

IBM

Rules and Formatter Extension for IBM WebSphere Message
Broker for Multiplatforms

New Era of Networks Rules
Programming Reference
Version 7.0

Note: Before using this information, and the product it supports, be sure to read the general
information under notices on page 391.

First edition (April 2010)
This edition applies to Rules and Formatter Extension for IBM WebSphere Message Broker for
Multiplatforms, Version 7.0, and to all subsequent releases and modifications until otherwise
indicated in new editions. Make sure you are using the correct edition for the level of the
product.

© Copyright New Era of Networks, Inc., 1998, 2010. All rights reserved.

© Copyright International Business Machines Corporation, 1999, 2010. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Chapter 1: Introduction1
About this Document ..1
Documentation Set ..2

Document Conventions ...2
Chapter 2: Overview ..3

New Era of Networks Rules Components ...3
Rules Naming Conventions ..4

APIs and Header Files...4
Libraries...19

Chapter 3: New Era of Networks Rules APIs ..21
Class/Type Definitions...21
VRule Engine APIs ..23

VRule Structures ...25
SUBSCRIPTION ..25
OPTIONPAIR ..26
RULE ...28

VRule Supporting Functions...29
CreateRulesEngine ..29
DeleteRuleEngine ..33

VRule Member Functions..35
eval ..35
getformatterobject ...39
gethitrule ..40
getnohitrule ..42
getsubscription ..44
getopt ..46
LoadRuleComponent ...48
LoadRuleSet ...53
populatesubscriptionlist ...56

Error Handling..57
GetErrorNo ...57
GetErrorMessage ..59
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms i
New Era of Networks Rules Programming Reference

GetRerror ..60
Subscription, Action, Option APIs ..62

RulesSubscriptionList Member Functions..64
RulesSubscriptionList Constructor ...64
RulesSubscriptionList Destructor ...65
RulesSubscriptionList Copy Constructor66
&operator= Assignment Operator ..67
append_back ..68
append_front ...69
Clear ..70
createOwnCopyOfData ..71
DeleteSubscription ..72
getFirst ..73
getNewSubscription ...74
getNext ..75
insert (subscription) ..76
insert (list) ...77
newCopy ..78
push_front ..79
push_back ...80
size ...81

RulesSubscription Member Functions...82
RulesSubscription Constructor ...82
RulesSubscription Destructor ..83
RulesSubscription Copy Constructor ...84
&operator= Assignment Operator ..85
compareById ..86
createOwnCopyOfData ..87
getActionList ..88
getId ..89
getName ...90
newCopy ..91
setId ...92
setName ..93

Subscription, Action, Option Class Usage ..94
Evaluation Field Value Containers ...97

NNFieldValueContainer Member Functions ...98
GetField ..98
GetFieldString ..99
ii Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Contents
GetFieldCount ...100
GetInputCodeSet ...101
GetInputLocale ..102
SetInputCodeSet ..103
SetInputLocale ...104

NNNameValueList Member Functions ..105
NameValueList Constructor ..107
~NNNameValueList Destructor ...108
Add ..109
Read ...110
Update ..111
Delete ..112
ClearAll ...113
GetFirst ...114
GetNext ...115
GetField ..116
GetFieldCount ...117
GetInputCodeSet ...118
GetInputLocale ..119
GetInputCodeSet ...120
SetInputLocale ...121

NNName Member Functions ...122
NNName Constructor ..123
NNName Constructor ..123
NNName Constructor ..124
NNName Copy Constructor ...125
NNName Destructor ..126
set ...127
set ...128
operator< ..129
operator== ..130
operator= ..131
IsEmpty ...132
GetString ...133
GetLength ...134

NNValue Member Functions..135
NNValue Constructor ..136
NNValue Constructor ..137
NNValue Constructor ..138
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms iii
New Era of Networks Rules Programming Reference

NNValue Copy Constructor ..139
NNValue Destructor ...140
getCodeSet ..141
getLocale ...142
GetField ..143
set ...144
set ...145
set ...146
operator< ..147
operator== ..148
operator= ..149
IsEmpty ...150
GetString ...151
GetLength ...152

Chapter 4: New Era of Networks Rules
Management APIs..........................153

New Era of Networks Rules Management API Structures155
NNDate ...155

Overall New Era of Networks Rules Management APIs and Macros...........157
NNRMgrInit ...157
NNRMgrClose ...158
NNR_CLEAR ...159

Application Group Management APIs...160
Application Group Management API Structures160

NNRApp ..160
NNRAppData ..161
NNRAppReadData ...162
NNRAppUpdate ...163

Application Group Management API Functions.......................................164
NNRMgrAddApp ...164
NNRMgrReadApp ..166
NNRMgrGetFirstApp ...168
NNRMgrGetNextApp ..170
NNRMgrDuplicateApp ..172
NNRMgrUpdateApp ..174
NNRMgrDeleteEntireApp ...176

Message Type Management APIs ...178
Message Type Management API Structures...178
iv Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Contents
NNRMsg ...178
NNRMsgData ..180
NNRMsgReadData ...181

Message Type Management API Functions ...183
NNRMgrAddMsg ...183
NNRMgrReadMsg ..185
NNRMgrGetFirstMsg ...187
NNRMgrGetNextMsg ..189
NNRMgrUpdateMsgName ...191
NNRMgrDuplicateMsg ..192
NNRMgrDeleteEntireMsg ...194

Rule Management APIs ..196
Rule Management API Structures..196

NNRRule ..196
NNRRuleData ..198
NNRRuleReadData ...200
NNRRuleUpdate ...202

Rule Management API Functions ..204
NNRMgrAddRule ...204
NNRMgrReadRule ..207
NNRMgrGetFirstRule ..209
NNRMgrGetNextRule ..211
NNRMgrDuplicateRule ...213
NNRMgrUpdateRule ...215
NNRMgrDeleteEntireRule ...218

Permissions APIs ...221
Permission Management API Structures ..221

NNUserPermissionData ...221
NNPermissionData ...223
NNRComponent ...224

Overall Permission Macro...226
NN_CLEAR ..226

Permission API Functions ...227
NNRMgrGetFirstPerm ...227
NNRMgrGetNextPerm ..229
NNRMgrUpdateUserPerm ..231
NNRMgrChangeOwner ...233
NNRMgrUpdateOwnerPerm ..235
NNRMgrUpdatePublicPerm ...237
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms v
New Era of Networks Rules Programming Reference

Operator Management APIs ..239
Operator Management API Structures..239

NNROperator ..239
Operator Management API Functions ..240

NNRMgrGetFirstOperator ..240
NNRMgrGetNextOperator ..242

Expression Management APIs ...244
Expression Management API Structures ..246

NNRExp ...246
NNRExpData ...248

Expression Management API Functions ...249
NNRMgrAddExpression ...249
NNRMgrReadExpression ..251
NNRMgrUpdateExpression ..253

Argument Management APIs ..255
Argument Management API Structures ...255

NNRArg ...255
NNRArgData ..257

Argument Management API Functions ..259
NNRMgrGetFirstArgument ..259
NNRMgrGetNextArgument ...261

Subscription Management APIs ..263
Subscription Management API Structures ...263

NNRSubs ...263
NNRSubsData ...265
NNRSubsReadData ..267
NNRSubsUpdate ...269

Subscription Management API Functions ..271
NNRMgrAddSubscription ..271
NNRMgrReadSubscription ...274
NNRMgrGetFirstSubscription ..276
NNRMgrGetNextSubscription ..279
NNRMgrDuplicateSubscription ...282
NNRMgrUpdateSubscription ...284
NNRMgrDeleteSubscriptionFromRule287
NNRMgrDeleteEntireSubscription ..289
NNRMgrGetFirstRuleUsingSubs ...291
NNRMgrGetNextRuleUsingSubs ...293

Action Management APIs...295
vi Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Contents
Action Management API Structures ..295
NNRAction ..295
NNRActionData ..297
NNRActionReadData ...298
NNRActionUpdate ...300

Action Management API Functions...301
NNRMgrAddAction ...301
NNRMgrGetFirstAction ...303
NNRMgrGetNextAction ..305
NNRMgrResequenceAction ..307
NNRMgrUpdateAction ..311
NNRMgrDeleteAction ..314

Option Management APIs..316
Option Management API Structures ...316

NNROption ..316
NNROptionData ...318
NNROptionReadData ..319
NNROptionUpdate ...321

Option Management API Functions ..322
NNRMgrAddOption ..322
NNRMgrGetFirstOption ..324
NNRMgrGetNextOption ...326
NNRMgrResequenceOption ...328
NNRMgrUpdateOption ...332
NNRMgrDeleteOption ...335

New Era of Networks Rules Management Error Handling337
NNRGetErrorNo ...337
NNRGetErrorMessage ...338

Chapter 5: Error Messages339
Appendix A: Operator Types.........................375
Appendix B: Notices385

Trademarks and Service Marks ...387
Index ...389
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms vii
New Era of Networks Rules Programming Reference

viii Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 1

Introduction

This chapter includes the following information:

About this Document

Documentation Set

About this Document

This programming reference provides descriptions and examples for each
function in NEONRules and NEONRules Management APIs. This document is
divided into two main sections: NEONRules APIs and NEONRules Management
APIs.

Chapter 1, Introduction, provides a brief description of NEONRules and
the documentation set and documentation conventions.

Chapter 2, Overview, describes NEONRules components, rules naming
conventions, APIs, header files, and libraries.

Chapter 3, NEONRules APIs, provides class and type definitions and
contains the NEONRules APIs.

Chapter 4, NEONRules Management APIs, provides rules management
API structures, rules management APIs and macros.

Chapter 5, Rules Error Messages, contains a list of rules error
messages.

Appendix A, Operator Types, describes the available operator types
for use in rules expressions.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 1
New Era of Networks Rules Programming Reference

Chapter 1
Documentation Set

The Rules and Formatter Extension for IBM ® WebSphere Message Broker for
Multiplatforms documentation set includes:

System Management Guide

NEONFormatter Programming Reference

NEONRules Programming Reference

Application Development Guide

Rules, Formatter, and Visual Tester online help

Installation Readme

Document Conventions
The following document conventions are used in this guide.

Text Convention Example

code courier <user ID> <password>

command line
display

courier The message successfully
parsed.

command line entry courier bold NNFAD-t

command line
prompt

courier Enter the input file name:

path regular ora/bin (UNIX)
ora\bin (NT)

book names bold, italic Installation Guide

chapter and section
names

italic NT Installation
2 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 2

Overview

NEONRules enables you to evaluate a string of data (message) and react to the
evaluation results. The following overview describes NEONRules components
and the types of APIs available for rule processing.

NEONRules Components

The NEONRules components are:

Application groups

Message types

Rules

An application group is a logical grouping used to organize rules. For
example, a company can divide rules into groups by projects or split projects
into logical sub-groups.

A message type defines the layout of a string of data. Each application group
can contain several message types and a message type can be in more than
one application group. When using NEONFormatter, the message type is the
same as either the input format name or the user-defined NEONRules message
type. Message types are defined either in NEONFormatter or in NEONRules.

A rule contains specific actions to be processed by the application if the rule
evaluates to true against a message. These actions can be thought of as
computer commands and the associated parameters required to execute the
rule.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 3
New Era of Networks Rules Programming Reference

Chapter 2
Rules Naming Conventions
When you are creating names for rule components, use the following
conventions:

Create unique, descriptive component names that are easy to
distinguish from one another.

Do not use case differences to distinguish component names. Some
databases do not distinguish case and would interpret both
components ITEM1 and Item1 as having the same name. In this case,
each matching component would conflict during importing.

Do not use the component name, NONE. It is reserved for another
use.

Do not use single quotes, double quotes, or spaces in component
names. These may cause database problems.

Do not exceed the maximum of 120 characters when creating
component names. If you exceed 120 characters, a message box
appears requiring a change.

The maximum number of characters for double byte is 60.

APIs and Header Files

Two types of APIs exist for NEONRules: NEONRules APIs and NEONRules
Management APIs.

Use NEONRules APIs to evaluate rules and retrieve subscription, hit, and no-
hit information. Before you evaluate a rule, the rule must exist and you must
use CreateRulesEngine() to create a VRule object. After that, you can do as
many evaluations and subscription retrievals as needed. When you finish,
destroy the Rules daemon object using DeleteRuleEngine().

Use NEONRules Management APIs to maintain rule information. Add, Read,
and Update APIs are implemented and available as well as APIs to delete an
entire rule or subscription and all their associated information.
4 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview
The APIs are made up of classes of objects that have member functions:

Header Files

VRule Supporting Functions

Object Class Header File Description

VRule vrule.h Rules Processing APIs

NNRMgr nnrmgr.h Rules Management APIs

— ruleuser.h Evaluation structures

— nnrmerr.h Rules Management errors

— rerror.h Rules error handling

Return Type Function Arguments

VRule * CreateRulesEngine (DbmsSession *Session)

VRule * CreateRulesEngine (NNSesDBBase *Session)

VRule * CreateRulesEngine (DbmsSession* Session,
int alert=1,
char *logfile=NULL)

VRule * CreateRulesEngine (NNSesDBBase* Session,
int alert=1,
char *logfile=NULL)

void DeleteRuleEngine (VRule * pEngine)
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 5
New Era of Networks Rules Programming Reference

Chapter 2
VRule Member Functions

Return Type Function Arguments

int eval (char *AppName,
char *MsgName,
char *msg,
int msglen,
int log=0)

int eval (char *AppName,
char *MsgName,
char NNFieldValueContainer*,
pFVList)

Formatter getformatterobject None

RULE* gethitrule None

RULE* gethitrule None

char* getlog None

SUBSCRIPTION* getsubscription None

OPTIONPAIR* getopt None

int LoadRuleSet (char *AppGrp,
char*MsgType,
int LoadNow=0)

int LoadRuleComponent (char *AppGrp,
char*MsgType,
NNRComponentTypes
ComponentType,
char* ComponentType,
int LoadNow=0)

int populatesubsriptionlist (RulesSubscriptionList&
subsContainer)

void ThreadCleanup None
6 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview
SubscriptionList, ActionList, OptionList Functions

Return Type Function Arguments

ThisType &operator= const ThisType& right

NNSY_NAMESPACE
e_SF

append_back (RulesSubscription*
pSubscription)

NNSY_NAMESPACE
e_SF

append_front (RulesSubscription*
pSubscription)

NNSY_NAMESPACE
e_SF

clear None

void createOwnCopyOfData None

NNSY_NAMESPACE
e_SF

deleteSubscription (int subscriptionId)

RulesSubscription getFirst None

RulesSubscriptionList getNewSubscription None

RulesSubscription getNext None

NNSY_NAMESPACE
e_SF

insert (RulesSubscription*
pSubscription)

NNSY_NAMESPACE
e_SF

insert (RulesSubscriptionList*
pSubscription)

RulesSubscriptionList newCopy None

NNSY_NAMESPACE
e_SF

push_front (RulesSubscription*
pSubscription)

NNSY_NAMESPACE
e_SF

push_back (RulesSubscription*
pSubscription)

int size None
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 7
New Era of Networks Rules Programming Reference

Chapter 2
Subscription, Action, Option Functions

NNFieldValueContainer Functions

Return Type Function Arguments

ThisType &operator= const ThisType& right

NNSY_NAMESPACE
e_SF

compareById (int subscriptionId)

void createOwnCopyOf
Data

None

RulesSubscription geActionList None

NNSY_NAMESPACE
e_SF

getId (int& subscriptionId)

NNSY_NAMESPACE
e_SF

getName (const STL_STRING&
subscriptionName)

RulesSubscriptionList newCopy None

NNSY_NAMESPACE
e_SF

set_Id (int& subscriptionId)

NNSY_NAMESPACE
e_SF

set_Name (const STL_STRING&
subscriptionName)

Return Type Function Arguments

char* GetFieldString (char* name, int instance=-1)

int GetFieldCount (char* name)
8 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview
NNNameValueList Functions

NNName Functions

Return Type Function Arguments

int Add (const NNName *pName, const
NNValue *pValue)

int Read (const NNName *pName, const
NNValue *pValue, int instance)

int Update (const NNName *pName, const
NNValue *pValue, int instance)

int ClearAll None

int getFirst (const NNName *pName, const
NNValue *pValue)

int getNext (const NNName *pName, const
NNValue *pValue)

Return Type Function Arguments

int set (char* name)

int set (char* name, int length)

bool operator< (const NNName& name1, const
NNName& name2)

bool operator== (const NNName& name1, const
NNName& name2)

void operator= (const NNName& name1)

bool isEmpty None

char* GetString None

int GetLength None
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 9
New Era of Networks Rules Programming Reference

Chapter 2
NNValue Functions

Rules Error Handling Functions

Return Type Function Arguments

int set (char* value)

int set (char* value, int length)

bool operator< (const NNValue& value1, const
NNValue& value1)

bool operator== (const NNValue& value1, const
NNValue& value1)

void operator= (const NNValue& value1)

bool isEmpty None

char* GetString None

int GetLength None

Return Type Function Arguments

char* GetErrorNo None

char* GetErrorMessage None
10 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview
Application Group Management Functions

Return Type Function Arguments

const long NNRMgrAddApp (NNRMgr *pMgr,
const NNRApp *pRApp,
const NNRAppData
*pRAppData)

const long NNRMgrReadApp (NNRMgr *pMgr,
const NNRApp *pRApp,
NNRAppData *const
pRAppData)

const long NNRMgrGetFirstApp (NNRMgr *pMgr,
const NNRAppReadData *const
pRAppData)

const long NNRMgrGetNextApp (NNRMgr *pMgr,
const NNRAppReadData *const
pRAppData)

const long NNRMgrDuplicateApp (NNRMgr *pMgr,
const NNRApp* pRApp, *const
char* NewAppName)

const long NNRMgrUpdateApp (NNRMgr *pMgr,
const NNRApp* pRApp, const
NNRAppUpdate
*pRAppUpdate)

const long NNRMgrDeleteEntireA
pp

(NNRMgr *pMgr,
const NNRApp* pRApp)
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 11
New Era of Networks Rules Programming Reference

Chapter 2
Message Type Management Functions

Return Type Function Arguments

const long NNRMgrAddMsg (NNRMgr *pMgr,
const NNRMsg *pRMsg,
const NNRMstgData
*pRMsgData)

const long NNRMgrDeleteEntire
Msg

(NNRMgr *pMgr,
const NNRMsg* pRMsg)

const long NNRMgrDuplicateMsg (NNRMgr *pMgr,
const NNRMsg* pRMsg,
const char *NewAppName)

const long NNRMgrGetFirstMsg (NNRMgr *pMgr,
const NNRMsg *pRMsg,
NNRMsgReadData *const
pRMsgData)

const long NNRMgrGetNextMsg (NNRMgr *pMgr,
const NNRMsgReadData *const
pRMsgData)

const long NNRMgrReadMsg (NNRMgr *pMgr,
const NNRMsg *pRMsg,
NNRMsgData *const
pRMsgData)

const long NNRMgrUpdateMsgN
ame

(NNRMgr *pMgr,
const char *OldMsgName,
const char *NewMsgName)
12 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview
Rules Management Functions

Return Type Function Arguments

NNRMgr * NNRMgrInit (DbmsSession *session)

void NNRMgrClose on
page 158

(NNRMgr *pMgr)

N/A NNR_CLEAR on
page 159

(_p)

N/A NN_CLEAR (_p)

const long NNRMgrAddRule (NNRMgr *pMgr,
const NNRRule *pRRule,
const NNRRuleData *pRRuleData)

const long NNRMgrReadRule
on page 206

(NNRMgr *pMgr,
const NNRRule *pRRule,
NNRRuleData* const pRRuleData)

const long NNRMgrGetFirst
Rule

(NNRMgr *pMgr,
const NNRRule *pRRule,
NNRRuleReadData * const
pRRuleData)

const long NNRMgrGetNext
Rule

(NNRMgr *pMgr,
NNRRuleReadData * const
pRRuleData)

const long NNRMgrDuplicate
Rule

(NNRMgr *pMgr,
const NNRRule *pRRule,
const char *NewRuleName)

const long NNRMgrUpdateRule (NNRMgr *pMgr,
const NNRRule *pRule,
const NNRRuleUpdate
*pRRuleUpdate)

const long NNRMgrDelete
EntireRule

(NNRMgr *pMgr,
const NNRRule *pRRule)
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 13
New Era of Networks Rules Programming Reference

Chapter 2
Permissions Functions

Return Type Function Arguments

const long NNRMgrGetFirst Perm (NNRMgr *pRMgr,
const NNRComponent *
pRComponent,
NNUserPermissionData const *
pPermissionData)

const long NNRMgrGetNext Perm (NNRMgr *pRMgr,
NNUserPermissionData const *
pPermissionData)

const long NNRMgrUpdate
UserPerm

(NNRMgr *pRMgr,
const NNRComponent *
pRComponent,
const NNPermissionData *
pPermission Data)

const long NNRMgrChange
Owner

(NNRMgr *pRMgr,
const NNRComponent *
pRComponent,
char *pNewOwner)

const long NNRMgrUpdate
OwnerPerm

(NNRMgr *pRMgr,
const NNRComponent *
pRComponent,
const NNPermissionData *
pPermission Data)

const long NNRMgrUpdate
PublicPerm

(NNRMgr *pRMgr const
NNRComponent *
pRComponent,
const NNPermission Data *
pPermission Update)
14 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview
Operator Management Functions

Expression Management Functions

Argument Management Functions

Return Type Function Arguments

const long NNRMgrGetFirst
Operator

(NNRMgr *pMgr,
NNROperator * const pOperator)

const long NNRMgrGetNext
Operator

(NNRMgr *pMgr,
NNROperator * const pOperator)

Return Type Function Arguments

const long NNRMgrAdd
Expression

(NNRMgr *pMgr,
const NNRExp * pRExp,
NNRExpData * pRExpData)

const long NNRMgrRead
Expression

(NNRMgr *pMgr,
const NNRExp * pRExp,
NNRExpData * pRExpData)

const long NNRMgrUpdate
Expression

(NNRMgr *pMgr,
const NNRExp *pRExp,
const NNRExpData *pRExpData)

Return Type Function Arguments

const long NNRMgrGetFirst
Argument

(NNRMgr *pMgr,
const NNRArg * pRArg,
NNRArgData * const
pRArgData)

const long NNRMgrGetNext
Argument

(NNRMgr *pMgr,
NNRArgData * const
pRArgData)
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 15
New Era of Networks Rules Programming Reference

Chapter 2
Subscription, Action, Option Management Functions

Return Type Function Arguments

const long NNRMgrAdd
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
const NNRSubsData
*pRSubsData)

const long NNRMgrRead
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
NNRSubsData * const
pRSubsData)

const long NNRMgrGetFirst
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
NNRSubsReadData * const
pRSubsReadData)

const long NNRMgrGetNext
Subscription

(NNRMgr *pMgr,
NNRSubsReadData * const
pRSubsReadData)

const long NNRMgrDuplicate
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
const char * const
pNewSubsName)

const long NNRMgrUpdate
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
const NNRSubsUpdate
*pRSubsUpdate)

const long NNRMgrDelete
SubscriptionFrom
Rule

(NNRMgr *pMgr,
const NNRRule * pRRule,
const char * SubsName)

const long NNRMgrDelete
EntireSubscription

(NNRMgr *pMgr,
const NNRRule * pRRule)

const long NNRMgrGetFirst
RuleUsingSubs

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
char* const pRuleName)
16 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview
const long NNRMgrGetNext
RuleUsingSubs

(NNRMgr *pMgr,
char* const pRuleName)

const long NNRMgrAddAction (NNRMgr *pMgr,
const NNRAction *pRAction,
const NNRActionData
*pRActionData,
int *pActionId)

const long NNRMgrGetFirst
Action

(NNRMgr *pMgr,
const NNRAction * pRAction,
NNRActionReadData * const
pRActionData)

const long NNRMgrGetNext
Action

(NNRMgr *pMgr,
NNRActionReadData * const
pRActionData)

const long NNRMgrResequenceAc
tion

(NNRMgr *pMgr,
const NNRAction *pRAction,
int oldPosition,
int newPosition)

const long NNRMgrUpdate Action (NNRMgr *pMgr,
const NNRAction *pRAction,
const NNRActionUpdate
*pRActionUpdate,
int position)

const long NNRMgrDelete Action (NNRMgr *pMgr,
const NNRAction *pRAction,
int position)

const long NNRMgrAddOption (NNRMgr *pMGR,
const NNROption *pROption,
const NNROptionData
*pROptionData)

const long NNRMgrGetFirst
Option

(NNRMgr *pMgr,
const NNROption * pROption,
NNROptionReadData * const
pROptionData)

Return Type Function Arguments
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 17
New Era of Networks Rules Programming Reference

Chapter 2
Rules Management Error Handling Functions

const long NNRMgrGetNext
Option

(NNRMgr *pMgr,
NNROptionReadData * const
pROptionData)

const long NNRMgrResequenceO
ption

(NNRMgr *pMgr,
const NNROption *pROption,
int oldPosition,
int newPosition)

const long NNRMgrUpdate
Option

(NNRMgr *pMgr,
const NNROption *pROption,
const NNROptionUpdate
*pROptionUpdate,
int position)

const long NNRMgrDelete
Option

(NNRMgr *pMgr,
const NNROption *pROption,
int Position)

Return Type Function Arguments

const int NNRGetErrorNo NNRMgr *pRMgr

const char* NNRGetErrorMessage NNRMgr *pRMgr

Return Type Function Arguments
18 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview
Libraries

Shared libraries are archived collections of object files. The following is the
path to the libraries that must be linked with the application object files:

In UNIX, the libraries are in {installroot}/bin.

In Windows, the shared libraries and DLLs are in {installroot}\bin. The
libraries needed to compile custom code are in {installroot}\lib.

Refer to the example makefiles for more library information.

Note:
Library file extensions are .sl for HP-UX, .dll for Windows, and .so for AIX.

WARNING!
Do not move the libraries. The executables search for them in a specific
directory or folder. If you move or delete the libraries, the executables are
rendered useless.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 19
New Era of Networks Rules Programming Reference

Chapter 2
20 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 3

NEONRules APIs

This chapter includes the following information:

Class/Type Definitions

VRule Engine APIs

Subscription, Action, Option APIs

Evaluation Field Value Containers

Class/Type Definitions

VRule Class

This class provides a standard interface for handling NEONRules API calls and
allows the user to perform all rule evaluation and subscription retrieval.

See vrule.h in the /include directory.

RulesSubscriptionList, RulesActionList, & RulesOptionList Classes

The RulesSubscriptionList class allows the user to create a
RulesSubscriptionList object. This object can then be passed in the
VRule::populatesubscriptionlist member function to pull the subscriptions
that hit for the active message. The RulesSubscriptionList contains instances
of RulesSubscriptions.

The RulesActionList class allows the user to pull the actions that are valid for
a given subscription. An instance of the RulesSubscription class contains a
RulesActionList object which contains many instances of RulesActions.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 21
New Era of Networks Rules Programming Reference

Chapter 3
The RulesOptionList class allows the user to pull the options that are valid
for a given subscription. An instance of the RulesSubscription class contains a
RulesOptionList object which contains many instances of RulesOptions.

RulesSubscription, RulesAction, and RulesOption Classes

The RulesSubscription class allows the user to create a RulesSubscription
object. These objects are generally found inside the RulesSubscriptionLists.
The RulesSubscription is used to traverse the list of subscriptions retrieved
from the VRule::populatesubscriptionlist method.

