|IBM

Rules and Formatter Extension for IBM WebSphere Message
Broker for Multiplatforms

New Era of Networks Rules
Programming Reference

Version 7.0

Note: Before using this information, and the product it supports, be sure to read the general
information under notices on page 391.

First edition (April 2010)

This edition applies to Rules and Formatter Extension for IBM WebSphere Message Broker for
Multiplatforms, Version 7.0, and to all subsequent releases and modifications until otherwise
indicated in new editions. Make sure you are using the correct edition for the level of the
product.

© Copyright New Era of Networks, Inc., 1998, 2010. All rights reserved.
© Copyright International Business Machines Corporation, 1999, 2010. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Chapter 1: IntroducCtionccooviiiiiiiiiiiiiinnnnn. 1
ADOUL thiS DOCUMENT ..o 1
DOCUMENTALION SEL ..o 2
DocUMENt CONVENTIONScveveiiiirceieriee e 2
Chapter 2: OVErVIEWoeiiiiiiiiiiiiiiiiiiiiiiiiiiaaee 3
New Era of Networks Rules COMPONENTScooiiiiiriiiineieeeines e 3
Rules Naming CONVENTIONSccooiiiiiiiiiieeec e 4
APIs and Header FIles. ..o s 4
LEDAITES. ..ttt et et b bbb b et e et ne et ene s 19

Chapter 3: New Era of Networks Rules APIs ..21
Class/Type DefiNitiONS.coiiiiiiiiiie e 21
VRUIE ENGINE APIS ..ottt s e 23

VRUIE SEIUCTUIEScviiieet ettt et sb e 25
SUBSCRIPTION ..ottt 25
OPTIONPAIR .ottt 26
RULE ..o e 28

VRule SUppOorting FUNCLIONS...........coiiiiie e 29
CreateRUIESENGINEcoiviiiiiiee s 29
DeleteRUIEENGINEooiiiiiiieee e 33

VRule Member FUNCLIONS........c.ooiiiiiec e 35
BVAL e s 35
getformatterobject ... 39
OELNITIULE .o 40
OELNONITIULE ..o s 42
QELSUDSCIIPLION .. s 44
ELOPT o e 46
LoadRUIECOMPONENT ..o e 48
LOAARUIESEL ...t e e 53
populatesubscriptionlistccooeiiiiiiiii s 56

Error HanAliNg ... e 57
GEIEITONNO ... e 57
GEIEITOIMESSAgEocviiiiiieiie ittt e 59

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms i

New Era of Networks Rules Programming Reference

(1) 1 R{=1 0 (0] (R 60

Subscription, Action, OPLioN APIS ... 62
RulesSubscriptionList Member FUNCLIONS..........ccccoveveieinie s 64
RulesSubscriptionList CONStrUCLOrccccovvevevcevnre e 64
RulesSubscriptionList DEStruCtorccocevviveveiivinrcsineseeeinens 65
RulesSubscriptionList Copy CoNnstructorcccocvevvivvevvreerinnnns 66
&operator= Assignment OPeratorcccoeoeverennieeincsiene e 67
APPENA_DACK ..oviiiiiiii e s 68
APPENA_FrONT ..o 69

CHBAK .. 70
createOWNCOoPYOTDALAccveeiiiiiice s 71
DeleteSUDSCIIPLION ..o 72
OELFIISE e e 73
gEtNEWSUDSCIIPLIONcoiiiiiiiiicce e 74
EEINEXT .o et 75

iNSert (SUDSCHIPLION)coiiiiiiiiee e 76

INSEIT (TISL) .o e e 77
NEWECOPY ettt ettt ettt ettt e ettt e bttt et bt e er e ene e 78
PUSH_TrONT .o 79
PUSN_DACK ... 80

SHZB et 81
RulesSubscription Member FUNCLIONS..........ccoooiiiiiiiieec e 82
RulesSubscription CONSIIUCLOrccocoiiieiiiiiiicsee e 82
RulesSubscription DeStrUCLOrccccoveieieiieiiec e 83
RulesSubscription Copy CONSLIUCTONccooveiiineniiine e 84
&operator= Assignment OPeratorcccoevererernieeincsiene e 85
COMPArEBYIA ... s 86
createOWNCOoPYOTDALAc.cveviiiiiiire s 87
OELACTIONLIST ..o s 88

OELIA e s 89
OEEINAIMIE .o e e 90
NEWECOPY oottt ettt sttt sttt sttt e bbbt et bt e eresne e 91

SEEIA s 92
SEENEMIE .o 93
Subscription, Action, Option Class USAgecccuvririrerinenenienieie e 94
Evaluation Field Value CONTAINEISccociiiiiiiiiiicicesee e 97
NNFieldValueContainer Member FUNCLIONScccoeiiiiiiiinciieeeeae 98
GEtFIEI ..o 98
GEtFIEIASIIING ..eiiieie s 99

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Contents

GEtFIeldCOUNT ...cocvieeceecee s 100
GetINPUEICOESEL ..o s 101
GEtINPULLOCAIE ...oovveeiceec e 102
SEtINPULCOAESELc.veveeececece e 103
SEtINPULLOCAIE ..o 104
NNNameValueList Member FUNCLIONScccccvevvvvivieneneseeeseeeise s 105
NameValueList CONStrUCIONcooeviviiviieiieiie e 107
~NNNameValueList DeStrUCIOrc.ccovveevieviiiiireecie e 108

A oo 109

REAA ... e 110
UPAALE ..o e 111

DEIBLE oo 112
CIEATAIL ... 113
GEEFIISE ittt ettt e re e s re b e 114
GEENEXL ...t s e e et e e e ee e e s ere e e e ebeeeeaes 115
GEEFIEIA oo 116
GetFIeldCOoUNT ..o 117
GetINPUEICOAESEL ..o e 118
GEtINPULLOCAIE ..o 119
GetINPUEICOESELoviiiiic e 120
SEtINPULLOCAIE ... 121
NNName Member FUNCLIONS ... 122
NNNamMe CONSTIUCLONoooiiiiiiiee e 123
NNNamMe CONSTIUCLOToooiiiiiiiiee e 123
NNNamMe CONSTIUCLOToooiiiiiiiiie e 124
NNName Copy CONSIIUCIONcccoviiiinieiiiese e 125
NNNamMe DESIIUCIONcocvviiiiiiiieie et 126

7= ST SO PSSRSO 127

7= ST SO PSSRSO 128

(o] o =] g1 (0] (TSP OP TP 129

(o] o =] g 1 (0] TSROSO P ORI 130

(o] o =] g1 (0] ST TSP OPTPTOTRPRTO 131
ISEMPLY oo 132
GEESIIING ettt e 133
GEELENGLN .o 134
NNValue Member FUNCLIONS..........cccooiiiieecec et 135
NNValue CONSIIUCTONccooivviiieeiec et 136
NNValue CONSIIUCTONccooivviiieeiec et 137
NNValue CONSIIUCTONccooivviiieeiec et 138

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms iii

New Era of Networks Rules Programming Reference

NNValue Copy CONSLIUCLONcccovvveiriireserese e 139

NNValue DESLIUCLONcooviiriiirieirieeie e 140

OELCOAESEL ...oee e s 141

OELLOCAIE ..o s 142

GELFIEI i 143

L] TP PR TP 144

L] U S TSP PT PR OU ORI 145

L] U S TSP PT PR OU ORI 146

(o] o =] =1 (0] (U TSP ORI 147

(o] o =] g1 0] g USSP OPPTOTTTRUN 148

(o] o =] g1 (0] ST TSR P T ORI 149

ISEMIPLY oo 150

GEESIIING ettt e 151

GEELENGLN .o 152
Chapter 4: New Era of Networks Rules

Management APIS..........oooiiiiiianaat. 153

New Era of Networks Rules Management API Structuresccccocvvevrveneen. 155

NINDALE ..o 155

Overall New Era of Networks Rules Management APls and Macros........... 157

NNRMGEINIT i 157

N IR 1Y o @ o 1= RS 158

NNR_CLEAR ..ottt 159

Application Group Management APIS........cccoovviiiieniieeieie e 160

Application Group Management APl Structuresccccooeeveveeivseennennn, 160

N LA N o o TSR 160

N LAY AN o] o] I | - W SRR 161

NI NIRVAY o] o] R{=T=To | B\ - NSRS 162

NI NIRVAY o7 018 oo F-1 - SRS 163

Application Group Management APl FUNCLIONS..........cccoevveivrivcivnnnenene 164

T NTRA1Y [7N [VAN o o SRS 164

N NTRALY [o g 2 ECT=To VAN o] o RS RS 166

NN R o T 1=t T 5 7 AN o o 168

NNRMGIGEtNEXTAPD .ooveeeieereerieeiesieie e esiese et eee e see e seenes 170

N TNTRAIY [T BIUT o] ITor=11=Y AN o] o RS 172

NTNTRAIY [T] oo =1 1=Y AN o o TS 174

NNRMQrDeleteENtIrEAPD «.oovecveveere e 176

Message Type Management APIS ... 178

Message Type Management APl StrUCTUFES.........cccoveevieeevvviee e e e 178

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Contents

NINRIMSG oo 178
NNRMSGDALAcvviveiieieiirie e see e 180
NNRMSGREAADALAccevvervviiiieierieiciee s 181
Message Type Management APl FUNCLIONScccccccvvveverevinieesise s 183
NNRMGFrAAAMSQ ...oovviiieiie e 183
NNRMQGIREAAMST ..ovevieiiiieiieieieeeese st 185
NNRMQGFGetFirStMSQ ...cccooeieiiiiiie it 187
NNRMGrGetNEXIMSGccceeiieriiiiieiesiieie e 189
NNRMgrUpdateMsgNamecccoceiiiineiineie e 191
NNRMQgrDUplicateMSQcocooeiiieiiiiee s 192
NNRMQrDeleteENtireMSgccoovieiieiiie e 194

Rule Management APIS ... s s 196
Rule Management AP STrUCTUIES.........cocoviieiirieieeeiceese e 196
NNRRUIE .o 196
NNRRUIEDALAccviiiiiiiie e e 198
NNRRUIEREAADALAcceeiviiiiiiieieeee e 200
NNRRUIEUPAALE ...t 202

Rule Management APl FUNCHIONSccocoiiiiiiiiieieccee e 204
NNRMQGrAAARUIE ..o 204
NNRMQGIREAARUIEc.ooiiiiiiiieeeee s 207
NNRMQGrGetFirstRUIEcccoiiiiiiiiieie e 209
NNRMQGrGetNexXtRUIEcociiiiiiiire e 211
NNRMQgrDuplicateRUIE ..o 213
NNRMQgrupdateRUIE ..o 215
NNRMgrDeleteENtireRUIEccoceiiiiiiieicc e 218
PermiSSIONS APIS ... et e 221
Permission Management APl StrUCUIEScceieiieiiiiineie e 221
NNUSerPermissionDataccccoeiiiriiienieniie e 221
NNPermissionDALtacccoviiiiiiiiiereeee s 223
NNRCOMPONENT ..o e 224

Overall Permission IMAaCKOccueiiiiiiiie et 226
NIN_CLEAR ..ot 226
Permission AP FUNCLIONSccooiiiiiiieee e 227
NNRMQGrGetFirstPErMccccoiiiiie s 227
NNRMGrGetNexXtPerm ... 229
NNRMgrUpdateUSerPerm ... 231
NNRMQGrChangeOWNRNETccoiiieiirieieiese e 233
NNRMgrUpdateOWRNErPEIMccccooiiiieiiiieeie e 235
NNRMgrUpdatePublicPerm ... 237

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms v

New Era of Networks Rules Programming Reference

Vi

Operator ManagemeNnt APIS ... 239

Operator Management AP StrUCTUIES.........covecvviviiie e 239
NNROPEIALOFoceiiiveiecee et snaens 239

Operator Management APl FUNCLIONSccccovvvveievcicne e 240
NNRMQGrGetFirstOPEeratorccccoceveveresieeiesesie e seeseseeseene e 240
NNRMgrGetNextOPEratorcccccvievreerinrene e e e see e 242

Expression Management APIS ...t 244
Expression Management AP STrUCTUIESccooeviriiiienenniencsenee 246
NINREXD oot 246
NNREXDPDALAociiiiiiiiiiiieieeie et 248

Expression Management APl FUNCLIONS..........cccooiiiiiiiinicicnc e 249
NNRMgrAddEXPreSSIONcccceieiiniieineeesese e 249
NNRMQGrReadEXPreSSIONccooveiiiiiiiiiieenese e 251
NNRMQgrUpdateEXPressSionccoooceiieeienenie e 253

Argument Management APIS ... 255
Argument Management APl STrUCtUIeScccoveiiiiini i 255
NINRAIG o 255
NNRAFGDALA ..ot 257

Argument Management APl FUNCLIONS ... 259
NNRMQgrGetFirStArguMEeNtccocooeieieienieeeie e 259
NNRMgrGetNextArgumMENTcccoeiiriiniiieseee e 261
Subscription Management APIS ... s 263
Subscription Management APl STrUCTUIEScccoviiiiiiiniiicic e 263
NINRSUDS .o 263
NNRSUDSDALAccvviiiiieiiiieiiriesee s 265
NNRSUDSREAADALAcceviviviiiiriiirieere s 267
NNRSUDSUPALE ..ot 269
Subscription Management APl FUNCLIONScooeiiiiiiiniie e 271
NNRMgrAddSUbSCrption ..o 271
NNRMQgrReadSUbSCriptioncccocieiiiiiiiiicie e 274
NNRMQgrGetFirstSUDSCrIPLioNccocoiiiiiniiiieee e 276
NNRMQgrGetNextSUbsCription ... 279
NNRMgrDuplicateSUbSCriptioncccovviiiviieieireeecee 282
NNRMgrUpdateSubscription ... 284
NNRMgrDeleteSubscriptionFromRuUle ..., 287
NNRMgrDeleteEntireSUbSCriptionccccooiinininieneiinene 289
NNRMgrGetFirstRuleUsingSubs ... 291
NNRMgrGetNextRuleUsingSubs ... 293

ACtion Management APIS.o 295

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Contents

Action Management AP StrUCLUIES........c.covvviervveveree e e e 295
NINRACLION oo 295

NNRACLONDALAcovvveiieiiicer s 297
NNRACIONREAADALAc.covvvivereiirerceenseee s 298

NNRACHONUPAALE ..o 300

Action Management APl FUNCLIONS.........ccccooireieieeiecie e 301
NNRMGFrAAAACLION ... 301
NNRMQGrGetFirStACHIONccooiiiiieiecee e 303
NNRMQGrGetNeXtACLIONccccoviiiiiiene e 305
NNRMQgrResequUenCeACLIONccccoeieiiiiiiieeeie s 307
NNRMQgrUpdateACtioN ..o 311
NNRMQGrDeleteACLION ... 314

Option ManagemMent APIS ... e 316

Option Management APl STIUCTUIESc.ooeiiiiiiiiiieiec e 316
NNROPLION ..o e 316

NNROPLIONDALAooiiiiieiiiiie e 318
NNROPtIONReadDALacccoieieiiiiirieeeee s 319

NNROPLIONUPAALEocveieiiiiiieieeee s 321

Option Management APl FUNCLIONS ..ot 322
NNRMGrAAdOPLIONcoiiiiiieiie e 322
NNRMQGrGetFirstOPiONccooeviiiiiiii e 324
NNRMQgrGetNextOPtioN ... 326
NNRMQgrResequenceOPLtioNcococeeireeienenie e 328
NNRMQgrUpdateOptionccccooveviieiiieieieee e 332
NNRMQGrDeleteOPLtioNccccocceiiriiiiee e s 335

New Era of Networks Rules Management Error Handlingcccccoeeenee. 337
NNRGELEITOINOoovviiiiiiiniiiie s 337
NNRGEIEITOrMESSAgEc.eoiviiiiiiieiieriieie e 338

Chapter 5: Error Messagescccovvviiiiinnnnnnnnn. 339
Appendix A: Operator TypeS........cvvvvvvveennn.. 375
AppendixX B: NOtiCeSccooviiiiiiiieeeeeee 385
Trademarks and Service Marks ... 387
INdeX . e 389
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms vii

New Era of Networks Rules Programming Reference

viii Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 1
Introduction

This chapter includes the following information:

About this Document

Documentation Set

About this Document

This programming reference provides descriptions and examples for each
function in NeonRules and NeoNRules Management APIs. This document is
divided into two main sections: NeonRules APIs and neonRules Management

APls.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

Chapter 1, Introduction, provides a brief description of NeonRules and
the documentation set and documentation conventions.

Chapter 2, Overview, describes NeonRules components, rules naming
conventions, APIs, header files, and libraries.

Chapter 3, NeoNRules APIs, provides class and type definitions and
contains the NeonRules APIs.

Chapter 4, NeoNRules Management APIs, provides rules management
API structures, rules management APIs and macros.

Chapter 5, Rules Error Messages, contains a list of rules error
messages.

Appendix A, Operator Types, describes the available operator types
for use in rules expressions.

New Era of Networks Rules Programming Reference

Chapter 1

Documentation Set

The Rules and Formatter Extension for IBM ® WebSphere Message Broker for
Multiplatforms documentation set includes:

m System Management Guide

m NeonFormatter Programming Reference

m NeoNRules Programming Reference

m Application Development Guide

m Rules, Formatter, and Visual Tester online help

m [nstallation Readme

Document Conventions

The following document conventions are used in this guide.

Text Convention Example
code courier <user D> <password>
command line courier The message successfully
display parsed.
command line entry courier bold NNFAD-t
command line courier Enter the input file name:
prompt
path regular ora/bin (UNIX)
ora\bin (NT)
book names bold, italic Installation Guide
chapter and section italic NT Installation

names

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Chapter 2
Overview

NEoNRules enables you to evaluate a string of data (message) and react to the
evaluation results. The following overview describes NEoNRules components
and the types of APls available for rule processing.

xeonruless COMpPoNents

The neonRules components are:
m Application groups
m Message types

= Rules

An application group is a logical grouping used to organize rules. For
example, a company can divide rules into groups by projects or split projects
into logical sub-groups.

A message type defines the layout of a string of data. Each application group
can contain several message types and a message type can be in more than
one application group. When using neonFormatter, the message type is the
same as either the input format name or the user-defined neonRules message
type. Message types are defined either in NeonFormatter or in NeonRules.

A rule contains specific actions to be processed by the application if the rule
evaluates to true against a message. These actions can be thought of as

computer commands and the associated parameters required to execute the
rule.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 3
New Era of Networks Rules Programming Reference

Chapter 2

Rules Naming Conventions

When you are creating names for rule components, use the following
conventions:

Create unique, descriptive component names that are easy to
distinguish from one another.

Do not use case differences to distinguish component names. Some
databases do not distinguish case and would interpret both
components ITEM1 and Item1 as having the same name. In this case,
each matching component would conflict during importing.

Do not use the component name, NONE. It is reserved for another
use.

Do not use single quotes, double quotes, or spaces in component
names. These may cause database problems.

Do not exceed the maximum of 120 characters when creating
component names. If you exceed 120 characters, a message box
appears requiring a change.

The maximum number of characters for double byte is 60.

APIs and Header Files

Two types of APlIs exist for NeonRules: NeoNnRules APls and NeonRules
Management APIs.

Use NeonRules APIs to evaluate rules and retrieve subscription, hit, and no-
hit information. Before you evaluate a rule, the rule must exist and you must
use CreateRulesEngine() to create a VRule object. After that, you can do as
many evaluations and subscription retrievals as needed. When you finish,
destroy the Rules daemon object using DeleteRuleEngine().

Use NeonRules Management APIs to maintain rule information. Add, Read,
and Update APIs are implemented and available as well as APIs to delete an
entire rule or subscription and all their associated information.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Overview

The APIs are made up of classes of objects that have member functions:

Header Files

Object Class

Header File

Description

VRule vrule.h Rules Processing APls
NNRMgr nnrmgr.h Rules Management APIs
— ruleuser.h Evaluation structures

— nnrmerr.h Rules Management errors
— rerror.h Rules error handling

VRule Supporting Functions

Return Type

Function

Arguments

VRule * CreateRulesEngine | (DbmsSession *Session)
VRule * CreateRulesEngine | (NNSesDBBase *Session)
VRule * CreateRulesEngine | (DbmsSession* Session,
int alert=1,
char *logfile=NULL)
VRule * CreateRulesEngine | (NNSesDBBase* Session,
int alert=1,
char *logfile=NULL)
void DeleteRuleEngine (VRule * pEngine)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

VRule Member Functions

Return Type Function Arguments

int eval (char *AppName,
char *MsgName,
char *msg,
int msglen,
int log=0)

int eval (char *AppName,
char *MsgName,
char NNFieldValueContainer*,
pFVList)

Formatter getformatterobject None

RULE* gethitrule None

RULE* gethitrule None

char* getlog None

SUBSCRIPTION* getsubscription None

OPTIONPAIR* getopt None

int LoadRuleSet (char *AppGrp,
char*MsgType,
int LoadNow=0)

int LoadRuleComponent (char *AppGrp,
char*MsgType,
NNRComponentTypes
ComponentType,
char* ComponentType,
int LoadNow=0)

int populatesubsriptionlist | (RulesSubscriptionList&
subsContainer)

void ThreadCleanup None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview

SubscriptionList, ActionList, OptionList Functions

Return Type

Function

Arguments

ThisType

&operator=

const ThisType& right

NNSY_NAMESPACE
e SF

append_back

(RulesSubscription*
pSubscription)

NNSY_NAMESPACE
e SF

append_front

(RulesSubscription*
pSubscription)

NNSY_NAMESPACE clear None
e SF
void createOwnCopyOfData | None

NNSY_NAMESPACE
e SF

deleteSubscription

(int subscriptionld)

RulesSubscription getFirst None
RulesSubscriptionList getNewSubscription None
RulesSubscription getNext None
NNSY_NAMESPACE insert (RulesSubscription*
e SF pSubscription)
NNSY_NAMESPACE insert (RulesSubscriptionList*
e SF pSubscription)
RulesSubscriptionList newCopy None
NNSY_NAMESPACE push_front (RulesSubscription*
e SF pSubscription)
NNSY_NAMESPACE push_back (RulesSubscription*
e SF pSubscription)

int size None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 2

Subscription, Action, Option Functions

Return Type Function Arguments
ThisType &operator= const ThisType& right
NNSY_NAMESPACE compareByld (int subscriptionld)
e SF
void createOwnCopyOf | None

Data
RulesSubscription geActionList None

NNSY_NAMESPACE getld (int& subscriptionid)
e SF

NNSY_NAMESPACE getName (const STL_STRING&
e SF subscriptionName)
RulesSubscriptionList newCopy None
NNSY_NAMESPACE set_Id (int& subscriptionid)
e SF

NNSY_NAMESPACE set_Name (const STL_STRING&

e SF

subscriptionName)

NNFieldValueContainer Functions

Return Type

Function

Arguments

char* GetFieldString (char* name, int instance=-1)
int GetFieldCount (char* name)
8 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNNameValuelList Functions

Overview

Return Type Function Arguments

int Add (const NNINlame *pName, const
NNValue *pValue)

int Read (const NNINlame *pName, const
NNValue *pValue, int instance)

int Update (const NNINlame *pName, const
NNValue *pValue, int instance)

int ClearAll None

int getFirst (const NNINlame *pName, const
NNValue *pValue)

int getNext (const NNINlame *pName, const

NNValue *pValue)

NNName Functions

New Era of Networks Rules Programming Reference

Return Type Function Arguments

int set (char* name)

int set (char* name, int length)

bool operator< (const NNIName& namel, const
NNName& name?2)

bool operator== (const NNIName& namel, const
NNName& name?2)

void operator= (const NNIName& namel)

bool iISEmpty None

char* GetString None

int GetLength None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 9

Chapter 2

NNValue Functions

Return Type Function Arguments

int set (char* value)

int set (char* value, int length)

bool operator< (const NNValue& valuel, const
NNValue& valuel)

bool operator== (const NNValue& valuel, const
NNValue& valuel)

void operator= (const NNValue& valuel)

bool iSEmpty None

char* GetString None

int GetLength None

Rules Error Handling Functions

Return Type Function Arguments
char* GetErrorNo None
char* GetErrorMessage None
10 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Overview

Application Group Management Functions

Return Type Function Arguments

const long NNRMgrAddApp (NNRMgr *pMgr,

const NNRApp *pRApp,
const NNRAppData
*pRAppData)

const long NNRMgrReadApp (NNRMgr *pMgr,

const NNRApp *pRApp,
NNRAppData *const
pRAppData)

const long NNRMgrGetFirstApp (NNRMgr *pMgr,
const NNRAppReadData *const
pRAppData)

const long NNRMgrGetNextApp (NNRMgr *pMgr,
const NNRAppReadData *const
pRAppData)

const long NNRMgrDuplicateApp | (NNRMgr *pMgr,
const NNRApp* pRApp, *const
char* NewAppName)

const long NNRMgrUpdateApp (NNRMgr *pMgr,

const NNRApp* pRApp, const
NNRAppUpdate
*pRAppUpdate)

const long NNRMgrDeleteEntireA | (NNRMgr *pMgr,
pp const NNRApp* pRApPpP)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 11
New Era of Networks Rules Programming Reference

Chapter 2

Message Type Management Functions

Return Type Function Arguments

const long NNRMgrAddMsg (NNRMgr *pMgr,
const NNRMsg *pRMsg,
const NNRMstgData

*pRMsgData)
const long NNRMgrDeleteEntire (NNRMgr *pMgr,
Msg const NNRMsg* pRMsgQ)
const long NNRMgrDuplicateMsg | (NNRMgr *pMgr,

const NNRMsg* pRMsg,
const char *NewAppName)

const long NNRMgrGetFirstMsg (NNRMgr *pMgr,

const NNRMsg *pRMsg,
NNRMsgReadData *const
pRMsgData)

const long NNRMgrGetNextMsg (NNRMgr *pMgr,
const NNRMsgReadData *const
pRMsgData)

const long NNRMgrReadMsg (NNRMgr *pMgr,

const NNRMsg *pRMsg,
NNRMsgData *const
pRMsgData)

const long NNRMgrUpdateMsgN (NNRMgr *pMgr,
ame const char *OldMsgName,
const char *NewMsgName)

12 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview

Rules Management Functions

Return Type | Function Arguments
NNRMgr * NNRMgrlnit (DbmsSession *session)
void NNRMgrcClose on (NNRMgr *pMgr)
page 158
N/A NNR_CLEAR on (p)
page 159
N/A NN_CLEAR (p)
const long NNRMgrAddRule | (NNRMgr *pMgr,

const NNRRule *pRRule,
const NNRRuleData *pRRuleData)

const long NNRMgrReadRule (NNRMgr *pMgr,
on page 206 const NNRRule *pRRule,
NNRRuleData* const pRRuleData)
const long NNRMgrGetFirst (NNRMgr *pMgr,
Rule const NNRRule *pRRule,

NNRRuleReadData * const
pRRuleData)

const long NNRMgrGetNext (NNRMgr *pMgr,
Rule NNRRuleReadData * const
pRRuleData)
const long NNRMgrDuplicate (NNRMgr *pMgr,
Rule const NNRRule *pRRule,

const char *NewRuleName)

const long NNRMgrUpdateRule | (NNRMgr *pMgr,
const NNRRule *pRule,
const NNRRuleUpdate
*pRRuleUpdate)

const long NNRMgrDelete (NNRMgr *pMgr,
EntireRule const NNRRule *pRRule)
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 13

New Era of Networks Rules Programming Reference

Chapter 2

Permissions Functions

Return Type Function Arguments

const long NNRMgrGetFirst Perm | (NNRMgr *pRMgr,
const NNRComponent *
pRComponent,

NNUserPermissionData const *
pPermissionData)

const long NNRMgrGetNext Perm | (NNRMgr *pRMgr,
NNUserPermissionData const *
pPermissionData)

const long NNRMgrUpdate (NNRMgr *pRMgr,
UserPerm const NNRComponent *
pRComponent,

const NNPermissionData *
pPermission Data)

const long NNRMgrChange (NNRMgr *pRMgr,
Owner const NNRComponent *
pRComponent,
char *pNewOwner)
const long NNRMgrUpdate (NNRMgr *pRMgr,
OwnerPerm const NNRComponent *
pRComponent,

const NNPermissionData *
pPermission Data)

const long NNRMgrUpdate (NNRMgr *pRMgr const
PublicPerm NNRComponent *
pRComponent,

const NNPermission Data *
pPermission Update)

14 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Operator Management Functions

Overview

Return Type Function Arguments
const long NNRMgrGetFirst (NNRMgr *pMgr,

Operator NNROperator * const pOperator)
const long NNRMgrGetNext (NNRMgr *pMgr,

Operator NNROperator * const pOperator)

Expression Management Functions

Return Type Function Arguments
const long NNRMgrAdd (NNRMgr *pMgr,
Expression const NNRExp * pRExp,
NNRExpData * pRExpData)
const long NNRMgrRead (NNRMgr *pMgr,
Expression const NNRExp * pREXxp,
NNRExpData * pRExpData)
const long NNRMgrUpdate (NNRMgr *pMgr,
Expression const NNRExp *pREXxp,

const NNRExpData *pRExpData)

Argument Management Functions

Return Type Function Arguments
const long NNRMgrGetFirst (NNRMgr *pMgr,
Argument const NNRArg * pRArg,
NNRArgData * const
pRArgData)
const long NNRMgrGetNext (NNRMgr *pMgr,
Argument NNRArgData * const
pRArgData)
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 15

New Era of Networks Rules Programming Reference

Chapter 2

Subscription, Action, Option Management Functions

Return Type Function Arguments
const long NNRMgrAdd (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
const NNRSubsData
*pRSubsData)
const long NNRMgrRead (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
NNRSubsData * const
pRSubsData)
const long NNRMgrGetFirst (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
NNRSubsReadData * const
pRSubsReadData)
const long NNRMgrGetNext (NNRMgr *pMgr,
Subscription NNRSubsReadData * const
pRSubsReadData)
const long NNRMgrDuplicate (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
const char * const
pNewSubsName)
const long NNRMgrUpdate (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
const NNRSubsUpdate
*pRSubsUpdate)
const long NNRMgrDelete (NNRMgr *pMgr,
SubscriptionFrom const NNRRule * pRRule,
Rule const char * SubsName)
const long NNRMgrDelete (NNRMgr *pMgr,
EntireSubscription const NNRRule * pRRule)
const long NNRMgrGetFirst (NNRMgr *pMgr,
RuleUsingSubs const NNRSubs *pRSubs,
char* const pRuleName)
16 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Overview

Return Type

Function

Arguments

const long

NNRMgrGetNext
RuleUsingSubs

(NNRMgr *pMgr,
char* const pRuleName)

const long

NNRMgrAddAction

(NNRMgr *pMgr,

const NNRAction *pRAction,
const NNRActionData
*pRActionData,

int *pActionid)

const long

NNRMgrGetFirst
Action

(NNRMgr *pMgr,

const NNRAction * pRAction,
NNRActionReadData * const
pRActionData)

const long

NNRMgrGetNext
Action

(NNRMgr *pMgr,
NNRActionReadData * const
pRActionData)

const long

NNRMgrResequenceAc
tion

(NNRMgr *pMgr,

const NNRAction *pRAction,
int oldPosition,

int newPosition)

const long

NNRMgrUpdate Action

(NNRMgr *pMgr,

const NNRAction *pRAction,
const NNRActionUpdate
*pRActionUpdate,

int position)

const long

NNRMgrDelete Action

(NNRMgr *pMgr,
const NNRAction *pRAction,
int position)

const long

NNRMgrAddOption

(NNRMgr *pMGR,

const NNROption *pROption,
const NNROptionData
*pROptionData)

const long

NNRMgrGetFirst
Option

(NNRMgr *pMgr,

const NNROption * pROption,
NNROptionReadData * const
pROptionData)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 17
New Era of Networks Rules Programming Reference

Chapter 2

Return Type Function Arguments
const long NNRMgrGetNext (NNRMgr *pMgr,
Option NNROptionReadData * const
pROptionData)
const long NNRMgrResequenceO (NNRMgr *pMgr,
ption const NNROption *pROption,

int oldPosition,
int newPosition)

const long NNRMgrUpdate (NNRMgr *pMgr,
Option const NNROption *pROption,
const NNROptionUpdate
*pROptionUpdate,
int position)
const long NNRMgrDelete (NNRMgr *pMgr,
Option const NNROption *pROption,
int Position)

Rules Management Error Handling Functions

Return Type Function Arguments
const int NNRGetErrorNo NNRMgr *pRMgr
const char* NNRGetErrorMessage NNRMgr *pRMgr
18 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Overview

Libraries

Shared libraries are archived collections of object files. The following is the
path to the libraries that must be linked with the application object files:

In UNIX, the libraries are in {installroot}/bin.

In Windows, the shared libraries and DLLs are in {installroot}\bin. The
libraries needed to compile custom code are in {installroot}\lib.

Refer to the example makefiles for more library information.

Note:
Library file extensions are .sl for HP-UX, .dll for Windows, and .so for AlX.

WARNING!

Do not move the libraries. The executables search for them in a specific
directory or folder. If you move or delete the libraries, the executables are
rendered useless.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 19
New Era of Networks Rules Programming Reference

Chapter 2

20 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 3

NEONRules AP I S

This chapter includes the following information:
m Class/Type Definitions
m VRule Engine APIs
m Subscription, Action, Option APIs

m Evaluation Field VValue Containers

Class/Type Definitions

VRule Class

This class provides a standard interface for handling NeonRules API calls and
allows the user to perform all rule evaluation and subscription retrieval.

See vrule.h in the Zinclude directory.

RulesSubscriptionList, RulesActionList, & RulesOptionList Classes

The RulesSubscriptionList class allows the user to create a
RulesSubscriptionList object. This object can then be passed in the
VRule::populatesubscriptionlist member function to pull the subscriptions
that hit for the active message. The RulesSubscriptionList contains instances
of RulesSubscriptions.

The RulesActionList class allows the user to pull the actions that are valid for
a given subscription. An instance of the RulesSubscription class contains a
RulesActionList object which contains many instances of RulesActions.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 21
New Era of Networks Rules Programming Reference

Chapter 3

22

The RulesOptionList class allows the user to pull the options that are valid
for a given subscription. An instance of the RulesSubscription class contains a
RulesOptionList object which contains many instances of RulesOptions.

RulesSubscription, RulesAction, and RulesOption Classes

The RulesSubscription class allows the user to create a RulesSubscription
object. These objects are generally found inside the RulesSubscriptionLists.
The RulesSubscription is used to traverse the list of subscriptions retrieved
from the VRule::populatesubscriptionlist method.

The RulesAction class allows the user to create a RulesAction object. These
objects are generally found inside the RulesActionLists. The RulesAction is
used to traverse the list of actions retrieved from the
RulesSubscription::getActionList method.

The RulesOption class allows the user to create a RulesOption object. These
objects are generally found inside the RulesOptionLists. The RulesOption is
used to traverse the list of options retrieved from the
RulesAction::getOptionList method.

NNFieldValueContainer Class

The NNFieldValueContainer class is the base class for any class that contains
field values that can be retrieved by name. Formatter and NNNameValueL.ist
classes inherit from this class. Users can input their own object containing
field values into the VRule::eval() API as long as the object inherits from this
NNFieldValueContainer base class and has the correct member functions.

NNValueValuelList Classes

The NNNameValueList class is used to identify field values that can be
retrieved by name. The NNNameValueL.ist contains a list of field name and
value pairs from the NNName and NNValue classes where the name is up to
120 characters and the value can be of any length for rules evaluation.

The NNName class is used for some of the NNNameValueList methods to
identify the object from which field name information is retrieved. This class
enables retrieval of field or object name information without using
NEoNFormatter to parse the information.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

The NNValue class is used for some of the NNNameValueList methods to
identify the value information to retrieve. This class enables retrieval of field
or object value information without using NeonFormatter to parse the
information.

