
Extending the WebSphere Business
Monitor Dashboard

Monitor

Version 6.0.2

Extending the WebSphere Business Monitor Dashboard
Page �

1	 Introduction	 3
1.1	 The goal of this article	 3
1.2	 The audience of the article	 3
1.3	 Disclaimers	 3

2	 Sample scenario	 4
2.1	 Sample scenario – ClipsAndTacks	 4
2.2	 Monitoring Model	 5
2.3	 Test Environment Assumptions	 5
2.4	 Sample portlet functionality introduction	 5
2.4.1	 Portlet View mode	 6
2.4.2	 Portlet configuration mode	 7

3	 Background knowledge	 8
3.1	 DB2 Alphablox Introduction	 8
3.1.1	 Overview	 8
3.1.2	 DB2 Alphablox Components	 8
3.1.3	 DB2 Alphablox programming model	 11
3.2	 JSR168 Overview	 12
3.2.1	 JSR 168 portlet modes	 12
3.2.2	 Core JSR 168 object	 13
3.2.3	 Deployment descriptors	 16
3.3	 DB2 CubeView & MDX query	 17

4	 Architecture & Design	 19
4.1	 Architecture	 19
4.2	 Design	 19

5	 Development Steps	 21
5.1	 Prepare the development environment	 21
5.1.1	 Installation of Rational Application 	

Developer V6.0	 21
5.1.2	 Installation of IBM Alphablox tag library plugin	 23
5.2	 Implement the sample portlet in Rational 	

Application Developer V6.0	 24
5.2.1	 Create a JSR168 portlet project in Rational 	

Application Developer.	 24
5.2.2	 Review the new created portlet	 27
5.2.3	 Introduce the DatamartUtility	 28
5.2.4	 Introduce the data bean	 29
5.2.5	 Introduce the portlet manager	 29
5.2.6	 Interaction 1: Initialize Portlet View Mode	 32
5.2.7	 Interaction 2: Load Config Mode	 32
5.2.8	 Interaction 3: UI Construction in Config Mode	 34
5.2.9	 Interaction 4: Event handling when user 	

selecting cube/dimension	 35
5.2.10	 Interaction 5: User clicks Save or Cancel button	 37
5.2.11	 Interaction 6: Display the user-select values 	

in View Mode	 39
5.3	 Deploy the sample portlet	 41
5.3.1	 Export the war file	 41
5.3.2	 Deploy the war file on portal server	 42

6	 References	 43

7	 Appendix: Attached source code	 44

8	 Notices	 45

Contents

Figures
Figure 2-1	 ClipsAndTacks scenario	 4
Figure 2-2 	 Portlet view mode	 6
Figure 2-3 	 Portlet config mode	 7
Figure 3-1	 Example of the PresentBlox	 10
Figure 3-2	 Example of the Form Blox	 11
Figure 3-3	 Cube model of ClipsAndTacks process	 18
Figure 4-1	 Architecture of sample portlet	 19
Figure 4-2 	 Design diagram of sample portlet	 20
Figure 5-1 	 Launchpad of Rational Application 	

Developer	 21
Figure 5-2 	 Launchpad option: Portal Tools	 22
Figure 5-3 	 Launchpad: Finish	 22
Figure 5-4 	 Installation of Alphablox tag library	 23
Figure 5-5 	 Location of Alphablox tag library	 24
Figure 5-6 	 New portlet project: Step 1	 25
Figure 5-7 	 New portlet project: Step 2	 25
Figure 5-8 	 New portlet project: Step 3	 26
Figure 5-9 	 New portlet project: Step 4	 26
Figure 5-10 	Project explorer	 27
Figure 5-11 	Config icon	 32
Figure 5-12 		 35
Figure 5-13 	Export War file: Step 1	 41
Figure 5-14 	Export War file: Step 2	 41

Extending the WebSphere Business Monitor Dashboard
Page �

1 Introduction

1.1 The goal of this article

The goal of this article is to provide a best-practices design for a Java™

Specification Request (JSR) 168 portlet using Alphablox to extend the IBM

WebSphere® Business Monitor v6.0.2 Dashboard. The article will provide a

working portlet example, that a developer can use as a design pattern for

developing a customized WebSphere Business Monitor Dashboard portlet.

1.2 The audience of the article

The audience for this article is any portlet developer wanting to extend the

functionality of the WebSphere Business Monitor Dashboard by implementing

his own portlet that uses data collected by Monitor and stored in its Datamart.

It is assumed that the reader is familiar with Portal and Alphablox components

and administration, as well as the JSR 168 application programming interface

(API). However, a brief introduction to the portlet JSR 168 API, AlphaBlox and

IBM CubeViews™ is provided.

This article also requires the reader to have basic knowledge of WebSphere

Portal Server and Monitor usage.

1.3 Disclaimers

•	 The sample portlet can only access the Datamart database using Alphablox APIs

to retrieve cube metadata. Neither access to the content stored in the other Monitor

database nor direct database access to the Datamart through raw SQL statement 	

is supported.

•	 The sample portlet does not go into detail about error handling and user-	

preference validation.

Extending the WebSphere Business Monitor Dashboard
Page �

2 Sample scenario

2.1 Sample scenario—ClipsAndTacks

This document chooses the ClipsAndTacks scenario as the process scenario

which will be monitored by Monitor and its instance data will be accessed by

the sample portlet that is described in later chapters. Below diagram is the

process diagram of the ClipsAndTacks scenario.

Figure 2-1
ClipsAndTacks order handling process

Flows of the ClipsAndTacks scenario process:

IV.	 Or if the order is not approved:
	 Review the order manually.
	 Determine if the order is an acceptable credit risk.

	 If the order is an acceptable credit risk:
	 Send the order to the warehouse.
	 Issue a packing slip.
	 Record the order in the order records database.
	 Ship the product.

	 If the order is not an acceptable credit risk:
	 Cancel the order.
	 Send an e-mail notification to the customer.

I.	 The customer visits the ClipsAndTacks Web site:
	 Enter the account number or create an account.
	 Enter the order information.
	 Submit the order.

II.	 Approve order or send for review, based on the following 	
business rules:

	 If order is less than or equal to US$750, approve automatically
	 If order is over US$750, send for review

III.	 If the order is approved:
	 Check the customer’s account status.

	 If the account is in good standing:
	 Send the order to the warehouse.
	 Issue a packing slip.
	 Record the order in the order records database.
	 Ship the product.

	 If the account is not in good standing:

This diagram shows the
future 1 ClipsAndTacks
order handling process.

Order Management
system

Order Approve
without
review?

Check order
handling
policy for
automatic
approval

Order

>
>

>

>

>

> >

>

>

>

Order
> >

Order

Order
> >

Order
> >

Order
> >

>

Order

>

>

>

>

>

>

Notification

Order

Order Management
System, Customer
Records System

Order

65.0% Yes

35.0 % No
Order

Check
customer
account
status

>

Customer records
system

Approve
without
review?

85.0% Yes

15.0 % No

Review
order

Order Manager

Approve
without
review?

70.0% Yes

30.0 % No

Order Management
System

Ship order
to customer

Shipper

Order Management

Cancel
order
and send
notification

Order Manager

Product
shipment

Order handling policy
Default: Orders are reviewed by the
system for automatic approval.
If the total price of an order is less
than US$750, then the order can be
automatically approved without review.

Update order in Order
Database to DECLINE.

Update order in Order
Database to SHIPPED.

Extending the WebSphere Business Monitor Dashboard
Page �

A full explanation of the ClipsAndTacks scenario can be found in “Chapter 3.

Case Study: ClipsAndTacks” in the Redbook, Business Process Management:
Modeling through Monitoring Using WebSphere V6 Products (w3.itso.ibm.com/

abstracts/sg247148.html?Open). This Redbook also describe the steps to

install this process on a WebSphere Process Server runtime server.

2.2 Monitoring model

A monitoring model named OrderHandlingFuture1.mm is provided in the

source code .zip file that accompanies this document.attached, It is built by the

Monitoring Model Editor that is a plug-in to WebSphere Integration Developer.

Please refer to the WebSphere Business Monitor product documentation

(www-306.ibm.com/software/integration/wbimonitor/library/documentation.

html) for how to build and deploy a monitoring model.

2.3 Test environment assumptions

This document assumes the following environments are prepared for testing

the sample portlet:

1.	 ClipsAndTacks process has been deployed on the WebSphere Process Server 	

runtime server.

2.	 The monitoring model for the ClipsAndTacks process has been deployed on the

Monitor server.

3.	 The Common Event Infrastructure (CEI) between the WebSphere Process Server

runtime and the Monitor server has been configured successfully.

4.	 Some process instances have been completed and the instance data has been

replicated to the Datamart database.

2.4 Sample portlet functionality introduction

There are two reasons that users might want to write a custom portlet instead of

just using the Monitor dashboard portlets:

•	 They might want to implement a custom view to display and analyze data.

•	 They might want to access the Monitor database from their own application.

The sample portlet described in this document is not going to extend a specific

functionality that the production portlets do not include. Instead, the sample

portlets will display the following benefits to any user who wants to write a

custom portlet:

•	 How to implement a portlet application with JSR 168 API.