The RulesAction class allows the user to create a RulesAction object. These
objects are generally found inside the RulesActionLists. The RulesAction is
used to traverse the list of actions retrieved from the
RulesSubscription::getActionList method.

The RulesOption class allows the user to create a RulesOption object. These
objects are generally found inside the RulesOptionLists. The RulesOption is
used to traverse the list of options retrieved from the
RulesAction::getOptionList method.

NNFieldValueContainer Class

The NNFieldValueContainer class is the base class for any class that contains
field values that can be retrieved by name. Formatter and NNNameValueList
classes inherit from this class. Users can input their own object containing
field values into the VRule::eval() API as long as the object inherits from this
NNFieldValueContainer base class and has the correct member functions.

NNValueValueList Classes

The NNNameValueList class is used to identify field values that can be
retrieved by name. The NNNameValueList contains a list of field name and
value pairs from the NNName and NNValue classes where the name is up to
120 characters and the value can be of any length for rules evaluation.

The NNName class is used for some of the NNNameValueList methods to
identify the object from which field name information is retrieved. This class
enables retrieval of field or object name information without using
NEONFormatter to parse the information.
22 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
The NNValue class is used for some of the NNNameValueList methods to
identify the value information to retrieve. This class enables retrieval of field
or object value information without using NEONFormatter to parse the
information.

VRule Engine APIs

To use NEONRules APIs, you must include the following header files:

dbtypes.hNNOT.h
 &OR &
ses.hNNSesDBBase.h

rerror.h

ruleuser.h

vrule.h

RulesSubscriptionList.h

RulesSubscription.h

RulesActionList.h

RulesAction.h

RulesOptionList.h

RulesOption.h

Note:
THREAD SAFETY: For multithreading, you must also link with the
appropriate thread library matching the NEONRules release. For example, link
with the thread library for UI threads and pthread for POSIX threads.

A VRule object is a Virtual Rules Engine instance. This class provides a
standard interface for handling NEONRules API calls and allows the user to
perform all rule evaluation and subscription retrieval. A VRule object is
created using CreateRulesEngine() and deleted by DeleteRuleEngine().
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 23
New Era of Networks Rules Programming Reference

Chapter 3
VRule.h is defined as follows:

class VRule {
 public:
 VRule(){}
 virtual ~VRule();
 virtual int GetErrorNo() = 0;
 virtual int eval (char * AppName, char * MsgName,
 char * msg, int msglen,

 int log=0) = 0;
 virtual int eval (char * AppName, char * MsgName,

NNFieldValueContainer *pFBContainer,
int log=0) = 0;

 virtual SUBSCRIPTION * getsubscription() = 0;
 virtual int populatesubscriptionlist(RulesSubscriptionList&

 subsContainer)
 virtual OPTIONPAIR * getopt() = 0;
 virtual RULE * gethitrule() = 0;
 virtual RULE * getnohitrule() = 0;
 virtual char * GetErrorMessage() = 0;
 virtual void ThreadCleanup() = 0;
 virtual int LoadRuleSet(char* AppName, char * MsgName,

 int LoadNow = 0) = 0;
 virtual int LoadRuleComponent(char* AppGrp, char * MsgType,

 NNRComponentTypes ComponentType,
 char * ComponentName,
 int LoadNow = 0) = 0;

 virtual Formatter *getFormatterobject() = 0;
};
24 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
VRule Structures

SUBSCRIPTION

Each rule has an associated list of subscriptions, and each subscription has an
associated list of one or more actions. The list of actions for a subscription is a
list of SUBSCRIPTION structures.

When stepping through the list of actions for a specific subscription, the
presence of a new subscription identifier (SubId) signifies that a new
subscription has been reached and that the action is the first associated with
the new subscription.

Syntax

struct SUBSCRIPTION{
 long SubId;
 char * action;
 char * SubName;
};

Parameters

Remarks

The action and SubName members point to memory inside the VRule object.
Do not modify their values.

It is recommended that programmers use the new RulesSubscription classes
instead of the SUBSCRIPTION and OPTIONPAIR structures.

Name Type Description

SubId long Subscription sequence identifier

action char* Action name

SubName char* Subscription name
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 25
New Era of Networks Rules Programming Reference

Chapter 3
Example

The following code fragment illustrates stepping through a list of actions:

while ((p=rules->getsubscription()){
 if (strcmp(p->action,"my_fun1") == 0){
 my_fun1();
 }
 else if (strcmp(p->action,"my_fun2") == 0){
 my_fun2();
 }
 else{
 //perform logging or exception handling
 }
}

OPTIONPAIR
Each rule has an associated list of subscriptions and each subscription has a
list of one or more actions. Actions are intended to be executed in sequence,
and each action may have one or more associated option name-value pairs.

Option name-value pairs are OPTIONPAIR structures. An option pair can be
unique to an action. A NULL OPTIONPAIR in a subscription option list
signifies the end of the options for that subscription action.

Syntax

struct OPTIONPAIR{
 int Sequence;
 char * Name;
 char * Value;
};

Parameters

Name Type Description

Sequence int Sequence identifier

Name char* Option name

Value char* Option value
26 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Remarks

The Name and Value members point to memory inside the VRule object. Do
not modify their values.

Example

The following code segment illustrates walking through a list of options. The
presence of a NULL popt signifies the end of the list of options.

while ((popt=rules->getopt()){
 if (strcmp(popt->Name,"Command_Argument1") == 0){
 pCommand_Argument1 = strdup(popt->Value);
 }
 else if (strcmp(popt->Name,"Command_Argument2") == 0){
 pCommand_Argument2 = strdup(popt->Value);
 }
}
if (pCommand_Argument1 && pCommand_Argument2){
 my_fun1(pCommand_Argument1,pCommand_Argument2);
}
else {
 //error handling for missing options to my call

}

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 27
New Era of Networks Rules Programming Reference

Chapter 3
RULE

gethitrule() and getnohitrule() return records of rule information contained in
a RULE structure.

Syntax

struct RULE{
 int RuleId;
 char *RuleName;
};

Parameters

Remarks

The RuleName member points to memory inside the VRule object. Do not
modify their values.

Example

The following code fragment describes how to walk through both a list of
rules that did not hit and a list of rules that hit. It should be noted that these
APIs are called after the Rules eval() API.

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule())){
 cout << " " << r->RuleName << endl;
}
cout << "HIT RULES" << endl;
while ((r = rules->gethitrule())){
 cout << " " << r->RuleName << endl;
}

Name Type Description

RuleId int Rule identifier

RuleName char* Rule name
28 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
VRule Supporting Functions

CreateRulesEngine

Syntax 1

VRule* CreateRulesEngine(DbmsSession* Session);

Description

CreateRulesEngine() creates a VRule object for the application session
provided in the session parameter.

Parameters

Syntax 2

VRule* CreateRulesEngine(NNSesDBBase* Session);

Description

CreateRulesEngine() creates a VRule object for the session provided in the
session parameter.

Parameters

Name Type Input/
Output

Description

Session DbmsSession * Input Name of the open session.

Name Type Input/
Output

Description

Session NNSesDBBase* Input Name of the open session.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 29
New Era of Networks Rules Programming Reference

Chapter 3
Syntax 3

VRule* CreateRulesEngine(DbmsSession* Session,
 int alert=1,
 char *logfile=NULL);

Description

CreateRulesEngine() creates a VRule object for the NEONRules session
provided in the session parameter and enables the user to specify whether
alerts should be sent to a log file.

Parameters

Syntax 4

VRule* CreateRulesEngine(NNSesDBBase* Session,
 int alert=1,
 char *logfile=NULL);

Name Type Input/
Output

Description

Session DbmsSession * Input Name of the open Rules and
Formatter Extension for IBM ®
WebSphere Message Broker for
Multiplatforms session. See
OpenDbmsSession() in the
Application Development Guide.

alert int Input True(1)/False zero(0) option
determining whether or not to send
errors through the alert mechanism.
Defaults to True (1).

logfile char * Input Errors are logged to the logfile.
Only valid if alert is True (1).
Defaults to no file (NULL).
30 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Description

CreateRulesEngine creates a VRule object for the NEONRules and
NEONFormatter session provided in the session parameter and enables the
user to specify whether alerts should be sent to the log file.

Parameters

Remarks

CreateRulesEngine() must be called prior to rules processing and prior to
calling DeleteRuleEngine().

Return Value

Returns a VRule object if successful; NULL on failure. All error handling of a
failed call to CreateRulesEngine() must be done by the code that calls this
API.

Name Type Input/
Output

Description

Session NNSesDBBase* Input Name of the open Rules and
Formatter Extension for IBM ®
WebSphere Message Broker for
Multiplatforms session. See
OpenNNSesDBBase() in the Rules
and Formatter Extension for IBM ®
WebSphere Message Broker for
Multiplatforms Application
Development Guide.

alert int Input True(1)/False zero(0) option
determining whether or not to send
errors through the alert mechanism.
Defaults to True (1).

logfile char * Input Errors are logged to the logfile.
Only valid if alert is True (1).
Defaults to no file (NULL).
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 31
New Era of Networks Rules Programming Reference

Chapter 3
Example 1

DbmsSession *session = OpenDbmsSession("MySesName", DbType);
if (!session || !session->Ok()){
 cout << "Failed to open rules database session" << endl;
 exit(1);
}
VRule *rule = CreateRulesEngine(session);
if (!rule)
 cout << "Error no rules engine created" << end1;

Example 2

DbmsSession *session = OpenDbmsSession("MySesName", DbType);
if (!session || !session->Ok()){
 cout << "Failed to open rules database session" << endl;
 exit(1);
}
VRule *rule = CreateRulesEngine(session,1,"rerrlog.log");
if (!rule)
 cout << "Error no rules engine created" < end1;

See Also

DeleteRuleEngine
32 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
DeleteRuleEngine

Syntax

void DeleteRuleEngine(VRule * pEngine);

Parameters

Remarks

DeleteRuleEngine() must be called after CreateRulesEngine() and after all
rules processing is complete.

Return Value

None

There are no error handling functions for DeleteRuleEngine().

Example

DbmsSession *session = OpenDbmsSession("MySesName", DbType);
if (!session || !session->Ok()) {
 cout << "Failed to open session" << endl;
 exit(1);
}
Vrule *rule = CreateRulesEngine(session);
if (!rule) {
 cout << "Unable to create rules object" << endl;
 exit(2);
}
char MessageString[65];
memset(MyMessageString, 0, 65);
strcpy(MyMessageString, "Field1|Field2,Field3");
if (!rule->eval("MyAppGroup", "MyMessageType",

Name Type Input/
Output

Description

pEngine VRule* Input Name of the open VRule object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 33
New Era of Networks Rules Programming Reference

Chapter 3
 MyMessageString,
 strlen(MyMessageString))){
 cout << "Failure" << endl;
 exit(3);
}
if (rule){
 DeleteRuleEngine(rule);
}
if (session){
 CloseDbmsSession(session);
}

See Also

CreateRulesEngine
34 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
VRule Member Functions

eval

There are two uses of the VRule::eval method. One is for use when the
evaluation is based on information received from NEONFormatter and the
other is for use when evaluating data derived from a
NNNameValueContainer.

Syntax 1

int VRule::eval(char* AppName,
 char* MsgName,
 char* msg,
 int msglen,
 int log=0);

Description

Using the application group and message type, eval(), retrieves all associated
active rules, parses the message into fields, and evaluates those fields based
on evaluation criteria.

Parameters

Name Type Input/
Output

Description

AppName char* Input Application Group Name. This should
be the Application Group in which the
user defined rules for evaluating this
message. This string should not be
empty.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 35
New Era of Networks Rules Programming Reference

Chapter 3
Syntax 2

int VRule::eval(char* AppName,
 char* MsgName,
 char* NNFieldValueContainer* pFVList);

Description

This version of eval takes in a NNFieldValueContainer pointer that is used to
retrieve values based on names. New Era of Networks provides the
NNNameValueList and Formatter classes which are
NNFieldValueContainers. Programmers can create their own class derived
from the NNNameValueContainer.

NEONFormatter is not used if a NNNameValueList is input. In that case, rules
are defined in the same way, but message type’s EvalType is

MsgName char* Input Type of message to be evaluated. If
NEONFormatter is used, message type
is the input format name. This name
should be the message type in which the
user defined rules for evaluating this
message. This string should not be
empty.

msg char* Input String containing the message to be
evaluated. This message should be in
the format expected by the message
type. The string should not be empty.

msglen int Input Message length, in bytes, of the message
to be evaluated. msglen should be
greater than zero (0).

log int Input For increased logging capability in a
future release, log defaults to zero (0) for
now.

Name Type Input/
Output

Description
36 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
RulesMessageType and the field names are not defined in NEONFormatter, but
supplied in a separate list of names.

Parameters

Remarks

eval() should be called after CreateRulesEngine() and before
DeleteRuleEngine(). In addition, eval() should be called prior to returning
subscriptions or hit/no-hit rules.

Return Value

Returns 1 if the rules evaluate completely, regardless of the outcome; zero (0)
if the evaluation fails.

A successful evaluation does not imply that a rule fired, only that all rules
associated with the application group and message type were evaluated
against the message completely.

Name Type Input/
Output

Description

AppName char* Input Application Group Name. This should
be the Application Group in which the
user defined rules for evaluating this
message. This string should not be
empty.

MsgName char* Input Type of message to be evaluated. If
NEONFormatter is used, the message
type is the input format name. This
name should be the message type in
which the user defined rules for
evaluating this message. This string
should not be empty.

pFVList NNFieldV
alueConta
iner*

Input A pointer to the
NNFieldValueContainer object to be
used to retrieve values.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 37
New Era of Networks Rules Programming Reference

Chapter 3
Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Note:
If this is the first eval() call for the specified Application Group/Message
Type, all the rules and subscriptions for this rule set are read into cache.
Subsequent calls to eval() do not reload the data unless LoadRuleSet() or
LoadRuleComponent() were called previously with LoadNow set to FALSE.
Modifications to the data are only reflected if one of the Load APIs is called
prior to the eval() API. SeeLoadRuleSet on page 53 andLoadRuleComponent on
page 48 for more information.

Example

if (!rules->eval(appname, msgname, msg, msglen)){
 cout << "Failure" << endl;
} else {
 cout << "Success" << endl;
}

See Also

CreateRulesEngine

DeleteRuleEngine

getsubscription

gethitrule

getnohitrule

GetErrorNo

GetRerror

GetErrorMessage

LoadRuleSet

LoadRuleComponent

NNFieldValueContainer
38 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
getformatterobject

getformatterobject is a formatter object retrieval function that takes no
parameters and returns the instance of the formatter that the VRule::eval()
function used to parse the last input message. A user may want to use this
function to retrieve the parsed fields and, therefore, not have to parse before a
reformat done after the eval().

This formatter object is destroyed when the DeleteRuleEngine() destroys the
VRule object. Do not access the formatter object after the VRule is deleted.

Syntax

Formatter* VRule::getformatterobject();

Parameters

None

Return Value

Returns a pointer to a formatter object.

Example

char *appname;
char *msgname;
char *msg;
int msglen;

DbmsSession *session = OpenDbmsSession("rules", DbType);

VRule *rule = CreateRulesEngine(session);
Formatter *gFormatter = rule->getformatterobject();

if (!rule->eval(appname, msgname, msg, msglen) { // error
 if (gFormatter->GetErrorCode()) {
 // Formatter Error.
 cerr << "Formatter Error:"
 << gFormatter->GetErrorCode() << endl;
 cerr << "Error Message:"
 << gFormatter->GetErrorMessage() << endl;
 }
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 39
New Era of Networks Rules Programming Reference

Chapter 3
gethitrule

gethitrule() retrieves one hit rule from the hit rules list created by eval(),
placing it in a RULE structure. When stepping through the hit rules list using
gethitrule(), a NULL indicates the end of the list.

Syntax

RULE *VRule::gethitrule();

Parameters

None

Remarks

Call gethitrule() after the eval() function, which should follow a call to
CreateRulesEngine() but precede a call to DeleteRuleEngine(). You must call
gethitrule() before getsubscription() or getopt() because these functions
change the hit rules list. gethitrule() will not work after getsubscription() is
called.

Return Value

Returns a pointer to a single RULE structure with a number and name
indicating which rule was hit. When the return value is NULL, the list of hit
rules has been exhausted. The rules are not returned in any specific order.

Note:
Each time this API is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

The following code fragment describes how to walk through both a list of
rules that did not hit and a list of rules that hit. These APIs are called after the
Rules eval() API.
40 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule())){
 cout << " " << r->RuleName << endl;
}
cout << "HIT RULES" << endl;
while ((r = rules->gethitrule())){
 cout << " " << r->RuleName << endl;
}

See Also

getnohitrule

eval
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 41
New Era of Networks Rules Programming Reference

Chapter 3
getnohitrule

getnohitrule() retrieves one no-hit rule from the no-hit rules list created by
eval(), placing it in a RULE structure. Only active rules are retrieved. When
stepping through the no-hit rules list using getnohitrule(), a NULL indicates
the end of the list.

Syntax

RULE *VRule::getnohitrule();

Parameters

None

Remarks

getnohitrule() should be called after the eval() function, which follows a call
to CreateRulesEngine() but precedes a call to DeleteRuleEngine().
getnohitrule() must be called before getsubscription() or getopt() because
these functions change the hit rules list. getnohitrule() will not work after
getsubscription() is called.

Return Value

Returns a pointer to a single RULE structure with a number and name
indicating which rule was not hit. When the return value is NULL, the list of
no hit rules has been exhausted. The rules are not returned in any specific
order.

Note:
Each time this API is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.
42 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Example

The following code fragment describes how to walk through both a list of
rules that did not hit and a list of rules that hit. These APIs are called after the
Rules eval() API.

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule())){
 cout << " " << r->RuleName << endl;
}
cout << "HIT RULES" << endl;
while ((r = rules->gethitrule())){
 cout << " " << r->RuleName << endl;
}

See Also

gethitrule

eval
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 43
New Era of Networks Rules Programming Reference

Chapter 3
getsubscription

getsubscription() gets an action within a subscription associated with a rule
that evaluated true, retrieving the subscription identifier, subscription name,
and action name. When using this API within a loop, a change in the SubId
(subscription sequence) of the SUBSCRIPTION structure signifies the end of
one subscription and the beginning of the next.

Note:
By using populatesubscriptionlist method instead of getsubscription and
getopt, all eval data results are retrieved at one time, releasing VRule so that
you can apply a re-evaluation.

Syntax

SUBSCRIPTION* VRule::getsubscription();

Parameters

None

Remarks

getsubscription() should be called after the eval() function, which follows a
call to CreateRulesEngine() but before a call to DeleteRuleEngine().
getaction() should not be called after getsubscription() because it has the same
functionality. getopt() should be called to retrieve the action options.

Return Value

Returns a pointer to a single subscription action with a number indicating
which subscription it belongs to, strictly for the purposes of checking the
current subscription. If previous subscriptions have been retrieved, a
different Subscription Identifier indicates that the action is for a new
subscription. The subscription name and action name are also retrieved for
the user. When the return value is NULL, the list of subscriptions has been
exhausted. The subscriptions are not returned in any specific order.
44 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Each time this API is called, the returned subscription is removed from the
subscription list for the hit rules.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

The following code fragment illustrates walking through a list of actions:

OldSubId = NULL;
int ActionCount = 0;
char * Actionlist[MY_ACTIONS_MAX];
while ((p=rules->getsubscription())){
 if ((p->SubId != OldSubId) || (!OldSubId)){
 //this is the first action of the new subscription
 OldSubId = p->SubId;
 myfun(ActionList,ActionCount);
 cleanup(ActionList,ActionCount);
 ActionCount = 0;
 }
 Actionlist[ActionCount] = strdup (p->action);
 ActionCount++;
 //the options should be checked here if options are
 //relevant to the action. Options only have meaning if
 //the applications programmer has written code to
handle
 //options within the program
}

See Also

getopt

populatescriptionlist
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 45
New Era of Networks Rules Programming Reference

Chapter 3
getopt

Each subscription can contain several actions, each of which can contain
several options. getopt() gets an option within an action, retrieving the option
sequence number, option name, and option value. When this API is used
within a loop to retrieve all options for an action, a NULL option signifies the
end of the options for that subscription.

Note:
By using populatesubscriptionlist method instead of getsubscription and
getopt, all eval data results are retrieved at one time, releasing VRule so that
you can apply a re-evaluation.

Syntax

OPTIONPAIR *VRule::getopt();

Parameters

None

Remarks

getopt() should be called after the CreateRulesEngine(), eval() and
getsubscription() functions are called and before DeleteRuleEngine().

Return Value

Returns a pointer to a single name-value option pair composed of an option
name and option value. Each time this function is called, the option is
removed from the list. When the return value is NULL, the list of options for
the subscription action has been exhausted.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.
46 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Example

The following code fragment illustrates walking through a list of options for a
subscription action. This action finds the occurrences of a word in a file using
the UNIX grep command as the action:

SUBSCRIPTION *psubscription;
OPTIONPAIR *poptionpair;
char string_to_find[MAX_LENGTH_STRING_TO_FIND];

VRule * rules = CreateRulesEngine(session);
 if (!rules){
 cout << "ERROR" << endl;
 exit(2);
 }
 if (psubscription=rules->getsubscription()) {
 if (!strcmp(psubscription->action, "UNIX_GREP_COMMAND"))
{
 strcpy(action_string, psubscription->action);
 strcat(action_string, " ");
 while ((poptionpair=rules->getopt()){
 if (!strcmp(poptionpair->Name, "WORD_TO_FIND"))
{
 strcat(string_to_find, poptionpair->Value);
 strcat(action_string, " ");
 } else if (!strcmp(poptionpair->Name, "FILENAME")) {
 strcat(filename, poptionpair->Value)
 }
 }
 }
}
// Now execute ’grep word filename’
system(action_string);
DeleteRuleEngine(rule);

See Also

getsubscription

populatescriptionlist
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 47
New Era of Networks Rules Programming Reference

Chapter 3
LoadRuleComponent

Using the application name, message type name, component type to reload,
component name to reload, and the LoadNow parameter, the
LoadRuleComponent() reloads the specified rule component stored in the
NEONRules memory with the modified component data stored in the database.
The MSG component type reloads the entire rule set (all rules and
subscriptions for the application group/message type) and the SUB
component type reloads the specified subscription. When a single
subscription is reloaded, the data reloaded by the LoadRuleComponent API
includes the subscription information, the subscription actions, options, and
links to rules.

LoadRuleComponent() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). As needed, it should be
called before VRule::eval(). However, it should never be called after an eval()
and before getsubscription(), getopt(), gethitrule(), and so on.

Syntax

int VRule::LoadRuleComponent(char* AppGrp,
 char* MsgType,
 NNRComponentTypes ComponentType,
 char* ComponentName,
 int LoadNow=0);

Parameters

Name Type Input/
Output

Description

AppGrp char* Input Application Group Name. Should be
the Application Group for the rule set
to load. If loading a subscription, the
subscription being loaded must reside
in the rule set defined by the
application group. This string should
not be empty.
48 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Remarks

If you specify a subscription that does not exist in the database, the
LoadRuleComponent API removes the designated subscription, along with
the subscription’s actions, options, and rule links, from the rules cache.

If the subscription in the database contains zero actions, it is still cached. If an
associated rule does not exist in the rules cache then the subscription is
loaded without that rule link.

MsgType char* Input Type of message to be evaluated. If
NEONFormatter is used, message
type is the input format name. Should
be the message type for the rule set to
load. If loading a subscription, the
subscription must reside in the rule
set defined by the message type. This
string should not be empty.

Component
Type

NNR
Component
Types

Input Component Type. If NNRCOMP_
MSG is used, the entire rule set is
loaded; if NNRCOMP_SUBS is used,
the given subscription is loaded.
See Permissions APIs on page 220 for
the NNRComponent Types
definition.

Component
Name

char* Input Component Name. If
ComponentType is
NNRCOMP_SUBS, this parameter is
the subscription name. If the
ComponentType is
NNRCOMP_MSG, this parameter is
the MsgType name.

LoadNow int Input Indicates when to reload the rule set
or subscription information.

Name Type Input/
Output

Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 49
New Era of Networks Rules Programming Reference

Chapter 3
If the LoadNow parameter is set (value equals 1), and the rule set is loaded
when the reload request is received, the LoadRuleComponent API
immediately reads the specified subscription from the database and updates
the rules cache. If the rule set is not loaded when the reload request is
received, then the entire rule set loads (performance hit).

If the LoadNow parameter is not set (value equals zero (0)), the rule set is
flagged and reloads the next time eval() is called. When eval() is called for the
rule set, each of the stored reload requests are completed before the eval is
executed. This is the suggested method.

Return Value

Returns 2 if the subscription in the LoadRuleComponent API call resides in a
rule set that has not been loaded into the rules cache or does not exist in the
database. This applies if the LoadNow parameter is not set (equal to 0),
because the information is not checked until eval() is called. Also returns 2 if
the component is not found in the database or cache and LoadNow is set.

Returns 1 if the LoadRuleComponent() succeeds. Returns 0 if the
LoadRuleComponent fails, or if the reload of the rule set fails and removes
the rules from cache. If the LoadNow parameter is set to 1, returns zero (0).

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

// OpenDbmsSession and CreateRulesEngine called already
// Rules (VRule object) has been used for evaluations and
// this call reloads the named Rule Set or Component

 char appgrp[APP_NAME _LEN] = "TestApp";
 char msgtype[MSG_NAME_LEN] = "TestFmt";
 NNRComponentTypes CompType; // fill in
 char ComponentName[SUB_NAME_LEN]; // fill in
 char ComponentType[15];
 int LoadImmed = 0;
 int ReloadResult = 0;

 switch (CompType) {
 case NNRCOMP_MSG:
50 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
 strcpy (ComponentName, msgtype);
 strcpy (ComponentType, "Message Type");
 break;

 case NNRCOMP_SUB:
 strcpy (ComponentType, "Subscription");

 break;
 case NNRCOMP_RULE:
 case NNRCOMP_APP:
 default:

 cerr < "invalid component type" << endl;
 return 0;
 break;

 }

 if (!(ReloadResult = Rules->LoadRuleComponent(appgrp,
 msgtype,CompType,ComponentName,LoadImmed))) {
 cerr << "Error reloading rule component: ";
 if (CompType == NNRCOMP_MSG) {
 cerr << "Message Type = "<< appgrp << ", " << msgtype <<
 endl;
 } else {
 cerr << ComponentType << " = "<< appgrp << ", ";
 cerr << msgtype << ", " << ComponentName << end1;
 }
 cerr << "Rules Error String > " ;
 cerr << "NNR" << Rules->GetErrorNo() << " <" ;
 cerr << Rules->GetErrorMessage() << " <" <<endl;
 } else {
 cerr << "Reload succeeded for component: ";
 if (CompType == NNRCOMP_MSG) {
 cerr <<"Message Type = "<< appgrp << ", ";
 cerr << msgtype << endl;
 } else {
 cerr << ComponentType << " = "<< appgrp << ", ";
 cerr << msgtype << ", " << ComponentName << endl;
 }
 if (ReloadResult == 2) {
 cerr << "Component not found OR rule set not
 currently loaded. ";
 cerr << "Reload request ignored." << endl;
 }
 }
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 51
New Era of Networks Rules Programming Reference

Chapter 3
 // subsequent calls to VRule::eval use the new Rules data

Note:
The LoadRuleComponent API returns a value of 2 if the NEONRules Engine
instance has never evaluated a message using the specified application
group/message name pair and LoadNow is not set. In this case, the
LoadRuleComponent API does not load the rule set, instead, the load occurs
when the eval() API is invoked.