VRule Engine APIs

To use NeonRules APIs, you must include the following header files:

= dbtypes.nANNOT.h
&0OR &
ses.nNINSesDBBase.h

m rerror.h

m ruleuser.h

= vruleh

= RulesSubscriptionList.h
m RulesSubscription.h

m RulesActionList.h

= RulesAction.h

= RulesOptionList.h

= RulesOption.h

Note:

THREAD SAFETY: For multithreading, you must also link with the
appropriate thread library matching the NeonRules release. For example, link
with the thread library for Ul threads and pthread for POSIX threads.

A VRule object is a Virtual Rules Engine instance. This class provides a
standard interface for handling neonRules API calls and allows the user to
perform all rule evaluation and subscription retrieval. A VRule object is
created using CreateRulesEngine() and deleted by DeleteRuleEngine().

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 23
New Era of Networks Rules Programming Reference

Chapter 3

VRule.h is defined as follows:

class VRule ({
public:
VRule () {}
virtual ~VRule() ;
virtual int GetErrorNo() = 0;
virtual int eval (char * AppName, char * MsgName,
char * msg, int msglen,
int log=0) = 0;
virtual int eval (char * AppName, char * MsgName,
NNFieldValueContainer *pFBContainer,
int log=0) = 0;
virtual SUBSCRIPTION * getsubscription() = 0;
virtual int populatesubscriptionlist (RulesSubscriptionListé&
subsContainer)
virtual OPTIONPAIR * getopt() = 0;
virtual RULE * gethitrule() =
virtual RULE * getnohitrule () 0;
virtual char * GetErrorMessage() = 0;
virtual void ThreadCleanup() = 0;
virtual int LoadRuleSet (char* AppName, char * MsgName,
int LoadNow = 0) = 0;
virtual int LoadRuleComponent (char* AppGrp, char * MsgType,
NNRComponentTypes ComponentType,
char * ComponentName,

o

7

int LoadNow = 0) = 0;
virtual Formatter *getFormatterobject() = 0;
}i
24 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

VRule Structures

SUBSCRIPTION

Each rule has an associated list of subscriptions, and each subscription has an
associated list of one or more actions. The list of actions for a subscription is a
list of SUBSCRIPTION structures.

When stepping through the list of actions for a specific subscription, the
presence of a new subscription identifier (Subld) signifies that a new
subscription has been reached and that the action is the first associated with
the new subscription.

Syntax

struct SUBSCRIPTION({
long SubId;
char * action;
char * SubName;

}i

Parameters
Name Type Description
Subld long Subscription sequence identifier
action char* Action name
SubName char* Subscription name
Remarks

The action and SubName members point to memory inside the VRule object.
Do not modify their values.

It is recommended that programmers use the new RulesSubscription classes
instead of the SUBSCRIPTION and OPTIONPAIR structures.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 25
New Era of Networks Rules Programming Reference

Chapter 3

Example
The following code fragment illustrates stepping through a list of actions:

while ((p=rules->getsubscription()) {

if (strcmp(p->action,"my funl") == 0){
my funl () ;

}

else if (strcmp(p->action,"my fun2") == 0) {
my fun2 () ;

}

else{

//perform logging or exception handling

}
}

OPTIONPAIR

Each rule has an associated list of subscriptions and each subscription has a
list of one or more actions. Actions are intended to be executed in sequence,
and each action may have one or more associated option name-value pairs.

Option name-value pairs are OPTIONPAIR structures. An option pair can be
unique to an action. A NULL OPTIONPAIR in a subscription option list
signifies the end of the options for that subscription action.

Syntax

struct OPTIONPAIR{
int Sequence;
char * Name;
char * Value;

}i

Parameters
Name Type Description
Sequence int Sequence identifier
Name char* Option name
Value char* Option value
26 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

Remarks

The Name and Value members point to memory inside the VRule object. Do
not modify their values.

Example

The following code segment illustrates walking through a list of options. The
presence of a NULL popt signifies the end of the list of options.

while ((popt=rules->getopt()) {

if (strcmp (popt->Name, "Command Argumentl") == 0){
pCommand Argumentl = strdup (popt->Value) ;
}

else if (strcmp (popt->Name, "Command Argument2") == 0) {
pCommand Argument2 = strdup (popt->Value) ;
}

}

if (pCommand Argumentl && pCommand Argument2) {
my funl (pCommand Argumentl, pCommand Argument2) ;
}

else {
//error handling for missing options to my call

}

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 27
New Era of Networks Rules Programming Reference

Chapter 3

RULE

gethitrule() and getnohitrule() return records of rule information contained in
a RULE structure.

Syntax

struct RULE({
int RuleId;
char *RuleName;

}i

Parameters
Name Type Description
Ruleld int Rule identifier
RuleName char* Rule name
Remarks

The RuleName member points to memory inside the VRule object. Do not
modify their values.

Example

The following code fragment describes how to walk through both a list of
rules that did not hit and a list of rules that hit. It should be noted that these
APIs are called after the Rules eval() API.

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule()))
cout << " " << r->RuleName << endl;

}

cout << "HIT RULES" << endl;
while ((r = rules->gethitrule()))

cout << " " << r->RuleName << endl;
}

28 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

VRule Supporting Functions

CreateRulesEngine
Syntax 1

VRule* CreateRulesEngine (DbmsSession* Session) ;

Description

CreateRulesEngine() creates a VRule object for the application session
provided in the session parameter.

Parameters
Name Type Input/ Description
Output
Session DbmsSession * | Input Name of the open session.
Syntax 2

VRule* CreateRulesEngine (NNSesDBBase* Session) ;

Description

CreateRulesEngine() creates a VRule object for the session provided in the
session parameter.

Parameters
Name Type Input/ Description
Output
Session NNSesDBBase* Input Name of the open session.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 29

New Era of Networks Rules Programming Reference

Chapter 3

Syntax 3

VRule* CreateRulesEngine (DbmsSession* Session,
int alert=1,
char *logfile=NULL) ;

Description

CreateRulesEngine() creates a VRule object for the NeonRules session
provided in the session parameter and enables the user to specify whether
alerts should be sent to a log file.

Parameters

Name Type Input/ Description
Output

Session DbmsSession * Input Name of the open Rules and
Formatter Extension for IBM ®
WebSphere Message Broker for
Multiplatforms session. See
OpenDbmsSession() in the
Application Development Guide.

alert int Input True(1)/False zero(0) option
determining whether or not to send
errors through the alert mechanism.
Defaults to True (1).

logfile char * Input Errors are logged to the logfile.
Only valid if alert is True (1).
Defaults to no file (NULL).

Syntax 4

VRule* CreateRulesEngine (NNSesDBBase* Session,
int alert=1,
char *logfile=NULL) ;

30 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Description

NEONRules APIs

CreateRulesEngine creates a VRule object for the NeonRules and
NEONFormatter session provided in the session parameter and enables the
user to specify whether alerts should be sent to the log file.

Parameters

Name Type

Input/
Output

Description

Session NNSesDBBase*

Input

Name of the open Rules and
Formatter Extension for IBM ®
WebSphere Message Broker for
Multiplatforms session. See
OpenNNSesDBBase() in the Rules
and Formatter Extension for IBM ®
WebSphere Message Broker for
Multiplatforms Application
Development Guide.

alert int

Input

True(1)/False zero(0) option
determining whether or not to send
errors through the alert mechanism.
Defaults to True (1).

logfile char *

Input

Errors are logged to the logfile.
Only valid if alert is True (1).
Defaults to no file (NULL).

Remarks

CreateRulesEngine() must be called prior to rules processing and prior to

calling DeleteRuleEngine().

Return Value

Returns a VRule object if successful; NULL on failure. All error handling of a
failed call to CreateRulesEngine() must be done by the code that calls this

API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 31
New Era of Networks Rules Programming Reference

Chapter 3

Example 1

DbmsSession *session = OpenDbmsSession ("MySesName", DbType) ;

if (!session || !session->0k()) {
cout << "Failed to open rules database session" << endl;
exit (1) ;

}

VRule *rule = CreateRulesEngine (session) ;
if (!rule)
cout << "Error no rules engine created" << endl;

Example 2

DbmsSession *session = OpenDbmsSession ("MySesName", DbType) ;

if (!session || !session->0k()) {
cout << "Failed to open rules database session" << endl;
exit (1) ;

}

VRule *rule = CreateRulesEngine (session,1,"rerrlog.log") ;
if (!rule)
cout << "Error no rules engine created" < endl;

See Also

DeleteRuleEngine

32 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

DeleteRuleEngine

Syntax

void DeleteRuleEngine (VRule * pEngine) ;

Parameters
Name Type Input/ | Description
Output
pEngine VRule* Input Name of the open VRule object.
Remarks

DeleteRuleEngine() must be called after CreateRulesEngine() and after all
rules processing is complete.

Return Value

None

There are no error handling functions for DeleteRuleEngine().

Example
DbmsSession *session = OpenDbmsSession ("MySesName", DbType) ;
if (!session || !session->0k()) {

cout << "Failed to open session" << endl;

exit (1) ;

}

Vrule *rule = CreateRulesEngine (session) ;

if (!lrule) {
cout << "Unable to create rules object" << endl;
exit (2) ;

}

char MessageString[65];

memset (MyMessageString, 0, 65);

strcpy (MyMessageString, "Fieldl|Field2,Field3");

if (lrule-seval ("MyAppGroup", "MyMessageType",

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 33
New Era of Networks Rules Programming Reference

Chapter 3

MyMessageString,
strlen (MyMessageString))){
cout << "Failure" << endl;
exit (3);

}

if (rule)
DeleteRuleEngine (rule) ;

}

if (session) {

CloseDbmsSession (session) ;

See Also

CreateRulesEngine

34 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

VRule Member Functions

eval

There are two uses of the VRule::eval method. One is for use when the
evaluation is based on information received from neonFormatter and the
other is for use when evaluating data derived from a
NNNameValueContainer.

Syntax 1

int VRule::eval (char* AppName,
char* MsgName,
char* msg,
int msglen,
int log=0);

Description

Using the application group and message type, eval(), retrieves all associated
active rules, parses the message into fields, and evaluates those fields based
on evaluation criteria.

Parameters
Name Type Input/ | Description
Output

AppName char* Input Application Group Name. This should
be the Application Group in which the
user defined rules for evaluating this
message. This string should not be
empty.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 35

New Era of Networks Rules Programming Reference

Chapter 3

Name Type Input/ | Description
Output
MsgName char* Input Type of message to be evaluated. If

NEONFormatter is used, message type
is the input format name. This name
should be the message type in which the
user defined rules for evaluating this
message. This string should not be
empty.

msg char* Input String containing the message to be
evaluated. This message should be in
the format expected by the message
type. The string should not be empty.

msglen int Input Message length, in bytes, of the message
to be evaluated. msglen should be
greater than zero (0).

log int Input For increased logging capability in a
future release, log defaults to zero (0) for
now.

Syntax 2

int VRule: :eval (char* AppName,
char* MsgName,
char* NNFieldValueContainer* pFVList) ;

Description

This version of eval takes in a NNFieldValueContainer pointer that is used to
retrieve values based on names. New Era of Networks provides the
NNNameValueList and Formatter classes which are
NNFieldValueContainers. Programmers can create their own class derived
from the NNINameValueContainer.

NEoNFormatter is not used if a NNNameValueList is input. In that case, rules
are defined in the same way, but message type’s EvalType is

36 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

RulesMessageType and the field names are not defined in NeoNnFormatter, but
supplied in a separate list of names.

Parameters

Name Type Input/ | Description
Output

AppName char* Input Application Group Name. This should
be the Application Group in which the
user defined rules for evaluating this
message. This string should not be
empty.

MsgName char* Input Type of message to be evaluated. If
NEONFormatter is used, the message
type is the input format name. This
name should be the message type in
which the user defined rules for
evaluating this message. This string
should not be empty.

pFVList NNFieldV | Input A pointer to the
alueConta NNFieldValueContainer object to be
iner* used to retrieve values.

Remarks

eval() should be called after CreateRulesEngine() and before
DeleteRuleEngine(). In addition, eval() should be called prior to returning
subscriptions or hit/no-hit rules.

Return Value

Returns 1 if the rules evaluate completely, regardless of the outcome; zero (0)
if the evaluation fails.

A successful evaluation does not imply that a rule fired, only that all rules
associated with the application group and message type were evaluated
against the message completely.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 37
New Era of Networks Rules Programming Reference

Chapter 3

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Note:

If this is the first eval() call for the specified Application Group/Message
Type, all the rules and subscriptions for this rule set are read into cache.
Subsequent calls to eval() do not reload the data unless LoadRuleSet() or
LoadRuleComponent() were called previously with LoadNow set to FALSE.
Modifications to the data are only reflected if one of the Load APIs is called
prior to the eval() API. SeeLoadRuleSet on page 53 andLoadRuleComponent on
page 48 for more information.

Example

if (!rules->eval (appname, msgname, msg, msglen)) {
cout << "Failure" << endl;

} else {
cout << "Succesg" << endl;

}

See Also

CreateRulesEngine

DeleteRuleEngine
getsubscription
gethitrule

getnohitrule
GetErrorNo

GetRerror
GetErrorMessage
LoadRuleSet

LoadRuleComponent
NNFieldValueContainer

38 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getformatterobject

getformatterobject is a formatter object retrieval function that takes no
parameters and returns the instance of the formatter that the VRule::eval()
function used to parse the last input message. A user may want to use this
function to retrieve the parsed fields and, therefore, not have to parse before a
reformat done after the eval().

This formatter object is destroyed when the DeleteRuleEngine() destroys the
VRule object. Do not access the formatter object after the VRule is deleted.

Syntax

Formatter* VRule::getformatterobject () ;

Parameters

None

Return Value

Returns a pointer to a formatter object.

Example

char *appname;
char *msgname;
char *msg;
int msglen;

DbmsSession *session = OpenDbmsSession("rules", DbType) ;

VRule *rule = CreateRulesEngine (session) ;
Formatter *gFormatter = rule->getformatterobject () ;

if (!rule-seval (appname, msgname, msg, msglen) { // error
if (gFormatter-s>GetErrorCode()) {
// Formatter Error.
cerr << "Formatter Error:"
<< gFormatter->GetErrorCode () << endl;
cerr << "Error Message:"
<< gFormatter->GetErrorMessage () << endl;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 39
New Era of Networks Rules Programming Reference

Chapter 3

40

gethitrule

gethitrule() retrieves one hit rule from the hit rules list created by eval(),
placing it in a RULE structure. When stepping through the hit rules list using
gethitrule(), a NULL indicates the end of the list.

Syntax

RULE *VRule::gethitrule() ;

Parameters

None

Remarks

Call gethitrule() after the eval() function, which should follow a call to
CreateRulesEngine() but precede a call to DeleteRuleEngine(). You must call
gethitrule() before getsubscription() or getopt() because these functions
change the hit rules list. gethitrule() will not work after getsubscription() is
called.

Return Value

Returns a pointer to a single RULE structure with a number and name
indicating which rule was hit. When the return value is NULL, the list of hit
rules has been exhausted. The rules are not returned in any specific order.

Note:
Each time this API is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

The following code fragment describes how to walk through both a list of
rules that did not hit and a list of rules that hit. These APIs are called after the
Rules eval() API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule()))
cout << " " << r->RuleName << endl;
}

cout << "HIT RULES" << endl;

while ((r = rules->gethitrule()))
cout << " " << r->RuleName << endl;

See Also

getnohitrule

eval

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 41
New Era of Networks Rules Programming Reference

Chapter 3

42

getnohitrule

getnohitrule() retrieves one no-hit rule from the no-hit rules list created by
eval(), placing it in a RULE structure. Only active rules are retrieved. When
stepping through the no-hit rules list using getnohitrule(), a NULL indicates
the end of the list.

Syntax

RULE *VRule: :getnohitrule() ;

Parameters

None

Remarks

getnohitrule() should be called after the eval() function, which follows a call
to CreateRulesEngine() but precedes a call to DeleteRuleEngine().
getnohitrule() must be called before getsubscription() or getopt() because
these functions change the hit rules list. getnohitrule() will not work after
getsubscription() is called.

Return Value

Returns a pointer to a single RULE structure with a number and name
indicating which rule was not hit. When the return value is NULL, the list of
no hit rules has been exhausted. The rules are not returned in any specific
order.

Note:
Each time this API is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Example

The following code fragment describes how to walk through both a list of
rules that did not hit and a list of rules that hit. These APIs are called after the
Rules eval() API.

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule()))
cout << " " << r->RuleName << endl;
}

cout << "HIT RULES" << endl;
while ((r = rules->gethitrule()))

cout << " " << r->RuleName << endl;
}
See Also
gethitrule
eval
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 43

New Era of Networks Rules Programming Reference

Chapter 3

44

getsubscription

getsubscription() gets an action within a subscription associated with a rule
that evaluated true, retrieving the subscription identifier, subscription name,
and action name. When using this APl within a loop, a change in the Subld
(subscription sequence) of the SUBSCRIPTION structure signifies the end of
one subscription and the beginning of the next.

Note:
By using populatesubscriptionlist method instead of getsubscription and

getopt, all eval data results are retrieved at one time, releasing VRule so that
you can apply a re-evaluation.

Syntax

SUBSCRIPTION* VRule::getsubscription() ;

Parameters

None

Remarks

getsubscription() should be called after the eval() function, which follows a
call to CreateRulesEngine() but before a call to DeleteRuleEngine().
getaction() should not be called after getsubscription() because it has the same
functionality. getopt() should be called to retrieve the action options.

Return Value

Returns a pointer to a single subscription action with a number indicating
which subscription it belongs to, strictly for the purposes of checking the
current subscription. If previous subscriptions have been retrieved, a
different Subscription Identifier indicates that the action is for a new
subscription. The subscription name and action name are also retrieved for
the user. When the return value is NULL, the list of subscriptions has been
exhausted. The subscriptions are not returned in any specific order.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Each time this APl is called, the returned subscription is removed from the
subscription list for the hit rules.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

The following code fragment illustrates walking through a list of actions:

01dSubId = NULL;

int ActionCount = 0;

char * Actionlist [MY ACTIONS MAX] ;

while ((p=rules->getsubscription()))

if ((p->SubId != 0ldSubId) || (!0ldsSubid)) ({

//this is the first action of the new subscription
01dSubId = p->Subld;
myfun (ActionList,ActionCount) ;
cleanup (ActionList,ActionCount) ;

ActionCount = 0;
Actionlist [ActionCount] = strdup (p->action);
ActionCount++;

//the options should be checked here if options are
//relevant to the action. Options only have meaning if
//the applications programmer has written code to

handle
//options within the program
}
See Also
getopt

populatescriptionlist

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 45
New Era of Networks Rules Programming Reference

Chapter 3

46

getopt

Each subscription can contain several actions, each of which can contain
several options. getopt() gets an option within an action, retrieving the option
sequence number, option name, and option value. When this API is used
within a loop to retrieve all options for an action, a NULL option signifies the
end of the options for that subscription.

Note:

By using populatesubscriptionlist method instead of getsubscription and
getopt, all eval data results are retrieved at one time, releasing VRule so that
you can apply a re-evaluation.

Syntax

OPTIONPAIR *VRule::getopt () ;

Parameters

None

Remarks

getopt() should be called after the CreateRulesEngine(), eval() and
getsubscription() functions are called and before DeleteRuleEngine().

Return Value

Returns a pointer to a single name-value option pair composed of an option
name and option value. Each time this function is called, the option is
removed from the list. When the return value is NULL, the list of options for
the subscription action has been exhausted.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Example

The following code fragment illustrates walking through a list of options for a
subscription action. This action finds the occurrences of a word in a file using
the UNIX grep command as the action:

SUBSCRIPTION *psubscription;
OPTIONPAIR *poptionpair;
char string to_find[MAX LENGTH_STRING TO_FIND] ;

VRule * rules = CreateRulesEngine (session) ;
if (!rules){
cout << "ERROR" << endl;
exit (2);

if (psubscription=rules->getsubscription()) {
if (!strcmp(psubscription->action, "UNIX GREP_COMMAND"))

strcpy(action string, psubscription-saction);
strcat (action string, " ");
while ((poptionpair=rules->getopt ()) {
if (!strcmp(poptionpair->Name, "WORD TO FIND"))

strcat (string to find, poptionpair->Value) ;
strcat (action string, " ");
} else if (!strcmp(poptionpair-s>Name, "FILENAME"))
strcat (filename, poptionpair->Value)
}

}
}
!
// Now execute 'grep word filename’

system(action string) ;
DeleteRuleEngine (rule) ;

See Also

getsubscription
populatescriptionlist

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms a7
New Era of Networks Rules Programming Reference

Chapter 3

48

LoadRuleComponent

Using the application name, message type name, component type to reload,
component name to reload, and the LoadNow parameter, the
LoadRuleComponent() reloads the specified rule component stored in the
NneonRules memory with the modified component data stored in the database.
The MSG component type reloads the entire rule set (all rules and
subscriptions for the application group/message type) and the SUB
component type reloads the specified subscription. When a single
subscription is reloaded, the data reloaded by the LoadRuleComponent API
includes the subscription information, the subscription actions, options, and
links to rules.

LoadRuleComponent() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). As needed, it should be
called before VRule::eval(). However, it should never be called after an eval()
and before getsubscription(), getopt(), gethitrule(), and so on.

Syntax

int VRule::LoadRuleComponent (char* AppGrp,
char* MsgType,
NNRComponentTypes ComponentType,
char* ComponentName,
int LoadNow=0) ;

Parameters
Name Type Input/ | Description
Output
AppGrp char* Input Application Group Name. Should be

the Application Group for the rule set
to load. If loading a subscription, the
subscription being loaded must reside
in the rule set defined by the
application group. This string should
not be empty.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Name Type Input/ | Description
Output
MsgType char* Input Type of message to be evaluated. If

NEONFormatter is used, message
type is the input format name. Should
be the message type for the rule set to
load. If loading a subscription, the
subscription must reside in the rule
set defined by the message type. This
string should not be empty.

Component | NNR Input Component Type. If NNRCOMP_
Type Component MSG is used, the entire rule set is
Types loaded; if NNRCOMP_SUBS is used,

the given subscription is loaded.
See Permissions APIs on page 220 for
the NNRComponent Types

definition.
Component | char* Input Component Name. If
Name ComponentType is

NNRCOMP_SUBS, this parameter is
the subscription name. If the
ComponentType is
NNRCOMP_MSG, this parameter is
the MsgType name.

LoadNow int Input Indicates when to reload the rule set
or subscription information.

Remarks

If you specify a subscription that does not exist in the database, the
LoadRuleComponent APl removes the designated subscription, along with
the subscription’s actions, options, and rule links, from the rules cache.

If the subscription in the database contains zero actions, it is still cached. If an
associated rule does not exist in the rules cache then the subscription is
loaded without that rule link.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 49
New Era of Networks Rules Programming Reference

Chapter 3

50

If the LoadNow parameter is set (value equals 1), and the rule set is loaded
when the reload request is received, the LoadRuleComponent API
immediately reads the specified subscription from the database and updates
the rules cache. If the rule set is not loaded when the reload request is
received, then the entire rule set loads (performance hit).

If the LoadNow parameter is not set (value equals zero (0)), the rule set is
flagged and reloads the next time eval() is called. When eval() is called for the
rule set, each of the stored reload requests are completed before the eval is
executed. This is the suggested method.

Return Value

Returns 2 if the subscription in the LoadRuleComponent API call resides in a
rule set that has not been loaded into the rules cache or does not exist in the
database. This applies if the LoadNow parameter is not set (equal to 0),
because the information is not checked until eval() is called. Also returns 2 if
the component is not found in the database or cache and LoadNow is set.

Returns 1 if the LoadRuleComponent() succeeds. Returns 0 if the
LoadRuleComponent fails, or if the reload of the rule set fails and removes
the rules from cache. If the LoadNow parameter is set to 1, returns zero (0).

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

// OpenDbmsSession and CreateRulesEngine called already
// Rules (VRule object) has been used for evaluations and
// this call reloads the named Rule Set or Component

char appgrp [APP_NAME LEN] = "TestApp";
char msgtype [MSG NAME LEN] = "TestFmt";
NNRComponentTypes CompType; // £ill in
char ComponentName [SUB_NAME LEN] ; // £ill in

char ComponentType [15];
int LoadImmed = 0;
int ReloadResult = 0;

switch (CompType)
case NNRCOMP MSG:

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

ca

NEONRules APIs

strcpy (ComponentName, msgtype) ;
strcpy (ComponentType, "Message Type") ;
break;

se NNRCOMP_SUB:
strcpy (ComponentType, "Subscription");
break;

case NNRCOMP_ RULE:
case NNRCOMP_APP:
default:
cerr < "invalid component type" << endl;
return O0;
break;
}
if (! (ReloadResult = Rules->LoadRuleComponent (appgrp,
msgtype, CompType, ComponentName, LoadImmed))) {
cerr << "Error reloading rule component: ";
if (CompType == NNRCOMP MSG) {
cerr << "Message Type = "<< appgrp << ", " << msgtype <<
endl;
} else {
cerr << ComponentType << " = "<< appgrp << ", ";
cerr << msgtype << ", " << ComponentName << endl;

}

cerr << "Rules Error String > " ;

cerr << "NNR" << Rules->GetErrorNo() << " <" ;
cerr << Rules->GetErrorMessage() << " <" <<endl;
} else {
cerr << "Reload succeeded for component: ";
if (CompType == NNRCOMP MSG) ({
cerr <<"Message Type = "<< appgrp << ", ";
cerr << msgtype << endl;
} else {
cerr << ComponentType << " = "<< appgrp << ", ";
cerr << msgtype << ", " << ComponentName << endl;
}
if (ReloadResult == 2) {

cerr << "Component not found OR rule set not
currently loaded. ";
cerr << "Reload request ignored." << endl;

}

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules

Programming Reference

51

Chapter 3

52

// subsequent calls to VRule::eval use the new Rules data

Note:

The LoadRuleComponent API returns a value of 2 if the NeonRules Engine
instance has never evaluated a message using the specified application
group/message name pair and LoadNow is not set. In this case, the
LoadRuleComponent API does not load the rule set, instead, the load occurs
when the eval() APl is invoked.

See Also

CreateRulesEngine

DeleteRuleEngine

eval
GetErrorNo
GetRerror

GetErrorMessage

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

LoadRuleSet

NEONRules APIs

Using the application group and message type, LoadRuleSet() sets a flag
indicating that the system should clear any current rule set information and
load the rule set indicated by the AppName and MsgName parameters.

LoadRuleSet() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). It can be called before
VRule::eval(). However, it should never be called after an eval() and before
getsubscription(), getopt(), gethitrule(), and so on.

Syntax

int VRule::LoadRuleSet (char* AppName,
char* MsgName,
int LoadNow=0) ;

Parameters
Name Type Input/ | Description
Output
AppName | char* Input Application Group Name. Should be the
Application Group for the rule set to load.
This string should not be empty.
MsgName | char* Input Type of message to be evaluated. If
NEONFormatter is used, message type is the
input format name. Should be the Message
Type for the rule set to load. This string
should not be empty.
LoadNow | int Input Indicates when to reload the rule set
information.
Remarks

If LoadNow is zero, the default, the system reloads rule set information when
the next eval() is called. If LoadNow is 1, the reload is done immediately,

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 53

New Era of Networks Rules Programming Reference

Chapter 3

54

effectively ending the evaluation cycle, though eval() completes retrieving
subscription, action, and option information if doing so when receiving the
signal to reload. If the rule set has not been loaded previously, LoadRuleSet()
loads it only if LoadNow is set.

Note:

When LoadRuleSet is run, pointers to rule, subscription, and option
information are overwritten. To maintain the pointers and their associated
information, make a copy of the rule, subscription, and option information
before LoadRuleSet is run.

Return Value

Returns 1 if the load was performed or if the reload indicator was set for the
rule set indicated; 2 if the rule set has not been loaded, though the reload
indicator was set correctly; zero (0) if the load cannot be performed.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

// OpenDbmsSession and CreateRulesEngine called already
// Rules (VRule object) has been used for evaluations and this
// call reloads the named RuleSet

char appgrp [APP_NAME LEN] = "TestApp";
char msgtype [MSG NAME LEN] = "TestFmt";
int LoadImmed = 0;

int ReloadResult = 0;

if ((!ReloadResult = Rules->LoadRuleSet (appgrp,msgtype,
LoadImmed))) {

cerr << "Error reloading rule set: " << appgrp << ", ";

cerr << msgtype << endl;

cerr << "Rules Error String > " ;

cerr << "NNR" << Rules->GetErrorNo() << " <"
cerr << Rules->GetErrorMessage() << " <" << endl;
} else if (ReloadResult == 2)

cerr << "Rule Set has not been loaded yet. It will

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

be when eval is called." << endl;
} else {
cerr << "Rule Set Reload succeeded for:

" << appgr <<

n n
’

<< msgtype << endl;

}

// subsequent calls to VRule::eval use the new Rules data

Note:
The LoadRuleSet API returns a value of 2 if the NeonRules Engine instance

has never evaluated a message using the specified application group/
message name pair and the LoadNow is zero. In this case, the LoadRuleSet
API does not load the rule set, instead, the load occurs when the eval() APl is
invoked.

See Also

CreateRulesEngine

DeleteRuleEngine

eval
GetErrorNo
GetRerror

GetErrorMessage

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 55
New Era of Networks Rules Programming Reference

Chapter 3

populatesubscriptionlist

The populatesubscriptionlist function allows a user to retrieve a subscription
list from the neonRules engine. The method pulls the subscriptions, actions,
and options that hit for the active message. The method first pulls a
subscription from the rules object. If a subscription exists, it retrieves the first
action that applies. If the action exists, it loads all options pertaining to the
action and stores them in an option list. When the list is full, options for the
next action are added to the list. After the list of actions for the subscription is
full, the method retrieves the actions and options for the next subscription.
The populatesubscriptionlist method proceeds to load subscriptions, actions,
and options until there are no more in the rules object. Upon completion of
searching all subscriptions that hit and retrieving the applicable actions and
options, the full subscription list is returned to the user via the parameter
passed in the method call.

The populatesubscriptionlist should be used instead of the getsubscription
and getopt methods since it retrieves all eval results once, thereby releasing
VRule so that you can call eval again to apply a re-evaluation on the retrieved
data.

Syntax

int VRule::populatescriptionlist (RulesSubscriptionListé&
subsContainer)

Parameters
Name Type Input/ | Description
Output
subsContain | RulesSubs | input Subscription list from the Rules Object.
er criptionLi | output
St&

56

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Remarks

The user must create a RulesSubscriptionList before this call. This parameter
is passed by reference and the method populates the data.

Return Value
Returns 1 if list is successfully populated and 0 if it is not.

See Also

getsubscription
getopt

Error Handling

GetErrorNo

GetErrorNo() returns the error number associated with the last error that
occurred.

Syntax

int *VRule::GetErrorNo() ;

Parameters

None

Return Value

Returns the error number associated with the last error that occurred. Zero (0)
or -1000 is returned if no error occurred.

Example

VRule *rules=CreateRulesEngine (session) ;
if (!rules->eval ("Bravo", msgname, msg, msglen)){
cout << "Fail, errno = ";
cout << GetRerror (rules->GetErrorNo()) << endl;
}elsef

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 57
New Era of Networks Rules Programming Reference

Chapter 3

// process Subscription Actions by Subscription
// and process options by Subscription Action

}
See Also

GetRerror

GetErrorMessage

58 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetErrorMessage

GetErrorMessage() returns the last error message, including any specific data
such as an Application Group Name for the current thread. This function
should be used in place of GetRerror().

Syntax

char* VRule: :GetErrorMessage () ;

Parameters

None

Return Value

Returns a pointer to a NULL-terminated string containing the description for
the last error that occurred.

Example

VRule *rule=CreateRulesEngine (session) ;
if (!rules->eval ("Bravo", msgname, msg, msglen)){
cout << "Fail, errno = ";
cout << rules->GetErrorMessage() << endl;
}elsef
// process Subscription Actions by Subscription
// and process options by Subscription Action

}

See Also

GetErrorNo

GetRerror

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 59
New Era of Networks Rules Programming Reference

Chapter 3

60

GetRerror

GetRerror() returns the description for the error number relating to a SQL or
NeoNRules processing error. SQL and neonRules processing errors are shown
in the next section. The static error message is returned with "%s"
representing where the additional data would be placed.

For example, if GetRerror(-1001) is called, it returns the following message:

Rules configuration missing Application Group -- AppGrp - %s, MsgType -
%s

Note:
GetErrorMessage() returns the last error message including additional
information replacing the "%s".

Syntax

char* GetRerror (int ErrorNo) ;

Parameters

Name Type Input/ | Description
Output

ErrorNo int Input Determines the string value containing the
meaning of the error.

Return Value

Returns a pointer to a NULL-terminated string containing the description for
the error number passed into the function.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Example

if (!rules->eval ("Bravo", msgname, msg, msglen)){
cout << "Fail, errno = ";
cout << GetRerror (rules->GetErrorNo()) << endl;

lelse{
// process Subscription Actions by Subscription
// and process options by Subscription Action

See Also

GetErrorNo

GetErrorMessage

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

61

Chapter 3

Subscription, Action, Option APIs

62

The subscription classes enables the VRule::populatesubscriptionlist method
to retrieve subscriptions, actions, and options for rules. Members of the
classes enable creation and manipulation of the data within each class.

There are six classes covered under this API section. Three are list classes and
three are object classes. The methods for each of the list classes are the same
and the methods for each object classes are the same. A description of each
class is provided below. Detailed information on the methods are only
provided for the RulesSubscriptionList class and RulesSubscription class.
Substitute "Subscription” for "Action" or "Option" to use the method to pull
the appropriate action or option information.

List Classes

The RulesSubscriptionList class allows the user to create a
RulesSubscriptionList object. This object can then be passed in the
VRule::populatesubscriptionlist member function to pull the subscriptions
that hit for the active message. The RulesSubscriptionList contains instances
of RulesSubscriptions.

The RulesActionList class allows the user to pull the actions that are valid for
a given subscription. An instance of the RulesSubscription class contains a
RulesActionList object which contains many instances of RulesActions.

The RulesOptionList class allows the user to pull the options that are valid
for a given subscription. An instance of the RulesSubscription class contains a
RulesOptionList object which contains many instances of RulesOptions.

Object Classes

The RulesSubscription class allows the user to create a RulesSubscription
object. These objects are generally found inside the RulesSubscriptionLists.
The RulesSubscription is used to traverse the list of subscriptions retrieved
from the VRule::populatesubscriptionlist method.

The RulesAction class allows the user to create a RulesAction object. These
objects are generally found inside the RulesActionLists. The RulesAction is

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

used to traverse the list of actions retrieved from the
RulesSubscription::getActionList method.

The RulesOption class allows the user to create a RulesOption object. These
objects are generally found inside the RulesOptionLists. The RulesOption is
used to traverse the list of options retrieved from the
RulesAction::getOptionList method.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 63
New Era of Networks Rules Programming Reference

Chapter 3

RulesSubscriptionList Member Functions

The RulesSubscriptionList class allows the user to create a
RulesSubscriptionList object. This object can then be passed in the
VRule::populatesubscriptionlist member function to pull the subscriptions,
actions, and options that hit for an active message.

RulesSubscriptionList Constructor

This constructor allows the user to create an instance of the
RulesSubscriptionList object.

Syntax

RulesSubscriptionList::RulesSubscriptionList ()

Parameters
N/A
Return Value

N/A

64 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

RulesSubscriptionList Destructor

This destructor deallocates the memory for the internal data object if it is not
being shared.