•	 How to integrate and benefit from the Alphablox components in the 	

portlet application.

•	 How to access and manipulate the history data that is collected by Monitor.

Extending the WebSphere Business Monitor Dashboard
Page �

The sample portlet will use an Alphablox PresentBlox to perform the dynamic

analysis on the history data of the Clips and Tacks process. This history data is

organized as 3-types of forms: cube, measure and dimension. These cube,

measure and dimension forms are defined in the monitoring model for the

Clips and Tacks process. With the Alphablox API, the cube, measure and

dimension data can be retrieved and presented in the PresentBlox component.

Further analysis functionalities are then provided by the PresentBlox.

The sample portlet implements two portlet modes: the view mode and the con-

figuration mode. The configuration mode shows all available cubes, measures

and dimensions in the database. Users can select specific cubes, measures and

dimensions that will be displayed and manipulated in the view mode. The

view mode is responsible for showing the user selected data in a PresentBlox.

Additional analysis functionalities are provided by the PresentBlox itself.

2.4.1 Portlet view mode

The following screen capture shows the view page of the sample portlet.

Figure 2-2
Portlet view mode

Notes:

•	 The portlet consists of an Alphablox component called PresentBlox.

•	 User-selected cubes, dimensions and measures display in the PresentBlox.

•	 Additional analysis functionality can be retrieved by right-clicking on any data item.

•	 A menu bar and toolbar will appear when the portlet is maximized, and disappear if 	
the portlet is at normal size.

Extending the WebSphere Business Monitor Dashboard
Page �

2.4.2 Portlet configuration mode

The following screen capture shows the configuration page of the

sample portlet.

Figure 2-3
Portlet configuration mode

Notes:

•	 There are two drop-down lists. One is populated with all cubes in the database. Another
one shows all the dimensions in a specified cube. The dimension list is 	
determined by the selection of a cube.

•	 There is a list of check boxes showing all available measures, which are also 	
determined by the selection of a cube.

•	 Changes on the cube list results in the dimensions and measures being displayed in this
cube.

•	 After a user selects the preferred cube, dimension and measures, clicking Save will
bring the portlet back to the view mode. And the PresentBlox in view mode is updated to
reflect the new selections.

•	 Clicking Cancel just brings the portlet back to the view mode; no changes are updated
in the PresentBlox.

Extending the WebSphere Business Monitor Dashboard
Page �

3 Background knowledge

3.1 DB2 Alphablox introduction

3.1.1 Overview

IBM DB2® Alphablox provides the ability to rapidly create custom, Web-based

applications that fit into the corporate infrastructure. Applications built with

the DB2 Alphablox platform run in standard Web browsers, allowing real-time,

highly customizable multidimensional analysis in a Web browser.

With the DB2 Alphablox platform you can:

•	 Access and interact with data in multidimensional and relational databases

•	 Choose from a wide variety of charts to display data

•	 Interact with multidimensional data sources on different levels (for example, filter,

drill down, and so on) to interactively display the exact view of the data preferred

•	 Access an intuitive user interface that helps make analysis of the data easy 	

and powerful

•	 Access multiple data sources with a single application

DB2 Alphablox provides a wide variety of APIs so developers can create custom

applications. The DB2 Alphablox APIs are written in the Java™ programming

language, and application developers can access them using Java that is issued

on the server or through JavaScript that is interpreted in the browser.

The remainder of this chapter describes how DB2 Alphablox fits into a Java 2

Platform, Enterprise Edition (J2EE) environment, explains the components of

DB2 Alphablox, and describes the architecture of DB2 Alphablox. For more

information, refer to the DB2 Alphablox Information Center (publib.boulder.

ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp).

3.1.2 DB2 Alphablox components

The DB2 Alphablox provides an extensive library of modular, reusable

components called Blox to help meet all analytic application design require-

ments for maximum usability. These components include the data access Blox,

user interface Blox, form elements Blox, business logic Blox and analytic

infrastructure Blox.

3.1.2.1 Data access Blox

Data access is managed through the Data Blox, the Stored Procedures Blox and

the MDB Query Blox.

The Data Blox manages the connection between the user interface Blox and the

appropriate data source. It also is responsible for submitting queries and

retrieving result sets from a database. The syntax used for queries will vary

Extending the WebSphere Business Monitor Dashboard
Page �

depending on the data source that is being accessed. DB2 Alphablox supports

the following types of query strings:

•	 Essbase report scripts for DB2 online analytical processing (OLAP) and Hyperion

Essbase data sources

•	 Multidimensional Expressions (MDX) for Microsoft® SQL Server analysis services

and DB2 Alphablox cubes (a multidimensional representation of relational data

created with the DB2 Alphablox cube server) 	

Note: This type of query is the only one supported for WebSphere Business Monitor

Dashboard extension.

•	 SQL statements for relational data source

The MDB Query Blox is useful for specifying data queries based on axes,

dimensions and members without having to use data-specific query language.

This Blox also makes it easy to replace query fragments using the program.

The data Blox and the MDB Query Blox are not used in this sample. For more

information on Data access Blox, refer to the DB2 Alphablox Information

Center (publib.boulder.ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp).

3.1.2.2 User interface Blox

The user interface (UI) is a crucial factor in application usability. The user

interface Blox provided by DB2 Alphablox is highly functional, interactive, and

completely customizable. The user interface Blox in a DB2 Alphablox-enabled

application includes several components:

•	 Grid Blox provides a table of data and all the UI functions to manipulate the data	

in a multidimensional way. Users can drill up, drill down, sort, pivot, swap axes 	

or choose to view the top n or bottom n members based on the values of a given 	

data column.

•	 Chart Blox, which is used for advanced visualization of data, supports a large

number of chart types including bar, line, pie, scatter and bubble charts, as well as

bipolar and dual-axis charts.

•	 Data Layout Blox makes it easy for you to move and reorder dimensions across axes.

•	 Page Blox provides drop-down lists to manage the setting of slice dimensions

•	 Toolbar Blox offers easy access to common data-analysis functionality through the

click of a button.

•	 PresentBlox combines the Grid Blox, the Chart Blox, the Data Layout Blox, the

Toolbar Blox and the Page Blox into a single, well-orchestrated, interconnected

user interface along with user toolbars and menus (see Figure 3-1). The PresentBlox

also implements additional logic to interconnect the various underlying Blox. For

example, in a PresentBlox, drilling down in the grid automatically updates both the

grid and chart with the new data. These UI elements employ cutting-edge Dynamic

HTML (DHTML) technology to provide a rich user experience including menu bars,

right-click menus and custom layouts in a thin client (no need for Java, Microsoft

ActiveX (or other browser plug-ins).

Extending the WebSphere Business Monitor Dashboard
Page 10

Figure 3-1
Example of the PresentBlox

3.1.2.3 Form Blox

DB2 Alphablox provides several form Blox that can be very useful in develop-

ing custom analytic applications. Developers who are familiar with using native

HTML form elements know that when the HTML page is refreshed, the user’s

current form element selections get reset unless they write additional code to

maintain the same state across page refreshes.

All the Form Blox not only maintain the form elements’ current state, freeing

the developer from writing the extra code, but they also hook up with other

components, such as JavaBeans, including the data access Blox and user inter-

face Blox to provide the most commonly required functionality with minimal

coding. For example, it is easy to link a Check box Form Blox to enable or disa-

ble the alternate row banding property in the Grid Blox and to create a Select

Form Blox that controls the chart-type property in the Chart Blox.

Extending the WebSphere Business Monitor Dashboard
Page 11

The various form Blox provided by DB2 Alphablox include:

•	 Tree navigation element

	 –	 	Tree Form Blox

•	 For Basic HTML form elements

	 –	 	Checkbox Form Blox
	 –	 	Edit Form Blox
	 –	 	Radio Button Form Blox
	 –	 	Select Form Blox

Figure 3-2
Example of the Form Blox

3.1.3 DB2 Alphablox programming model

With the DB2 Alphablox tag libraries, the JavaServer Pages (JSP) author does

not have to know the low-level technical details behind the Blox components,

but simply needs to know the syntax and functionality for each Blox. This pro-

cess enables page authors with no Java experience to incorporate analytics

seamlessly on an intranet or extranet using best-of-breed authoring tools.

Each Blox has a comprehensive set of properties that by using the tags could be

set easily to custom values in the JSP pages. For example, setting the width

property in the <blox:present> tag to 50 percent will make this

PresentBlox occupy only half of the available horizontal space in the browser.

DB2 Alphablox also provides application developers with flexibility in custom-

izing the user interface and adding their own business or application logic by

exposing every Blox as a JavaBean and allowing programmatic access to those

beans through a rich set of Java APIs. Moreover, DB2 Alphablox provides the

Blox UI model—where application developers can register server-side handlers

to handle user interaction events in the browser, such as mouse clicks and

right-click actions. This Blox UI model offers developers the ability to custom-

ize the user interface behavior. For example, application developers can

provide a different right-click menu depending on whether the user clicks on

the row header, on the column header or on a data cell, and then apply any

additional logic based on the current user’s role, time of day or session state.