See Also

CreateRulesEngine

DeleteRuleEngine

eval

GetErrorNo

GetRerror

GetErrorMessage
52 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
LoadRuleSet

Using the application group and message type, LoadRuleSet() sets a flag
indicating that the system should clear any current rule set information and
load the rule set indicated by the AppName and MsgName parameters.

LoadRuleSet() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). It can be called before
VRule::eval(). However, it should never be called after an eval() and before
getsubscription(), getopt(), gethitrule(), and so on.

Syntax

int VRule::LoadRuleSet(char* AppName,
 char* MsgName,
 int LoadNow=0);

Parameters

Remarks

If LoadNow is zero, the default, the system reloads rule set information when
the next eval() is called. If LoadNow is 1, the reload is done immediately,

Name Type Input/
Output

Description

AppName char* Input Application Group Name. Should be the
Application Group for the rule set to load.
This string should not be empty.

MsgName char* Input Type of message to be evaluated. If
NEONFormatter is used, message type is the
input format name. Should be the Message
Type for the rule set to load. This string
should not be empty.

LoadNow int Input Indicates when to reload the rule set
information.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 53
New Era of Networks Rules Programming Reference

Chapter 3
effectively ending the evaluation cycle, though eval() completes retrieving
subscription, action, and option information if doing so when receiving the
signal to reload. If the rule set has not been loaded previously, LoadRuleSet()
loads it only if LoadNow is set.

Note:
When LoadRuleSet is run, pointers to rule, subscription, and option
information are overwritten. To maintain the pointers and their associated
information, make a copy of the rule, subscription, and option information
before LoadRuleSet is run.

Return Value

Returns 1 if the load was performed or if the reload indicator was set for the
rule set indicated; 2 if the rule set has not been loaded, though the reload
indicator was set correctly; zero (0) if the load cannot be performed.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

// OpenDbmsSession and CreateRulesEngine called already
// Rules (VRule object) has been used for evaluations and this
// call reloads the named RuleSet

 char appgrp[APP_NAME_LEN] = "TestApp";
 char msgtype[MSG_NAME_LEN] = "TestFmt";
 int LoadImmed = 0;
 int ReloadResult = 0;

 if ((!ReloadResult = Rules->LoadRuleSet(appgrp,msgtype,
 LoadImmed))) {
 cerr << "Error reloading rule set: " << appgrp << ", ";
 cerr << msgtype << endl;
 cerr << "Rules Error String > " ;
 cerr << "NNR" << Rules->GetErrorNo() << " <" ;
 cerr << Rules->GetErrorMessage() << " <" << endl;
 } else if (ReloadResult == 2) {
 cerr << "Rule Set has not been loaded yet. It will
54 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
 be when eval is called." << endl;
 } else {
 cerr << "Rule Set Reload succeeded for:
 " << appgr <<
 ", "
 << msgtype << endl;
 }

// subsequent calls to VRule::eval use the new Rules data

Note:
The LoadRuleSet API returns a value of 2 if the NEONRules Engine instance
has never evaluated a message using the specified application group/
message name pair and the LoadNow is zero. In this case, the LoadRuleSet
API does not load the rule set, instead, the load occurs when the eval() API is
invoked.

See Also

CreateRulesEngine

DeleteRuleEngine

eval

GetErrorNo

GetRerror

GetErrorMessage
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 55
New Era of Networks Rules Programming Reference

Chapter 3
populatesubscriptionlist

The populatesubscriptionlist function allows a user to retrieve a subscription
list from the NEONRules engine. The method pulls the subscriptions, actions,
and options that hit for the active message. The method first pulls a
subscription from the rules object. If a subscription exists, it retrieves the first
action that applies. If the action exists, it loads all options pertaining to the
action and stores them in an option list. When the list is full, options for the
next action are added to the list. After the list of actions for the subscription is
full, the method retrieves the actions and options for the next subscription.
The populatesubscriptionlist method proceeds to load subscriptions, actions,
and options until there are no more in the rules object. Upon completion of
searching all subscriptions that hit and retrieving the applicable actions and
options, the full subscription list is returned to the user via the parameter
passed in the method call.

The populatesubscriptionlist should be used instead of the getsubscription
and getopt methods since it retrieves all eval results once, thereby releasing
VRule so that you can call eval again to apply a re-evaluation on the retrieved
data.

Syntax

int VRule::populatescriptionlist(RulesSubscriptionList&
subsContainer)

Parameters

Name Type Input/
Output

Description

subsContain
er

RulesSubs
criptionLi
st&

input
output

Subscription list from the Rules Object.
56 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Remarks

The user must create a RulesSubscriptionList before this call. This parameter
is passed by reference and the method populates the data.

Return Value

Returns 1 if list is successfully populated and 0 if it is not.

See Also

getsubscription

getopt

Error Handling

GetErrorNo

GetErrorNo() returns the error number associated with the last error that
occurred.

Syntax

int *VRule::GetErrorNo();

Parameters

None

Return Value

Returns the error number associated with the last error that occurred. Zero (0)
or -1000 is returned if no error occurred.

Example

VRule *rules=CreateRulesEngine(session);
 if (!rules->eval("Bravo", msgname, msg, msglen)){
 cout << "Fail, errno = ";
 cout << GetRerror(rules->GetErrorNo()) << endl;
 }else{
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 57
New Era of Networks Rules Programming Reference

Chapter 3
 // process Subscription Actions by Subscription
 // and process options by Subscription Action
 }

See Also

GetRerror

GetErrorMessage
58 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
GetErrorMessage

GetErrorMessage() returns the last error message, including any specific data
such as an Application Group Name for the current thread. This function
should be used in place of GetRerror().

Syntax

char* VRule::GetErrorMessage();

Parameters

None

Return Value

Returns a pointer to a NULL-terminated string containing the description for
the last error that occurred.

Example

VRule *rule=CreateRulesEngine(session);
 if (!rules->eval("Bravo", msgname, msg, msglen)){
 cout << "Fail, errno = ";
 cout << rules->GetErrorMessage() << endl;
 }else{
 // process Subscription Actions by Subscription
 // and process options by Subscription Action
 }

See Also

GetErrorNo

GetRerror
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 59
New Era of Networks Rules Programming Reference

Chapter 3
GetRerror

GetRerror() returns the description for the error number relating to a SQL or
NEONRules processing error. SQL and NEONRules processing errors are shown
in the next section. The static error message is returned with "%s"
representing where the additional data would be placed.

For example, if GetRerror(-1001) is called, it returns the following message:

Rules configuration missing Application Group -- AppGrp - %s, MsgType -
%s

Note:
GetErrorMessage() returns the last error message including additional
information replacing the "%s".

Syntax

char* GetRerror(int ErrorNo);

Parameters

Return Value

Returns a pointer to a NULL-terminated string containing the description for
the error number passed into the function.

Name Type Input/
Output

Description

ErrorNo int Input Determines the string value containing the
meaning of the error.
60 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Example

if (!rules->eval("Bravo", msgname, msg, msglen)){
 cout << "Fail, errno = ";
 cout << GetRerror(rules->GetErrorNo()) << endl;
}else{
 // process Subscription Actions by Subscription
 // and process options by Subscription Action
}

See Also

GetErrorNo

GetErrorMessage
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 61
New Era of Networks Rules Programming Reference

Chapter 3
Subscription, Action, Option APIs

The subscription classes enables the VRule::populatesubscriptionlist method
to retrieve subscriptions, actions, and options for rules. Members of the
classes enable creation and manipulation of the data within each class.

There are six classes covered under this API section. Three are list classes and
three are object classes. The methods for each of the list classes are the same
and the methods for each object classes are the same. A description of each
class is provided below. Detailed information on the methods are only
provided for the RulesSubscriptionList class and RulesSubscription class.
Substitute "Subscription" for "Action" or "Option" to use the method to pull
the appropriate action or option information.

List Classes

The RulesSubscriptionList class allows the user to create a
RulesSubscriptionList object. This object can then be passed in the
VRule::populatesubscriptionlist member function to pull the subscriptions
that hit for the active message. The RulesSubscriptionList contains instances
of RulesSubscriptions.

The RulesActionList class allows the user to pull the actions that are valid for
a given subscription. An instance of the RulesSubscription class contains a
RulesActionList object which contains many instances of RulesActions.

The RulesOptionList class allows the user to pull the options that are valid
for a given subscription. An instance of the RulesSubscription class contains a
RulesOptionList object which contains many instances of RulesOptions.

Object Classes

The RulesSubscription class allows the user to create a RulesSubscription
object. These objects are generally found inside the RulesSubscriptionLists.
The RulesSubscription is used to traverse the list of subscriptions retrieved
from the VRule::populatesubscriptionlist method.

The RulesAction class allows the user to create a RulesAction object. These
objects are generally found inside the RulesActionLists. The RulesAction is
62 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
used to traverse the list of actions retrieved from the
RulesSubscription::getActionList method.

The RulesOption class allows the user to create a RulesOption object. These
objects are generally found inside the RulesOptionLists. The RulesOption is
used to traverse the list of options retrieved from the
RulesAction::getOptionList method.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 63
New Era of Networks Rules Programming Reference

Chapter 3
RulesSubscriptionList Member Functions
The RulesSubscriptionList class allows the user to create a
RulesSubscriptionList object. This object can then be passed in the
VRule::populatesubscriptionlist member function to pull the subscriptions,
actions, and options that hit for an active message.

RulesSubscriptionList Constructor

This constructor allows the user to create an instance of the
RulesSubscriptionList object.

Syntax

RulesSubscriptionList::RulesSubscriptionList()

Parameters

N/A

Return Value

N/A
64 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
RulesSubscriptionList Destructor

This destructor deallocates the memory for the internal data object if it is not
being shared.

Syntax

RulesSubscriptionList::~RulesSubscriptionList()

Parameters

N/A

Return Value

N/A
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 65
New Era of Networks Rules Programming Reference

Chapter 3
RulesSubscriptionList Copy Constructor

This copy constructor allows the user to get a shared copy of the
RulesSubscriptionList being passed. This method makes a shallow reference-
counted copy of RulesSubscriptionList data.With the pointer to the internal
data, the calling object references the data rather than making a separate copy
of it. This results in saving memory.

The newCopy method should be used to get an unshared copy.

Syntax

RulesSubscriptionList::RulesSubscriptionList(const ThisType&
orig)

Parameters

Return Value

None. If the calling object is passed a NULL object, the new object remains
NULL.

Name Type Input/
Output

Description

orig const
ThisType&

Input Pointer for the object to be copied.
66 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
&operator= Assignment Operator

This member function makes a shallow reference-counted copy of
RulesSubscriptionList data.With the pointer to the internal data, the calling
object references the data rather making having a separate copy of it. This
results in saving memory. The call returns an object of type
RulesSubscriptionList containing the new pointer to ThisType’s data. This
function does not allow passing a copy of itself as a parameter.

Syntax

ThisType RulesSubscriptionList::&operator=(const ThisType&
right)

Parameters

Return Value

RulesSubscriptionList object pointing to the shared data.

Name Type Input/
Output

Description

right const
ThisType&

Input Pointer for the calling object to be copied.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 67
New Era of Networks Rules Programming Reference

Chapter 3
append_back

The append_back method enables adding a RulesSubscription object at the
back of the RulesSubscriptionList object. It inserts a user’s own
RulesSubscriptionList onto the back of the calling RulesSubscriptionList.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY_NAMESPACE e_SF RulesSubscriptionList::append_back
(RulesSubscription* pSubscription)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

pSubscrip
tion

RulesSubsc
ription*

Input non-NULL RulesSubscription object.
68 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
append_front

The append_front method enables adding a RulesSubscription object to the
front of the RulesSubscriptionList object. It inserts a user’s
RulesSubscriptionList into the front of the calling RulesSubscriptionList.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY_NAMESPACE e_SF RulesSubscriptionList::append_front
(RulesSubscription* pSubscription)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

pSubscrip
tion

RulesSubsc
ription*

Input non-NULL RulesSubscription object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 69
New Era of Networks Rules Programming Reference

Chapter 3
Clear

The Clear method removes all objects from the RulesSubscriptionList. The
function clears the current list of RulesSubscriptions leaving the calling
RulesSubscriptionList empty of all objects. The RulesSubscription objects in
the list are deleted. Their internal data objects are deleted if they are not
shared by other RulesSubscriptions.

The return value is of type e_SF representing SF_Success when clear
completes successfully or SF_Failure when the clear fails.

Syntax

virtual NNSY_NAMESPACE e_SF RulesSubscriptionList::clear()

Parameters

N/A

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.
70 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
createOwnCopyOfData

This method is typically used internally to create a new RulesSubscriptionList
for a user. If the internal data is shared, it creates a new copy of internal data
for the calling object.

Syntax

void RulesSubscriptionList::createOwnCopyOfData()

Parameters

N/A

Return Value

None.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 71
New Era of Networks Rules Programming Reference

Chapter 3
DeleteSubscription

The DeleteSubscripiton method deletes the object in the list with the ID
number provided in the parameter list. This function deletes the subscription
from the calling RulesSubscriptionList object. It uses the integer that gets
passed as a parameter to find the appropriate RulesSubscription. The
RulesSubscription’s internal data object is deallocated if it is not being shared
by another RulesSubscription.

The return value is of type e_SF representing SF_Success when the deletion
completes successfully or SF_Failure when the deletion fails.

Syntax

virtual NNSY_NAMESPACE e_SF
RulesSubscriptionList::deleteSubscription (int subscriptionId)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful deletions or SF_Failure to indicate failed deletion
attempts. Returns SF_Failure if the Subscription Id is not found.

Name Type Input/
Output

Description

subscripti
onId

int Input RulesSubscription object Id.
72 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
getFirst

The getFirst method returns the first item in the RulesSubscriptionList.

Syntax

virtual RulesSubscription* RulesSubscriptionList::getFirst()

Parameters

N/A

Return Value

RulesSubscription pointer or NULL pointer for an empty list.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 73
New Era of Networks Rules Programming Reference

Chapter 3
getNewSubscription

The getNewSubscription method is used to get a new object in the
RulesSubscriptionList. This member function creates a subscription in the
calling RulesSubscriptionList, sets the Id of the new Subscription, and gives a
pointer to the new Subscription to the user. The method fails when the new
subscription is NULL or the Id cannot be set.

Syntax

virtual RulesSubscriptionList*
RulesSubscriptionList::getNewSubscription()

Parameters

N/A

Return Value

RulesSubscriptionList subscription pointer
74 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
getNext

The getNext method retrieves the current object pointed to by the iterator and
moves the iterator to the next object in the RulesSubscriptionList.

Syntax

virtual RulesSubscription* RulesSubscriptionList::getNext()

Parameters

N/A

Return Value

RulesSubscription pointer or NULL pointer for an empty list and when it
reaches the end of the list.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 75
New Era of Networks Rules Programming Reference

Chapter 3
insert (subscription)

This insert method enables adding an object before the current iterator
position in the RulesSubscriptionList object. When traversing the list with the
getFirst or getNext iterators, this insert method can be used to place a
subscription before the object retrieved in either "get" call. The parameter
must be a non-NULL RulesSubscription object. The return value is of type
e_SF representing SF_Success when the insert completes successfully or
SF_Failure when the insert fails.

If the current iterator position is equal to the beginning, use the push_front
method to insert a RulesSubscription before the first object.

Syntax

virtual NNSY_NAMESPACE e_SF RulesSubscriptionList::insert
(RulesSubscription* pSubscription)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

pSubscrip
tion

RulesSubsc
ription*

Input non-NULL RulesSubscription object.
76 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
insert (list)

This insert method inserts a user’s RulesSubscriptionList into the calling
RulesSubscriptionList based on the current iterator position. When traversing
the list with the getFirst or getNext iterators, this insert method can be used to
place the list before the current RulesSubscription.

The parameter must be a non-NULL RulesSubscriptionList object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY_NAMESPACE e_SF RulesSubscriptionList::insert
(RulesSubscriptionList* pSubscriptionList)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

pSubscrip
tionList

RulesSubsc
riptionList*

Input non-NULL RulesSubscriptionList object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 77
New Era of Networks Rules Programming Reference

Chapter 3
newCopy

The newCopy constructor allows the user to get an unshared deep copy of the
RulesSubscriptionList being passed. Use this method to create a personally
owned object of type RulesSubscriptionList. The calling object creates its own
copy of internal data for itself.

Syntax

RulesSubscriptionList* RulesSubscriptionList::newCopy()

Parameters

N/A

Return Value

A pointer to the new copy of RulesSubscriptionList object with its own date.
78 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
push_front

The push_front method enables adding an object to the front of the
RulesSubscriptionList object. It inserts a subscription into the front of the
subscription list before any existing objects.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails

Syntax

virtual NNSY_NAMESPACE e_SF RulesSubscriptionList::push_front
(RulesSubscription* pSubscription)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

pSubscrip
tion

RulesSubsc
ription*

Input non-NULL RulesSubscription object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 79
New Era of Networks Rules Programming Reference

Chapter 3
push_back

The push_back method enables adding an object to the end of the
RulesSubscriptionList object. The subscription is inserted after the "end"
iterator pointer position after any existing objects.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY_NAMESPACE e_SF RulesSubscriptionList::push_back
(RulesSubscription* pSubscription)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

pSubscrip
tion

RulesSubsc
ription*

Input non-NULL RulesSubscription object.
80 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
size

The size method returns the number of objects in the RulesSubscriptionList.

Syntax

virtual int RulesSubscriptionList::size()

Parameters

N/A

Return Value

Number of objects contained in the calling RulesSubscriptionList.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 81
New Era of Networks Rules Programming Reference

Chapter 3
RulesSubscription Member Functions
The RulesSubscription class allows the user to create a RulesSubscription
object. These objects are generally found inside the RulesSubscriptionLists.
The RulesSubscription is used to traverse the list retrieved from the
VRule::populatesubscriptionlist function.

See RulesSubscription.h

RulesSubscription Constructor

This constructor allows the user to create an instance of the RulesSubscription
object.

Syntax

RulesSubscription::RulesSubscription()

Parameters

N/A

Return Value

N/A
82 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
RulesSubscription Destructor

This destructor deallocates the memory for the internal data object if it is not
being shared.

Syntax

RulesSubscription::~RulesSubscription()

Parameters

N/A

Return Value

N/A
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 83
New Era of Networks Rules Programming Reference

Chapter 3
RulesSubscription Copy Constructor

This copy constructor allows the user to get a shared copy of the
RulesSubscription being passed. The newCopy method should be used to get
an unshared copy.

Syntax

RulesSubscription::RulesSubscription(const ThisType& orig)

Parameters

Return Value

None. If the calling object is passed a NULL object, the object remains NULL.

Name Type Input/
Output

Description

orig const
ThisType&

Input Pointer for the object to be copied.
84 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
&operator= Assignment Operator

This member function makes a shallow reference-counted copy of
RulesSubscription data.With the pointer to the internal data, the calling object
references the data rather than making a separate copy of it. This results in
saving memory.

The call returns an object of type RulesSubscription containing the new
pointer to ThisType’s data. This function does not allow passing a copy of
itself as a parameter.

Syntax

ThisType RulesSubscription::&operator=(const ThisType& right)

Parameters

Return Value

RulesSubscription object pointing to the shared data.

Name Type Input/
Output

Description

right const
ThisType&

Input Pointer for the calling object to the internal
data.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 85
New Era of Networks Rules Programming Reference

Chapter 3
compareById

The compareById method compares this subscription id with the id in the int
parameter.

The parameter must be a non-negative integer. The return value is of type
e_SF representing SF_Success when the Ids are equal or SF_Failure when the
the Ids are not the same.

Syntax

NNSY_NAMESPACE e_SF RulesSubscription::compareById(int
subscriptionId)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate equality or SF_Failure to indicate inequality. Returns SF_Failure if
NULL.

Name Type Input/
Output

Description

subscripti
onId

int Input Id of the RulesSubscription object.
86 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
createOwnCopyOfData

This method is typically used internally to create a new RulesSubscription for
a user. If the internal data is shared, it creates a new copy of internal data for
the calling object.

Syntax

void RulesSubscription::createOwnCopyOfData()

Parameters

N/A

Return Value

None.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 87
New Era of Networks Rules Programming Reference

Chapter 3
getActionList

The getActionList method retrieves the current action list to the user.

Syntax

RulesActionList* RulesSubscription::getActionList()

Parameters

N/A

Return Value

A pointer to the RulesActionList for this RulesSubsctiption.
88 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
getId

The getId method retrieves the subscriptionId via the contents of the int
parameter. It fails when the object’s Id is invalid (empty).

The parameter is set by this method. The return value is of type e_SF
representing SF_Success when the retrieval completes successfully or
SF_Failure when the retrieval fails.

Syntax

NNSY_NAMESPACE e_SF RulesSubscription::getId(int&
subscriptionId)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

subscripti
onId

int& Output Id of the RulesSubscription object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 89
New Era of Networks Rules Programming Reference

Chapter 3
getName

The getName method retrieves the subscription name via the contents of the
STL_STRING parameter. It fails when the object’s value is invalid (empty).

The parameter is set by this method. The return value is of type e_SF
representing SF_Success when the retrieval completes successfully or
SF_Failure when the retrieval fails.

Syntax

NNSY_NAMESPACE e_SF RulesSubscription::getName(const
STL_STRING& subscriptionName)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

subscripti
onName

const
STL_STRING&

Output name of the RulesSubscription
object.
90 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
newCopy

The newCopy constructor allows the user to get an unshared deep copy of the
RulesSubscription being passed. Use this method to create a personally
owned object of type RulesSubscription. The calling object creates its own
copy of internal data for itself.

Syntax

RulesSubscriptionList* RulesSubscription::newCopy()

Parameters

N/A

Return Value

A pointer to the new copy of the RulesSubscription object with its own data.

Example

RulesSubscriptionList yourRulesSubscriptionList;
//populate this list...
Rules->populatesubscriptionlist(yourRulesSubscriptionList);
RulesSubscription *pYourRulesSubscription =
 yourSubscriptionList.getFirst();
RulesSubscription *pMyRulesSubscription;
pMyRulesSubscription = pYourRulesSubscriptionList->newCopy();
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 91
New Era of Networks Rules Programming Reference

Chapter 3
setId

The setId method sets the subscriptionId to the contents of the int parameter.
It fails when the parameter is invalid (empty).

The parameter must be a non-negative integer. The return value is of type
e_SF representing SF_Success when the update completes successfully or
SF_Failure when the update fails.

Syntax

NNSY_NAMESPACE e_SF RulesSubscription::setId(int&
subscriptionId)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

subscripti
onId

int& Input Id of the RulesSubscription object.
92 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
setName

The setName method sets the subscription name to the contents of the
STL_STRING parameter. It fails when the parameter is invalid (empty).

The parameter must be a non-empty string object. The return value is of type
e_SF representing SF_Success when the update completes successfully or
SF_Failure when the update fails.

Syntax

NNSY_NAMESPACE e_SF RulesSubscription::setName(const
STL_STRING& subscriptionName)

Parameters

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Name Type Input/
Output

Description

subscripti
onName

const
STL_STRING

Input name of the RulesSubscription object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 93
New Era of Networks Rules Programming Reference

Chapter 3
Subscription, Action, Option Class Usage
The following information provides an example of using these classes. To
view a full code example of the previous description, please see lines 406 to
506 of ruletest.cpp.

Populate Subscription List
After performing a Rules Evaluation where some Rules evaluate to true and
some subscriptions need to be performed, use the VRule method
populatesubscriptionlist to get a complete list of all of the subscriptions that
have hit for the active message.

The method needs a copy of a RulesSubscriptionList with its own memory.
The object should then be passed to the method as a parameter:

RulesSubscriptionList *pSubscriptionList =
newRulesSubscriptionList;
rules->populatesubscriptionlist(*pSubscriptionList)

Traverse the Subscription List
To begin traversing the list, use the RulesSubscription::getFirst method to
obtain the first RulesSubscription from the pSubscriptionList:

RulesSubscription *pSubscription = NULL;
pSubscription = pSubscriptionList->getFirst();

The RulesSubscription ID number and the name can now be retrieved for use
using the getId and getName member functions of the RulesSubsciption class.
Create an integer for the subscription ID and pass the variable to the method
as a parameter. The function writes the result to your integer. For the name,
create an STL_STRING and pass the variable to the method as a parameter.
The function writes the result to your string:

 int subscriptionId;
 STL_STRING subscriptionName;
 pSubscription->getId(subscriptionId);
 pSubscription->getName(subscriptionName);

If a RulesSubscription exists in the list, enter a loop to retrieve all of the
actions that may be in the subscription.
94 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Get and Traverse Subscription’s Actions
For each subscription in the list, ask each subscription for its RulesActionList:

 RulesActionList = *pActionList = NULL;
 pActionList = pSubscription->getActionList();

To begin traversing the list, create a RulesAction with its own memory and
use the RulesActionList::getFirst method to obtain the first RulesAction from
the pActionList;

 RulesAction = *pAction = NULL;
 pAction = pActionList->getFirst();

The RulesAction ID number and the name can now be retrieved for use using
the getId and getName member functions of the RulesAction class. Create an
integer for the subscription ID and pass the variable to the method as a
parameter. The function writes the result to your integer. For the name, create
an STL_STRING and pass the variable to the method as a parameter. The
function writes the result to your string.

 int actionId;
 pAction->getId(actionId);
 STL_STRING actionName;
 pAction->getName(actionName);

If a RulesAction exists in the list, enter a loop to retrieve all of the options in
the action.

Get and Traverse Subscription’s Options
Then for each action, ask the action for its RulesOptionList:

 RulesOptionList *pOptionList == NULL;
 pOptionList = pAction->getOptionList();

To begin traversing the list, use the RulesOptionList::getFirst method to
obtain the first RulesOption from the pOptionList;

 RulesOption *pOption == NULL;
 pOption = pOptionList->getFirst();
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 95
New Era of Networks Rules Programming Reference

Chapter 3
The RulesOption name and value can now be retrieved for use using the
getName and getValue member functions of the RulesOption class. For the
name, create an STL_STRING and pass the variable to the method as a
parameter. For the value, create an STL_STRING and pass the variable to the
method as a parameter. The function writes the result to your object.

 STL)STRING optionName, optionValue;
 pOption->getName(optionName);
 pOption->getValue (optionValue);

If a RulesOption exists in the list, enter a loop to retrieve all of the options in
the list. Use the RulesOptionList::getNext method to retrieve all of the options
in for this action by calling it from inside of a loop. The method returns NULL
when no more options exist in the list.

 pOption = pOptionList->getNext();

After retrieving all of the options from this particular action, ask you action
list for another action and repeat the process of retrieving this action’s
options.

 pAction = pActionList->getNext();

If no more actions exist in this list, ask the subscription list for another
subscription and repeat the process of retrieving this subscription’s actions.

 pSubscription = pSubscriptionList->getNext();
96 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Evaluation Field Value Containers

The NNFieldValueContainer class is used as the base class for any class that
contains field values that can be retrieved by name. The Formatter and
NNNameValueList classes inherit from this class. Users can input their own
object containing field values into the eval() API as long as the object inherits
from this NNFieldValueContainer base class and has the correct methods.

class NNFieldValueContainer
{
 public:
 NNFieldValueContainer();
 virtual ~NNFieldValueContainer();
 virtual char* GetFieldString(char* name,int instance=-1)=0;
 virtual int GetFieldCount(char *name) = 0;
};
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 97
New Era of Networks Rules Programming Reference

Chapter 3
NNFieldValueContainer Member Functions

GetField

Gets the field represented by the name in the form of an NDO. The first
instance = 0. All classes that need to pass data to a rules evaluation must
inherit from the NNFieldValueContainer and implement GetField.