Syntax

RulesSubscriptionList::~RulesSubscriptionList ()

Parameters
N/A
Return Value

N/A

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 65
New Era of Networks Rules Programming Reference

Chapter 3

RulesSubscriptionList Copy Constructor

This copy constructor allows the user to get a shared copy of the
RulesSubscriptionList being passed. This method makes a shallow reference-
counted copy of RulesSubscriptionList data.With the pointer to the internal
data, the calling object references the data rather than making a separate copy
of it. This results in saving memory.

The newCopy method should be used to get an unshared copy.

Syntax

RulesSubscriptionList::RulesSubscriptionList (const ThisType&
orig)

Parameters
Name Type Input/ | Description
Output
orig const Input Pointer for the object to be copied.
ThisType&

66

Return Value

None. If the calling object is passed a NULL object, the new object remains
NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

&operator= Assignment Operator

This member function makes a shallow reference-counted copy of
RulesSubscriptionList data.With the pointer to the internal data, the calling
object references the data rather making having a separate copy of it. This
results in saving memory. The call returns an object of type
RulesSubscriptionList containing the new pointer to ThisType’s data. This
function does not allow passing a copy of itself as a parameter.

Syntax
ThisType RulesSubscriptionList: :&operator=(const ThisType&
right)
Parameters

Name Type Input/ | Description

Output
right const Input Pointer for the calling object to be copied.
ThisType&

Return Value

RulesSubscriptionList object pointing to the shared data.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 67
New Era of Networks Rules Programming Reference

Chapter 3

68

append_back

The append_back method enables adding a RulesSubscription object at the
back of the RulesSubscriptionList object. It inserts a user’s own
RulesSubscriptionList onto the back of the calling RulesSubscriptionList.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::append back
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

append_front

The append_front method enables adding a RulesSubscription object to the
front of the RulesSubscriptionList object. It inserts a user’s
RulesSubscriptionList into the front of the calling RulesSubscriptionList.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::append front
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 69
New Era of Networks Rules Programming Reference

Chapter 3

Clear

The Clear method removes all objects from the RulesSubscriptionList. The
function clears the current list of RulesSubscriptions leaving the calling
RulesSubscriptionList empty of all objects. The RulesSubscription objects in
the list are deleted. Their internal data objects are deleted if they are not
shared by other RulesSubscriptions.

The return value is of type e_SF representing SF_Success when clear
completes successfully or SF_Failure when the clear fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::clear ()

Parameters
N/A
Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

70 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

createOwnCopyOfData

This method is typically used internally to create a new RulesSubscriptionList
for a user. If the internal data is shared, it creates a new copy of internal data
for the calling object.

Syntax

void RulesSubscriptionList: :createOwnCopyOfData ()

Parameters

N/A

Return Value

None.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 71
New Era of Networks Rules Programming Reference

Chapter 3

72

DeleteSubscription

The DeleteSubscripiton method deletes the object in the list with the ID
number provided in the parameter list. This function deletes the subscription
from the calling RulesSubscriptionList object. It uses the integer that gets
passed as a parameter to find the appropriate RulesSubscription. The
RulesSubscription’s internal data object is deallocated if it is not being shared
by another RulesSubscription.

The return value is of type e_SF representing SF_Success when the deletion
completes successfully or SF_Failure when the deletion fails.

Syntax

virtual NNSY NAMESPACE e SF
RulesSubscriptionList::deleteSubscription (int subscriptionId)

Parameters

Name Type Input/ | Description
Output

subscripti | int Input RulesSubscription object Id.

onld

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful deletions or SF_Failure to indicate failed deletion
attempts. Returns SF_Failure if the Subscription Id is not found.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getFirst

The getFirst method returns the first item in the RulesSubscriptionList.

Syntax

virtual RulesSubscription* RulesSubscriptionList::getFirst ()

Parameters

N/A

Return Value

RulesSubscription pointer or NULL pointer for an empty list.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 73
New Era of Networks Rules Programming Reference

Chapter 3

74

getNewSubscription

The getNewSubscription method is used to get a new object in the
RulesSubscriptionList. This member function creates a subscription in the
calling RulesSubscriptionList, sets the 1d of the new Subscription, and gives a
pointer to the new Subscription to the user. The method fails when the new
subscription is NULL or the Id cannot be set.

Syntax

virtual RulesSubscriptionList*
RulesSubscriptionList: :getNewSubscription ()

Parameters

N/A

Return Value

RulesSubscriptionList subscription pointer

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getNext

The getNext method retrieves the current object pointed to by the iterator and
moves the iterator to the next object in the RulesSubscriptionList.

Syntax

virtual RulesSubscription* RulesSubscriptionList::getNext ()

Parameters
N/A
Return Value

RulesSubscription pointer or NULL pointer for an empty list and when it
reaches the end of the list.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 75
New Era of Networks Rules Programming Reference

Chapter 3

76

insert (subscription)

This insert method enables adding an object before the current iterator
position in the RulesSubscriptionList object. When traversing the list with the
getFirst or getNext iterators, this insert method can be used to place a
subscription before the object retrieved in either "get" call. The parameter
must be a non-NULL RulesSubscription object. The return value is of type
e_SF representing SF_Success when the insert completes successfully or
SF_Failure when the insert fails.

If the current iterator position is equal to the beginning, use the push_front
method to insert a RulesSubscription before the first object.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::insert
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

insert (list)

This insert method inserts a user’s RulesSubscriptionList into the calling
RulesSubscriptionList based on the current iterator position. When traversing
the list with the getFirst or getNext iterators, this insert method can be used to
place the list before the current RulesSubscription.

The parameter must be a non-NULL RulesSubscriptionList object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::insert
(RulesSubscriptionList* pSubscriptionList)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscriptionList object.
tionList riptionList*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 77
New Era of Networks Rules Programming Reference

Chapter 3

newCopy

The newCopy constructor allows the user to get an unshared deep copy of the
RulesSubscriptionList being passed. Use this method to create a personally
owned object of type RulesSubscriptionList. The calling object creates its own
copy of internal data for itself.

Syntax

RulesSubscriptionList* RulesSubscriptionList: :newCopy ()

Parameters

N/A

Return Value

A pointer to the new copy of RulesSubscriptionList object with its own date.

78 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

push_front

The push_front method enables adding an object to the front of the
RulesSubscriptionList object. It inserts a subscription into the front of the
subscription list before any existing objects.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::push front
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 79
New Era of Networks Rules Programming Reference

Chapter 3

push_back

The push_back method enables adding an object to the end of the
RulesSubscriptionList object. The subscription is inserted after the "end"
iterator pointer position after any existing objects.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::push_back
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

80 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

size

The size method returns the number of objects in the RulesSubscriptionList.
Syntax

virtual int RulesSubscriptionList::size()

Parameters

N/A

Return Value

Number of objects contained in the calling RulesSubscriptionList.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 81
New Era of Networks Rules Programming Reference

Chapter 3

RulesSubscription Member Functions

The RulesSubscription class allows the user to create a RulesSubscription
object. These objects are generally found inside the RulesSubscriptionLists.
The RulesSubscription is used to traverse the list retrieved from the
VRule::populatesubscriptionlist function.

See RulesSubscription.h

RulesSubscription Constructor

This constructor allows the user to create an instance of the RulesSubscription
object.

Syntax

RulesSubscription: :RulesSubscription ()

Parameters
N/A
Return Value

N/A

82 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

RulesSubscription Destructor

This destructor deallocates the memory for the internal data object if it is not
being shared.

Syntax

RulesSubscription: :~RulesSubscription ()

Parameters
N/A
Return Value

N/A

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 83
New Era of Networks Rules Programming Reference

Chapter 3

RulesSubscription Copy Constructor

This copy constructor allows the user to get a shared copy of the
RulesSubscription being passed. The newCopy method should be used to get
an unshared copy.

Syntax

RulesSubscription: :RulesSubscription (const ThisType& orig)

Parameters
Name Type Input/ | Description
Output
orig const Input Pointer for the object to be copied.
ThisType&

Return Value

None. If the calling object is passed a NULL object, the object remains NULL.

84 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

&operator= Assignment Operator

This member function makes a shallow reference-counted copy of
RulesSubscription data.With the pointer to the internal data, the calling object
references the data rather than making a separate copy of it. This results in
saving memory.

The call returns an object of type RulesSubscription containing the new
pointer to ThisType’s data. This function does not allow passing a copy of
itself as a parameter.

Syntax

ThisType RulesSubscription::&operator=(const ThisType& right)

Parameters
Name Type Input/ | Description
Output
right const Input Pointer for the calling object to the internal
ThisType& data.

Return Value

RulesSubscription object pointing to the shared data.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 85
New Era of Networks Rules Programming Reference

Chapter 3

86

compareByld
The compareByld method compares this subscription id with the id in the int
parameter.

The parameter must be a non-negative integer. The return value is of type
e_SF representing SF_Success when the Ids are equal or SF_Failure when the
the Ids are not the same.

Syntax

NNSY NAMESPACE e SF RulesSubscription::compareById (int
subscriptionId)

Parameters
Name Type Input/ | Description
Output
subscripti | int Input Id of the RulesSubscription object.
onld

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate equality or SF_Failure to indicate inequality. Returns SF_Failure if
NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

createOwnCopyOfData

This method is typically used internally to create a new RulesSubscription for
a user. If the internal data is shared, it creates a new copy of internal data for
the calling object.

Syntax

void RulesSubscription: :createOwnCopyOfData ()

Parameters

N/A

Return Value

None.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 87
New Era of Networks Rules Programming Reference

Chapter 3

88

getActionList

The getActionList method retrieves the current action list to the user.

Syntax

RulesActionList* RulesSubscription::getActionList ()

Parameters

N/A

Return Value

A pointer to the RulesActionList for this RulesSubsctiption.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getld

The getld method retrieves the subscriptionld via the contents of the int
parameter. It fails when the object’s Id is invalid (empty).

The parameter is set by this method. The return value is of type e_SF
representing SF_Success when the retrieval completes successfully or
SF_Failure when the retrieval fails.

Syntax
NNSY NAMESPACE e_SF RulesSubscription::getId(inté&
subscriptionId)
Parameters
Name Type Input/ | Description
Output
subscripti | int& Output Id of the RulesSubscription object.
onld

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 89
New Era of Networks Rules Programming Reference

Chapter 3

getName

The getName method retrieves the subscription name via the contents of the
STL_STRING parameter. It fails when the object’s value is invalid (empty).

The parameter is set by this method. The return value is of type e_SF
representing SF_Success when the retrieval completes successfully or
SF_Failure when the retrieval fails.

Syntax

NNSY NAMESPACE e_ SF RulesSubscription::getName (const
STL STRING& subscriptionName)

Parameters
Name Type Input/ | Description
Output
subscripti | const Output name of the RulesSubscription
onName STL_STRING& object.

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

90 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

newCopy

The newCopy constructor allows the user to get an unshared deep copy of the
RulesSubscription being passed. Use this method to create a personally
owned object of type RulesSubscription. The calling object creates its own
copy of internal data for itself.

Syntax

RulesSubscriptionList* RulesSubscription: :newCopy ()

Parameters

N/A

Return Value

A pointer to the new copy of the RulesSubscription object with its own data.
Example

RulesSubscriptionList yourRulesSubscriptionList;

//populate this list...

Rules->populatesubscriptionlist (yourRulesSubscriptionList) ;

RulesSubscription *pYourRulesSubscription =
yourSubscriptionList.getFirst () ;

RulesSubscription *pMyRulesSubscription;

pMyRulesSubscription = pYourRulesSubscriptionList->newCopy () ;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 91
New Era of Networks Rules Programming Reference

Chapter 3

92

setld

The setld method sets the subscriptionld to the contents of the int parameter.
It fails when the parameter is invalid (empty).

The parameter must be a non-negative integer. The return value is of type
e_SF representing SF_Success when the update completes successfully or
SF_Failure when the update fails.

Syntax

NNSY NAMESPACE e_SF RulesSubscription::setId(inté&
subscriptionId)

Parameters
Name Type Input/ | Description
Output
subscripti | int& Input Id of the RulesSubscription object.
onld

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

setName

The setName method sets the subscription name to the contents of the
STL_STRING parameter. It fails when the parameter is invalid (empty).

The parameter must be a non-empty string object. The return value is of type
e_SF representing SF_Success when the update completes successfully or
SF_Failure when the update fails.

Syntax

NNSY NAMESPACE e SF RulesSubscription::setName (const
STL STRING& subscriptionName)

Parameters
Name Type Input/ | Description
Output
subscripti | const Input name of the RulesSubscription object.
onName STL_STRING

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 93
New Era of Networks Rules Programming Reference

Chapter 3

Subscription, Action, Option Class Usage

The following information provides an example of using these classes. To
view a full code example of the previous description, please see lines 406 to
506 of ruletest.cpp.

Populate Subscription List

After performing a Rules Evaluation where some Rules evaluate to true and
some subscriptions need to be performed, use the VRule method
populatesubscriptionlist to get a complete list of all of the subscriptions that
have hit for the active message.

The method needs a copy of a RulesSubscriptionList with its own memory.
The object should then be passed to the method as a parameter:

RulesSubscriptionList *pSubscriptionList =
newRulesSubscriptionList;
rules->populatesubscriptionlist(*pSubscriptionList)

Traverse the Subscription List

To begin traversing the list, use the RulesSubscription::getFirst method to
obtain the first RulesSubscription from the pSubscriptionList;

RulesSubscription *pSubscription = NULL;
pSubscription = pSubscriptionList->getFirst();

The RulesSubscription ID number and the name can now be retrieved for use
using the getld and getName member functions of the RulesSubsciption class.
Create an integer for the subscription ID and pass the variable to the method
as a parameter. The function writes the result to your integer. For the name,
create an STL_STRING and pass the variable to the method as a parameter.
The function writes the result to your string:

int subscriptionId;

STL STRING subscriptionName;
pSubscription->getId(subscriptionId) ;
pSubscription->getName (subscriptionName) ;

If a RulesSubscription exists in the list, enter a loop to retrieve all of the
actions that may be in the subscription.

94 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Get and Traverse Subscription’s Actions
For each subscription in the list, ask each subscription for its RulesActionL.ist:

RulesActionList = *pActionList = NULL;
pActionList = pSubscription->getActionList();

To begin traversing the list, create a RulesAction with its own memory and
use the RulesActionList::getFirst method to obtain the first RulesAction from
the pActionList;

RulesAction = *pAction = NULL;
pAction = pActionList->getFirst();

The RulesAction ID number and the name can now be retrieved for use using
the getld and getName member functions of the RulesAction class. Create an
integer for the subscription ID and pass the variable to the method as a
parameter. The function writes the result to your integer. For the name, create
an STL_STRING and pass the variable to the method as a parameter. The
function writes the result to your string.

int actionId;
pAction->getId(actionId) ;

STL STRING actionName;
pAction->getName (actionName) ;

If a RulesAction exists in the list, enter a loop to retrieve all of the options in
the action.
Get and Traverse Subscription’s Options
Then for each action, ask the action for its RulesOptionList:
RulesOptionList *pOptionList == NULL;
pOptionList = pAction->getOptionList();
To begin traversing the list, use the RulesOptionList::getFirst method to
obtain the first RulesOption from the pOptionList;

RulesOption *pOption == NULL;
pOption = pOptionList->getFirst();

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 95
New Era of Networks Rules Programming Reference

Chapter 3

96

The RulesOption name and value can now be retrieved for use using the
getName and getValue member functions of the RulesOption class. For the
name, create an STL_STRING and pass the variable to the method as a
parameter. For the value, create an STL_STRING and pass the variable to the
method as a parameter. The function writes the result to your object.

STL) STRING optionName, optionValue;
pOption->getName (optionName) ;
pOption->getValue (optionValue) ;

If a RulesOption exists in the list, enter a loop to retrieve all of the options in
the list. Use the RulesOptionList::getNext method to retrieve all of the options
in for this action by calling it from inside of a loop. The method returns NULL
when no more options exist in the list.

pOption = pOptionList->getNext();
After retrieving all of the options from this particular action, ask you action

list for another action and repeat the process of retrieving this action’s
options.

pAction = pActionList->getNext();

If no more actions exist in this list, ask the subscription list for another
subscription and repeat the process of retrieving this subscription’s actions.

pSubscription = pSubscriptionList->getNext();

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Evaluation Field VValue Containers

The NNFieldValueContainer class is used as the base class for any class that
contains field values that can be retrieved by name. The Formatter and
NNNameValueList classes inherit from this class. Users can input their own
object containing field values into the eval() API as long as the object inherits
from this NNFieldValueContainer base class and has the correct methods.

class NNFieldvValueContainer

{
public:

NNFieldValueContainer () ;
virtual ~NNFieldValueContainer () ;
virtual char* GetFieldString(char* name,int instance=-1)=0;
virtual int GetFieldCount (char *name) = 0;

}i

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 97

New Era of Networks Rules Programming Reference

Chapter 3

NNFieldValueContainer Member Functions

GetField

Gets the field represented by the name in the form of an NDO. The first
instance = 0. All classes that need to pass data to a rules evaluation must
inherit from the NNFieldValueContainer and implement GetField.

Syntax

const NNDOData * GetField(char * name, int instance)

Parameters
Name Type Description
name char* The name identifies the field being
retrieved.
instance int The instance identifies the instance of
the field in the corresponding container
when repeating names exist.

Return Value

A pointer to an NDO Data object. Type of unset when the object is empty and
the field does exist in the container.

98 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetFieldString

This GetFieldString method is used to return values for a specific instance in a
message. This method is used for expressions containing
<fieldname>[<instance>] where the first instance is represented as zero (0).
All classes that need to pass a rules evaluation must inherit from
NNFieldValueContainer and implement GetFieldString.

Syntax

char* NNFieldValueContainer: :GetFieldString (char* name, int
instance = -1)

Description of Instance Syntax

For NeonFOrmatter messages, the -1 provides the instruction to retrieve the
current instance. For NNNameValueL.ist data evaluations, the -1 gets
converted to zero (0) to retrieve the first instance.

Parameters
Name Type Description
name char* The name of the field to be evaluated.
instance int The instance of the field that determines
the return value.

Return Value

This returns a null-terminated string representation of the last specific
instance of this field in the evaluation data. NULL or an empty string is
returned if there is no instance of the field.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 99
New Era of Networks Rules Programming Reference

Chapter 3

100

GetFieldCount

This pure virtual member function retrieves an integer for the number of
repeating instances of this field in the active message. A field can have a
NULL or empty value in it; therefore, NULL values get included in count. All
classes that need to pass a rules evaluation must inherit from
NNFieldValueContainer and implement GetFieldCount.

Syntax

int GetFieldCount (char *name)

Parameters
Name Type Description
name char* The name of the field to be evaluated.

Return Value

Returns the number of repeating fields in the active message.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

GetlnputCodeSet

Gets the code set attribute for the active container and returns it to the user
via the codeSetStr parameter.

Syntax

const char * GetInputCodeSet ()

Parameters
N/A

Return Value

Character string representation for the code set name.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 101
New Era of Networks Rules Programming Reference

Chapter 3

GetlnputLocale

Gets the locale attribute for the active container and returns it to the user via
the localeStr parameter.

Syntax

public abstract const char * GetInputLocale()

Parameters
N/A

Return Value

Character string representation of the locale name.

102 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

SetlnputCodeSet

NEONRules APIs

Sets the code set for the active container as an attribute of the object.

Syntax

public abstract int SetInputCodeSet (const char * codeset)

Parameters
Name Type Description
codeset const char* An STL string representation of the
codeSetStr.

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

103

Chapter 3

104

SetlnputLocale

Sets the locale for the active container as an attribute of the object.

Syntax

int SetInputLocale (const char * locale)

Parameters
Name Type Description
locale const char* An STL string representation of the

locale name.

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

NNNameValueList Member Functions

The NNNameValueList class is used to identify field values that can be
retrieved by name. The NNNameValueL.ist contains a list of field name and
value pairs from the NNName and NNValue classes where the name is up to
120 characters and the value can be of any length for rules evaluation.
Multiple instances of each field name can be stored. Access to these instances
is performed with an index starting at 0.

Users are able to input their own object containing field values in the eval()
API as long as the object inherits from the NNFieldValueContainer base class
and has the correct functions. Users creating their own messages to be passed
to a rules eval have to perform their own name length validation before
passing them into a NNNameValueL.ist.

Any call to GetFieldString must be accompanied by an instance for the
NNNameValueList to retrieve the correct value. The instance defaults to -1;
however, the NNNameValueList converts this to a zero and retrieves the first
instance.

class NNNameValueList: public NNFieldValueContainer (
public:
NNNameValueList () ;
~NNNameValueList () ;
int Add(const NNName *pName, const NNValue *pValue) ;
int Read (const NNName *pName, NNValue *pValue) ;
int Update (const NNName *pName, NNValue *pValue) ;
int Delete(const NNName *pName) ;
int ClearAll();
int GetFirst (NNName *&pName, NNValue *&pValue) ;
int GetNext (NNName *&pName, NNValue *&pValue) ;
char* GetFieldString(char *fieldname, int instance);
const NNDOData * GetField(char * fieldname, int instance)
int GetFieldCount (char * fieldname)
const char * GetInputCodeSet ()
const char * GetInputLocale ()
int SetInputCodeSet (const char * codeset)
int SetInputLocale (const char * locale)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 105
New Era of Networks Rules Programming Reference

Chapter 3

Name Type Description
*pName NNName Object name
*pValue NNValue Object value

The NNNameValueList member functions use the NNName and NNValue
classes to add name and value information. The names must be unique to
retrieve the appropriate value. SeeNNName Member Functions on page 122
and NNValue Member Functions on page 135 for more information.

The NNNameValueList contains a list of field name and value pairs where
the name is at most 120 characters and the value can be of any length for rules
evaluation. Validation of the name length is only performed for
NEONFormatter data. Anyone creating their own messages to be passed to a
rules eval has to perform their own length validation before passing them
into a NNNameValueList.

106 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

NameValuelList Constructor

The NameValueList constructor creates an instance of this object to allow
applications to call the methods for this class. The contents of this object is a
list of field name and value pairs where the name is any length up to 120
characters and the value is any length. Currently, the name and value must be
NULL-terminated.

Syntax

void NNNameValueList::NNNameValueList ()

Parameters
N/A

Return Value
N/A

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 107
New Era of Networks Rules Programming Reference

Chapter 3

~NNNameValuelList Destructor

The NameValueList destructor allows applications to remove an instance of

this object. The space for the name and value strings are deallocated by this
destructor.

Syntax

void NNNameValueList: :~NNNameValueList ()

Return Value

NZA.

108 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Add

The Add member function uses the NNName and NNValue classes to add a
name and value pair to the list of items. The name may be up to 120
characters in length and the value can be of any length. If the name already
exists, the pair is added to the list after the previous pair with the same field

name.
Syntax
int NNNameValueList::Add (const NNName *pName, const NNValue
*pValue)
Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.

Return Value

Returns a 1 if the pair was added successfully.
See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 109
New Era of Networks Rules Programming Reference

Chapter 3

110

Read

The Read member function allows the user to retrieve a value from the list of
items based on the item name. If the name and instance of that name exist, the
value is returned in the pValue parameter.

Syntax

int NNNameValueList::Read(const NNName *pName, const NNValue
*pValue, int instance)

Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.
instance int Instance value when a group of items

exist with the same name.

Return Value

Returns a 1 if the value was found successfully. Otherwise, returns zero (0).

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

Update

The Update member function allows the user to update the value in a name/
value pair inside the list of items. If the name and instance of that name
already exist, the value is updated. If the name and instance of that name do
not exist, it is not added to the list. The Add method is needed to add the
name and value to the list.

Syntax

int NNNameValueList::Update (const NNName *pName, const NNValue
*pValue, int instance)

Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.
instance int Instance value when a group of items
exist with the same name.

Return Value

Returns a 1 if the update was successful.

Returns 0 if the name and instance were not found or the update could not be
performed.

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 111
New Era of Networks Rules Programming Reference

Chapter 3

112

Delete

The Delete member function allows the user to delete a name and value pair
inside the list of items based on the name. If the name and instance of that

name exist, the item is deleted. If the name and instance of that name does not
exist, no changes are made.

Syntax

int NNNameValueList::Delete (const NNName *pName, int instance)

Parameters
Name Type Description
NNName *pName Object name.
instance int Instance value when a group of items

exist with the same name.

Return Value

Returns a 1 if the item was deleted successfully. A return value of 0 means
that no changes were made.

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

ClearAll
The ClearAll member function allows the user to delete the list of items.
Syntax

int NNNameValueList::ClearAll ()

Parameters

N/A

Return Value

Returns a 1 if the items were deleted successfully.
See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 113
New Era of Networks Rules Programming Reference

Chapter 3

114

GetFirst

The GetFirst member function allows the user to retrieve the first name value
pair in the NameValueList. If the name or value does not exist, the function

returns

Syntax

int NNNameValueList::GetFirst (const NNName *pName, const

NNValue *pValue)

Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.

Return Value

Returns a 1 if the NameValue pair was found successfully. Returns a 0 if the

function failed to find a valid pair.

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

GetNext

The GetNext member functions allows the user to retrieve the next
NameValue pair in the NameValue list.

Syntax
int NNNameValueList: :GetNext (const NNName *pName, const NNValue
*pValue)
Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.
Remarks

GetFirst() should be called prior to calling GetNext().
Return Value

Returns a 1 if the NameValue pair was found successfully.

Returns a 0 if the function failed to find a valid pair or if the GetFirst function
has not been applied.

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 115
New Era of Networks Rules Programming Reference

Chapter 3

116

GetField

Retrieves an NDO representation of the field value for the given instance of

the name provided.
Syntax

const NNDOData *

GetField (char * fieldname, int instance)

Parameters
Name Type Description
fieldname char* The fieldname identifies the field in the
corresponding container.
instance int The instance identifies the instance of

the field in the corresponding container.

Return Value

NNDOData* is a pointer to the container's NDO representation of the value.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

GetFieldCount

Retrieves an integer representing the number of elements with the given
fieldname in the active container.

Syntax

public int GetFieldCount (char * fieldname)

Parameters
Name Type Description
fieldname char* The fieldname identifies the field in the
corresponding container.

Return Value

An integer for the number of elements with the given fieldname.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 117
New Era of Networks Rules Programming Reference

Chapter 3

GetlnputCodeSet

Gets the code set attribute for the active container and returns it to the user
via the codeSetStr parameter.

Syntax

public const char * GetInputCodeSet ()

Parameters
N/A

Return Value

Character string representation for the code set name.

118 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetlnputLocale

Gets the locale attribute for the active container and returns it to the user via
the localeStr parameter.

Syntax

public const char * GetInputLocale ()

Parameters
N/A

Return Value

Character string representation of the locale name.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 119
New Era of Networks Rules Programming Reference

Chapter 3

120

GetlnputCodeSet

Sets the code set for the active container as an attribute of the object.

Syntax

public int SetInputCodeSet (const char * codeset)

Parameters
Name Type Description
codeset char* An STL string representation of the

codeSetStr.

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

SetlnputLocale

NEONRules APIs

Sets the locale for the active container as an attribute of the object.

Syntax

public int SetInputLocale (const char * locale)

Parameters
Name Type Description
locale char* An STL string representation of the

locale name.

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

121

Chapter 3

NNName Member Functions

The NNName class is used for some of the NNNameValueList methods to

identify the object from which field name information is retrieved. The names
within the object may be up to 120 characters for use within rules. This class
enables retrieval of field or object name information without using the
NEONFormatter to parse the information.

class NNName {
public:
NNName () ;
NNName (char* name) ;
NNName (char* name, int length) ;
NNName (const NNName& Original) ;
~NNName () ;
int set (char* name) ;
int set (char* name, int length);
friend bool operator<(const NNName& namel,
const NNName& name2) ;
friend bool operator==(const NNName& namel,
const NNName& name2) ;
void operator=(const NNName& namel) ;
bool IsEmpty () ;
char* GetString() ;
int GetLength() ;

122 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

NNName Constructor

The default constructor creates an empty NNName object. Use one of the set()
methods to set the name. ISEmpty() returns true, GetLength() returns 0, and
GetString() returns an empty string after NNINlame is created using this
constructor.

Syntax

NNName : : NNName ()

Parameters

N/A

Return Value

None

NNName Constructor

This constructor creates a NNName object and sets the name to the NULL-
terminated value given. The character array is copied and the length of the
NNName object is set to strlen(nhame).

Syntax

NNName : : NNName (char* name)

Parameters
Name Type Description
name char* NULL-terminated Field name

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 123
New Era of Networks Rules Programming Reference

Chapter 3

124

NNName Constructor

This constructor creates a NNName object and sets the name to the value
given. The character array is copied and the length of the NNName object is
set to the length given. The character array has a NULL (\0O) placed at the end

when using this method.

Syntax

NNName : : NNName (char* name,

int length)

Parameters
Name Type Description
name char* Field name
length int Data length, in bytes, of the name to be evaluated

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

NNName Copy Constructor

This copy constructor creates a NNName object and sets the name to the
name in the passed NNName parameter. The character array is copied and
the length of the NNName object is set to the length given.

Syntax

NNName : : NNName (const NNName &Original)

Parameters
Name Type Description
&Original NNName NNName object to copy

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 125
New Era of Networks Rules Programming Reference

Chapter 3

NNName Destructor

This NNName destructor deallocates the memory used by the character
array.

Syntax

NNName : : ~NNName ()

Parameters
N/A

Return Value

None

126 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

set

This set member function sets the name to the NULL-terminated value given.
The character array is copied and the length of the NNName object is set to
strlen(name). If the NNName was not previously empty, the old name is
deallocated before the new name is copied.

Syntax

int NNName: :set (char* name)

Parameters
Name Type Description
name char* NULL-terminated Field name

Return Value

Return value is always 1.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 127
New Era of Networks Rules Programming Reference

Chapter 3

set

This set member function sets the name to the value given. The character
array is copied and the length given. If the NNName was not previously
empty, the old name is deallocated before the new name is copied. The
character array has a NULL (\0O) placed at the end when using this method.

Syntax

int NNName: :set (char* name, int length)

Parameters
Name Type Description
name char* Field name
length int Data length, in bytes, of the name to be evaluated

Return Value

Return value is always 1.

128 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

operator<

This operator compares two NNName instances. Each character in the name
is compared (case-sensitive comparison). If the characters are all the same and
objects are the same length, the NNIName objects are said to be equal. If one
NNName is longer but all the characters up to that point are the same, the
longer NNName is said to be greater.

This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax

bool operator< (const NNName& namel, const NNName& name2)

Parameters
Name Type Description
namel NNName & First object instance against which the second
instance is evaluated
name2 NNName & Second object instance

Return Value

Return value true if the first object is less than the second object Otherwise
false is returned.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 129
New Era of Networks Rules Programming Reference

Chapter 3

130

operator==

This operator function compares two NNName instances. Each character in
the name is compared (case-sensitive comparison). If the characters are all the
same and objects are the same length, the NNName objects are equal. If one
NNName is longer but all the characters up to that point are the same, the
longer NNName is greater.

This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax
bool operator== (const NNName& namel, const NNName& name2)
Parameters
Name Type Description
namel NNName & First object instance against which the second
instance is evaluated
name2 NNName & Second object instance

Return Value

Return value true if the object values are equal. Otherwise false is returned.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

operator=

This assignment operator sets the current NNName value to be the same as
the one passed into the method (right-hand side of the equal sign). If the
current NNIName has data, that memory is cleared and the character array
and length are copied from the NNIName parameter.

Syntax

void NNName: :operator= (const NNName& namel)

Parameters
Name Type Description
namel NNName & Object instance that specifies the setting for the
current NNName value

Return Value

None.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 131
New Era of Networks Rules Programming Reference

Chapter 3

ISsEmpty

The IsEmpty method returns true if the NNName is empty (empty string,
length is 0).

Syntax

bool NNName: : IsEmpty ()

Parameters
N/A

Return Value

Returns true if the object is empty. Otherwise false is returned.

132 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetString

The GetString method returns a NULL-terminated string value. If the original
character array has embedded NULL characters, these characters look like the
end of the string. An empty string is returned (") if the NNIName is empty.

Syntax

char* NNName: :GetString/()

Parameters
N/A

Remarks

Do not modify the string returned. If modifications are required, copy the
value into a locally-allocated memory location.

Return Value

Returns a character pointer to the memory inside the object.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 133
New Era of Networks Rules Programming Reference

Chapter 3

GetLength

The GetLength method returns the length of the character array (up to, but
not including, the final NULL-character). This should match
strlen(SetString()).

Syntax

int NNName: :GetLength ()

Parameters
N/A

Return Value

Returns a non-negative whole number for the length of the NNIName; returns
zero (0) if the NNName is empty.

134 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NNValue Member Functions

The NNValue class is used for some of the NNNameValueList methods to
identify the value information to retrieve. The values within the object may be
up of any length. This class enables retrieval of field or object value
information without using the NeonFormatter to parse the information.

class NNValue {
public:

NNValue () ;
NNValue (char * pValue, char * pEncoding = 0, char
pLocale = 0);

NEONRules APIs

*

NNValue (char * pValue, unsigned int & length, char *
pEncoding = 0, char * pLocale = 0);

NNValue (const NNValue& Original) ;

~NNValue () ;

int set (char * pValue, char * pEncoding = 0, char
pLocale = 0);

int set (char* value, int length);

friend bool operator<(const NNValue& valuel,
const NNValue& value2) ;

friend bool operator==(const NNValue& valuel,
const NNValue& value2) ;

void operator=(const NNValue& valuel) ;

bool IsEmpty () ;

char* GetString() ;

int GetLength() ;

NNValue (NNDOData * pNdoData)

const const I18NEncodingContext * getCodeSet ()

const NNDOData * GetField()

const const I18NLocaleContext * getLocale()

int set (NNDOData * pNdoData)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

*

135

Chapter 3

NNValue Constructor

The default constructor creates an empty NNValue object. Use one of the set()
methods to then set the value. ISEmpty() returns true, GetLength() returns 0,
and GetString() returns an empty string after NNValue is created using this

constructor.
Syntax

public NNValue (NNDOData * pNdoData)

Parameters
Name Type Description
pNdoData NNDOData | The NDO object that used to create a new
NNValue.
Return Value
None
136 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

NNValue Constructor

This constructor creates a NNValue object and sets the value to the NULL-
terminated value given. The character array is copied and the length of the
NNValue object is set to strlen(value).

Syntax

public NNValue (char * pValue, unsigned int & length, char *
pEncoding, char * pLocale)

Parameters

Name Type Description

pValue char* NULL-terminated Field value.

length int Data length, in bytes, of the value to be evaluated.

pEncoding char* The encoding character string to be used for this
object's encoding.

pLocale char* The locale character string to be used for this
object's locale.

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 137
New Era of Networks Rules Programming Reference

Chapter 3

138

NNValue Constructor

This constructor creates a NNValue object and sets the value to the value
given. The character array is copied and the length of the NNValue object is
set to the length given. The character array has a NULL (\0O) placed at the end

when using this method.

Syntax

public NNValue (char * pValue, char * pEncoding, char * pLocale)

Parameters
Name Type Description
pValue char * Field value.
pEncoding char * The encoding character string to be used for this
object's encoding.
pLocale char * The locale character string to be used for this

object's locale.

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

NNValue Copy Constructor

This copy constructor creates a NNValue object and sets the value to the
value in the passed NNValue parameter. The character array is copied and
the length of the NNValue object is set to the length given.

Syntax

NNValue: :NNValue (const NNValue &Original)

Parameters
Name Type Description
&Original NNvalue NNValue object to copy.

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 139
New Era of Networks Rules Programming Reference

Chapter 3

NNValue Destructor

This NNValue destructor deallocates the memory used by the character
array.

Syntax

NNValue: : ~NNValue ()

Parameters
N/A

Return Value

None

140 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getCodeSet
Retrieves the I18NEncodingContext object for this object's encoding.
Syntax

public const I18NEncodingContext * getCodeSet ()

Parameters
N/A

Return Value

18NEncodingContext* is a pointer to a globally allocated
I118NEncodingContext object.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 141
New Era of Networks Rules Programming Reference

Chapter 3

getLocale

Retrieves the 118N LocaleContext object for this object's locale.