•	 For MDB-specific HTML form elements

	 –	 	Data Source Select Form Blox
	 –	 	Cube Select Form Blox
	 –	 	Dimension Select Form Blox
	 –	 	Member Select Form Blox
	 –	 	Time Period Select Form Blox
	 –	 	Time Unit Select Form Blox

Extending the WebSphere Business Monitor Dashboard
Page 12

Application developers also can add their own HTML, CSS and JavaScript to

the JSP pages to achieve the exact look and feel that they want. DB2 Alphablox

also provides developers a unique and powerful ability to remotely invoke

server-side Java APIs through JavaScript.

3.2 JSR168 Overview

JSR 168 is a specification from the Java Community Process for the standard-

ization of portlets. The specification was developed to provide interoperability

for running portlets on any vendor’s implementation of the JSR 168 portlet

container. For more information about the Java Portlet Specification, see the

JSR 168 specification (developers.sun.com/prodtech/portalserver/reference/

techart/jsr168/).

WebSphere Portal, starting with version 5.0.2.1, provides a runtime environ-

ment for both the IBM Portlet API, which is based on org.apache.jetspeed.

portlet interfaces and JSR 168 compliant portlets.

3.2.1 JSR 168 portlet modes

Portlets will perform different tasks and create different output depending on

the function they are currently performing. Modes enable the portlets to pro-

vide different function for the task that is required. JSR 168 supports three

modes: view, edit, and help. JSR 168 also supports custom modes. At the time of

this writing, IBM WebSphere Portal only supports the custom mode configura-

tion. A portlet can change the mode programmatically in the processAction

method. You can also specify the mode when creating an action or render link.

View

The view mode is used for displaying content reflecting the current state of the

portlet. The view mode can include multiple screens that you can navigate. The

doView() method of the GenericPortlet class is invoked for this mode. All port-

lets are required to support the view mode.

Edit

The edit mode is used for customizing the behavior of the portlet by modifying

the PortletPreferences object. As with the view mode, the edit mode can contain

multiple screens for navigation. The doEdit() method of the GenericPortlet

class is invoked for this mode. Portlets are not required to support the edit mode.

Help

Help should be used to provide the user with information about the portlet.

This could be generic or it could provide context-sensitive help. The doHelp()

method of the GenericPortlet class is invoked for this mode. Portlets are not

required to support the help mode.

Extending the WebSphere Business Monitor Dashboard
Page 13

Custom-portlet-mode

The configuration mode is used to globally update a portlet configuration. In

configuration mode, an administrator can update the read-only

PortletPreferences. Changes are reflected in all occurrences of the portlet on

all pages. The doDispatch() method of the GenericPortlet class needs to be

overridden to handle this custom mode.

Note: WebSphere Portal only supports the custom-portlet mode configuration.

3.2.2 Core JSR 168 object

This section describes the core object used when developing a JSR 168 portlet.

Some important methods of each object are also discussed.

3.2.2.1 Interface javax.portlet.Portlet

All portlets must implement the javax.portlet.Portlet interface directly or by

extending a class that implements this interface. A main method that is defined

in this interface is the processAction method.

The void processAction(ActionRequest request, ActionResponse response) method

The processAction method is called in response to an action request. URLs

generated by the portlet using RenderResponse.createActionURL() or the

<ActionURL JSP> tag generate an action URL causing this method to be

invoked. This method should be used to update the portlet’s state based on the

action-request parameters. Two objects are passed in: an ActionRequest and

an ActionResponse.

The ActionRequest provides access to the parameters, window state, portlet

mode, portlet context, portlet session and the PortletPreferences object. During

the action request, the portlet can issue a redirect to a different URL.

While processing an action request, the portlet window state and the portlet

mode can be changed. This change would be reflected in the next render phase.

It should not be assumed that the portlet will change mode or window state

because WebSphere Portal server can override the change. Changes to the win-

dow state and mode are made through the ActionResponse object.

3.2.2.2 Class javax.portlet.GenericPortlet

The GenericPortlet class implements the Portlet interface and does provide

default implementations of the methods. All portlets should extend the

GenericPortlet class rather that implementing the Portlet interface directly.

The GenericPortlet implements many of the methods and reduces the

workload when developing the portlet.

Extending the WebSphere Business Monitor Dashboard
Page 14

The void doDispatch(RenderRequest request, RenderResponse response) method

The doDispatch method is called from the render method. The doDispatch
method determines the portlet mode and invokes the correct method. If using
a custom mode, you should override the doDispatch method to test for your
custom mode. If the request is not for your custom mode, then invoke the super.
doDispatch method to allow the GenericPortlet do dispatch the correct method.

The void doEdit(RenderRequest request, RenderResponse response) method

When the portlet mode is edit, the doEdit method is invoked by the
doDispatch method.

The void doHelp(RenderRequest request, RenderResponse response) method

When the portlet mode is help, the doHelp method is invoked by the
doDispatch method.

The void doView(RenderRequest request, RenderResponse response) method

The doview method is invoked by the doDispatch method when the portlet
mode is view.

The void processAction(ActionRequest request, ActionResponse response) method

The processAction method is invoked for all action requests for the portlet.

3.2.2.3 Interface javax.portlet.PortletURL

The PortletURL interface is used to create URLs that reference the portlet.
There are two types of PortletURLs: ActionURL and RenderURL. By using the
RenderResponse.createActionURL, RenderResponse.createRenderURL or the
JSP tags, the portlet developer can create the different types of URLs. When a
render URL is encountered, the render method is invoked and it in turn invokes
the appropriate doXXX method. When an action URL is encountered, the
processAction method is invoked. Only action URLs should be used for forms.
The ActionURL is also used in the dashboard software development kit (SDK).

The void setParameter(java.lang.String name, java.lang.Stringvalue) method

This method is used to add parameters. Parameters added for a render URL are
only available during the render request. Parameters added for an action URL
are only available for the action request unless they are specifically added using
the ActionResponse.setRenderParameter method.

Extending the WebSphere Business Monitor Dashboard
Page 15

The java.lang.String toString() method

This method returns a URL in the correct form for the portal server. Here is a
code sample that illustrates how to use an action URL in a link:

PortletURL saveURL= renderResponse.createActionURL();
saveURL.setParameter(“ACTION _ NAME”,”SAVE _ ACTION”);
<a href=”<%= saveURL.toString() %>”>saveURL

3.2.2.4 Interface javax.portlet.PortletRequest

The portlet request object contains information about the client request. The
request also includes parameters, the portlet mode, the window state, session,
and access to the portlet context. The PortletRequest interface defines com-
monly used functionality for the ActionRequest and RenderRequest methods.

Parameters that are received during an action request are not sent to the render
request unless they are explicitly added using the setRenderParameters or
setRenderParameters of the ActionResponse class. This can only be done in the
processAction method.

If the render request follows an action request as part of the same request, the
parameters sent in the render request will be the render parameters set during
the action request.

A portlet can only see parameters in its own request. Parameters set for other
portlets are not visible.

Request properties are used for portal-specific properties. These properties can
include http headers.

3.2.2.5 Interface javax.portlet.ActionRequest

The ActionRequest interface extends the PortletRequest interface and is used

during an action request. The ActionRequest object is passed into the process-

Action method. The ActionRequest object is in scope only during execution of

the processAction method.

3.2.2.6 Interface javax.portlet.RenderRequest

The RenderRequest interface extends the PortletRequest. The RenderRequest

interfacedoes not define any additional functionality. The RenderRequest

object is scoped to the render method.

Extending the WebSphere Business Monitor Dashboard
Page 16

3.2.2.7 Interface javax.portlet.PortletResponse

The portlet response object contains information to be returned to the portlet

during a request. Examples of this include redirection, portlet mode change,

title, content, and so on. The portlet response object is passed into the render

and the processAction methods. The portlet response object provides a way to

add or update the response properties.

3.2.2.8 Interface javax.portlet.ActionResponse

The ActionResponse interface extends the PortletResponse interface. The

ActionResponse is used during an action request and is passed into the proces-

sAction method. ActionResponse includes added functionality for changing

the portlet mode, changing the portlet window, setting render parameters, and

redirecting to another URL. The ActionResponse object is only in scope during

the processAction method.

3.2.2.9 Interface javax.portlet.RenderResponse

The RenderResponse interface extends the PortletResponse interface. This

object is passed to the render method. This object is used to set the title of the

portlet and generate content by either obtaining a writer or delegating to a

JSP or servlet. The scope of this object is only for the render method.

3.2.2.10 Interface javax.portlet.PortletPreferences

The PortletPreferences object is used to provide a customized view of the port-

let to the user. Preferences are stored as name-value pairs. They can be either

defined in the portlet deployment descriptor or programmatically. If the

parameters are defined in the deployment descriptor, they have the option of

being read-only. Read-only parameters can only be updated by the administra-

tor while in configuration mode. The administrator can also modify the

parameters using the administration portlets. If the parameters are added pro-

grammatically, they are not considered to be read-only. Users can modify

parameters only while in the edit mode and only parameters that are not read-

only. Changes made in configuration mode by the administrator affect all

instances of the portlet on all pages.

