Participant

instance.

Can

be

one

of

the

following

data

types:

BusObj,

String,

long,

int,

double,

float,

boolean.

Return

values

None.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

Notes

If

you

set

the

participant

data

to

be

a

business

object

(BusObj

type),

the

relationship

definition

and

participant

definition

must

already

be

set.

If

you

set

the

participant

data

to

any

other

data

type,

it

does

not

matter

which

setting

you

specify

first.

See

also

getBusObj(),

getString(),

getLong(),

getInt(),

getDouble(),
getFloat(),

getBoolean(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

setInstanceId()

Sets

the

instance

ID

of

the

relationship

in

which

the

Participant

instance

is

participating.

Syntax

void

setInstanceId(int

id)

Parameters

id

Instance

ID

of

the

relationship.

Chapter

22.

Participant

class

373

Return

values

None.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

Notes

One

use

of

setInstanceId()

is

to

remove

the

relationship

instance

ID

when

you

want

to

pass

a

participant

instance

as

a

parameter

to

the

Participant()

or

create()

methods.

In

this

case,

you

set

the

instance

ID

to

the

constant

INVALID_INSTANCE_ID.

Examples

//

wipe

out

the

relationship

instance

ID

myParticipant.setInstanceId(Participant.INVALID_INSTANCE_ID);

//

pass

the

participant

instance

to

the

create()

method

int

newRelId

=

create(myParticipant);

See

also

getInstanceId(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

setParticipantDefinition()

Sets

the

participant

definition

name

from

which

the

Participant

instance

is

created.

Syntax

void

setParticipantDefinition(String

partDefName)

Parameters

partDefName

Name

of

the

participant

definition

from

which

the

Participant

instance

is

created.

Return

values

None.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

See

also

setParticipantDefinition(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

setRelationshipDefinition()

Sets

the

relationship

definition

in

which

the

Participant

instance

is

participating.

374

Map

Development

Guide

Syntax

void

setRelationshipDefinition(String

relDefName)

Parameters

relDefName

Name

of

the

relationship

definition.

Return

values

None.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

See

also

getRelationshipDefinition(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

Chapter

22.

Participant

class

375

376

Map

Development

Guide

Chapter

23.

Relationship

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

IBM

WebSphere

InterChange

Server

Express-defined

class

Relationship.

The

Relationship

class

provides

methods

for

manipulating

the

runtime

instances

of

relationships,

called

relationship

instances.

You

typically

use

these

methods

in

transformation

steps

for

business

object

attributes

that

are

mapped

as

identity

relationships

or

static

lookups.

For

more

information

on

programming

relationship

attributes

using

the

methods

in

this

class,

see

“Transforming

with

a

submap”

on

page

41.

Most

methods

in

this

class

support

variations

in

the

parameters

you

specify.

The

variations

generally

follow

these

guidelines:

v

To

identify

a

specific

participant

in

a

relationship

instance,

you

usually

specify

the

relationship

definition

name,

the

participant

definition

name,

the

relationship

instance

ID,

and

the

business

object

associated

with

the

participant.

v

Alternatively,

you

can

specify

a

Participant

instance

which

contains

the

relationship

definition

name,

participant

definition

name,

instance

ID

and

business

object,

as

its

attributes.

v

For

some

operations,

you

can

omit

the

relationship

instance

ID

(for

example,

when

creating

a

new

relationship)

or

the

business

object

name.

In

most

cases,

if

you

have

a

Participant

instance

(for

example,

as

the

result

of

a

retrieve()

call),

it

is

easier

to

pass

it

as

a

parameter

to

a

Relationship

class

method

instead

of

specifying

each

attribute

individually.

All

methods

in

this

class

are

declared

as

static.

You

can

call

them

from

existing

relationship

instances

or

by

referencing

the

Relationship

class.

Table

109

summarizes

the

methods

in

the

Relationship

class.

Table

109.

Relationship

method

summary

Method

Description

Page

Static

methods

addParticipant()

Adds

a

new

participant

to

a

relationship

instance.

378

create()

Creates

a

new

relationship

instance.

380

deactivateParticipant()

Deactivates

a

participant

from

one

or

more

relationship

instances.

381

deactivateParticipantByInstance()

Deactivates

a

participant

from

a

specific

relationship

instance.

382

deleteParticipant()

Removes

a

participant

instance

from

one

or

more

relationship

instances.

383

deleteParticipantByInstance()

Removes

a

participant

from

a

specific

relationship

instance.

384

getNewID()

Returns

the

next

available

relationship

instance

ID

for

a

relationship,

based

on

the

relationship

definition

name.

385

retrieveInstances()

Retrieves

only

the

relationship

instance

IDs

for

zero

or

more

relationship

instances

which

contain

a

given

participant

instance.

386

retrieveParticipants()

Retrieves

zero

or

more

participants

from

a

relationship

instance.

388

©

Copyright

IBM

Corp.

2003

377

Table

109.

Relationship

method

summary

(continued)

Method

Description

Page

updateParticipant()

Updates

a

participant

in

one

or

more

relationship

instances.

389

updateParticipantByInstance()

Updates

a

participant

in

a

specific

relationship

instance.

389

addParticipant()

Adds

a

new

participant

to

a

relationship

instance.

Syntax

To

add

a

new

participant

to

an

existing

relationship

instance:

int

addParticipant

(String

relDefName,

String

partDefName,

int

instanceId,BusObj

partData)

int

addParticipant

(String

relDefName,

String

partDefName,

int

instanceId,String

partData)

int

addParticipant

(String

relDefName,

String

partDefName,int

instanceId,

long

partData)

int

addParticipant

(String

relDefName,

String

partDefName,int

instanceId,

int

partData)

int

addParticipant

(String

relDefName,

String

partDefName,

int

instanceId,

double

partData)

int

addParticipant

(String

relDefName,

String

partDefName,

int

instanceId,

float

partData)

int

addParticipant

(String

relDefName,

String

partDefName,

int

instanceId,

boolean

partData)

To

add

a

participant

to

a

new

relationship

instance:

int

addParticipant

(String

relDefName,

String

partDefName,

BusObj

partData)

int

addParticipant

(String

relDefName,

String

partDefName,

String

partData)

int

addParticipant

(String

relDefName,

378

Map

Development

Guide

String

partDefName,

long

partData)

int

addParticipant

(String

relDefName,

String

partDefName,

int

partData)

int

addParticipant

(String

relDefName,

String

partDefName,

double

partData)

int

addParticipant

(String

relDefName,

String

partDefName,

float

partData)

int

addParticipant

(String

relDefName,

String

partDefName,

boolean

partData)

To

add

an

existing

participant

instance

to

a

relationship

instance:

int

addParticipant(Participant

participant)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition.

instanceId

Relationship

instance

ID

of

the

relationship

instance

to

receive

the

new

participant.

partData

Data

to

associate

with

the

participant.

Can

be

one

of

the

following

data

types:

BusObj,

String,

long,

int,

double,

float,

boolean.

participant

Participant

to

add

to

the

relationship.

Return

values

Returns

an

integer

representing

the

instance

ID

of

the

relationship

to

receive

the

new

participant.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

Notes

The

first

form

of

the

method

adds

a

new

participant

to

the

relationship

instance

you

specify.

Each

variation

supports

a

different

data

type

for

the

data

to

associate

with

the

participant.

The

second

form,

since

it

does

not

specify

a

relationship

instance,

creates

a

new

relationship

instance

and

adds

the

new

participant.

In

this

case,

the

return

value

is

the

instance

ID

of

the

newly

created

relationship

instance.

Each

variation

supports

a

different

data

type

for

the

data

to

associate

with

the

participant.

The

third

form

adds

the

participant

instance

you

pass

to

the

relationship

instance

specified

in

the

participant

instance.

If

the

participant

instance

has

no

relationship

instance

ID,

a

new

relationship

instance

is

created

and

the

new

instance

ID

is

returned.

Chapter

23.

Relationship

class

379

The

addParticipant()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

See

also

create()

create()

Creates

a

new

relationship

instance.

Syntax

int

create(String

relDefName,

String

partDefName,

BusObj

partData)

int

create(String

relDefName,

String

partDefName,

String

partData)

int

create(String

relDefName,

String

partDefName,

long

partData)

int

create(String

relDefName,

String

partDefName,

int

partData)

int

create(String

relDefName,

String

partDefName,

double

partData)

int

create(String

relDefName,

String

partDefName,

float

partData)

int

create(String

relDefName,

String

partDefName,

boolean

partData)

int

create(Participant

participant)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

The

name

of

the

participant

definition.

partData

Data

to

associate

with

the

participant.

Can

be

one

of

the

following

data

types:

BusObj,

String,

long,

int,

double,

float,

boolean.

participant

First

participant

in

the

relationship.

Return

values

Returns

an

integer

representing

the

relationship

instance

ID

of

the

new

relationship.

Exceptions

RelationshipRuntimeException

Notes

The

create()

method

creates

a

new

relationship

instance

with

one

participant

instance

of

the

partDefName

participant

definition.

You

can

specify

the

data

for

this

new

participant

instance

with

the

partData

argument.

After

calling

this

method,

you

can

call

addMyChildren()

to

add

more

participants

to

the

relationship

instance.

In

the

last

form

of

the

method,

the

participant

parameter

cannot

have

a

relationship

instance

ID.

Normally,

participant

instances

do

have

relationship

instance

IDs.

Because

this

method

creates

a

new

relationship

instance,

you

must

make

sure

that

the

participant

instance

does

not

already

have

an

instance

associated

with

it.

To

do

this,

use

the

setInstanceId()

method

(in

the

Participant

class)

to

set

the

instance

ID

to

the

INVALID_INSTANCE_ID

constant.

The

create()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

380

Map

Development

Guide

See

also

addMyChildren(),

setInstanceId()

deactivateParticipant()

Deactivates

a

participant

from

one

or

more

relationship

instances.

Syntax

void

deactivateParticipant(String

relDefName,

String

partDefName,

BusObj

partData)

void

deactivateParticipant(String

relDefName,

String

partDefName,

String

partData)

void

deactivateParticipant(String

relDefName,

String

partDefName,

long

partData)

void

deactivateParticipant(String

relDefName,

String

partDefName,

int

partData)

void

deactivateParticipant(String

relDefName,

String

partDefName,

double

partData)

void

deactivateParticipant(String

relDefName,

String

partDefName,

float

partData)

void

deactivateParticipant(String

relDefName,

String

partDefName,

boolean

partData)

void

deactivateParticipant(Participant

participant)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition.

partData

Data

associated

with

the

participant.

Can

be

one

of

the

following

data

types:

BusObj,

String,

long,

int,

double,

float,

boolean.

participant

Participant

to

deactivate

in

the

relationship.

Return

values

None.

Exceptions

RelationshipRuntimeException

Notes

The

deactivateParticipant()

method

deactivates

the

participant

from

all

instances

of

relDefName

where

partData

is

associated

with

partDefName.

This

method

does

Chapter

23.

Relationship

class

381

not

remove

the

participant

from

the

relationship

tables.

Use

this

method

to

remove

a

participant

while

preserving

a

record

of

its

existence

in

the

relationship

tables.

To

view

deactivated

participants,

you

can

query

the

relationship

tables

directly.

To

find

the

table

names

and

access

information

for

a

given

relationship,

open

the

relationship

definition

using

Relaitonship

Designer

Express

and

choose

Advanced

Settings

from

the

Edit

menu.

See

“Specifying

advanced

relationship

settings”

on

page

179

for

more

information

on

these

settings.

Attention:

Because

deactivateParticipant()

does

not

actually

remove

participant

rows

from

your

relationship

tables,

you

should

not

use

this

method

routinely

to

delete

participants.

Doing

so

can

cause

your

relationship

tables

to

become

unnecessarily

large.

The

deactivateParticipant()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

See

also

deleteParticipant(),

deactivateParticipantByInstance(),

Chapter

7,

“Creating

relationship

definitions,”

on

page

167,

“Transforming

with

a

submap”

on

page

41

deactivateParticipantByInstance()

Deactivates

a

participant

from

a

specific

relationship

instance.

Syntax

void

deactivateParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

BusObj

partData

]

)

void

deactivateParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

String

partData

]

)

void

deactivateParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

long

partData

]

)

void

deactivateParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

int

partData

]

)

void

deactivateParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

double

partData

]

)

void

deactivateParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

float

partData

]

)

void

deactivateParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

boolean

partData

]

)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition.

instanceId

ID

of

the

relationship

instance

to

which

the

participant

belongs.

partData

Data

associated

with

the

participant.

Can

be

one

of

the

following

data

types:

BusObj,

String,

long,

int,

double,

float,

boolean.

This

is

an

optional

parameter

382

Map

Development

Guide

Return

values

None.

Exceptions

RelationshipRuntimeException

–

See

“Handling

exceptions”

on

page

144.

Notes

The

deactivateParticipantByInstance()

method

deactivates

the

specified

participant

from

the

relationship

instance

that

relationship

instance

ID

instanceID

identifies.

However,

the

method

does

not

remove

the

participant

from

the

relationship

tables.

Use

this

method

when

you

want

to

remove

a

participant

while

preserving

a

record

of

its

existence

in

the

relationship

tables.

To

view

deactivated

participants,

you

can

query

the

relationship

tables

directly.

To

find

the

table

names

and

access

information

for

a

given

relationship,

open

the

relationship

definition

using

Relaitonship

Designer

Express

and

choose

Advanced

Settings

from

the

Edit

menu.

See

“Specifying

advanced

relationship

settings”

on

page

179

for

more

information

on

these

settings.

Attention:

Since

deactivateParticipantByInstance()

does

not

actually

remove

participant

rows

from

your

relationship

tables,

you

should

not

use

this

method

routinely

to

delete

participants.

Doing

so

can

cause

your

relationship

tables

to

become

unnecessarily

large.

The

deactivateParticipantByInstance()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

See

also

deleteParticipant(),

deactivateParticipant()

deleteParticipant()

Removes

a

participant

instance

from

one

or

more

relationship

instances.

Syntax

void

deleteParticipant(String

relDefName,

String

partDefName,

BusObj

partData)

void

deleteParticipant(String

relDefName,

String

partDefName,

String

partData)

void

deleteParticipant(String

relDefName,

String

partDefName,

long

partData)

void

deleteParticipant(String

relDefName,

String

partDefName,

int

partData)

void

deleteParticipant(String

relDefName,

String

partDefName,

double

partData)

void

deleteParticipant(String

relDefName,

String

partDefName,

float

partData)

void

deleteParticipant(String

relDefName,

String

partDefName,

boolean

partData)

void

deleteParticipant(Participant

participant)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition.

partData

Data

associated

with

the

participant.

Can

be

one

of

the

following

data

types:

BusObj,

String,

long,

int,

double,

float,

boolean.

Chapter

23.

Relationship

class

383

participant

A

Participant

instance

representing

the

participant

to

remove

from

the

relationship.

Return

values

None.

Exceptions

RelationshipRuntimeException

Notes

The

deleteParticipant()

method

deletes

the

specified

participant

from

all

instances

of

relDefName

where

partData

is

associated

with

partDefName

and

deletes

it

from

the

underlying

relationship

tables.

The

deleteParticipant()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

See

also

deactivateParticipant(),

deleteParticipantByInstance()

deleteParticipantByInstance()

Removes

a

participant

from

a

specific

relationship

instance.

Syntax

void

deleteParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

BusObj

partData]

)

void

deleteParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

String

partData]

)

void

deleteParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

long

partData]

)

void

deleteParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

int

partData]

)

void

deleteParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

double

partData]

)

void

deleteParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

float

partData]

)

void

deleteParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[,

boolean

partData]

)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition.

instanceId

ID

of

the

relationship

instance

to

which

the

participant

belongs.

384

Map

Development

Guide

partData

Data

associated

with

the

participant.

Can

be

one

of

the

following

data

types:

BusObj,

String,

long,

int,

double,

float,

boolean.

This

is

an

optional

parameter.

Return

values

None.

Exceptions

RelationshipRuntimeException

Notes

The

deleteParticipantByInstance()

method

deletes

a

participant

instance

from

the

relationship

identified

by

the

instanceId

relationship

instance

ID.

The

method

removes

the

participant

from

the

relationship

instance

and

from

the

underlying

relationship

tables.