Syntax

public const I18NLocaleContext * getLocale ()

Parameters
N/A

Return Value

118N LocaleContext is a pointer to a globally allocated 118NLocaleContext
object.

142 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetField
Retrieves an NNOData object representation of this object's data contents.
Syntax

public const :: NNDOData * GetField()

Parameters
N/A

Return Value

A pointer to this object's NNDOData attribute.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 143
New Era of Networks Rules Programming Reference

Chapter 3

set

Sets this object's attributes with the NDO parameter.

Syntax

public int set (NNDOData * pNdoData)

Parameters
Name Type Description
pNdoData NNDOData | The NDO representation of this object's new data

attributes.

144

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

set

NEONRules APIs

This set member function sets the value to the NULL-terminated value given.
The character array is copied and the length of the NNValue object is set to
strlen(value). If the NNValue was not previously empty, the old value is
deallocated before the new value is copied.

Syntax

public int set (char * pValue, char * pEncoding, char * pLocale)

Parameters
Name Type Description
pValue char * NULL-terminated Field value.
pEncoding char * The character string representation of this object's
new encoding.
pLocale char * The character string representation of this object's

new locale.

Return Value

Return value is always 1.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 145
New Era of Networks Rules Programming Reference

Chapter 3

146

set

This set member function sets the value to the value given. The character
array is copied and the length given. If the NNValue was not previously
empty, the old value is deallocated before the new value is copied. The
character array has a NULL (\0O) placed at the end when using this method.

Syntax

public int set (char * pValue, unsigned int length, char *

pEncoding, char * pLocale)

Parameters
Name Type Description
pValue char* Field value
length int Data length, in bytes, of the value to be evaluated
pEncoding char * The character string representation of this object's
new encoding.
pLocale char * The character string representation of this object's

new locale.

Return Value

Return value is always 1.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

operator<

This operator compares two NNValue instances. Each character in the value
is compared (case-sensitive comparison). If the characters are all the same and
objects are the same length, the NNValue objects are said to be equal. If one
NNValue is longer but all the characters up to that point are the same, the
longer NNValue is said to be greater.

This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax

bool operator< (const NNValue& valuel, const NNValue& value2)

Parameters
Name Type Description
valuel NNValue& First object instance against which the second
instance is evaluated
value2 NNValue& Second object instance

Return Value

Return value true if the first object is less than the second object. Otherwise,
false is returned.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 147
New Era of Networks Rules Programming Reference

Chapter 3

148

operator==

This operator function compares two NNValue instances. Each character in
the value is compared (case-sensitive comparison). If the characters are all the
same and objects are the same length, the NNValue objects are said to be
equal. If one NNValue is longer but all the characters up to that point are the
same, the longer NNValue is said to be greater.

This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax
bool operator== (const NNValue& valuel, const NNValue& value2)
Parameters
Name Type Description
valuel NNValue& First object instance against which the second
instance is evaluated
value2 NNValue& Second object instance

Return Value

Return value true if the object values are equal. Otherwise false is returned.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

operator=

This assignment operator sets the current NNValue value to be the same as
the one passed into the method (right-hand side of the equal sign). If the
current NNValue has data, that memory is cleared and the character array
and length are copied from the NNValue parameter.

Syntax

void NNValue: :operator= (const NNValue& valuel)

Parameters
Name Type Description
valuel NNValue& Object instance that specifies the setting for the
current NNValue value

Return Value

None.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 149
New Era of Networks Rules Programming Reference

Chapter 3

ISsEmpty

The IsEmpty method returns true if the NNValue is empty (empty string,
length is 0).

Syntax

bool NNValue: :ISEmpty ()

Parameters
N/A

Return Value

Returns true if the object is empty. Otherwise false is returned.

150 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetString

The GetString method returns a NULL-terminated string value. If the original
character array has embedded NULL characters, these characters look like the
end of the string. An empty string is returned (") if the NNValue is empty.

Syntax

char* NNValue::GetString/()

Parameters
N/A

Remarks

Do not modify the string returned. If modifications are required, copy the
value into a locally-allocated memory location.

Return Value

Returns a character pointer to the memory inside the object.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 151
New Era of Networks Rules Programming Reference

Chapter 3

GetLength

The GetLength method returns the length of the character array (up to, but
not including, the final NULL-character). This should match
strlen(SetString()).

Syntax

int NNValue::GetLength()

Parameters
N/A

Return Value

Returns a non-negative whole number for the length of the NNValue; returns
zero (0) if the NNValue is empty.

152 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 4
wowrues MaNagement APIs

This chapter includes the following information:

NEONRules Management API Structures
Overall NEONRules Management APIs and Macros
Application Group Management APIs
Message Type Management APIs

Rule Management APIs

Permissions APIs

Operator Management APIs

Expression Management APIs

Argument Management APls
Subscription Management APls

Action Management APIs

Option Management APls

NEONRules Management Error Handling

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

153

NEoNRules Management APls enable users to add, update, delete, and read
rules. To use NeoNRules Management APls, include the following header files
located in the include directory:

nnrmgr.h
nnperm.h
rdefs.h

NeoNRules components must be added in the following order:

1.

2
3
4
5.
6
7
8
9

Application Group
Message Type

Rule

Rule Permission

Rule Expression
Argument

Subscription
Subscription Permission

Action

10. Option

The names of formats and fields should not be changed if they are used by a
rule. The following occurs if format and field names are changed:

If you change a format name or the field names in a format, rules
associated with that format become invalid.

Subscription actions using format names fail if the format name is
changed.

If a field name is changed, the arguments using the field name
become invalid and the rule fails.

See the neonFormatter Programming Reference for information on changing
formats and field names.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 154
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NEONRules Management API

Structures

NNDate

NNDate is passed as part of an argument in several NeonRules Management
functions and should be cleared using NNR_CLEAR prior to use in a function

Currently, dates are defaulted, and this structure is provided for forward

char century;
char year;

char month;
char day;

char hours;
char minutes;
char seconds;
char filler;
short mseconds;

long InitFlag;

call.

compatibility.

Syntax

typedef struct NNDate({
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} NNDate;

Members

Name Type

Description

century unsigned char | Century for the year. Currently, 19 (as in 1997) and

20 (as in 2001) are acceptable values.

year unsigned char | Number for the year, exclusive of the century. For

example, 1996 is saved as 96 and 2001 is saved as 01.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 155
New Era of Networks Rules Programming Reference

Chapter 4

156

Name Type Description

month unsigned char | Numeric month within the year (range 1 to 12).

day unsigned char | Numeric day of the month (range 1 to 31).

hours unsigned char | Number of hours past midnight in a 24-hour
notation (range 0 to 23).

minutes unsigned char | Number of minutes past the hour (range 0 to 59).

seconds unsigned char | Number of seconds past the minute (range 0 to 59).

filler unsigned char | This field exists to insure proper alignment of the
mseconds field below and is set to zero (0).

mseconds | unsigned char | Number of milliseconds past the second (range 0 to
999).

InitFlag long This field is present so the software can detect if this

structure was preset to zero (0) before use.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Overall NEONRules Management
APIls and Macros

NNRMgrinit

When using NeonRules Management APIs, users are expected to initialize
rules management by calling NNRMgrInit(). NNRMgrlnit() initializes the
rules management data access capability and error handling.

Syntax

NNRMgr * NNRMgrInit (DbmsSession *session) ;

Parameters
Name Type Input/ Description
Output
session DbmsSession * | Input Name of the open database session.
Remarks
NEONRules

NNRMgrInit() should be called prior to any neonRules Management API
calls. For information about the DbmsSession Type to use, see
OpenDbmsSession() in Rules and Formatter Extension for IBM ® WebSphere
Message Broker for Multiplatforms Application Development Guide.

Return Value

Returns a pointer to an instance of a NNRMgr object.

See Also

NNRMarClose

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 157
New Era of Networks Rules Programming Reference

Chapter 4

158

NNRMgrClose

When using NeonRules Management APIs, users are expected to close rules
management by calling the NNRMgrClose() function. NNRMgrClose()
removes the user’s ability to perform rules management.

Syntax

void NNRMgrClose (NNRMgr *pMgr) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr* | Input Valid NeoNRules Management object
returned from call to NNRMgrlnit().
Remarks

A call to NNRMgrClose() should be the last call made when managing rules.
Once a call to NNRMgrClose() is made, the user cannot manage rules without
calling NNRMgrlnit() again.

Note:
NNRMgrClose() only cleans up resources claimed by NNRMgrInit() and

does not close the DbmsSession.

Return Value

None

See Also

NNRMarlnit

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNR_CLEAR

When using NeonRules Management APIs, user must clear structures prior to
invoking each function. Use the NNR_CLEAR macro to clear structures.
NNR_CLEAR clears a structure in such a way that the neonRules
Management APIs can alert the user to a non-initialized structure.

Syntax

NNR_CLEAR (_p)

Parameters
Name Type Input/ | Description
Output
p Any rules Input Any structure used in NEoNRules
management Management API calls except
structure permission structures.
Return Value
None
Example
struct NNRApp app;
NNR_CLEAR (&app) ;
See Also
NN_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 159

New Era of Networks Rules Programming Reference

Chapter 4

Application Group Management APIs

An application group is a logical division of rules. Application Management
APIs are used to create applications and associate the applications with rules,
subscriptions, and user permissions.

Application Group Management API
Structures

160

NNRApp

NNRApp is passed as a pointer as the second parameter of the Application
Group Management APIs. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to
any Application Group Management API calls.

Syntax

typedef struct NNRApp{
char AppName [APP NAME LEN] ;
long InitFlag;

}

Members
Name Type Description
AppName char Name of the application group in which the
[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRuUles
Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NNRAppData

NNRAppData is passed as a pointer as the third parameter of some of the
Application Group Management APIs. The pointer cannot be NULL and
must be cleared using NNR_CLEAR prior to being populated by the user or
Application Group Management API calls. Use of this structure is described
in each Application Group Management API section.

Syntax

typedef struct NNRAppData{
NNDate DateChange;
int ChangeAction;

long InitFlag;

}

NEONRules Management APIs

Members
Name Type Description
DateChange NNDate Defaulted for now, provided for future capability.
ChangeAction int Defaulted for now, provided for future capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRUles
Management API.
See Also
NNR _CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 161

New Era of Networks Rules Programming Reference

Chapter 4

162

NNRAppReadData

NNRAppReadData is passed as a pointer to select functions in the
Application Group Management API. The pointer cannot be NULL and must
be cleared using NNR_CLEAR prior to any Application Group Management

API read calls.
Syntax

typedef struct NNRAppReadData{
char AppName [APP NAME LEN] ;

NNDate DateChange;

int ChangeAction;
long InitFlag;
} NNRAppReadData;

Members
Name Type Description
AppName char Name of the application group in which the user

[APP_NAME_LEN]

is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

DateChange NNDate | Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRuUles
Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNRAppUpdate

NEONRules Management APIs

NNRAppUpdate is a structure designed to pass update information within
the neonRules Management APIs. It must be cleared using NNR_CLEAR
prior to being populated, and must be populated prior to any neonRules

Management APl update calls.
Syntax

typedef struct NNRAppUpdate {

char AppName [APP NAME LEN] ;

NNDate DateChange;
int ChangeAction;
long InitFlag;

}

Members
Name Type Description
AppName char Name of the application group, defined by
[APP_NAME_LEN] the API using this structure. NULL-
terminated string of length 1 to 120 inclusive.
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

163

Chapter 4

Application Group Management API
Functions

NNRMgrAddApp

NNRMgrAddApp() enables the user to define a name for one application
group in NeoNRules. The user creates a name and provides it to
NNRMgrAddApp(), which then saves it in NeonRules. Only after an
application group has been defined can the application name be used in other
NeoNRules Management functions.

Syntax

const long NNRMgrAddApp (
NNRMgr *pMgr,
const NNRApp *pRApPD,
const NNRAppData *pRAppData) ;

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Name of a current NEoNRUles
Management object.

pRApp const NNRApp * | Input Must be populated prior to this
function call.

pRAppData | const Input Must be populated prior to this

NNRAppData * function call. DateChange and
ChangeAction should be
populated with NULL values
because they are provided only
for future enhancements.
164 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the application is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrReadApp
NNRMgrUpdateApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 165
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrReadApp

NNRMgrReadApp() attempts to read all rules defined for a specific
application group name.

Syntax

const long NNRMgrReadApp (
NNRMgr *pMgr,
const NNRApp *pRApPp,
NNRAppData *const pRAppData) ;

Parameters
Name Type Input/ Description
Output
pMagr NNRMgr * Input Name of a current NEONRUlES
Management object.
pRApp const NNRApp * | Input Should be populated prior to this
function call.
pRAppData | NNRAppData Output NNRMgrReadApp populates
* const this structure. If DateChange is
not NULL, it is assumed that the
application group exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the application is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

166 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddApp
NNRMgrUpdateApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 167
New Era of Networks Rules Programming Reference

Chapter 4

168

NNRMgrGetFirstApp

NNRMgrGetFirstApp() provides a way to start iterating through the
application groups that exist in a database. NNRMgrGetFirstApp() must be
called before NNRMgrGetNextApp().

Syntax
const long NNRMgrGetFirstApp (

NNRMgr *pMgr,
NNRAppReadData *const RAppData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules

Management object returned
from call to NNRMgrlnit().

RAppData NNRAppReadData | Output NNRMgrGetFirstApp
*const populates this structure.

Remarks

NNRMgrlnit() should be called prior to any NeonRules Management API
calls.

Return Value

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrDuplicateApp
NNRMgrDeleteEntireApp
NNRMgrGetNextApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 169
New Era of Networks Rules Programming Reference

Chapter 4

170

NNRMgrGetNextApp

NNRMgrGetNextApp() provides a way of iterating through the application
groups after the first application group has been retrieved.
NNRMgrGetFirstApp() must be called before NNRMgrGetNextApp().

Syntax
const long NNRMgrGetFirstApp (

NNRMgr *pMgr,
NNRAppReadData *const RAppData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules

Management object returned
from call to NNRMgrlnit().

RAppData NNRAppReadData | Output NNRMgrGetNextApp
*const populates this structure.

Remarks

NNRMgrlnit() should be called prior to any NeonRules Management API
calls.

Return Value

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrDuplicateApp
NNRMgrDeleteEntireApp
NNRMgrGetFirstApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 171
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrDuplicateApp

NNRMgrDuplicateApp() creates a new application group with the name
specified in the NewAppName syntax.

NNRMgrDuplicateApp() creates the message type in the specified
application group, accesses each subscription in the original application
group/message type pair, and duplicates the subscription and its
components. The rules are then duplicated into the new application/message
type pair in a similar way.

The current user is the owner of the new application group. Read permission
must exist for the application group to be duplicated.

Syntax

const long NNRMgrDuplicateApp (
NNRMgr *pMgr,
const NNRApp* pRApPpP,
const char* NewAppName) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules
Management objectreturned
from call to NNRMgrlnit().

pRApp const NNRApp* | Input This structure must be
populated prior to this
function call.

NewAppName const char* Input Name of the new application
group.

172 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the application group is duplicated successfully; returns zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR _CLEAR

NNRMarDuplicateApp
NNRMarDeleteEntireApp
NNRMgarGetFirstApp
NNRMarGetNextApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 173
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrUpdateApp

NNRMgrUpdateApp() enables the user to update an application group name
by providing the name of the application group to change (in the pRApp
structure) and the new application group name to change it to (in the
pRAppUpdate structure).

Syntax

const long NNRMgrUpdateApp (
NNRMgr *pMgr,
const NNRApp *pRApPp,
const NNRAppUpdate *pRAppUpdate) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Name of a current
NEONRules Management
object.
pRApp const NNRApp * Input Must be populated prior to
this function call.
pRAppUpdate | const Input Must be populated prior to
NNRAppUpdate * this function call.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Return Value
Returns 1 if the application group is updated successfully; zero (0) if an error
occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

174 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session);

struct NNRApp key;
struct NNRAppData data;
struct NNRAppUpdate update;
NNR_CLEAR (&key) ;

NNR_CLEAR (&data) ;

NNR_CLEAR (&update) ;

cout << "Enter old app group name \n>";
cin >> key.AppName;

cout << "Enter new app group name \n>";
cin >> update.AppName;

if (NNRMgrUpdateApp (pmgr, &key, &update)) {
cout << endl
<< "\tApp Group Name: "
<< key.AppName << "changed to "
<< update.AppName << endl << endl;
CommitXact (session) ;
} else {
DisplayError (pmgr) ;
RollbackXact (session) ;

}

CloseNNRMgr (pmgr, session) ;
return;

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddApp
NNRMgrReadApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 175
New Era of Networks Rules Programming Reference

Chapter 4

176

NNRMgrDeleteEntireApp

NNRMgrDeleteEntireApp() deletes an application group by deleting each
component for the application group, including application, message type,
rule, expression, and associations with subscriptions. This call depends on
permissions. If the user does not have permission for each component in the
application group, that component and the application group are not deleted.
However, the components that the user does have permission for are deleted.

NNRMgrDeleteEntireApp() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type only deletes if there are not rules and
subscriptions left. The application group only deletes if there are no message
types left.

WARNING!
NNRMgrDeleteEntireApp() deletes all components contained within an

application group.

Syntax

const long NNRMgrDeleteEntireApp (
NNRMgr *pMgr,
const NNRApp *pRApp) ;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Parameters
Name | Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeEoNRuUles Management object
returned from call to NNRMgrInit().
pRApp NNRApp Input The unique identifier for the
application with the message type
name and subscription name.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Return Value

Returns 1 if the application group and its contents are completely removed.
Returns 2 if the application group still remains, but some rules or
subscriptions remain due to mismatched permissions. Returns zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. This does not
report which rules or subscriptions could not be deleted. The user must
retrieve the lists of items to find this information.

See Also

NNRMarlnit

NNR CLEAR
NNRMarDeleteEntireRule
NNRMgrDeleteEntireSubscription
NNRMgrDuplicateApp
NNRMgrGetFirstApp
NNRMgrGetNextApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 177
New Era of Networks Rules Programming Reference

Chapter 4

Message Type Management APIs

A message type identifies the type of data to which the rules apply. Message
type is the same as the input format name in NeoNFormatter.

Message Type Management API Structures

NNRMsg

NNRMsg is passed as a pointer as the second parameter of the Message Type
Management APIs. The pointer cannot be NULL, must be cleared (using
NNR_CLEAR) prior to being populated, and must be populated prior to any
Message Type Management API calls.

Syntax

typedef struct NNRMsg{
char AppName [APP_NAME LEN] ;
char MsgName [MSG NAME LEN] ;
long InitFlag;

} NNRMsg;
Members
Name Type | Description
AppName char Name of the application group in which the
[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
MsgName char Name of the message for which the user is
[MSG_NAME_LEN] defining rules for message evaluation. The
message type is the input format name if the
user is using NEONFormatter. NULL-
terminated string of length 1 to 120 inclusive.
178 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type | Description
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 179

New Era of Networks Rules Programming Reference

Chapter 4

180

NNRMsgData

NNRMsgData is passed as a pointer as the third parameter of the Message
Type Management APIs. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to being populated by the user or by Message Type
Management API calls. If the EvalType is empty, NNSYRF_FORMATTER is

assumed.

Use of this structure is described in each Message Type Management API

section.

Syntax

typedef struct NNRMsgData {

char EvalType [EVAL TYPE LEN];
NNDate DateChange;
int ChangeAction;
long InitFlag;

} NNRMsgData;

Members
Name Type Description
EvalType char Valid entries are NNSYRF_FORMATTER
[EVAL_TYPE_LEN] and NAME_VALUE.
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNRMsgReadData

NEONRules Management APIs

NNRMsgReadData is passed as a pointer to select functions in the Message
Type Management API. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to any Message Type Management API read calls.

Syntax

typedef struct NNRMsgReadData (
char AppName [APP_NAME LEN] ;
char MsgName [MSG NAME LEN] ;
NNDate DateChange;
int ChangeAction;
long InitFlag;

} NNRMsgReadData;

Members
Name Type Description
AppName char Name of the application group in which the
[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
MsgName char Name of the message for which the user is
[MSG_NAME_LEN] defining rules for message evaluation. The
message type is the input format name if the
user is using NEoNFormatter. NULL-
terminated string of length 1 to 120 inclusive.
DateChange NNDate | Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 181

New Era of Networks Rules Programming Reference

Chapter 4

Message Type Management APl Functions

NNRMgrAddMsg

A message is a string of data to be processed. NNRMgrAddMsg() associates a
message type with a specific application group. The application group and
message type must exist prior to associating the message type to an
application group using NNRMgrAddMsg(). If you are using NeonFormatter,
an input format of this name must exist. Messages must be associated with an
application group prior to adding a rule using NNRMgrAddRule().

If the message type is new (not used in an existing application group), this
function creates a new identifier for the message type.

If no APP_NAME is given in the pRMsg parameter, the message type is
added to the database but not to any specific application group. If the
message type already exists, it is added to the application group if it does not
already belong to that application group. The EvalType is ignored if the
message type already exists in the database and is just added to the
application group.

Syntax

const long NNRMgrAddMsg (
NNRMgr *pMgr,
const NNRMsg *pRMsg,
const NNRMsgData *pRMsgData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlnit().

pPRMsg const NNRMsg * | Input Must be populated prior to this
function call.

182 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Input/ | Description
Output
pRMsgData | const Input Default the DateChange and

NNRMsgData *

ChangeAction parameters to
NULL. This is provided only for
future enhancements.

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrReadMsg

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 183
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrReadMsg

NNRMgrReadMsg() enables the user to read a message type.

If no APP_NAME is given in the pRMsg parameter, the message type is read
from the database but not associated with a specific application group.

Syntax

const long NNRMgrReadMsg (
NNRMgr *pMgr,
const NNRMsg *pRMsg,
NNRMsgData *const pRMsgData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().
pPRMsg const NNRMsg * | Input Must be populated prior to this
function call.
pRMsgData | NNRMsgData Output NNRMgrReadMsg() populates
*const thisstructure. If DateChange is not
NULL, the user can assume a
message exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

184 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value
Returns 1 if the message is read successfully; zero (0) if an error occurs.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 185
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrGetFirstMsg

NNRMgrGetFirstMsg() provides a way to start iterating through the message
types that exist in a database. NNRMgrGetFirstMsg() must be called before
NNRMgrGetNextMsg().

Syntax

const long NNRMgrGetFirstMsg(
NNRMgr *pMgr,
const NNRMsg *pRMsg,
NNRMsgReadData *const pRMsgData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlnit().
pRMsg const NNRMsg * | Input Should be populated prior to this
function call. This must contain
the correct application group
name.
pRMsgData | NNRMsgData Output NNRMgrGetFirstMsg() populates
*const this structure. If DateChange is
non-NULL, the user should
assume a message exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

186 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_MESSAGES, the end of the message type list
was reached.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg
NNRMgrDeleteEntireMsg

NNRMgrDuplicateMsg
NNRMgrGetNextMsg
NNRMgrReadMsg

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 187
New Era of Networks Rules Programming Reference

Chapter 4

188

NNRMgrGetNextMsg

NNRMgrGetNextMsg() provides a way of iterating through the message
types after the first message type has been retrieved. NNRMgrGetFirstMsg()
must be called before NNRMgrGetNextMsg().

Syntax
const long NNRMgrGetNextMsg (

NNRMgr *pMgr,
NNRMsgReadData *const pRMsgData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlnit().
pRMsgData | NNRMsgData Output NNRMgrGetNextMsg() populates
*const thisstructure. If DateChange is not
NULL, the user can assume a
message exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_MESSAGES, the end of the message
type list was reached.

See Also

NNRMarlnit

NNR CLEAR
NNRMgrAddMsg
NNRMarDeleteEntireMsg
NNRMgarDuplicateMsg
NNRMarGetFirstMsg
NNRMqgrReadMsg

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 189
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrUpdateMsgName

NNRMgrUpdateMsgName modifies all NNINameValueList message types
with the name given in the pRMsg parameter with the data given in the
pRMsgData parameter.

The user can change the Message Type name for Name-Value Message
Types.

m For those Message types that refer to Format Name, the Message
Type must be updated if the Format Name is changed.

m Ifthe EvalType is NNSYRF_FORMATTER, the MsgName must refer
to a valid Input Format Name.

Syntax

const long NNRMgrUpdateMsgName (
NNRMgr *pMgr,
const char *OldMsgName,
const char *NewMsgName) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().

OldMsgName const char Input

NewMsgName const char Output

190 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrDuplicateMsg

NNRMgrDuplicateMsg() creates a new message type under the application
group specified in the NewAppName syntax. If the application group entered
in NewAppName does not exist, NNRMgrDuplicateMsg() also creates the
application group.

NNRMgrDuplicateMsg() creates the message type in the application group
specified in the NewAppName syntax, accesses each subscription in the
original application group/message type pair, and duplicates the
subscription and its components.The rules are then duplicated into the new
application/message type pair in a similar way.

The current user is the owner of the new message type. Read permission must
exist for the message type to be duplicated.

Syntax

const long NNRMgrDuplicateMsg (
NNRMgr *pMgr,
const NNRMsg *pRMsg,
const char *NewAppName) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules
Management object returned
from call to NNRMgrlnit().

pPRMsg const NNRMsg * | Input Must be populated prior to
this function call.

NewAppName const char * Input Enter the application group
name for the message type to
be duplicated in.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 191

New Era of Networks Rules Programming Reference

Chapter 4

Remarks

NNRMgrInit() should be called prior to calling NNRMgrDuplicateMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message type and its contents are completely duplicated.
Returns zero (0) if an error occurs, for example, the message type already
exists in the new application group.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg
NNRMgrDeleteEntireMsg
NNRMgrReadMsg

192 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrDeleteEntireMsg

NNRMgrDeleteEntireMsg() deletes a message type by deleting each
component for the message type, including message type, rule, expression,
and associations with subscriptions. This call depends on permissions. If the
user does not have permission for each component of the message type, that
component and the message type are not deleted. However, the components
that the user does have permission for will delete.

NNRMgrDeleteEntireMsg() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type only deletes if there are no rules and
subscriptions left.

Syntax

const long NNRMgrDeleteEntireMsg (
NNRMgr *pMgr,
const NNRMsg *pRMsg) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().

pRMsg const NNRMsg * | Input Should be populated prior to this
function call.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 193

New Era of Networks Rules Programming Reference

Chapter 4

Remarks

NNRMgrInit() should be called prior to calling NNRMgrDeleteEntireMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message type and its contents are completely removed;
returns 2 if the message type still remains, but some rules or subscription
remain due to mismatched permissions; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg
NNRMgrDuplicateMsg
NNRMgrReadMsg

194 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Rule Management APIs

Use Rule Management APIs to create rules that contain expressions and
associate rules with subscriptions and user permissions.

Rule Management API Structures

NNRRule

NNRRule is passed as a pointer as the second parameter for some of the Rule
Management APls. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Rule Management API calls. NNRRule is also part of the permission API
Structures.

Syntax

typedef struct NNRRule({
char AppName [APP_NAME LEN] ;
char MsgName [MSG NAME LEN] ;
char RuleName [RULE NAME LEN] ;
long InitFlag;

} NNRRule;
Members
Name Type Description
AppName char Name of the application group in which the
[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
MsgName char Name of the message for which the user is
[MSG_NAME_LEN] defining rules for message evaluation. If the
user is using NEONFormatter, the message
type is the input format name. NULL-
terminated string of length 1 to 120 inclusive.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 195

New Era of Networks Rules Programming Reference

Chapter 4

Name Type Description
RuleName char Name of the rule defined within an
[RULE_NAME_LEN] application group and message name pair.

This rule name is defined by the user. NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR _CLEAR
196 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRRuleData

NNRRuleData is passed as a pointer as the third parameter of the Rule
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by NeonRules
Management API calls. Use of this structure is described in each Rule
Management API section.

Syntax

typedef struct NNRRuleData{
NNDate DateChange;
int ChangeAction;
int ArgumentCount;
int OrCondition;
int SubscriberIndex;
int RuleActive;
NNDate RuleEnableDate;
NNDate RuleDisableDate;
long InitFlag;

} NNRRuleData;

Members

Name Type Description

DateChange NNDate Defaulted for now, provided for future capability.
ChangeAction int Defaulted for now, provided for future capability.
ArgumentCount | int Number of arguments associated with this rule.
OrCondition int Defaulted for now, provided for future capability.
Subscriberindex int Defaulted for now, provided for future capability.
RuleActive int Value of 1 indicates that the rule is active, a value

of zero (0) indicates that the rule is inactive.

RuleEnableDate NNDate Defaulted for now, provided for future capability.
RuleDisableDate | NNDate Defaulted for now, provided for future capability.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 197
New Era of Networks Rules Programming Reference

Chapter 4

Name Type Description
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRUles
Management API.
See Also
NNR_CLEAR
198 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNRRuleReadData

NEONRules Management APIs

NNRRuleReadData is passed as a pointer to select functions in the Rule
Management API. The pointer may not be NULL, must be cleared using
NNR_CLEAR prior to any Rule Management API read calls.

Syntax

typedef struct NNRRuleReadData {
char RuleName [RULE NAME LEN] ;
NNDate DateChange;
int ChangeAction;
int OrCondition;

int SubscriberIndex;

int RuleActive;
NNDate RuleEnableDate;
NNDate RuleDisableDate;
long InitFlag;

} NNRRuleReadData;

Members

Name Type Description

RuleName char Name of the rule, previously defined by the

[RULE_NAME_LEN] user. NULL-terminated string of length 1 to
120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

Subscriberindex int Defaulted for now, provided for future
capability.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 199

New Era of Networks Rules Programming Reference

Chapter 4

200

Name Type Description
RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.
RuleEnableDate NNDate Defaulted for now, provided for future
capability.
RuleDisableDate NNDate Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR _CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRRuleUpdate

NNRRuleUpdate is a structure containing rule update information. It must be
cleared using NNR_CLEAR prior to being populated, and must be populated
prior to any Rule Management APl update calls.

Syntax

typedef struct NNRRuleUpdate{
char RuleName [RULE NAME LEN] ;
NNDate DateChange;
int ChangeAction;
int OrCondition;
int SubscriberIndex;
int RuleActive;
NNDate RuleEnableDate;
NNDate RuleDisableDate;
long InitFlag;

} NNRRuleUpdate;

Members

Name Type Description

RuleName char Name of the rule to be evaluated within an

[RULE_NAME_LEN] application group and message type defined
by the user. NULL-terminated string of
length 1 to 120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

Subscriberindex int Defaulted for now, provided for future
capability.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 201

New Era of Networks Rules Programming Reference

Chapter 4

202

Name Type Description
RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.
RuleEnableDate NNDate Defaulted for now, provided for future
capability.
RuleDisableDate NNDate Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR _CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Rule Management API Functions
NNRMgrAddRule

NNRMgrAddRule() enables the user to add a rule associated with a specific
application group and message type pair by providing the unique application
group, message type, and rule name for the rule in the pRule structure and
the new information for the rule in the pRRuleData structure.

Prior to adding a rule, the application group and message type must be
defined and exist in neonRules using NNRMgrAddApp() and
NNRMgrAddMsg().

When adding the rule, the current user is set as the rule owner for
permissions. The owner is automatically granted Read and Update
permission for the rule. PUBLIC is given read permission.

Syntax

const long NNRMgrAddRule (
NNRMgr *pMgr,
const NNRRule *pRRule,
const NNRRuleData *pRRuleData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlnit().

pPRRule const NNRRule * | Input Should be populated prior to this
function call.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 203

New Era of Networks Rules Programming Reference

Chapter 4

Name Type Input/ | Description
Output
pRRuleData | const Input DateChange, ChangeAction,
NNRRuleData * RuleEnableDate and

RuleDisableDates should be
populated with NULL. These are
provided only for future
enhancements. ArgumentCount
defaults to zero (0).

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

Of the data in the structures passed to NNRMgrAddRule(), not all variables
used in release 4.11 or later need to be populated in the AddRule method.

The following are the variables that are used:

typedef struct NNRRule ({
char

AppName [APP_NAME LEN] ;
char

MsgName [MSG NAME LEN] ;
char

RuleName [RULE_NAME LEN] ;
long InitFlag;

} NNRRule;

typedef struct NNRRuleData {
NNDate DateChange;
int ChangeAction;
int ArgumentCount;
int OrCondition;
int SubscriberIndex;
int RuleActive;
// 1 => rule is active, 0 =>rule is inactive
NNDate

204 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

RuleEnableDate;

NNDate
RuleDisableDate;

long InitFlag;
} NNRRuleData;

Return Value

Returns 1 if the rule is added successfully; zero (0) if an error occurs. An error
can occur if the component cannot be stored, if either the owner or PUBLIC
cannot be stored, or if the Read or Update permissions for both the owner and
PUBLIC cannot be stored.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also
NNRMarlnit

NNR CLEAR
NNRMgrReadRule

NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 205
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrReadRule

NNRMgrReadRule() enables the user to retrieve rule management
information. Note that this API reads rule maintenance information, not rule
evaluation or subscription information. To read rule evaluation or
subscription information, use NNRMgrReadExpression() or
NNRMgrReadSubscription(). Prior to reading a rule, the application group,
message, and rule maintenance information must be defined and exist in
NeoNRules using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule().

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

Syntax

const long NNRMgrReadRule (
NNRMgr *pMgr,
const NNRRule *pRRule,
NNRRuleData* const pRRuleData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().

pRRule const NNRRule * | Input Should be populated prior to this
function call.

pRRuleData | NNRRuleData* Output NNRMgrReadRule() populates

const this structure. If DateChange is
not NULL, this rule exists.
206 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the rule is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddRule

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 207
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrGetFirstRule

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and application
group pair.

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

Syntax

const long NNRMgrGetFirstRule (
NNRMgr *pMgr,
const NNRRule *pRRule,
NNRRuleReadData *const pRRuleData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().
pRRule const NNRRule * | Input Must be completely populated
except for the RuleName field
prior to this function call.
pRRuleData | NNRRule Output NNRMgrGetFirstRule populates
Read Data *const this structure.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

208 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, no rules were
found for the application group and message type specified in the pRRule
structure.

See Also

NNRMarlnit
NNR _CLEAR

NNRMagrUpdateRule
NNRMgrAddRule
NNRMgrReadRule
NNRMarDeleteEntireRule
NNRMarGetNextRule

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 209
New Era of Networks Rules Programming Reference

Chapter 4

210

NNRMgrGetNextRule

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and rule name
pair.

When retrieving rule management information, user permission to read the
rule are checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have read permission.

Syntax
const long NNRMgrGetNextRule (

NNRMgr *pMgr,
NNRRuleReadData * const pRRuleData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NEoNRuUles Management
object returned from call to
NNRMGgrInit().
pRRuleRead NNRRuleRead Output NNRMgrGetFirstRule
Data Data const * populates this structure.
Remarks

NNRMgrInit() should be called prior to any neonRules Management API
calls. NNRMgrGetFirstRule() must be called before NNRMgrGetNextRule().

Return Value

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_RULES, the end of the rules list has been
reached.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrUpdateRule

NNRMgrAddRule
NNRMgrReadRule
NNRMarDeleteEntireRule
NNRMgrGetFirstRule

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 211
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrDuplicateRule

NNRMgrDuplicateRule() creates a new rule under the same application
group/message type pair. Specify the new rule name in the NewRuleName
syntax.

The current user is the owner of the new rule. Read permission must exist for
the rule to be duplicated.