3.2.3 Deployment descriptors

Deployment descriptors provide information to the server about the applica-

tion. Two deployment descriptors are required for portlets: web.xml and portlet.

xml. The web.xml (Web-deployment) descriptor is used to define all non-port-

let resources. Compared to the IBM portlet API, JSR 168 does not define a

servlet, so you do not have to define a servlet in the web.xml deployment

descriptor. Remember that in JSR 168, portlets do not extend the HttpServlet

interface like they do in the IBM API. Therefore, portlets are not servlets and

are not required to go into the web.xml deployment descriptor.

Extending the WebSphere Business Monitor Dashboard
Page 17

The portlet.xml deployment descriptor is used to define all portlet-related

resources. You should use IBM Rational® Application Developer to create and

modify your portlet.xml deployment descriptor. Rational Application

Developer contains tools for inserting and removing elements and also for

verifying that the portlet.xml deployment descriptor is valid.

3.3 DB2 CubeView and MDX query

DB2 Cube Views is used to create a multidimensional cube model on top of a

relational DB2 database. Each cube model has its own dimension names and

measure names. The cube model can then be used by DB2 Alphablox for fur-

ther data analysis and reporting. In WebSphere Business Monitor, the contents

in the Datamart database are exposed to portlet application through the Cube

Views and Alphablox interface.

The file Model_cv.xml exported from the Monitor schemagen is used to tell

DB2 Cube Views what dimensions and measures are to be exposed in the cube

of a monitoring model. This file can be imported into the DB2 Cube Views by

the DB2 OLAP GUI. After the import, you can also check what dimensions and

measures are defined in a cube model from the DB2 OLAP GUI. The following

screen capture displays the measures and dimensions for cube mode—

“OrderHandlingFuture1 Cube 2006_10_31T12_00_00”— in the DB2

OLAP GUI.

Extending the WebSphere Business Monitor Dashboard
Page 18

Notes:

•	 There are seven cube models that are exposed for this process model.

•	 The cube model named “OrderHandlingFuture1 Cube 2006_10_31T12_00_00” is
expanded in the DB2 OLAP GUI. You can see the measures and dimensions that are
defined in it.

•	 There are four user-defined measures in this process model: “Average Order Duration,”
“Average Order Sales Amount,” “Number of Sales,” “Total Sales Amount.” The other mea-
sure named “InstanceCount” is the predefined measurefor all process models by Monitor
schemagen.

•	 Only the “Current Status” is the user-defined dimension in this process model. The other
two dimensions: “CreationTime” and “TerminationTime” are the predefined dimensions
for all process models by Monitor schemagen.

The sample portlet needs to retrieve the value of the measures from a selected

cube model and perform the data analysis based on the user-selected dimen-

sions. The language used for querying the multidimensional data source is

MDX query language. For example, if you want to retrieve the value of the mea-

sures “InstancesCount” and “Total Sales Amount” from

“OrderHandlingFuture1 Cube 2006_10_31T12_00_00” cube, and want to

perform the data analysis based on the dimensions “Creation Time,” the MDX

query statement for this purpose is:

select {[Measures].[InstancesCount], [Measures].[Total Sales
Amount]} on columns ,
[Location] on rows
from [OrderHandlingFuture1 Cube 2006 _ 10 _ 31T12 _ 00 _ 00]

For a comprehensive explanation of the MDX language, see msdn2.microsoft.

com/en-us/library/ms145506.aspx.

Figure 3-3
Cube model of ClipsAndTacks process

Extending the WebSphere Business Monitor Dashboard
Page 19

4 Architecture & Design

4.1 Architecture

The following diagram shows the architecture of the sample portlet.

Figure 4-1
Architecture of sample portlet

Notes:

•	 User’s request (render or action) is accepted by IBM Websphare Portal Server and is
forwarded to the portlet.

•	 The Java bean is responsible for storing user selection information in the 	
configuration mode.

•	 The dbUtil(what is this?) is responsible for accessing database through DB2 Cube Views
and DB2 Alphablox.

•	 The manager object bridges the gap between the portlet/JSP and bean/dbUtil.

•	 The portlet object invokes the JSP file to display the information it gets from the bean
and dbUtil.

•	 JSP is responsible for the page rendering and response to the user through Websphere
Portal Server.

4.2 Design

WebSphere Business Monitor Dashboard portlet makes rich use of the

Alphablox component for database access, UI construction and data analysis.

Retrieving user-entered values in an Alphablox UI component from the config-

uration mode and passing them to a blox in view mode can be a challenge. The

Alphablox server-side event handlers do not have access to the standard port-

let-programming model. This means that when you perform an action on an

Alphablox UI component, the portlet request and response, on which much of

the portlet functionality is dependent, are not available.

DB2 Cube View

DB2 Alphablox

Datamart DB

WebSphere
Portal Server

Client

Manager

Portlet Bean

DB UtilitiesJSP

Request

Response

Extending the WebSphere Business Monitor Dashboard
Page 20

Manager

datamartUtility
dataBean

DataBean

selectCube
selectedDimension

Controller

Manager
UI display logic

DatamartUtility

dataSource
Cubes

Because of this challenge, a way is needed to bridge both the Alphablox and

portlet-programming models. The introduction of the portlet manager class

serves this purpose. The portlet manager can be reused between the view mode

and the configuration mode. Its job is to shuttle information between the port-

let and the Alphablox UI Controller.

The following diagram shows the class diagram of the sample portlet with the

manager to bridge between Alphablox component and the portlet mechanism.

Figure 4-2
Design diagram of sample portlet

Notes:

•	 The portlet class holds a reference to the Manager. The manager has references to the
Datamart utility, which is responsible for all database accesses, and to DataBean, which
is used for storing the user-selection information.

•	 In the portlet-programming model, the manager object can be accessed in the JSP files.

•	 JSP includes Alphablox blox components for data rendering and collecting user selec-
tions. All the Alphablox components in both portlet modes can access the manager in
the JSP, and then they get the access to the Datamart utility and DataBean accordingly.

•	 The controller class is responsible for constructing the UI with Alphablox components
in configuration mode and handling the user-selection event triggered on the Alphablox
components. It can also retrieve the manager reference from the JSP, so that it can store
the user-selection information into the DataBean through the manager reference.

•	 The controller class could issue a portlet request by dispatching the ClientLink object,
which is used to store a URL to the portlet itself. After dispatching the ClientLink object,
the control goes back to the portlet request/response model and the processAction
method () is invoked to process the request from the controller.

•	 The PortletPreference is a place to persist the portlet data (user selection) even after a
portlet session is closed.

Client page-view mode

PresentBlox - Client peer

Client page-config mode

Select box - Client peer
Check box - Client peer

PortletPreference

Portlet

doView()
doConfig()
processAction()

View.jsp

PresentBlox

Config.jsp

Server-side object:
Select box
Check box

Client side Server side

DB Datamart
Cube

ClientLink

Manager

Manager

UserInput

Extending the WebSphere Business Monitor Dashboard
Page 21

5 Development Steps

5.1 Prepare the development environment

The following tools are used for the sample portlet development:

•	 Rational Application Developer V6.0 with Portal Tools

•	 IBM Alphablox tag library plug-in

Notes: The standalone Portal tools plug-in is not available for WID or Eclipse.
Without this plug-in, developer will have to create a portlet project from the
scratch. Therefore, we highly recommend using Rational Application
Developer as the portlet development tool.

5.1.1 Installation of Rational Application Developer V6.0

Prerequisite: Rational Application Developer installation CD image

is prepared.

Follow these steps to install Rational Application Developer V6.0:

1.	 Run the launchpad.exe file from the CD image to display the Rational Software

Development Platform Launchpad.

Figure 5-1
Launchpad for Rational Application Developer

2.	 Select Install IBM Rational Application Developer v6.0 (see Figure 5-1).

3.	 Click Next to continue after the installation program opens.

4.	 Accept the license agreement, and click Next to continue.

5.	 Accept the default installation path: C:\Program Files\IBM\Rational\SDP\6.0\ .

Extending the WebSphere Business Monitor Dashboard
Page 22

Figure 5-2
Launchpad option: Portal Tools

6.	 In the features window, you can clear the IBM WebSphere Application Server V6.0

Integrated Test Environment check box. It is not required for portlet application

development.

7.	 (Important) Select Portal Tools under the Additional Features heading. This option

is required for portlet development (see Figure 5-2).

8.	 Click Next to continue.

Figure 5-3
Launchpad: Finish

9.	 In the summary information window, click Next to continue with the installation.

10.	Click Next to continue after this installation is complete.

11.	Clear the Launch Agent Controller install check-box option. Click Finish to

complete this installation (see Figure 5-3).

Extending the WebSphere Business Monitor Dashboard
Page 23

5.1.2 Installation of IBM Alphablox tag library plug-in

Because the sample portlet will make use of IBM Alphablox components, the

IBM Alphablox tag library plug-in is required to be installed in Rational

Application Developer V6.0.

1.	 Run Rational Application Developer V6.0 from Windows StartàAll

Programsà IBM Rationalà IBM Rational Application Developer V6.0àRational

Application Developer.

2.	 Open the Feature Updates dialog from menu HelpàSoftware UpdatesàFind

and Install(see Figure 5-4).