If

you

supply

the

optional

partData

parameter,

deleteParticipantByInstance()

deletes

the

participant

instance

only

if

partData

is

the

data

associated

with

the

partDefName

participant

definition.

The

last

form

of

the

method

accepts

a

participant

instance

as

the

only

parameter.

The

participant

instance

must

contain

the

relationship

definition

name,

participant

definition

name,

and

either

the

instance

ID

or

the

participant

data.

The

deleteParticipantByInstance()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

See

also

deactivateParticipant()

getNewID()

Returns

the

next

available

relationship

instance

ID

for

a

relationship,

based

on

the

relationship

definition

name.

Syntax

public

static

int

getNewID(String

relDefName)

Parameters

relDefName

Name

of

the

relationship

definition.

Return

values

Returns

a

relationship

instance

ID,

based

on

the

relationship

definition

name.

Exceptions

RelationshipRuntimeException

Chapter

23.

Relationship

class

385

Notes

Because

the

relationship

instance

ID

can

be

used

as

the

generic

ID

for

the

typical

IBM

WebSphere

InterChange

Server

Express

identity

relationships,

this

new

ID

can

be

used

as

the

generic

ID

for

generic-to-generic

relationships.

retrieveInstances()

Retrieves

only

the

relationship

instance

IDs

for

zero

or

more

relationship

instances

which

contain

a

given

participant

instance.

Syntax

int[]

retrieveInstances(String

relDefName,

String

partDefName,

BusObj

partData)

int[]

retrieveInstances(String

relDefName,

String

partDefName,

String

partData)

int[]

retrieveInstances(String

relDefName,

String

partDefName,

long

partData)

int[]

retrieveInstances(String

relDefName,

String

partDefName,

int

partData)

int[]

retrieveInstances(String

relDefName,

String

partDefName,

double

partData)

int[]

retrieveInstances(String

relDefName,

String

partDefName,

float

partData)

int[]

retrieveInstances(String

relDefName,

String

partDefName,

boolean

partData)

int[]

retrieveInstances(String

relDefName,

String[]

partDefList,

BusObj

partData)

int[]

retrieveInstances(String

relDefName,

String[]

partDefList,

String

partData)

int[]

retrieveInstances(String

relDefName,

String[]

partDefList,

long

partData)

int[]

retrieveInstances(String

relDefName,

String[]

partDefList,

int

partData)

int[]

retrieveInstances(String

relDefName,

String[]

partDefList,

double

partData)

int[]

retrieveInstances(String

relDefName,

String[]

partDefList,

float

partData)

int[]

retrieveInstances(String

relDefName,

386

Map

Development

Guide

String[]

partDefList,

boolean

partData)

int[]

retrieveInstances(String

relDefName,

BusObj

partData)

int[]

retrieveInstances(String

relDefName,

String

partData)

int[]

retrieveInstances(String

relDefName,

long

partData)

int[]

retrieveInstances(String

relDefName,

int

partData)

int[]

retrieveInstances(String

relDefName,

double

partData)

int[]

retrieveInstances(String

relDefName,

float

partData)

int[]

retrieveInstances(String

relDefName,

boolean

partData)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition.

partDefList

List

of

participant

definitions.

partData

Data

to

associate

with

the

participant.

Can

be

one

of

the

following

data

types:

BusObj,

String,

long,

int,

double,

float,

boolean.

Return

values

Returns

an

array

of

integers

that

are

the

instance

IDs

of

relationships

containing

the

participant.

Exceptions

RelationshipRuntimeException

Notes

The

retrieveInstances()

method

implements

a

lookup

relationship

in

an

inbound

map.

It

obtains

the

relationship

instance

IDs

from

the

relationship

table

that

are

associated

with

the

specified

participant

instances

(partDefList

and

partData

or

only

partData).

The

method

retrieves

only

those

attributes

that

are

associated

with

the

relDefName

relationship

definition.

It

does

not

fill

in

any

of

the

other

attributes

in

the

business

object.

Attributes

associated

with

the

relationship

definition

typically

are

the

key

attributes

and

any

others

that

you

explicitly

select.

See

Chapter

7,

“Creating

relationship

definitions,”

on

page

167

for

more

information

on

relationship

definitions.

If

retrieveInstances()

does

not

find

a

relationship

instance

for

the

specified

data,

it

does

not

raise

an

exception.

Absence

of

data

in

the

relationship

table

does

not

mean

that

the

lookup

was

performed

improperly.

If

you

want

to

raise

an

exception

when

retrieveInstances()

does

not

find

a

value,

you

must

check

the

value

of

the

instance

IDs

that

the

method

returns

and

explicitly

raise

a

MapFailureException

if

the

value

is

null.

The

retrieveInstances()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

See

also

addMyChildren(),

deactivateParticipant(),

deleteParticipant(),

retrieveParticipants()

“Customizing

map

transformations

for

a

lookup

relationship”

on

page

191

Chapter

23.

Relationship

class

387

retrieveParticipants()

Retrieves

zero

or

more

participants

from

a

relationship

instance.

Syntax

Participant[]

retrieveParticipants(String

relDefName,

String

partDefName,

int

instanceId)|

Participant[]

retrieveParticipants(String

relDefName,

String[]

partDefList,

int

instanceId)

Participant[]

retrieveParticipants(String

relDefName,

int

instanceId)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition.

partDefList

List

of

participant

definitions.

instanceId

The

relationship

instance

ID

of

the

relationship

instance

to

which

the

participant

belongs.

Return

values

Returns

an

array

of

Participant

instances.

Exceptions

RelationshipRuntimeException

Notes

The

retrieveParticipants()

method

implements

a

lookup

relationship

in

an

outbound

map.

It

obtains

the

participant

instances

from

the

relationship

table

that

are

associated

with

the

specified

instanceID

relationship

instance

ID.

The

method

retrieves

only

those

attributes

that

are

associated

with

the

relDefName

relationship

definition.

It

does

not

fill

in

any

of

the

other

attributes

in

the

business

object.

Attributes

associated

with

the

relationship

definition

typically

are

the

key

attributes

and

any

others

that

you

explicitly

select.

See

Chapter

7,

“Creating

relationship

definitions,”

on

page

167

for

more

information

on

relationship

definitions.

If

retrieveParticipants()

raises

the

RelationshipRuntimeException

if

it

receives

a

null-valued

instanceId.

If

you

are

not

guaranteed

that

the

retrieveInstances()

method

has

returned

a

matching

instance

ID,

check

the

value

of

instanceId

for

a

null

value

before

the

call

to

retrieveParticipants().

The

retrieveParticipants()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

See

also

addMyChildren(),

deactivateParticipant(),

deleteParticipant(),

retrieveInstances()

“Customizing

map

transformations

for

a

lookup

relationship”

on

page

191

388

Map

Development

Guide

updateParticipant()

Updates

a

participant

in

one

or

more

relationship

instances.

Syntax

void

updateParticipant(String

relDefName,

String

partDefName,

BusObj

partData)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition

that

participates

in

the

relDefName

relationship.

partData

Data

to

associate

with

the

participant.

Can

be

one

of

the

following

data

types:

BusObj.

Return

values

None.

Exceptions

RelationshipRuntimeException

Notes

The

updateParticipant()

method

updates

partData

in

instances

of

relDefName

where

partData

is

associated

with

partDefName.

This

method

updates

the

non-key

attributes

of

the

business

object

that

is

associated

with

the

specified

participant.

Only

the

attributes

that

are

associated

with

the

relationship

definition

are

updated.

The

updateParticipant()

method

updates

all

participant

instances

in

the

relDefName

relationship

that

have:

v

A

participant

definition

of

partDefName

v

Key

value(s)

that

matches

the

key

value(s)

of

the

partData

business

object

This

method

updates

the

non-key

attributes

of

the

participant

instances

with

the

values

in

the

partData

business

object.

Only

the

attributes

that

are

associated

with

the

relationship

definition

are

updated.

To

modify

a

key

attribute

or

a

participant

type

that

is

not

a

business

object

(such

as

String,

long,

int,

double,

float,

or

boolean),

you

must

first

delete

the

participant

using

deleteParticipant()

or

deactivateParticipant()

and

then

add

a

new

participant

using

addMyChildren().

The

updateParticipant()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

See

also

deleteParticipant(),

deactivateParticipant(),

addMyChildren()

updateParticipantByInstance()

Updates

a

participant

in

a

specific

relationship

instance.

Chapter

23.

Relationship

class

389

Syntax

To

update

a

participant

in

a

specific

relationship

instance:

void

updateParticipantByInstance(String

relDefName,

String

partDefName,

int

instanceId

[

,

BusObj

partData

]

)

void

updateParticipantByInstance(Participant

participant)

Parameters

relDefName

Name

of

the

relationship

definition.

partDefName

Name

of

the

participant

definition.

instanceId

The

relationship

instance

ID

that

identifies

the

relationship

to

which

the

participant

belongs.

partData

Data

to

associate

with

the

participant.

Can

be

one

of

the

following

data

types:

BusObj.

This

parameter

is

optional.

participant

Participant

to

update

in

the

relationship.

Return

values

None.

Exceptions

RelationshipRuntimeException

Notes

The

updateParticipantByInstance()

method

updates

the

non-key

attributes

of

the

business

object

associated

with

the

specified

participant.

Only

the

attributes

that

are

associated

with

the

relationship

definition

are

updated.

To

modify

a

key

attribute

or

a

participant

type

that

is

not

a

business

object

(such

as

String,

long,

int,

double,

float,

or

boolean),

you

must

first

delete

the

participant

using

deleteParticipant()

or

deactivateParticipant()

and

then

add

a

new

participant

using

addMyChildren().

The

updateParticipantByInstance()

method

is

a

class

method

declared

as

static.

You

can

call

this

method

from

an

existing

relationship

instance

or

by

referencing

the

Relationship

class.

See

also

deleteParticipant(),

deactivateParticipant(),

addMyChildren()

Deprecated

methods

Some

methods

in

the

Relationship

class

have

been

moved

to

the

IdentityRelationship

class.

These

deprecated

methods

will

not

generate

errors,

but

CrossWorlds

recommends

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

390

Map

Development

Guide

Table

110

lists

the

deprecated

methods

for

the

Relationship

class.

Table

110.

Deprecated

methods,

Relationship

class

Former

method

Replacement

addMyChildren()

addMyChildren()

in

the

IdentityRelationship

class

deleteMyChildren()

deleteMyChildren()

in

the

IdentityRelationship

class

maintainCompositeRelationship()

maintainCompositeRelationship()

in

the

IdentityRelationship

class

maintainSimpleIdentityRelationship()

maintainSimpleIdentity

Relationship()

in

the

IdentityRelationship

class

updateMyChildren()

updateMyChildren()

in

the

IdentityRelationship

class

Chapter

23.

Relationship

class

391

392

Map

Development

Guide

Chapter

24.

UserStoredProcedureParam

class

The

UserStoredProcedureParam

class

provides

methods

for

handling

argument

values

to

stored

procedures,

which

you

execute

on

the

relationship

database.

A

UserStoredProcedureParam

object

describes

a

single

parameter

for

a

stored

procedure.

Important:

The

UserStoredProcedureParam

class

and

its

methods

are

supported

for

backward

compatibility

only.

These

deprecated

methods

will

not

generate

errors,

but

you

should

avoid

using

them

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

In

new

map

development,

use

the

CwDBStoredProcedureParam

class

and

its

methods

to

provide

arguments

to

a

stored

procedure.

Table

111

summarizes

the

methods

in

the

UserStoredProcedureParam

class.

Table

111.

UserStoredProcedureParam

method

summary

Method

Description

Page

UserStoredProcedureParam()

Constructs

a

new

instance

of

UserStoredProcedureParam

that

holds

argument

information

for

the

parameter

of

a

stored

procedure.

393

getParamDataTypeJavaObj()

Retrieves

the

data

type

of

this

stored-procedure

parameter

as

a

Java

Object,

such

as

Integer,

Double,

or

String.

394

getParamDataTypeJDBC()

Retrieves

the

data

type

of

this

stored-procedure

parameter

as

an

integer

JDBC

data

type.

395

getParamIndex()

Retrieves

the

index

position

of

this

stored-procedure

parameter.

395

getParamIOType()

Retrieves

the

in/out

parameter

type

for

this

stored-procedure

parameter.

396

getParamName()

Retrieves

the

name

of

this

stored-procedure

parameter.

397

getParamValue()

Retrieves

the

value

of

this

stored-procedure

parameter.

397

setParamDataTypeJavaObj()

Sets

the

data

type

as

a

Java

Object

for

this

stored-procedure

parameter.

398

setParamDataTypeJDBC()

Sets

the

data

type

as

a

JDBC

data

type

for

this

stored-procedure

parameter.

398

setParamIndex()

Sets

the

index

position

of

this

stored-procedure

parameter.

399

setParamIOType()

Sets

the

in/out

parameter

type

of

this

stored-procedure

parameter.

399

setParamName()

Sets

the

name

of

this

stored-procedure

parameter.

400

setParamValue()

Sets

the

value

of

this

stored-procedure

parameter.

400

UserStoredProcedureParam()

Constructs

a

new

instance

of

UserStoredProcedureParam

that

holds

argument

information

for

the

parameter

of

a

stored

procedure.

©

Copyright

IBM

Corp.

2003

393

Syntax

UserStoredProcedureParam(int

paramIndex,

String

paramType,

Object

paramValue,

String

ParamIOType,

String

paramName)

Parameters

paramIndex

The

index

position

of

the

associated

parameter

in

the

declaration

of

the

stored

procedure.

Index

numbering

begins

with

one

(1).

paramType

The

data

type

(as

a

Java

Object)

of

the

associated

parameter.

paramValue

The

argument

value

to

send

to

the

stored

procedure.

ParamIOType

The

in/out

type

of

the

associated

parameter.

Valid

types

are:

“IN”

-

parameter

value

is

input

only.

“INOUT”

-

parameter

value

is

input

and

output.

“OUT”

-

parameter

value

is

output

only.

paramName

The

name

of

the

argument,

to

be

used

in

later

statements

that

build

the

Vector

array.

Return

values

Returns

a

new

UserStoredProcedureParam

object

to

hold

the

argument

information

for

the

argument

at

position

argIndex

in

the

declaration

of

the

stored

procedure.

Exceptions

DtpConnectionException

–

If

a

parameter

is

invalid.

getParamDataTypeJavaObj()

Retrieves

the

data

type

of

this

stored-procedure

parameter

as

a

Java

Object,

such

as

Integer,

Double,

or

String.

Syntax

String

getParamDataTypeJavaObj()

Parameters

None.

Return

values

Returns

the

data

type

of

the

associated

UserStoredProcedureParam

parameter

as

a

Java

Object.

Exceptions

None.

Notes

A

Java

Object

is

one

of

two

representations

of

the

parameter

data

type

stored

in

the

UserStoredProcedureParam

object.

Use

getParamDataTypeJavaObj()

to

obtain

the

Java

Object

data

type,

you

should

work

with

the

Java

Object

data

type

because:

v

For

IN

(and

INOUT)

parameters,

you

must

provide

the

parameter

value

as

a

Java

Object.

Therefore,

providing

the

parameter

data

type

as

a

Java

Object

is

more

consistent.

394

Map

Development

Guide

v

The

execStoredProcedure()

method

sends

parameters

in

a

Vector

parameter

array.

The

Vector

object

can

contain

only

elements

that

are

Java

Objects.

See

also

getParamDataTypeJDBC(),

setParamDataTypeJavaObj()

getParamDataTypeJDBC()

Retrieves

the

data

type

of

this

stored-procedure

parameter

as

an

integer

JDBC

data

type.

Syntax

int

getParamDataTypeJDBC()

Parameters

None.

Return

values

Returns

the

data

type

of

the

associated

UserStoredProcedureParam

parameter

as

a

JDBC

data

type.

Exceptions

None.

Notes

The

JDBC

data

type

is

one

of

two

representations

of

the

parameter

data

type

stored

in

the

UserStoredProcedureParam

object.

JDBC

data

types

are

integer

values

and

include

the

following:

v

java.sql.Types.INTEGER

v

java.sql.Types.VARCHAR

v

java.sql.Types.DOUBLE

v

java.sql.Types.DATE

These

data

types

are

defined

in

java.sql.Types.