Syntax

const long NNRMgrDuplicateRule (
NNRMgr *pMgr,
const NNRRule *pRRule,
const char *NewRuleName) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().
pPRRule const NNRRule * | Input Should be populated prior to this
function call.
NewRule const char Input Enter the new rule name. The
Name duplicated rule is created under
the same application group/
message type pair.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrDuplicateRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

212 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the rule and its contents are completely duplicated; returns zero
(0) if an error occurs; for example, the new rule exists.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrReadRule
NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 213
New Era of Networks Rules Programming Reference

Chapter 4

214

NNRMgrUpdateRule

NNRMgrUpdateRule() enables the user to update a rule associated with a
specific application and group/message type pair by providing the unique
application group, message type, and rule name for the rule to be updated in
the pRule structure and the new information for the rule in the
pRRuleUpdate structure.

When updating rule management information, user permission to update the
rule are checked. If the user is the owner or another user with Update
permission for the rule, the user can update the rule information. If the user
does not have Update access, an error is returned indicating that the user
does not have Update permission, and no changes occur.

Syntax

const long NNRMgrUpdateRule (
NNRMgr *pMgr,
const NNRRule *pRule,
const NNRRuleUpdate *pRRuleUpdate) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules
Management objectreturned
from call to NNRMgrlnit().
pRule const NNRRule * Input Must be populated prior to
this function call.
pRRuleUpdate | const Input Should be populated prior to
NNRRuleUpdate * this function call.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value
Returns 1 if the rule is updated successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session) ;

struct NNRRule key;
struct NNRRuleData data;
struct NNRRuleUpdate update;

NNR_CLEAR (&key) ;
NNR_CLEAR (&data) ;
NNR_CLEAR (&update) ;

cout << "Enter app group name" << endl << ">";

cin >> key.AppName;

cout << "Enter message type name" << endl << ">";

cin >> key.MsgName;

cout << "Enter old rule name" << endl << ">";

cin >> key.RuleName;

cout << "Enter new rule name" << endl << ">";

cin >> update.RuleName;

cout << "Enter rule active (1l->Active, O0->Inactive)"
<< endl << ">";

cin >> update.RuleActive;

if (NNRMgrUpdateRule (pmgr, &key, &update)) {
cout << endl << "\tOld Rule Name: " << key.RuleName <<
endl
<< "\tNew rule name: " << update.RuleName << endl
<< endl;
CommitXact (session) ;
} else {

DisplayError (pmgr) ;
RollbackXact (session) ;

}

CloseNNRMgr (pmgr, session) ;

return;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 215
New Era of Networks Rules Programming Reference

Chapter 4

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddRule

NNRMgrReadRule
NNRMarDeleteEntireRule
NNRMqgrGetFirstRule
NNRMgrGetNextRule

216 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrDeleteEntireRule

NNRMgrDeleteEntireRule() deletes a rule by deleting each component for the
rule, including rule, expression, and associations with subscriptions.
Subscriptions can be deleted from the rule set using
NNRMgrDeleteEntireSubscription(). The user provides the application name,
message type, and rule name.

WARNING!
NNRMgrDeleteEntireRule() deletes all components associated with a rule.
The user should only call this API to delete a rule.

When deleting rule management information, user permission to update the
rule is checked. If the user is the owner and has Update permissions for the
rule, the rule can be deleted. If the user is not the owner but does have Update
permission, the rule is set to inactive but not deleted. If the user does not have
Update permission, an error is returned indicating that the user does not have
Update permission, and no changes occur.

Syntax

const long NNRMgrDeleteEntireRule (
NNRMgr *pMgr,
const NNRRule *pRRule) ;

Parameters
Name | Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management object
returned from call to NNRMgrInit().

pRRule | const NNRRule* | Input Must be populated prior to this
function call.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 217

New Era of Networks Rules Programming Reference

Chapter 4

218

Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Return Value

Returns 1 if the rule is deleted successfully; returns 2 if the rule is deactivated;
returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session);

struct NNRRule key;
struct NNRRuleData data;
NNR_CLEAR (&key) ;

NNR_CLEAR (&data) ;

cout << "Enter app group name \n>";
cin >> key.AppName;

cout << "Enter message type name \n>";
cin >> key.MsgName;

cout << "Enter rule name \n>";

cin >> key.RuleName;

if (NNRMgrDeleteEntireRule (pmgr, &key)){
cout << endl
<< "\tRule Name: " << key.RuleName << " Deleted."
<< endl << endl;
CommitXact (session) ;
} else {
DisplayError (pmgr) ;
RollbackXact (session) ;
}
CloseNNRMgr (pmgr, session);

return;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

See Also

NNRMarlnit
NNR CLEAR

NNRMgrUpdateRule

NNRMgrAddRule
NNRMgrReadRule
NNRMqgrGetFirstRule
NNRMgrGetNextRule

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 219
New Era of Networks Rules Programming Reference

Chapter 4

Per

missions APIs

When a rule is added using NNRMgrAddRule(), the user is given ownership
of the rule, as well as Read and Update permissions. PUBLIC is given Read
permission.

The same occurs when a subscription is added using
NNRMgrAddSubscription(). These default permissions can be changed by
using NNRMgrUpdateOwnerPerm() and NNRMgrUpdatePublicPerm().

The rule expression or subscription actions can be added by the owner
without changing the default permissions. Once permissions are defined for a
rule or subscription, an owner can give ownership to another user and
change permissions for themselves or PUBLIC using other Permissions APIs.

Permission Management APl Structures

220

NNUserPermissionData

NNUserPermissionData is passed as an argument in several NeonRules
Management functions affecting permissions and should be cleared using
NN_CLEAR prior to use in a function call.

Syntax

typedef struct NNUserPermissionData{
NNPermissionData Permission;
char ParticipantName [NN PARTICIPANT NAME LEN] ;
long InitFlag;

} NNUserPermissionData;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Parameters
Name Type Description
Permission NNPermission Specifies the permission for this
Data specific participant.
ParticipantName char Logon name of the user to whom the
[NN_PARTICIPANT permission is being assigned. This
_NAME_LEN] parameter must be all capital letters
for Oracle; and case sensitive for
Sybase. PUBLIC for all users other
than the owner.
InitFlag long Flag used to determine if variables
have been initialized prior to calling a
NEONRules Management API.
See Also
NNR_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 221

New Era of Networks Rules Programming Reference

Chapter 4

222

NNPermissionData

NNPermissionData is passed as an argument in several NeonRules
Management functions affecting permissions and should be cleared using
NN_CLEAR prior to use in a function call.

Syntax

typedef struct NNPermissionData({
int Sequence;
char PermissionName [NN PERMISSION NAME LEN] ;
char PermissionValue [NN PERMISSION VALUE LEN] ;
long InitFlag;
} NNPermissionData;

Parameters
Name Type Description
Sequence int Ordering value for this specific permission name-
value pair.
PermissionName[char Type of permission being defined for the rule and
NN_PERMISSION user permission. Only Update is valid.
_NAME_LEN]
PermissionValue char Value for the permission being defined for the
[NN_PERMISSION rule and user permission. Only the Granted and
_NAME_LEN] DenyAll values associated with Update are valid.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NN CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRComponent

After a NNRRule structure is created for a rule, the user must create a
NNRComponent with ComponentType = NNRCOMP_RULE and
ComponentUnion.pRRule = &myRule.

After an NNRSubs structure is created for a rule, the user must create a
NNRComponent with ComponentType = NNRCOMP_SUBS and
ComponentUnion.pRSubs = &mySubs.

The NNRComponent is then called into a Permission APl. NNRComponent
can be initialized by calling NN_CLEAR before populating.

Syntax
typedef enum NNRComponentTypes {
NNRCOMP_RULE =1,
NNRCOMP_SUBS =2,
NNRCOMP_APP =3,
NNRCOMP_MSG =4
}NNRComponentTypes ;

typedef union NNRComponentUnion {
const struct NNRRule *pRRule;
const struct NNRSubs *pRSubs;
}NNRComponentUnion;

typedef struct {
Long InitFlag;
NNRComponentTypes ComponentType;
NNRComponentUnion ComponentUnion;

}NNRComponent ;
Parameters

Name Type Description

InitFlag Long Flag used to determine if
variables have been initialized
prior to calling a NeoNRules
Management API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 223

New Era of Networks Rules Programming Reference

Chapter 4

Name Type Description

ComponentType NNRComponentTypes Identifies the type of component
used in ComponentUnion; must
be either NNRCOMP_RULE or
NNRCOMP_SUBS.

ComponentUnion NNRComponentUnion | A union where either pRRule is
set to point to a previously
defined NNRRule structure or
pRSubs is set to point to a
previously defined NNRSubs

structure.
See Also
NNR _CLEAR
224 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Overall Permission Macro

NN_CLEAR

When using neonRules Management APIs affecting permissions, users are

expected to clear structures prior to invoking each function. Structures should
be cleared with a call to the NN_CLEAR macro. NN_CLEAR clears a

structure in such a way that the NeonRules Management APIs can alert the

user to a non-initialized structure.

Syntax

NN_CLEAR(_p)

Parameters
Name | Type Input/ | Description
Output

p Any Input Any structure used in NEoNRules
NEONRules Management API calls affecting
management permissions.
permissions
structure

Return Value

None

Example

struct NNPermission permit;

NN_CLEAR (&permit) ;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

225

Chapter 4

Permission APl Functions

NNRMgrGetFirstPerm

NNRMgrGetFirstPerm() enables the user to prepare the list of user-
permissions pairs for rules or subscriptions for retrieval by the
NNRMgrGetNextPerm() API.

Syntax

const long NNRMgrGetFirstPerm(
NNRMgr *pMgr,

const NNRComponent *pRComponent

NNUserPermissionData* const pPermissionData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NEoNRuUles Management
object returned from call to
NNRMgrInit().
pRComponent | const NNR Input Must populate prior to this
Component * function call.
pPermission NNUser Output Populated by the call to
Data PermissionData* NNRMgrGetFirstPerm().
const
Remarks

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structure or calling

this API.

226 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Call NNRMgrGetNextPerm() to retrieve all remaining rule or subscription
permissions before calling NNRMgrGetFirstPerm() to retrieve permissions
for another rule or subscription.

Return Value

Returns 1 if the list of user-permission pairs is prepared successfully; zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error message returned is RERR_NO_MORE_PERMISSIONS, no
permissions were found for the application group, message type, and rule or
subscription specified in the pRComponent structure.

See Also

NNRMarlnit
NN CLEAR

NNRMgrGetNextPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 227
New Era of Networks Rules Programming Reference

Chapter 4

228

NNRMgrGetNextPerm

NNRMgrGetNextPerm() enables the user to retrieve an user-permission pair
from the user-permissions list for a rule. When iterating through the list, a
NULL pPermissionData indicates the end of the list. NNRMgrGetFirstPerm()
MUST be called prior to using this routine.

Syntax
const long NNRMgrGetNextPerm (

NNRMgr *pMgr,
const NNUserPermissionData *pPermissionData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules
Management object returned
from call to NNRMgrlInit().
pPermission | const Output Populated by the call to
Data NNUserPermission NNRMgrGetNext Perm().
Data *
Remarks

A call to NN_CLEAR for pPermissionData should be made prior to calling
this API.

NNRMgrGetFirstPerm() MUST be called prior to using this routine.
Return Value

Returns 1 if an user-permission pair is read from the list successfully; zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

If the error message returned is RERR_NO_MORE_PERMISSIONS, the end
of the permissions list has been reached.

See Also

NNRMarlnit
NN _CLEAR

NNRMgrGetFirstPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 229
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrUpdateUserPerm

NNRMgrUpdateUserPerm() enables the user to add or change permissions
for a specific user. Only the owner of the permission can call
NNRMgrUpdateUserPerm().

Syntax
const long NNRMgrUpdateUserPerm (
NNRMgr *pMgr,

const NNRComponent *pRComponent,
const NNUserPermissionData *pPermissionData) ;

Parameters

Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules
Management object
returned from call to
NNRMgrInit().

pRComponent const Input Must be populated prior to
NNRComponent * this function call.

pPermissionData | constNNUser Input Must be populated prior to
PermissionData * this function call. This
must include a valid
database user name and a
valid permission name/
value pair (Name = Owner,
Update; Value = Granted,
DenyAll).

Remarks

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling
this API.

230 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the permission is added or updated. Returns zero (0) if the input
parameters are not initialized with NNR_CLEAR and NN_CLEAR, the
current user is not the owner of the item, the given user is invalid, the
permission name/value is invalid, or a different error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NN CLEAR

NNRMgrUpdatePublicPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 231
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrChangeOwner

NNRMgrChangeOwner() enables the owner of the rule or subscription to
change ownership to a new user. Only the current owner can change
ownership. The new owner's name must exist in the database and must be in
the same group/role as the current owner. The original owner's permissions
are transferred to the new owner, overwriting any previous permissions of
the new owner.

Syntax

const long NNRMgrChangeOwner (
NNRMgr *pMgr,
const NNRComponent *pRComponent,
char *pNewOwner) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules
Management object returned
from call to NNRMgrlnit().
pRComponent | const Input Must be populated prior to
NNRComponent * this function call.
pNewOwner char * Input Must be populated with the
new owner's logon name
prior to this function call.
Remarks

A call to NNR_CLEAR for pRComponent should be made prior to populating
the structures or calling this API.

Note that for Oracle, all owner names must be in upper-case. For example,
owner should be OWNER. Sybase uses the same case as the logon name.

232 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the owner is changed successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit

NN_CLEAR
NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 233
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrUpdateOwnerPerm

NNRMgrUpdateOwnerPerm() enables the user to add/change permissions
for the owner. Only the owner can affect owner permissions. By default,
Update and Read permissions for all rules and subscriptions are given to
their owner.

Syntax

const long NNRMgrUpdateOwnerPerm (
NNRMgr *pMgr,
const NNRComponent *pRComponent,
const NNPermissionData *pPermissionData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules
Management object
returned from call to
NNRMgrlnit().
pRComponent const NNRComponent | Input Must be populated
* prior to this function
call.
pPermissionData | const Input Must be populated
NNPermission Data * prior to this function
call.
Remarks

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling
this API.

234 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the owner's permissions are updated successfully; zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NN _CLEAR

NNRMgrUpdatePublicPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 235
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrUpdatePublicPerm

NNRMgrUpdatePublicPerm() enables the owner to change permissions for
another user. Only the owner can change permissions for other users. By
default, other users (PUBLIC) are granted Read permission and denied
Update privilege. NNRMgrUpdatePublicPerm() can add any permissions
that do not currently exist.

Syntax

const long NNRMgrUpdatePublicPerm(
NNRMgr *pMgr,
const NNRComponent *pRComponent,
const NNPermissionData *pPermissionData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules
Management object
returned from call to
NNRMgrlInit().
pRComponent const Input Should be populated prior
NNRComponent * to this function call.
pPermissionData | const Input Should be populated prior
NNPermission to this function call.
Data *
Remarks

NNRMgrAddOtherUserPermission() should be called prior to calling
NNRMgrUpdatePublicPerm().

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling
this API.

236 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the other user's permission is added successfully; zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NN _CLEAR

NNR CLEAR

NNRMgrUpdateOwnerPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 237
New Era of Networks Rules Programming Reference

Chapter 4

Operator Management APIs

Operator Management API Structures

238

NNROperator

NNROperator is passed as a pointer to the second parameter of the Operator
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Operator Management API calls. Use of this structure
is described in each Operator Management API section.

Syntax

typedef struct NNROperator (
int OperatorHandle;
char OperatorSymbol [OPERATOR SYMBOL LEN] ;
int OperatorType;

}

Parameters
Name Type | Description
OperatorHandle int Unique operator handle.
OperatorSymbol char String definition of operator.
[OPERATOR_SYMBOL _
LEN]
OperatorType int Type of data.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Operator Management APl Functions

NNRMgrGetFirstOperator

Prior to adding arguments, users must know what operators are available
and supported within the current neonRules installation.
NNRMgrGetFirstOperator() provides a way of starting to retrieve this
information. After using NNRMgrGetFirstOperator() to return the first
operator in the pOperator parameter, the user should call
NNRMgrGetNextOperator().

The pOperator structure contains a unique operator specified by a symbol,
type, and handle. The operator type and operator symbol provide a means for
the user to choose the operator symbol to provide the expression addition
and update functions: NNRMgrAddExpression() and
NNRMgrUpdateExpression().

Syntax
const long NNRMgrGetFirstOperator (

NNRMgr *pRMgr,
NNROperator * const pOperator) ;

Parameters

Name Type Input/ | Description

Output
pRMgr NNRMgr * Input Name of a current NEONRUlES
Management object.
pOperator NNROperator * | Output Populated by
const NNRMgrGetFirstOperator().

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstOperator().

A call to NNR_CLEAR for pOperator should be made prior to populating the
structures or calling this API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 239
New Era of Networks Rules Programming Reference

Chapter 4

Return Value

Returns 1 if the first operator was retrieved successfully; zero (0) if an error
occurred.

Use NNRMgrGetErrorNo() to retrieve the number for the error that occurred,
or use NNRMgrGetError() to retrieve the error message.

If the error number returned is RERR_NO_MORE_OPERATORS, no
operators were found.

See Also

NNRMgrlInit

NNR _CLEAR
NNRMarGetNextOperator()
NNRMgrGetErrorNo()
NNRMgrGetError()

240 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrGetNextOperator

Prior to adding arguments, users must know what operators are available
and supported within the current neonRules installation.
NNRMgrGetFirstOperator() provides a way of starting to retrieve this
information. After using NNRMgrGetFirstOperator() to return the first
operator in the pOperator parameter, the user should call
NNRMgrGetNextOperator().

The pOperator structure contains a unique operator specified by a symbol,
type, and handle. The operator type and operator symbol provide a means for
the user to choose the operator symbol to provide the expression addition
and update functions: NNRMgrAddExpression() and
NNRMgrUpdateExpression().

Syntax
const long NNRMgrGetNextOperator (

NNRMgr *pRMgr,
NNROperator * const pOperator) ;

Parameters

Name Type Input/ Description

Output
pRMgr NNRMgr * Input Name of a current NEONRules
Management object.
pOperator NNROperator * Output Populated by
const NNRMgrGetFirstOperator().

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextOperator().

A call to NNR_CLEAR for pOperator should be made prior to populating the
structures or calling this API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 241
New Era of Networks Rules Programming Reference

Chapter 4

Return Value

Returns 1 if the next operator was retrieved successfully; zero (0) if an error
occurred.

Use NNRMgrGetErrorNo() to retrieve the number for the error that occurred,
or use NNRMgrGetError() to retrieve the error message.

If the error number returned is RERR_NO_MORE_OPERATORS, the end of
the operators list has been reached.

See Also

NNRMgrlInit

NNR _CLEAR
NNRMarGetFirstOperator()
NNRMgrGetErrorNo()
NNRMgrGetError()

242 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Expression Management APIs

The following addressing is accepted in the NeonRules Expression
Management APIs:

FIELD NAME [instance]

FIELD NAME [*]

MAX (field instance definition)

MIN(field instance definition)

COUNT(field instance definition)

LAST(field instance definition)

AVG (field instance definition)

SUM(field instance definition)

FIELD NAME [rules max operator(field instance definition)]
FIELD NAME [rules_min operator (field instance definition)]

FIELD NAME[field instance definition rules_equal_operator
comparison value]

Rule ::= rule expression [boolean operator rule expression]

rule expression ::= field expression rules operator [
field expression | constant]

field expression ::= [field name | field instance expression]

field instance_expression ::= instance_ function
(field instance definition)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 243
New Era of Networks Rules Programming Reference

Chapter 4

244

instance function ::= [MIN | MAX | COUNT | SUM | LAST | AVG]

field instance defintion ::= [field name [instance] |
field name[*]]

boolean operator ::= [| | &]
rules operator ::= [STRING= | INT< | EXISTS | etc.]
rules_equal operator ::= [STRING= | INT= | FLOAT=| etc.]

rules_max_operator [STRING MAX | INT MAX | FLOAT MAX |

etc.]

rules min operator [STRING MAX | INT MAX | FLOAT MAX |

etc. 1

Rules for Creating Expressions

m Functions must have a field within parens ().

m The instance for a field within a function (other than SUBSTRING)
must be an asterisk.

m SUBSTRING does not require an instance to be specified.
SUBSTRING(F3,1,4) is valid.

m Leftand Right (if right is a Field) operand needs to be quoted.
m Field to Field comparisons cannot compare field instances.

m Quotes are not allowed in field names if you are using field functions.
We run out of quotes.

m Ifafield name needs to be quoted or the operand contains any
functions which have parens (), the operand must be enclosed in
double quotes.

m Sibling arguments require the following:

The only allowable field functions in a sibling argument are MIN and
MAX.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

The only comparisons allowed in sibling argument are Equal ones
(STRING=, INT=, FLOAT=....)

(An sibling argument is what is between the [].)
Example:

F1[F2[*] STRING= '1l'] INT> 10

F2[*] STRING= 'l' is the sibling argument.
F1[MAX_ INT(F2[*])] INT> 10

MAX INT(F2[*]) is the sibling argument.

= You can only have 1 function per operand. (Operands are what is on
the left and right (if F2F) of the operator.)

Example:

MAX INT(F3[*]) F2FINT= MIN INT(F4[*]) is valid
SUBSTRING (MAX_ STRING(F3[*]),3,4) F2FSTRING=
MIN STRING(F4[*]) is invalid.

Expression Management APl Structures

NNREXpP

NNREXxp is passed as an argument in several NeonRules Management APIs to
identify what rule owns the Expression. It should be cleared using
NNR_CLEAR prior to use in a function call.

Syntax

typedef struct NNRExp {
char AppName [APP NAME LEN] ;
char MsgName [MSG NAME LEN] ;
char RuleName [RULE NAME LEN] ;
long InitFlag;

} NNRExp;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 245
New Era of Networks Rules Programming Reference

Chapter 4

246

Parameters

Name Type Description

AppName char Name of the application group in which the

[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

MsgName char Name of the message for which the user is

[MSG_NAME_LEN] defining rules for message evaluation. As long
as the user is using NEoNRules, the message
type is the input format name. NULL-
terminated string of length 1 to 120 inclusive.

RuleName char Name of the rule to be evaluated within an

[RULE_NAME_LEN] application group and message name pair. This
rule name is defined by the user. NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been

initialized prior to calling a NEoNRuUles
Management API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRExpData

NNRExpData is passed as an argument in several NeonRules Management
APIs affecting Rule expressions. It should be cleared using NNR_CLEAR
prior to use in a function call.

Syntax

typedef struct NNRExpData {

NNDate DateChange;

int ChangeAction;

long InitFlag

NNDate EnableDate;

NNDate DisableDate;

char Expression [EXPRESSION LEN] ;
} NNRExpData;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

EnableDate NNDate Defaulted for now, provided for future
capability.

DisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRuUles
Management API.

Expression char Boolean expression containing arguments and

[EXPRESSION_ Boolean operators AND (&) and OR (]) with

LEN] parentheses to determine order of evaluation.
Allows the user to add, update, and read rule
expressions up to 4096 characters long plus the
terminating NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 247

New Era of Networks Rules Programming Reference

Chapter 4

Expression Management APl Functions
NNRMgrAddExpression

NNRMgrAddExpression() adds an expression to a rule. A rule can have only
one expression containing any number of arguments.
NNRMgrAddExpression() can be called only once per rule. Prior to adding
an expression, the user must define the application group, associated
message type, and rule using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule(). Before adding an expression, the user must also know
the operator information, obtained using NNRMgrGetFirstOperator() or
NNRMgrGetNextOperator().

When adding expression information, user permission to update the rule is
checked. If the user is the owner or has update permission for the rule, the
user can add the expression information. If the user does not have update
access, an error is returned indicating that the user does not have update
permission and no change occurs.

Syntax

const long NNRMgrAddExpression (
NNRMgr *pMgr,
const NNRExp* pREXp,
NNRExpData* pRExpData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().

pPREXp const NNRExp * | Input Must be populated prior to this
function call.

248 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Input/ | Description
Output
pRExpData const Input DateChange, ChangeAction,
NNRExpData * EnableDate and DisableDate

must be set to NULL,; provided
only for future enhancements.

Remarks

To store data related to expressions the application group, message type and
rule information must exist.

NNRMgrInit() should be called before NNRMgrAddExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

Return Value

Returns 1 if the expression was added successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrDeleteEntireRule
NNRMgrReadExpression

NNRMgrUpdateExpression

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 249
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrReadExpression

NNRMgrReadExpression() retrieves the rule expression associated with the
application group, message type, and rule triplet. Prior to retrieving an
expression, it must be defined. See NNRMgrAddApp(), NNRMgrAddMsg(),
NNRMgrAddRule(), and NNRMgrAddExpression().

When retrieving the rule expression, user permission to read the rule is
checked. If the user has read permission for the rule, the user can see the rule
information. If the user attempting to access rule information does not have
read access, an error is returned, indicating the user does not have read
permission.

Syntax

const long NNRMgrReadExpression (
NNRMgr *pMgr,
const NNRExp *pREXp,
NNRExpData* pRExpData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules
Management objectreturned
from call to NNRMgrlnit().
pPREXp const NNRExp * Input Must be populated prior to
this function call.
pRExpData const NNRExpData* | Output Populate this structure using
NNRMgrReadExpression().
Remarks

To read expression data, the application group, message type, and rule
information, including the expression, must exist.

250 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrInit() should be called before NNRMgrReadExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

Return Value

Returns 1 if the expression was added successfully, zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrDeleteEntireRule
NNRMgrAddExpression

NNRMgrUpdateExpression

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 251
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrUpdateExpression

NNRMgrUpdateExpression() updates an expression in a rule. Prior to adding
an expression, the user must define the application group, associated
message type, and rule using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule(). Before adding or updating an expression, the user must
also know the operator information, obtained using
NNRMgrGetFirstOperator() or NNRMgrGetNextOperator().

When updating expression information, user permission to update the rule is
checked. If the user has update permission for the rule, the user can update
the expression information. If the user attempting to update an expression
does not have update access, an error is returned indicating that the user does
not have update permission and no changes occur.

Syntax

const long NNRMgrUpdateExpression (
NNRMgr *pMgr,
const NNRExp *pREXp,
const NNRExpData *pRExpData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().

pPREXp const NNRExp * | Input Must be populated prior to this
function call.

pRExpData const Input DateChange, ChangeAction,

NNRExpData * EnableDate and DisableDate
must be set to NULL,; provided
only for future enhancements.
252 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Remarks

To update data related to expressions, the application group, message type
and rule information (including the expression) must exist.

NNRMgrInit() should be called before NNRMgrUpdateExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

Return Value

Returns 1 if the expression was updated successfully, zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrDeleteEntireRule
NNRMgrAddExpression

NNRMgrReadExpression

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 253
New Era of Networks Rules Programming Reference

Chapter 4

Argument Management APIs

These APIs are used only for backwards compatibility. The Expression APls

should be used instead.

Argument Management APl Structures

NNRArg

NNRArg structure is passed as a pointer as the second parameter of selected
Argument Management APIs. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to
any Argument Management API calls.

Syntax

typedef struct NNRArg {
char AppName [APP_NAME LEN] ;
char MsgName [MSG NAME LEN] ;
char RuleName [RULE NAME LEN] ;
long InitFlag;

} NNRArg;
Parameters
Name Type | Description
AppName char Name of the application group in which the
[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
MsgName char Name of the message for which the user is
[MSG_NAME_LEN] defining rules for message evaluation. Using
NEONFormatter, the message type is the input
format name. NULL-terminated string of
length 1 to 120 inclusive.
254 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type | Description
RuleName char Name of the rule to be evaluated within an
[RULE_NAME_LEN] application group and message name pair. This

rule name is defined by the user.NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 255

New Era of Networks Rules Programming Reference

Chapter 4

NNRArgData

NNRArgData structure is passed as a pointer as the third parameter of select
Argument Management APIs. The pointer cannot be NULL and must be
cleared using NNR_CLEAR prior to being populated by the user or by
Argument Management API calls. Use of this structure is described in each
Argument Management API section.

Syntax

typedef struct NNRArgData(
NNDate DateChange;
int ChangeAction;
char FieldName [FIELD NAME LEN] ;
int OperatorId;
int OperatorType;
char SecondFieldName [SECOND_FIELD NAME LEN] ;
char ArgValue [ARG VALUE LEN] ;
int ArgActive;
NNDate ArgEnableDate;
NNDate ArgDisableDate;
int ArgSequence;
long InitFlag;
} NNRArgData;

Members

Name Type Description

DateChange NNDate Defaulted for now, provided for
future capability.

ChangeAction int Defaulted for now, provided for
future capability.

FieldName char Name of the field to which the

[FIELD_NAME_LEN] operator is applied. NULL-
terminated string of length 1 to 120
inclusive.

256 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Description

Operatorld int ID retrieved by
NNRMgrGetFirstOperator() or
NNRMgrGetNextOperator().

OperatorType int Type retrieved by
NNRMgrGetFirstOperator() or
NNRMgrGetNextOperator().

SecondFieldName char Value to which the field is compared

[SECOND_FIELD _ for a field to field operator. NULL-

NAME_LEN] terminated string of length 1 to 120
inclusive.

ArgValue char Value of the comparison (static value).

[ARG_VALUE_LEN]

ArgActive int Specifies whether the argument is
active (value of 1). For release v6.0
and newer, all arguments MUST be
active.

ArgEnableDate NNDate For future enhancements, ignore for
now.

ArgDisableDate NNDate For future enhancements, ignore for
now.

ArgSequence int Sequence of this argument within the
rule.

InitFlag long Flag used to determine if variables
have been initialized prior to calling a
NEONRuUles Management API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 257

New Era of Networks Rules Programming Reference

Chapter 4

Argument Management APl Functions

NNRMgrGetFirstArgument

NNRMgrGetFirstArgument() provides a way to retrieve information for a list
of arguments associated with an application group/message type/rule
triplet. This API returns the first argument in the rule in the pRArgData
parameter. Prior to retrieving an argument, it must be defined.

When retrieving argument information, user permission to read the rule is
checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have Read permission.

Note:
The arguments are not necessarily grouped together with the Boolean AND

(&) operator. If there is more than one argument, use the
NNRMgrReadExpression() API to determine the Boolean operators.

Syntax

const long NNRMgrGetFirstArgument (
NNRMgr *pMgr,
const NNRArg * pRArg,
NNRArgData * const pRArgData) ;

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Name of a current NEONRUIlES
Management object.

pRArg const NNRArg * | Input Must be populated prior to this
API call.

258 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Input/ | Description
Output
pRArgData NNRArgData * Output NNRMgrGetFirstArgument()

const

populates this structure.

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstArgumenty().
A call to NNR_CLEAR for both pRArg and pRArgData should be made prior
to populating the structures or calling this API.

Return Value

Returns 1 if the argument is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_ARGUMENTS, no arguments
were found for the application group, message type, and rule name specified

in the pRATrg structure.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrGetNextArgument
NNRMgrReadExpression
NNRMarAddApp()
NNRMarAddMsq()
NNRMarAddRule()
NNRMarAddExpression()

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 259
New Era of Networks Rules Programming Reference

Chapter 4

260

NNRMgrGetNextArgument

NNRMgrGetNextArgument() provides a way of iterating through the
arguments after the first argument has been retrieved.

When retrieving argument information, user permission to read the rule is
checked. If the user is the owner or another user and with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have Read permission.

Note:
The arguments are not necessarily grouped together with the Boolean AND ()

operator. If there is more than one argument, the user should use the
NNRMgrReadExpression() API to retrieve the Boolean operators.

Syntax

const long NNRMgrGetNextArgument (
NNRMgr *pMgr,
NNRArgData * const pRArgData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned by call to
NNRMgrlInit().
pRArgData NNRArgData * Output NNRMgrGetNextArgument()
const populates this structure.
Remarks

NNRMgrInit() should be called prior to calling
NNRMgrGetNextArgument(). A call to NNR_CLEAR for both pRArg and

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

pRArgData should be made prior to populating the structures or calling this
API.

Return Value

Returns 1 if the argument is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_ARGUMENTS, the end of the
arguments list has been reached.

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrGetFirstArgument
NNRMgrReadExpression

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 261
New Era of Networks Rules Programming Reference

Chapter 4

Subscription Management APIs

Subscriptions are added to an Application Group/Message Type Rule Set.
After they are added, subscriptions can be associated with multiple rules in
the same Application Group/Message Type.

The NNRMgrAddSubscription() APl is used to add the subscription to the
Rule Set if no rule name is given, and to associate the subscription to a rule.
Subscription permissions work similarly to rule permissions.

Subscription Management API Structures

NNRSubs

NNRSubs is passed as a pointer as the second parameter of select
Subscription Management APIs. This pointer cannot be NULL. This structure
must be populated by the user prior to calling any of the Subscription
Management APIs, and should be initialized by calling NNR_CLEAR prior to
populating all of the fields.

Syntax

typedef struct NNRSubs{
char AppName [APP_NAME LEN] ;
char MsgName [MSG NAME LEN] ;
char RuleName [RULE NAME LEN] ;
char SubsName [SUBS NAME LEN] ;
long InitFlag;

} NNRSubs;
Parameters
Name Type | Description
AppName char Name of the application group in which the user
[APP_NAME_LEN] is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
262 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type

Description

MsgName char
[MSG_NAME_LEN]

Name of the message for which the user is
defining rules for message evaluation. Using
NEONFormatter, the message type is the input
format name. NULL-terminated string of length
1to 120 inclusive.

RuleName char
[RULE_NAME_LEN]

Name of the rule to be evaluated within an
application group and message name pair. This
rule name is defined by the user. NULL-
terminated string of length 1 to 120 inclusive.
RuleName is required only when adding a
subscription to a specific rule. It is ignored for
action, option, update, and delete functions.

SubsName char
[SUBS_NAME_LEN]

Name of the subscription associated with a
message hame and application group. NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NeoNRules
Management API.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 263

New Era of Networks Rules Programming Reference

Chapter 4

264

NNRSubsData

NNRSubsData is passed as a pointer as the third parameter of select
Subscription Management APIs. The pointer cannot be NULL and must be
cleared prior to being populated by the user or by Subscription Management
API calls. Use of this structure is described in each Subscription Management
API section.

Syntax

typedef struct NNRSubsData{
NNDate DateChange;
int ChangeAction;
int SubsActive;
NNDate SubsEnableDate;
NNDate SubsDisableDate;
char SubsOwner [SUBS OWNER_LEN] ;
char SubsComment [SUBS COMMENT LEN] ;
long InitFlag;
} NNRSubsData;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of lindicates that the subscription
isactive, avalue of zero (0) indicates that
the subscription is inactive.

SubsEnableDate NNDate Provided for future functionality,
ignored for now.

SubsDisableDate NNDate Provided for future functionality,
ignored for now.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Description
SubsOwner char Name of the owner of the subscription.
[SUBS_OWNER_LEN]
SubsComment char Information details about the
[SUBS_COMMENT_LEN] subscription.
InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRuUles Management API.
See Also
NNR_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 265

New Era of Networks Rules Programming Reference

Chapter 4

266

NNRSubsReadData

NNRSubsReadData is a structure containing subscription information after a
subscription read operation.

typedef struct NNRSubsReadData(

char AppName [APP NAME LEN] ;
char MsgName [MSG NAME LEN] ;
char RuleName [RULE NAME LEN] ;
char SubsName [SUBS NAME LEN] ;
NNDate DateChange;

int ChangeAction;

int SubsActive;

NNDate SubsEnableDate;

NNDate SubsDisableDate;

char SubsOwner [SUBS OWNER_LEN] ;
char SubsComment [SUBS COMMENT LEN] ;
long InitFlag;

} NNRSubsReadData;

Parameters
Type Description
AppName char Name of the application group to
[APP_NAME_LEN] identify the subscription. NULL-
terminated string of length 1 to 120
inclusive.
MsgName char Name of the message type to identify
[MSG_NAME_LEN] the subscription. NULL-terminated
string of length 1 to 120 inclusive.
RuleName char Name of the rule to link to the
[RULE_NAME_LEN] subscription, if provided. NULL-

terminated string of length 1 to 120
inclusive.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Description

SubsName char Name of the subscription to be read.