Syntax

const NNDOData * GetField(char * name, int instance)

Parameters

Return Value

A pointer to an NDO Data object. Type of unset when the object is empty and
the field does exist in the container.

Name Type Description

name char* The name identifies the field being
retrieved.

instance int The instance identifies the instance of
the field in the corresponding container
when repeating names exist.
98 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
GetFieldString

This GetFieldString method is used to return values for a specific instance in a
message. This method is used for expressions containing
<fieldname>[<instance>] where the first instance is represented as zero (0).
All classes that need to pass a rules evaluation must inherit from
NNFieldValueContainer and implement GetFieldString.

Syntax

char* NNFieldValueContainer::GetFieldString (char* name, int
instance = -1)

Description of Instance Syntax

For NEONFormatter messages, the -1 provides the instruction to retrieve the
current instance. For NNNameValueList data evaluations, the -1 gets
converted to zero (0) to retrieve the first instance.

Parameters

Return Value

This returns a null-terminated string representation of the last specific
instance of this field in the evaluation data. NULL or an empty string is
returned if there is no instance of the field.

Name Type Description

name char* The name of the field to be evaluated.

instance int The instance of the field that determines
the return value.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 99
New Era of Networks Rules Programming Reference

Chapter 3
GetFieldCount

This pure virtual member function retrieves an integer for the number of
repeating instances of this field in the active message. A field can have a
NULL or empty value in it; therefore, NULL values get included in count. All
classes that need to pass a rules evaluation must inherit from
NNFieldValueContainer and implement GetFieldCount.

Syntax

int GetFieldCount(char *name)

Parameters

Return Value

Returns the number of repeating fields in the active message.

Name Type Description

name char* The name of the field to be evaluated.
100 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
GetInputCodeSet

Gets the code set attribute for the active container and returns it to the user
via the codeSetStr parameter.

Syntax

const char * GetInputCodeSet()

Parameters
N/A

Return Value

Character string representation for the code set name.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 101
New Era of Networks Rules Programming Reference

Chapter 3
GetInputLocale

Gets the locale attribute for the active container and returns it to the user via
the localeStr parameter.

Syntax

public abstract const char * GetInputLocale()

Parameters
N/A

Return Value

 Character string representation of the locale name.
102 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
SetInputCodeSet

Sets the code set for the active container as an attribute of the object.

Syntax

public abstract int SetInputCodeSet(const char * codeset)

Parameters

Return Value

An integer representing 0 for failure and 1 for success.

Name Type Description

codeset const char* An STL string representation of the
codeSetStr.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 103
New Era of Networks Rules Programming Reference

Chapter 3
SetInputLocale

Sets the locale for the active container as an attribute of the object.

Syntax

int SetInputLocale(const char * locale)

Parameters

Return Value

An integer representing 0 for failure and 1 for success.

Name Type Description

locale const char* An STL string representation of the
locale name.
104 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
NNNameValueList Member Functions
The NNNameValueList class is used to identify field values that can be
retrieved by name. The NNNameValueList contains a list of field name and
value pairs from the NNName and NNValue classes where the name is up to
120 characters and the value can be of any length for rules evaluation.
Multiple instances of each field name can be stored. Access to these instances
is performed with an index starting at 0.

Users are able to input their own object containing field values in the eval()
API as long as the object inherits from the NNFieldValueContainer base class
and has the correct functions. Users creating their own messages to be passed
to a rules eval have to perform their own name length validation before
passing them into a NNNameValueList.

Any call to GetFieldString must be accompanied by an instance for the
NNNameValueList to retrieve the correct value. The instance defaults to -1;
however, the NNNameValueList converts this to a zero and retrieves the first
instance.

class NNNameValueList: public NNFieldValueContainer {
public:
 NNNameValueList();
 ~NNNameValueList();
 int Add(const NNName *pName, const NNValue *pValue);
 int Read(const NNName *pName, NNValue *pValue);
 int Update(const NNName *pName, NNValue *pValue);
 int Delete(const NNName *pName);
 int ClearAll();
 int GetFirst(NNName *&pName, NNValue *&pValue);
 int GetNext(NNName *&pName, NNValue *&pValue);
 char* GetFieldString(char *fieldname, int instance);
 const NNDOData * GetField(char * fieldname, int instance)
 int GetFieldCount(char * fieldname)
 const char * GetInputCodeSet()
 const char * GetInputLocale()
 int SetInputCodeSet(const char * codeset)
 int SetInputLocale(const char * locale)
};
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 105
New Era of Networks Rules Programming Reference

Chapter 3
The NNNameValueList member functions use the NNName and NNValue
classes to add name and value information. The names must be unique to
retrieve the appropriate value. SeeNNName Member Functions on page 122
and NNValue Member Functions on page 135 for more information.

The NNNameValueList contains a list of field name and value pairs where
the name is at most 120 characters and the value can be of any length for rules
evaluation. Validation of the name length is only performed for
NEONFormatter data. Anyone creating their own messages to be passed to a
rules eval has to perform their own length validation before passing them
into a NNNameValueList.

Name Type Description

*pName NNName Object name

*pValue NNValue Object value
106 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
NameValueList Constructor

The NameValueList constructor creates an instance of this object to allow
applications to call the methods for this class. The contents of this object is a
list of field name and value pairs where the name is any length up to 120
characters and the value is any length. Currently, the name and value must be
NULL-terminated.

Syntax

void NNNameValueList::NNNameValueList()

Parameters

N/A

Return Value

N/A

See Also

NNName

NNValue
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 107
New Era of Networks Rules Programming Reference

Chapter 3
~NNNameValueList Destructor

The NameValueList destructor allows applications to remove an instance of
this object. The space for the name and value strings are deallocated by this
destructor.

Syntax

void NNNameValueList::~NNNameValueList()

Return Value

N/A.
108 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Add

The Add member function uses the NNName and NNValue classes to add a
name and value pair to the list of items. The name may be up to 120
characters in length and the value can be of any length. If the name already
exists, the pair is added to the list after the previous pair with the same field
name.

Syntax

int NNNameValueList::Add(const NNName *pName, const NNValue
*pValue)

Parameters

Return Value

Returns a 1 if the pair was added successfully.

See Also

NNName

NNValue

Name Type Description

NNName *pName Object name.

NNValue *pValue Object value.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 109
New Era of Networks Rules Programming Reference

Chapter 3
Read

The Read member function allows the user to retrieve a value from the list of
items based on the item name. If the name and instance of that name exist, the
value is returned in the pValue parameter.

Syntax

int NNNameValueList::Read(const NNName *pName, const NNValue
*pValue, int instance)

Parameters

Return Value

Returns a 1 if the value was found successfully. Otherwise, returns zero (0).

See Also

NNName

NNValue

Name Type Description

NNName *pName Object name.

NNValue *pValue Object value.

instance int Instance value when a group of items
exist with the same name.
110 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
Update

The Update member function allows the user to update the value in a name/
value pair inside the list of items. If the name and instance of that name
already exist, the value is updated. If the name and instance of that name do
not exist, it is not added to the list. The Add method is needed to add the
name and value to the list.

Syntax

int NNNameValueList::Update(const NNName *pName, const NNValue

*pValue, int instance)

Parameters

Return Value

Returns a 1 if the update was successful.

Returns 0 if the name and instance were not found or the update could not be
performed.

See Also

NNName

NNValue

Name Type Description

NNName *pName Object name.

NNValue *pValue Object value.

instance int Instance value when a group of items
exist with the same name.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 111
New Era of Networks Rules Programming Reference

Chapter 3
Delete

The Delete member function allows the user to delete a name and value pair
inside the list of items based on the name. If the name and instance of that
name exist, the item is deleted. If the name and instance of that name does not
exist, no changes are made.

Syntax

int NNNameValueList::Delete(const NNName *pName, int instance)

Parameters

Return Value

Returns a 1 if the item was deleted successfully. A return value of 0 means
that no changes were made.

See Also

NNName

NNValue

Name Type Description

NNName *pName Object name.

instance int Instance value when a group of items
exist with the same name.
112 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
ClearAll

The ClearAll member function allows the user to delete the list of items.

Syntax

int NNNameValueList::ClearAll()

Parameters

N/A

Return Value

Returns a 1 if the items were deleted successfully.

See Also

NNName

NNValue
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 113
New Era of Networks Rules Programming Reference

Chapter 3
GetFirst

The GetFirst member function allows the user to retrieve the first name value
pair in the NameValueList. If the name or value does not exist, the function
returns

Syntax

int NNNameValueList::GetFirst(const NNName *pName, const
NNValue *pValue)

Parameters

Return Value

Returns a 1 if the NameValue pair was found successfully. Returns a 0 if the
function failed to find a valid pair.

See Also

NNName

NNValue

Name Type Description

NNName *pName Object name.

NNValue *pValue Object value.
114 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
GetNext

The GetNext member functions allows the user to retrieve the next
NameValue pair in the NameValue list.

Syntax

int NNNameValueList::GetNext(const NNName *pName, const NNValue
*pValue)

Parameters

Remarks

GetFirst() should be called prior to calling GetNext().

Return Value

Returns a 1 if the NameValue pair was found successfully.

Returns a 0 if the function failed to find a valid pair or if the GetFirst function
has not been applied.

See Also

NNName

NNValue

Name Type Description

NNName *pName Object name.

NNValue *pValue Object value.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 115
New Era of Networks Rules Programming Reference

Chapter 3
GetField

Retrieves an NDO representation of the field value for the given instance of
the name provided.

Syntax

const NNDOData * GetField(char * fieldname, int instance)

Parameters

Return Value

 NNDOData* is a pointer to the container's NDO representation of the value.

Name Type Description

fieldname char* The fieldname identifies the field in the
corresponding container.

instance int The instance identifies the instance of
the field in the corresponding container.
116 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
GetFieldCount

Retrieves an integer representing the number of elements with the given
fieldname in the active container.

Syntax

public int GetFieldCount(char * fieldname)

Parameters

Return Value

An integer for the number of elements with the given fieldname.

Name Type Description

fieldname char* The fieldname identifies the field in the
corresponding container.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 117
New Era of Networks Rules Programming Reference

Chapter 3
GetInputCodeSet

Gets the code set attribute for the active container and returns it to the user
via the codeSetStr parameter.

Syntax

public const char * GetInputCodeSet()

Parameters
N/A

Return Value

Character string representation for the code set name.
118 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
GetInputLocale

Gets the locale attribute for the active container and returns it to the user via
the localeStr parameter.

Syntax

public const char * GetInputLocale()

Parameters
N/A

Return Value

 Character string representation of the locale name.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 119
New Era of Networks Rules Programming Reference

Chapter 3
GetInputCodeSet

Sets the code set for the active container as an attribute of the object.

Syntax

public int SetInputCodeSet(const char * codeset)

Parameters

Return Value

 An integer representing 0 for failure and 1 for success.

Name Type Description

codeset char* An STL string representation of the
codeSetStr.
120 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
SetInputLocale

Sets the locale for the active container as an attribute of the object.

Syntax

public int SetInputLocale(const char * locale)

Parameters

Return Value

 An integer representing 0 for failure and 1 for success.

Name Type Description

locale char* An STL string representation of the
locale name.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 121
New Era of Networks Rules Programming Reference

Chapter 3
NNName Member Functions
The NNName class is used for some of the NNNameValueList methods to
identify the object from which field name information is retrieved. The names
within the object may be up to 120 characters for use within rules. This class
enables retrieval of field or object name information without using the
NEONFormatter to parse the information.

class NNName {
public:
 NNName();
 NNName(char* name);
 NNName(char* name, int length);
 NNName(const NNName& Original);
 ~NNName();
 int set(char* name);
 int set(char* name, int length);
 friend bool operator<(const NNName& name1,
 const NNName& name2);
 friend bool operator==(const NNName& name1,
 const NNName& name2);
 void operator=(const NNName& name1);
 bool IsEmpty();
 char* GetString();
 int GetLength();
};
122 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
NNName Constructor

The default constructor creates an empty NNName object. Use one of the set()
methods to set the name. IsEmpty() returns true, GetLength() returns 0, and
GetString() returns an empty string after NNName is created using this
constructor.

Syntax

NNName::NNName()

Parameters

N/A

Return Value

None

NNName Constructor

This constructor creates a NNName object and sets the name to the NULL-
terminated value given. The character array is copied and the length of the
NNName object is set to strlen(name).

Syntax

NNName::NNName(char* name)

Parameters

Return Value

None

Name Type Description

name char* NULL-terminated Field name
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 123
New Era of Networks Rules Programming Reference

Chapter 3
NNName Constructor

This constructor creates a NNName object and sets the name to the value
given. The character array is copied and the length of the NNName object is
set to the length given. The character array has a NULL (\0) placed at the end
when using this method.

Syntax

NNName::NNName(char* name, int length)

Parameters

Return Value

None

Name Type Description

name char* Field name

length int Data length, in bytes, of the name to be evaluated
124 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
NNName Copy Constructor

This copy constructor creates a NNName object and sets the name to the
name in the passed NNName parameter. The character array is copied and
the length of the NNName object is set to the length given.

Syntax

NNName::NNName(const NNName &Original)

Parameters

Return Value

None

Name Type Description

&Original NNName NNName object to copy
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 125
New Era of Networks Rules Programming Reference

Chapter 3
NNName Destructor

This NNName destructor deallocates the memory used by the character
array.

Syntax

NNName::~NNName()

Parameters
N/A

Return Value

None
126 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
set

This set member function sets the name to the NULL-terminated value given.
The character array is copied and the length of the NNName object is set to
strlen(name). If the NNName was not previously empty, the old name is
deallocated before the new name is copied.

Syntax

int NNName::set(char* name)

Parameters

Return Value

Return value is always 1.

Name Type Description

name char* NULL-terminated Field name
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 127
New Era of Networks Rules Programming Reference

Chapter 3
set

This set member function sets the name to the value given. The character
array is copied and the length given. If the NNName was not previously
empty, the old name is deallocated before the new name is copied. The
character array has a NULL (\0) placed at the end when using this method.

Syntax

int NNName::set(char* name, int length)

Parameters

Return Value

Return value is always 1.

Name Type Description

name char* Field name

length int Data length, in bytes, of the name to be evaluated
128 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
operator<

This operator compares two NNName instances. Each character in the name
is compared (case-sensitive comparison). If the characters are all the same and
objects are the same length, the NNName objects are said to be equal. If one
NNName is longer but all the characters up to that point are the same, the
longer NNName is said to be greater.

This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax

bool operator< (const NNName& name1, const NNName& name2)

Parameters

Return Value

Return value true if the first object is less than the second object Otherwise
false is returned.

Name Type Description

name1 NNName& First object instance against which the second
instance is evaluated

name2 NNName& Second object instance
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 129
New Era of Networks Rules Programming Reference

Chapter 3
operator==

This operator function compares two NNName instances. Each character in
the name is compared (case-sensitive comparison). If the characters are all the
same and objects are the same length, the NNName objects are equal. If one
NNName is longer but all the characters up to that point are the same, the
longer NNName is greater.

 This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax

bool operator== (const NNName& name1, const NNName& name2)

Parameters

Return Value

Return value true if the object values are equal. Otherwise false is returned.

Name Type Description

name1 NNName& First object instance against which the second
instance is evaluated

name2 NNName& Second object instance
130 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
operator=

This assignment operator sets the current NNName value to be the same as
the one passed into the method (right-hand side of the equal sign). If the
current NNName has data, that memory is cleared and the character array
and length are copied from the NNName parameter.

Syntax

void NNName::operator= (const NNName& name1)

Parameters

Return Value

None.

Name Type Description

name1 NNName& Object instance that specifies the setting for the
current NNName value
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 131
New Era of Networks Rules Programming Reference

Chapter 3
IsEmpty

The IsEmpty method returns true if the NNName is empty (empty string,
length is 0).

Syntax

bool NNName::IsEmpty()

Parameters
N/A

Return Value

Returns true if the object is empty. Otherwise false is returned.
132 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
GetString

The GetString method returns a NULL-terminated string value. If the original
character array has embedded NULL characters, these characters look like the
end of the string. An empty string is returned ("") if the NNName is empty.

Syntax

char* NNName::GetString()

Parameters
N/A

Remarks

Do not modify the string returned. If modifications are required, copy the
value into a locally-allocated memory location.

Return Value

Returns a character pointer to the memory inside the object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 133
New Era of Networks Rules Programming Reference

Chapter 3
GetLength

The GetLength method returns the length of the character array (up to, but
not including, the final NULL-character). This should match
strlen(SetString()).

Syntax

int NNName::GetLength()

Parameters
N/A

Return Value

Returns a non-negative whole number for the length of the NNName; returns
zero (0) if the NNName is empty.
134 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
NNValue Member Functions
The NNValue class is used for some of the NNNameValueList methods to
identify the value information to retrieve. The values within the object may be
up of any length. This class enables retrieval of field or object value
information without using the NEONFormatter to parse the information.

class NNValue {
public:
 NNValue();
 NNValue(char * pValue, char * pEncoding = 0, char *
 pLocale = 0);
 NNValue(char * pValue, unsigned int & length, char *
 pEncoding = 0, char * pLocale = 0);
 NNValue(const NNValue& Original);
 ~NNValue();
 int set(char * pValue, char * pEncoding = 0, char *
 pLocale = 0);
 int set(char* value, int length);
 friend bool operator<(const NNValue& value1,
 const NNValue& value2);
 friend bool operator==(const NNValue& value1,
 const NNValue& value2);
 void operator=(const NNValue& value1);
 bool IsEmpty();
 char* GetString();
 int GetLength();
 NNValue(NNDOData * pNdoData)
 const const I18NEncodingContext * getCodeSet()
 const NNDOData * GetField()
 const const I18NLocaleContext * getLocale()
 int set(NNDOData * pNdoData)
};
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 135
New Era of Networks Rules Programming Reference

Chapter 3
NNValue Constructor

The default constructor creates an empty NNValue object. Use one of the set()
methods to then set the value. IsEmpty() returns true, GetLength() returns 0,
and GetString() returns an empty string after NNValue is created using this
constructor.

Syntax

public NNValue(NNDOData * pNdoData)

Parameters

Return Value

None

Name Type Description

pNdoData NNDOData The NDO object that used to create a new
NNValue.
136 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
NNValue Constructor

This constructor creates a NNValue object and sets the value to the NULL-
terminated value given. The character array is copied and the length of the
NNValue object is set to strlen(value).

Syntax

public NNValue(char * pValue, unsigned int & length, char *
pEncoding, char * pLocale)

Parameters

Return Value

None

Name Type Description

pValue char* NULL-terminated Field value.

length int Data length, in bytes, of the value to be evaluated.

pEncoding char* The encoding character string to be used for this
object's encoding.

pLocale char* The locale character string to be used for this
object's locale.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 137
New Era of Networks Rules Programming Reference

Chapter 3
NNValue Constructor

This constructor creates a NNValue object and sets the value to the value
given. The character array is copied and the length of the NNValue object is
set to the length given. The character array has a NULL (\0) placed at the end
when using this method.

Syntax

public NNValue(char * pValue, char * pEncoding, char * pLocale)

Parameters

Return Value

None

Name Type Description

pValue char * Field value.

pEncoding char * The encoding character string to be used for this
object's encoding.

pLocale char * The locale character string to be used for this
object's locale.
138 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
NNValue Copy Constructor

This copy constructor creates a NNValue object and sets the value to the
value in the passed NNValue parameter. The character array is copied and
the length of the NNValue object is set to the length given.

Syntax

NNValue::NNValue(const NNValue &Original)

Parameters

Return Value

None

Name Type Description

&Original NNvalue NNValue object to copy.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 139
New Era of Networks Rules Programming Reference

Chapter 3
NNValue Destructor

This NNValue destructor deallocates the memory used by the character
array.

Syntax

NNValue::~NNValue()

Parameters
N/A

Return Value

None
140 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
getCodeSet

 Retrieves the I18NEncodingContext object for this object's encoding.

Syntax

public const I18NEncodingContext * getCodeSet()

Parameters
N/A

Return Value

18NEncodingContext* is a pointer to a globally allocated
I18NEncodingContext object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 141
New Era of Networks Rules Programming Reference

Chapter 3
getLocale

Retrieves the I18NLocaleContext object for this object's locale.

Syntax

public const I18NLocaleContext * getLocale()

Parameters
N/A

Return Value

I18NLocaleContext is a pointer to a globally allocated I18NLocaleContext
object.
142 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
GetField

Retrieves an NNOData object representation of this object's data contents.

Syntax

public const :: NNDOData * GetField()

Parameters
N/A

Return Value

A pointer to this object's NNDOData attribute.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 143
New Era of Networks Rules Programming Reference

Chapter 3
set

Sets this object's attributes with the NDO parameter.

Syntax

public int set(NNDOData * pNdoData)

Parameters

Return Value

 An integer representing 0 for failure and 1 for success.

Name Type Description

pNdoData NNDOData The NDO representation of this object's new data
attributes.
144 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
set

This set member function sets the value to the NULL-terminated value given.
The character array is copied and the length of the NNValue object is set to
strlen(value). If the NNValue was not previously empty, the old value is
deallocated before the new value is copied.

Syntax

public int set(char * pValue, char * pEncoding, char * pLocale)

Parameters

Return Value

Return value is always 1.

Name Type Description

pValue char * NULL-terminated Field value.

pEncoding char * The character string representation of this object's
new encoding.

pLocale char * The character string representation of this object's
new locale.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 145
New Era of Networks Rules Programming Reference

Chapter 3
set

This set member function sets the value to the value given. The character
array is copied and the length given. If the NNValue was not previously
empty, the old value is deallocated before the new value is copied. The
character array has a NULL (\0) placed at the end when using this method.

Syntax

public int set(char * pValue, unsigned int length, char *
pEncoding, char * pLocale)

Parameters

Return Value

Return value is always 1.

Name Type Description

pValue char* Field value

length int Data length, in bytes, of the value to be evaluated

pEncoding char * The character string representation of this object's
new encoding.

pLocale char * The character string representation of this object's
new locale.
146 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
operator<

This operator compares two NNValue instances. Each character in the value
is compared (case-sensitive comparison). If the characters are all the same and
objects are the same length, the NNValue objects are said to be equal. If one
NNValue is longer but all the characters up to that point are the same, the
longer NNValue is said to be greater.

 This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax

bool operator< (const NNValue& value1, const NNValue& value2)

Parameters

Return Value

Return value true if the first object is less than the second object. Otherwise,
false is returned.

Name Type Description

value1 NNValue& First object instance against which the second
instance is evaluated

value2 NNValue& Second object instance
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 147
New Era of Networks Rules Programming Reference

Chapter 3
operator==

This operator function compares two NNValue instances. Each character in
the value is compared (case-sensitive comparison). If the characters are all the
same and objects are the same length, the NNValue objects are said to be
equal. If one NNValue is longer but all the characters up to that point are the
same, the longer NNValue is said to be greater.

 This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax

bool operator== (const NNValue& value1, const NNValue& value2)

Parameters

Return Value

Return value true if the object values are equal. Otherwise false is returned.

Name Type Description

value1 NNValue& First object instance against which the second
instance is evaluated

value2 NNValue& Second object instance
148 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
operator=

This assignment operator sets the current NNValue value to be the same as
the one passed into the method (right-hand side of the equal sign). If the
current NNValue has data, that memory is cleared and the character array
and length are copied from the NNValue parameter.

Syntax

void NNValue::operator= (const NNValue& value1)

Parameters

Return Value

None.

Name Type Description

value1 NNValue& Object instance that specifies the setting for the
current NNValue value
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 149
New Era of Networks Rules Programming Reference

Chapter 3
IsEmpty

The IsEmpty method returns true if the NNValue is empty (empty string,
length is 0).

Syntax

bool NNValue::IsEmpty()

Parameters
N/A

Return Value

Returns true if the object is empty. Otherwise false is returned.
150 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs
GetString

The GetString method returns a NULL-terminated string value. If the original
character array has embedded NULL characters, these characters look like the
end of the string. An empty string is returned ("") if the NNValue is empty.

Syntax

char* NNValue::GetString()

Parameters
N/A

Remarks

Do not modify the string returned. If modifications are required, copy the
value into a locally-allocated memory location.

Return Value

Returns a character pointer to the memory inside the object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 151
New Era of Networks Rules Programming Reference

Chapter 3
GetLength

The GetLength method returns the length of the character array (up to, but
not including, the final NULL-character). This should match
strlen(SetString()).

Syntax

int NNValue::GetLength()

Parameters
N/A

Return Value

Returns a non-negative whole number for the length of the NNValue; returns
zero (0) if the NNValue is empty.
152 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 4

NEONRules Management APIs

This chapter includes the following information:

NEONRules Management API Structures

Overall NEONRules Management APIs and Macros

Application Group Management APIs

Message Type Management APIs

Rule Management APIs

Permissions APIs

Operator Management APIs

Expression Management APIs

Argument Management APIs

Subscription Management APIs

Action Management APIs

Option Management APIs

NEONRules Management Error Handling
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 153
New Era of Networks Rules Programming Reference

NEONRules Management APIs enable users to add, update, delete, and read
rules. To use NEONRules Management APIs, include the following header files
located in the include directory:

nnrmgr.h

nnperm.h

rdefs.h

NEONRules components must be added in the following order:

1. Application Group

2. Message Type

3. Rule

4. Rule Permission

5. Rule Expression

6. Argument

7. Subscription

8. Subscription Permission

9. Action

10. Option

The names of formats and fields should not be changed if they are used by a
rule. The following occurs if format and field names are changed:

If you change a format name or the field names in a format, rules
associated with that format become invalid.

Subscription actions using format names fail if the format name is
changed.

If a field name is changed, the arguments using the field name
become invalid and the rule fails.

See the NEONFormatter Programming Reference for information on changing
formats and field names.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 154
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NEONRules Management API
Structures

NNDate

NNDate is passed as part of an argument in several NEONRules Management
functions and should be cleared using NNR_CLEAR prior to use in a function
call.

Currently, dates are defaulted, and this structure is provided for forward
compatibility.

Syntax

typedef struct NNDate{
 unsigned char century;
 unsigned char year;
 unsigned char month;
 unsigned char day;
 unsigned char hours;
 unsigned char minutes;
 unsigned char seconds;
 unsigned char _filler;
 unsigned short mseconds;
 long InitFlag;
} NNDate;

Members

Name Type Description

century unsigned char Century for the year. Currently, 19 (as in 1997) and
20 (as in 2001) are acceptable values.

year unsigned char Number for the year, exclusive of the century. For
example, 1996 is saved as 96 and 2001 is saved as 01.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 155
New Era of Networks Rules Programming Reference

Chapter 4
month unsigned char Numeric month within the year (range 1 to 12).

day unsigned char Numeric day of the month (range 1 to 31).

hours unsigned char Number of hours past midnight in a 24-hour
notation (range 0 to 23).

minutes unsigned char Number of minutes past the hour (range 0 to 59).

seconds unsigned char Number of seconds past the minute (range 0 to 59).

filler unsigned char This field exists to insure proper alignment of the
mseconds field below and is set to zero (0).

mseconds unsigned char Number of milliseconds past the second (range 0 to
999).

InitFlag long This field is present so the software can detect if this
structure was preset to zero (0) before use.