Figure 5-4
Installation of Alphablox tag library

3.	 In the Features Updates dialog, select Search for new features to install.

4.	 Click Next to continue.

5.	 In the Update sites dialog, click New Local Site…, then browse to the Alphablox

plug-in directory. The Alphablox plug-in directory is located on the Alphablox

installation CD image. The full path might be different on your machine, but be sure

to select the UpdateSite directory (see Figure 5-5).

Extending the WebSphere Business Monitor Dashboard
Page 24

6.	 Click OK , and then select the site you just added.

7.	 Click Next to continue.

8.	 Select Install all the features in this site.

9.	 Click Finish to complete the plug-in installation.

Result: Now the development environment for portlet development is set up.

5.2 Implement the sample portlet in Rational Application Developer V6.0

5.2.1 Create a JSR-168 portlet project in Rational Application Developer

1.	 Start Rational Application Developer on workspace C:\RadWs. Close the 	

welcome page.

2.	 Click FileàNewàProject in the new project dialog, select a wizard for Portlet

Project (JSR 168) (see Figure 5-6).

	 Note: This wizard results from selecting the Portal Tools option during the Rational

Application Developer V6.0 installation.

Figure 5-5
Location of Alphablox tag library

Extending the WebSphere Business Monitor Dashboard
Page 25

3.	 Click Next to continue. The Confirm Enablement dialog opens.

4.	 Click OK to enable the portal development capability.

5.	 In the New Portlet Project (JSR168) wizard, name the new project MyReport.

Click Show Advanced. Clear the check-box option Add module to an EAR project

(see Figure 5-7).

6.	 Click Next to continue.

Figure 5-6
New portlet project: Step 1

Figure 5-7
New portlet project: Step 2

Extending the WebSphere Business Monitor Dashboard
Page 26

7.	 In the Portlet Type dialog, select the type of new portlet as Basic portlet (JSR168).

8.	 Click Next to continue.

9.	 In the Features dialog, clear the Web Diagram option check box and select the DB2

Alphablox Content option (see Figure 5-8). This option is required because our

sample portlet uses the Alphablox component. It comes from the Alphablox tag

library plug-in that is installed in Rational Application Developer V6.0.

10.	Click Next to continue.

Figure 5-8
New portlet project: Step 3

11.	In the DB2 Alphablox EAR File Locations dialog, leave the text field blank and

click Next .

12.	In the Portlet Settings dialog, click Next to continue.

13.	In the Action and Preferences dialog, clear the Add form sample check box (see

Figure 5-9).

14.	Click Next to continue.

Figure 5-9
New portlet project: Step 4

Extending the WebSphere Business Monitor Dashboard
Page 27

15.	In the Miscellaneous dialog, select Add configuration mode.

16.	Click Finish to complete the new portlet project (JSR168) wizard.

17.	When the Confirm Perspective Switch dialog opens, click Yes to confirm.

Result: Now the wizard will create a basic JSR-168 portlet. You can add your
code into it to implement your required functionality.

5.2.2 Review the newly created portlet

Before adding your own code into the newly created portlet, review the codes

that wizard has created for you first. Expand the MyReport project in the

Rational Application Developer Project Explorer as shown in Figure 5-10.

Figure 5-10
Project explorer

The key files to view are the portlet java file—MyReportPortlet.java and the two

JSP files. The MyReportPortlet.java is the main Java class that handles the render

and action request and response of the portlet. The two JSP files are responsi-

ble for presenting the portlet UI in configuration mode and view mode. Later

you will add your own logic in these files to extend the portlet functionality.

Also, see the files portlet.xml and web.xml. They are the deployment-

descriptor files of the portlet. To understand the content in these two files, refer

to the JSR-168 portlet specification referenced at the end of this document.

Extending the WebSphere Business Monitor Dashboard
Page 28

5.2.3 The DatamartUtility class

You need to have a place to hold the database-access logic. For this purpose,

there is a Java class named DatamartUtility.java. The complete source code of

this class can be found in the attached source-code package. Here is a sample of

the DatamartUtility.java class source code (also see Figure 5-XX shows).

public class DatamartUtility {
	
	 private boolean isInitialized = false;	 // Flag of initialization
	 private String dataSource;	 // Alphablox data source name
	 private Cube[] cubes;	 // Cubes got from the data
							 source
	
	 /**
	 * The constructor of datamart utility class.
	 * In a normal Monitor installation, the Alphablox data source name
	 * should be DATAMART _ Cube. We keep this name as a constant to
	 * reduce hard code.
	 */
	 public DatamartUtility() {
		 setDataSource(MyReportPortletConstants.DATA _ SOURCE);
	 }
	
	 /**
	 * Load the metadata from the datablox, then get the cubes from the	
	 * metadata and keep a reference in this utility class.
	 * @param dataBlox
	 * @throws DataBloxCannotConnectException
	 * @throws ServerBloxException
	 */
	 public void init(DataBlox dataBlox)
		 throws DataBloxCannotConnectException, ServerBloxException {	
	
		 MDBMetaData mdbMetaData = (MDBMetaData) dataBlox.getMetaData();
		 this.cubes = mdbMetaData.getCubes();
		 setInitialized(true);
	 }
}

Notes:

•	 The DatamartUtility class has a variable to hold the name of the Alphablox data source
from which this portlet retrieves data. The data source is named DATAMART_Cube by
default.

•	 The DatamartUtility class has a variable to hold the reference to cubes that are obtained
through a datablox(. The cube object provides methods to access the dimensions and
measures it contains.

•	 The init() method is called at the first portlet configuration-mode request. It retrieves the
cubes from the database through a datablox component.

•	 The DatamartUtility class also provides methods for retrieving dimensions and measures
from cubes.

Extending the WebSphere Business Monitor Dashboard
Page 29

5.2.4 The data bean class

The data bean class holds the user-selection information.

public class MyReportDataBean {

	 // Saved user selection in the config mode
	 private String selectedCube;
	 private String selectedDimension;
	 private HashSet selectedMeasures;
	
	 // Unsaved user selection in the config mode
	 private String selectedCubeTmp;
	 private String selectedDimensionTmp;

	 /**
	 * The constructor of data bean class.
	 */
	 MyReportDataBean() {
		 this.selectedMeasures = new HashSet();
	 }

	 /**
	 * Check if this data bean has been configured.
	 * @return boolean
	 */
	 public boolean isConfigured() {
		 return ((selectedCube != null) && (selectedDimension != null)
&& (!selectedMeasures
				 .isEmpty()));
	 }
}

Notes:

•	 There are variables to hold the user selection in the configuration mode of the portlet.
These variables are divided to two groups. One group is for holding the temporary selec-
tion before a user clicks Save. The other group is for holding the final selection after a
user clicks Save.

•	 The data bean class provides a public method named isConfigured() to check if it is
configured properly in the configuration mode.

•	 Another important item not shown in this code is the Getter and Setter methods for all
class-member variables, which are required for this class. These methods can be gener-
ated by the utility in Rational Application Developer.

5.2.5 The portlet manager class

This section explains how the manager class bridges the gap between the

portlet and the Alphablox UI component.

1.	 Declare the manager class.

	 To pass information from the configuration mode to the view mode, the manager

class should be able to be accessed in both modes. This object is achieved by

persisting the manager class in the portlet session. Each time the view mode

or configuration mode of the portlet is requested, the manager is copied from

the portlet session to the attribute of the request. The following code shows the

declaration of the manager class.

Extending the WebSphere Business Monitor Dashboard
Page 30

public class MyReportPortletManager implements Serializable {
	
	 // Reference to the data bean.
	 private transient MyReportDataBean dataBean;
	 // Reference to the Datamart utility class.
	 private transient DatamartUtility datamartUtility;
	 // Flag to indicate if this manager requires initialization.
	 private transient boolean isInitialized = false;

Notes:

•	 The manager class should implement the java.io.Serializable interface to support the
persistence.

•	 sThe manager class holds references to the Datamart utility and DataBean. Through
the manager class and these references, both the configuration and view modes of
the portlet and the Alphablox UI component can access the Datamart utility and data
bean conveniently.

•	 There is a special design concern for the cluster environment here. In a cluster
environment, the manager object might be serialized and re-created in the session
of another machine during the failover process. The reference to the DataBean will
become invalid in the new Java virtual machine (JVM) because the DataBean object
itself will be re-created also. The key word “transient” tells Java not to save the value
of the data bean reference during the persist process. However, its value should be
recalculated in the new JVM. A flag (isInitialized) is used to indicate if the manager is
required to re-create the data bean object. A later section examines the initialization
process of the manager object.

2.	 Save the manager object and place it in a portlet session.

	 The following code shows the logic in the getPortletManager () method of the

MyReportPortlet class, which is how the manager class is stored and pulled from the

portlet session. Also, a new manager object is created if there is not one in the portlet

session already. When the manager is not initialized, it is to maintain the session

persistence in a cluster environment.

private MyReportPortletManager getPortletManager(PortletRequest
request,
		 PortletResponse response) {
	 // Pull the manager from the session
	 MyReportPortletManager manager = (MyReportPortletManager)
 request
			 .getPortletSession().getAttribute(
					 MyReportPortletConstants.MANAGER);

	 // If no manager exists, create one and add it to the session
	 if (manager == null) {
		 manager = new MyReportPortletManager();
		 manager.init(request, response);
		 request.getPortletSession().setAttribute(
				 MyReportPortletConstants.MANAGER, manager);
	 } else if (!manager.isInitialized()) {
		 // If the manager is failover from a cluster environment,
		 // it might not be initialized yet, call the init()
 method now.
			 manager.init(request, response);
	 }
	 return manager;
}

Extending the WebSphere Business Monitor Dashboard
Page 31

3)	 Initialize the manager class.