Recommendation:

You

should

use

the

Java

Object

data

type

instead

of

the

JDBC

data

type.

However,

the

Mapping

API

uses

the

JDBC

internally

so

you

can

obtain

its

value

from

the

UserStoredProcedureParam

object

with

getParamDataTypeJDBC().

See

also

getParamDataTypeJavaObj(),

setParamDataTypeJDBC()

getParamIndex()

Retrieves

the

index

position

of

this

stored-procedure

parameter.

Syntax

int

getParamIndex()

Chapter

24.

UserStoredProcedureParam

class

395

Parameters

None.

Return

values

Returns

the

index

position

of

the

associated

UserStoredProcedureParam

parameter.

Exceptions

None.

Notes

The

index

position

of

a

stored-procedure

parameter

is

its

position

in

the

parameter

list

of

the

stored-procedure

declaration.

The

first

parameter

has

an

index

position

of

one

(1).

The

index

position

does

not

refer

to

literal

parameters

that

might

be

supplied

to

the

stored

procedure.

See

also

setParamIndex()

getParamIOType()

Retrieves

the

in/out

parameter

type

for

this

stored-procedure

parameter.

Syntax

String

getParamIOType()

Parameters

None.

Return

values

Returns

the

in/out

type

of

the

associated

UserStoredProcedureParam

parameter.

Exceptions

None.

Notes

The

in/out

parameter

type

indicates

how

the

stored

procedure

uses

the

parameter.

It

can

be

the

string

representation

of

one

of

the

following:

v

IN

parameter

An

IN

parameter

is

input

only;

that

is,

the

stored

procedure

accepts

its

value

as

input

but

does

not

use

the

parameter

to

return

a

value.

The

getParamIOType()

returns

the

in/out

parameter

type

as

“IN”.

v

INOUT

parameter

An

INOUT

parameter

is

input

and

output;

that

is,

the

stored

procedure

accepts

its

value

as

input

and

also

uses

the

parameter

to

return

a

value.

The

getParamIOType()

returns

the

in/out

parameter

type

as

“INOUT”.

v

OUT

parameter

An

OUT

parameter

is

output

only;

that

is,

the

stored

procedure

does

not

read

its

value

as

input

but

does

use

the

parameter

to

return

a

value.

The

getParamIOType()

returns

the

in/out

parameter

type

as

“OUT”.

396

Map

Development

Guide

See

also

setParamIOType()

getParamName()

Retrieves

the

name

of

this

stored-procedure

parameter.

Syntax

String

getParamName()

Parameters

None.

Return

values

Returns

the

name

of

the

parameter

from

the

associated

UserStoredProcedureParam

object.

Exceptions

None.

Notes

The

name

of

the

parameter

is

informational

only.

It

is

used

only

for

error

messages

and

debugging.

The

parameter

name

is

not

needed

to

access

the

stored-procedure

parameter

because

stored

procedures

are

accessed

by

their

index

position

in

the

stored-procedure

declaration.

See

also

setParamName()

getParamValue()

Retrieves

the

value

of

this

stored-procedure

parameter.

Syntax

Object

getParamValue()

Parameters

None.

Return

values

Returns

the

value

of

the

associated

UserStoredProcedureParam

parameter

as

a

Java

Object.

Exceptions

None.

Notes

The

getParamValue()

method

returns

the

parameter

value

as

a

Java

Object

(such

as

Integer,

Double,

or

String).

If

the

value

returned

to

an

OUT

parameter

is

the

JDBC

NULL,

getParamValue()

returns

the

null

constant.

Chapter

24.

UserStoredProcedureParam

class

397

See

also

setParamValue()

setParamDataTypeJavaObj()

Sets

the

data

type

as

a

Java

Object

for

this

stored-procedure

parameter.

Syntax

void

setParamDataTypeJavaObj(String

paramDataType)

Parameters

paramDataType

The

data

type

of

the

parameter

as

a

Java

Object.

Exceptions

DtpConnectionException

–

If

the

input

data

type

is

not

supported.

Notes

A

Java

Object

is

one

of

two

representations

of

the

parameter

data

type

stored

in

the

UserStoredProcedureParam

object.

Use

setParamDataTypeJavaObj()

to

set

the

data

type

as

a

Java

Object.

You

should

work

with

the

Java

Object

data

type

because:

v

For

IN

(and

INOUT)

parameters,

you

must

provide

the

parameter

value

as

a

Java

Object.

Therefore,

providing

the

parameter

data

type

as

a

Java

Object

is

more

consistent.

v

The

execStoredProcedure()

method

sends

parameters

in

a

Vector

parameter

array.

The

Vector

object

can

contain

only

elements

that

are

Java

Objects.

See

also

getParamDataTypeJavaObj(),

setParamDataTypeJDBC()

setParamDataTypeJDBC()

Sets

the

data

type

as

a

JDBC

data

type

for

this

stored-procedure

parameter.

Syntax

void

setParamDataTypeJDBC(int

paramDataType)

Parameters

paramDataType

The

data

type

of

the

parameter

as

a

JDBC

type.

Exceptions

DtpConnectionException

–

If

the

input

data

type

is

not

supported.

Notes

Every

UserStoredProcedureParam

object

contains

two

representations

of

its

data

type:

Java

Object

and

JDBC

data

type.

You

should

use

the

Java

Object

data

type

because:

398

Map

Development

Guide

v

For

IN

(and

INOUT)

parameters,

you

must

provide

the

parameter

value

as

a

Java

Object.

Therefore,

providing

the

parameter

data

type

as

a

Java

Object

is

more

consistent.

v

The

execStoredProcedure()

method

sends

parameters

in

a

Vector

parameter

array.

The

Vector

object

can

contain

only

elements

that

are

Java

Objects.

See

also

getParamDataTypeJDBC(),

setParamDataTypeJavaObj()

setParamIndex()

Sets

the

index

position

of

this

stored-procedure

parameter.

Syntax

void

setParamIndex(int

paramIndex)

Parameters

paramIndex

The

index

position

of

the

stored-procedure

parameter

Notes

The

index

position

of

a

stored-procedure

parameter

is

its

position

in

the

parameter

list

of

the

stored-procedure

declaration.

The

first

parameter

has

an

index

position

of

one

(1).

The

index

position

does

not

refer

to

literal

parameters

that

might

be

supplied

to

the

stored

procedure.

See

also

getParamIndex()

setParamIOType()

Sets

the

in/out

parameter

type

of

this

stored-procedure

parameter.

Syntax

void

setParamIOType(String

paramIOType)

Parameters

paramIOType

The

I/O

type

of

the

stored-procedure

parameter

Notes

The

in/out

parameter

type

indicates

how

the

stored

procedure

uses

the

parameter.

It

can

be

any

of

the

following:

v

IN

parameter

An

IN

parameter

is

input

only;

that

is,

the

stored

procedure

accepts

its

value

as

input

but

does

not

use

the

parameter

to

return

a

value.

For

an

IN

parameter,

set

the

in/out

parameter

type

to

“IN”.

v

INOUT

parameter

An

INOUT

parameter

is

input

and

output;

that

is,

the

stored

procedure

accepts

its

value

as

input

and

also

uses

the

parameter

to

return

a

value.

For

an

INOUT

parameter,

set

the

in/out

parameter

type

to

“INOUT”.

v

OUT

parameter

Chapter

24.

UserStoredProcedureParam

class

399

An

OUT

parameter

is

output

only;

that

is,

the

stored

procedure

does

not

read

its

value

as

input

but

does

use

the

parameter

to

return

a

value.

For

an

OUT

parameter,

set

the

in/out

parameter

type

to

“OUT”.

See

also

getParamIOType()

setParamName()

Sets

the

name

of

this

stored-procedure

parameter.

Syntax

void

setParamName(String

paramName)

Parameters

paramName

The

name

of

the

stored-procedure

parameter

Notes

The

name

of

the

parameter

is

informational

only.

It

is

used

only

for

error

messages

and

debugging.

The

parameter

name

is

not

needed

to

access

the

stored-procedure

parameter

because

stored

procedures

are

accessed

by

their

index

position

in

the

stored-procedure

declaration.

See

also

getParamName()

setParamValue()

Sets

the

value

of

this

stored-procedure

parameter.

Syntax

void

setParamValue(Object

paramValue)

Parameters

paramValue

The

value

of

the

stored-procedure

parameter.

The

value

must

be

a

Java

Object

(such

as

Integer,

Double,

or

String).

Notes

You

must

set

the

parameter

value

as

a

Java

Object.

See

also

getParamValue()

400

Map

Development

Guide

Part

4.

Appendixes

©

Copyright

IBM

Corp.

2003

401

402

Map

Development

Guide

Appendix

A.

Message

files

Each

map

can

have

an

associated

message

file.

The

message

file

contains

the

text

for

the

map’s

exception

and

logging

messages.

A

unique

number

identifies

each

message

in

the

message

file.

The

text

of

the

message

may

also

include

placeholder

variables,

called

parameters.

The

methods

that

generate

map

messages

provide

two

ways

of

generating

the

message

text

that

a

user

sees.

The

coding

of

the

method

call

can:

v

Include

the

text

of

the

message.

v

Contain

a

reference

to

message

text

that

is

contained

in

an

external

message

file.

It

is

generally

a

better

practice

for

a

map

to

refer

to

a

message

file

than

to

generate

the

text

itself,

for

ease

of

maintenance,

administration,

and

internationalization.

This

chapter

describes

message

files,

how

they

work,

and

how

to

set

them

up.

It

covers

the

following

topics:

“Message

location”

403

“Format

for

map

messages”

on

page

405

405

“Message

parameters”

on

page

406

406

“Maintaining

the

files”

on

page

407

407

“Operations

that

use

message

files”

on

page

407

407

Message

location

All

message

file

are

located

in

the

following

directory

of

the

IBM

WebSphere

InterChange

Server

Express

product

directory:

DLMs\messages

Note:

In

this

document

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

IBM

WebSphere

InterChange

Server

Express

product

path

names

are

relative

to

the

directory

where

the

IBM

WebSphere

InterChange

Server

Express

product

is

installed

on

your

system.

There

are

three

types

of

message

files

that

can

be

used

to

generate

messages

for

a

map:

v

A

map-specific

message

file,

mapName_locale.txt

where

mapName

corresponds

to

the

name

of

the

map

and

locale

corresponds

to

the

locale

that

the

map

is

defined

in.

Map

messages

appear

in

the

Messages

tab

of

Map

Designer

and

are

stored

as

part

of

the

map

definition

in

the

repository.

When

you

compile

the

map,

Map

Designer

extracts

the

message

content

and

creates

(or

updates)

the

message

file

for

runtime

use.

The

name

of

the

message

file

has

the

following

format:

MapName_locale.txt

For

example,

for

the

LegacyAddress_to_CwAddress

map,

if

it

is

created

in

an

English

locale

in

the

United

States,

Map

Designer

creates

the

message

file

called

LegacyAddress_to_CwAddress_en_US.txt

and

places

it

in

the

©

Copyright

IBM

Corp.

2003

403

ProjectName\Maps\Messages

directory.

After

the

map

is

deployed

to

InterChange

Server

Express,

it

will

be

placed

in

the

DLMs\messages

directory.

v

The

UserMapMessages.txt

message

file

To

this

file,

you

can

add

new

message

numbers

that

fall

into

a

“safe”

range,

as

defined

by

IBM

WebSphere

InterChange

Server

Express

(see

Table

112).

For

example,

if

you

create

a

message

for

an

Oracle

map,

you

would

assign

the

message

a

number

between

6101

and

6200.

You

can

also

use

a

message

number

that

is

already

defined

in

the

IBM

WebSphere

InterChange

Server

Express

generic

message

file

(CWMapMessages.txt,

described

next)

and

change

the

existing

message

text

to

text

of

your

choice.

Since

the

UserMapMessaages.txt

file

is

searched

before

the

IBM

WebSphere

InterChange

Server

Express

message

file,

your

additions

override

those

messages.

v

The

IBM

WebSphere

InterChange

Server

Express

generic

message

file,

CWMapMessages.txt

(which

IBM

WebSphere

InterChange

Server

Express

provides).

If

your

map

does

not

reference

one

of

the

other

two

message

files,

it

must

reference

this

one.

Table

112

lists

the

message

numbers

that

IBM

WebSphere

InterChange

Server

Express

has

assigned

and

that

are

contained

in

the

generic

message

file.

Attention:

Do

not

change

the

contents

of

the

IBM

WebSphere

InterChange

Server

Express

generic

message

file

CwMapMessages.txt!

Make

changes

to

a

generic

message

by

copying

it

into

the

UserMapMessage.txt

message

file

and

customizing

it.

These

files

range

from

map-specific

to

general

purpose.

Messages

that

can

be

used

by

any

map

are

located

in

a

generic

file,

provided

by

IBM

WebSphere

InterChange

Server

Express.

The

other

two

files

provide

you

with

the

option

to

customize

messages

for

your

maps,

as

needed.

Important:

InterChange

Server

Express

reads

the

UserMapMessages.txt

and

CWMapMessages.txt

files

into

memory

when

it

starts

up.

If

you

make

changes

to

UserMapMessages.txt,

you

must

restart

InterChange

Server

Express

for

these

changes

to

be

available

to

maps.

Table

112.

CwMapMessages.txt

messages

Message

number

Message

text

Message

usage

5000

Mapping

-

Value

of

the

primary

key

in

the

source

object

is

null.

Map

execution

stopped.

Used

if

the

primary

key

of

the

source

object

is

null.

The

check

for

the

source

primary

key

=

null

should

be

always

performed

before

any

of

the

relationship

methods

are

called

that

are

based

on

the

source

object’s

primary

key.

If

the

key

is

null,

the

error

should

display

and

the

map

should

stop

execution.

5001

Mapping

-

RelationshipRuntimeException.

Map

execution

stopped.

Used

if

RelationshipRuntimeException

is

caught

in

one

of

the

following:

v

Function

blocks

–

General/APIs/Identity

Relationship/Maintain

Simple

Identity

Relationship

–

General/APIs/Identity

Relationship/Maintain

Composite

Relationship

v

Mapping

APIs

–

maintainSimpleIdentityRelationship()

–

maintainCompositeRelationship()

404

Map

Development

Guide

Table

112.

CwMapMessages.txt

messages

(continued)

Message

number

Message

text

Message

usage

5002

Mapping

-

CxMissingIDException.

Map

execution

stopped.

Used

if

CxMissingIDException

is

caught

in

one

of

the

following:

v

Function

blocks

–

General/APIs/Identity

Relationship/Maintain

Simple

Identity

Relationship

–

General/APIs/Identity

Relationship/Maintain

Composite

Realtionship

v

Mapping

APIs

–

maintainSimpleIdentityRelationship()

–

maintainCompositeRelationship()

5003

Mapping

-

Data

in

the

{1}

attribute

is

missing.

Used

when

the

source

attribute

is

null

before

using

the

function

block

Foreign

Key

Lookup

(foreignKeyLookup())

or

Foreign

Key

Cross-Reference

(foreignKeyXref()).

The

check

for

the

source

attribute

=

null

should

be

always

performed

before

these

relationship

methods

are

called.

If

the

key

is

null,

the

error

should

be

displayed

and

the

map

might

stop

execution.

5007

Mapping

-

ForeignKeyLookup()

of

’{1}’

with

Source

Value

of

’{2}’

failed

for

the

’{3}’

relationship

and

’{4}’

participant

on

Initiator

’{5}’.

Map

execution

stopped.

Used

if

the

destination

attribute

is

null

after

using

the

function

block

Foreign

Key

Lookup

(foreignKeyLookup()).

Map

has

to

stop

execution.

5008

Mapping

-

ForeignKeyLookup()

of

’{1}’

with

Source

Value

of

’{2}’

failed

for

the

’{3}’

relationship

and

’{4}’

participant

on

Initiator

’{5}’.

Map

execution

continued.

Used

if

the

destination

attribute

is

null

after

using

the

function

block

Foreign

Key

Lookup

(foreignKeyLookup()).

Map

has

to

continue

execution.

5009

Mapping

-

ForeignKeyXref()

of

’{1}’

with

Source

Value

of

’{2}’

failed

for

the

’{3}’

relationship

and

’{4}’

participant

on

Initiator

’{5}’.

Map

execution

stopped.