Name Type Description
156 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Overall NEONRules Management
APIs and Macros

NNRMgrInit

When using NEONRules Management APIs, users are expected to initialize
rules management by calling NNRMgrInit(). NNRMgrInit() initializes the
rules management data access capability and error handling.

Syntax

NNRMgr * NNRMgrInit (DbmsSession *session);

Parameters

Remarks

NEONRules

NNRMgrInit() should be called prior to any NEONRules Management API
calls. For information about the DbmsSession Type to use, see
OpenDbmsSession() in Rules and Formatter Extension for IBM ® WebSphere
Message Broker for Multiplatforms Application Development Guide.

Return Value

Returns a pointer to an instance of a NNRMgr object.

See Also

NNRMgrClose

Name Type Input/
Output

Description

session DbmsSession * Input Name of the open database session.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 157
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrClose

When using NEONRules Management APIs, users are expected to close rules
management by calling the NNRMgrClose() function. NNRMgrClose()
removes the user’s ability to perform rules management.

Syntax

void NNRMgrClose (NNRMgr *pMgr);

Parameters

Remarks

A call to NNRMgrClose() should be the last call made when managing rules.
Once a call to NNRMgrClose() is made, the user cannot manage rules without
calling NNRMgrInit() again.

Note:
NNRMgrClose() only cleans up resources claimed by NNRMgrInit() and
does not close the DbmsSession.

Return Value

None

See Also

NNRMgrInit

Name Type Input/
Output

Description

pMgr NNRMgr* Input Valid NEONRules Management object
returned from call to NNRMgrInit().
158 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNR_CLEAR

When using NEONRules Management APIs, user must clear structures prior to
invoking each function. Use the NNR_CLEAR macro to clear structures.
NNR_CLEAR clears a structure in such a way that the NEONRules
Management APIs can alert the user to a non-initialized structure.

Syntax

NNR_CLEAR(_p)

Parameters

Return Value

None

Example

struct NNRApp app;

NNR_CLEAR(&app);

See Also

NN_CLEAR

Name Type Input/
Output

Description

_p Any rules
management
structure

Input Any structure used in NEONRules
Management API calls except
permission structures.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 159
New Era of Networks Rules Programming Reference

Chapter 4
Application Group Management APIs
An application group is a logical division of rules. Application Management
APIs are used to create applications and associate the applications with rules,
subscriptions, and user permissions.

Application Group Management API
Structures

NNRApp

NNRApp is passed as a pointer as the second parameter of the Application
Group Management APIs. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to
any Application Group Management API calls.

Syntax

typedef struct NNRApp{
 char AppName[APP_NAME_LEN];
 long InitFlag;
}

Members

See Also

NNR_CLEAR

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group in which the
user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.
160 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRAppData

NNRAppData is passed as a pointer as the third parameter of some of the
Application Group Management APIs. The pointer cannot be NULL and
must be cleared using NNR_CLEAR prior to being populated by the user or
Application Group Management API calls. Use of this structure is described
in each Application Group Management API section.

Syntax

typedef struct NNRAppData{
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
}

Members

See Also

NNR_CLEAR

Name Type Description

DateChange NNDate Defaulted for now, provided for future capability.

ChangeAction int Defaulted for now, provided for future capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 161
New Era of Networks Rules Programming Reference

Chapter 4
NNRAppReadData

NNRAppReadData is passed as a pointer to select functions in the
Application Group Management API. The pointer cannot be NULL and must
be cleared using NNR_CLEAR prior to any Application Group Management
API read calls.

Syntax

typedef struct NNRAppReadData{
 char AppName[APP_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
} NNRAppReadData;

Members

See Also

NNR_CLEAR

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group in which the user
is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.
162 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRAppUpdate

NNRAppUpdate is a structure designed to pass update information within
the NEONRules Management APIs. It must be cleared using NNR_CLEAR
prior to being populated, and must be populated prior to any NEONRules
Management API update calls.

Syntax

typedef struct NNRAppUpdate {
 char AppName[APP_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
}

Members

See Also

NNR_CLEAR

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group, defined by
the API using this structure. NULL-
terminated string of length 1 to 120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 163
New Era of Networks Rules Programming Reference

Chapter 4
Application Group Management API
Functions

NNRMgrAddApp

NNRMgrAddApp() enables the user to define a name for one application
group in NEONRules. The user creates a name and provides it to
NNRMgrAddApp(), which then saves it in NEONRules. Only after an
application group has been defined can the application name be used in other
NEONRules Management functions.

Syntax

const long NNRMgrAddApp(
 NNRMgr *pMgr,
 const NNRApp *pRApp,
 const NNRAppData *pRAppData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Name of a current NEONRules
Management object.

pRApp const NNRApp * Input Must be populated prior to this
function call.

pRAppData const
NNRAppData *

Input Must be populated prior to this
function call. DateChange and
ChangeAction should be
populated with NULL values
because they are provided only
for future enhancements.
164 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the application is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrReadApp

NNRMgrUpdateApp
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 165
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrReadApp

NNRMgrReadApp() attempts to read all rules defined for a specific
application group name.

Syntax

const long NNRMgrReadApp(
 NNRMgr *pMgr,
 const NNRApp *pRApp,
 NNRAppData *const pRAppData);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the application is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Name of a current NEONRules
Management object.

pRApp const NNRApp * Input Should be populated prior to this
function call.

pRAppData NNRAppData
* const

Output NNRMgrReadApp populates
this structure. If DateChange is
not NULL, it is assumed that the
application group exists.
166 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddApp

NNRMgrUpdateApp
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 167
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetFirstApp

NNRMgrGetFirstApp() provides a way to start iterating through the
application groups that exist in a database. NNRMgrGetFirstApp() must be
called before NNRMgrGetNextApp().

Syntax

const long NNRMgrGetFirstApp (
 NNRMgr *pMgr,
 NNRAppReadData *const RAppData);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Return Value

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

RAppData NNRAppReadData
*const

Output NNRMgrGetFirstApp
populates this structure.
168 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNRMgrInit

NNR_CLEAR

NNRMgrDuplicateApp

NNRMgrDeleteEntireApp

NNRMgrGetNextApp
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 169
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetNextApp

NNRMgrGetNextApp() provides a way of iterating through the application
groups after the first application group has been retrieved.
NNRMgrGetFirstApp() must be called before NNRMgrGetNextApp().

Syntax

const long NNRMgrGetFirstApp (
 NNRMgr *pMgr,
 NNRAppReadData *const RAppData);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Return Value

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

RAppData NNRAppReadData
*const

Output NNRMgrGetNextApp
populates this structure.
170 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNRMgrInit

NNR_CLEAR

NNRMgrDuplicateApp

NNRMgrDeleteEntireApp

NNRMgrGetFirstApp
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 171
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrDuplicateApp

NNRMgrDuplicateApp() creates a new application group with the name
specified in the NewAppName syntax.

NNRMgrDuplicateApp() creates the message type in the specified
application group, accesses each subscription in the original application
group/message type pair, and duplicates the subscription and its
components. The rules are then duplicated into the new application/message
type pair in a similar way.

The current user is the owner of the new application group. Read permission
must exist for the application group to be duplicated.

Syntax

const long NNRMgrDuplicateApp (
 NNRMgr *pMgr,
 const NNRApp* pRApp,
 const char* NewAppName);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

pRApp const NNRApp* Input This structure must be
populated prior to this
function call.

NewAppName const char* Input Name of the new application
group.
172 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the application group is duplicated successfully; returns zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrDuplicateApp

NNRMgrDeleteEntireApp

NNRMgrGetFirstApp

NNRMgrGetNextApp
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 173
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrUpdateApp

NNRMgrUpdateApp() enables the user to update an application group name
by providing the name of the application group to change (in the pRApp
structure) and the new application group name to change it to (in the
pRAppUpdate structure).

Syntax

const long NNRMgrUpdateApp (
 NNRMgr *pMgr,
 const NNRApp *pRApp,
 const NNRAppUpdate *pRAppUpdate);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Return Value

Returns 1 if the application group is updated successfully; zero (0) if an error
occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Name of a current
NEONRules Management
object.

pRApp const NNRApp * Input Must be populated prior to
this function call.

pRAppUpdate const
NNRAppUpdate *

Input Must be populated prior to
this function call.
174 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRApp key;
struct NNRAppData data;
struct NNRAppUpdate update;
NNR_CLEAR(&key);
NNR_CLEAR(&data);
NNR_CLEAR(&update);

cout << "Enter old app group name \n>";
cin >> key.AppName;
cout << "Enter new app group name \n>";
cin >> update.AppName;

if (NNRMgrUpdateApp(pmgr, &key, &update)){
 cout << endl
 << "\tApp Group Name: "
 << key.AppName << "changed to "
 << update.AppName << endl << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}

CloseNNRMgr(pmgr, session);
return;

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddApp

NNRMgrReadApp
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 175
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrDeleteEntireApp

NNRMgrDeleteEntireApp() deletes an application group by deleting each
component for the application group, including application, message type,
rule, expression, and associations with subscriptions. This call depends on
permissions. If the user does not have permission for each component in the
application group, that component and the application group are not deleted.
However, the components that the user does have permission for are deleted.

NNRMgrDeleteEntireApp() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type only deletes if there are not rules and
subscriptions left. The application group only deletes if there are no message
types left.

WARNING!
NNRMgrDeleteEntireApp() deletes all components contained within an
application group.

Syntax

const long NNRMgrDeleteEntireApp (
 NNRMgr *pMgr,
 const NNRApp *pRApp);
176 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Return Value

Returns 1 if the application group and its contents are completely removed.
Returns 2 if the application group still remains, but some rules or
subscriptions remain due to mismatched permissions. Returns zero (0) if an
error occurs.
Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. This does not
report which rules or subscriptions could not be deleted. The user must
retrieve the lists of items to find this information.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrDeleteEntireRule

NNRMgrDeleteEntireSubscription

NNRMgrDuplicateApp

NNRMgrGetFirstApp

NNRMgrGetNextApp

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management object
returned from call to NNRMgrInit().

pRApp NNRApp Input The unique identifier for the
application with the message type
name and subscription name.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 177
New Era of Networks Rules Programming Reference

Chapter 4
Message Type Management APIs

A message type identifies the type of data to which the rules apply. Message
type is the same as the input format name in NEONFormatter.

Message Type Management API Structures

NNRMsg

NNRMsg is passed as a pointer as the second parameter of the Message Type
Management APIs. The pointer cannot be NULL, must be cleared (using
NNR_CLEAR) prior to being populated, and must be populated prior to any
Message Type Management API calls.

Syntax

typedef struct NNRMsg{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 long InitFlag;
} NNRMsg;

Members

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group in which the
user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

MsgName
[MSG_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. The
message type is the input format name if the
user is using NEONFormatter. NULL-
terminated string of length 1 to 120 inclusive.
178 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNR_CLEAR

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Name Type Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 179
New Era of Networks Rules Programming Reference

Chapter 4
NNRMsgData

NNRMsgData is passed as a pointer as the third parameter of the Message
Type Management APIs. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to being populated by the user or by Message Type
Management API calls. If the EvalType is empty, NNSYRF_FORMATTER is
assumed.

Use of this structure is described in each Message Type Management API
section.

Syntax

typedef struct NNRMsgData {
 char EvalType[EVAL_TYPE_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
} NNRMsgData;

Members

See Also

NNR_CLEAR

Name Type Description

EvalType
[EVAL_TYPE_LEN]

char Valid entries are NNSYRF_FORMATTER
and NAME_VALUE.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.
180 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMsgReadData
NNRMsgReadData is passed as a pointer to select functions in the Message
Type Management API. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to any Message Type Management API read calls.

Syntax

typedef struct NNRMsgReadData(
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
} NNRMsgReadData;

Members

See Also

NNR_CLEAR

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group in which the
user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

MsgName
[MSG_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. The
message type is the input format name if the
user is using NEONFormatter. NULL-
terminated string of length 1 to 120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 181
New Era of Networks Rules Programming Reference

Chapter 4
Message Type Management API Functions

NNRMgrAddMsg

A message is a string of data to be processed. NNRMgrAddMsg() associates a
message type with a specific application group. The application group and
message type must exist prior to associating the message type to an
application group using NNRMgrAddMsg(). If you are using NEONFormatter,
an input format of this name must exist. Messages must be associated with an
application group prior to adding a rule using NNRMgrAddRule().

If the message type is new (not used in an existing application group), this
function creates a new identifier for the message type.

If no APP_NAME is given in the pRMsg parameter, the message type is
added to the database but not to any specific application group. If the
message type already exists, it is added to the application group if it does not
already belong to that application group. The EvalType is ignored if the
message type already exists in the database and is just added to the
application group.

Syntax

const long NNRMgrAddMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg,
 const NNRMsgData *pRMsgData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRMsg const NNRMsg * Input Must be populated prior to this
function call.
182 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NNR_CLEAR
NNRMgrReadMsg

pRMsgData const
NNRMsgData *

Input Default the DateChange and
ChangeAction parameters to
NULL. This is provided only for
future enhancements.

Name Type Input/
Output

Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 183
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrReadMsg

NNRMgrReadMsg() enables the user to read a message type.

If no APP_NAME is given in the pRMsg parameter, the message type is read
from the database but not associated with a specific application group.

Syntax

const long NNRMgrReadMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg,
 NNRMsgData *const pRMsgData);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRMsg const NNRMsg * Input Must be populated prior to this
function call.

pRMsgData NNRMsgData
*const

Output NNRMgrReadMsg() populates
this structure. If DateChange is not
NULL, the user can assume a
message exists.
184 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the message is read successfully; zero (0) if an error occurs.

See Also

NNRMgrInit

NNR_CLEAR
NNRMgrAddMsg
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 185
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetFirstMsg

NNRMgrGetFirstMsg() provides a way to start iterating through the message
types that exist in a database. NNRMgrGetFirstMsg() must be called before
NNRMgrGetNextMsg().

Syntax

const long NNRMgrGetFirstMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg,
 NNRMsgReadData *const pRMsgData);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRMsg const NNRMsg * Input Should be populated prior to this
function call. This must contain
the correct application group
name.

pRMsgData NNRMsgData
*const

Output NNRMgrGetFirstMsg() populates
this structure. If DateChange is
non-NULL, the user should
assume a message exists.
186 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_MESSAGES, the end of the message type list
was reached.

See Also

NNRMgrInit
NNR_CLEAR
NNRMgrAddMsg
NNRMgrDeleteEntireMsg

NNRMgrDuplicateMsg

NNRMgrGetNextMsg

NNRMgrReadMsg
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 187
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetNextMsg

NNRMgrGetNextMsg() provides a way of iterating through the message
types after the first message type has been retrieved. NNRMgrGetFirstMsg()
must be called before NNRMgrGetNextMsg().

Syntax

const long NNRMgrGetNextMsg(
 NNRMgr *pMgr,
 NNRMsgReadData *const pRMsgData);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRMsgData NNRMsgData
*const

Output NNRMgrGetNextMsg() populates
this structure. If DateChange is not
NULL, the user can assume a
message exists.
188 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_MESSAGES, the end of the message
type list was reached.

See Also

NNRMgrInit
NNR_CLEAR

NNRMgrAddMsg

NNRMgrDeleteEntireMsg

NNRMgrDuplicateMsg

NNRMgrGetFirstMsg

NNRMgrReadMsg
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 189
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrUpdateMsgName

NNRMgrUpdateMsgName modifies all NNNameValueList message types
with the name given in the pRMsg parameter with the data given in the
pRMsgData parameter.

The user can change the Message Type name for Name-Value Message
Types.

For those Message types that refer to Format Name, the Message
Type must be updated if the Format Name is changed.

If the EvalType is NNSYRF_FORMATTER, the MsgName must refer
to a valid Input Format Name.

Syntax

const long NNRMgrUpdateMsgName(
 NNRMgr *pMgr,
 const char *OldMsgName,
 const char *NewMsgName);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

OldMsgName const char Input

NewMsgName const char Output
190 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrDuplicateMsg

NNRMgrDuplicateMsg() creates a new message type under the application
group specified in the NewAppName syntax. If the application group entered
in NewAppName does not exist, NNRMgrDuplicateMsg() also creates the
application group.

NNRMgrDuplicateMsg() creates the message type in the application group
specified in the NewAppName syntax, accesses each subscription in the
original application group/message type pair, and duplicates the
subscription and its components.The rules are then duplicated into the new
application/message type pair in a similar way.

The current user is the owner of the new message type. Read permission must
exist for the message type to be duplicated.

Syntax

const long NNRMgrDuplicateMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg,
 const char *NewAppName);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

pRMsg const NNRMsg * Input Must be populated prior to
this function call.

NewAppName const char * Input Enter the application group
name for the message type to
be duplicated in.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 191
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to calling NNRMgrDuplicateMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message type and its contents are completely duplicated.
Returns zero (0) if an error occurs, for example, the message type already
exists in the new application group.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NNR_CLEAR
NNRMgrAddMsg

NNRMgrDeleteEntireMsg

NNRMgrReadMsg
192 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrDeleteEntireMsg

NNRMgrDeleteEntireMsg() deletes a message type by deleting each
component for the message type, including message type, rule, expression,
and associations with subscriptions. This call depends on permissions. If the
user does not have permission for each component of the message type, that
component and the message type are not deleted. However, the components
that the user does have permission for will delete.

NNRMgrDeleteEntireMsg() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type only deletes if there are no rules and
subscriptions left.

Syntax

const long NNRMgrDeleteEntireMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRMsg const NNRMsg * Input Should be populated prior to this
function call.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 193
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to calling NNRMgrDeleteEntireMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message type and its contents are completely removed;
returns 2 if the message type still remains, but some rules or subscription
remain due to mismatched permissions; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NNR_CLEAR
NNRMgrAddMsg

NNRMgrDuplicateMsg

NNRMgrReadMsg
194 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Rule Management APIs

Use Rule Management APIs to create rules that contain expressions and
associate rules with subscriptions and user permissions.

Rule Management API Structures

NNRRule

NNRRule is passed as a pointer as the second parameter for some of the Rule
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Rule Management API calls. NNRRule is also part of the permission API
Structures.

Syntax

typedef struct NNRRule{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 long InitFlag;
} NNRRule;

Members

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group in which the
user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

MsgName
[MSG_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. If the
user is using NEONFormatter, the message
type is the input format name. NULL-
terminated string of length 1 to 120 inclusive.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 195
New Era of Networks Rules Programming Reference

Chapter 4
See Also

NNR_CLEAR

RuleName
[RULE_NAME_LEN]

char Name of the rule defined within an
application group and message name pair.
This rule name is defined by the user. NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Name Type Description
196 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRRuleData

NNRRuleData is passed as a pointer as the third parameter of the Rule
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by NEONRules
Management API calls. Use of this structure is described in each Rule
Management API section.

Syntax

typedef struct NNRRuleData{
 NNDate DateChange;
 int ChangeAction;
 int ArgumentCount;
 int OrCondition;
 int SubscriberIndex;
 int RuleActive;
 NNDate RuleEnableDate;
 NNDate RuleDisableDate;
 long InitFlag;
} NNRRuleData;

Members

Name Type Description

DateChange NNDate Defaulted for now, provided for future capability.

ChangeAction int Defaulted for now, provided for future capability.

ArgumentCount int Number of arguments associated with this rule.

OrCondition int Defaulted for now, provided for future capability.

SubscriberIndex int Defaulted for now, provided for future capability.

RuleActive int Value of 1 indicates that the rule is active, a value
of zero (0) indicates that the rule is inactive.

RuleEnableDate NNDate Defaulted for now, provided for future capability.

RuleDisableDate NNDate Defaulted for now, provided for future capability.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 197
New Era of Networks Rules Programming Reference

Chapter 4
See Also

NNR_CLEAR

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Name Type Description
198 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRRuleReadData

NNRRuleReadData is passed as a pointer to select functions in the Rule
Management API. The pointer may not be NULL, must be cleared using
NNR_CLEAR prior to any Rule Management API read calls.

Syntax

typedef struct NNRRuleReadData {
 char RuleName[RULE_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 int OrCondition;
 int SubscriberIndex;
 int RuleActive;
 NNDate RuleEnableDate;
 NNDate RuleDisableDate;
 long InitFlag;
} NNRRuleReadData;

Members

Name Type Description

RuleName
[RULE_NAME_LEN]

char Name of the rule, previously defined by the
user. NULL-terminated string of length 1 to
120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

SubscriberIndex int Defaulted for now, provided for future
capability.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 199
New Era of Networks Rules Programming Reference

Chapter 4
See Also

NNR_CLEAR

RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.

RuleEnableDate NNDate Defaulted for now, provided for future
capability.

RuleDisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Name Type Description
200 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRRuleUpdate

NNRRuleUpdate is a structure containing rule update information. It must be
cleared using NNR_CLEAR prior to being populated, and must be populated
prior to any Rule Management API update calls.

Syntax

typedef struct NNRRuleUpdate{
 char RuleName[RULE_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 int OrCondition;
 int SubscriberIndex;
 int RuleActive;
 NNDate RuleEnableDate;
 NNDate RuleDisableDate;
 long InitFlag;
} NNRRuleUpdate;

Members

Name Type Description

RuleName
[RULE_NAME_LEN]

char Name of the rule to be evaluated within an
application group and message type defined
by the user. NULL-terminated string of
length 1 to 120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

SubscriberIndex int Defaulted for now, provided for future
capability.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 201
New Era of Networks Rules Programming Reference

Chapter 4
See Also

NNR_CLEAR

RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.

RuleEnableDate NNDate Defaulted for now, provided for future
capability.

RuleDisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Name Type Description
202 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Rule Management API Functions
NNRMgrAddRule

NNRMgrAddRule() enables the user to add a rule associated with a specific
application group and message type pair by providing the unique application
group, message type, and rule name for the rule in the pRule structure and
the new information for the rule in the pRRuleData structure.

Prior to adding a rule, the application group and message type must be
defined and exist in NEONRules using NNRMgrAddApp() and
NNRMgrAddMsg().

When adding the rule, the current user is set as the rule owner for
permissions. The owner is automatically granted Read and Update
permission for the rule. PUBLIC is given read permission.

Syntax

const long NNRMgrAddRule(
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 const NNRRuleData *pRRuleData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pPRRule const NNRRule * Input Should be populated prior to this
function call.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 203
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

Of the data in the structures passed to NNRMgrAddRule(), not all variables
used in release 4.11 or later need to be populated in the AddRule method.

The following are the variables that are used:

typedef struct NNRRule {
 char
AppName[APP_NAME_LEN];
 char
MsgName[MSG_NAME_LEN];
 char
RuleName[RULE_NAME_LEN];
 long InitFlag;
} NNRRule;

typedef struct NNRRuleData {
 NNDate DateChange;
 int ChangeAction;
 int ArgumentCount;
 int OrCondition;
 int SubscriberIndex;
 int RuleActive;
// 1 => rule is active, 0 =>rule is inactive
 NNDate

pRRuleData const
NNRRuleData *

Input DateChange, ChangeAction,
RuleEnableDate and
RuleDisableDates should be
populated with NULL. These are
provided only for future
enhancements. ArgumentCount
defaults to zero (0).

Name Type Input/
Output

Description
204 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
RuleEnableDate;
 NNDate
RuleDisableDate;
 long InitFlag;
} NNRRuleData;

Return Value

Returns 1 if the rule is added successfully; zero (0) if an error occurs. An error
can occur if the component cannot be stored, if either the owner or PUBLIC
cannot be stored, or if the Read or Update permissions for both the owner and
PUBLIC cannot be stored.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NNR_CLEAR

NNRMgrReadRule

NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 205
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrReadRule

NNRMgrReadRule() enables the user to retrieve rule management
information. Note that this API reads rule maintenance information, not rule
evaluation or subscription information. To read rule evaluation or
subscription information, use NNRMgrReadExpression() or
NNRMgrReadSubscription(). Prior to reading a rule, the application group,
message, and rule maintenance information must be defined and exist in
NEONRules using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule().

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

Syntax

const long NNRMgrReadRule(
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 NNRRuleData* const pRRuleData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRRule const NNRRule * Input Should be populated prior to this
function call.

pRRuleData NNRRuleData*
const

Output NNRMgrReadRule() populates
this structure. If DateChange is
not NULL, this rule exists.
206 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the rule is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NNR_CLEAR

NNRMgrAddRule
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 207
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetFirstRule

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and application
group pair.

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

Syntax

const long NNRMgrGetFirstRule (
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 NNRRuleReadData *const pRRuleData);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRRule const NNRRule * Input Must be completely populated
except for the RuleName field
prior to this function call.

pRRuleData NNRRule
Read Data *const

Output NNRMgrGetFirstRule populates
this structure.
208 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, no rules were
found for the application group and message type specified in the pRRule
structure.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrUpdateRule

NNRMgrAddRule

NNRMgrReadRule

NNRMgrDeleteEntireRule

NNRMgrGetNextRule
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 209
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetNextRule

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and rule name
pair.

When retrieving rule management information, user permission to read the
rule are checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have read permission.

Syntax

const long NNRMgrGetNextRule (
 NNRMgr *pMgr,
 NNRRuleReadData * const pRRuleData);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls. NNRMgrGetFirstRule() must be called before NNRMgrGetNextRule().

Return Value

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRRuleRead
Data

NNRRuleRead
Data const *

Output NNRMgrGetFirstRule
populates this structure.
210 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_RULES, the end of the rules list has been
reached.

See Also

NNRMgrInit
NNR_CLEAR

NNRMgrUpdateRule

NNRMgrAddRule
NNRMgrReadRule
NNRMgrDeleteEntireRule
NNRMgrGetFirstRule
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 211
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrDuplicateRule

NNRMgrDuplicateRule() creates a new rule under the same application
group/message type pair. Specify the new rule name in the NewRuleName
syntax.

The current user is the owner of the new rule. Read permission must exist for
the rule to be duplicated.

Syntax

const long NNRMgrDuplicateRule(
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 const char *NewRuleName);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrDuplicateRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pPRRule const NNRRule * Input Should be populated prior to this
function call.

NewRule
Name

const char Input Enter the new rule name. The
duplicated rule is created under
the same application group/
message type pair.
212 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the rule and its contents are completely duplicated; returns zero
(0) if an error occurs; for example, the new rule exists.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrReadRule

NNRMgrUpdateOwnerPerm

NNRMgrUpdatePublicPerm
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 213
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrUpdateRule

NNRMgrUpdateRule() enables the user to update a rule associated with a
specific application and group/message type pair by providing the unique
application group, message type, and rule name for the rule to be updated in
the pRule structure and the new information for the rule in the
pRRuleUpdate structure.

When updating rule management information, user permission to update the
rule are checked. If the user is the owner or another user with Update
permission for the rule, the user can update the rule information. If the user
does not have Update access, an error is returned indicating that the user
does not have Update permission, and no changes occur.