	 The following code shows how the manager is initialized. The major job of the initial

process is to create the Datamart utility object and the data bean object, and then

load the preconfigured information from the portlet preference.

public void init(PortletRequest request, PortletResponse response) {
		
	 this.dataBean = new MyReportDataBean();
	 this.datamartUtility = new DatamartUtility ();
	
	 // Load the pre-configured information from the portlet
 preference
	 // if exist.
	 try {
			
		 loadPreference(request);

		 setInitialized(true);

	 } catch (Exception e) {
		 e.printStackTrace(System.out);
	 }
}

4)	 Retrieve the manager reference in the doView () and doCustomConfigure ()

methods.

	 The following code describes how the manager class is accessed in the portlet’s

doView () method. The manager reference is pulled out from the portet’s session

by the getPortletManager () method and then the reference is stored in the portlet

request’s attribute. The doView () method finally invokes the JSP file to construct

the page for the UI in view mode. With the manager’s reference stored in the portlet

request’s attribute, the JSP code for the view mode can access the manager easily.

The doCustomConfigure () method uses the same logic to access the manager class.

public void doView(RenderRequest request, RenderResponse response)
		 throws PortletException, IOException {
	 // Set the MIME type for the render response
	 response.setContentType(request.getResponseContentType());

	 // Get the portlet manager
	 MyReportPortletManager manager = getPortletManager(request,
 response);

	 // Put the portlet manager in the request
	 request.setAttribute(MyReportPortletConstants.MANAGER,
 manager);

	 // Invoke the JSP to render
	 PortletRequestDispatcher rd = getPortletContext().get
 RequestDispatcher(
			 getJspFilePath(request, VIEW _ JSP));
	 rd.include(request, response);
}

Extending the WebSphere Business Monitor Dashboard
Page 32

5.2.6 Interaction 1: Initialize portlet view mode

In this section(these are not really chapters, but sections of chapters),

you will initialize the portlet’s view mode. The following code comes from

MyReportPortletView.jsp file. This JSP file is invoked in the portlet’s

doView () method when a render request of view mode is issued.

<%@ page session=”false” contentType=”text/html” %>
<%@ page import=”java.util.*,javax.portlet.*,myreport.*” %>
<%@taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>
<%@taglib uri=”bloxtld” prefix=”blox” %>
<%@taglib uri=”bloxuitld” prefix=”bloxui” %>
<%@taglib uri=”bloxportlettld” prefix=”bloxportlet” %>

<portlet:defineObjects/>
<blox:header/>

<%
	 // Retrieve the manager from request and then get the data bean
 from the manager
	 MyReportPortletManager manager = (MyReportPortletManager)request
			 .getAttribute(MyReportPortletConstants.MANAGER);

	 MyReportDataBean dataBean = manager.getDataBean();
	 if (!dataBean.isConfigured()) { %>
		 This view has not been configured. Click the Configure icon on
the portlet toolbar to start the configuration. <%
		 return;
}
%>

Notes:

•	 The first three lines of this JSP file are already created by the Rational Application Devel-
oper portlet wizard. They provide support for accessing the portlet’s Java code and the
portlet’s predefined object.

•	 The three taglib directives instruct the JSP compiler to support the Alphablox-related tags.

•	 The <blox:header/> tag manages rendering of Alphablox blox on the pages.

•	 The <portlet:defineobjects/> tag manages the render request and render response
of the portlet.

•	 The Java code part of this JSP file does the following things: Retrieves the reference of
portlet manager from the render request’s attribute; retrieves the reference of data bean
from the manager; and checks if the data bean is configured properly and displays infor-
mation text if it is not.

5.2.7 Interaction 2: Load configuration mode

As a standard way of using a portlet, clicking the “wrench” icon on the top-right

side of the portlet window will put the portlet in Configuration mode.

Figure 5-11
Config icon

Extending the WebSphere Business Monitor Dashboard
Page 33

The request will be handled by the doCustomConfigure() method in the portlet

class MyReportPortlet.java and it will invoke the MyReportPortletConfig.jsp to

render the configuration mode page. The following snippet

MyReportPortletConfig.jsp.

<%@ page session=”false” contentType=”text/html” %>
<%@ page import=”java.util.*,javax.portlet.*,myreport.*”%>
<%@ page import=”com.alphablox.blox.DataBlox” %>
<%@taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>
<%@taglib uri=”bloxtld” prefix=”blox”%>
<%@taglib uri=”bloxuitld” prefix=”bloxui”%>
<%@taglib uri=”bloxportlettld” prefix=”bloxPortlet”%>

<portlet:defineObjects/>
<blox:header />

<%
		 // Retrieve the manager from request
		 MyReportPortletManager manager = (MyReportPortletManager)
 request
				 .getAttribute(MyReportPortletConstants.MANAGER);

		 DatamartUtility datamartUtility = manager.getDatamart
 Utility();
		 String dataSource = datamartUtility.getDataSource();

		 // Encode the blox name
		 String dataBloxName = renderResponse.getNamespace()
				 + MyReportPortletConstants.CONFIG _ DATA _ BLOX;
		 String containerBloxName = renderResponse.getNamespace()
				 + MyReportPortletConstants.CONFIG _ CONTAINER _ BLOX;
%>

<blox:data id=”configDataBlox” bloxName=”<%=dataBloxName%>”
		 dataSourceName=”<%=dataSource%>” >
	 <%
		 // Load the cube meta info into the data bean through
 data blox.
		 if (!datamartUtility.isInitialized()) {
			 datamartUtility.init(configDataBlox);
		 }
	 %>
</blox:data>

<blox:container id=”configContainerBlox” bloxName=”<%=containerBlox
Name%>”width=”100%” >
	 <%
		 // Construct and display the config layout in this container
 blox.
		 MyReportPortletConfigUI configUI = new MyReportPortlet
 ConfigUI(manager);
		 configUI.display(configContainerBlox, (RenderRequest)
 renderRequest,
					 (RenderResponse)renderResponse);
	 %>
</blox:container>

Notes:

•	 The taglib directives are imported in a similar way to the JSP file for view mode.

•	 A reference to the portlet manager is extracted from the request’s attribute.

•	 A DataBlox is created for initializing the Datamart utility.

Extending the WebSphere Business Monitor Dashboard
Page 34

•	 The blox name should be prefixed with the portlet’s namespace to make it unique. This
is required because more than one instance of a portlet can exist on a page. If the blox
names are not unique, the portlets have difficulty processing the duplicate names and
errors occur.

•	 The MyReportPortletConfigUI class is introduced here. It is responsible for constructing
the UI of the configuration mode page and handling the user-selection event in the page.

•	 This sample has the requirement that the UI components survive a refresh. This is espe-
cially important in the portal world because a user could choose to change the portlet
window size, which refreshes the page and calls this JSP file again. The Java code that
displays the configuration page is embedded in a container blox (inside of two blox tags).
A characteristic of Alphablox blox tags is that the area within a blox tag is not refreshed
when the JSP page is refreshed. This characteristic helps to retain the temporary selection
values on the configuration page when a page refresh occurs.

The following code shows the declaration of the MyReportPortletConfigUI

portlet class.

public class MyReportPortletConfigUI extends Controller {

	 private MyReportPortletManager manager;	// Reference to
 portlet manager
	 private ComponentContainer uiContainer;	// Container to hold
 UI components
	
	 public MyReportPortletConfigUI(MyReportPortletManager manager) {
		 this.manager = manager;
	 }
}

Notes:

•	 Because you also want the MyReportPortletConfigUI class to handle the events coming
from the Alphablox UI component, it is extended from the com.alpphablox.blox.uimodel.
core controller class.

•	 The MyReportPortletConfigUI class includes a reference to the portlet manager. The port-
let manager bridges the event handler in this class and the data bean. Through this refer-
ence, the event handler can store the user-selection information it gets from the Alphablox
UI component, into the data bean.

5.2.8 Interaction 3: Construct the UI in configuration mode

The display () method of the MyReportPortletConfigUI class is constructs the

UI in the configuration mode. Though you can construct the UI in the JSP file

by using the JSP tags for the Alphablox UI component, it is best to construct the

UI with server-side Alphablox Java objectsto keep the JSP clean and simple.

Through this method, you can also consolidate the UI components and associ-

ated event controllers in one class to keep the logic more straightforward.

The following diagram shows the logical layout of the configuration mode UI.

All the UI components and component containers are made with server-side

Alphablox Java objects.