Used

if

the

destination

attribute

is

null

after

using

the

function

block

Foreign

Key

Cross-Reference

(foreignKeyXref()).

Map

has

to

stop

execution.

When

a

map

references

a

message

number,

the

message

files

are

searched

in

the

following

order:

1.

The

map-specific

message

file

mapName_locale.txt

where

mapName

corresponds

to

the

name

of

the

map,

is

searched.

2.

The

file

UserMapMessages.txt

is

searched.

3.

The

IBM

WebSphere

InterChange

Server

Express

generic

message

CWMapMessages.txt

is

searched.

Format

for

map

messages

To

ensure

consistency

of

messages,

IBM

WebSphere

InterChange

Server

Express

has

developed

a

message

format.

This

section

describes

that

format,

including:

v

“Message

format”

on

page

406

v

“Message

parameters”

on

page

406

v

“Comments”

on

page

407

Note:

The

map-specific

message

file

should

be

modified

from

the

message

tab

in

Map

Designer

Express

and

should

not

be

modified

directly.

Map

Designer

Express

will

overwrite

any

custom

modification

in

the

map-specific

message

Appendix

A.

Message

files

405

file

with

the

messages

saved

in

the

map.

However,

for

the

message

files

UserMapMessages.txt

and

CWMapMessages.txt,

it

is

safe

to

modify

the

file

directly.

Message

format

The

format

for

each

message

is:

MessageNum

Message

The

message

number

(MessageNum)

and

the

message

itself

(Message)

must

be

on

different

lines,

with

a

carriage

return

at

the

end

of

each

line.

For

example,

a

map’s

messages

might

include

a

message

identified

as

number

23,

whose

text

includes

two

placeholder

variables,

marked

as

{1}

and

{2},

as

shown

in

Figure

119.

Message

parameters

When

the

map

calls

a

method

that

displays

a

particular

message,

it

passes

to

the

method

the

message’s

identifying

number

and

potentially

additional

parameters.

The

method

uses

the

identifying

number

to

locate

the

correct

message

in

the

message

file,

and

it

inserts

the

values

of

the

additional

parameters

into

the

message

text’s

placeholder

variables.

It

is

not

necessary

to

write

separate

messages

for

each

possible

situation.

Instead,

use

parameters

to

represent

values

that

change

at

runtime.

The

use

of

parameters

allows

each

message

to

serve

multiple

situations

and

helps

to

keep

the

message

file

small.

A

parameter

always

appears

as

a

number

surrounded

by

curly

braces:

{number}.

For

each

parameter

you

want

to

add

to

the

message,

insert

the

number

within

curly

braces

into

the

text

of

the

message,

as

follows:

message

text

{number}

more

message

text.

For

example,

consider

message

23

in

Figure

119

again.

When

the

map

wants

to

display

or

log

this

message,

it

passes

to

the

appropriate

method

the

identifying

number

of

the

message

(23)

and

two

additional

parameters:

v

Parameter

1

becomes

the

customer

ID

number

(6701)

v

Parameter

2

becomes

a

String

variable

containing

some

additional

explanatory

text,

such

as

greater

than

maximum

length.

The

method

locates

the

correct

message,

substitutes

the

parameter

values

for

the

message’s

placeholders,

and

displays

or

logs

the

following

message:

Customer

ID

6701

could

not

be

changed:

greater

than

maximum

length

Because

the

message

text

takes

the

description

of

the

missing

entry

and

its

ID

as

parameters,

rather

than

including

them

as

hardcoded

strings,

you

can

use

the

same

message

for

any

pair

of

customer

ID

and

explanatory

text.

23

Customer

ID

{1}

could

not

be

changed:

{2}

Figure

119.

Sample

Message

406

Map

Development

Guide

Comments

Precede

each

comment

line

in

a

message

file

with

a

pound

sign

(#).

For

example,

a

comment

might

look

like

this:

#

Message

file

for

the

Address

business

object

map.

It

is

good

practice

to

start

the

file

with

a

series

of

comment

lines

to

form

a

short

header.

Include

in

the

header

data

the

name

of

the

map

and

such

information

as

the

file

creator

and

file

creation

date.

Maintaining

the

files

At

a

user

site,

an

administrator

might

set

up

a

procedure

for

filtering

map

messages

and

notifying

someone

who

can

resolve

problems,

by

e-mail

or

e-mail

pager.

This

means

that

the

error

numbers

and

the

meanings

associated

with

the

numbers

must

remain

the

same

after

the

first

release

of

a

map.

You

can

change

the

text

associated

with

an

error

number,

but

you

should

avoid

changing

the

meaning

of

the

text

or

reassigning

error

numbers.

If

you

do

change

the

meanings

associated

with

error

numbers,

you

should

document

the

change

and

notify

users

of

the

map.

Operations

that

use

message

files

Message

files

hold

text

for

messages

used

in

several

types

of

operations.

Table

8

on

page

21

lists

the

types

of

operations

that

use

message

files

and

the

methods

of

the

BaseDLM

class

that

perform

those

operations.

Table

113.

Message-generating

operations

Operation

Function

block

Method

Raising

exceptions

General/APIs/Maps/Exception/

Raise

Map

Exception

raiseException()

Logging

v

General/Logging

and

Tracing/Log

Information

ID

v

General/Logging

and

Tracing/Log

error

ID

v

General/Logging

and

Tracing/Log

warning

ID

v

logInfo()

v

logError()

v

logWarning()

Tracing

General/Logging

and

Tracing/Trace/Trace

on

Level

trace()

This

section

describes

message-generating

operations

that

affect

map

execution.

Raising

exceptions

The

raiseException()

method

has

several

forms.

One

commonly

used

syntax

is:

raiseException(String

exceptionType,

int

messageNum,

String

param[,...])

With

this

syntax,

you

can

have

from

one

to

three

param

String

parameters.

Thus,

there

can

be

up

to

five

comma-separated

parameters

in

a

call

to

raiseException().

This

example

raises

a

new

exception,

using

message

number

23,

and

passes

in

two

parameters

to

the

message,

the

customer

ID

value

and

a

string:

Appendix

A.

Message

files

407

raiseException(AttributeException,

23,

fromCustomer.getString("CustomerID"),

"greater

than

maximum

length");

Figure

119

shows

the

text

for

message

23

as

it

appears

in

the

message

file.

Logging

messages

A

map

can

log

a

message

whenever

something

occurs

that

might

be

of

interest

to

an

administrator.

To

log

a

message,

a

map

uses

the

logInfo(),

logWarning(),

and

logError()

methods

of

the

BaseDLM

class.

Each

method

is

associated

with

a

different

message

severity

level.

Severity

levels

To

log

a

message,

you

must

call

the

method

associated

with

the

message’s

severity

level.

Table

114

lists

the

severity

levels

and

their

associated

methods.

Table

114.

Message

levels

Severity

level

Method

Description

Info

logInfo()

Informational

only.

The

user

does

not

need

to

take

action.

Warning

logWarning()

Represents

information

about

a

problem.

Do

not

use

this

level

for

problems

that

the

user

must

resolve.

Error

logError()

Indicates

a

serious

problem

that

the

user

needs

to

investigate.

Using

a

message

file

Every

map

has

at

least

one

message

file

associated

with

it.

If

a

map

does

not

use

custom

messages,

its

messages

come

from

the

system

map

message

file,

CWMapMessages.txt.

If

a

map

uses

customized

messages,

it

has

a

map-specific

message

file

(which

is

generated

from

the

messages

entered

in

the

Messages

tab

of

Map

Designer).

For

more

information,

see

“Message

location”

on

page

403.

When

a

map

logs

an

error,

the

text

of

the

error

message

comes

from

the

map’s

message

file.

The

following

example

logs

an

error

message

whose

text

is

contained

in

the

map’s

message

file.

The

text

of

error

message

10

appears

as

follows

in

the

message

file:

10

Credit

report

error

for

{1},

{2}.

The

code

to

log

the

message

looks

like

this:

logError(10,

customer.get("LName"),

customer.get("FName");

When

the

logError()

method

executes,

the

text

for

message

10

is

written

to

the

log

file,

with

the

customer’s

last

name

and

first

name

substituted

for

parameters

1

and

2.

For

example,

the

logged

message

for

a

customer

named

John

Davidson

looks

like

this:

Credit

report

error

for

Davidson,

John.

Principles

of

good

message

logging

When

creating

messages,

be

sensitive

to

the

way

that

administrators

use

the

logging

feature.

Assigning

severity

levels:

It

is

important

to

be

precise

when

assigning

error

levels

to

messages.

The

IBM

system

e-mail

notification

feature

sends

a

message

to

a

designated

person,

usually

the

administrator,

when

it

detects

the

generation

of

an

408

Map

Development

Guide

error

message

or

fatal

error

message.

Administrators

use

this

IBM

system

e-mail

notification

feature,

and

they

additionally

might

link

it

to

an

e-mail

pager

to

send

a

page

when

an

error

occurs.

By

being

precise

when

assigning

error

levels

to

messages,

you

can

reduce

the

number

of

critical

messages.

Revising

messages:

You

can

revise

the

text

of

a

message

at

any

time,

such

as

to

clarify

or

expand

the

text.

However,

once

you

assign

a

message

number

to

a

certain

type

of

error,

it

is

important

that

you

do

not

reassign

the

number.

Many

administrators

depend

on

scripts

to

filter

log

messages,

and

these

scripts

rely

on

the

message

numbers.

Thus,

it

is

important

that

the

numbers

in

the

message

file

do

not

change

meaning.

If

they

do,

users

can

lose

messages

or

receive

inadvertent

messages.

When

to

use

informational

messages:

You

can

use

the

logInfo()

method

to

create

temporary

messages

for

your

own

debugging.

However,

be

sure

to

remove

these

debugging

method

calls

when

you

are

finished

with

development.

Resist

the

temptation

to

use

the

logInfo()

method

to

document

the

normal

operation

of

the

collaboration.

Doing

so

fills

the

administrator’s

log

files

with

messages

that

are

not

of

interest.

Instead,

use

the

trace()

method

to

give

the

administrator

detailed

information

for

debugging.

Adding

trace

messages

You

can

add

trace

messages

to

your

map

so

that

when

a

map

instance

runs,

it

generates

a

detailed

description

of

its

actions.

Trace

messages

are

useful

for

your

own

debugging

and

for

on-site

troubleshooting

by

administrators.

Trace

messages

differ

from

log

messages

in

that

trace

messages

are

suppressed

by

default,

whereas

log

messages

cannot

be

suppressed.

Trace

messages

are

generally

more

detailed

and

are

meant

to

be

viewed

only

under

certain

circumstances,

such

as

when

someone

intentionally

configures

the

map’s

trace

level

to

a

number

higher

than

zero.

You

can

send

trace

messages

and

log

messages

to

different

files.

You

can

add

trace

messages

to

a

map

to

report

operations

that

are

specific

to

that

map.

These

are

some

types

of

information

that

the

map

can

write

to

the

trace

file:

v

Key

values

of

a

business

object

at

the

point

that

the

map

begins

or

ends

a

particular

transformation

step.

v

The

decision

to

take

a

particular

branch

in

the

execution

path.

Assigning

trace

levels

Each

trace

message

must

be

associated

with

a

trace

level

between

1

and

5.

The

trace

level

usually

correlates

to

a

level

of

detail:

messages

at

level

1

typically

contain

less

detail

than

messages

at

level

2,

which

contain

less

detail

than

those

at

level

3,

and

so

forth.

Thus,

if

you

turn

on

tracing

at

level

1,

you

see

messages

that

contain

less

detail

than

the

messages

at

level

5.

However,

you

can

assign

levels

in

any

way

that

is

useful

to

you.

Here

are

some

suggestions:

v

You

can

assign

the

same

level

to

all

of

your

trace

messages.

v

You

can

assign

trace

levels

according

to

level

of

detail.

v

You

can

assign

message

levels

according

to

the

business

object

involved:

level

1

traces

messages

relating

to

a

certain

business

object,

level

2

traces

messages

relating

to

another

business

object,

and

so

on.

When

you

turn

on

tracing

at

a

particular

level,

the

messages

associated

with

the

specified

level

and

those

associated

with

all

lower

levels

appear.

For

example,

tracing

at

level

2

displays

messages

associated

with

both

level

2

and

level

1.

Appendix

A.

Message

files

409

Tip:

Make

sure

to

note

the

tracing

levels

with

your

documentation,

so

users

know

what

level

to

use

when

they

need

to

trace.

Generating

a

trace

message

The

following

is

an

example

of

a

message

and

the

method

call

that

generates

the

message.

The

message

appears

in

the

message

file

as

follows:

20

Begin

transformation

on

{1}

attribute:

value

=

{2}

The

method

call

obtains

the

value

of

the

attribute

LName,

then

uses

the

value

to

replace

the

parameter

in

the

message.

The

code

appears

in

the

map

as

follows,

and

the

message

appears

when

the

user

sets

tracing

to

level

3:

trace(3,

20,

"LName",

customer.get("LName"));

Setting

the

trace

level

Figure

120

shows

the

General

tab

of

the

Map

Properties

dialog

in

Map

Designer.

(For

information

on

how

to

display

the

Map

Properties

dialog,

see

“Providing

map

property

information”

on

page

54.)

Notice

that

you

can

set

the

trace

level

for

trace

messages

in

this

dialog.

As

the

map

developer,

you

create

the

levels

for

which

map-generated

tracing

can

be

requested,

as

described

in

“Assigning

trace

levels”

on

page

409.

Note:

If

you

change

the

trace

level

for

an

activated

map,

you

must

stop

and

restart

the

map

before

the

new

trace

level

takes

effect.

Use

the

Component

menu

of

IBM

WebSphere

System

Manager

to

stop

and

start

a

map.

Figure

120.

Trace

level

for

a

map

410

Map

Development

Guide

By

setting

the

trace

level

in

the

Map

Properties

dialog

of

Map

Designer,

you

set

it

for

all

map

instances

based

on

this

map

definition.

You

can

also

set

the

trace

level

for

all

map

instances

from

the

Map

Properties

window

of

IBM

WebSphere

System

Manager.

For

more

information

about

the

Map

Properties

window

of

System

Manager,

see

the

User

Guide.

Appendix

A.

Message

files

411

412

Map

Development

Guide

Appendix

B.

Attribute

properties

Table

115

lists

the

properties

for

attributes

of

business

object

definitions.

Table

115.

Attribute

Properties

Property

Description

Name

A

name

that

describes

what

type

of

data

the

attribute

contains.

The

name

can

be

up

to

80

alphanumeric

characters

and

underscores.

It

cannot

contain

spaces

or

other

punctuation.

Type

The

data

type

of

the

attribute.

Basic

types

include

String,

Boolean,

Double,

Float,

Integer,

and

Date.

If

the

attribute

references

a

child

business

object,

specify

the

name

of

a

child

business

object

definition.

Attributes

that

reference

child

business

objects

are

called

compound

attributes.

IsKey

A

boolean

value,

true

or

false,

specifying

whether

this

is

a

key

attribute.

Key

attributes

uniquely

identify

a

business

object

created

from

the

definition.

Each

business

object

definition

has

at

least

one

key

attribute.

IsForeignKey

A

boolean

value,

true

or

false,

specifying

whether

this

is

a

foreign

key

attribute.

MaxLength

An

integer

representing

the

maximum

number

of

bytes

the

attribute

can

contain.

To

specify

no

limit,

enter

zero

(0).

AppSpecificInfo

A

string

that

provides

information

about

the

attribute

for

a

particular

application,

such

as

the

name

of

a

field

in

a

table

or

form

that

corresponds

to

the

attribute.

Connectors

use

this

information

when

processing

the

object.

DefaultValue

The

value

to

assign

to

this

attribute

if

there

is

no

runtime

value.

IsRequired

A

boolean

value,

true

or

false,

specifying

whether

a

value

for

this

attribute

is

required

to

create

a

business

object.

ContainedObjectVersion

The

version

number

of

the

child

business

object

definition.

IBM

WebSphere

System

Manager

displays

this

value

under

the

name

Type

Version.

Relationship

The

relationship

between

the

parent

business

object

and

the

child

business

object.

In

the

current

release,

the

only

valid

relationship

is

Containment.

Cardinality

The

number

of

child

business

objects

that

this

attribute

references.

If

the

attribute

references

only

one

child

business

object,

the

value

is

1.