Syntax

const long NNRMgrUpdateRule (
 NNRMgr *pMgr,
 const NNRRule *pRule,
 const NNRRuleUpdate *pRRuleUpdate);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

pRule const NNRRule * Input Must be populated prior to
this function call.

pRRuleUpdate const
NNRRuleUpdate *

Input Should be populated prior to
this function call.
214 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the rule is updated successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRRule key;
struct NNRRuleData data;
struct NNRRuleUpdate update;
NNR_CLEAR(&key);
NNR_CLEAR(&data);
NNR_CLEAR(&update);

cout << "Enter app group name" << endl << ">";
cin >> key.AppName;
cout << "Enter message type name" << endl << ">";
cin >> key.MsgName;
cout << "Enter old rule name" << endl << ">";
cin >> key.RuleName;
cout << "Enter new rule name" << endl << ">";
cin >> update.RuleName;
cout << "Enter rule active (1->Active, 0->Inactive)"
 << endl << ">";
cin >> update.RuleActive;

if (NNRMgrUpdateRule(pmgr,&key,&update)) {
 cout << endl << "\tOld Rule Name: " << key.RuleName <<
endl
 << "\tNew rule name: " << update.RuleName << endl
 << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr,session);

return;
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 215
New Era of Networks Rules Programming Reference

Chapter 4
See Also

NNRMgrInit
NNR_CLEAR

NNRMgrAddRule

NNRMgrReadRule
NNRMgrDeleteEntireRule
NNRMgrGetFirstRule
NNRMgrGetNextRule
216 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrDeleteEntireRule

NNRMgrDeleteEntireRule() deletes a rule by deleting each component for the
rule, including rule, expression, and associations with subscriptions.
Subscriptions can be deleted from the rule set using
NNRMgrDeleteEntireSubscription(). The user provides the application name,
message type, and rule name.

WARNING!
NNRMgrDeleteEntireRule() deletes all components associated with a rule.
The user should only call this API to delete a rule.

When deleting rule management information, user permission to update the
rule is checked. If the user is the owner and has Update permissions for the
rule, the rule can be deleted. If the user is not the owner but does have Update
permission, the rule is set to inactive but not deleted. If the user does not have
Update permission, an error is returned indicating that the user does not have
Update permission, and no changes occur.

Syntax

const long NNRMgrDeleteEntireRule (
 NNRMgr *pMgr,
 const NNRRule *pRRule);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management object
returned from call to NNRMgrInit().

pRRule const NNRRule * Input Must be populated prior to this
function call.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 217
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Return Value

Returns 1 if the rule is deleted successfully; returns 2 if the rule is deactivated;
returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRRule key;
struct NNRRuleData data;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter rule name \n>";
cin >> key.RuleName;

if (NNRMgrDeleteEntireRule(pmgr, &key)){
 cout << endl
 << "\tRule Name: " << key.RuleName << " Deleted."
 << endl << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr, session);

return;
218 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNRMgrInit
NNR_CLEAR

NNRMgrUpdateRule

NNRMgrAddRule
NNRMgrReadRule
NNRMgrGetFirstRule
NNRMgrGetNextRule
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 219
New Era of Networks Rules Programming Reference

Chapter 4
Permissions APIs

When a rule is added using NNRMgrAddRule(), the user is given ownership
of the rule, as well as Read and Update permissions. PUBLIC is given Read
permission.

The same occurs when a subscription is added using
NNRMgrAddSubscription(). These default permissions can be changed by
using NNRMgrUpdateOwnerPerm() and NNRMgrUpdatePublicPerm().

The rule expression or subscription actions can be added by the owner
without changing the default permissions. Once permissions are defined for a
rule or subscription, an owner can give ownership to another user and
change permissions for themselves or PUBLIC using other Permissions APIs.

Permission Management API Structures

NNUserPermissionData

NNUserPermissionData is passed as an argument in several NEONRules
Management functions affecting permissions and should be cleared using
NN_CLEAR prior to use in a function call.

Syntax

typedef struct NNUserPermissionData{
 NNPermissionData Permission;
 char ParticipantName[NN_PARTICIPANT_NAME_LEN];
 long InitFlag;
} NNUserPermissionData;
220 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Parameters

See Also

NNR_CLEAR

Name Type Description

Permission NNPermission
Data

Specifies the permission for this
specific participant.

ParticipantName
[NN_PARTICIPANT
_NAME_LEN]

char Logon name of the user to whom the
permission is being assigned. This
parameter must be all capital letters
for Oracle; and case sensitive for
Sybase. PUBLIC for all users other
than the owner.

InitFlag long Flag used to determine if variables
have been initialized prior to calling a
NEONRules Management API.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 221
New Era of Networks Rules Programming Reference

Chapter 4
NNPermissionData

NNPermissionData is passed as an argument in several NEONRules
Management functions affecting permissions and should be cleared using
NN_CLEAR prior to use in a function call.

Syntax

typedef struct NNPermissionData{
 int Sequence;
 char PermissionName[NN_PERMISSION_NAME_LEN];
 char PermissionValue[NN_PERMISSION_VALUE_LEN];
 long InitFlag;
} NNPermissionData;

Parameters

See Also

NN_CLEAR

Name Type Description

Sequence int Ordering value for this specific permission name-
value pair.

PermissionName[
NN_PERMISSION
_NAME_LEN]

char Type of permission being defined for the rule and
user permission. Only Update is valid.

PermissionValue
[NN_PERMISSION
_NAME_LEN]

char Value for the permission being defined for the
rule and user permission. Only the Granted and
DenyAll values associated with Update are valid.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.
222 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRComponent

After a NNRRule structure is created for a rule, the user must create a
NNRComponent with ComponentType = NNRCOMP_RULE and
ComponentUnion.pRRule = &myRule.

After an NNRSubs structure is created for a rule, the user must create a
NNRComponent with ComponentType = NNRCOMP_SUBS and
ComponentUnion.pRSubs = &mySubs.

The NNRComponent is then called into a Permission API. NNRComponent
can be initialized by calling NN_CLEAR before populating.

Syntax

typedef enum NNRComponentTypes{
 NNRCOMP_RULE =1,
 NNRCOMP_SUBS =2,
 NNRCOMP_APP =3,
 NNRCOMP_MSG =4
 }NNRComponentTypes;

typedef union NNRComponentUnion {
 const struct NNRRule *pRRule;
 const struct NNRSubs *pRSubs;
 }NNRComponentUnion;

typedef struct {
 Long InitFlag;
 NNRComponentTypes ComponentType;
 NNRComponentUnion ComponentUnion;
 }NNRComponent;

Parameters

Name Type Description

InitFlag Long Flag used to determine if
variables have been initialized
prior to calling a NEONRules
Management API.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 223
New Era of Networks Rules Programming Reference

Chapter 4
See Also

NNR_CLEAR

ComponentType NNRComponentTypes Identifies the type of component
used in ComponentUnion; must
be either NNRCOMP_RULE or
NNRCOMP_SUBS.

ComponentUnion NNRComponentUnion A union where either pRRule is
set to point to a previously
defined NNRRule structure or
pRSubs is set to point to a
previously defined NNRSubs
structure.

Name Type Description
224 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Overall Permission Macro

NN_CLEAR

When using NEONRules Management APIs affecting permissions, users are
expected to clear structures prior to invoking each function. Structures should
be cleared with a call to the NN_CLEAR macro. NN_CLEAR clears a
structure in such a way that the NEONRules Management APIs can alert the
user to a non-initialized structure.

Syntax

NN_CLEAR(_p)

Parameters

Return Value

None

Example

struct NNPermission permit;

NN_CLEAR(&permit);

Name Type Input/
Output

Description

_p Any
NEONRules
management
permissions
structure

Input Any structure used in NEONRules
Management API calls affecting
permissions.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 225
New Era of Networks Rules Programming Reference

Chapter 4
Permission API Functions

NNRMgrGetFirstPerm

NNRMgrGetFirstPerm() enables the user to prepare the list of user-
permissions pairs for rules or subscriptions for retrieval by the
NNRMgrGetNextPerm() API.

Syntax

const long NNRMgrGetFirstPerm(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent
 NNUserPermissionData* const pPermissionData);

Parameters

Remarks

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structure or calling
this API.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRComponent const NNR
Component *

Input Must populate prior to this
function call.

pPermission
Data

NNUser
PermissionData*
const

Output Populated by the call to
NNRMgrGetFirstPerm().
226 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Call NNRMgrGetNextPerm() to retrieve all remaining rule or subscription
permissions before calling NNRMgrGetFirstPerm() to retrieve permissions
for another rule or subscription.

Return Value

Returns 1 if the list of user-permission pairs is prepared successfully; zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error message returned is RERR_NO_MORE_PERMISSIONS, no
permissions were found for the application group, message type, and rule or
subscription specified in the pRComponent structure.

See Also

NNRMgrInit
NN_CLEAR

NNRMgrGetNextPerm
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 227
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetNextPerm

NNRMgrGetNextPerm() enables the user to retrieve an user-permission pair
from the user-permissions list for a rule. When iterating through the list, a
NULL pPermissionData indicates the end of the list. NNRMgrGetFirstPerm()
MUST be called prior to using this routine.

Syntax

const long NNRMgrGetNextPerm(
 NNRMgr *pMgr,
 const NNUserPermissionData *pPermissionData);

Parameters

Remarks

A call to NN_CLEAR for pPermissionData should be made prior to calling
this API.

NNRMgrGetFirstPerm() MUST be called prior to using this routine.

Return Value

Returns 1 if an user-permission pair is read from the list successfully; zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

pPermission
Data

const
NNUserPermission
Data *

Output Populated by the call to
NNRMgrGetNext Perm().
228 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
If the error message returned is RERR_NO_MORE_PERMISSIONS, the end
of the permissions list has been reached.

See Also

NNRMgrInit
NN_CLEAR

NNRMgrGetFirstPerm
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 229
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrUpdateUserPerm

NNRMgrUpdateUserPerm() enables the user to add or change permissions
for a specific user. Only the owner of the permission can call
NNRMgrUpdateUserPerm().

Syntax

const long NNRMgrUpdateUserPerm(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent,
 const NNUserPermissionData *pPermissionData);

Parameters

Remarks

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling
this API.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object
returned from call to
NNRMgrInit().

pRComponent const
NNRComponent *

Input Must be populated prior to
this function call.

pPermissionData constNNUser
PermissionData *

Input Must be populated prior to
this function call. This
must include a valid
database user name and a
valid permission name/
value pair (Name = Owner,
Update; Value = Granted,
DenyAll).
230 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the permission is added or updated. Returns zero (0) if the input
parameters are not initialized with NNR_CLEAR and NN_CLEAR, the
current user is not the owner of the item, the given user is invalid, the
permission name/value is invalid, or a different error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NN_CLEAR

NNRMgrUpdatePublicPerm
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 231
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrChangeOwner

NNRMgrChangeOwner() enables the owner of the rule or subscription to
change ownership to a new user. Only the current owner can change
ownership. The new owner's name must exist in the database and must be in
the same group/role as the current owner. The original owner's permissions
are transferred to the new owner, overwriting any previous permissions of
the new owner.

Syntax

const long NNRMgrChangeOwner(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent,
 char *pNewOwner);

Parameters

Remarks

A call to NNR_CLEAR for pRComponent should be made prior to populating
the structures or calling this API.

Note that for Oracle, all owner names must be in upper-case. For example,
owner should be OWNER. Sybase uses the same case as the logon name.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

pRComponent const
NNRComponent *

Input Must be populated prior to
this function call.

pNewOwner char * Input Must be populated with the
new owner's logon name
prior to this function call.
232 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the owner is changed successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NN_CLEAR

NNRMgrUpdateOwnerPerm

NNRMgrUpdatePublicPerm
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 233
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrUpdateOwnerPerm

NNRMgrUpdateOwnerPerm() enables the user to add/change permissions
for the owner. Only the owner can affect owner permissions. By default,
Update and Read permissions for all rules and subscriptions are given to
their owner.

Syntax

const long NNRMgrUpdateOwnerPerm(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent,
 const NNPermissionData *pPermissionData);

Parameters

Remarks

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling
this API.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object
returned from call to
NNRMgrInit().

pRComponent const NNRComponent
*

Input Must be populated
prior to this function
call.

pPermissionData const
NNPermission Data *

Input Must be populated
prior to this function
call.
234 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the owner's permissions are updated successfully; zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NN_CLEAR

NNRMgrUpdatePublicPerm
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 235
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrUpdatePublicPerm

NNRMgrUpdatePublicPerm() enables the owner to change permissions for
another user. Only the owner can change permissions for other users. By
default, other users (PUBLIC) are granted Read permission and denied
Update privilege. NNRMgrUpdatePublicPerm() can add any permissions
that do not currently exist.

Syntax

const long NNRMgrUpdatePublicPerm(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent,
 const NNPermissionData *pPermissionData);

Parameters

Remarks

NNRMgrAddOtherUserPermission() should be called prior to calling
NNRMgrUpdatePublicPerm().

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling
this API.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object
returned from call to
NNRMgrInit().

pRComponent const
NNRComponent *

Input Should be populated prior
to this function call.

pPermissionData const
NNPermission
Data *

Input Should be populated prior
to this function call.
236 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the other user's permission is added successfully; zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NN_CLEAR

NNR_CLEAR

NNRMgrUpdateOwnerPerm
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 237
New Era of Networks Rules Programming Reference

Chapter 4
Operator Management APIs

Operator Management API Structures

NNROperator

NNROperator is passed as a pointer to the second parameter of the Operator
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Operator Management API calls. Use of this structure
is described in each Operator Management API section.

Syntax

typedef struct NNROperator {
 int OperatorHandle;
 char OperatorSymbol[OPERATOR_SYMBOL_LEN];
 int OperatorType;
}

Parameters

Name Type Description

OperatorHandle int Unique operator handle.

OperatorSymbol
[OPERATOR_SYMBOL_
LEN]

char String definition of operator.

OperatorType int Type of data.
238 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Operator Management API Functions

NNRMgrGetFirstOperator

Prior to adding arguments, users must know what operators are available
and supported within the current NEONRules installation.
NNRMgrGetFirstOperator() provides a way of starting to retrieve this
information. After using NNRMgrGetFirstOperator() to return the first
operator in the pOperator parameter, the user should call
NNRMgrGetNextOperator().

The pOperator structure contains a unique operator specified by a symbol,
type, and handle. The operator type and operator symbol provide a means for
the user to choose the operator symbol to provide the expression addition
and update functions: NNRMgrAddExpression() and
NNRMgrUpdateExpression().

Syntax

const long NNRMgrGetFirstOperator(
 NNRMgr *pRMgr,
 NNROperator * const pOperator);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstOperator().

A call to NNR_CLEAR for pOperator should be made prior to populating the
structures or calling this API.

Name Type Input/
Output

Description

pRMgr NNRMgr * Input Name of a current NEONRules
Management object.

pOperator NNROperator *
const

Output Populated by
NNRMgrGetFirstOperator().
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 239
New Era of Networks Rules Programming Reference

Chapter 4
Return Value

Returns 1 if the first operator was retrieved successfully; zero (0) if an error
occurred.

Use NNRMgrGetErrorNo() to retrieve the number for the error that occurred,
or use NNRMgrGetError() to retrieve the error message.

If the error number returned is RERR_NO_MORE_OPERATORS, no
operators were found.

See Also

NNRMgrInit
NNR_CLEAR

NNRMgrGetNextOperator()

NNRMgrGetErrorNo()

NNRMgrGetError()
240 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrGetNextOperator

Prior to adding arguments, users must know what operators are available
and supported within the current NEONRules installation.
NNRMgrGetFirstOperator() provides a way of starting to retrieve this
information. After using NNRMgrGetFirstOperator() to return the first
operator in the pOperator parameter, the user should call
NNRMgrGetNextOperator().

The pOperator structure contains a unique operator specified by a symbol,
type, and handle. The operator type and operator symbol provide a means for
the user to choose the operator symbol to provide the expression addition
and update functions: NNRMgrAddExpression() and
NNRMgrUpdateExpression().

Syntax

const long NNRMgrGetNextOperator(
 NNRMgr *pRMgr,
 NNROperator * const pOperator);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextOperator().

A call to NNR_CLEAR for pOperator should be made prior to populating the
structures or calling this API.

Name Type Input/
Output

Description

pRMgr NNRMgr * Input Name of a current NEONRules
Management object.

pOperator NNROperator *
const

Output Populated by
NNRMgrGetFirstOperator().
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 241
New Era of Networks Rules Programming Reference

Chapter 4
Return Value

Returns 1 if the next operator was retrieved successfully; zero (0) if an error
occurred.

Use NNRMgrGetErrorNo() to retrieve the number for the error that occurred,
or use NNRMgrGetError() to retrieve the error message.

If the error number returned is RERR_NO_MORE_OPERATORS, the end of
the operators list has been reached.

See Also

NNRMgrInit
NNR_CLEAR

NNRMgrGetFirstOperator()

NNRMgrGetErrorNo()

NNRMgrGetError()
242 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Expression Management APIs

The following addressing is accepted in the NEONRules Expression
Management APIs:

FIELD_NAME[instance]

FIELD_NAME[*]

MAX(field_instance_definition)

MIN(field_instance_definition)

COUNT(field_instance_definition)

LAST(field_instance_definition)

AVG (field_instance_definition)

SUM(field_instance_definition)

FIELD_NAME[rules_max_operator(field_instance_definition)]

FIELD_NAME[rules_min_operator (field_instance_definition)]

FIELD_NAME[field_instance_definition rules_equal_operator
comparison_value]

Rule ::= rule_expression [boolean_operator rule_expression]

rule_expression ::= field_expression rules_operator [
field_expression | constant]

field_expression ::= [field_name | field_instance_expression]

field_instance_expression ::= instance_function
(field_instance_definition)
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 243
New Era of Networks Rules Programming Reference

Chapter 4
instance_function ::= [MIN | MAX | COUNT | SUM | LAST | AVG]

field_instance_defintion ::= [field_name[instance] |
field_name[*]]

boolean_operator ::= [| | &]

rules_operator ::= [STRING= | INT< | EXISTS | etc.]

rules_equal_operator ::= [STRING= | INT= | FLOAT=| etc.]

rules_max_operator ::= [STRING_MAX | INT_MAX | FLOAT_MAX |
etc.]

rules_min_operator ::= [STRING_MAX | INT_MAX | FLOAT_MAX |
etc.]

Rules for Creating Expressions

Functions must have a field within parens ().

The instance for a field within a function (other than SUBSTRING)
must be an asterisk.

SUBSTRING does not require an instance to be specified.
SUBSTRING(F3,1,4) is valid.

Left and Right (if right is a Field) operand needs to be quoted.

Field to Field comparisons cannot compare field instances.

Quotes are not allowed in field names if you are using field functions.
We run out of quotes.

If a field name needs to be quoted or the operand contains any
functions which have parens (), the operand must be enclosed in
double quotes.

Sibling arguments require the following:

The only allowable field functions in a sibling argument are MIN and
MAX.
244 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
The only comparisons allowed in sibling argument are Equal ones
(STRING=, INT=, FLOAT=)

(An sibling argument is what is between the [].)

Example:

 F1[F2[*] STRING= '1'] INT> 10
 F2[*] STRING= '1' is the sibling argument.
 F1[MAX_INT(F2[*])] INT> 10
 MAX_INT(F2[*]) is the sibling argument.

You can only have 1 function per operand. (Operands are what is on
the left and right (if F2F) of the operator.)

Example:

 MAX_INT(F3[*]) F2FINT= MIN_INT(F4[*]) is valid
 SUBSTRING(MAX_STRING(F3[*]),3,4) F2FSTRING=
 MIN_STRING(F4[*]) is invalid.

Expression Management API Structures

NNRExp

NNRExp is passed as an argument in several NEONRules Management APIs to
identify what rule owns the Expression. It should be cleared using
NNR_CLEAR prior to use in a function call.

Syntax

typedef struct NNRExp {
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 long InitFlag;
} NNRExp;
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 245
New Era of Networks Rules Programming Reference

Chapter 4
Parameters

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group in which the
user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

MsgName
[MSG_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. As long
as the user is using NEONRules, the message
type is the input format name. NULL-
terminated string of length 1 to 120 inclusive.

RuleName
[RULE_NAME_LEN]

char Name of the rule to be evaluated within an
application group and message name pair. This
rule name is defined by the user. NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.
246 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRExpData

NNRExpData is passed as an argument in several NEONRules Management
APIs affecting Rule expressions. It should be cleared using NNR_CLEAR
prior to use in a function call.

Syntax

typedef struct NNRExpData {
 NNDate DateChange;
 int ChangeAction;
 long InitFlag
 NNDate EnableDate;
 NNDate DisableDate;
 char Expression[EXPRESSION_LEN];
} NNRExpData;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

EnableDate NNDate Defaulted for now, provided for future
capability.

DisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Expression
[EXPRESSION_
LEN]

char Boolean expression containing arguments and
Boolean operators AND (&) and OR (|) with
parentheses to determine order of evaluation.
Allows the user to add, update, and read rule
expressions up to 4096 characters long plus the
terminating NULL.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 247
New Era of Networks Rules Programming Reference

Chapter 4
Expression Management API Functions

NNRMgrAddExpression

NNRMgrAddExpression() adds an expression to a rule. A rule can have only
one expression containing any number of arguments.
NNRMgrAddExpression() can be called only once per rule. Prior to adding
an expression, the user must define the application group, associated
message type, and rule using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule(). Before adding an expression, the user must also know
the operator information, obtained using NNRMgrGetFirstOperator() or
NNRMgrGetNextOperator().

When adding expression information, user permission to update the rule is
checked. If the user is the owner or has update permission for the rule, the
user can add the expression information. If the user does not have update
access, an error is returned indicating that the user does not have update
permission and no change occurs.

Syntax

const long NNRMgrAddExpression (
 NNRMgr *pMgr,
 const NNRExp* pRExp,
 NNRExpData* pRExpData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRExp const NNRExp * Input Must be populated prior to this
function call.
248 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

To store data related to expressions the application group, message type and
rule information must exist.

NNRMgrInit() should be called before NNRMgrAddExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

Return Value

Returns 1 if the expression was added successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrDeleteEntireRule

NNRMgrReadExpression

NNRMgrUpdateExpression

pRExpData const
NNRExpData *

Input DateChange, ChangeAction,
EnableDate and DisableDate
must be set to NULL; provided
only for future enhancements.

Name Type Input/
Output

Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 249
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrReadExpression

NNRMgrReadExpression() retrieves the rule expression associated with the
application group, message type, and rule triplet. Prior to retrieving an
expression, it must be defined. See NNRMgrAddApp(), NNRMgrAddMsg(),
NNRMgrAddRule(), and NNRMgrAddExpression().

When retrieving the rule expression, user permission to read the rule is
checked. If the user has read permission for the rule, the user can see the rule
information. If the user attempting to access rule information does not have
read access, an error is returned, indicating the user does not have read
permission.

Syntax

const long NNRMgrReadExpression (
 NNRMgr *pMgr,
 const NNRExp *pRExp,
 NNRExpData* pRExpData);

Parameters

Remarks

To read expression data, the application group, message type, and rule
information, including the expression, must exist.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

pRExp const NNRExp * Input Must be populated prior to
this function call.

pRExpData const NNRExpData * Output Populate this structure using
NNRMgrReadExpression().
250 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrInit() should be called before NNRMgrReadExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

Return Value

Returns 1 if the expression was added successfully, zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrDeleteEntireRule
NNRMgrAddExpression

NNRMgrUpdateExpression
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 251
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrUpdateExpression

NNRMgrUpdateExpression() updates an expression in a rule. Prior to adding
an expression, the user must define the application group, associated
message type, and rule using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule(). Before adding or updating an expression, the user must
also know the operator information, obtained using
NNRMgrGetFirstOperator() or NNRMgrGetNextOperator().

When updating expression information, user permission to update the rule is
checked. If the user has update permission for the rule, the user can update
the expression information. If the user attempting to update an expression
does not have update access, an error is returned indicating that the user does
not have update permission and no changes occur.

Syntax

const long NNRMgrUpdateExpression(
 NNRMgr *pMgr,
 const NNRExp *pRExp,
 const NNRExpData *pRExpData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRExp const NNRExp * Input Must be populated prior to this
function call.

pRExpData const
NNRExpData *

Input DateChange, ChangeAction,
EnableDate and DisableDate
must be set to NULL; provided
only for future enhancements.
252 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

To update data related to expressions, the application group, message type
and rule information (including the expression) must exist.

NNRMgrInit() should be called before NNRMgrUpdateExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

Return Value

Returns 1 if the expression was updated successfully, zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrDeleteEntireRule
NNRMgrAddExpression

NNRMgrReadExpression
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 253
New Era of Networks Rules Programming Reference

Chapter 4
Argument Management APIs

These APIs are used only for backwards compatibility. The Expression APIs
should be used instead.

Argument Management API Structures

NNRArg

NNRArg structure is passed as a pointer as the second parameter of selected
Argument Management APIs. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to
any Argument Management API calls.

Syntax

typedef struct NNRArg {
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 long InitFlag;
} NNRArg;

Parameters

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group in which the
user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

MsgName
[MSG_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. Using
NEONFormatter, the message type is the input
format name. NULL-terminated string of
length 1 to 120 inclusive.
254 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
RuleName
[RULE_NAME_LEN]

char Name of the rule to be evaluated within an
application group and message name pair. This
rule name is defined by the user.NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Name Type Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 255
New Era of Networks Rules Programming Reference

Chapter 4
NNRArgData

NNRArgData structure is passed as a pointer as the third parameter of select
Argument Management APIs. The pointer cannot be NULL and must be
cleared using NNR_CLEAR prior to being populated by the user or by
Argument Management API calls. Use of this structure is described in each
Argument Management API section.

Syntax

typedef struct NNRArgData{
 NNDate DateChange;
 int ChangeAction;
 char FieldName[FIELD_NAME_LEN];
 int OperatorId;
 int OperatorType;
 char SecondFieldName[SECOND_FIELD_NAME_LEN];
 char ArgValue[ARG_VALUE_LEN];
 int ArgActive;
 NNDate ArgEnableDate;
 NNDate ArgDisableDate;
 int ArgSequence;
 long InitFlag;
} NNRArgData;

Members

Name Type Description

DateChange NNDate Defaulted for now, provided for
future capability.

ChangeAction int Defaulted for now, provided for
future capability.

FieldName
[FIELD_NAME_LEN]

char Name of the field to which the
operator is applied. NULL-
terminated string of length 1 to 120
inclusive.
256 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
OperatorId int ID retrieved by
NNRMgrGetFirstOperator() or
NNRMgrGetNextOperator().

OperatorType int Type retrieved by
NNRMgrGetFirstOperator() or
NNRMgrGetNextOperator().

SecondFieldName
[SECOND_FIELD_
NAME_LEN]

char Value to which the field is compared
for a field to field operator. NULL-
terminated string of length 1 to 120
inclusive.

ArgValue
[ARG_VALUE_LEN]

char Value of the comparison (static value).

ArgActive int Specifies whether the argument is
active (value of 1). For release v6.0
and newer, all arguments MUST be
active.

ArgEnableDate NNDate For future enhancements, ignore for
now.

ArgDisableDate NNDate For future enhancements, ignore for
now.

ArgSequence int Sequence of this argument within the
rule.

InitFlag long Flag used to determine if variables
have been initialized prior to calling a
NEONRules Management API.

Name Type Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 257
New Era of Networks Rules Programming Reference

Chapter 4
Argument Management API Functions

NNRMgrGetFirstArgument

NNRMgrGetFirstArgument() provides a way to retrieve information for a list
of arguments associated with an application group/message type/rule
triplet. This API returns the first argument in the rule in the pRArgData
parameter. Prior to retrieving an argument, it must be defined.

When retrieving argument information, user permission to read the rule is
checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have Read permission.

Note:
The arguments are not necessarily grouped together with the Boolean AND
(&) operator. If there is more than one argument, use the
NNRMgrReadExpression() API to determine the Boolean operators.

Syntax

const long NNRMgrGetFirstArgument(
 NNRMgr *pMgr,
 const NNRArg * pRArg,
 NNRArgData * const pRArgData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Name of a current NEONRules
Management object.

pRArg const NNRArg * Input Must be populated prior to this
API call.
258 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstArgument().
A call to NNR_CLEAR for both pRArg and pRArgData should be made prior
to populating the structures or calling this API.