Extending the WebSphere Business Monitor Dashboard
Page 35

The following code shows the source for the display () method.
public void display(ContainerBlox containerBlox, RenderRequest
request,
		 RenderResponse response) throws Exception {

	 // Get the data Bean from portlet manager
	 MyReportDataBean dataBean = manager.getDataBean();

	 BloxModel bloxModel = containerBlox.getBloxModel();
	 bloxModel.clear();
		
	 // Prepare the component container and put it on container blox
	 uiContainer = new ComponentContainer();
	 uiContainer.setLayout(new VerticalLayout());
	 uiContainer.setController(this);
	 bloxModel.add(uiContainer);

	 // Add the selection container and build the components on it.
	 addSelectionContainer(dataBean);

	 // Add the button container and build the buttons on it.
	 addButtonContainer(dataBean, response);

}

Notes:

•	 The display() method constructs the UI on the container blox that is already created 	
in the JSP.

•	 When constructing the UI, you need to fill the UI components with data obtained 	
from the data bean. Therefore, a reference to the data bean is retrieved from the 	
portlet manager.

•	 You can find much more-detailed steps to construct the UI in the addSelection	
Container() and addButtonContainer() methods. The logic for these two methods is 	
straightforward. See the source code in the .zip of sample code that accompanies 	
this document for reference.

Cancel

uiContaine

selectionContainer

buttonContainer

Cube selection

Measures selection

cubeDimContainer measuresContai

Dimension selection

Figure 5-12
XXXX

Save

Extending the WebSphere Business Monitor Dashboard
Page 36

5.2.9 Interaction 4: Handling events for cube or dimension user-selections

This section looks at how to handle the event when a user selects cubes or

dimensions. The base class of the MyReportPortletConfigUI class is the

Alphablox Controller class, which has provided many handler interfaces for

different events. Among these interfaces, handleSelectionChangedEvent () is

for handling the event when a selection has been changed in a drop-down list

or a list blox. This method is the exact one that you need to implement. The

following code shows the handleSelectionChangedEvent() method in the

MyReportPortletConfigUI class.

public boolean handleSelectionChangedEvent(SelectionChangedEvent
event)
		 throws Exception {

	 // This method handle the selection change event on the
 DropDownList
	 try {
		 MyReportDataBean dataBean = manager.getDataBean();
		 Component selectedComponent = event.getComponent();
		 if (selectedComponent.getName().equals(
				 MyReportPortletConstants.DROPDOWNLIST _ CUBE _ SELECT)) 	
			 // Selection is changed on cube select dropdownlist.

			 DropDownList cubeList = (DropDownList) selectedComponent;
			 DropDownList dimensionList = uiContainer
	 .getDropDownList(MyReportPortletConstants.DROPDOWNLIST _
 DIMENSION _ SELECT);	
		 ComponentContainer measuresContainer = uiContainer			
.getComponentContainer(MyReportPortletConstants.
 MEASURES _ CONTAINER);

			 // Get the selected cube from the dropdownlist
			 int selected = cubeList.getSelected();
			 if (selected >= 0) {
				 dataBean.setSelectedDimensionTmp(null);

				 Cube selectedCube = (Cube) cubeList.
 getUserObject(selected);
				 dataBean.setSelectedCubeTmp(selectedCube.getName());
			 }
			 populateDimensions(dimensionList);
			 populateMeasures(measuresContainer);
		 } else if (selectedComponent.getName().equals(
				 MyReportPortletConstants.DROPDOWNLIST _ DIMENSION _
 SELECT)) {
			 // Selection is changed on dimension select dropdownlist.

			 DropDownList dimensionList = (DropDownList)
 selectedComponent;
			 int selected = dimensionList.getSelected();

			 // Get the selected dimension from the dropdownlist
			 if (selected >= 0) {
				 String selectedDimension = dimensionList.
 getLabel(selected);
				 dataBean.setSelectedDimensionTmp(selectedDimension);
			 }
		 }

Extending the WebSphere Business Monitor Dashboard
Page 37

	 } catch (Exception ex) {
		 //TODO:
		 ex.printStackTrace(System.out);
	 }
	 return false;
}

Notes:

•	 Selections made before clicking the Save button are treated as temporary, because the
user might cancel it. So the values obtained from the drop-down list are saved only in the
xxxTmp variables in the DataBean.

5.2.10 Interaction 5: Handling events for Save or Cancel user-selections

This section explains how to handle the event of a user clicking the Save or

Cancel button. A click event is triggered when the user clicks the button. The

handleClickEvent() method of the Controller class is implemented in the

MyReportPortletConfigUI class to handle this event. The following code shows

the handleClickEvent () method.

public boolean handleClickEvent(ClickEvent event) throws
ModelException {
	 // This method handle the click even on the save/cancel button
		
	 MyReportDataBean dataBean = manager.getDataBean();		
	 Component selectedComponent = event.getComponent();
	 if (selectedComponent.getName().equals(
			 MyReportPortletConstants.SAVE _ BUTTON)) {
		 // Save button is clicked

	 	 // Save the temporary user selection on cube and dimension
		 dataBean.setSelectedCube(dataBean.getSelectedCubeTmp());
		 dataBean.setSelectedDimension(dataBean.getSelected
 DimensionTmp());

		 // Save the user selection on measures.
		 checkSelectedMeasures(dataBean);

		 // Dispatch the URL
		 ClientLink saveURL = (ClientLink) selectedComponent.get
 UserObject();
		 uiContainer.getDispatcher().showBrowserWindow(saveURL);
	 } else if (selectedComponent.getName().equals(
			 MyReportPortletConstants.CANCEL _ BUTTON)) {
		 // Cancel button is clicked

		 // Restore the values of the temporary selection
		 dataBean.setSelectedCubeTmp(dataBean.getSelectedCube());
		 dataBean.setSelectedDimensionTmp(dataBean.getSelected
 Dimension());
			
		 // Refresh the config page
		 refreshConfig();			

		 // Dispatch the URL
		 ClientLink cancelURL = (ClientLink) selectedComponent
				 .getUserObject();
		 uiContainer.getDispatcher().showBrowserWindow(cancelURL);
	 }
	 return false;
}

Extending the WebSphere Business Monitor Dashboard
Page 38

Notes:

•	 If a user clicks the Save button, the value saved in the data bean’s xxxTmp variable
should be copied to its corresponding xxx variable. On the other hand, if user clicks
Cancel, you should restore the xxxTmp variables to their original values, and restore the
configuration page according to the original selection values.

•	 The selection of measures is checked in this method (by calling the checkSeletedMea-
sures () method) instead of in the handleSelectionChangedEvent () method because you
are only interested in the user’s final, selected measure list when Save is clicked.

•	 Both the Save and Cancel buttons are attached to a user object, which is a ClientLink
object, and is used to carry a URL that will be dispatched to the client.

•	 After dispatching the instruction to get the URL from the button’s user object, control
goes back to the portlet from the Alphablox event handler. This gives you a way to return
to the portlet programming model from the Alphablox programming model.

To further understand the use of the ClientLink object, here is more detail into

how the Save button and Cancel buttons are built. The populateButtons()

method in the MyReportPortletConfigUI class is responsible for building these

two buttons. It is called when a display () method is called.

private void populateButtons(ComponentContainer buttonContainer,
		 RenderResponse response) throws ModelException {
	 Button saveButton = new Button(MyReportPortletConstants.SAVE _
 BUTTON,
			 MyReportPortletConstants.SAVE _ BUTTON _ TITLE);
	 Button cancelButton = new Button(
			 MyReportPortletConstants.CANCEL _ BUTTON,
			 MyReportPortletConstants.CANCEL _ BUTTON _ TITLE);
	
	 // Create an action URL from the portlet response, when a action
 URL is
	 // opened, the portlet’s processAction() is called.
	 // The parameter set in the URL tells the processAction() it is a
	 // Save action or a Cancel action.
	 PortletURL saveURL = response.createActionURL();
	 saveURL.setParameter(MyReportPortletConstants.ACTION _ NAME,
			 MyReportPortletConstants.SAVE _ ACTION);

	 PortletURL cancelURL = response.createActionURL();
	 cancelURL.setParameter(MyReportPortletConstants.ACTION _ NAME,
			 MyReportPortletConstants.CANCEL _ ACTION);
	
	 // Store the action URL as ClientLink in the button’s user object.
	 // “ _ self” instruct the browser open this URL in the current
 window.
	 saveButton.setUserObject(new ClientLink(saveURL.toString(),
 “ _ self”));
	 cancelButton.setUserObject(new ClientLink(cancelURL.toString(),
 “ _ self”));
		
	 buttonContainer.add(saveButton);
	 buttonContainer.add(new Spacer(0, 30));
	 buttonContainer.add(cancelButton);

}

Notes:

•	 Each button is attached with a user object—the ClientLink—in which a URL is carried.

•	 The URL is an action-URL target to the portlet itself. When this action URL is opened, the
portlet’s processAction () method is called.

•	 The parameter set in the URL tells processAction () method if it is a “Save” action or a
“Cancel” action.