[SUBS_NAME_LEN] NULL-terminated string of length 1 to
120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of lindicates that the subscription
isactive, avalue of zero (0) indicates that
the subscription is inactive.

SubsEnableDate NNDate Defaulted for now, provided for future
capability.

SubsDisableDate NNDate Defaulted for now, provided for future
capability.

SubsOwner char Contains the name of the subscription

[SUBS_OWNER_ LEN] owner.

SubsComment char Contains the subscription owner's

[SUBS_COMMENT_LEN] comment.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.

See Also
NNR _CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 267

New Era of Networks Rules Programming Reference

Chapter 4

NNRSubsUpdate

NNRSubsUpdate contains update information for subscriptions. The pointer
must be cleared using NNR_CLEAR prior to being populated, and must be
populated prior to any Subscription Management API calls.

Syntax

typedef struct NNRSubsUpdate {
char SubsName [SUBS NAME LEN] ;
NNDate DateChange;
int ChangeAction;
int SubsActive;
NNDate SubsEnableDate;
NNDate SubsDisableDate;
char SubsOwner [SUBS OWNER_LEN] ;
char SubsComment [SUBS COMMENT LEN] ;
long InitFlag;
} NNRSubsUpdate;

Parameters

Name Type Description

SubsName char Name for the subscription to be

[SUBS_NAME_LEN] updated.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of 1 indicates that the subscription
isactive, avalue of zero (0) indicates that
the subscription is inactive.

SubsEnableDate NNDate Defaulted for now, provided for future
capability.

SubsDisableDate NNDate Defaulted for now, provided for future
capability.

268 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Description
SubsOwner char Defaulted for now, provided for future
[SUBS_OWNER_LEN] capability.
SubsComment char Defaulted for now, provided for future
[SUBS_COMMENT_LEN] capability.
InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRuUles Management API.
See Also
NNR_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 269

New Era of Networks Rules Programming Reference

Chapter 4

Subscription Management APl Functions

NNRMgrAddSubscription

NNRMgrAddSubscription() adds subscription maintenance information for
one subscription. If the user wants more than one subscription for the rule or
rule set, this function must be called once for each subscription. The user can
either supply a rule name or not. The subscription is created if it does not
already exist in the rule set. If the rule name is provided, the subscription is
associated with that rule, if the user has Update permission for the rule. The
user entering the subscription is identified and stored as its owner and is
automatically granted Update and Read permission for the subscription.
PUBLIC is automatically granted Read permission for the subscription.

When adding subscription information to a rule, user permission to update
the rule is checked. If the user is the owner or another user with Update
permission for the rule, the user can add the subscription information. If the
user attempting to add a subscription does not have Update access, an error is
returned indicating that the user does not have Update permission and no
changes occur.

Syntax

const long NNRMgrAddSubscription (
NNRMgr *pMgr,
const NNRSubs *pRSubs,
const NNRSubsData *pRSubsData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().
270 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Input/ | Description
Output
pRSubs const NNRSubs * | Input Must be populated prior to this

function call. Users need not
specify the rule name.

pRSubsData | const Input Must be populated prior to
NNRSubsData * calling this function. Set
DateChange, ChangeAction,
SubsEnableDate and
SubsDisableDate to NULL. They
are provided only for future
enhancements. SubsActive is
defaulted to 1.

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddSubscription().

A call to NNR_CLEAR for both pRSubs and pRSubsData should be made
prior to populating the structures or calling this API.

If a rule name is provided, the function checks to see if the subscription
already exists in the rule set. If the subscription exists, it then checks to see if
the rule already has the subscription. If so, the function fails and sets the error
code to RERR_SUBS NAME_ALREADY_EXISTS. If not, the function adds
the subscription to the rule.

If the rule name is provided, and the subscription does not exist in the rule
set, the function creates the subscription and automatically adds it to the rule.

If the user does not provide the rule name, the function
NNRMgrAddSubscription() checks to see if the subscription exists in the rule
set. If the subscription already exists, the function is set to the
RERR_SUBS_ALREADY_EXISTS IN_RULESET error code. If not, the
function creates the subscription.

Return Value

Returns 1 if the subscription is added successfully; zero (0) if an error occurs.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 271
New Era of Networks Rules Programming Reference

Chapter 4

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit

NNR _CLEAR
NNRMgrAddRule
NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm
NNRMgrReadSubscription

272 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrReadSubscription

NNRMgrReadSubscription() reads subscription maintenance information for
one subscription.

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or a user with Read or Update
permissions for the subscription, the user can see the subscription. If the user
attempting to access subscription information does not have a minimum of
Read access, an error is returned indicating that the user does not have Read
permission. The subscription Read permission is also checked when reading
an action or option in the subscription. If the rule name is given, the rule is
checked for Read permission and association with the subscription.

Syntax

const long NNRMgrReadSubscription (
NNRMgr *pMgr,
const NNRSubs *pRSubs,
NNRSubsData* const pRSubsData) ;

Parameters
Name | Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().

pRSubs | const NNRSubs * Input Must be populated prior to this
function call.

The rule name does not have to be
provided in the NNRSubs structure
pointed to by pRSubs.

pRSubs | NNRSubsData* Output NNRMgrReadSubscription()

Data const populates this structure. If
DateChange is non-NULL, the
subscription exists.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 273

New Era of Networks Rules Programming Reference

Chapter 4

274

Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadSubscription().
A call to NNR_CLEAR for both pRSubs and pRSubsData should be made
prior to populating the structures or calling this API.

If arule name is provided, pRSubs verifies whether the subscription exists for
the rule name and checks rule permission. If the rule name is not provided,
the function verifies whether the subscription exists in the rule set.

Return Value

Returns 1 if the subscription was read successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddSubscription

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrGetFirstSubscription

NNRMgrGetFirstSubscription() and NNRMgrGetNextSubscription() enable
the user to iterate through the subscriptions associated with the application
group, message type and, optionally, the rule name. Call
NNRMgrGetFirstSubscription(), and then call
NNRMgrGetNextSubscription().

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for the subscription, the user can see the information. If
the user does not have a minimum of Read access, an error is returned,
indicating the user does not have Read permission. If the rule name is not
provided, all subscriptions are retrieved for the rule set.

Syntax

const long NNRMgrGetFirstSubscription (
NNRMgr *pMgr,
const NNRSubs *pRSubs,
NNRSubsReadData * const pRSubsReadData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().

pRSubs const NNRSubs * | Input Must be completely populated
except for the SubscriptionName
field prior to this function call.
User need not specify a rule
name.

pRSubsRead | NNRSubsRead Output Populated by this function call.

Data Data * const

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 275

New Era of Networks Rules Programming Reference

Chapter 4

276

Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

The rule name does not have to be provided in the NNRSubs structure
pointed to by pRSubs. If provided, the function retrieves the first subscription
associated with the rule. If not provided, the function retrieves the first
subscription associated with the rule set.

Return Value

Returns 1 if the subscription was retrieved successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_SUBSCRIPTIONS, no
subscriptions were found for the application group and message type
specified in the pRSubs structure.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session) ;

struct NNRSubs key;
struct NNRSubsReadData data;
NNR_CLEAR (&key) ;
NNR_CLEAR (&data) ;

cout << "Enter app group name \n>";
cin >> key.AppName;

cout << "Enter message type name \n>";
cin >> key.MsgName;

cout << "Enter rule name \n>";

cin >> key.RuleName;

int iret = NNRMgrGetFirstSubscription(pmgr, &key, &data);
if (iret)

{

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

printSubscription(&key, &data);
while (NNRMgrGetNextSubscription (pmgr, &data))

{
}

printSubscription(&key, &data);

}

else

{
}

CloseNNRMgr (pmgr, session) ;

cout << endl << "Read failed." << endl << endl << endl;

return;
See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddSubscription
NNRMagarReadSubscription
NNRMagrGetNextSubscription
NNRMarUpdateSubscription

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 277
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrGetNextSubscription

NNRMgrGetFirstSubscription() and NNRMgrGetNextSubscription() enable
the user to iterate through the subscriptions associated with the application
group, message type and, optionally, the rule name. Call
NNRMgrGetFirstSubscription() before NNRMgrGetNextSubscription().

When retrieving subscription information, user permission to read both the
rule and the subscription is checked. If the user is the owner or another user
has read or update permissions for the subscription, the user can see the
information. If the user attempting to access subscription information does
not have a minimum of read access, an error returns indicating the user does
not have read permission. The subscription read permission is also checked
when reading an action or option in the subscription

Syntax
const long NNRMgrGetNextSubscription (

NNRMgr *pMgr,
NNRSubsReadData * const pRSubsReadData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules
Management object
returned from call to
NNRMgrlnit().
pRSubsReadData NNRSubsRead Output Populated by this function
Data * const call.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

278 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the subscription was retrieved successfully; zero if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_SUBSCRIPTIONS, the end
of the subscriptions list has been reached.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session) ;

struct NNRSubs key;

struct NNRSubsReadData data;
NNR_CLEAR (&key) ;

NNR_CLEAR (&data) ;

cout << "Enter app group name \n>";
cin >> key.AppName;

cout << "Enter message type name \n>";
cin >> key.MsgName;

cout << "Enter rule name \n>";

cin >> key.RuleName;

int iret = NNRMgrGetFirstSubscription (pmgr, &key, &data);
if (iret)

{

printSubscription(&key, &data);
while (NNRMgrGetNextSubscription (pmgr, &data))

{
}

printSubscription(&key, &data);

}

else

{
}

CloseNNRMgr (pmgr, session);
return;

cout << endl << "Read failed." << endl << endl << endl;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 279
New Era of Networks Rules Programming Reference

Chapter 4

See Also

NNRMarlnit

NNR_CLEAR
NNRMgrAddSubscription
NNRMgrReadSubscription
NNRMgrGetFirstSubscription
NNRMgrUpdateSubscription

280 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrDuplicateSubscription

NNRMgrDuplicateSubscription() creates a new subscription based on the
subscription name provided. The new subscription has the name provided in
the pNewSubsName and inherits all other properties from the existing
subscription provided in pSubs.SubsName. The user must have Read
permission to the subscription to duplicate it.

Syntax

const long NNRMgrDuplicateSubscription
NNRMgr *pMgr,
const NNRSubs* pSubs,
const char * const pNewSubsName) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules
Management objectreturned
from call to NNRMgrlnit().

pSub const NNRSubs* | Input Must be populated prior to
this function call.

NewSubsName const char* const | Input Names of duplicate specified

subscription.

Return Value

Returns 1 if the subscription duplicated successfully; zero (0) if an error

occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 281
New Era of Networks Rules Programming Reference

Chapter 4

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrGetNextRuleUsingSubs

282 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrUpdateSubscription

NNRMgrUpdateSubscription() enables the user to update a subscription. The
user provides the unique application group, message type, and subscription
name to identify the subscription to be updated in the pRSubs structure, and
provides the new information in the pRSubsUpdate structure.

When updating subscription information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission, the user can update the subscription information. If the user
attempting to update a subscription does not have Update access, an error is
returned indicating that the user does not have Update permission, and no
change occurs.

Subscription Update permission is also checked when an action or option is
added or updated in the subscription.

Syntax

const long NNRMgrUpdateSubscription (
NNRMgr *pMgr,
const NNRSubs *pRSubs,
const NNRSubsUpdate *pRSubsUpdate) ;

Parameters
Name | Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().

pRSubs | const NNRSubs * Input Must be populated prior to this
function call.
The user does not have to specify a
rule name; the name is ignored.

pRSubs | const Input Must be populated prior to this

Update | NNRSubsUpdate * function call.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 283

New Era of Networks Rules Programming Reference

Chapter 4

284

Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

The rule name does not have to be in the NNRSubs structure pointed to by
pRSubs; the name is ignored. However, all the changes made to the
subscription are made globally within the rule set.

Return Value

Returns 1 if the subscription was updated successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session) ;

struct NNRSubs key;

struct NNRSubsUpdate data;
NNR_CLEAR (&key) ;

NNR_CLEAR (&data) ;

cout << "Enter app group name \n>";
cin >> key.AppName;

cout << "Enter message type name \n>";
cin >> key.MsgName;

cout << "Enter subscription name \n>";
cin >> key.SubsName;

cout << "Enter New subscription name \n>";

cin >> data.SubsName;

cout << "Enter new subscription owner \n>";

cin >> data.SubsOwner;

cout << "Enter new subscription comment \n>";

cin >> data.SubsComment;

if (NNRMgrUpdateSubscription (pmgr, &key, &data))
cout << endl

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

<< "\tSubs Name: " << key.SubsName << "
Changed."
<< endl << endl;
CommitXact (session) ;
} else {
DisplayError (pmgr) ;
RollbackXact (session) ;

}

CloseNNRMgr (pmgr, session) ;
return;

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddSubscription
NNRMagarReadSubscription
NNRMarGetFirstSubscription
NNRMagrGetNextSubscription

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 285
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrDeleteSubscriptionFromRule

NNRMgrDeleteSubscriptionFromRule() disassociates a subscription from its
rule if the user has update permission for the rule. Only a subscription that is
not associated with any rule can be deleted from the rule set by using
NNRMgrDeleteEntireSubscription().

Syntax

const long NNRMgrDeleteSubscriptionFromRule (
NNRMgr *pMgr,
const NNRRule *pRRule,
const char * SubsName) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().
pRRule pPRRule Input The unique rule definition.
SubsName const char* const | Input Name of subscription.
Remarks

A call to NNR_CLEAR for pRRule should be made prior to populating the
structures or calling this API.

Return Value

Returns 1 if the user has update permission for the rule, is deleting the
subscription, and the subscription is successfully deleted. Returns zero (0) if
an error occurs. An error occurs if the user does not have update permission.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

286 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

See Also

NNRMarlnit
NNRMgrDeleteEntireSubscription

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 287
New Era of Networks Rules Programming Reference

Chapter 4

288

NNRMgrDeleteEntireSubscription

NNRMgrDeleteEntireSubscription() deletes a subscription and its actions and
options from the specified rule. If the subscription is associated with any
rules, an error is returned.

When deleting subscription information, user permission to update the
subscription is checked. If the user is the owner and has Update permissions
for the subscription, the subscription is deleted. If the user is not the owner
but does have Update access, the subscription is set to inactive but not
deleted. If the user does not have Update access, an error is returned
indicating that the user does not have Update permission, and no changes
occur.

Syntax
const long NNRMgrDeleteEntireSubscription (

NNRMgr *pMgr,
const NNRMSubs *pRSubs) ;

Parameters
Name | Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management object
returned from call to NNRMgrlnit().
pRSubs | NNRMSubs | Input The unique identifier for the subscription
with the application group name, message
type name, and subscription name.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the subscription was deleted successfully; 2 if the subscription
was deactivated; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNRMgrDeleteSubscriptionFromRule

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 289
New Era of Networks Rules Programming Reference

Chapter 4

290

NNRMgrGetFirstRuleUsingSubs

NNRMgrGetFirstRuleUsingSubs() enables the user to iterate through the
rules associated with a subscription. If there are any rules using the
subscription, the name of the first rule is returned in
NpRSubsReadData.RuleName.

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for subscription, the user can see the information. If the
user attempting to access subscription information does not have a minimum
of Read access, an error is returned indicating that the user does not have
Read permission. The subscription Read permission is also checked when the
user is reading an action or option in the subscription.

Syntax

const long NNRMgrGetFirstRuleUsingSubs (
NNRMgr *pMgr,
const NNRSubs *pRSubs,
char* const pRuleName) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().

pRSubs const NNRSubs * | Input Must be completely populated
except for the Subscription Name
field prior to this function call.
User must not specify a rule
name.

pRuleName | char* const Output Populated by this function call.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

The rule name should not be provided in the NNRSubs structure pointed to
by pRSubs.

Return Value

Returns 1 if the rules were retrieved successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, no rules were
found for the application group, message type, and rule name specified in the
pRSubs structure.

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrAddSubscription
NNRMagrReadSubscription
NNRMarGetFirstSubscription
NNRMarUpdateSubscription
NNRMarGetNextRuleUsingSubs

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 291
New Era of Networks Rules Programming Reference

Chapter 4

292

NNRMgrGetNextRuleUsingSubs

NNRMgrGetFirstRuleUsingSubs() and NNRMgrGetNextRuleUsingSubs()
enable the user to iterate through the subscriptions associated with a rule.
Call NNRMgrGetFirstRuleUsingSubs() before
NNRMgrGetNextRuleUsingSubs().

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for the subscription, the user can see the information. If
the user attempting to access subscription information does not have a
minimum of Read access, an error is returned indicating that the user does
not have Read permission. The subscription Read permission is also checked
when reading an action or option in the subscription

Syntax
const long NNRMgrGetNextRuleUsingSubs (

NNRMgr *pMgr,
char* const pRuleName) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NEoNRUles Management object
returned from call to NNRMgrlnit().
pRuleName char* const Output Populated by this function call.
Remarks

NNRMgrInit() should be called prior to any neonRules Management API
calls.

The rule name does not have to be provided in the NNRSubs structure
pointed to by pRSubs.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the rule was retrieved successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, the end of the rule
list has been reached.

See Also

NNRMarlnit
NNR _CLEAR

NNRMagrAddSubscription
NNRMagrReadSubscription
NNRMarGetFirstSubscription
NNRMarUpdateSubscription
NNRMarGetFirstRuleUsingSubs

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 293
New Era of Networks Rules Programming Reference

Chapter 4

Action Management APIs

Action are commands used if a rule evaluates as true and the subscription is
performed. A subscription includes actions that contain option name-value
pairs.

Action Management API Structures
NNRAction

NNRAction is passed as a pointer as the second parameter of select Action
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Action Management API calls.

Syntax

typedef struct NNRAction({
char AppName [APP NAME LEN] ;
char MsgName [MSG NAME LEN] ;
char RuleName [RULE NAME LEN] ;
char SubsName [SUBS NAME LEN] ;
char ActionName [ACTION NAME LEN] ;
char OptionName [OPTION NAME LEN] ;
long InitFlag;
} NNRAction;

Parameters
Name Type | Description
AppName char Name of the application group defined by the
[APP_NAME_LEN] user. Should be the application group in which
the user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
294 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type | Description

MsgName char Name of the message for which the user is

[MSG_NAME_LEN] defining rules for message evaluation. As long
as the user is using NEONFOrmatter, the
message type is the input format name. NULL-
terminated string of length 1 to 120 inclusive.

RuleName char The rule name is ignored for actions and

[RULE_NAME_LEN] options. NULL-terminated string of length 1 to
120 inclusive.

SubsName char Name of the subscription associated with a rule

[SUBS_NAME_LEN] name, message name, and application group.
NULL-terminated string of length 1 to 120
inclusive.

ActionName char Name of the action associated with this

[ACTION_NAME_ subscription. NULL-terminated string of length

LEN] 1 to 120 inclusive.

OptionName char Name of the first option associated with this

[OPTION_NAME_ action. NULL-terminated string of length 1 to

LEN] 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.

See Also
NNR CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 295

New Era of Networks Rules Programming Reference

Chapter 4

296

NNRActionData

NNRActionData is passed as a pointer as the third parameter of the Action
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Action Management API calls. Use of this structure is
described in the Action Management API section.

Syntax

typedef struct NNRActionData{
NNDate DateChange;
int ChangeAction;
char OptionValue [OPTION VALUE LEN] ;

long InitFlag;

) NNRActionData;

Parameters
Name Type Description
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
OptionValue char Value of the first option.
[OPTION_VALUE_LEN]
InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRuUles Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNRActionReadData

NEONRules Management APIs

NNRActionReadData is passed as a pointer as the third parameter of select
Action Management APIs. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to being populated by the user or by Action
Management API calls. Use of this structure is described in each Action

Management API section.

Syntax

typedef struct NNRActionReadData({

NNDate DateChange;
int ChangeAction;
int ActionSequence;

char ActionName [ACTION NAME LEN] ;
char OptionName [OPTION NAME LEN] ;
char OptionValue [OPTION VALUE LEN] ;

long InitFlag;
} NNRActionReadData;

New Era of Networks Rules Programming Reference

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

ActionSequence int Sequence of this action within its
subscription. For example, for the first
action, ActionSequence=1.

ActionName char Name of the action associated with the

[ACTION_NAME_LEN] subscription. NULL-terminated string of
length 1 to 120 inclusive.

OptionName char Name of the first option associated with

[OPTION_NAME_LEN] the action. NULL-terminated string of
length 1 to 120 inclusive.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 297

Chapter 4

Name Type Description

OptionValue char Static value of the first option if there are

[OPTION_VALUE_LEN] no actions.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRuUles Management API.

298 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRActionUpdate

NNRActionUpdate contains update information for actions. The pointer
must be cleared using NNR_CLEAR prior to being populated, and must be
populated prior to any Action Management API calls.

Syntax

typedef struct NNRActionUpdate(
char ActionName [ACTION NAME LEN] ;
NNDate DateChange;
int ChangeAction;
long InitFlag;
} NNRActionUpdate;

Parameters
Name Type Description
ActionName char Name of the action to be updated.
[ACTION_NAME_LEN] NULL-terminated string of length 1 to
120 inclusive.
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRuUles Management API.
See Also
NNR CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 299

New Era of Networks Rules Programming Reference

Chapter 4

Action Management APl Functions

NNRMgrAddAction

NNRMgrAddAction() adds both an action and its first option. All other
options must be added using NNRMgrAddOption(). Prior to adding an
action, the application group, message type, and subscription must have been
added using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddSubscription().

When adding action information, user permission to update the subscription
is checked. If the user is the owner or another user with Update permission
for the subscription, the user can add the action information. If the user
attempting to add an action does not have Update access, an error is returned
indicating that the user does not have Update permission, and no change
occurs.

Syntax

const long NNRMgrAddAction (
NNRMgr *pMgr,
const NNRAction *pRAction,
const NNRActionData *pRActionData,
int *pActionId) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules
Management objectreturned
from call to NNRMgrlnit().

pRAction const NNRAction * | Input Must be populated prior to
this function call. The rule
name is ignored.

300 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Input/ | Description
Output
pRActionData | const NNRAction Input Set DateChange and
Data * ChangeAction to NULL;
provided only for future
enhancements.
pActionid int* Input Value of the action identifier

used to insert all but the first
option for an action.

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddAction().

A call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the action was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrGetFirstAction
NNRMgrGetNextAction
NNRMgrDeleteAction

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 301

New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrGetFirstAction

NNRMgrGetFirstAction() provides a way of starting to retrieve information
for a list of actions associated with an application group, message type, rule
and subscription. This API returns the first action in the subscription in the
pRActionData parameter. Prior to retrieving an action, actions must be
defined.

When retrieving action information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the rule information. If the
user does not have a minimum of Read access, an error is returned indicating
that the user does not have Read permission.

Syntax

const long NNRMgrGetFirstAction (
NNRMgr *pMgr,
const NNRAction * pRAction,
NNRActionReadData * const pRActionData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().

pRAction const NNRAction * | Input Must be populated prior to this
function call. RuleName,
ActionName, and OptionName
do not have to be populated
before this call.

pRAction NNRActionRead Output NNRMgrGetFirstAction()

Data Data * const populates this structure.

302 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstAction().A
call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the action was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_ACTIONS, no actions
were found for the application group and message type specified in the
pRAction structure.

See Also

NNRMarlnit
NNR _CLEAR

NNRMagrGetNextAction
NNRMgrAddApp()
NNRMgrAddMsg()
NNRMgrAddRule()
NNRMagrAddSubscription()
NNRMgrAddAction()
NNRMgrAddOption()

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 303
New Era of Networks Rules Programming Reference

Chapter 4

304

NNRMgrGetNextAction

NNRMgrGetNextArgument() provides a way of iterating through the actions
after the first action has been retrieved. See NNRMgrGetFirstAction().

When retrieving action information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the action information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

Syntax
const long NNRMgrGetNextAction (

NNRMgr *pMgr,
NNRActionReadData * const pRActionData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules
Management object
returned from call to
NNRMgrInit().
pRActionData | NNRActionRead Output NNRMgrGetNextAction()
Data * const populates this structure.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextAction(). A
call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the action was read successfully; zero (0) if an error occurred. Use
NNRGetErrorNo() to retrieve the number for the error that occurred, or use
NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_ACTIONS, the end of the
actions list has been reached.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrGetFirstAction

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 305
New Era of Networks Rules Programming Reference

Chapter 4

306

NNRMgrResequenceAction

NNRMgrResequenceAction() enables the user to resequence actions within a
subscription. NNRMgrResequenceAction() moves the action to the specified
new position. The user provides the unique application group, message type,
subscription name, current position, and the position to move the action to.

For example, the following actions exist in your code:

putqueue (TargetQ, MessageType)
reformat (inputformat, outputformat)

You want reformat to occur before putqueue. Call
NNRMgrResequenceAction(), providing action 2 as the action to be moved
and action 1 as the new position. This results in:

reformat (inputformat, outputformat)
putqueue (TargetQ, MessageType)

To indicate the first action to move in an action sequence, oldPosition can be
set to NNRRB_START or to the number 1. To specify the last action to move
in an action sequence, set oldPosition to NNRRB_END.

To move an action to the end of an action sequence, set newPosition to
NNRRB_END. To move an action to the start of an action sequence, set
newPosition to NNRRB_START, or to the number 1.

If oldPosition or newPosition is greater than the maximum action/option
sequence, it is changed to the maximum action sequence.

When updating action information, user permission to update the rule is
checked. If the user is the owner or another user with Update permission for
the subscription, the user can update the action information. If the user does
not have Update access, an error is returned indicating that the user does not
have Update permission, and no changes occur.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Syntax

const long NNRMgrResequenceAction (
NNRMgr *pMgr,
const NNRAction *pRAction,
int oldPosition,
int newPosition) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlnit().
pRAction const Input Must be populated prior to this
NNRAction * function call. The rule name is
ignored.
oldPosition int Input Old numeric position of the action
to be resequenced.
newPosition | int Input New numeric position of the action
to be resequenced.
Remarks

NNRMgrInit() should be called prior to any neonRules Management API
calls.

NeoNRules Management resequence boundaries are held in the following
structure:

typedef enum NNRResegBounds {
NNRRB_END = -1,
NNRRB_START = 1
} NNRResegBounds;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 307
New Era of Networks Rules Programming Reference

Chapter 4

Return Value

Returns 1 if the action is resequenced successfully; zero (0) if an error
occurred.

If either oldPosition or newPosition are negative and not equal to
NNRRB_END, an error condition is returned, and errVal is set to
RERR_INVALID_ACTION_PARAM.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session);

struct NNRAction key;
struct NNRActionUpdate data;
int oldActionSeq, newActionSeq;
NNR_CLEAR (&key) ;

NNR_CLEAR (&data) ;

cout << "Enter app group name \n>";

cin >> key.AppName;

cout << "Enter message type name \n>";
cin >> key.MsgName;

cout << "Enter subscription name \n>";
cin >> key.SubsName;

cout << "Enter old action sequence \n>";
cin >> oldActionSeq;

cout << "Enter new action sequence \n>";
cin >> newActionSeq;

if (NNRMgrResequenceAction (pmgr, &key, oldActionSedq,
newActionSeq)) {

cout << endl
<< "\tAction Name: " << key.ActionName
<< "Resequenced." << endl;
cout << endl
<< "\tOld Action id: " << oldActionSeqg << endl
<< endl;
308 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

CommitXact (session) ;

} else {
DisplayError (pmgr) ;
RollbackXact (session) ;

}

CloseNNRMgr (pmgr, session) ;
return;

See Also
NNRMarlnit

NNR CLEAR
NNRMgrAddAction
NNRMarDeleteAction
NNRMarGetFirstAction

NNRMgrGetNextAction
NNRMgrUpdateAction

NEONRules Management APIs

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 309

New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrUpdateAction

NNRMgrUpdateAction() enables the user to update an action for a
previously defined subscription. NNRMgrUpdateAction() only changes the
action name. To update options, use the Option Management APIs.

The action position represents the sequence number of the action to be
updated, starting from 1 and going to the end of the action sequence. To
change the first action, set position to 1. To change the fifth action, set position
to 5, and so on.

When updating action information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission for the subscription, the user can update the action information. If
the user attempting to update an action does not have Update access, an error
is returned indicating the user does not have Update permission and no
changes occur.

Syntax

const long NNRMgrUpdateAction (
NNRMgr *pMgr,
const NNRAction *pRAction,
const NNRActionUpdate *pRActionUpdate,
int position) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules
Management object returned
from call to NNRMgrlInit().

pRAction const Input Should be populated prior to

NNRAction * this function call. The rule
name is ignored.
310 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Input/ | Description
Output

pRActionUpdate | const Input Should be populated prior to
NNRAction this function call.
Update *

position int Input Numeric order of the action to

update.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API

calls.

Return Value

Returns 1 if the action was updated successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or

use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session);

struct NNRAction key;
struct NNRActionUpdate data;
int ActionId = -1;

NNR_CLEAR (&key) ;
NNR_CLEAR (&data) ;

cout << "Enter app group name \n>";
cin >> key.AppName;

cout << "Enter message type name \n>";
cin >> key.MsgName;

cout << "Enter subscription name \n>";
cin >> key.SubsName;

cout << "Enter action ID \n>";

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

311

Chapter 4

cin >> ActionId;
cout << "Enter new action name \n>";
cin >> data.ActionName;

if (NNRMgrUpdateAction(pmgr, &key, &data, ActionId))

cout << endl

<< "\tAction Name: " << key.ActionName

<< " Updated." << endl;
cout << endl

<< "\tAction id: " << ActionId << endl << endl;
CommitXact (session) ;

} else {
DisplayError (pmgr) ;
RollbackXact (session) ;

}

CloseNNRMgr (pmgr, session) ;
return;

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddAction
NNRMarDeleteAction
NNRMarGetFirstAction
NNRMgrGetNextAction

NNRMgrResequenceAction

312 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NNRMgrDeleteAction

NEONRules Management APIs

NNRMgrDeleteAction deletes the specified action from a subscription. After
this function is performed, the action and all its options are deleted and
subsequent actions are re-sequenced.

The user must have Update permission for the subscription. If the user is the
owner, the user can delete the action from a subscription. If the user
attempting to delete an action is not the owner, an error is returned indicating
that the user does not have Update permission and no changes occur.

Syntax

const long NNRMgrDeleteAction (
NNRMgr *pMgr,
const NNRAction *pRAction,
int position) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().
pRAction const Input Must be populated prior to this
NNRAction * function call. The rule name is
ignored.
position int* Input Numeric order of the action to
delete.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrDeleteAction().

A call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

313

Chapter 4

Return Value

Returns 1 if the action was deleted.

Returns zero (0) if the input parameters are not initialized with NNR_CLEAR,
the current user does not have Update permission for the subscription, the
action does not exist, or a different error occurs. Use NNRGetErrorNo() to
retrieve the number for the error that occurred, or use
NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrGetFirstAction
NNRMgrGetNextAction
NNRMgrAddAction

314 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Option Management APlIs

Options are name-value pairs that further define an action. The first option is
added with the action, and others must be added with

NNRMgrAddOption().

Option Management APl Structures

NNROption

NNROption is passed as a pointer as the second parameter of select Option
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any

Option Management API calls.
Syntax

typedef struct NNROption({

char AppName [APP NAME LEN] ;

char MsgName [MSG NAME LEN] ;
char RuleName [RULE NAME LEN] ;
char SubsName [SUBS NAME LEN] ;
char ActionName [ACTION NAME LEN] ;

int ActionId;

char OptionName [OPTION NAME LEN] ;

long InitFlag;
} NNROption;

Parameters
Name Type | Description
AppName char Name of the application group in which the

[APP_NAME_LEN]

user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 315

New Era of Networks Rules Programming Reference

Chapter 4

316

Name Type | Description

MsgName char Name of the message for which the user is

[MSG_NAME LEN] defining rules for message evaluation. The
message type is the input format name if the
user is using NEoNFormatter. NULL-
terminated string of length 1 to 120 inclusive.

RuleName char Name of the rule to be defined within an

[RULE_NAME_LEN] application group and message name pair.
This rule name is defined by the user. NULL-
terminated string of length 1 to 120 inclusive.

SubsName char Name of the subscription associated with a

[SUBS_ message name and application group.

NAME LEN]

ActionName char Name of action. NULL-terminated string of

[ACTION NAME LEN] length 1 to 120 inclusive.

Actionld int Value of the action identifier used to insert all
but the first option for an action.

OptionName char Name of the option associated with this

[OPTION NAME LEN] action. If this field is empty, default is used as
the OptionName. NULL-terminated string of
length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been

initialized prior to calling a NEoNRUles
Management API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNROptionData

NNROptionData is passed as a pointer as the third parameter of the Option
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Option Management API calls. Use of this structure is
described in each Option Management API section.

Syntax

typedef struct NNROptionData{

NNDate DateChange;
int ChangeAction;
char OptionValue [OPTION VALUE LEN] ;
long InitFlag;

} NNROptionData;

NEONRules Management APIs

Parameters
Name Type Description
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
OptionValue char Value of the option. If this field is empty,
[OPTION_NAME_LEN] "default” is used as the OptionValue.
InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.
See Also
NNR_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 317

New Era of Networks Rules Programming Reference

Chapter 4

NNROptionReadData

NNROptionReadData is passed as a pointer as a parameter of select Option
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by Option Management
API calls. Use of this structure is described in each Option Management API

section.

Syntax

typedef struct NNROptionReadData({

NNDate DateChange;
int ChangeAction;

char ActionName [ACTION NAME LEN]

int ActionSequence;

char OptionName [OPTION NAME LEN]
char OptionValue [OPTION VALUE LEN] ;

int OptionSequence
long InitFlag;
} NNROptionReadData;

Parameters
Name Type Description
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
ActionName char Name of action. NULL-terminated string

[ACTION NAME LEN]

of length 1 to 120 inclusive.

ActionSequence int Sequence of this action within its
subscription. For example, for the first
action, ActionSequence=1.

OptionName char Name of option. NULL-terminated

[OPTION_NAME_LEN]

string of length 1 to 120 inclusive.

318 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Description
OptionValue char Static value of the option. If there are no
[OPTION VALUE LEN] options, this must not be NULL since
this function adds an option.
OptionSequence int Sequence of this option within its action.
For example, for the first option,
OptionSequence=1.
InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRuUles Management API.
See Also
NNR _CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 319

New Era of Networks Rules Programming Reference

Chapter 4

320

NNROptionUpdate

NNROptionUpdate is passed as a pointer as a parameter of select functions in
the Option Management API. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to

any Option Management API calls.

Syntax

typedef struct NNROptionUpdate
char OptionName [OPTION NAME LEN] ;

NNDate DateChange;
int ChangeAction;

char OptionValue [OPTION VALUE LEN] ;

long InitFlag;
} NNROptionUpdate;

Parameters

Name Type Description

OptionName char Name of the option to update. NULL-

[OPTION_NAME_LEN] terminated string of length 1 to 120
inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OptionValue char Value of the option to be updated.

[OPTION_VALUE LEN]

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRuUles Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Option Management APl Functions

NNRMgrAddOption

If an action has more than one option, NNRMgrAddOption() is used to add
all but the first option. Prior to adding more options, the user must define the
first action and first option pair using NNRMgrAddAction().

When adding option information, user permission to update the subscription
is checked. If the user is the owner or another user with Update permission

for the subscription, the user can add the option information. If the user does
not have Update access, an error is returned indicating that the user does not
have Update permission and no change occurs.

Syntax

const long NNRMgrAddOption (
NNRMgr *pMGR,
const NNROption *pROption,
const NNROptionData *pROptionData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().
NNROption | const Input Must be populated prior to this
NNROption * function call. The rule name is
ignored.
NNROption | const Input Set DateChange and ChangeAction
Data NNROption to NULL; provided only for future
Data * enhancements.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

321

Chapter 4

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddOption(). A call
to NNR_CLEAR for both NNROption and NNROptionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was added successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrDeleteOption
NNRMgrGetFirstOption
NNRMgrGetNextOption

322 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrGetFirstOption

NNRMgrGetFirstOption() provides a way of starting to retrieve information
for a list of options associated with an application group, message type,
subscription, and action. This API returns the first option in the action in the
pROptionData parameter. Prior to retrieving an option, options must be
defined.