Return Value

Returns 1 if the argument is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_ARGUMENTS, no arguments
were found for the application group, message type, and rule name specified
in the pRArg structure.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrGetNextArgument

NNRMgrReadExpression

NNRMgrAddApp()

NNRMgrAddMsg()

NNRMgrAddRule()

NNRMgrAddExpression()

pRArgData NNRArgData *
const

Output NNRMgrGetFirstArgument()
populates this structure.

Name Type Input/
Output

Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 259
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetNextArgument

NNRMgrGetNextArgument() provides a way of iterating through the
arguments after the first argument has been retrieved.

When retrieving argument information, user permission to read the rule is
checked. If the user is the owner or another user and with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have Read permission.

Note:
The arguments are not necessarily grouped together with the Boolean AND ()
operator. If there is more than one argument, the user should use the
NNRMgrReadExpression() API to retrieve the Boolean operators.

Syntax

const long NNRMgrGetNextArgument (
 NNRMgr *pMgr,
 NNRArgData * const pRArgData);

Parameters

Remarks

NNRMgrInit() should be called prior to calling
NNRMgrGetNextArgument(). A call to NNR_CLEAR for both pRArg and

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned by call to
NNRMgrInit().

pRArgData NNRArgData *
const

Output NNRMgrGetNextArgument()
populates this structure.
260 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
pRArgData should be made prior to populating the structures or calling this
API.

Return Value

Returns 1 if the argument is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_ARGUMENTS, the end of the
arguments list has been reached.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrGetFirstArgument

NNRMgrReadExpression
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 261
New Era of Networks Rules Programming Reference

Chapter 4
Subscription Management APIs

Subscriptions are added to an Application Group/Message Type Rule Set.
After they are added, subscriptions can be associated with multiple rules in
the same Application Group/Message Type.

The NNRMgrAddSubscription() API is used to add the subscription to the
Rule Set if no rule name is given, and to associate the subscription to a rule.
Subscription permissions work similarly to rule permissions.

Subscription Management API Structures

NNRSubs

NNRSubs is passed as a pointer as the second parameter of select
Subscription Management APIs. This pointer cannot be NULL. This structure
must be populated by the user prior to calling any of the Subscription
Management APIs, and should be initialized by calling NNR_CLEAR prior to
populating all of the fields.

Syntax

typedef struct NNRSubs{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 char SubsName[SUBS_NAME_LEN];
 long InitFlag;
 } NNRSubs;

Parameters

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group in which the user
is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
262 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
MsgName
[MSG_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. Using
NEONFormatter, the message type is the input
format name. NULL-terminated string of length
1 to 120 inclusive.

RuleName
[RULE_NAME_LEN]

char Name of the rule to be evaluated within an
application group and message name pair. This
rule name is defined by the user. NULL-
terminated string of length 1 to 120 inclusive.
RuleName is required only when adding a
subscription to a specific rule. It is ignored for
action, option, update, and delete functions.

SubsName
[SUBS_NAME_LEN]

char Name of the subscription associated with a
message name and application group. NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Name Type Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 263
New Era of Networks Rules Programming Reference

Chapter 4
NNRSubsData

NNRSubsData is passed as a pointer as the third parameter of select
Subscription Management APIs. The pointer cannot be NULL and must be
cleared prior to being populated by the user or by Subscription Management
API calls. Use of this structure is described in each Subscription Management
API section.

Syntax

typedef struct NNRSubsData{
 NNDate DateChange;
 int ChangeAction;
 int SubsActive;
 NNDate SubsEnableDate;
 NNDate SubsDisableDate;
 char SubsOwner[SUBS_OWNER_LEN];
 char SubsComment[SUBS_COMMENT_LEN];
 long InitFlag;
 } NNRSubsData;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of 1indicates that the subscription
is active, a value of zero (0) indicates that
the subscription is inactive.

SubsEnableDate NNDate Provided for future functionality,
ignored for now.

SubsDisableDate NNDate Provided for future functionality,
ignored for now.
264 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNR_CLEAR

SubsOwner
[SUBS_OWNER_LEN]

char Name of the owner of the subscription.

SubsComment
[SUBS_COMMENT_LEN]

char Information details about the
subscription.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.

Name Type Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 265
New Era of Networks Rules Programming Reference

Chapter 4
NNRSubsReadData

NNRSubsReadData is a structure containing subscription information after a
subscription read operation.

Syntax

typedef struct NNRSubsReadData{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 char SubsName[SUBS_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 int SubsActive;
 NNDate SubsEnableDate;
 NNDate SubsDisableDate;
 char SubsOwner[SUBS_OWNER_LEN];
 char SubsComment[SUBS_COMMENT_LEN];
 long InitFlag;
 } NNRSubsReadData;

Parameters

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group to
identify the subscription. NULL-
terminated string of length 1 to 120
inclusive.

MsgName
[MSG_NAME_LEN]

char Name of the message type to identify
the subscription. NULL-terminated
string of length 1 to 120 inclusive.

RuleName
[RULE_NAME_LEN]

char Name of the rule to link to the
subscription, if provided. NULL-
terminated string of length 1 to 120
inclusive.
266 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNR_CLEAR

SubsName
[SUBS_NAME_LEN]

char Name of the subscription to be read.
NULL-terminated string of length 1 to
120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of 1indicates that the subscription
is active, a value of zero (0) indicates that
the subscription is inactive.

SubsEnableDate NNDate Defaulted for now, provided for future
capability.

SubsDisableDate NNDate Defaulted for now, provided for future
capability.

SubsOwner
[SUBS_OWNER_ LEN]

char Contains the name of the subscription
owner.

SubsComment
[SUBS_COMMENT_LEN]

char Contains the subscription owner's
comment.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.

Name Type Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 267
New Era of Networks Rules Programming Reference

Chapter 4
NNRSubsUpdate

NNRSubsUpdate contains update information for subscriptions. The pointer
must be cleared using NNR_CLEAR prior to being populated, and must be
populated prior to any Subscription Management API calls.

Syntax

typedef struct NNRSubsUpdate {
 char SubsName[SUBS_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 int SubsActive;
 NNDate SubsEnableDate;
 NNDate SubsDisableDate;
 char SubsOwner[SUBS_OWNER_LEN];
 char SubsComment[SUBS_COMMENT_LEN];
 long InitFlag;
 } NNRSubsUpdate;

Parameters

Name Type Description

SubsName
[SUBS_NAME_LEN]

char Name for the subscription to be
updated.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of 1 indicates that the subscription
is active, a value of zero (0) indicates that
the subscription is inactive.

SubsEnableDate NNDate Defaulted for now, provided for future
capability.

SubsDisableDate NNDate Defaulted for now, provided for future
capability.
268 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNR_CLEAR

SubsOwner
[SUBS_OWNER_LEN]

char Defaulted for now, provided for future
capability.

SubsComment
[SUBS_COMMENT_LEN]

char Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.

Name Type Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 269
New Era of Networks Rules Programming Reference

Chapter 4
Subscription Management API Functions

NNRMgrAddSubscription

NNRMgrAddSubscription() adds subscription maintenance information for
one subscription. If the user wants more than one subscription for the rule or
rule set, this function must be called once for each subscription. The user can
either supply a rule name or not. The subscription is created if it does not
already exist in the rule set. If the rule name is provided, the subscription is
associated with that rule, if the user has Update permission for the rule. The
user entering the subscription is identified and stored as its owner and is
automatically granted Update and Read permission for the subscription.
PUBLIC is automatically granted Read permission for the subscription.

When adding subscription information to a rule, user permission to update
the rule is checked. If the user is the owner or another user with Update
permission for the rule, the user can add the subscription information. If the
user attempting to add a subscription does not have Update access, an error is
returned indicating that the user does not have Update permission and no
changes occur.

Syntax

const long NNRMgrAddSubscription(
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 const NNRSubsData *pRSubsData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().
270 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddSubscription().

A call to NNR_CLEAR for both pRSubs and pRSubsData should be made
prior to populating the structures or calling this API.

If a rule name is provided, the function checks to see if the subscription
already exists in the rule set. If the subscription exists, it then checks to see if
the rule already has the subscription. If so, the function fails and sets the error
code to RERR_SUBS_NAME_ALREADY_EXISTS. If not, the function adds
the subscription to the rule.

If the rule name is provided, and the subscription does not exist in the rule
set, the function creates the subscription and automatically adds it to the rule.

If the user does not provide the rule name, the function
NNRMgrAddSubscription() checks to see if the subscription exists in the rule
set. If the subscription already exists, the function is set to the
RERR_SUBS_ALREADY_EXISTS_IN_RULESET error code. If not, the
function creates the subscription.

Return Value

Returns 1 if the subscription is added successfully; zero (0) if an error occurs.

pRSubs const NNRSubs * Input Must be populated prior to this
function call. Users need not
specify the rule name.

pRSubsData const
NNRSubsData *

Input Must be populated prior to
calling this function. Set
DateChange, ChangeAction,
SubsEnableDate and
SubsDisableDate to NULL. They
are provided only for future
enhancements. SubsActive is
defaulted to 1.

Name Type Input/
Output

Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 271
New Era of Networks Rules Programming Reference

Chapter 4
Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit
NNR_CLEAR

NNRMgrAddRule
NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm
NNRMgrReadSubscription
272 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrReadSubscription

NNRMgrReadSubscription() reads subscription maintenance information for
one subscription.

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or a user with Read or Update
permissions for the subscription, the user can see the subscription. If the user
attempting to access subscription information does not have a minimum of
Read access, an error is returned indicating that the user does not have Read
permission. The subscription Read permission is also checked when reading
an action or option in the subscription. If the rule name is given, the rule is
checked for Read permission and association with the subscription.

Syntax

const long NNRMgrReadSubscription(
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 NNRSubsData* const pRSubsData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRSubs const NNRSubs * Input Must be populated prior to this
function call.
The rule name does not have to be
provided in the NNRSubs structure
pointed to by pRSubs.

pRSubs
Data

NNRSubsData*
const

Output NNRMgrReadSubscription()
populates this structure. If
DateChange is non-NULL, the
subscription exists.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 273
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadSubscription().
A call to NNR_CLEAR for both pRSubs and pRSubsData should be made
prior to populating the structures or calling this API.

If a rule name is provided, pRSubs verifies whether the subscription exists for
the rule name and checks rule permission. If the rule name is not provided,
the function verifies whether the subscription exists in the rule set.

Return Value

Returns 1 if the subscription was read successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription
274 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrGetFirstSubscription

NNRMgrGetFirstSubscription() and NNRMgrGetNextSubscription() enable
the user to iterate through the subscriptions associated with the application
group, message type and, optionally, the rule name. Call
NNRMgrGetFirstSubscription(), and then call
NNRMgrGetNextSubscription().

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for the subscription, the user can see the information. If
the user does not have a minimum of Read access, an error is returned,
indicating the user does not have Read permission. If the rule name is not
provided, all subscriptions are retrieved for the rule set.

Syntax

const long NNRMgrGetFirstSubscription (
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 NNRSubsReadData * const pRSubsReadData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRSubs const NNRSubs * Input Must be completely populated
except for the SubscriptionName
field prior to this function call.
User need not specify a rule
name.

pRSubsRead
Data

NNRSubsRead
Data * const

Output Populated by this function call.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 275
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

The rule name does not have to be provided in the NNRSubs structure
pointed to by pRSubs. If provided, the function retrieves the first subscription
associated with the rule. If not provided, the function retrieves the first
subscription associated with the rule set.

Return Value

Returns 1 if the subscription was retrieved successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_SUBSCRIPTIONS, no
subscriptions were found for the application group and message type
specified in the pRSubs structure.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRSubs key;
struct NNRSubsReadData data;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter rule name \n>";
cin >> key.RuleName;

int iret = NNRMgrGetFirstSubscription(pmgr, &key, &data);
if (iret)
{

276 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
 printSubscription(&key, &data);
 while(NNRMgrGetNextSubscription(pmgr, &data))
 {
 printSubscription(&key, &data);
 }
}
else
{
 cout << endl << "Read failed." << endl << endl << endl;
}
CloseNNRMgr(pmgr, session);

return;

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription

NNRMgrReadSubscription

NNRMgrGetNextSubscription

NNRMgrUpdateSubscription
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 277
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetNextSubscription

NNRMgrGetFirstSubscription() and NNRMgrGetNextSubscription() enable
the user to iterate through the subscriptions associated with the application
group, message type and, optionally, the rule name. Call
NNRMgrGetFirstSubscription() before NNRMgrGetNextSubscription().

When retrieving subscription information, user permission to read both the
rule and the subscription is checked. If the user is the owner or another user
has read or update permissions for the subscription, the user can see the
information. If the user attempting to access subscription information does
not have a minimum of read access, an error returns indicating the user does
not have read permission. The subscription read permission is also checked
when reading an action or option in the subscription

Syntax

const long NNRMgrGetNextSubscription (
 NNRMgr *pMgr,
 NNRSubsReadData * const pRSubsReadData);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object
returned from call to
NNRMgrInit().

pRSubsReadData NNRSubsRead
Data * const

Output Populated by this function
call.
278 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the subscription was retrieved successfully; zero if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_SUBSCRIPTIONS, the end
of the subscriptions list has been reached.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRSubs key;
struct NNRSubsReadData data;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter rule name \n>";
cin >> key.RuleName;

int iret = NNRMgrGetFirstSubscription(pmgr, &key, &data);
if (iret)
{
 printSubscription(&key, &data);
 while(NNRMgrGetNextSubscription(pmgr, &data))
 {
 printSubscription(&key, &data);
 }
}
else
{
 cout << endl << "Read failed." << endl << endl << endl;
}
CloseNNRMgr(pmgr, session);
return;
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 279
New Era of Networks Rules Programming Reference

Chapter 4
See Also

NNRMgrInit
NNR_CLEAR

NNRMgrAddSubscription
NNRMgrReadSubscription
NNRMgrGetFirstSubscription
NNRMgrUpdateSubscription
280 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrDuplicateSubscription

NNRMgrDuplicateSubscription() creates a new subscription based on the
subscription name provided. The new subscription has the name provided in
the pNewSubsName and inherits all other properties from the existing
subscription provided in pSubs.SubsName. The user must have Read
permission to the subscription to duplicate it.

Syntax

const long NNRMgrDuplicateSubscription (
 NNRMgr *pMgr,
 const NNRSubs* pSubs,
 const char * const pNewSubsName);

Parameters

Return Value

Returns 1 if the subscription duplicated successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

pSub const NNRSubs* Input Must be populated prior to
this function call.

NewSubsName const char* const Input Names of duplicate specified
subscription.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 281
New Era of Networks Rules Programming Reference

Chapter 4
See Also

NNRMgrInit

NNR_CLEAR

NNRMgrGetNextRuleUsingSubs
282 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrUpdateSubscription

NNRMgrUpdateSubscription() enables the user to update a subscription. The
user provides the unique application group, message type, and subscription
name to identify the subscription to be updated in the pRSubs structure, and
provides the new information in the pRSubsUpdate structure.

When updating subscription information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission, the user can update the subscription information. If the user
attempting to update a subscription does not have Update access, an error is
returned indicating that the user does not have Update permission, and no
change occurs.

Subscription Update permission is also checked when an action or option is
added or updated in the subscription.

Syntax

const long NNRMgrUpdateSubscription (
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 const NNRSubsUpdate *pRSubsUpdate);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRSubs const NNRSubs * Input Must be populated prior to this
function call.
The user does not have to specify a
rule name; the name is ignored.

pRSubs
Update

const
NNRSubsUpdate *

Input Must be populated prior to this
function call.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 283
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

The rule name does not have to be in the NNRSubs structure pointed to by
pRSubs; the name is ignored. However, all the changes made to the
subscription are made globally within the rule set.

Return Value

Returns 1 if the subscription was updated successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRSubs key;
struct NNRSubsUpdate data;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;

cout << "Enter New subscription name \n>";
cin >> data.SubsName;
cout << "Enter new subscription owner \n>";
cin >> data.SubsOwner;
cout << "Enter new subscription comment \n>";
cin >> data.SubsComment;
if (NNRMgrUpdateSubscription(pmgr, &key, &data)) {
 cout << endl
284 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
 << "\tSubs Name: " << key.SubsName << "
Changed."
 << endl << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr, session);
return;

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription

NNRMgrReadSubscription

NNRMgrGetFirstSubscription

NNRMgrGetNextSubscription
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 285
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrDeleteSubscriptionFromRule

NNRMgrDeleteSubscriptionFromRule() disassociates a subscription from its
rule if the user has update permission for the rule. Only a subscription that is
not associated with any rule can be deleted from the rule set by using
NNRMgrDeleteEntireSubscription().

Syntax

const long NNRMgrDeleteSubscriptionFromRule (
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 const char * SubsName);

Parameters

Remarks

A call to NNR_CLEAR for pRRule should be made prior to populating the
structures or calling this API.

Return Value

Returns 1 if the user has update permission for the rule, is deleting the
subscription, and the subscription is successfully deleted. Returns zero (0) if
an error occurs. An error occurs if the user does not have update permission.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRRule pRRule Input The unique rule definition.

SubsName const char* const Input Name of subscription.
286 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNRMgrInit

NNRMgrDeleteEntireSubscription
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 287
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrDeleteEntireSubscription

NNRMgrDeleteEntireSubscription() deletes a subscription and its actions and
options from the specified rule. If the subscription is associated with any
rules, an error is returned.

When deleting subscription information, user permission to update the
subscription is checked. If the user is the owner and has Update permissions
for the subscription, the subscription is deleted. If the user is not the owner
but does have Update access, the subscription is set to inactive but not
deleted. If the user does not have Update access, an error is returned
indicating that the user does not have Update permission, and no changes
occur.

Syntax

const long NNRMgrDeleteEntireSubscription (
 NNRMgr *pMgr,
 const NNRMSubs *pRSubs);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management object
returned from call to NNRMgrInit().

pRSubs NNRMSubs Input The unique identifier for the subscription
with the application group name, message
type name, and subscription name.
288 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the subscription was deleted successfully; 2 if the subscription
was deactivated; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit

NNRMgrDeleteSubscriptionFromRule
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 289
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetFirstRuleUsingSubs

NNRMgrGetFirstRuleUsingSubs() enables the user to iterate through the
rules associated with a subscription. If there are any rules using the
subscription, the name of the first rule is returned in
NpRSubsReadData.RuleName.

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for subscription, the user can see the information. If the
user attempting to access subscription information does not have a minimum
of Read access, an error is returned indicating that the user does not have
Read permission. The subscription Read permission is also checked when the
user is reading an action or option in the subscription.

Syntax

const long NNRMgrGetFirstRuleUsingSubs (
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 char* const pRuleName);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRSubs const NNRSubs * Input Must be completely populated
except for the Subscription Name
field prior to this function call.
User must not specify a rule
name.

pRuleName char* const Output Populated by this function call.
290 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

The rule name should not be provided in the NNRSubs structure pointed to
by pRSubs.

Return Value

Returns 1 if the rules were retrieved successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, no rules were
found for the application group, message type, and rule name specified in the
pRSubs structure.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription

NNRMgrReadSubscription

NNRMgrGetFirstSubscription

NNRMgrUpdateSubscription

NNRMgrGetNextRuleUsingSubs
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 291
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetNextRuleUsingSubs

NNRMgrGetFirstRuleUsingSubs() and NNRMgrGetNextRuleUsingSubs()
enable the user to iterate through the subscriptions associated with a rule.
Call NNRMgrGetFirstRuleUsingSubs() before
NNRMgrGetNextRuleUsingSubs().

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for the subscription, the user can see the information. If
the user attempting to access subscription information does not have a
minimum of Read access, an error is returned indicating that the user does
not have Read permission. The subscription Read permission is also checked
when reading an action or option in the subscription

Syntax

const long NNRMgrGetNextRuleUsingSubs (
 NNRMgr *pMgr,
 char* const pRuleName);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

The rule name does not have to be provided in the NNRSubs structure
pointed to by pRSubs.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management object
returned from call to NNRMgrInit().

pRuleName char* const Output Populated by this function call.
292 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the rule was retrieved successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, the end of the rule
list has been reached.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription

NNRMgrReadSubscription

NNRMgrGetFirstSubscription

NNRMgrUpdateSubscription

NNRMgrGetFirstRuleUsingSubs
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 293
New Era of Networks Rules Programming Reference

Chapter 4
Action Management APIs

Action are commands used if a rule evaluates as true and the subscription is
performed. A subscription includes actions that contain option name-value
pairs.

Action Management API Structures

NNRAction

NNRAction is passed as a pointer as the second parameter of select Action
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Action Management API calls.

Syntax

typedef struct NNRAction{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 char SubsName[SUBS_NAME_LEN];
 char ActionName[ACTION_NAME_LEN];
 char OptionName[OPTION_NAME_LEN];
 long InitFlag;
 } NNRAction;

Parameters

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group defined by the
user. Should be the application group in which
the user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
294 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNR_CLEAR

MsgName
[MSG_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. As long
as the user is using NEONFormatter, the
message type is the input format name. NULL-
terminated string of length 1 to 120 inclusive.

RuleName
[RULE_NAME_LEN]

char The rule name is ignored for actions and
options. NULL-terminated string of length 1 to
120 inclusive.

SubsName
[SUBS_NAME_LEN]

char Name of the subscription associated with a rule
name, message name, and application group.
NULL-terminated string of length 1 to 120
inclusive.

ActionName
[ACTION_NAME_
LEN]

char Name of the action associated with this
subscription. NULL-terminated string of length
1 to 120 inclusive.

OptionName
[OPTION_NAME_
LEN]

char Name of the first option associated with this
action. NULL-terminated string of length 1 to
120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Name Type Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 295
New Era of Networks Rules Programming Reference

Chapter 4
NNRActionData

NNRActionData is passed as a pointer as the third parameter of the Action
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Action Management API calls. Use of this structure is
described in the Action Management API section.

Syntax

typedef struct NNRActionData{
 NNDate DateChange;
 int ChangeAction;
 char OptionValue[OPTION_VALUE_LEN];
 long InitFlag;
) NNRActionData;

Parameters

See Also

NNR_CLEAR

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OptionValue
[OPTION_VALUE_LEN]

char Value of the first option.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.
296 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRActionReadData

NNRActionReadData is passed as a pointer as the third parameter of select
Action Management APIs. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to being populated by the user or by Action
Management API calls. Use of this structure is described in each Action
Management API section.

Syntax

typedef struct NNRActionReadData{
 NNDate DateChange;
 int ChangeAction;
 int ActionSequence;
 char ActionName[ACTION_NAME_LEN];
 char OptionName[OPTION_NAME_LEN];
 char OptionValue[OPTION_VALUE_LEN];
 long InitFlag;
 } NNRActionReadData;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

ActionSequence int Sequence of this action within its
subscription. For example, for the first
action, ActionSequence=1.

ActionName
[ACTION_NAME_LEN]

char Name of the action associated with the
subscription. NULL-terminated string of
length 1 to 120 inclusive.

OptionName
[OPTION_NAME_LEN]

char Name of the first option associated with
the action. NULL-terminated string of
length 1 to 120 inclusive.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 297
New Era of Networks Rules Programming Reference

Chapter 4
OptionValue
[OPTION_VALUE_LEN]

char Static value of the first option if there are
no actions.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.

Name Type Description
298 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRActionUpdate

NNRActionUpdate contains update information for actions. The pointer
must be cleared using NNR_CLEAR prior to being populated, and must be
populated prior to any Action Management API calls.

Syntax

typedef struct NNRActionUpdate{
 char ActionName[ACTION_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
 } NNRActionUpdate;

Parameters

See Also

NNR_CLEAR

Name Type Description

ActionName
[ACTION_NAME_LEN]

char Name of the action to be updated.
NULL-terminated string of length 1 to
120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 299
New Era of Networks Rules Programming Reference

Chapter 4
Action Management API Functions

NNRMgrAddAction

NNRMgrAddAction() adds both an action and its first option. All other
options must be added using NNRMgrAddOption(). Prior to adding an
action, the application group, message type, and subscription must have been
added using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddSubscription().

When adding action information, user permission to update the subscription
is checked. If the user is the owner or another user with Update permission
for the subscription, the user can add the action information. If the user
attempting to add an action does not have Update access, an error is returned
indicating that the user does not have Update permission, and no change
occurs.

Syntax

const long NNRMgrAddAction(
 NNRMgr *pMgr,
 const NNRAction *pRAction,
 const NNRActionData *pRActionData,
 int *pActionId);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

pRAction const NNRAction * Input Must be populated prior to
this function call. The rule
name is ignored.
300 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddAction().

A call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the action was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrGetFirstAction

NNRMgrGetNextAction

NNRMgrDeleteAction

pRActionData const NNRAction
Data *

Input Set DateChange and
ChangeAction to NULL;
provided only for future
enhancements.

pActionId int * Input Value of the action identifier
used to insert all but the first
option for an action.

Name Type Input/
Output

Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 301
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetFirstAction

NNRMgrGetFirstAction() provides a way of starting to retrieve information
for a list of actions associated with an application group, message type, rule
and subscription. This API returns the first action in the subscription in the
pRActionData parameter. Prior to retrieving an action, actions must be
defined.

When retrieving action information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the rule information. If the
user does not have a minimum of Read access, an error is returned indicating
that the user does not have Read permission.

Syntax

const long NNRMgrGetFirstAction(
 NNRMgr *pMgr,
 const NNRAction * pRAction,
 NNRActionReadData * const pRActionData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRAction const NNRAction * Input Must be populated prior to this
function call. RuleName,
ActionName, and OptionName
do not have to be populated
before this call.

pRAction
Data

NNRActionRead
Data * const

Output NNRMgrGetFirstAction()
populates this structure.
302 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstAction().A
call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the action was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_ACTIONS, no actions
were found for the application group and message type specified in the
pRAction structure.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrGetNextAction

NNRMgrAddApp()

NNRMgrAddMsg()

NNRMgrAddRule()

NNRMgrAddSubscription()

NNRMgrAddAction()

NNRMgrAddOption()
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 303
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrGetNextAction

NNRMgrGetNextArgument() provides a way of iterating through the actions
after the first action has been retrieved. See NNRMgrGetFirstAction().

When retrieving action information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the action information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

Syntax

const long NNRMgrGetNextAction(
 NNRMgr *pMgr,
 NNRActionReadData * const pRActionData);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextAction(). A
call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object
returned from call to
NNRMgrInit().

pRActionData NNRActionRead
Data * const

Output NNRMgrGetNextAction()
populates this structure.
304 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Return Value

Returns 1 if the action was read successfully; zero (0) if an error occurred. Use
NNRGetErrorNo() to retrieve the number for the error that occurred, or use
NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_ACTIONS, the end of the
actions list has been reached.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrGetFirstAction
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 305
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrResequenceAction

NNRMgrResequenceAction() enables the user to resequence actions within a
subscription. NNRMgrResequenceAction() moves the action to the specified
new position. The user provides the unique application group, message type,
subscription name, current position, and the position to move the action to.

For example, the following actions exist in your code:

putqueue(TargetQ, MessageType)
reformat(inputformat, outputformat)

You want reformat to occur before putqueue. Call
NNRMgrResequenceAction(), providing action 2 as the action to be moved
and action 1 as the new position. This results in:

reformat(inputformat, outputformat)
putqueue(TargetQ, MessageType)

To indicate the first action to move in an action sequence, oldPosition can be
set to NNRRB_START or to the number 1. To specify the last action to move
in an action sequence, set oldPosition to NNRRB_END.