Extending the WebSphere Business Monitor Dashboard
Page 39

Here is a look at how the portlet handles the action request. The following

snippet shows the source code of the processAction () method of the

MyReportPortlet.java class.

public void processAction(ActionRequest request, ActionResponse
response)
		 throws PortletException, java.io.IOException {
	 String actionName = request
			 .getParameter(MyReportPortletConstants.ACTION _ NAME);

	 // Get the portlet manager
	 MyReportPortletManager manager = getPortletManager(request,
 response);

	 // Go back to view mode.
	 if (MyReportPortletConstants.SAVE _ ACTION.equals(actionName)) {

		 // Save the data bean content into portlet preference
		 manager.savePreference(request);

		 response.setPortletMode(PortletMode.VIEW);
		 response.setWindowState(WindowState.NORMAL);
	 } else if (MyReportPortletConstants.CANCEL _ ACTION.
 equals(actionName)) {

		 response.setPortletMode(PortletMode.VIEW);
		 response.setWindowState(WindowState.NORMAL);
	 }
}

Notes:

•	 If user clicked on the save button, the processAction () get a “Save” action. We tell man-
ager save the selection values in data bean into the portlet’s preference. The value stored
in portlet’s preference can be kept even the portlet session is closed. This is exactly what
the configuration mode expects. If the action is a “Cancel” action, then the portlet just
renders the view mode and does nothing else.

•	 The Response.setPortletMode (PortletMode.VIEW) method brings the portlet back to the
view mode and a doView () method is called.

5.2.11 Interaction 6: Display the user-select values in view mode

The view mode is rendered with the user-selection values saved in the data

bean. The doView () method calls MyReportPortletView.jsp to finish its render-

ing task. The following snippet shows the source code for displaying the

PresentBlox component.

<%
	 // Get data source and MDX query statement from data bean.
	 String dataSource = manager.getDatamartUtility().get
 DataSource();
	 String query = dataBean.generateMDXQuery();

	 // Encode the blox name.
	 String myPresentBloxName = renderResponse.getNamespace()
			 + MyReportPortletConstants.VIEW _ PRESENT _ BLOX;

	 // Default blox height
	 String bloxHeight = “400”;	
%>

Extending the WebSphere Business Monitor Dashboard
Page 40

<blox:present id=”myPresentBlox” bloxName=”<%=myPresentBloxName%>”
	 width=”100%” height=”<%=bloxHeight%>” visible=”false”
	 dataLayoutAvailable=”true” menubarVisible=”false”
	 toolbarVisible=”false” chartFirst=”true” >

	 <blox:data dataSourceName=”<%=dataSource%>”	
query=”<%=query%>”
		 connectOnStartup=”false” />

	 <blox:chart dataTextDisplay=”true” />

</blox:present>

<%
	 // Update the query statement and result set to response the
 config changes.
	 myPresentBlox.getDataBlox().setQuery(query);
	 myPresentBlox.getDataBlox().updateResultSet();

	 // The menubar and toolbar of the PresentBlox will be showed if
 the portlet
	 // is maximized, otherwise they will be hidden.
	 if (WindowState.MAXIMIZED.equals(renderRequest.get
 WindowState())) {
		 myPresentBlox.setMenubarVisible(true);
		 myPresentBlox.getToolbarBlox().setVisible(true);
		 myPresentBlox.setHeight(“100%”);

	 } else {
		 myPresentBlox.setMenubarVisible(false);
		 myPresentBlox.getToolbarBlox().setVisible(false);
		 myPresentBlox.setHeight(bloxHeight);
	 }

	 // Display the PresentBlox.
	 myPresentBlox.display(bloxRequest, bloxResponse, out);
%>

Notes:

•	 First the data source name and the MDX query are obtained from the data bean. The
MDX query is generated according to the user-selection values in the data bean.

•	 A PresentBlox is added in the page by using the <blox:present> tag. The Present-
Blox is a convenient way to perform the report and analysis tasks on multidimensional
data sources by using a grid, chart and data-layout panel. The data source name and
the query statement get from the data bean is passed to its nested data blox, which is
responsible for the database access.

•	 The PresentBlox has a lot of options to control its layout. The data layout panel is
opened, the menu bar and toolbar are disabled, and the chart panel is placed before
the grid panel. Also the data values above each bar in the chart are displayed. For a full
explanation of the PresentBlox options,see the Alphablox information center at publib.
boulder.ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp.

•	 The last part of the Java code outside of the blox tags is very important. A characteristic
of the Alphablox blox tags is that the area within a blox tag will not be refreshed when
the JSP page is refreshed. So if user makes changes in the configuration mode and
returns to the view mode, though the data bean’s query statement has been updated, the
query statement of the PresentBlox is not updated unless you specify it again. Therefore,
use the Java code outside of the blox tags to specify the query statement dynamically
and an updateResultSet () tells the PresentBlox that the query result has been changed
and the PresentBlox will update accordingly.

•	 The Java code also indicates that the menu bar and toolbar of the PresentBlox will
appear if the portlet is maximized, but disappear if the portlet is at normal size. And the
PresentBlox will make use of 100 percent of the window size if the portlet is maximized,
but go back to a default height if the portlet is at normal size.

Extending the WebSphere Business Monitor Dashboard
Page 41

All the key concepts of the implementation of the sample portlet have now been

explained. For the complete source code of the sample portlet, see the accom-

panying source code .zip file.

5.3 Deploy the sample portlet

This section describes the steps required to build the portlet Web archive

(WAR) file and deploy it on the IBM Portal server.

5.3.1 Export the WAR file

Rational Application Developer 6.0 has provided a convenient tool to build the

WAR file for the portlet project. In the Project Explorer, right-click the portlet

project name, and select Export…àWAR file, as shown in Figure 5-12.

Figure 5-13
Export WAR file: Step 1

A dialog for the export option displays (see Figure 5-13).

Figure 5-14
Export WAR file: Step 2

Extending the WebSphere Business Monitor Dashboard
Page 42

After specifying the project to be exported and the destination path, click

Finish. The WAR file, MyReport.war is then created on the destination path.

5.3.2 Deploy the WAR file on portal server

Deploying the WAR file on the Portal server can be done by performing the fol-

lowing steps:

1.	 Make sure that the Portal server is started. Open the Portal GUI in an Internet

Explorer browser at localhost:9081/wps/portal.

2.	 Log in to the Portal GUI with the ID/password combination: wpsadmin/wpsadmin.

3.	 Click Administration at the top of the page, and then click Portlet Management ->

Web Modules.

4.	 Click Install, and browse to the WAR file.

5.	 Click Next.

6.	 Click Finish.

Result: The portlet is deployed on the Portal server.

Extending the WebSphere Business Monitor Dashboard
Page 43

6 References

•	 JSR 168 portlet specification 	

(www.jcp.org/aboutJava/communityprocess/final/jsr168/)

•	 Best Practices: Developing portlets using JSR168 and WebSphere Portal v5.02

(www-128.ibm.com/developerworks/websphere/library/techarticles/0403_

hepper/0403_hepper.html)

•	 Developing JSR168 Compliant Cooperative Portlets 	

(www-128.ibm.com/developerworks/websphere/library/techarticles/0412_

roy/0412_roy.html)

•	 IBM Rational Application Developer V6 Portlet Application Development and

Portal Tools 	

(www.redbooks.ibm.com/abstracts/sg246681.html?Open)

•	 IBM Alphablox infocenter 	

(publib.boulder.ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp)

•	 Multidimensional Expressions (MDX) Reference 	

(msdn2.microsoft.com/en-us/library/ms145506.aspx)

Extending the WebSphere Business Monitor Dashboard
Page 44

7 Appendix: Accompanying source code

A Rational Application Developer interchange compressed file, MyReport-

interchange.zip, includes the source code for the MyReport portlet sample.

Note: Please import this interchange file with Rational Application 	
Developer only.

Extending the WebSphere Business Monitor Dashboard
Page 45

8 Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this docu-

ment in other countries. Consult your local IBM representative for information

on the products and services currently available in your area. Any reference to

an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equiva-

lent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant

you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the

IBM Intellectual Property Department in your country or send inquiries, in

writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES

THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain trans-

actions, therefore, this statement may not apply to you.

Extending the WebSphere Business Monitor Dashboard
Page 46

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will

be incorporated in new editions of the publication. IBM may make improve-

ments and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for con-

venience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it be-

lieves appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the pur-

pose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual

use of the information which has been exchanged, should contact:

IBM Corporation
Department EZRA/ Building 502
4205 S MIAMI BLVD
Durham, NC 27703-9141
_U.S.A.

Such information may be available, subject to appropriate terms and condi-

tions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer

Agreement, IBM International Program License Agreement or any equivalent

agreement between us.

Any performance data contained herein was determined in a controlled envi-

ronment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-

level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may

have been estimated through extrapolation. Actual results may vary. Users of

this document should verify the applicable data for their specific environment.

Extending the WebSphere Business Monitor Dashboard
Page 47

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available

sources. IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change

or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include

the names of individuals, companies, brands, and products. All of these names

are fictitious and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

Copyright license:

This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or distribut-

ing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of

these programs.

			

© Copyright IBM Corporation 2006

IBM Corporation 	
Software Group	
Route 100	
Somers, NY 10589	
U.S.A.

Produced in the United States of America	
12-06	
All Rights Reserved

IBM, the IBM logo, Cube Views, DB2, Rational and
WebSphere are trademarks of International Business
Machines Corporation in the United States, other coun-
tries or both.

Java and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other coun-
tries, or both.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product and service names may be
trademarks or service marks of others.