If

the

attribute

can

reference

many

child

business

objects,

the

value

is

a

literal

n.

©

Copyright

IBM

Corp.

2003

413

414

Map

Development

Guide

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

2003

415

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

416

Map

Development

Guide

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

Map

Designer

Express

and

Relationship

Designer

Express

include

software

developed

by

the

Eclipse

Project

(http://www.eclipse.org/).

WebSphere

Business

Integration

t

Express

for

Item

Synchronization

V4.3

Notices

417

418

Map

Development

Guide

Index

Special

characters
.bo

file

extension

12,

74,

75,

79

.class

file

extension

12,

70

.cwm

file

extension

12,

48,

53

.java

file

extension

12,

70,

71

.txt

file

extension

12,

67,

221,

403

A
Access

client

72,

148,

193

ACCESS_REQUEST

calling

context

147,

148,

193

Create

verb

and

193,

214,

218

Delete

verb

and

194,

214

foreignKeyXref()

and

217,

351

getOriginalRequestBO()

and

365

maintainChildVerb()

and

214,

354

maintainCompositeRelationship()

and

204,

355

maintainSimpleIdentityRelationship()

and

193,

358

original-request

business

object

148,

365

Retrieve

verb

and

194,

214,

218

retrieving

364

setting

to

367

testing

with

81,

84

Update

verb

and

194,

214,

218

ACCESS_RESPONSE

calling

context

147,

148,

193

foreignKeyXref()

and

220,

351

getOriginalRequestBO()

and

366

maintainCompositeRelationship()

and

204,

355

maintainSimpleIdentityRelationship()

and

200,

358

original-request

business

object

148,

201,

366

retrieving

364

setting

to

367

updateMyChildren()

and

210

Activity

Editor

87

accessing

25,

26,

37,

40,

41,

45,

88

Add

Comment

90

Add

Description

90,

131

Add

Label

90

Add

To

do

90

Add

To

My

Collection

90

Comment

94

connection

links

93

Content

window

92

Cross-Reference

transformation

88

Description

94

Design

mode

92,

135

Document

Display

Area

88

example

of

using

122,

126,

133

function

blocks

93,

95

Graphical

view

88,

91

grouping

components

94

Help

menu

90

Java

view

88,

135

Join

transformation

40,

88

keyboard

shortcuts

88

Label

94

layout

88

Library

window

92

main

menus

88

main

views

88

Activity

Editor

(continued)
New

Constant

90,

94

ports

93

Properties

window

92

Quick

view

mode

92,

136

Resize

label

94

Set

Value

transformation

37,

88

Split

transformation

41,

88

starting

87

Status

bar

91

Submap

transformation

45,

88

Title

Bar

88

To

Do

94

toolbars

90

addDays()

method

310

addElement()

method

260

addMyChildren()

method

345,

370,

391

addParticipant()

method

378

addWeekdays()

method

311

addYears()

method

312

after()

method

313

AnyException

exception

234

Application-specific

business

objects

3

AppSpecificInfo

attribute

property

413

Attribute
addressing

in

transformations

140

advanced

settings

182

application-specific

information

413

checking

for

key

248

column

name

182

comments

for

17,

34,

50,

57,

63

data

type

16,

34,

256,

413

dependencies

of

66

destination

5,

16

finding

36,

49,

60

joining

38

maximum

length

413

name

16,

34,

413

properties

413,

415

relationship

146,

187,

188

required

250,

413

source

16

specifying

240

splitting

40

unlinked

18,

49,

59,

60

validating

52,

69

Attribute

value
adding

together

270

blank

248

copying

37,

50

default

36,

73,

253,

413

null

249

retrieving

245

retrieving

as

string

255

retrieving

maximum

262,

263,

264

retrieving

minimum

265,

266,

267

setting

251,

254

setting

default

value

for

253

validating

146

validating

data

type

256

zero-length

string

248

©

Copyright

IBM

Corp.

2003

419

AttributeException

exception

234

B
BaseDLM

class

227,

237

defined

227

getDBConnection()

227

getName()

229

getRelConnection()

230

implicitDBTransactionBracketing()

231

isTraceEnabled()

231

logError()

232

logInfo()

232

logWarning()

232

method

summary

227

releaseRelConnection()

235

trace()

236

before()

method

314

beginTran()

method

(deprecated)

289

beginTransaction()

method

273

Blank

attribute

value

248

BOOL_TYPE

constant

298

Boolean

class

413

as

stored-procedure

parameter

type

285

converting

to

300

converting

to

Boolean

303

determining

data

type

298

valid

conversions

300

boolean

data

type
as

stored-procedure

parameter

type

285

checking

for

valid

data

256

converting

to

303

converting

to

Boolean

300

determining

data

type

298

getting

attribute

value

245

setting

attribute

to

251

valid

conversions

300

Breakpoints

75,

78

Browsing

a

Project

169

Business

object
adding

14,

169

adding

to

an

array

260

addressing

in

transformations

140

business

object

definition

for

247

comparing

attribute

values

243,

244

comparing

key

attribute

values

242

copying

241

deleting

14,

63,

169

duplicating

242

generic

3,

148

instance

name

34,

140

key

attribute

in

248

null

attribute

in

249

number

in

a

business

object

array

270

properties

141

refreshing

list

of

17

removing

from

business

object

array

268,

269

required

attribute

in

250

retrieving

attribute

value

245,

255

retrieving

from

business

object

array

261

retrieving

key

attribute

value

250

retrieving

verb

247

setting

attribute

value

251,

252,

254

setting

key

values

253

setting

value

of

269

swapping

in

an

array

270

temporary

142

Business

object

(continued)
transversing

hierarchical

240

validating

attribute

data

type

256

variable

for

140

Business

object

array
adding

attribute

values

together

270

adding

business

object

to

260

comparing

with

another

261

duplicating

260

index

69,

74,

140

removing

all

elements

from

268

removing

element

from

268,

269

retrieving

a

business

object

from

261

retrieving

contents

of

262

retrieving

last

index

of

262

retrieving

maximum

attribute

value

from

262,

263,

264

retrieving

minimum

attribute

value

from

265,

266,

267

retrieving

size

of

270

retrieving

values

as

string

271

reversing

position

of

elements

in

270

setting

element

of

269

Business

Object

Array

function

block

96

Business

object

definition
retrieving

name

of

247

Business

Object

function

block

98

Business

Object/Array

function

block

97

Business

Object/Constants

function

block

97

BusObj

class

239,

257

copy()

241

defined

239

deprecated

methods

256

duplicate()

242

equalKeys()

242

equals()

243

equalsShallow()

244

exists()

244

getCount()

257

getKeys()

257

getLocale()

247,

253

getType()

247

getValues()

257

getVerb()

247

isBlank()

248

isKey()

248

isNull()

249

isRequired()

250

keysToString()

250

method

summary

239

not()

257

set()

251,

257

setContent()

252

setDefaultAttrValues()

253

setKeys()

253

setVerb()

254

setWithCreate()

254

toString()

255

validData()

256

BusObjArray

class

259,

271

addElement()

260

defined

259

duplicate()

260

elementAt()

261

equals()

261

getElements()

262

getLastIndex()

262

max()

262

maxBusObjArray()

263

420

Map

Development

Guide

BusObjArray

class

(continued)
maxBusObjs()

264

method

summary

259

min()

265

minBusObjArray()

266

minBusObjs()

267

removeAllElements()

268

removeElement()

268

removeElementAt()

269

setElementAt()

269

size()

270

sum()

270

swap()

270

toString()

271

C
calcDays()

method

314

calcWeekdays()

method

315

CALL

statement

276,

277,

291

Call-triggered

flow

148

Calling

contexts

146

ACCESS_REQUEST

147,

193

ACCESS_RESPONSE

147,

193

EVENT_DELIVERY

147,

193

example

of

149

identity

relationship

and

193

retrieving

363

SERVICE_CALL_FAILURE

147,

193

SERVICE_CALL_REQUEST

147,

193

SERVICE_CALL_RESPONSE

147,

193

setting

366

testing

with

80

CANNOTCONVERT

constant

299

Cardinality

attribute

property

413

child

business

objects
customizing

for

relationships

205

example

of

customizing

for

relationships

205

Child

business

objects
adding

to

parent/child

relationship

345,

358

attribute

comment

for

50

cardinality

of

176,

413

identity

relationships

176

multiple-cardinality

42

removing

from

parent/child

relationship

347,

358

setting

verb

for

352

submaps

for

42,

44

testing

74

verb

213

version

number

413

CLASSPATH

environment

variable

140

CollaborationException

class

240

commit()

method

(CwDBConnection)

274

commit()

method

(DtpConnection)

235,

290

Comparing
business

object

arrays

261

business

object

attribute

values

243,

244

key

attribute

values

242

Composite

identity

relationship

157,

159,

174,

202,

210

customizing

map

rules

for

204

defining

175,

176,

202

main

map

205

maintainChildVerb()

and

206,

216

maintainCompositeRelationship()

and

203,

354

managing

child

instances

207

participant

type

for

202

Connection
determining

if

active

280

obtaining

227

releasing

281

transaction

programming

model

227,

228

Connection

pool

228,

281

Connector
initiating

mapping

request

72,

147,

193

retrieving

name

of

363

setting

name

of

366

ContainedObjectVersion

attribute

property

413

Context

menu

(Activity

Editor)

90

Add

Comment

90

Add

Description

90

Add

Label

90

Add

To

do

90

Add

To

My

Collection

90

New

Constant

90

Context

menu

(business

object

browser)
Copy

34

Refresh

All

17

Context

menu

(business

object

pane)
Add

Business

Object

33

Delete

Business

Object

63

Context

menu

(business

object

window)
Delete

35

Properties

142

Context

menu

(dest.

data,

attribute)
Clear

Breakpoint

77

Set

Breakpoint

76

Context

menu

(dest.

data,

main

object)
Collapse

76

Save

To

79

Context

menu

(map

workspace)
Add

Business

Object

33

Delete

63

Map

Properties

54

Paste

As

Input

Object

34

Paste

As

Output

Object

34

Context

menu

(Relationship

Designer)
Change

Index

176

Context

menu

(source

data,

child

object)
Add

Instance

73,

74,

75

Remove

All

Instances

75

Remove

Instance

75

Context

menu

(source

data,

main

object)
Load

From

75

Reset

73

Save

To

74

Context

menu

(Transformations)
Open

25

Open

in

New

Window

25

View

Source

26

copy()

method

241,

257

Copying
attributes

37,

50

business

object

241

participant

definitions

178,

179

relationship

definitions

178

Create

verb
conditionally

set

211

foreignKeyXref()

and

218,

220

maintainChildVerb()

and

214,

215

maintainCompositeRelationship()

and

204

maintainSimpleIdentityRelationship()

and

193,

195,

197,

200

create()

method

370,

374,

380

Index

421

Cross-Reference

transformation

16,

21,

36,

45,

69,

88

defining

for

relationships

191

validating

52

Custom

transformation

16,

21,

36,

46,

50,

88,

187

CwDBConnection

class

273,

283

beginTransaction()

273

commit()

274

creating

object

of

227

executePreparedSQL()

275

executeSQL()

276

executeStoredProcedure()

278

getUpdateCount()

279

hasMoreRows()

279

inTransaction()

280

isActive()

280

method

summary

273

nextRow()

281

release()

281

rollBack()

282

CwDBStoredProcedureParam

class

285,

287

constructor

285

getParamType()

286

getValue()

287

method

summary

285

CwDBStoredProcedureParam()

constructor

285

CwDBTransactionException

exception

228,

274,

275,

282,

283

cwExecCtx

variable

146,

333,

346,

347,

349,

350,

355,

357,

359

CWMapMessages.txt

message

file

404

CWMAPTYPE

constant

333

CxMissingIDException

exception

405

D
Data

conversion

38,

297

class

for

297

Java.lang

methods

297

to

boolean

data

type

303

to

Boolean

object

300

to

double

data

type

303

to

Double

object

301

to

float

data

type

304

to

Float

object

301

to

int

data

type

304

to

Integer

object

302

to

String

object

305

valid

conversions

300

Data

type
attribute

413

determining

297

determining

if

conversion

is

possible

298

Data

validation

146

Database
connecting

to

227

executing

a

query

in

276,

277,

278

querying

279,

281

rows

affected

by

last

write

279

Database

Connection

function

block

101

DataValidationLevel

map

property

85

Date

class

285,

298,

300,

413

Date

formatting
adding

days

to

date

310

adding

weekdays

to

date

311

adding

years

to

date

312

calculating

days

between

dates

314

calculating

weekdays

between

dates

315

comparing

dates

313,

314

current

date

309

Date

formatting

(continued)
generic

format

317

getting

day

of

the

month

317,

318

getting

day

of

the

week

318,

319

getting

earliest

date

from

a

list

323,

325

getting

hour

value

318

getting

in

specified

or

default

format

330

getting

milliseconds

between

1/1/70

and

date

321

getting

minutes

value

319,

326

getting

month

name

326,

327

getting

month

value

320,

326

getting

most

recent

date

from

a

list

321,

322

getting

seconds

value

320,

327

getting

year

320,

328

parsing

date

according

to

format

309

reformatting

to

CrossWorlds

date

format

317

using

full

names

of

months

316,

328,

329

using

short

names

of

months

316,

329

using

weekday

names

316,

330

Date

function

block

111,

127

DATE_TYPE

constant

298

Date/Formats

function

block

113

deactivateParticipant()

method

381

deactivateParticipantByInstance()

method

382

Debug

menu

(Map

Designer)

25

Advanced

25

Attach

25,

79

Breakpoints

25,

77

Clear

All

Breakpoints

25,

77

Continue

25,

78

Detach

25,

79

Run

Test

25,

78

Step

Over

25,

78

Stop

Test

Run

25

Toggle

Breakpoint

25,

76

Default

attribute

value

36,

253,

413

DefaultValue

attribute

property

413

DELETE

statement

276,

277

Delete

verb
foreignKeyXref()

and

220

maintainChildVerb()

and

214,

215

maintainCompositeRelationship()

and

204

maintainSimpleIdentityRelationship()

and

194,

196,

197,

200

deleteMyChildren()

method

347

deleteParticipant()

method

383

deleteParticipantByInstance()

method

384

Deprecated

methods
BusObj

class

256,

368

DtpConnection

class

289

Relationship

class

390

UserStoredProcedureParam

class

393

Design

mode

(Activity

Editor)

92

Designer

toolbar

(Map

Designer)

22

Add

Business

Object

33

All

Attributes

22

Clear

All

Breakpoints

77

Compile

70

Continue

78

displaying

22,

24

Linked

Attributes

22

Run

Test

78

Step

Over

78

Toggle

Breakpoint

76

Unlinked

Attributes

22

Validate

69

Destination

business

object

3,

5,

13,

144

422

Map

Development

Guide

Destination

business

object

(continued)
adding

to

map

30,

33

business

object

window

34

displaying

9,

17,

24,

55

execution

order

16,

52,

66,

69

relationship

and

153

setting

verb

of

35

variable

for

140

verb

35,

210

Diagram

tab

(Map

Designer)

17

adding

business

object

33

business

object

browser

17,

22,

24

business

object

variables

141

business

object

window

18,

24,

34,

141

calling

a

submap

44

custom

transformation

46

default

display

22

deleting

a

transformation

63

displaying

attributes

36

joining

attributes

38

key

mappings

21

map

workspace

18,

143

moving

attribute

37

setting

attribute

value

36

splitting

attribute

40

temporary

business

object

143

Double

class

413

as

stored-procedure

parameter

type

285

converting

to

301

converting

to

Double

303

converting

to

Float

302,

304

converting

to

Integer

302,

305

converting

to

String

305

determining

data

type

298

obtaining

maximum

value

263,

264

obtaining

minimum

value

265,

266,

267

valid

conversions

300

double

data

type
as

stored-procedure

parameter

type

285

checking

for

valid

data

256

converting

to

303

converting

to

Double

301

converting

to

Float

302,

304

converting

to

Integer

302,

305

converting

to

String

305

determining

data

type

298

getting

attribute

value

245

setting

attribute

to

251

valid

conversions

300

DOUBLE_TYPE

constant

298

DtpConnection

class

(deprecated)

289,

295

beginTran()

289

commit()

290

creating

object

of

230

execStoredProcedure()