When retrieving option information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the option information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

Syntax

const long NNRMgrGetFirstOption (
NNRMgr *pMgr,
const NNROption * pROption,
NNROptionReadData * const pROptionData) ;

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Name of a current NEoNRUles
Management object.

pROption | const NNROption* | Input Must be populated prior to this
function call. The rule name is
ignored.

pROption | NNROptionRead Output NNRMgrGetFirstOption()

Data Data * const populates this structure.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 323

New Era of Networks Rules Programming Reference

Chapter 4

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstOption().

A call to NNR_CLEAR for both pROption and pROptionData should be
made prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_OPTIONS, no options were found
for the application group and message type specified in the pROption
structure.

See Also

NNRMarlnit
NNR _CLEAR

NNRMarGetNextOption
NNRMgrAddApp()
NNRMgrAddMsg()
NNRMgrAddRule()
NNRMagrAddSubscription()
NNRMgrAddOption()

324 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrGetNextOption

NNRMgrGetNextOption() provides a way of iterating through the options
after the first option has been retrieved (see NNRMgrGetFirstOption()).

When retrieving option information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the option information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

Syntax
const long NNRMgrGetNextOption (

NNRMgr *pMgr,
NNROptionReadData * const pROptionData) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Name of a current NEONRUlES
Management object.
pROption | NNROption Output NNRMgrGetNextOption()
Data ReadData * const populates this structure.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextOption(). A
call to NNR_CLEAR for both pROption and pROptionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 325
New Era of Networks Rules Programming Reference

Chapter 4

If the error number returned is RERR_NO_MORE_OPTIONS, the end of the
options list has been reached.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrGetFirstOption

326 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrResequenceOption

NNRMgrResequenceOption() enables the user to resequence options within
an action. NNRMgrResequenceOption() moves the option to the specified
new position. The user provides the unique application group, message type,
rule name, subscription name, current position, and the position to move it to.

For example, the following action/option information exists:

exec (process, argumentl, argument2, argument3)

A call to NNRMgrResequenceOption switches the option in position 4
(argument3) to the option in position 3. The option in position 3 (argument2)
then resides in position 4;

exec (process, argumentl, argument3, argument2)

To indicate the first option to move in an option sequence, oldPosition can be
set to either NNRRB_START or to the number 1. To specify the last option to
move in an option sequence, set oldPosition to NNRRB_END.

To move an option to the end of an option sequence, set newPosition to
NNRRB_END. To move an option to the start of an option sequence, set
newPosition to NNRRB_START, or to the number 1.

If oldPosition or newPosition is greater than the maximum action/option
sequence, it is changed to the maximum option sequence.

When updating option information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission for the subscription, the user can update the option information. If
the user does not have Update access, an error is returned indicating that the
user does not have Update permission, and no change occurs.

Syntax

const long NNRMgrResequenceOption (
NNRMgr *pMgr,
const NNROption *pROption,
int oldPosition,
int newPosition) ;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 327
New Era of Networks Rules Programming Reference

Chapter 4

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().
pROption const Input Must be populated prior to this
NNROption * function call. The rule name is
ignored.
oldPosition int Input Old numeric order of the action to
be resequenced.
newPosition | int Input New numeric order of the action to
be resequenced.
Remarks

NNRMgrInit() should be called prior to any neonRules Management API
calls.

NeoNRules Management resequence boundaries are held in the following
structure:

typedef enum NNRResegBounds {
NNRRB_END = -1,
NNRRB_START = 1
} NNRResegBounds;

Return Value

Returns 1 if the option is resequenced successfully; zero (0) if an error
occurred.

If either oldPosition or newPosition are negative and not equal to
NNRRB_END, an error condition is returned, and errVal is set to
RERR_INVALID_OPTION_PARAM.

328 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session);

struct NNROption key;
struct NNROptionUpdate data;
int oldPosition, newPosition;
NNR_CLEAR (&key) ;

NNR_CLEAR (&data) ;

cout << "Enter app group name \n>";

cin >> key.AppName;

cout << "Enter message type name \n>";
cin >> key.MsgName;

cout << "Enter subscription name \n>";
cin >> key.SubsName;

cout << "Enter action id \n>";

cin >> key.ActionId;

cout << "Enter old option sequence \n>";
cin >> oldPosition;

cout << "Enter new option sequence \n>";
cin >> newPosition;

if (NNRMgrResequenceOption (pmgr, &key, oldPosition,
newPosition)) {

cout << endl
<< "\tOption Name: " << key.OptionName
<< "Resequenced." << endl
<< endl;
CommitXact (session) ;
} else {

DisplayError (pmgr) ;
RollbackXact (session) ;

CloseNNRMgr (pmgr, session) ;
return;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 329
New Era of Networks Rules Programming Reference

Chapter 4

See Also
NNRMarlnit

NNR CLEAR
NNRMgrAddOption
NNRMgrDeleteOption
NNRMarGetFirstOption

NNRMgrGetNextOption
NNRMgrUpdateOption

330 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrUpdateOption

NNRMgrUpdateOption() enables the user to update an action for an existing
subscription. The user provides the unique application group, message type,
and subscription name, and defines the option to change (in the pROption
structure). The new information is provided in the pROptionUpdate
structure.

The option position represents the sequence number of the option to be
updated, starting from 1 and going to the end of the option sequence. To
change the first option, set position to 1. To change the fifth option, set
position to 5, and so on.

When updating option information, user permission to update the
subscription is checked. The user or owner has Update permission for the
rule and can update the rule information. If the user does not have Update
access, an error is returned indicating that the user does not have Update
permission, and no change occurs.

Syntax

Const long NNRMgrUpdateOption (
NNRMgr *pMgr,
const NNROption *pROption,
const NNROptionUpdate *pROptionUpdate,
int position) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules
Management object
returned from call to
NNRMgrInit().

pROption const NNROption * Input Must be populated prior to
this function call.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 331

New Era of Networks Rules Programming Reference

Chapter 4

332

Name Type Input/ | Description

Output
pROption const Input Must be populated prior to
Update NNROptionUpdate * this function call. The rule

name is ignored.

position int Input Numeric order of the
action to be updated.

Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Return Value

Returns 1 if the option was updated successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session);

struct NNROption key;
struct NNROptionUpdate data;
int position;

NNR_CLEAR (&key) ;

NNR_CLEAR (&data) ;

cout << "Enter app group name \n>";
cin >> key.AppName;

cout << "Enter message type name \n>";
cin >> key.MsgName;

cout << "Enter subscription name \n>";
cin >> key.SubsName;

cout << "Enter action id \n>";

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

cin >> key.ActionId;

cout << "Enter option id \n>";

cin >> position;

cout << "Enter new option name \n>";
cin >> data.OptionName;

cout << "Enter new option value \n>";
cin >> data.OptionValue;

if (NNRMgrUpdateOption(pmgr, &key, &data, position))

cout << endl
<< "\tOption Name: " << key.OptionName
<< " Changed." << endl
<< endl;

CommitXact (session) ;

} else {
DisplayError (pmgr) ;
RollbackXact (session) ;

}

CloseNNRMgr (pmgr, session) ;

return;

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrAddOption
NNRMgrGetFirstOption
NNRMgrGetNextOption

NNRMgrResequenceOption

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 333
New Era of Networks Rules Programming Reference

Chapter 4

NNRMgrDeleteOption

NNRMgrDeleteOption() deletes the specified option from a subscription
action. This call deletes the option and resequences subsequent options for
the action. If the action contains only the one option, the entire action is
deleted.

The user must have Update permission for the subscription to perform this
action. If the user does not have Update permission, an error is returned and
no changes occur.

Syntax

const long NNRMgrDeleteOption (
NNRMgr *pMGR,
const NNROption *pROption,
int position) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().

pROption const Input The position parameter is the

NNROption * Option Sequence number (starting

with 1) for the Action defined by the
pROption Action Id. Does not need
the RuleName or OptionName
populated.

position int Input Numeric order of the option to be
deleted.

334 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Remarks

A call to NNR_CLEAR for both NNROption and NNROptionData should be
made prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was deleted.

Returns zero (0) if the input parameters are not initialized with NNR_CLEAR,
the current user does not have update permission, the action or option does
not exist, or a different error occurred. Use NNRGetErrorNo() to retrieve the
number for the error that occurred, or use NNRGetErrorMessage() to retrieve
the error message.

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrAddOption
NNRMgrGetFirstOption
NNRMgrGetNextOption

NNRMgrResequenceOption

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 335
New Era of Networks Rules Programming Reference

Chapter 4

veonrules Management Error Handling

NNRGetErrorNo

NNRGetErrorNo() retrieves the error number from previous NeoNRules
Management calls.

Syntax

const int NNRGetErrorNo (NNRMgr *pRMgr) ;

Parameters
Name Type Input/ | Description
Output
pRMgr NNRMgr * Input Name of a current Rules Management
object.

Return Value

Returns the error number for an error occurring during any of the prior
NeoNRules Management calls; returns zero (0) if no NeonRules Management
functions were called prior to this call or NNR_NO_ERR if no error exists.
Use NNRGetErrorMessage() to get the associated error message.

See Also
NNRGetErrorMessage
NNRMarlnit

336 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NNRGetErrorMessage

NEONRules Management APIs

NNRGetErrorMessage() retrieves the error message from previous NeonRules
Management calls.

Syntax

const char * NNRGetErrorMessage (NNRMgr *pRMgr) ;

Parameters
Name Type Input/ | Description
Output
pRMgr NNRMgr* | Input Name of a current NeoNRules
Management object.

Return Value

Returns the error message for an error occurring during any of the previous
NeoNRules Management calls.

See Also

NNRGetErrorNo

NNRMarlnit

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 337
New Era of Networks Rules Programming Reference

Chapter 4

338 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 5
Error Messages

The following lists of errors are subject to change:
m Data processing related errors
m Client code errors
m Rules Management data errors

If you receive one of these errors, verify that the DBMS is still
running properly.

m General Rules Management errors

Component refers to any item with its own permissions, for example,
Rules or Subscriptions.

m Permission data errors

Component refers to any item with its own permissions, for example,
Rules or Subscriptions.

m General permission errors

The listed errors are generic. When an error code is set, the error message is
enhanced with contextual information. For example, when a rule does not
exist, the given application group name, message type name, and rule name
are appended to the error message with a space and dash separating each
name.

Note:

Error numbers -10000 to -10099 are neonRules Broker specific and are not
included in this list. For more information, see the System Management
Guide.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 339
New Era of Networks Rules Programming Reference

Data Processing Related Errors

Code | Message Explanation Response
-1000 Unknown error code or | No matching error code.
no error
-1001 Rules configuration Application group passed | Check the Application
missing Application into eval() does not exist Group set in the eval()
Group for Rules database. call OR check the
Message on the queue OPT_APP_GRP option
does not have a valid for the message in the
OPT_APP_GRP option. input queue.
-1002 Rules configuration Application group Check the Application
missing Message Type message type pair passed | Group and Message
into eval() does not exist Type set in the eval()
for the Rules database. call. Check the
Message on the queue OPT_APP_GRP and
does not have a valid OPT_MSG_TYPE
OPT_MSG_TYPE option. options for the message
in the input queue.
-1003 Rules not configured or | Rule data in the database Run Consistency
Operations missing for is incorrect. Checker to check data.
message
-1004 Rules configuration Rule missing active Run Consistency
missing Arguments for | arguments in database. Checker to check data.
message
-1005 Rules configuration No active rules defined for | Review the data in the
missing Rules the application group/ database.
message type pair.
-1006 Rules configuration No active subscriptions Run Consistency
missing Subscriptions for the rules in the Checker to check data.
application group/
message type pair.
-1007 Rules configuration At least one subscription Make sure all rules have

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

missing Subscription
Actions

does not have any actions.

New Era of Networks Rules Programming Reference

subscription actions.

340

Error Messages

Code | Message Explanation Response
-1008 Rules configuration All rules have a single Error code is used
missing Boolean argument. internally as a warning.
Operators It should never appear
to the user. Call New
Era of Networks
Technical Support.
-1009 Major Database Error Major database error. Verify that database is
Retrieving Application up and schema is okay.
Group/Message Type This error may occur if
an old version of the
Rules schema is being
used.
-1010 Major Database Error Major database error. Verify that database is
Retrieving Arguments up and schema is okay.
-1011 Major Database Error Major database error Verify that database is
Retrieving Boolean up and schema is okay.
Operators
-1012 Major Database Error Major database error Verify that database is
Retrieving Operations up and schema is okay.
-1013 Major Database Error Major database error Verify that database is
Retrieving Rules up and schema is okay.
-1014 Major Database Error Major database error Verify that database is
Retrieving Subscription up and schema is okay.
Actions
-1015 Major Database Error Major database error Verify that database is

Retrieving
Subscriptions

up and schema is okay.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

341

Chapter 5

Client Code Errors

Code | Message Explanation Response

-2000 Unknown error code or | No error.
no error

-2001 NULL or dead dbms The session pointer is Check DBMS and run
connection provided to | invalid. OpenDbmsSession()
Rules daemon again.

-2002 NULL or missing No message type name set | Send in avalid message
message type provided | ineval(). type.
to Rules daemon

-2003 Error adding argument | (Should never see) Shut down Rules
to Rules daemon Memory may be low. daemon and restart.

-2004 Wrong number of Data in the database is Run Consistency
argument columns incorrect. Checker to check data.
during load

-2005 Unexpected argument Data in the database is Run Consistency
column during load incorrect. Checker to check data.

-2006 NULL argument Data in the database is Run Consistency
column during load incorrect. Checker to check data.

-2007 Error adding operation | (Should never see) Shut down Rules
to Rules daemon Memory may be low. daemon and restart.

-2008 Wrong number of Data in the database is Run Consistency
operation columns incorrect. Checker to check data.
during load

-2009 Unexpected operation Data in the database is Run Consistency
column during load incorrect. Checker to check data.

-2010 NULL operation Data in the database is Run Consistency
column during load incorrect. Checker to check data.

342 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response
-2011 Error adding a Rule to A rule in the database has | Run the Consistency
Rules daemon an argument count of zero | Checker to find the rule
(0) which is invalid. Rules | and fix the problem.
must have at least one
active argument.
-2012 Wrong number of rule Data in the database is Run Consistency
columns during load incorrect. Checker to check data.
-2013 Unexpected rule Data in the database is Run Consistency
column during load incorrect. Checker to check data.
-2014 NULL rule column Data in the database is Run Consistency
during load incorrect. Checker to check data.
-2015 Error adding a (Should never see) Shut down Rules
Subscription to Rules Memory may be low. daemon and restart.
daemon
-2016 Wrong number of Data in the database is Run Consistency
subscription columns incorrect. Checker to check data.
during load
-2017 Unexpected Data in the database is Run Consistency
subscription column incorrect. Checker to check data.
during load
-2018 NULL subscription Data in the database is Run Consistency
column during load incorrect. Checker to check data.
-2019 Error adding a Rule (Should never see) Shut down Rules
Subscription to Rules Memory may be low. daemon and restart.
daemon
-2020 Wrong number of Rule Data in the database is Run Consistency
Subscription columns incorrect. Checker to check data.
during load
-2021 Unexpected Rule Data in the database is Run Consistency

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

Subscription column
during load

incorrect.

New Era of Networks Rules Programming Reference

Checker to check data.

343

Chapter 5

Code | Message Explanation Response
-2022 NULL Rule Data in the database is Run Consistency
Subscription column incorrect. Checker to check data.
during load
-2023 INTERNAL ERROR - (Should never see) Shut down Rules
failed to resize Memory may be low. daemon and restart.
operations
-2024 INTERNAL ERROR - (Should never see) Shut down Rules
failed to resize rules Memory may be low. daemon and restart.
-2025 Formatter failed to The message type may not | Check Input Format
parse input message match the format of the Name (MsgType) and
input message. message (use apitest).
-2026 INTERNAL ERROR - (Should never see) Shut down Rules
incorrect operation Memory may be low. daemon and restart.
count
-2027 Invalid Argument Data in the database is Run Consistency
loaded - operation id incorrect. Checker to check data.
too high
-2028 Input message had an Call to eval() had an Check the parameters
invalid length invalid msglen parameter. | sent to eval().
-2029 Rule argument countis | Data in the database is Run Consistency
invalid - check table incorrect. Checker to check data.
-2030 Formatter instance is (Should never see) Shut down Rules
NULL Memory may be low. daemon and restart.
-2031 NULL input message The message sent through | Check the call to eval()
eval() is empty. or the message in the
gueue when running
the Rules daemon.
-2032 Internal Error - Problem evaluating part Run Consistency
Evaluation failure #1 of arule —operator may be | Checker to check data.
invalid.
-2033 Internal Error - Load Problem loading Run Consistency
failure #1 arguments. Checker to check data.
344 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response
-2034 Internal Error - Load Problem loading operator. | Run Consistency
failure #2 Checker to check data.
-2035 Internal Error - Problem evaluating part Run Consistency
Evaluation failure #2 of a rule; operator may be | Checker to check data.
invalid.
-2036 Database type not Invalid DbmsType in the Check call to
supported Session variable used to OpenDbmsSession().
create Rules daemon.
-2037 Internal Error - Load Problem loading Run Consistency
failure #3 subscriptions. Checker to check data.
-2038 Internal Error - Load Problem loading Run Consistency
failure #4 subscriptions. Checker to check data.
-2039 Empty Input Value for No application group Check call to eval().
Application Group name passed into eval().
Name
-2040 Empty Input Value for No message type name Check call to eval().
Message Name passed into eval().
-2041 Internal Error - Lookup | Problem loading message | Run Consistency
failure #1 type. Checker to check data.
-2042 Internal Error - Lookup | Problem loading Run Consistency
failure #2 application group. Checker to check data.
-2043 Internal Error - NULL (Should never see) Shut down Rules
Engine Instance Memory may be low. daemon and restart.
-2044 Error setting HitList gethitrule() had problems | Run Consistency
retrieving hit rules. Checker to check data.
-2045 Error setting NoHitList | getnohitrule() had Run Consistency
problems retrieving no hit | Checker to check data.
rules.
-2046 Internal Error - Noerror | (Should never see) Shut down Rules
handler Memory may be low. daemon and restart.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 345

New Era of Networks Rules Programming Reference

Chapter 5

Code | Message Explanation Response
-2047 Internal Error - Error Problem with threading - Shut down process
Setting Thread Specific maybe too many threads. immediately, check
Data system, and restart.
-2048 Internal Error - Error Problem loading Boolean Run Consistency
Loading Boolean operators. Checker to check data.
Operators
-2049 Field value does not A Date or DateTime Verify a Time value is
have valid Month and/ | comparison is not valid not used in a Date
or Day. against Time data - the comparison and that the
month and day are then month and day have
00. valid non-zero values.
-2050 Error adding (Should never see) Shut down Rules
Subscription Action/ Memory may be low. daemon and restart.
Option to Rules
daemon.
-2051 Error adding (Should never see) Shut down Rules
Subscription Rule Link Memory may be low. daemon and restart.
to Rules daemon.
-2052 Invalid Component For NEoNRules 4.1.1, the Verify that the Load
Type passed into only valid componentsto | RuleComponent API is
Reload Call. reload are: not sent Component
NNRCOMP_MSG and Type NNRCOMP_APP
NNRCOMP_SUBS. or NNRCOMP_RULE.
-2053 Error removing Rule (Should never see) Shut down Rules
Subscription Link to Memory may be daemon and restart.
Rules daemon. corrupted.
-2054 Error comparing old (Should never see) Shut down Rules
and new Subscription Memory may be daemon and restart.
Rule Links. corrupted.
-2055 Error Removing Reload | (Should never see) Shut down Rules
Component from Memory may be daemon and restart.
Reload List in Rules corrupted.
daemon.
346 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response

-2056 Error allocating (Should never see) Severe | Shut down Rules
memory for new Rules error. Memory must be daemon and restart.
daemon object. low.

-2057 Invalid operation in Operator typeinarule for | Run Consistency
expression. this Rule Set is invalid. Checker to check data.

-2058 Duplicate found for Message contain two Check message sent to
Sibling; cannot fields that met criteria for | eval() and make surethe
determine correct field. | Sibling relationship; no Sibling has a unique

way to determine which value.
field to use.

-2059 SubString function Substring function may Check the expression
failed; possible invalid have been called with a for a SubString call with
parameters. negative number for the invalid parameters.

start or length of the field
value.

-2060 Internal Error - Problem evaluating part Check system resources.
Evaluation failure #3 of a rule. Run Consistency

Checker to check data.

-2061 Field Name 2 is missing | A Rule in the Rule Set is Run Consistency
for a Field-to-Field attempting to perform a Checker to check data.
comparison field-to-field comparison

without the second field
name.
-2062 Field Name 1is missing | A Rule in the Rule Set is Run Consistency

for a Field-to-Field
comparison

attempting to perform a
field-to-field comparison
without the first field
name.

Checker to check data.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

347

Chapter 5

Rules Management Data Errors

Code | Message Explanation Response
-2500 No rules management No error.
error
-2501 DB error Not in use. (Should never see)
-2502 DB error Counter Insert | Data may be incorrect to Run Consistency
add new Application Checker to check data.
Group.
-2503 DB error Counter Data may be incorrect to Run Consistency
Update add new Application Checker to check data.
Group.
-2504 DB error Counter Data may be incorrect to Run Consistency
Instance Insert add new Rule, Checker to check data.
Subscription, and so on.
-2505 DB error Counter Data may be incorrect to Run Consistency
Instance Update add new Rule, Checker to check data.
Subscription, and so on.
-2506 DB error Application Problem inserting Run Consistency
Group Insert Application Group. May Checker to check data.
be duplicate.
-2507 DB error message type Problem inserting Run Consistency
insert (format) Message Type. May notbe | Checker to check data.
valid format.
-2508 DB error message type Problem inserting Run Consistency
insert Message Type. May be Checker to check data.
duplicate.
-2509 DB error rule insert Problem inserting Rule. Run Consistency
May be duplicate. Checker to check data.
-2510 DB error rule update Problem updating Rule. Run Consistency
Rule may not exist. Checker to check data.
-2511 DB error argument op Problem inserting Run Consistency
insert operator for rule. Checker to check data.
348 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response
-2512 DB error argument Problem inserting Run Consistency
insert (Arg) argument for rule. Checker to check data.
-2513 DB error argument op Problem updating Run Consistency
update argument for rule. Checker to check data.
-2514 DB error subscription Problem inserting Run Consistency
list insert subscription. May be Checker to check data.
duplicate.
-2515 DB error subscription Problem inserting Run Consistency
master insert subscription. May be Checker to check data.
duplicate.
-2516 DB error action insert Problem inserting action. Run Consistency
Checker to check data.
-2517 DB error application Problem retrieving Run Consistency
group read application group. May Checker to check data.
have wrong name.
-2518 DB error message type Problem retrieving Run Consistency
read message type. May have Checker to check data.
wrong parameters.
-2519 DB error rule read Problem retrieving rule. Run Consistency
May have wrong Checker to check data.
parameters.
-2520 DB error subscription Problem retrieving Run Consistency
list read subscription. May have Checker to check data.
wrong parameters.
-2521 DB error subscription Problem retrieving Run Consistency
master read subscription. May have Checker to check data.
wrong parameters.
-2522 DB error subscription Problem retrieving Run Consistency

action read

subscription action. May
have wrong parameters.

Checker to check data.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

349

Chapter 5

Code | Message Explanation Response
-2523 DB error message type Problem retrieving Run Consistency
read (message id) message type/format. Checker to check data.
May have wrong
parameters.

-2524 DB error operator read Problem retrieving Run Consistency
operator. May havewrong | Checker to check data.
parameters.

-2525 DB error operator type Problem retrieving Run Consistency

read operator type. May have Checker to check data.
invalid operator.

-2526 DB error argument read | Problem retrieving rule Run Consistency
action. May have wrong Checker to check data.
parameters.

-2527 DB error counter read Problem retrieving new Run Consistency
application id. May have Checker to check data.
wrong parameters.

-2528 DB error counter Problem retrieving new Run Consistency

instance read ids for rule, subscription, Checker to check data.
and so on. May have
wrong parameters.

-2529 DB error operation read | Problem retrieving Run Consistency
argument info. May have Checker to check data.
wrong parameters.

-2530 DB error unreferenced Arguments exist that are Run Consistency

operations not used in arule. Checker to check data.

-2531 DB error argument Cannot update argument. | Run Consistency

update Checker to check data.

-2532 DB error subscription Problem retrieving Run Consistency

multi-read subscription info. May Checker to check data.
have wrong parameters.

-2533 DB error options not No options found for Run Consistency

found subscription action. Checker to check data.
350 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response
-2534 DB error option delete Cannot delete option. Run Consistency
Checker to check data.

-2535 DB error action Cannot resequence Run Consistency
resequence actions. May have invalid | Checker to check data.

sequence parameters.

-2536 DB error option Cannot resequence Run Consistency
resequence options. May have invalid | Checker to check data.

sequence parameters.

-2537 DB error delete all Cannot delete all Run Consistency
arguments failed arguments for a rule. May | Checker to check data.

have wrong parameters.

-2538 DB error delete all list Cannot delete all Run Consistency
subscriptions failed subscriptions for a rule. Checker to check data.

May have wrong
parameters.

-2539 DB error delete all Cannot delete all Run Consistency
subscription masters subscriptions for a rule. Checker to check data.
failed May have wrong

parameters.

-2540 DB error delete all Cannot delete all actions Run Consistency
actions failed for a rule. May have Checker to check data.

wrong parameters.

-2541 DB error operation Cannot reduce the Run Consistency
decrement number of arguments Checker to check data.

using a specific operator.

-2542 DB error delete rule Cannot delete rule. May Run Consistency

have wrong parameters. Checker to check data.
-2543 DB error delete Cannot delete argument. Run Consistency

arguments

May have wrong
parameters.

Checker to check data.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

351

Chapter 5

Code | Message Explanation Response
-2544 DB error delete Cannot delete argument Run Consistency
operation information for a rule. Checker to check data.
May have wrong
parameters.

-2545 DB error delete actions Cannot delete action. May | Run Consistency
have wrong parameters. Checker to check data.

-2546 DB error delete Cannot delete Run Consistency

subscriptions subscription. May have Checker to check data.
wrong parameters.

-2547 DB error resequence Cannot resequence Run Consistency

multiple options options. May have invalid | Checker to check data.
sequence parameters.

-2548 DB error option insert Cannot insert option. May | Run Consistency
have wrong parameters. Checker to check data.

-2549 DB error get max action | Cannot retrieve the Run Consistency
maximum number of Checker to check data.
actions. May not have any
actions.

-2550 DB error get max option | Cannot retrieve the Run Consistency
maximum number of Checker to check data.
options. May not have any
options.

-2551 DB error move action Cannot resequence action. | Run Consistency
May have invalid Checker to check data.
sequence parameter.

-2552 DB error move option Cannot resequence Run Consistency
option. May have invalid Checker to check data.
sequence parameter.

-2553 DB error resequence Cannot resequence Run Consistency

multiple actions actions. May have invalid | Checker to check data.
sequence parameters.
352 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response
-2554 DB error update action Cannot update action. Run Consistency
May have wrong Checker to check data.
parameters.
-2555 DB error update option Cannot update option. Run Consistency
May have wrong Checker to check data.
parameters.
-2556 DB error update Cannot update Run Consistency
subscription subscription. May have Checker to check data.
wrong parameters.
-2557 DB error option read Cannot retrieve option. Run Consistency
May have wrong Checker to check data.
parameters
-2558 DB error get max Cannot retrieve the Run Consistency
argument maximum number of Checker to check data.
arguments. May not have
any arguments.
-2559 DB error application Cannot update Run Consistency
group update application name. May Checker to check data.
have wrong old name.
-2560 DB error get version Cannot retrieve version Run Consistency
failed information for import/ Checker to check data.
export.
-2561 DB error update field Cannot update the old Run Consistency
name failed name to the new field Checker to check data.
name.
-2562 DB error get max Cannot retrieve the Run Consistency
boolean operator maximum number of Checker to check data.
Boolean operators. May
have wrong parameters.
-2563 DB error boolean Cannot insert Boolean Run Consistency

operator add failed

operator. May have wrong
parameters.

Checker to check data.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

353

Chapter 5

Code | Message Explanation Response

-2564 DB error boolean Cannot update Boolean Run Consistency
operator update failed operator. May havewrong | Checker to check data.

parameters.

-2565 DB error application Cannot delete application | Run Consistency
group delete failed. group. Checker to check data.

-2566 DB error message type Cannot delete message Run Consistency
delete failed type. Checker to check data.

-2567 DB error field function Error modifying field Run Consistency
add/update functions in the database. | Checker to check data.

-2568 DB error field instance Error modifying field Run Consistency
add/update instance in the database. Checker to check data.

-2569 DB error field add/ Error modifying field in Run Consistency
update the database. Checker to check data.

354 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

General Rules Management Errors

Error Messages

Code | Message Explanation Response
-2600 Invalid application Invalid application group | Check passed-in
group parameters name. application group
name.
-2601 Error application group | Cannot add application Check passed-in
already exists with duplicate name. application group
name.
-2602 Error application group | Invalid application group | Check passed-in
does not exist name. application group
name.
-2603 Invalid message type Invalid application Check passed-in
parameters group/message type pair. | application group/
message type name.
-2604 Error message type Applicationgroupalready | Check passed-in
already exists has the message type. application group/
message type name.
-2605 Error messagetypedoes | Invalid application Check passed-in
not exist group/message type pair. | application group/
message type name.
-2606 Error format name does | Message type name must Check passed-in a
not exist match an input format message type name
name. against format names.
-2607 Invalid rule parameters | Invalid application Check passed-in
group/message type/rule | parameters.
name.
-2608 Error rule name already | Application group/ Check passed-in
exists message type pairs cannot | parameters.
have duplicate rule
names.
-2609 Error rule name does Invalid application Check passed-in

not exist

group/message type/rule
name.

parameters.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

355

Chapter 5

Code | Message Explanation Response
-2610 Invalid operator Invalid operator ID. Check passed-in
parameters parameter.
-2611 Invalid argument Invalid parameters to Check passed-in
parameters create/update/retrieve parameters.
argument.
-2612 Invalid subscription Invalid parameters to Check passed-in
parameters create/update/retrieve parameters.
subscription.
-2613 Errorsubscriptionname | Subscription hames Check passed-in
already exists cannot be duplicated parameters.
within a rule.
-2614 Errorsubscriptionname | Application group/ Check passed-in
does not exist message type/rule name/ | parameters.
subscription name not
found.
-2615 Invalid action Invalid parameters to Check passed-in
parameters create/update/retrieve parameters.
action.
-2616 Error action does not Application group/ Check passed-in
exist message type/rule name/ | parameters.
subscription name/action
name not found.
-2617 Invalid option Invalid parameters to Check passed-in
parameters create/update/retrieve parameters.
action
-2618 Error during conversion | Conversion of static Check passed-in
argument value failed. parameters. Run
Consistency Checker.
-2619 No more actions Not error unless returned | Subscription must have
from NNRMgrGetFirst at least one action.
Action.
-2620 No more operators Not an error.
356 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response

-2621 No more arguments Not error unless returned | Rule must have at least
from NNRMgrGetFirst one argument.
Argument.

-2622 Invalid rules Must call NNRMgrlnit() Call NNRMgrInit()
management object before calling any other prior to calling any
passed in functions. other functions.

-2623 Feature not Feature is not
implemented implemented at this time.

-2624 Argument does not Invalid parameters to Check passed-in
exist update/retrieve parameters:

argument. AppGrp
MsgType
RuleName
ArgSeq
Fields
Operator

-2625 Operation does not exist | Invalid parameters to Check passed-in

update/retrieveargument | parameters:

information. AppGrp
MsgType
RuleName
ArgSeq
Fields
Operator

-2626 Unknown operator type | Operator may be invalid. Check passed-in

parameters.

-2627 No more subscriptions Not really error unless Rule must have at least

returned from one subscription.
NNRMgrGetFirst
Subscription.

-2628 No more rules Not an error.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 357

New Era of Networks Rules Programming Reference

Chapter 5

Code | Message Explanation Response

-2629 Action does not exist Invalid parameters to Check passed-in
update/retrieve action. parameters:

AppGrp
MsgType
RuleName
SubName
ActSeq

-2630 Option does not exist Invalid parameters to Check passed-in

update/retrieve option. parameters:
AppGrp
MsgType
RuleName
SubName
ActSeq
OptSeq

-2631 App id corrupted Data for Application Run Consistency
Group may be incorrect. Checker to check data.

-2632 Msg id corrupted Data for Message Type Run Consistency
may be incorrect. Checker to check data.

-2633 No more options Not really error unless Action must currently
returned from have at least one option.
NNRMgrGetFirst
Option.

-2634 Export app name failed | Export failed during Run Consistency
retrieval, encoding, or Checker to check data.
writing to file.

-2635 Export message hame Export failed during Run Consistency

failed retrieval, encoding, or Checker to check data.
writing to file.

-2636 Export rule failed Export failed during Run Consistency
retrieval, encoding, or Checker to check data.
writing to file.

358 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response

-2637 Export argument failed | Export failed during Run Consistency
retrieval, encoding, or Checker to check data.
writing to file.

-2638 Export subscription Export failed during Run Consistency

failed retrieval, encoding, or Checker to check data.
writing to file.

-2639 Export action failed Export failed during Run Consistency
retrieval, encoding, or Checker to check data.
writing to file.

-2640 Export option failed Export failed during Run Consistency
retrieval, encoding, or Checker to check data.
writing to file.

-2641 No more messages Not really an error.

-2642 No more applications Not really an error.

-2643 Error reading import Import failed to read from | Check file. Recreate file

file file. by exporting again.

-2644 Error importing Import failed during Check file. Run

application reading of file, decoding, Consistency Checker to
or writing to database. check data. Try
importing with
overwrite flag.

-2645 Invalid import/export Can only import/export Should never see this

type Rules components. error.

-2646 Error importing Import failed during Check file. Run

message type reading of file, decoding, Consistency Checker to
or writing to database. check data. Try
importing with
overwrite flag.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 359

New Era of Networks Rules Programming Reference

Chapter 5

Code | Message Explanation Response
-2647 Error importing rule Import failed during Check file. Run
reading of file, decoding, Consistency Checker to
or writing to database. check data. Try
importing with
overwrite flag.

-2648 Memory allocation Cannot allocate memory. Shut down excess items.

failure Restart import/export.

-2649 Error importing Import failed during Check file. Run

argument reading of file, decoding, Consistency Checker to
or writing to database. check data.

-2650 Error importing Import failed during Check file. Run

subscription reading of file, decoding, Consistency Checker to
or writing to database. check data. Try
importing with
overwrite flag
-2651 Error importing action Import failed during Check file. Run
reading of file, decoding, Consistency Checker to
or writing to database. check data.

-2652 Error importing option Import failed during Check file. Run

reading of file, decoding, Consistency Checker to
or writing to database. check data.

-2653 Unsupported version of | Can only export and Check version of

database import to version 4.1 NEONRules.
databases.

-2654 Decoding failure Cannot decode line in file. | Export File may be
corrupt. Recreate file by
exporting again.