292

executeSQL()

291

getUpdateCount()

293

hasMoreRows()

293

inTransaction()

294

method

summary

289

nextRow()

294

rollBack()

295

DtpDataConversion

class

297,

306

CANNOTCONVERT

299

defined

297

getType()

297

isOKToConvert()

298

DtpDataConversion

class

(continued)
method

summary

297

OKTOCONVERT

299

POTENTIALDATALOSS

299

toBoolean()

300

toDouble()

301

toFloat()

301

toInteger()

302

toPrimitiveBoolean()

303

toPrimitiveDouble()

303

toPrimitiveFloat()

304

toPrimitiveInt()

304

toString()

305

DtpDate

class

307,

331

addDays()

310

addWeekdays()

311

addYears()

312

after()

313

before()

314

calcDays()

314

calcWeekdays()

315

DtpDate()

309

get12MonthNames()

316

get12shortMonthNames()

316

get7DayNames()

316

getCWDate()

317

getDayOfMonth()

317

getDayOfWeek()

318

getHours()

318

getIntDay()

318

getIntDayOfWeek()

319

getIntMilliSeconds()

319

getIntMinutes()

319

getIntMonth()

320

getIntSeconds()

320

getIntYear()

320

getMaxDate()

321

getMaxDateBO()

322

getMinDate()

323

getMinDateBO()

325

getMinutes()

326

getMonth()

326

getMSSince1970()

321

getNumericMonth()

326

getSeconds()

327

getShortMonth()

327

getYear()

328

method

summary

307

rules

for

307

set12MonthNames()

328

set12MonthNamesToDefault()

329

set12ShortMonthNames()

329

set12ShortMonthNamesToDefault()

329

set7DayNames()

330

set7DayNamesToDefault()

330

toString()

330

DtpDate()

constructor

309

DtpMapService

class

333,

334

method

summary

333

runMap()

333

DtpSplitString

class

335,

340

defined

335

DtpSplitString()

335

elementAt()

336

firstElement()

336

getElementCount()

337

getEnumeration()

338

Index

423

DtpSplitString

class

(continued)
lastElement()

338

method

summary

335

nextElement()

338

prevElement()

339

reset()

340

DtpSplitString()

constructor

335

DtpUtils

class

341,

343

method

summary

341

padLeft()

341

padRight()

341

stringReplace()

342

truncate()

343

duplicate()

method

242,

260

Duplicating
business

object

242

business

object

array

260

Dynamic

relationship

184

E
Edit

menu

(Activity

Editor)

89

Copy

89

Cut

89

Delete

89

Find

89

Goto

Line

89

Paste

89

Select

All

89

Edit

menu

(Map

Designer)

24

Add

Business

Object

24,

32,

141,

142

Delete

Business

Object

24,

63

Delete

Current

Selection

24,

34,

63

Find

24,

36,

49,

60

Insert

Row

24

Map

Properties

24,

54,

85,

141

Replace

24,

62

Select

All

24

Edit

menu

(Relationship

Designer)

172

Advanced

Settings

172,

175,

177,

179,

182

Copy

172,

178,

179

Cut

172

Delete

183

Paste

172,

178,

179

Rename

172

elementAt()

method

261,

336

Environment

variable
CLASSPATH

140

JCLASSES

139

PATH

10

equalKeys()

method

242

equals()

method

243,

261

equalsShallow()

method

244

Error
compilation

71

run-time

85

Error

message

232,

408

EVENT_DELIVERY

calling

context

147,

193

Create

verb

and

193,

214,

218

Delete

verb

and

194,

214

foreignKeyXref()

and

217,

351

getOriginalRequestBO()

and

365

maintainChildVerb()

and

214,

354

maintainCompositeRelationship()

and

204,

355

maintainSimpleIdentityRelationship()

and

193,

358

original-request

business

object

148,

365

Retrieve

verb

and

194,

214,

218

EVENT_DELIVERY

calling

context

(continued)
retrieving

364

setting

to

367

testing

with

81,

84

Update

verb

and

194,

214,

218

updateMyChildren()

and

210

Event-triggered

flow

147

Exception

handling

144

Exception

types

240

Exceptions
CollaborationException

class

240

CwDBTransactionException

228,

274,

275,

282,

283

defined

144,

240

raising

233,

407

RelationshipRuntimeException

class

145

relationships

145

type

240

execStoredProcedure()

method

(deprecated)

292

executePreparedSQL()

method

275

executeSQL()

method

(CwDBConnection)

276

executeSQL()

method

(DtpConnection)

291

executeStoredProcedure()

method

278

exists()

method

244

F
File

menu

(Activity

Editor)

89

Close

89

Print

89

Print

Preview

89

Print

Setup

89

Save

89

File

menu

(Map

Designer)

23

Close

23,

53

Compile

23,

53,

70,

73

Compile

All

24,

70

Compile

with

Submap(s)

24,

70

Create

Map

Document

24,

58

Delete

23,

64

Exit

24,

53

New

23,

29

Open

23,

52,

53

Print

24,

62

Print

Preview

24,

62

Print

Setup

24,

62

Save

23,

47,

49

Save

As

23,

47,

49

Validate

Map

23,

69

View

Map

Document

24,

60

File

menu

(Relationship

Designer)

171

Add

Participant

Definition

172,

173

New

171

New

Relationship

Definition

173

Save

171

Save

All

171

Save

Relationship

Definition

174,

178,

179

Switch

to

Project

171

Find

and

Replace

text

62

Find

text

60

Find

unlinked

attribute

60

firstElement()

method

336

Float

class

413

as

stored-procedure

parameter

type

285

converting

to

301

converting

to

Double

301,

303

converting

to

Float

304

converting

to

Integer

302,

305

424

Map

Development

Guide

Float

class

(continued)
converting

to

String

305

determining

data

type

298

obtaining

maximum

value

263,

264

obtaining

minimum

value

265,

266,

267

valid

conversions

300

float

data

type
as

stored-procedure

parameter

type

285

checking

for

valid

data

256

converting

to

304

converting

to

Double

301,

303

converting

to

Float

302

converting

to

Integer

302,

305

converting

to

String

305

determining

data

type

298

getting

attribute

value

245

setting

attribute

to

251

valid

conversions

300

FLOAT_TYPE

constant

298

Foreign

key

216,

348,

350,

413

Foreign

Key

Cross-Reference

function

block

217

Foreign

key

lookup

216

Foreign

Key

Lookup

function

block

216

foreignKeyLookup()

method

216,

348,

405

foreignKeyXref()

method

217,

350,

405

Function

blocks

93,

95

adding

custom

Jar

libraries

as

137

customizing

Jar

library

properites

137

example

of

using

122,

123,

127,

133

General/APIs/Business

Object

98

General/APIs/Business

Object

Array

96

General/APIs/Business

Object/Array

97

General/APIs/Business

Object/Constants

97

General/APIs/Database

Connection

101

General/APIs/Identity

Relationship

103

General/APIs/Maps

106

General/APIs/Maps/Constants

104

General/APIs/Maps/Exception

105

General/APIs/Participant

107

General/APIs/Participant/Array

106

General/APIs/Participant/Constants

107

General/APIs/Relationship

109

General/Date

111

General/Date/Formats

113

General/Logging

and

tracing

113

General/Logging

and

Tracing/Log

Error

113

General/Logging

and

Tracing/Log

Information

114

General/Logging

and

Tracing/Log

Warning

114

General/Logging

and

Tracing/Trace

115

General/Mapping

116

General/Math

116

General/Properties

118

General/Relationship

118

General/String

119

General/Utilities

121

General/Utilities/Vector

121

using

to

implement

relationships

187

G
get12MonthNames()

method

316

get12ShortMonthNames()

method

316

get7DayNames()

method

316

getConnName()

method

363

getCount()

method

(deprecated)

257

getCWDate()

method

317

getDayOfMonth()

method

317

getDayOfWeek()

method

318

getDBConnection()

method

227,

228

getElementCount()

method

337

getElements()

method

262

getEnumeration()

method

338

getGenericBO()

method

(deprecated)

368

getHours()

method

318

getInitiator()

method

363

getInstanceId()

method

371

getIntDay()

method

318

getIntDayOfWeek()

method

319

getIntMilliSeconds()

method

319

getIntMinutes()

method

319

getIntMonth()

method

320

getIntSeconds()

method

320

getIntYear()

method

320

getKeys()

method

(deprecated)

257

getLastIndex()

method

262

getLocale()

method

247,

253,

364

getMaxDate()

method

321

getMaxDateBO()

method

322

getMinDate()

method

323

getMinDateBO()

method

325

getMinutes()

method

326

getMonth()

method

326

getMSSince1970()

method

321

getName()

method

229

getNewID()

method

385

getNumericMonth()

method

326

getOriginalRequestBO()

method

365,

368

getParamDataTypeJavaObj()

method

(deprecated)

394

getParamDataTypeJDBC()

method

(deprecated)

395

getParamIndex()

method

(deprecated)

395

getParamIOType()

method

(deprecated)

396

getParamName()

method

(deprecated)

397

getParamType()

method

286

getParamValue()

method

(deprecated)

397

getParticipantDefinition()

method

372

getRelationshipDefinition()

method

372

getRelConnection()

method

(deprecated)

230,

291,

292

getSeconds()

method

327

getShortMonth()

method

327

getType()

method

247,

297

getUpdateCount()

method

(CwDBConnection)

279

getUpdateCount()

method

(DtpConnection)

293

getValue()

method

287

getValues()

method

(deprecated)

257

getVerb()

method

247

getYear()

method

328

Graphical

view

(Activity

Editor)

88,

91

Content

window

92

Design

mode

92

Library

window

92

Properties

window

92

Quick

view

mode

92

Graphics

toolbar

(Activity

Editor)

91

Back

91

Forward

91

Home

91

Up

One

Level

91

Zoom

In

91

Zoom

Out

91

H
hasMoreRows()

method

(CwDBConnection)

279

hasMoreRows()

method

(DtpConnection)

293

Index

425

Help

menu

(Activity

Editor)

90

Help

menu

(Map

Designer)

25

Help

menu

(Relationship

Designer)

172

Hierarchical

business

object
comparing

all

243

comparing

top-level

244

transversing

240

I
Identity

relationship

155,

159

adding

child

business

objects

345,

358

child

business

objects

176

class

for

345

creating

participant

for

370

defined

154,

155,

174

defining

174,

176,

191,

201,

202

deleting

child

business

objects

347,

358

kinds

of

155,

174

maintaining

child

verb

213

relationship

instance

IDs

162

static

185

static

lookup

211

testing

80

Identity

Relationship

function

block

103

IdentityRelationship

class

161,

162,

345,

361

addMyChildren()

345,

391

deleteMyChildren()

347

foreignKeyLookup()

348

foreignKeyXref()

350

maintainChildVerb()

352

maintainCompositeRelationship()

354,

391

maintainSimpleIdentityRelationship()

356,

391

method

summary

345

updateMyChildren()

358,

391

implicitDBTransactionBracketing()

method

231

IN

parameter

287

Inbound

map

3,

4

example

of

customizing

211

foreign

key

lookup

in

219,

349,

351

in

map

document

57

lookup

relationship

in

387

testing

81,

82,

84

Informational

message

232,

408,

409

INOUT

parameter

287

INSERT

statement

190,

276,

277,

279

int

data

type
as

stored-procedure

parameter

type

285

checking

for

valid

data

256

converting

to

304

converting

to

Double

301,

303

converting

to

Float

302,

304

converting

to

Integer

302

converting

to

String

305

determining

data

type

298

getting

attribute

value

245

setting

attribute

to

251

valid

conversions

300

Integer

class

413

as

stored-procedure

parameter

type

285

converting

to

302

converting

to

Double

301,

303

converting

to

Float

302,

304

converting

to

Integer

305

converting

to

String

305

determining

data

type

298

obtaining

maximum

value

263,

264

Integer

class

(continued)
obtaining

minimum

value

265,

266,

267

valid

conversions

300

INTEGER_TYPE

constant

298

inTransaction()

method

(CwDBConnection)

280

inTransaction()

method

(DtpConnection)

294

INVALID_INSTANCE_ID

constant

372,

374,

380

isActive()

method

280

isBlank()

method

248

IsForeignKey

attribute

property

413

IsKey

attribute

property

413

isKey()

method

248

isNull()

method

249

isOKToConvert()

method

298

IsRequired

attribute

property

413

isRequired()

method

250

isTraceEnabled()

method

231

J
Jar

libraries
customizing

display

settings

137

importing

as

function

blocks

137

Java

class
Boolean

300,

413

Date

298,

413

Double

301,

303,

413

Float

301,

304,

413

Integer

302,

305,

413

Object

245,

251,

256

StringTokenizer

335

Vector

276,

281,

286

Java

compiler

(javac)

70

Java

Development

Kit

(JDK)

10

Java

operator
NOT

257

Java

view

(Activity

Editor)

88

Design

mode

135

Quick

view

mode

136

WordPad

135

java.lang

package

297

java.util

package

335

JavaException

exception

234

JCLASSES

environment

variable

139

Join

transformation

16,

21,

35,

38,

50,

52,

69,

88

K
Key

attribute

155,

413

composite

157,

175,

202,

355

foreign

216,

348,

350,

413

identity

relationships

and

175

single

155,

175,

357

Key

attribute

values
checking

for

248

comparing

242

retrieving

as

string

250

setting

253

Keyboard

shortcut

27

keysToString()

method

250,

257

L
lastElement()

method

338

logError()

method

232,

407,

408

Logging

85,

408,

409

426

Map

Development

Guide

Logging

(continued)
example

408

levels

408

methods

that

send

message

232,

407,

408

principles

of

408

severity

levels

408

Logging

and

tracing

function

block

113

Logging

and

Tracing/Log

Error

function

block

113

Logging

and

Tracing/Log

Information

function

block

114

Logging

and

Tracing/Log

Warning

function

block

114

Logging

and

Tracing/Trace

function

block

115

Logical

operator

257

logInfo()

method

85,

232,

407,

408,

409

logWarning()

method

232,

408

long

data

type

245,

251,

256,

285

LongText

class
determining

data

type

298

getting

attribute

value

245

obtaining

maximum

value

263,

264

obtaining

minimum

value

265,

266,

267

setting

attribute

252

valid

conversions

300

LONGTEXT_TYPE

constant

298

Lookup

relationship

154,

188

code

for

191,

387,

388

creating

participant

for

371

defined

154,

176,

188

defining

176,

188

example

of

154,

188

participant

type

for

164,

177,

188

relationship

instance

IDs

162

static

133,

185

testing

83

M
Maintain

Composite

Identity

Relationship

function

block

203

maintainChildVerb()

method

204,

213,

216,

352

validations

performed

353

maintainCompositeRelationship()

method

354

actions

of

203

deprecated

version

391

error

messages

404,

405

maintainSimpleIdentityRelationship()

method

356

deprecated

version

391

error

messages

404,

405

validations

performed

357

Managing

child

instances

function

blocks

207

Map

definition

5,

7

creating

29

defined

5

in

map

definition

file

48

loading

67

location

of

5

naming

conventions

5

New

Map

wizard

29

unloading

67

Map

Designer

7,

13,

51

Add

Business

Object

dialog

32,

142

Breakpoint

dialog

77

business

object

browser

17,

22,

24

business

object

pane

17,

22,

33,

63,

143

business

object

window

18,

24,

34,

141

Context

menu

25

data

conversion

by

38

Delete

Business

Object

dialog

63

Delete

Map

dialog

65

Map

Designer

(continued)
exiting

24,

53

files

generated

11

Find

control

pane

23,

49,

60,

61

functionality

of

23

launching

14

layout

of

14

main

components

15

main

window

15,

21

map

workspace

18,

33,

143

menus

of

23

Messages

tab

18,

22,

403

Multiple

Attributes

dialog

16,

38

New

Map

wizard

29,

32

Open

file

with

map

dialog

53

Open

Map

from

Project

dialog

52

output

window

15,

19,

22,

23,

24,

71,

72

overview

13

preferences

19

Programs

toolbar

22,

23,

24,

168

Save

Map

As

dialog

32,

47

search

facility

60

starting

14

status

bar

15,

22,

24,

170

Submap

dialog

44

tab

window

8,

51

Tab

window

15

Test

tab

18,

22,

72

toolbars

22,

26,

170

working

in

projects

14

Map

development

10,

13

Map

document

56,

60

Map

execution
continuing

78

execution

order

16,

52,

66,

69

map

instances

and

7

pausing

75,

78

purpose

of

146

relationship

instances

and

160,

164

test

run

and

72

transactions

and

228,

230

viewing

72,

79

Map

execution

context

146

calling

context

146,

364,

365,

367,

368

class

for

146,

363

cxExecCtx

146

original-request

business

object

148,

196,

197,

201,

218,

220,

366

Map

instance

7

calling

context

363,

366

class

for

227

connector

name

363,

366

contents

of

7

defined

7

execution

context

7,

146

original-request

business

object

365

reusing

143,

144

starting

410

stopping

410

trace

level

411

transaction

programming

model

231

Map

properties

9,

54

DataValidationLevel

85

run-time

55

Trace

level

236,

410

updating

from

server

component

management

view

55,

144

Index

427

Map

Properties

dialog

(Map

Designer)
Business

Objects

tab

141,

143

General

tab

55,

228,

410

Map

repository

file

67

MapExeContext

class

363,

369

calling-context

constants

147

deprecated

methods

368

getConnName()

363

getGenericBO()

368

getInitiator()

363

getLocale()

364

getOriginalRequestBO()

365

method

summary

363

setConnName()

366

setInitiator()

366

setLocale()

367

mapName._locale.txt

message

file

403

mapName.txt

message

file

405

Mapping
defined

3

overview

3

simple

5

standards

50,

86

support

for

3

tools

for

7,

8

Mapping

API
BusObjArray

class

259

CwDBConnection

class

273

CwDBStoredProcedureParam

class

285

DtpConnection

class

289

DtpDataConversion

class

297

DtpDate

class

307

DtpMapService

class

333

DtpSplitString

class

335

DtpUtils

class

341

IdentityRelationship

class

345

MapExeContext

class

363

Participant

class

369

Relationship

class

377

UserStoredProcedureParam

class

393

Mapping

function

block

116

Mapping

role

55

Maps
base

class

for

227

closing

53

coding

87

compiling

15,

18,

48,

70,

71,

73

creating

28

current

47,

51,

70,

229

debugging

79,

85

defined

3,

7,

13

deleting

64

development

files

11

exceptions

and

144

execution

context

146

HTML

version

56

improving

modularity

of

42

map

documents

56,

60

name

of

5,

32,

55,

229

naming

32

opening

51

printing

62

renaming

48

saving

18,

32,

47,

63

saving

to

file

49

saving

to

project

47

testing

72,

79

Maps

(continued)
validating

20,

47,

51,

69

viewing

execution

72,

79

working

with

51

XML

version

48

Maps

function

block

106

Maps/Constants

function

block

104

Maps/Exception

function

block

105

Math

function

block

116

MAX_CONNECTION_POOLS

configuratin

parameter

180,

183

max()

method

262

maxBusObjArray()

method

263

maxBusObjs()

method

264

MaxLength

attribute

property

413

Message

18

5000

404

5001

404

5002

405

5003

405

5007

405

5008

405

5009

405

format

405

location

of

18,

403

number

406

parameters

in

403,

406

revising

409

severity

408

text

406

Message

file

403,

410

choosing

which

one

to

use

403

comments

407

CWMapMessages.txt

404

defined

403

displaying

18

format

405

location

of

12,

403

maintaining

407

mapName_locale.txt

403

mapName.txt

405

operations

that

use

407

overview

403

UserMapMessages.txt

404,

405

using

406,

408

min()

method

265

minBusObjArray()

method

266

minBusObjs()

method

267

Move

transformation

16,

21,

35,

37,

50,

52,

69

Multiple-map

map

table

57

N
Name

attribute

property

413

Naming

conventions
maps

5

participant

definitions

164,

173

relationship

definitions

160,

173

New

Constant

90,

94,

130

nextElement()

method

338

nextRow()

method

(CwDBConnection)

281

nextRow()

method

(DtpConnection)

294

Non-identity

relationships

154

NOT

operator

257

not()

257

Null

attribute

value

249

Numbers,

truncating

343

428

Map

Development

Guide

O
Object

class

245,

251,

256

ObjectEventId

attribute

50,

69,

74,

80

ObjectException

exception

234

OKTOCONVERT

constant

299

OperationException

exception

234

Original-request

business

object

148,

196,

197,

201,

218,

220,

365

OUT

parameter

287

Outbound

map

3,

5

example

of

customizing

212

foreign

key

lookup

in

349,

351

in

map

document

57

lookup

relationship

in

388

testing

82,

84

P
Package

importing

Java

packages

136

java.lang

297

java.util

335

padLeft()

method

341

padRight()

method

341

PARAM_IN

constant

287

PARAM_INOUT

constant

287

PARAM_OUT

constant

287

Parent/child

relationship

208

adding

child

instance

345,

358

defined

208

defining

176

deleting

child

instance

347,

358

Participant

class

162,

165,

369,

375

defined

369

getInstanceId()

371

getParticipantDefinition()

372

getRelationshipDefinition()

372

method

summary

369

Participant()

369

set()

373

setInstanceId()

373

setParticipantDefinition()

374

setRelationshipDefinition()

374

Participant

definition

163

advanced

settings

175,

180

copying

178,

179

creating

173

defined

163

location

of

163

name

of

372,

374

naming

conventions

164,

173

renaming

179

Participant

function

block

107

Participant

instance

164

adding

to

relationship

instance

378

class

for

165,

369

constructor

for

369

contents

of

165

creating

369,

380

data

165,

181,

369,

371,

373

deactivating

381,

382

defined

164,

369

deleting

383,

384

identifier

164

participant

definition

165,

369,

372,

374

relationship

definition

165,

369,

372,

374

Participant

instance

(continued)
relationship

instance

ID

165,

369,

371,

373,

386

retrieving

from

relationship

instance

388

updating

389

Participant

instance

identifier

164

Participant

type

164,

173

business

object

164,

173,

174,

191,

202

Data

154,

164,

173,

177,

188

Participant

Types

window

170,

171,

173,

177

Participant/Array

function

block

106

Participant/Constants

function

block

107

Participant()

constructor

369,

374

Participants

163,

165

defined

153

naming

conventions

164,

173

PATH

environment

variable

10,

70

POTENTIALDATALOSS

constant

299

Preferences

dialog

(Map

Designer)

25

General

tab

16,

20,

48,

51,

65,

67,

70,

141

Key

Mapping

tab

21,

38,

39,

40,

44,

46

Validation

tab

21

prevElement()

method

339

Project

14,

168

browsing

a

169

opening

a

map

from

14

saving

map

to

47

saving

the

map

in

14

working

in

14

working

with

168

Properties

function

block

118

Q
Quick

view

mode

(Activity

Editor)

92

R
Relationship

attribute

property

413

Relationship

class

161,

162,

377,

393

addParticipant()

378

create()

380

deactivateParticipant()

381

deactivateParticipantByInstance()

382

defined

377

deleteParticipant()

383

deleteParticipantByInstance()

384

deprecated

methods

390

getNewID)

385

guidelines

377

method

summary

377

retrieveInstances()

386

retrieveParticipants()

388

updateParticipant()

389

updateParticipantByInstance()

389

Relationship

database

160

connecting

to

230

determining

if

transaction

is

in

progress

294

disconnecting

from

235

location

of

11,

160,

161,

180,

182,

183

queries

for

more

rows

to

process

293

retrieving

next

row

294

rows

affected

by

last

write

293

SQL

queries

291

type

of

180,

182

user

account

for

179,

180,

182

Relationship

definition

159,

160

Index

429

Relationship

definition

(continued)
advanced

settings

175,

179

changing

174

copying

178

creating

173

defined

7,

159,

167

deleting

183

dependent

objects

223

identity

174,

176,

191,

201,

202

list

169

loading

222

location

of

159

lookup

176,

188

name

of

372,

374

naming

conventions

160,

173

parent/child

208

renaming

179

saving

174

unloading

221

viewing

169

Relationship

Designer

7

Advanced

Settings

dialog

175,

179,

182,

184,

185

Edit

menu

172

File

menu

171

functionality

of

171

Global

Default

Settings

dialog

183

Help

menu

172

launching

167

layout

of

169

main

window

170

menus

of

171

overview

167

starting

167

status

bar

172

toolbar

172

Tools

menu

172

View

menu

172

working

with

projects

168

Relationship

development

165

Relationship

function

block

109,

118,

187

Static

Lookup

134

Relationship

instance

160,

163

adding

a

participant

to

378

class

for

161,

345,

377

creating

380

creating

participant

for

370

deactivating

participant

381,

382

defined

160

deleting

child

objects

347

deleting

participant

383,

384

location

of

161

retrieving

instance

ID

385,

386

retrieving

participants

from

388

run-time

data

178

updating

participants

389

Relationship

instance

ID

162

deactivating

participant

by

383

defined

162

deleting

participant

by

385

identity

relationship

and

162

in

participant

instance

371,

373

lookup

relationship

and

162

retrieving

for

participant

386

retrieving

next

385

updating

participant

by

390

Relationship

Manager

191

Relationship

repository

file

221

Relationship

tables

160,

161

caching

184

changes

to

149

composite

identity

relationships

203

contents

of

163

creating

175,

178,

181

defined

161

foreign

216,

349,

351

foreign

key

lookups

and

348,

350

identity

relationships

191

index

size

203

location

of

160,

161,

180,

182,

183,

184

lookup

relationships

133,

176,

177,

189

MaxLength

attribute

203

modifying

350

name

of

161,

181,

189

participants

in

382,

383

performing

lookup

in

211

table

schemas

8,

178,

179,

182

RelationshipRuntimeException

class

82,

145,

404

Relationships

159,

163

defined

153

dynamic

184

exceptions

145

implementing

code

for

187

introduction

153,

166

naming

conventions

160,

173

non-identity

154

optimizing

184

starting

174

static

133,

184

stopping

174

testing

80

transformations

for

187

types

of

153,

180

working

with

187

release()

method

281

releaseRelConnection()

method

(deprecated)

235

removeAllElements()

method

268

removeElement()

method

268

removeElementAt()

method

269

Replace

text

62

repos_copy

utility

67,

221

Repository
exporting

a

map

from

67

exporting

a

relationship

221

relationship

database

and

160,

161

Required

attribute

250,

413

reset()

method

340

Retrieve

verb

355,

357

foreignKeyXref()

and

218,

220

maintainChildVerb()

and

214,

215

maintainCompositeRelationship()

and

204

maintainSimpleIdentityRelationship()

and

194,

196,

197,

200

retrieveInstances()

method

211,

386

retrieveParticipants()

method

211,

388

Retrieving
business

object

array

contents

262

business

object

array

maximum

value

262,

263,

264

business

object

array

minimum

value

265,

266,

267

business

object

array

values

as

string

271

business

object

attribute

245

business

object

from

array

261

business

object

key

attribute

value

as

string

250

business

object

type

247

business

object

verb

247

430

Map

Development

Guide

Retrieving

(continued)
last

index

from

business

object

array

262

map

name

229

number

of

elements

in

business

object

array

270

rollBack()

method

(CwDBConnection)

282

rollBack()

method

(DtpConnection)

295

runMap()

method

221,

333

S
SELECT

statement

276,

277,

280,

281

Server

component

management

view
updating

map

properties

55,

144

updating

relationship

properties

185

SERVICE_CALL_FAILURE

calling

context

147,

193

generic

business

object

and

148

getOriginalRequestBO()

and

365

maintainCompositeRelationship()

and

204

maintainSimpleIdentityRelationship()

and

200

original-request

business

object

148,

365

retrieving

364

setting

to

367

SERVICE_CALL_REQUEST

calling

context

147,

193

Create

verb

and

195,

214,

220

Delete

verb

and

196,

214,

220

foreignKeyXref()

and

219,

351

generic

business

object

and

148

getOriginalRequestBO()

and

365

maintainChildVerb()

and

214,

354

maintainCompositeRelationship()

and

204,

355

maintainSimpleIdentityRelationship()

and

195,

357,

358

original-request

business

object

148,

365

Retrieve

verb

and

196,

214,

220

retrieving

364

setting

to

367

testing

with

82,

84

Update

verb

and

196,

214,

220

updateMyChildren()

and

210

SERVICE_CALL_RESPONSE

calling

context

147,

193

Create

verb

and

197,

215,

218

Delete

verb

and

197,

215

foreignKeyXref()

and

217,

351

generic

business

object

and

82,

148

getOriginalRequestBO()

and

365

identity

relationships

and

82

maintainChildVerb()

and

214,

354

maintainCompositeRelationship()

and

204,

355

maintainSimpleIdentityRelationship()

and

197,

358

original-request

business

object

148,

199,

365

Retrieve

verb

and

197,

215,

218

retrieving

364

setting

to

367

testing

with

83,

85

Update

verb

and

197,

215,

218

updateMyChildren()

and

210

ServiceCallException

exception

234

Set

Value

transformation

16,

35,

36,

50,

52,

69,

88

set()

method

251,

257,

373

set12MonthNames()

method

328

set12MonthNamesToDefault()

method

329

set12ShortMonthNames()

method

329

set12ShortMonthNamesToDefault()

method

329

set7DayNames()

method

330

set7DayNamesToDefault()

method

330

setConnName()

method

366

setContent()

method

252

setDefaultAttrValues()

method

253

setElementAt()

method

269

setInitiator()

method

366

setInstanceId()

method

373

setKeys()

method

253

setLocale()

method

367

setParamDataTypeJavaObj()

method

(deprecated)

398

setParamDataTypeJDBC()

method

(deprecated)

398

setParamIndex()

method

(deprecated)

399

setParamIOType()

method

(deprecated)

399

setParamName()

method

(deprecated)

400

setParamValue()

method

(deprecated)

400

setParticipantDefinition()

method

374

setRelationshipDefinition()

method

374

Setting
business

object

attribute

251,

254

business

object

attribute

default

value

253

business

object

contents

252

business

object

key

attribute

value

253

business

object

value

in

an

array

269

business

object

verb

254

setVerb()

method

254,

257

setWithCreate()

method

254

Simple

identity

relationship

155,

156,

174,

191

child-level

201

defining

175,

176,

191,

201

defining

Cross-Reference

transformation

191

defining

transformation

rules

201

example

of

155

main

map

201

maintainChildVerb()

201,

216

maintainSimpleIdentityRelationship()

191,

356

parent

map

201

participant

type

for

191

submap

202

Single-map

map

table

56

size()

method

262,

270

Source

business

object

3,

5,

144

adding

to

map

29,

33

business

object

window

34

displaying

9,

17,

24,

55

testing

73

variable

for

140

Split

transformation

16,

21,

36,

40,

50,

52,

69,

88

Splitting

strings
creating

the

parsed

string

335

getting

element

at

specified

position

336

getting

first

element

from

string

336

getting

last

element

from

string

338

getting

next

element

from

string

338

getting

number

of

elements

in

string

337

getting

previous

element

from

string

339

processing

the

parsed

tokens

into

an

object

338

resetting

current

position

number

340

SQL

query
checking

for

more

rows

279,

293

executing

275,

276,

278,

291

prepared

275

retrieving

next

row

281

static

276

Standard

toolbar

(Activity

Editor)

90

Copy

90

Cut

90

Delete

91

Help

91

Paste

91

Print

Activity

90

Save

Activity

90

Index

431

Standard

toolbar

(Map

Designer)

22

displaying

22,

24

Find

60

New

Map

29

Open

Map

from

File

53

Open

Map

from

Project

52

Print

62

Save

Map

to

File

49

Save

Map

to

Project

47

Standard

toolbar

(Relationship

Designer)

171

displaying

170,

172

New

Participant

173

New

Relation

173

Save

Relation

174

start_server.bat

file

140

Static

lookup

211

Static

Lookup

relationship

133

Static

relationship

184

Status

bar

(Activity

Editor)