-2655 Cannot add permission | Rule old owner may not Check database users.

if not owner be a valid user of the
current database.
-2656 No permission to read Cannot read permission. Assign permissions to
Read permission not rules.
granted.
360 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response
-2657 No permission to Current user does not Have rule owner
update have update permission change update
for the rule. permissions for himself
and/or PUBLIC.
-2658 Permission list read Cannot read permission Run Consistency
failure list. Checker to check data.
-2659 No more permissions Not really an error.
-2660 Error exporting version | Cannot retrieve version Check install.
for export.
-2661 Error exporting Cannot export rule Run Consistency
permissions permissions. Checker to check data.
-2662 Invalid field name The field name provided Check parameters to
parameter is invalid. function call.
-2666 Invalid date/time Bad format of static date/ | Check input parameter.
format in argument time value. Verify that the Time
portion of a Date value
or the Date portion of a
Time value is zero
padded.
-2667 Invalid non-numeric Bad format of static date/ | Check input parameter.
date/time value in time value.
argument
-2668 Invalid year in Bad format of static date/ | Check input parameter.
argument time value.
-2669 Invalid month in Bad format of static date/ | Check input parameter.
argument time value.
-2670 Invalid day in argument | Bad format of static date/ | Check input parameter.
time value.
-2671 Invalid hour in Bad format of static date/ | Check input parameter.
argument time value.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 361

New Era of Networks Rules Programming Reference

Chapter 5

Code | Message Explanation Response
-2672 Invalid minute in Bad format of static date/ | Check input parameter.
argument time value.
-2673 Invalid second in Bad format of static date/ | Check input parameter.
argument time value.
-2674 Unbalanced quotes in Invalid Boolean Check input expression
expression after expression; quotes must parameter.
be balanced.
-2675 Invalid Rules Operator in expression in | Check the Operator list
Invalid Rules operator. for spelling/case.
-2676 Expression missing Rules expression must Check input expression
Rules Operator have a Rules Operator. parameter.
-2677 Rules Operator missing | All Rules operators must Check input expression
comparison value or have a second argument parameter.
field name in expression | except those checking for
existence.
-2678 Unbalanced Parentheses must be Check input expression
parentheses in balanced in Rules parameter.
expression expression.
-2679 Expected terminal in Expression ended Check input parameter.
expression incorrectly.
-2680 Arguments must be Arguments can no longer | Change input
active for v5.0 and be Inactive. expression parameter.
newer.
-2681 Must Use NNR Cannot use Use NNRMgrUpdate
MgrUpdateExpression NNRMgrAddArgument Expression.
to perform update unless all arguments are
ANDed together.
-2682 Trailing characters Extra characters in the Make sure you are using
found in expression expression. '&"and '|' for Boolean
operators.
362 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response

-2683 Missing operand in Two Operands are Check input expression
boolean expression requiredaroundaBoolean | parameter.
before/after operator.

-2684 Cannot delete item if User not the owner of the Delete as owner.
not owner. sub/rule Cannot delete.

-2685 Subscription is used by | Subscription is used by a Remove subscription
arule - cannot delete rule and cannot be from all associated

deleted. rules.

-2686 Invalid componenttype | Invalid component type Check component type -
as parameter parameter. input parameter.

-2687 Invalid or missing May have invalid Check passed in
parameter parameter. parameters, for

example, NULL values.

-2688 Invalid or missing May have invalid Check passed in
change owner parameter. parameter.
parameter

-2689 Invalid or missing May have invalid Check passed in
component owner parameter. parameter for NULL
parameter value.

-2690 Subscription list read Failure reading Run Consistency
failure subscription list. Checker to check data.

-2691 Rule list read failure Failure reading rule list. Run Consistency

Checker to check data.

-2692 Error importing Error importing Check file. Run
permission permission. Consistency Checker to

check data.

-2693 Cannotcompareagainst | Cannot do a comparison To compare against an
empty strings - use against an empty string. empty field, use the
existence operator EXIST or NOT_EXIST

operator.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 363

New Era of Networks Rules Programming Reference

Chapter 5

Code | Message Explanation Response

-2694 Invalid option value for | Option can be only 8 Change the parameters
putqueue characters long. sent to NNRMgrAdd
MQS_FORMAT option Option or NNRMgr

UpdateOption.

-2695 Invalid option value for | Must be PROPAGATE or | Change the parameters
putqueue MQS NO_PROPAGATE. sent into NNRMgrAdd
_PROPAGATE option Option or NNRMgr

UpdateOption.

-2696 Invalid option value for | Must be PERSIST or Change the parameters
putqueue NO_PERSIST. sent into NNRMgrAdd
MQS_PERSIST option Option or NNRMgr

UpdateOption.

-2697 Invalid option value for | Must be PROPAGATE or | Change the parameters
putqueue NO_PROPAGATE. sent into NNRMgrAdd
MQS_EXPIRY option Option or NNRMgr

UpdateOption.

-2698 Invalid option value for | INPUT_FORMAT mustbe | Change the parameters

reformat option avalid input format name | sent into NNRMgrAdd
and TARGET_FORMAT Option or NNRMgr
must be a valid output UpdateOption or add
format name required formats.

-2699 Invalid integer static For integer comparison Check input to
comparison value. values, no non-numeric Argument or

characters are allowed Expression APIs.
except for a (+/-) sign as

the first character.

Decimal point is not

allowed.

-2700 Integer static Valid INT values are Check input into
comparison value outof | whole numbers in the Argument or
valid range. integer range for the Expression APls.

platform used, usually
about -2.1 to about 2.1
billion.
364 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response
-2701 Invalid float static For FLOAT comparison Check input into
comparison value. values, the only non- Argument or
numeric characters Expression APIs.

allowed are (+/-) sign as
the first character and a
decimal point.

-2702 Float static comparison | Valid FLOAT comparison | Check inputinto
value must have a values must contain a Argument or
decimal. decimal point. Expression APls.

-2703 Float static comparison | Valid FLOAT values Check input into
value out of valid range. | includeawholenumberin | Argument or

the integer range for the Expression APIs.

platform used, -2.1billion
to about 2.1 billion, and a
decimal mantissa with a
maximum of 31 digits.

-2704 Static comparison value | Static comparison values Check input into
too long. cannot exceed 64 Argument or
characters plus a Expression APls.

terminating NULL.

-2705 Cannot delete all rules The user might not have Check permissions for
and subscriptions in permissions for all the rules and subscriptions.
application group. rules and subscriptions in | Only the owner can

the application group. delete them.

-2706 Cannot delete all rules The user might not have Check permissions for
and subscriptions in permissions for all the rules and subscriptions.
message type. rules and subscriptions in | Only the owner can

the message type. delete them.

-2707 Error linking Subscription was not See error message as to
subscription to rule. imported. why the subscription
Subscription does not was not imported.
exist.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 365

New Era of Networks Rules Programming Reference

Chapter 5

Code | Message Explanation Response

-2708 Error importing Malformed expression or Review the expression
expression. problem in the database. and run Consistency

Checker on the
database.

-2709 Error. -O flag is not NEONRules does not Remove the message
supported in pre 4.10 support the —O in import types you want to
versions. The -o flag is files from pre 4.10 completely overwrite
used instead. versions. using the GUI or

Management APIs prior
to importing.

-2710 Unsupported version of | Import file was created Check the version in the
import file. from a version of import file. This might

NNRie.exe that is no require using the
longer supported in MQSeries Integrator
NEONRules. V1.1 NNCrypt utility.

Check the version of
NNRie used to create
the export file.

-2711 Missing version The version of the export Check the file to see that
information in export file is missing. the version line is
file. present. This might

require using the
MQSeries Integrator
V1.1 NNCrypt utility.
Check the version of
NNRie used to create
the export file.

-2712 Missing key Missing the “R” asthe first | Check the file to see that
information to the non-comment line in the the “R” line is present.
NNRie export file. NNRie export file. This might require

using the MQSeries
Integrator V1.1
NNCrypt utility. Check
the version of NNRie
used to create the export
file.

366 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response
-2713 Nothing was imported There are no valid linesto | Check the database or
or exported. import or no data to the import file to see if it
export. contains the data
required.
-2714 Argument failed to Syntax problem with one Check the syntax.
parse of the arguments in the
expression.
-2715 Invalid argument Syntax or logic problem Check the syntax.
syntax. with one of the arguments
in the expression.
-2716 Error adding field Problem adding Run Consistency
function information to the Checker to check data
database. and check the
NNSYrfStatusLog.
-2717 Invalid field instance Field instance invalid in Check instance
context it was used. references in the
expression. Possibly the
field expression does
not have the required
field instance of [*}
contained in it.
-2718 Field function missing Field function missing Change expression to
the field required field name. add the field name.
-2719 Sibling function invalid | Lookup ability for one Change the Sibling
in this context. field to determine the argument to use the
instance for another field MIN or MAX field
must use MIN or MAX functions.
field functions.
-2720 Invalid group for the Operators or function Run Consistency
operation or function metadata is incorrect. Checker to check data.
-2721 Invalid data types; must | Data types of the field Change the data types
match each other functions must match the | of the operators or field
data types of the functions so they match.
operators.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 367

New Era of Networks Rules Programming Reference

Chapter 5

Code | Message Explanation Response
-2722 Sibling operation Lookup ability for one Change sibling
invalid in this context field to determine the argument to use
instance for another field operators with the =
must use operators with operator.

the = operator.

-2723 Invalid field function Field function in the Check function name

expression invalid. against list of valid field
functions.
-2724 Comparingall instances | Ability to see is any Rearrange your
of two field is invalid. instance of a field is equal | expression to compare
to another is not a feature | against a static value
in this version. instead.
368 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Permission Data Errors

Error Messages

Code | Message Explanation Response
-5500 No NeEoNRules No error.
database error

-5501 Get next id insert error Error getting new ids for Run Consistency
user/permission. Checker to check data.

-5502 Get next id update error | Error getting new ids for Run Consistency
user/permission. Checker to check data.

-5503 Node does not exist Must run on valid 4.1 Check installation.
database with node data
saved.

-5504 Hierarchy does not exist | Must run on valid Check install. Run
database with hierarchy Consistency Checker to
data saved. check data.

-5505 Component add failure | Cannot add rule Run Consistency
component to permission | Checker to check data.
system; may be duplicate.

-5506 Component load failure | Cannot retrieve rule Run Consistency
component information Checker to check data.
from permission system;
may not exist.

-5507 Delete component Cannot delete rule Run Consistency

failure component information Checker to check data.
from permission system;
may not exist.
-5508 Unable to determine Permission user not a Run Consistency
user valid database user. Checker to check data.

-5509 Unable to find user in Permission user not a Run Consistency

database valid database user. Checker to check data.

-5510 Unable to find user in Permission user not a Run Consistency

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

NEONRules

valid permission user.

New Era of Networks Rules Programming Reference

Checker to check data.

369

Chapter 5

Code | Message Explanation Response
-5511 Unable to add user to Cannot add permission Run Consistency
NEONRules user. May not be a valid Checker to check data.
database user.
-5512 Unable to add Cannot add permission - Run Consistency
permission may be a duplicate. Checker to check data.
-5513 Unable to find Cannot find permission. Run Consistency
permission May have invalid Checker to check data.
parameters.
-5514 Unable to read Cannot retrieve Run Consistency
permission permission. May have Checker to check data.
invalid parameters.
-5515 Unable to update Cannot update Run Consistency
permission permission. May have Checker to check data.
invalid parameters.
-5516 User is not a valid user Permission user not a Run Consistency
of the database instance | valid database user. Checker to check data.
-5517 Unable to change the The new user may not be Run Consistency
user for the permissions | valid or caused aduplicate | Checker to check data.
permission.
-5518 Unable to delete the Invalid parameters to Run Consistency
permission set delete permission set fora | Checker to check data.
user/rule pair.
-5519 No permissions were Indicates no more Rule or subscription
found permissions to read for must have at least two
rule or subscription. permissions.
5520 Component update Cannot update Run Consistency
failure permission.May have Checker to run data.
invalid parameter.
370 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

General Permission Errors

Error Messages

Code | Message Explanation Response
-5000 No Errors No error.
-5001 Next id invalid Invalid parameters to get Check passed-in
parameters new user/component id parameters.
for permission system.
-5002 Update permission Invalid parameters to Check passed-in
invalid parameters update permission. parameters.
-5003 Get node invalid Invalid parameters to Check passed-in
parameters retrieve node information. | parameters.
-5004 Get hierarchy level Invalid parameters to Check passed-in
invalid parameters retrieve hierarchy level parameters.
information.
-5005 Get hierarchy invalid Invalid parameters to Check passed-in
parameters retrieve hierarchy parameters.
information.
-5006 Add componentinvalid | Invalid parameterstoadd | Check passed-in
parameters component to permission | parameters.
system.
-5007 Load component Invalid parameters to Check passed-in
invalid parameters retrieve component from parameters.
permission system.
-5008 Delete component Invalid parameters to Check passed-in
invalid parameters delete component from parameters.
permission system.
-5009 Load user invalid Invalid parameters to Check passed-in
parameters retrieve user from parameters.
permission system.
-5010 Add user invalid Invalid parametersto add | Check passed-in
parameters user to permission system. | parameters.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 371

New Era of Networks Rules Programming Reference

Chapter 5

Code | Message Explanation Response
-5011 Add permissioninvalid | Invalid parameterstoadd | Check passed-in
parameters permission to permission parameters.
system.
-5012 Load permission Invalid parameters to Check passed-in
invalid parameters retrieve permission from parameters.
permission system.
-5013 Adding permission that | Duplicate permissionsnot | Check passed-in
already exists allowed for user/ parameters.
component/permission.
-5014 Changing user invalid Invalid parameters to Check passed-in
parameters change the owner for a parameters.
certain component.
-5015 Deleting permission set | Invalid parameters to Check passed-in
invalid parameters delete all permissionsfora | parameters.
user/component.
-5016 Cannot add permission | User is not the owner of Add as owner of
if not owner the component. Cannot component.
add/update permission.
-5017 No permission to read Read permission not Grant read permission
granted to PUBLIC or for component.
User.
-5018 Permission list read Cannot read permission Run Consistency
failure list. Checker to check data.
-5019 No more permissions Indicates no more Rules and Subscriptions
permissions to read for must have at least two
rule or subscription. permissions.
-5020 No more components. Not really an error.
-5021 No permission to Update permission not Grant update
update granted to PUBLIC or permission for
User. component.
372 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Error Messages

Code | Message Explanation Response
-5022 Cannot delete item if User is not the owner of Delete as owner of
not owner the component. Cannot component
delete item.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 373

New Era of Networks Rules Programming Reference

Chapter 5

374 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Appendix A

Operator Types

The following operator types are available for use in rule expressions. These

operator types are described in the subsequent tables:

Existence

Integer

String

Field-to-field integer
Field-to-field string
Float

Case-sensitive string
Field-to-field case-sensitive
Date

Field-to-field date
Time

Field-to-field time
DateTime

Field-to-field DateTime

Note:

Case-sensitive operators do not work correctly on case-insensitive databases.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

375

Appendix A

Existence Operators

Operator Symbol Operator | Description
Handle
NOT_EXIST 0 Required Field Is Not Present
NOT_EXIST_TRIM 104 Required Field Is Not Present
(After Trimming)
EXIST 1 Required Field Is Present
EXIST_TRIM 105 Required Field Is Present (After
Trimming)
Integer Operators
Operator Symbol Operator | Description
Handle
INT= 2 Integer Equals
INT> 3 Integer Greater Than
INT< 4 Integer Less Than
INT>= 5 Integer Greater Than Or Equal To
INT<= 6 Integer Less Than Or Equal To
INT<> 7 Integer Not Equal To
String Operators
Operator Symbol Operator | Description
Handle
STRING= 8 String Equal To
STRING_TRIM= 106 String Equal To (After Trimming)
STRING> 9 String Greater Than
376 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Operator Types

Operator Symbol Operator | Description
Handle

STRING_TRIM> 107 String Greater Than (After
Trimming)

STRING< 10 String Less Than

STRING_TRIM< String Less Than (After
Trimming)

STRING_TRIM>= 109 String Greater Than Or Equal To
(After Trimming)

STRING>= 11 String Greater Than Or Equal To

STRING<= 12 String Less Than Or Equal To

STRING_TRIM<= 110 String Less Than Or Equal To
(After Trimming)

STRING<> 13 String Not Equal To

STRING_TRIM<> 111 String Not Equal To (After

Trimming)

Field To Field Integer Operators

Operator Symbol Operator | Description
Handle

F2FINT= 18 Field To Field Integer Equal To

F2FINT> 19 Field to Field Integer Greater
Than

F2FINT< 20 Field to Field Integer Less Than

F2FINT>= 21 Field to Field Integer Greater
Than Or Equal To

F2FINT<= 22 Field to Field Integer Less Than
Or Equal To

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 377

New Era of Networks Rules Programming Reference

Appendix A

Operator Symbol Operator | Description
Handle
F2FINT<> 23 Field To Field Integer Not Equal
To

Field To Field String Operators

Operator Symbol Operator | Description
Handle

F2FSTRING= 24 Field To Field String Equal To

F2FSTRING_TRIM= 112 Field To Field String Equal To
(After Trimming)

F2FSTRING> 25 Field To Field String Greater
Than

F2FSTRING_TRIM> 113 Field To Field String Greater
Than (After Trimming)

F2FSTRING< 26 Field To Field String Less Than

F2FSTRING_TRIM< 114 Field To Field String Less Than
(After Trimming)

F2FSTRING>= 27 Field To Field String Greater
Than Or Equal To

F2FSTRING_TRIM>= 115 Field To Field String Greater
Than Or Equal To (After
Trimming)

F2FSTRING<= 28 Field To Field String Less Than
Or Equal To

F2FSTRING_TRIM<= 116 Field To Field String Less Than
Or Equal To (After Trimming)

F2FSTRING<> 29 Field To Field String Not Equal
To

378 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Operator Types

Operator Symbol Operator | Description
Handle
F2FSTRING_TRIM<> 117 Field To Field String Not Equal
To (After Trimming)
Float Operators
Operator Symbol Operator | Description
Handle
FLOAT= 34 Float Equals
FLOAT> 35 Float Greater Than
FLOAT< 36 Float Less Than
FLOAT>= 37 Float Greater Than Or Equal To
FLOAT<= 38 Float Less Than Or Equal To
FLOAT<> 39 Float Not Equal To

Case Sensitive String Operators

Operator Symbol Operator | Description
Handle

CSSTRING = 56 Case Sensitive String Equal To

CSSTRING_TRIM= 118 Case Sensitive String Equal To
(After Trimming)

CSSTRING> 57 Case Sensitive String Greater
Than

CSSTRING_TRIM> 119 Case Sensitive String Greater
Than (After Trimming)

CSSTRING< 58 Case Sensitive String Less Than

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 379

New Era of Networks Rules Programming Reference

Appendix A

Operator Symbol Operator | Description
Handle

CSSTRING_TRIM< 120 Case Sensitive String Less Than
(After Trimming)

CSSTRING>= 59 Case Sensitive String Greater
Than Or Equal To

CSSTRING_TRIM>= 121 Case Sensitive String Greater
Than Or Equal To (After
Trimming)

CSSTRING<= 60 Case Sensitive String Less Than
Or Equal To

CSSTRING_TRIM<= 122 Case Sensitive String Less Than
Or Equal To (After Trimming)

CSSTRING<> 61 Case Sensitive String Not Equal
To

CSSTRING_TRIM<> 123 Case Sensitive String Not Equal

To (After Trimming)

Field To Field Case Sensitive Operators

Operator Symbol Operator | Description
Handle

F2FCSSTRING= 62 Field To Field Case Sensitive
String Equal To

F2FCSSTRING_TRIM= 124 Field To Field Case Sensitive
String Equal To (After Trimming)

F2FCSSTRING> 63 Field To Field Case Sensitive
String Greater Than

F2FCSSTRING_TRIM> 125 Field To Field Case Sensitive
String Greater Than (After
Trimming)

380 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Operator Types

Operator Symbol Operator | Description
Handle

F2FCSSTRING< 64 Field To Field Case Sensitive
String Less Than

F2FCSSTRING_TRIM< 126 Field To Field Case Sensitive
String Less Than (After
Trimming)

F2FCSSTRING>= 65 Field To Field Case Sensitive
String Greater Than Or Equal To

F2FCSSTRING_TRIM>= 127 Field To Field Case Sensitive
String Greater Than Or Equal To
(After Trimming)

F2FCSSTRING<= 66 Field To Field Case Sensitive
String Less Than Or Equal To

F2FCSSTRING_TRIM<= 128 Field To Field Case Sensitive
String Less Than Or Equal To
(After Trimming)

F2FCSSTRING<> 67 Field To Field Case Sensitive
String Not Equal To

F2FCSSTRING_TRIM<> 129 Field To Field Case Sensitive
String Not Equal To (After
Trimming)

Date Operators
Operator Symbol Operator | Description
Handle

DATE= 68 Date Equal To

DATE> 69 Date Greater Than

DATE< 70 Date Less Than

DATE>= 71 Date Greater Than Or Equal To

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 381

New Era of Networks Rules Programming Reference

Appendix A

Operator Symbol Operator | Description

Handle
DATE<= 72 Date Less Than Or Equal To
DATE<> 73 Date Not Equal To

Field To Field Date Operators

Operator Symbol Operator | Description
Handle
F2FDATE= 74 Field To Field Date Equal To
F2FDATE> 75 Field To Field Date Greater Than
F2FDATE< 76 Field To Field Date Less Than
F2FDATE>= 77 Field To Field Date Greater Than
Or Equal To
F2FDATE<= 78 Field To Field Date Less Than Or
Equal To
F2FDATE<> 79 Field To Field Date Not Equal To
Time Operators
Operator Symbol Operator | Description
Handle
TIME= 80 Time Equal To
TIME> 81 Time Greater Than
TIME< 82 Time Less Than
TIME>= 83 Time Greater Than Or Equal To
TIME<= 84 Time Less Than Or Equal To
TIME<> 85 Time Not Equal To
382 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Field To Field Time Operators

Operator Types

Operator Symbol Operator | Description
Handle
F2FTIME= 86 Field To Field Time Equal To
F2FTIME> 87 Field To Field Time Greater Than
F2FTIME< 88 Field To Field Time Less Than
F2FTIME>= 89 Field To Field Time Greater Than
Or Equal To
F2FTIME<= 90 Field To Field Time Less Than Or
Equal To
F2FTIME<> 91 Field To Field Time Not Equal To
DateTime Operators
Operator Symbol Operator | Description
Handle
DATETIME= 92 DateTime Equal To
DATETIME> 93 DateTime Greater Than
DATETIME< 94 DateTime Less Than
DATETIME>= 95 DateTime Greater Than Or Equal
To
DATETIME<= 96 DateTime Less Than Or Equal To
DATETIME<> 97 DateTime Not Equal To
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 383

New Era of Networks Rules Programming Reference

Appendix A

Field To Field DateTime Operators

Operator Symbol Operator | Description
Handle

F2FDATETIME= 98 Field To Field DateTime Equal To

F2FDATETIME> 99 Field To Field DateTime Greater
Than

F2FDATETIME< 100 Field To Field DateTime Less
Than

F2FDATETIME>= 101 Field To Field DateTime Greater
Than Or Equal To

F2FDATETIME<= 102 Field To Field DateTime Less
Than Or Equal To

F2FDATETIME<> 103 Field To Field DateTime Not
Equal To

384 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Appendix B
Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 385
New Era of Networks Rules Programming Reference

Appendix B

386

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England,

SO021 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. therefore, the results obtained in other operating environments

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Notices

may vary significantly. some measurements may have been made on
develoment-level systems and there is no guarantee that these measurements
will be the same on generally available systems. furthermore, some
mesurements may hve been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-1BM
products. Questions on the capabilities of non-1BM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

This information includes examples of data and reports used in daily
business operations. To illustrate them as completley as possible, the
examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

this information contains sample application programs in source language,
which illustrate programming techniques on varius operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 387
New Era of Networks Rules Programming Reference

Appendix B

Trademarks

388

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other
countries, or both. If these and other IBM trademarked terms are marked on
their first occurrence in this information with a trademark symbol (® or ™),
these symbols indicate U.S. registered or common law trademarks owned by
IBM at the time this information was published. Such trademarks may also be

registered or common law trademarks in other countries. A current list of
IBM trademarks is available on the Web at Copyright and trademark
information (http://www.ibm.com/legal/copytrade.shtml).

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java is a registered trademark of Oracle andor its affiliates.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

INndex

Symbols
&operator 67
&operator copy subscription data 85

A

Action Management API functions
NNRMgrAddAction 300, 313
NNRMgrGetFirstAction 302
NNRMgrGetNextAction 304
NNRMgrResequenceAction 306
NNRMgrUpdateAction 310

Action Management APls 294
NNRAction 294
NNRActionData 296
NNRActionReadData 297
NNRActionUpdate 299

actions 294

APIs
action management 294
application groups 160
argument management 254
expression management 243
header files 4
member functions 4
message types 178, 182
option management 315
permissions 220
Rules 21
Rules error handling function 4
Rules Management 195
Rules Management APIs 153
Rules Management functions 4
Rules Management macros 4
subscription management 262
VRule member functions 4

append_back 68

append_front 69

Application Group Management API functions 164

NNRMgrReadApp 166
NNRMgrUpdateApp 174
Application Group Management APIs 160
NNRApp 160
NNRAppData 161
NNRAppUpdate 163
application groups 160
Argument Management API functions
NNRMgrGetFirstArgument 258
NNRMgrGetNextArgument 260
Argument Management APIs 254
NNRArg 254
NNRArgData 256

C

class/type definitions 21

Clear subscription list objects 70

client code errors 339

compareByld subscription 86

create copy of subscription list data 71
createOwnCopyOfData subscription 87
CreateRulesEngine 23, 29

D

data processing errors 339
definitions 21
DeleteRuleEngine 23, 33
DeleteSubscription 72

E

error codes 339
client code errors 339
data processing errors 339
permission errors 339
Rules Management data errors 339
error handling 57
eval 35

389

Expression Management API functions Message Type Management APIs 178

NNRmgrAddExpression 248 NNRMsg 178

NNRMgrReadExpression 250 message types 178, 182

NNRmgrUpdateExpression 252
Expression Management APls 243 N

NNRExp 245)]

NNRExpData 247 naming conventions

rules 4
newCopy of subscription 91

G newCopy of subscription list 78
getActionList of subscriptions 88 NN_CLEAR 223, 225
GetErrorMessage 59 NNDate 155
GetErrorNo 57 NNFieldValueContainer 22, 97
GetFieldCount for eval 100 NNFieldValueContainer member functions 98
GetFieldString for eval 99 GelnputCodeSet 101
getFirst subscription 73 GetFieldCount 100
getformatterobject 39 GetFieldString 99
gethitrule 28, 40 GetlnputLocale 102
getld of subscription 89 SetlnputCodeSet 103
getName of subscription 90 SetinputLocale 104
getNewSubscription 74 NNNameValueList 105
getNext subscription 75 NNNameValueList member functions 105

getnohitrule 28, 42

Add name/value pair 109

getopt 46 ClearAll pairs from list 113
GetRerror 60 Delete name/value pair 112
getsubscription 44 GetField 116
GetFieldCount 117
H GetFirst pair in list 114
GetlnputCodeSet 118, 120
header files 4 GetlnputLocale 119
GetNext pair in list 115
I NameValueList constructor 107

NNNameValueList destructor 108
Read name/value pair 110
SetinputLocale 121

Update name/value pair 111

L NNPermissionData 222

NNR_CLEAR 159

NNRAction 294

NNRActionData 296
NNRActionReadData 297
NNRActionUpdate 299

insert subscription 76
insert subscription list 77

libraries 19
linking to libraries 19
LoadRuleSet 53

M NNRApp 160
Message Type Management API functions 182 NNRAppData 161
NNRMgrAddMsg 182, 191, 193 NNRAppUpdate 163
NNRMgrReadMsg 184, 186, 188 NNRArg 254
NNRMsgData 180, 181 NNRArgData 256
390 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNRExp 245

NNRExpData 247
NNRGetErrorMessage 337
NNRMgrAddAction 300, 313
NNRmgrAddExpression 248
NNRMgrAddMsg 182, 191, 193
NNRMgrAddOption 321, 334
NNRMgrAddRule 203, 212
NNRMgrAddSubscription 270
NNRMgrChangeOwner 232
NNRMgrClose 158
NNRMgrDeleteEntireRule 217
NNRMgrDeleteEntireSubscription 176, 288
NNRMgrDeleteSubscriptionFromRule 286
NNRMgrDuplicateSubscription 172, 281
NNRMgrGetFirstAction 302
NNRMgrGetFirstArgument 258
NNRMgrGetFirstOperator 239
NNRMgrGetFirstOption 323
NNRMgrGetFirstPerm 226
NNRMgrGetFirstRule 208
NNRMgrGetFirstRuleUsingSubs 290
NNRMgrGetFirstSubscription 168, 170, 275
NNRMgrGetNextAction 304
NNRMgrGetNextArgument 260
NNRMgrGetNextOperator 241
NNRMgrGetNextOption 325
NNRMgrGetNextPerm 228
NNRMgrGetNextRule 210
NNRMgrGetNextRuleUsingSubs 292
NNRMgrGetNextSubscription 278
NNRMgrlnit 157

NNRMgrReadApp 166
NNRMgrReadExpression 250
NNRMgrReadMsg 184, 186, 188
NNRMgrReadRule 206
NNRMgrReadSubscription 273
NNRMgrResequenceAction 306
NNRMgrResequenceOption 327
NNRMgrUpdateAction 310
NNRMgrUpdateApp 174
NNRmgrUpdateExpression 252
NNRMgrUpdateOption 331
NNRMgrUpdateOwnerPerm 230, 234
NNRMgrUpdatePublicPerm 236
NNRMgrUpdateRule 214
NNRMgrUpdateSubscription 283

NNRMSG 178
NNRMsgData 180, 181
NNROperator 238
NNROption 315
NNROptionData 317
NNROptionReadData 318
NNROptionUpdate 320
NNRRule 162, 195
NNRRuleData 197
NNRRuleReadData 199
NNRRuleUpdate 201
NNRSubs 262
NNRSubsData 264
NNRSubsReadData 266
NNRSubsUpdate 268
NNUserPermissionData 220
NNValueValueList 22

@)

Operator Management API functions
NNRMgrGetFirstOperator 239
NNRMgrGetNextOperator 241

Operator Management APIs
NNROperator 238

Option Management API functions
NNRMgrAddOption 321, 334
NNRMgrGetFirstOption 323
NNRMgrGetNextOption 325
NNRMgrResequenceOption 327
NNRMgrUpdateOption 331

Option Management APIs 315
NNROption 315
NNROptionData 317
NNROptionReadData 318
NNROptionUpdate 320

option name-value pairs 26

OPTIONPAIR structures 26

Overall Permission Macro
NN_CLEAR 225

Overview 3

P

Permission API functions 226
NNRMgrChangeOwner 232
NNRMgrGetFirstPerm 226

391

NNRMgrGetNextPerm 228

NNRMgrUpdateOwnerPerm 230, 234

NNRMgrUpdatePublicPerm 236

permission errors 339

Permissions APIs 220

Permissions Management API functions
NNPermissionData 222
NNUserPermissionData 220

Permissions Management API structures 220

populate subscription list 94
populatesubscriptionlist 56

push_back object in subscription list 80
push_front object on subscription list 79

R

Rule Management API functions
NNRMgrAddRule 203, 212
NNRMgrDeleteEntireRule 217
NNRMgrGetFirstRule 208
NNRMgrGetNextRule 210
NNRMgrReadRule 206
NNRMgrUpdateRule 214

Rule Management APls
NNRRule 162, 195
NNRRuleData 197
NNRRuleReadData 199
NNRRuleUpdate 201

RULE structure
gethitrule 28
getnohitrule 28

Rules
CreateRulesEngine 29
DeleteRuleEngine 33
libraries 19
linking to libraries 19
NN_CLEAR 223
OPTIONPAIR 26
Overview 3
RULE structure 28
SUBSCRIPTION 25
VRule member functions

CreateRulesEngine 29
DeleteRuleEngine 33
VRule supporting functions 29
Rules APIs 21
Rules error codes 339

392 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

client code errors 339
data processing errors 339
permission errors 339
Rules Management data errors 339
Rules error handling 57
GetErrorMessage 59
GetErrorNo 57
GetRerror 60
Rules Management
NN_CLEAR 223
Rules Management APIs 153, 195
NNDate 155
NNRMgrClose 158
NNRMgrlnit 157
Rules Management data errors 339
Rules Management error handling
NNRGetErrorMessage 337
Rules Management functions 4
Rules Management macros 4
NNR_CLEAR 159
RulesAction class 62
RulesActionList class 62
RulesOption class 63
RulesOptionList class 62
RulesSubscription 22
RulesSubscription class 62
RulesSubscription member functions 82
&operator 85
compareByld 86
createOwnCopyOfData 87
getActionList 88
getld 89
getName 90
newCopy 91
RulesSubscription constructor 82

RulesSubscription copy constructor 84

RulesSubscription destructor 83

setld 92

setName 93
RulesSubscriptionList class 62

RulesSubscriptionList member functions 64

&operator assignment operator 67
append_back 68

append_front 69

Clear 70

createOwnCopyOfData 71
DeleteSubscription 72

getFirst 73

getNewSubscription 74

getNext 75

insert (list) 77

insert (subscription) 76

newCopy 78

push_back 80

push_front 79

RulesSubscriptionList constructor 64
RulesSubscriptionList copy constructor 66
RulesSubscriptionList destructor 65
size 81

S

setld of subscription 92

setName of subscription 93

size of objects in subscription list 81

SUBSCRIPTION 25

subscription classes 62

Subscription Management API functions
NNRMgrAddSubscription 270
NNRMgrDeleteEntireSubscription 176, 288
NNRMgrDeleteSubscriptionFromRule 286
NNRMgrDuplicateSubscription 172, 281
NNRMgrGetFirstRuleUsingSubs 290
NNRMgrGetFirstSubscription 168, 170, 275
NNRMgrGetNextRuleUsingSubs 292
NNRMgrGetNextSubscription 278
NNRMgrReadSubscription 273
NNRMgrUpdateSubscription 283

Subscription Management APIs 262
NNRSubs 262
NNRSubsData 264
NNRSubsReadData 266
NNRSubsUpdate 268

SUBSCRIPTION structures 25

SubscriptionList
populate 94
traverse 94

V

Virtual Rules Engine 23

VRule 21

VRule member functions 4
CreateRulesEngine 29

DeleteRuleEngine 33

eval 35

getformatterobject 39

gethitrule 40

getnohitrule 42

getopt 46

getsubscription 44

LoadRuleSet 53

populatesubscriptionlist 56
VRule supporting functions 29

393

394 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Sending your commentsto |BM

Rulesand Formatter Extension for WebSphere M essage Broker for Multi-
platforms

Application Development Guide

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.
Please limit your comments to the information in this book only and the way
in which the information is presented.

To request additional publications or make comments about the functions of
IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:
= By mail:

IBM United Kingdom Laboratories
Hursley Park

Winchester

Hampshire

SO21 2JN

m By fax:

— From outside the U.K., use your international access code
followed by 44 1962 870229

— From within the U.K., use 01962 816151
Electronically, use the appropriate network ID:
= IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
s IBMLink: HURSLEY(IDRCF)

= Internet: idrcf@hursley.ibm.com
Whichever you use, ensure that you include:
m The publication number and title
m The page number or topic number to which your comment applies

= Your name/address/telephone number/fax number/network ID

	New Era of Networks Rules Programming Reference
	Contents
	Introduction
	About this Document
	Documentation Set

	Overview
	NEONRules Components
	APIs and Header Files
	Libraries

	NEONRules APIs
	Class/Type Definitions
	VRule Engine APIs
	Subscription, Action, Option APIs
	Evaluation Field Value Containers

	NEONRules Management APIs
	NEONRules Management API Structures
	Overall NEONRules Management APIs and Macros
	Application Group Management APIs
	Message Type Management APIs
	Rule Management APIs
	Permissions APIs
	Operator Management APIs
	Expression Management APIs
	Argument Management APIs
	Subscription Management APIs
	Action Management APIs
	Option Management APIs
	NEONRules Management Error Handling

	Error Messages
	Operator Types
	Notices
	Trademarks

	Index