91

Stored

procedure
executing

276,

277,

278,

292

for

relationship

instance

178,

181

query

result

280,

281

Stored-procedure

parameter
creating

object

for

285,

393

in/out

parameter

type

286,

396,

399

index

position

395,

399

Java

Object

type

394,

398

JDBC

data

type

395,

398

name

397,

400

value

287,

397,

400

String

class

413

as

stored-procedure

parameter

type

285

checking

for

valid

data

256

converting

to

305

converting

to

Boolean

300,

303

converting

to

Double

301,

303

converting

to

Float

302,

304

converting

to

Integer

302,

305

determining

data

type

298

getting

attribute

value

245

obtaining

maximum

value

263,

264

obtaining

minimum

value

265,

266,

267

setting

attribute

to

251

valid

conversions

300

String

function

block

119

Upper

Case

123

STRING_TYPE

constant

298

stringReplace()

method

342

Strings
padding

with

specified

character

341

replacing

one

pattern

with

another

342

StringTokenizer

class

335

Submap

transformation

36

Submaps

41

accessing

code

for

88

attribute

comment

for

50

calling

43,

333

child

business

objects

42,

44

compiling

44,

70

conditions

45

creating

43

defined

41

identity

relationships

and

202

key

mapping

for

21

naming

conventions

44

transformation

code

for

16

Submaps

(continued)
uses

for

41

validating

52,

69

sum()

method

270

swap()

method

270

Switch

to

Project

(Relationship

Designer)

169

System

Manager

9

compiling

a

map

70

Component

menu

70,

174,

410

Map

Properties

window

55,

144,

411

opening

map

from

project

in

52

relationship

categories

184

starting

Map

Designer

from

14

starting

Relationship

Designer

from

167

SystemException

exception

234

T
Table

tab

(Map

Designer)

15,

17

adding

business

object

33

attribute

transformation

table

15,

63

business

object

pane

17,

22,

24,

33,

63,

143

business

object

variables

141

calling

a

submap

44

custom

transformation

46

default

display

22

deleting

a

transformation

63

deleting

business

object

63

joining

attributes

38

moving

attribute

37

output

window

15

setting

attribute

value

36

specifying

execution

order

66

splitting

attribute

40

temporary

business

object

143

Temporary

variables

142

Test

run

72

breakpoints

75,

78

creating

test

data

73

initial

73

pausing

75,

78

preparing

for

73

starting

79

subsequent

75

viewing

results

79

toBoolean()

method

300

toDouble()

method

301

toFloat()

method

301

toInteger()

method

302

Tools

menu

(Activity

Editor)

90

Translate

90

Tools

menu

(Map

Designer)

25

Tools

menu

(Relationship

Designer)

172

toPrimitiveBoolean()

method

303

toPrimitiveDouble()

method

303

toPrimitiveFloat()

method

304

toPrimitiveInt()

method

304

toString()

method

255,

257,

271,

305,

330

Trace

level

231,

409,

410

Trace

message

236,

407,

409,

410

adding

409

assigning

trace

level

to

409

generating

410

setting

trace

level

for

410

trace()

method

236,

407,

409

Tracing

409,

410

code

example

410

432

Map

Development

Guide

Tracing

(continued)
generating

message

410

level

for

409

Transactions
beginning

273,

289

committing

274,

290

determining

if

in

progress

280,

294

rolling

back

282,

295

Transformation

code
deleting

63

finding

text

in

60

handling

exceptions

in

144

location

of

70

missing

49

viewing

60

Transformation

step

5,

16,

28,

34,

63,

69,

87

Transformations

6,

16,

35

addressing

attributes

140

checking

completeness

of

49

coding

87

Context

menu

25

Cross-Reference

16,

36,

45

Custom

16,

36,

46

defining

for

relationships

187,

204

destination

attribute

16

execution

order

16,

52,

66,

69

in

map

definition

file

48

introduction

5

Join

16,

35,

38

map

document

for

56

Move

16,

35,

37

relationship

attributes

187

selecting

24

Set

Value

16,

35,

36

source

attribute

16

Split

16,

36,

40

standard

16,

35,

88

Submap

16,

36

validating

51,

69

validating

source

data

146

variables

142

truncate()

method

343

Type

attribute

property

413

U
UNKNOWN_TYPE

constant

298

UPDATE

statement

276,

277,

279

Update

verb
conditionally

set

211

foreignKeyXref()

and

218,

220

maintainChildVerb()

and

214,

215

maintainCompositeRelationship()

and

204

maintainSimpleIdentityRelationship()

and

194,

196,

197,

200

updateMyChildren()

method

210,

358,

391

updateParticipant()

method

389

updateParticipantByInstance()

method

389

UserMapMessages.txt

message

file

404,

405

UserStoredProcedureParam

class

(deprecated)

393,

400

constructor

393

getParamDataTypeJavaObj()

394

getParamDataTypeJDBC()

395

getParamIndex()

395

getParamIOType()

396

getParamName()

397

UserStoredProcedureParam

class

(deprecated)

(continued)
getParamValue()

397

method

summary

393

setParamDataTypeJavaObj()

398

setParamDataTypeJDBC()

398

setParamIndex()

399

setParamIOType()

399

setParamName()

400

setParamValue()

400

UserStoredProcedureParam()

constructor

(deprecated)

393

Utilities

function

block

121

Utilities/Vector

function

block

121

V
validData()

method

256

Variable

140

cwExecCtx

146,

333,

346,

347,

349,

350,

355,

357,

359

for

business

object

140

global

142

temporary

142

Vector

class
with

executeStoredProcedure()

276,

286

with

nextRow()

281

Verb
defined

35

retrieving

247

setting

35,

50,

210,

254,

352

test

run

73,

75

View

menu

(Activity

Editor)

89

Content

window

89

Design

mode

89

GoTo

89

Library

window

89

Preferences

90

Properties

window

89

Quick

view

mode

89

Status

Bar

90

Toolbars

89

Zoom

In

89

Zoom

Out

89

Zoom

To

89

View

menu

(Map

Designer)

22,

24

Business

Object

Pane

17,

22,

24

Clear

Output

15,

22,

24,

71

Diagram

18,

22,

24,

36

Output

Window

15,

22,

24

Preferences

19,

25

Server

Pane

18,

22,

24

Status

Bar

15,

22,

24

Toolbars

22,

24

View

menu

(Relationship

Designer)

170,

172

Collapse

Tree

172

Expand

Tree

172

Participant

Types

172,

173

Status

Bar

170

Toolbar

170

W
Warning

message

232,

408

Z
Zero-length

string

248

Index

433

	Contents
	About this document
	Audience
	How to use this manual
	Related documents
	Typographic conventions

	New in this release
	New in release 4.3

	Part 1. Maps
	Chapter 1. Introduction to map development
	About data mapping
	Maps: A closer look
	Map definition
	Map instance

	Tools for map development
	Map Designer Express
	Relationship Designer Express
	System Manager

	Overview of map development
	Setting up the development environment
	Designing and implementing the map
	Map development files

	Chapter 2. Creating maps
	Overview of Map Designer Express
	Starting Map Designer Express
	Working in projects
	Layout of Map Designer Express
	Assigning preferences
	Customizing the main window
	Using Map Designer Express functionality

	Creating a map: Basic steps
	Creating the map definition
	Creating the source and destination business objects
	Setting the destination business object verb

	Specifying standard attribute transformations
	Specifying a value for an attribute
	Copying a source attribute to a destination attribute
	Joining attributes
	Splitting attributes
	Transforming with a submap
	Cross-referencing identity relationships
	Creating a Custom transformation

	Saving maps
	Saving a map to a project
	Saving a map to a file

	Checking completion
	Mapping standards
	Tips on mapping individual attributes
	Setting comments in the comment field of the attribute

	Chapter 3. Working with maps
	Opening and closing a map
	Opening a map
	Closing a map

	Providing map property information
	Defining General Property information
	Defining business objects

	Using map documents
	What Is a map document?
	Creating a map document
	Viewing a map document
	Printing a map document

	Finding information in a map
	Finding and replacing text
	Printing a map
	Deleting objects
	Deleting map transformation steps
	Deleting business objects
	Deleting maps

	Using execution order
	Importing and exporting maps from InterChange Server Express

	Chapter 4. Compiling and testing maps
	Validating a map
	Compiling a map
	A successful map compilation
	An unsuccessful map compilation

	Compiling a set of maps
	Testing maps
	Preparing to run the test
	Creating test data
	Setting breakpoints
	Running the test map
	Viewing test run results
	Changing the map and re-executing

	Doing advanced debugging
	Testing maps that contain relationships
	Testing an identity relationship
	Testing a lookup relationship

	Debugging maps
	Resolving run-time errors
	Debugging tips

	Chapter 5. Customizing a map
	Customizing transformation steps
	Using the Activity Editor

	Importing Java packages to Interchange Server Express
	Steps for importing Jar libraries as activity function blocks
	Customizing display settings of custom Jar libraries
	Importing third-party classes to Interchange Server Express

	Using variables
	Using generated business object variables and attributes
	Using temporary variables

	Reusing map instances
	Handling exceptions
	Relationship exceptions

	Creating custom data validation levels
	Coding a data validation level

	Understanding map execution contexts
	Calling contexts
	Original-request business objects

	Part 2. Relationships
	Chapter 6. Introduction to Relationships
	What is a relationship?
	Lookup relationships
	Identity relationships

	Relationships: A closer look
	Relationships
	Participants

	Overview of the relationship development process

	Chapter 7. Creating relationship definitions
	Overview of Relationship Designer Express
	Starting Relationship Designer Express
	Working with projects
	Layout of Relationship Designer Express
	Customizing the main window
	Using the Relationship Designer Express functionality

	Creating relationship definitions
	Defining identity relationships
	Relating child business objects

	Defining lookup relationships
	Creating the relationship table schema
	Copying relationship and participant definitions
	Copying relationship definitions in the current project
	Copying participant definitions in the current project

	Renaming relationship or participant definitions
	Specifying advanced relationship settings
	Advanced settings for relationship definitions
	Advanced settings for participant definitions
	Advanced settings for attributes
	Global default settings

	Deleting a relationship definition
	Optimizing a relationship
	Defining a dynamic relationship
	Defining a static relationship

	Chapter 8. Implementing relationships
	Implementing a relationship
	Using lookup relationships
	Creating lookup relationship definitions
	Populating lookup tables with data
	Customizing map transformations for a lookup relationship

	Using simple identity relationships
	Creating simple identity relationship definitions
	Accessing identity relationship tables
	Defining transformation rules for a simple identity relationship

	Using composite identity relationships
	Creating composite identity relationship definitions
	Determining the relationship action
	Customizing map rules for a composite identity relationship

	Managing child instances
	Creating the parent/child relationship definition
	Handling updates to the parent business object

	Setting the verb
	Conditionally setting the destination verb
	Setting the source child verb

	Performing foreign key lookups
	Using the Foreign Key Lookup function block
	Using the Foreign Key Cross-Reference function block
	Tips for using the Foreign Key Cross-Reference and Foreign Key Lookup function blocks

	Loading and unloading relationships
	Unloading a relationship definition
	Loading a relationship definition

	Part 3. Mapping API Reference
	Chapter 9. BaseDLM class
	getDBConnection()
	getName()
	getRelConnection()
	implicitDBTransactionBracketing()
	isTraceEnabled()
	logError(), logInfo(), logWarning()
	raiseException()
	releaseRelConnection()
	trace()

	Chapter 10. BusObj class
	Exceptions and exception types
	Syntax for traversing hierarchical business objects
	Specifying an attribute of basic type
	Specifying an attribute in a child business object
	Specifying an attribute in a child of a child business object
	Specifying an attribute in an element of an array of child business objects

	copy()
	duplicate()
	equalKeys()
	equals()
	equalsShallow()
	exists()
	getBoolean(), getDouble(), getFloat(), getInt(), getLong(), get(), getBusObj(), getBusObjArray(), getLongText(), getString()
	getLocale()
	getType()
	getVerb()
	isBlank()
	isKey()
	isNull()
	isRequired()
	keysToString()
	set()
	setContent()
	setDefaultAttrValues()
	setKeys()
	setLocale()
	setVerb()
	setWithCreate()
	toString()
	validData()
	Deprecated methods

	Chapter 11. BusObjArray class
	addElement()
	duplicate()
	elementAt()
	equals()
	getElements()
	getLastIndex()
	max()
	maxBusObjArray()
	maxBusObjs()
	min()
	minBusObjArray()
	minBusObjs()
	removeAllElements()
	removeElement()
	removeElementAt()
	setElementAt()
	size()
	sum()
	swap()
	toString()

	Chapter 12. CwDBConnection class
	beginTransaction()
	commit()
	executePreparedSQL()
	executeSQL()
	executeStoredProcedure()
	getUpdateCount()
	hasMoreRows()
	inTransaction()
	isActive()
	nextRow()
	release()
	rollBack()

	Chapter 13. CwDBStoredProcedureParam class
	CwDBStoredProcedureParam()
	getParamType()
	getValue()

	Chapter 14. DtpConnection class
	beginTran()
	commit()
	executeSQL()
	execStoredProcedure()
	getUpdateCount()
	hasMoreRows()
	inTransaction()
	nextRow()
	rollBack()

	Chapter 15. DtpDataConversion class
	getType()
	isOKToConvert()
	toBoolean()
	toDouble()
	toFloat()
	toInteger()
	toPrimitiveBoolean()
	toPrimitiveDouble()
	toPrimitiveFloat()
	toPrimitiveInt()
	toString()

	Chapter 16. DtpDate class
	DtpDate()
	addDays()
	addWeekdays()
	addYears()
	after()
	before()
	calcDays()
	calcWeekdays()
	get12MonthNames()
	get12ShortMonthNames()
	get7DayNames()
	getCWDate()
	getDayOfMonth()
	getDayOfWeek()
	getHours()
	getIntDay()
	getIntDayOfWeek()
	getIntMilliSeconds()
	getIntMinutes()
	getIntMonth()
	getIntSeconds()
	getIntYear()
	getMSSince1970()
	getMaxDate()
	getMaxDateBO()
	getMinDate()
	getMinDateBO()
	getMinutes()
	getMonth()
	getNumericMonth()
	getSeconds()
	getShortMonth()
	getYear()
	set12MonthNames()
	set12MonthNamesToDefault()
	set12ShortMonthNames()
	set12ShortMonthNamesToDefault()
	set7DayNames()
	set7DayNamesToDefault()
	toString()

	Chapter 17. DtpMapService class
	runMap()

	Chapter 18. DtpSplitString class
	DtpSplitString()
	elementAt()
	firstElement()
	getElementCount()
	getEnumeration()
	lastElement()
	nextElement()
	prevElement()
	reset()

	Chapter 19. DtpUtils class
	padLeft()
	padRight()
	stringReplace()
	truncate()

	Chapter 20. IdentityRelationship class
	addMyChildren()
	deleteMyChildren()
	foreignKeyLookup()
	foreignKeyXref()
	maintainChildVerb()
	maintainCompositeRelationship()
	maintainSimpleIdentityRelationship()
	updateMyChildren()

	Chapter 21. MapExeContext class
	getConnName()
	getInitiator()
	getLocale()
	getOriginalRequestBO()
	setConnName()
	setInitiator()
	setLocale()
	Deprecated methods

	Chapter 22. Participant class
	Participant()
	getBusObj(), getString(), getLong(), getInt(), getDouble(),getFloat(), getBoolean()
	getInstanceId()
	getParticipantDefinition()
	getRelationshipDefinition()
	set()
	setInstanceId()
	setParticipantDefinition()
	setRelationshipDefinition()

	Chapter 23. Relationship class
	addParticipant()
	create()
	deactivateParticipant()
	deactivateParticipantByInstance()
	deleteParticipant()
	deleteParticipantByInstance()
	getNewID()
	retrieveInstances()
	retrieveParticipants()
	updateParticipant()
	updateParticipantByInstance()
	Deprecated methods

	Chapter 24. UserStoredProcedureParam class
	UserStoredProcedureParam()
	getParamDataTypeJavaObj()
	getParamDataTypeJDBC()
	getParamIndex()
	getParamIOType()
	getParamName()
	getParamValue()
	setParamDataTypeJavaObj()
	setParamDataTypeJDBC()
	setParamIndex()
	setParamIOType()
	setParamName()
	setParamValue()

	Part 4. Appendixes
	Appendix A. Message files
	Message location
	Format for map messages
	Message format
	Message parameters
	Comments

	Maintaining the files
	Operations that use message files
	Raising exceptions
	Logging messages
	Adding trace messages

	Appendix B. Attribute properties
	Notices
	Programming interface information
	Trademarks and service marks

	Index