To move an action to the end of an action sequence, set newPosition to
NNRRB_END. To move an action to the start of an action sequence, set
newPosition to NNRRB_START, or to the number 1.

If oldPosition or newPosition is greater than the maximum action/option
sequence, it is changed to the maximum action sequence.

When updating action information, user permission to update the rule is
checked. If the user is the owner or another user with Update permission for
the subscription, the user can update the action information. If the user does
not have Update access, an error is returned indicating that the user does not
have Update permission, and no changes occur.
306 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Syntax

const long NNRMgrResequenceAction (
 NNRMgr *pMgr,
 const NNRAction *pRAction,
 int oldPosition,
 int newPosition);

Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

NEONRules Management resequence boundaries are held in the following
structure:

typedef enum NNRReseqBounds {
 NNRRB_END = -1,
 NNRRB_START = 1
} NNRReseqBounds;

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRAction const
NNRAction *

Input Must be populated prior to this
function call. The rule name is
ignored.

oldPosition int Input Old numeric position of the action
to be resequenced.

newPosition int Input New numeric position of the action
to be resequenced.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 307
New Era of Networks Rules Programming Reference

Chapter 4
Return Value

Returns 1 if the action is resequenced successfully; zero (0) if an error
occurred.

If either oldPosition or newPosition are negative and not equal to
NNRRB_END, an error condition is returned, and errVal is set to
RERR_INVALID_ACTION_PARAM.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRAction key;
struct NNRActionUpdate data;
int oldActionSeq, newActionSeq;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;
cout << "Enter old action sequence \n>";
cin >> oldActionSeq;
cout << "Enter new action sequence \n>";
cin >> newActionSeq;

if (NNRMgrResequenceAction(pmgr, &key, oldActionSeq,
 newActionSeq)) {
 cout << endl
 << "\tAction Name: " << key.ActionName
 << "Resequenced." << endl;
 cout << endl
 << "\tOld Action id: " << oldActionSeq << endl
 << endl;
308 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr, session);

return;

See Also

NNRMgrInit
NNR_CLEAR

NNRMgrAddAction

NNRMgrDeleteAction

NNRMgrGetFirstAction

NNRMgrGetNextAction
NNRMgrUpdateAction
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 309
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrUpdateAction

NNRMgrUpdateAction() enables the user to update an action for a
previously defined subscription. NNRMgrUpdateAction() only changes the
action name. To update options, use the Option Management APIs.

The action position represents the sequence number of the action to be
updated, starting from 1 and going to the end of the action sequence. To
change the first action, set position to 1. To change the fifth action, set position
to 5, and so on.

When updating action information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission for the subscription, the user can update the action information. If
the user attempting to update an action does not have Update access, an error
is returned indicating the user does not have Update permission and no
changes occur.

Syntax

const long NNRMgrUpdateAction (
 NNRMgr *pMgr,
 const NNRAction *pRAction,
 const NNRActionUpdate *pRActionUpdate,
 int position);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object returned
from call to NNRMgrInit().

pRAction const
NNRAction *

Input Should be populated prior to
this function call. The rule
name is ignored.
310 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Return Value

Returns 1 if the action was updated successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRAction key;
struct NNRActionUpdate data;
int ActionId = -1;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;
cout << "Enter action ID \n>";

pRActionUpdate const
NNRAction
Update *

Input Should be populated prior to
this function call.

position int Input Numeric order of the action to
update.

Name Type Input/
Output

Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 311
New Era of Networks Rules Programming Reference

Chapter 4
cin >> ActionId;
cout << "Enter new action name \n>";
cin >> data.ActionName;

if (NNRMgrUpdateAction(pmgr, &key, &data, ActionId)) {
 cout << endl
 << "\tAction Name: " << key.ActionName
 << " Updated." << endl;
 cout << endl
 << "\tAction id: " << ActionId << endl << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr, session);

return;

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddAction

NNRMgrDeleteAction

NNRMgrGetFirstAction

NNRMgrGetNextAction

NNRMgrResequenceAction
312 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrDeleteAction

NNRMgrDeleteAction deletes the specified action from a subscription. After
this function is performed, the action and all its options are deleted and
subsequent actions are re-sequenced.

The user must have Update permission for the subscription. If the user is the
owner, the user can delete the action from a subscription. If the user
attempting to delete an action is not the owner, an error is returned indicating
that the user does not have Update permission and no changes occur.

Syntax

const long NNRMgrDeleteAction(
 NNRMgr *pMgr,
 const NNRAction *pRAction,
 int position);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrDeleteAction().

A call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pRAction const
NNRAction *

Input Must be populated prior to this
function call. The rule name is
ignored.

position int * Input Numeric order of the action to
delete.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 313
New Era of Networks Rules Programming Reference

Chapter 4
Return Value

Returns 1 if the action was deleted.

Returns zero (0) if the input parameters are not initialized with NNR_CLEAR,
the current user does not have Update permission for the subscription, the
action does not exist, or a different error occurs. Use NNRGetErrorNo() to
retrieve the number for the error that occurred, or use
NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrGetFirstAction

NNRMgrGetNextAction

NNRMgrAddAction
314 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Option Management APIs

Options are name-value pairs that further define an action. The first option is
added with the action, and others must be added with
NNRMgrAddOption().

Option Management API Structures

NNROption

NNROption is passed as a pointer as the second parameter of select Option
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Option Management API calls.

Syntax

typedef struct NNROption{
 char AppName [APP_NAME_LEN];
 char MsgName [MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 char SubsName[SUBS_NAME_LEN];
 char ActionName[ACTION_NAME_LEN];
 int ActionId;
 char OptionName [OPTION_NAME_LEN];
 long InitFlag;
} NNROption;

Parameters

Name Type Description

AppName
[APP_NAME_LEN]

char Name of the application group in which the
user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 315
New Era of Networks Rules Programming Reference

Chapter 4
MsgName
[MSG_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. The
message type is the input format name if the
user is using NEONFormatter. NULL-
terminated string of length 1 to 120 inclusive.

RuleName
[RULE_NAME_LEN]

char Name of the rule to be defined within an
application group and message name pair.
This rule name is defined by the user. NULL-
terminated string of length 1 to 120 inclusive.

SubsName
[SUBS_
NAME_LEN]

char Name of the subscription associated with a
message name and application group.

ActionName
[ACTION_NAME_LEN]

char Name of action. NULL-terminated string of
length 1 to 120 inclusive.

ActionId int Value of the action identifier used to insert all
but the first option for an action.

OptionName
[OPTION_NAME_LEN]

char Name of the option associated with this
action. If this field is empty, default is used as
the OptionName. NULL-terminated string of
length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEONRules
Management API.

Name Type Description
316 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNROptionData

NNROptionData is passed as a pointer as the third parameter of the Option
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Option Management API calls. Use of this structure is
described in each Option Management API section.

Syntax

typedef struct NNROptionData{
 NNDate DateChange;
 int ChangeAction;
 char OptionValue[OPTION_VALUE_LEN];
 long InitFlag;
 } NNROptionData;

Parameters

See Also

NNR_CLEAR

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OptionValue
[OPTION_NAME_LEN]

char Value of the option. If this field is empty,
"default" is used as the OptionValue.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 317
New Era of Networks Rules Programming Reference

Chapter 4
NNROptionReadData

NNROptionReadData is passed as a pointer as a parameter of select Option
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by Option Management
API calls. Use of this structure is described in each Option Management API
section.

Syntax

typedef struct NNROptionReadData{
 NNDate DateChange;
 int ChangeAction;
 char ActionName[ACTION_NAME_LEN]
 int ActionSequence;
 char OptionName[OPTION_NAME_LEN]
 char OptionValue[OPTION_VALUE_LEN];
 int OptionSequence
 long InitFlag;
 } NNROptionReadData;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

ActionName
[ACTION_NAME_LEN]

char Name of action. NULL-terminated string
of length 1 to 120 inclusive.

ActionSequence int Sequence of this action within its
subscription. For example, for the first
action, ActionSequence=1.

OptionName
[OPTION_NAME_LEN]

char Name of option. NULL-terminated
string of length 1 to 120 inclusive.
318 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
See Also

NNR_CLEAR

OptionValue
[OPTION_VALUE_LEN]

char Static value of the option. If there are no
options, this must not be NULL since
this function adds an option.

OptionSequence int Sequence of this option within its action.
For example, for the first option,
OptionSequence=1.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.

Name Type Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 319
New Era of Networks Rules Programming Reference

Chapter 4
NNROptionUpdate

NNROptionUpdate is passed as a pointer as a parameter of select functions in
the Option Management API. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to
any Option Management API calls.

Syntax

typedef struct NNROptionUpdate{
 char OptionName[OPTION_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 char OptionValue[OPTION_VALUE_LEN];
 long InitFlag;
 } NNROptionUpdate;

Parameters

See Also

NNR_CLEAR

Name Type Description

OptionName
[OPTION_NAME_LEN]

char Name of the option to update. NULL-
terminated string of length 1 to 120
inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OptionValue
[OPTION_VALUE_LEN]

char Value of the option to be updated.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a
NEONRules Management API.
320 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Option Management API Functions

NNRMgrAddOption

If an action has more than one option, NNRMgrAddOption() is used to add
all but the first option. Prior to adding more options, the user must define the
first action and first option pair using NNRMgrAddAction().

When adding option information, user permission to update the subscription
is checked. If the user is the owner or another user with Update permission
for the subscription, the user can add the option information. If the user does
not have Update access, an error is returned indicating that the user does not
have Update permission and no change occurs.

Syntax

const long NNRMgrAddOption(
 NNRMgr *pMGR,
 const NNROption *pROption,
 const NNROptionData *pROptionData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

NNROption const
NNROption *

Input Must be populated prior to this
function call. The rule name is
ignored.

NNROption
Data

const
NNROption
Data *

Input Set DateChange and ChangeAction
to NULL; provided only for future
enhancements.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 321
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddOption(). A call
to NNR_CLEAR for both NNROption and NNROptionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was added successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrDeleteOption

NNRMgrGetFirstOption

NNRMgrGetNextOption
322 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrGetFirstOption

NNRMgrGetFirstOption() provides a way of starting to retrieve information
for a list of options associated with an application group, message type,
subscription, and action. This API returns the first option in the action in the
pROptionData parameter. Prior to retrieving an option, options must be
defined.

When retrieving option information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the option information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

Syntax

const long NNRMgrGetFirstOption(
 NNRMgr *pMgr,
 const NNROption * pROption,
 NNROptionReadData * const pROptionData);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Name of a current NEONRules
Management object.

pROption const NNROption * Input Must be populated prior to this
function call. The rule name is
ignored.

pROption
Data

NNROptionRead
Data * const

Output NNRMgrGetFirstOption()
populates this structure.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 323
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstOption().

A call to NNR_CLEAR for both pROption and pROptionData should be
made prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_OPTIONS, no options were found
for the application group and message type specified in the pROption
structure.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrGetNextOption

NNRMgrAddApp()

NNRMgrAddMsg()

NNRMgrAddRule()

NNRMgrAddSubscription()

NNRMgrAddOption()
324 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrGetNextOption

NNRMgrGetNextOption() provides a way of iterating through the options
after the first option has been retrieved (see NNRMgrGetFirstOption()).

When retrieving option information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the option information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

Syntax

const long NNRMgrGetNextOption(
 NNRMgr *pMgr,
 NNROptionReadData * const pROptionData);

Parameters

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextOption(). A
call to NNR_CLEAR for both pROption and pROptionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Name of a current NEONRules
Management object.

pROption
Data

NNROption
ReadData * const

Output NNRMgrGetNextOption()
populates this structure.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 325
New Era of Networks Rules Programming Reference

Chapter 4
If the error number returned is RERR_NO_MORE_OPTIONS, the end of the
options list has been reached.

See Also

NNRMgrInit
NNR_CLEAR

NNRMgrGetFirstOption
326 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrResequenceOption

NNRMgrResequenceOption() enables the user to resequence options within
an action. NNRMgrResequenceOption() moves the option to the specified
new position. The user provides the unique application group, message type,
rule name, subscription name, current position, and the position to move it to.

For example, the following action/option information exists:

exec(process, argument1, argument2, argument3)

A call to NNRMgrResequenceOption switches the option in position 4
(argument3) to the option in position 3. The option in position 3 (argument2)
then resides in position 4:

exec(process, argument1, argument3, argument2)

To indicate the first option to move in an option sequence, oldPosition can be
set to either NNRRB_START or to the number 1. To specify the last option to
move in an option sequence, set oldPosition to NNRRB_END.

To move an option to the end of an option sequence, set newPosition to
NNRRB_END. To move an option to the start of an option sequence, set
newPosition to NNRRB_START, or to the number 1.

If oldPosition or newPosition is greater than the maximum action/option
sequence, it is changed to the maximum option sequence.

When updating option information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission for the subscription, the user can update the option information. If
the user does not have Update access, an error is returned indicating that the
user does not have Update permission, and no change occurs.

Syntax

const long NNRMgrResequenceOption (
 NNRMgr *pMgr,
 const NNROption *pROption,
 int oldPosition,
 int newPosition);
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 327
New Era of Networks Rules Programming Reference

Chapter 4
Parameters

Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

NEONRules Management resequence boundaries are held in the following
structure:

typedef enum NNRReseqBounds {
 NNRRB_END = -1,
 NNRRB_START = 1
} NNRReseqBounds;

Return Value

Returns 1 if the option is resequenced successfully; zero (0) if an error
occurred.

If either oldPosition or newPosition are negative and not equal to
NNRRB_END, an error condition is returned, and errVal is set to
RERR_INVALID_OPTION_PARAM.

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pROption const
NNROption *

Input Must be populated prior to this
function call. The rule name is
ignored.

oldPosition int Input Old numeric order of the action to
be resequenced.

newPosition int Input New numeric order of the action to
be resequenced.
328 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNROption key;
struct NNROptionUpdate data;
int oldPosition, newPosition;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;
cout << "Enter action id \n>";
cin >> key.ActionId;
cout << "Enter old option sequence \n>";
cin >> oldPosition;
cout << "Enter new option sequence \n>";
cin >> newPosition;

if (NNRMgrResequenceOption(pmgr, &key, oldPosition,
 newPosition)) {
 cout << endl
 << "\tOption Name: " << key.OptionName
 << "Resequenced." << endl
 << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}

CloseNNRMgr(pmgr, session);

return;
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 329
New Era of Networks Rules Programming Reference

Chapter 4
See Also

NNRMgrInit
NNR_CLEAR

NNRMgrAddOption

NNRMgrDeleteOption

NNRMgrGetFirstOption

NNRMgrGetNextOption
NNRMgrUpdateOption
330 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRMgrUpdateOption

NNRMgrUpdateOption() enables the user to update an action for an existing
subscription. The user provides the unique application group, message type,
and subscription name, and defines the option to change (in the pROption
structure). The new information is provided in the pROptionUpdate
structure.

The option position represents the sequence number of the option to be
updated, starting from 1 and going to the end of the option sequence. To
change the first option, set position to 1. To change the fifth option, set
position to 5, and so on.

When updating option information, user permission to update the
subscription is checked. The user or owner has Update permission for the
rule and can update the rule information. If the user does not have Update
access, an error is returned indicating that the user does not have Update
permission, and no change occurs.

Syntax

Const long NNRMgrUpdateOption (
 NNRMgr *pMgr,
 const NNROption *pROption,
 const NNROptionUpdate *pROptionUpdate,
 int position);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules
Management object
returned from call to
NNRMgrInit().

pROption const NNROption * Input Must be populated prior to
this function call.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 331
New Era of Networks Rules Programming Reference

Chapter 4
Remarks

NNRMgrInit() should be called prior to any NEONRules Management API
calls.

Return Value

Returns 1 if the option was updated successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNROption key;
struct NNROptionUpdate data;
int position;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;
cout << "Enter action id \n>";

pROption
Update

const
NNROptionUpdate *

Input Must be populated prior to
this function call. The rule
name is ignored.

position int Input Numeric order of the
action to be updated.

Name Type Input/
Output

Description
332 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
cin >> key.ActionId;
cout << "Enter option id \n>";
cin >> position;
cout << "Enter new option name \n>";
cin >> data.OptionName;
cout << "Enter new option value \n>";
cin >> data.OptionValue;

if (NNRMgrUpdateOption(pmgr, &key, &data, position)) {
 cout << endl
 << "\tOption Name: " << key.OptionName
 << " Changed." << endl
 << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}

CloseNNRMgr(pmgr, session);

return;

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddOption

NNRMgrGetFirstOption

NNRMgrGetNextOption

NNRMgrResequenceOption
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 333
New Era of Networks Rules Programming Reference

Chapter 4
NNRMgrDeleteOption

NNRMgrDeleteOption() deletes the specified option from a subscription
action. This call deletes the option and resequences subsequent options for
the action. If the action contains only the one option, the entire action is
deleted.

The user must have Update permission for the subscription to perform this
action. If the user does not have Update permission, an error is returned and
no changes occur.

Syntax

const long NNRMgrDeleteOption(
 NNRMgr *pMGR,
 const NNROption *pROption,
 int position);

Parameters

Name Type Input/
Output

Description

pMgr NNRMgr * Input Valid NEONRules Management
object returned from call to
NNRMgrInit().

pROption const
NNROption *

Input The position parameter is the
Option Sequence number (starting
with 1) for the Action defined by the
pROption Action Id. Does not need
the RuleName or OptionName
populated.

position int Input Numeric order of the option to be
deleted.
334 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
Remarks

A call to NNR_CLEAR for both NNROption and NNROptionData should be
made prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was deleted.

Returns zero (0) if the input parameters are not initialized with NNR_CLEAR,
the current user does not have update permission, the action or option does
not exist, or a different error occurred. Use NNRGetErrorNo() to retrieve the
number for the error that occurred, or use NNRGetErrorMessage() to retrieve
the error message.

See Also

NNRMgrInit

NNR_CLEAR

NNRMgrAddOption

NNRMgrGetFirstOption

NNRMgrGetNextOption

NNRMgrResequenceOption
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 335
New Era of Networks Rules Programming Reference

Chapter 4
NEONRules Management Error Handling

NNRGetErrorNo

NNRGetErrorNo() retrieves the error number from previous NEONRules
Management calls.

Syntax

const int NNRGetErrorNo(NNRMgr *pRMgr);

Parameters

Return Value

Returns the error number for an error occurring during any of the prior
NEONRules Management calls; returns zero (0) if no NEONRules Management
functions were called prior to this call or NNR_NO_ERR if no error exists.
Use NNRGetErrorMessage() to get the associated error message.

See Also

NNRGetErrorMessage

NNRMgrInit

Name Type Input/
Output

Description

pRMgr NNRMgr * Input Name of a current Rules Management
object.
336 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs
NNRGetErrorMessage

NNRGetErrorMessage() retrieves the error message from previous NEONRules
Management calls.

Syntax

const char * NNRGetErrorMessage(NNRMgr *pRMgr);

Parameters

Return Value

Returns the error message for an error occurring during any of the previous
NEONRules Management calls.

See Also

NNRGetErrorNo

NNRMgrInit

Name Type Input/
Output

Description

pRMgr NNRMgr * Input Name of a current NEONRules
Management object.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 337
New Era of Networks Rules Programming Reference

Chapter 4
338 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 5

Error Messages

The following lists of errors are subject to change:

Data processing related errors

Client code errors

Rules Management data errors

If you receive one of these errors, verify that the DBMS is still
running properly.

General Rules Management errors

Component refers to any item with its own permissions, for example,
Rules or Subscriptions.

Permission data errors

Component refers to any item with its own permissions, for example,
Rules or Subscriptions.

General permission errors

The listed errors are generic. When an error code is set, the error message is
enhanced with contextual information. For example, when a rule does not
exist, the given application group name, message type name, and rule name
are appended to the error message with a space and dash separating each
name.

Note:
Error numbers -10000 to -10099 are NEONRules Broker specific and are not
included in this list. For more information, see the System Management
Guide.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 339
New Era of Networks Rules Programming Reference

Data Processing Related Errors

Code Message Explanation Response

-1000 Unknown error code or
no error

No matching error code.

-1001 Rules configuration
missing Application
Group

Application group passed
into eval() does not exist
for Rules database.
Message on the queue
does not have a valid
OPT_APP_GRP option.

Check the Application
Group set in the eval()
call OR check the
OPT_APP_GRP option
for the message in the
input queue.

-1002 Rules configuration
missing Message Type

Application group
message type pair passed
into eval() does not exist
for the Rules database.
Message on the queue
does not have a valid
OPT_MSG_TYPE option.

Check the Application
Group and Message
Type set in the eval()
call. Check the
OPT_APP_GRP and
OPT_MSG_TYPE
options for the message
in the input queue.

-1003 Rules not configured or
Operations missing for
message

Rule data in the database
is incorrect.

Run Consistency
Checker to check data.

-1004 Rules configuration
missing Arguments for
message

Rule missing active
arguments in database.

Run Consistency
Checker to check data.

-1005 Rules configuration
missing Rules

No active rules defined for
the application group/
message type pair.

Review the data in the
database.

-1006 Rules configuration
missing Subscriptions

No active subscriptions
for the rules in the
application group/
message type pair.

Run Consistency
Checker to check data.

-1007 Rules configuration
missing Subscription
Actions

At least one subscription
does not have any actions.

Make sure all rules have
subscription actions.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 340
New Era of Networks Rules Programming Reference

Error Messages
-1008 Rules configuration
missing Boolean
Operators

All rules have a single
argument.

Error code is used
internally as a warning.
It should never appear
to the user. Call New
Era of Networks
Technical Support.

-1009 Major Database Error
Retrieving Application
Group/Message Type

Major database error. Verify that database is
up and schema is okay.
This error may occur if
an old version of the
Rules schema is being
used.

-1010 Major Database Error
Retrieving Arguments

Major database error. Verify that database is
up and schema is okay.

-1011 Major Database Error
Retrieving Boolean
Operators

Major database error Verify that database is
up and schema is okay.

-1012 Major Database Error
Retrieving Operations

Major database error Verify that database is
up and schema is okay.

-1013 Major Database Error
Retrieving Rules

Major database error Verify that database is
up and schema is okay.

 -1014 Major Database Error
Retrieving Subscription
Actions

Major database error Verify that database is
up and schema is okay.

-1015 Major Database Error
Retrieving
Subscriptions

Major database error Verify that database is
up and schema is okay.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 341
New Era of Networks Rules Programming Reference

Chapter 5
Client Code Errors

Code Message Explanation Response

-2000 Unknown error code or
no error

No error.

-2001 NULL or dead dbms
connection provided to
Rules daemon

The session pointer is
invalid.

Check DBMS and run
OpenDbmsSession()
again.

-2002 NULL or missing
message type provided
to Rules daemon

No message type name set
in eval().

Send in a valid message
type.

-2003 Error adding argument
to Rules daemon

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2004 Wrong number of
argument columns
during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2005 Unexpected argument
column during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2006 NULL argument
column during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2007 Error adding operation
to Rules daemon

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2008 Wrong number of
operation columns
during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2009 Unexpected operation
column during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2010 NULL operation
column during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.
342 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2011 Error adding a Rule to
Rules daemon

A rule in the database has
an argument count of zero
(0) which is invalid. Rules
must have at least one
active argument.

Run the Consistency
Checker to find the rule
and fix the problem.

-2012 Wrong number of rule
columns during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2013 Unexpected rule
column during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2014 NULL rule column
during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2015 Error adding a
Subscription to Rules
daemon

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2016 Wrong number of
subscription columns
during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2017 Unexpected
subscription column
during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2018 NULL subscription
column during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2019 Error adding a Rule
Subscription to Rules
daemon

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2020 Wrong number of Rule
Subscription columns
during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2021 Unexpected Rule
Subscription column
during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 343
New Era of Networks Rules Programming Reference

Chapter 5
-2022 NULL Rule
Subscription column
during load

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2023 INTERNAL ERROR -
failed to resize
operations

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2024 INTERNAL ERROR -
failed to resize rules

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2025 Formatter failed to
parse input message

The message type may not
match the format of the
input message.

Check Input Format
Name (MsgType) and
message (use apitest).

-2026 INTERNAL ERROR -
incorrect operation
count

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2027 Invalid Argument
loaded - operation id
too high

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2028 Input message had an
invalid length

Call to eval() had an
invalid msglen parameter.

Check the parameters
sent to eval().

-2029 Rule argument count is
invalid - check table

Data in the database is
incorrect.

Run Consistency
Checker to check data.

-2030 Formatter instance is
NULL

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2031 NULL input message The message sent through
eval() is empty.

Check the call to eval()
or the message in the
queue when running
the Rules daemon.

-2032 Internal Error -
Evaluation failure #1

Problem evaluating part
of a rule – operator may be
invalid.

Run Consistency
Checker to check data.

-2033 Internal Error - Load
failure #1

Problem loading
arguments.

Run Consistency
Checker to check data.

Code Message Explanation Response
344 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2034 Internal Error - Load
failure #2

Problem loading operator. Run Consistency
Checker to check data.

-2035 Internal Error -
Evaluation failure #2

Problem evaluating part
of a rule; operator may be
invalid.

Run Consistency
Checker to check data.

-2036 Database type not
supported

Invalid DbmsType in the
Session variable used to
create Rules daemon.

Check call to
OpenDbmsSession().

-2037 Internal Error - Load
failure #3

Problem loading
subscriptions.

Run Consistency
Checker to check data.

-2038 Internal Error - Load
failure #4

Problem loading
subscriptions.

Run Consistency
Checker to check data.

-2039 Empty Input Value for
Application Group
Name

No application group
name passed into eval().

Check call to eval().

-2040 Empty Input Value for
Message Name

No message type name
passed into eval().

Check call to eval().

-2041 Internal Error - Lookup
failure #1

Problem loading message
type.

Run Consistency
Checker to check data.

-2042 Internal Error - Lookup
failure #2

Problem loading
application group.

Run Consistency
Checker to check data.

-2043 Internal Error - NULL
Engine Instance

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2044 Error setting HitList gethitrule() had problems
retrieving hit rules.

Run Consistency
Checker to check data.

-2045 Error setting NoHitList getnohitrule() had
problems retrieving no hit
rules.

Run Consistency
Checker to check data.

-2046 Internal Error - No error
handler

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 345
New Era of Networks Rules Programming Reference

Chapter 5
-2047 Internal Error - Error
Setting Thread Specific
Data

Problem with threading -
maybe too many threads.

Shut down process
immediately, check
system, and restart.

-2048 Internal Error - Error
Loading Boolean
Operators

Problem loading Boolean
operators.

Run Consistency
Checker to check data.

-2049 Field value does not
have valid Month and/
or Day.

A Date or DateTime
comparison is not valid
against Time data - the
month and day are then
00.

Verify a Time value is
not used in a Date
comparison and that the
month and day have
valid non-zero values.

-2050 Error adding
Subscription Action/
Option to Rules
daemon.

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2051 Error adding
Subscription Rule Link
to Rules daemon.

(Should never see)
Memory may be low.

Shut down Rules
daemon and restart.

-2052 Invalid Component
Type passed into
Reload Call.

For NEONRules 4.1.1, the
only valid components to
reload are:
NNRCOMP_MSG and
NNRCOMP_SUBS.

Verify that the Load
RuleComponent API is
not sent Component
Type NNRCOMP_APP
or NNRCOMP_RULE.

-2053 Error removing Rule
Subscription Link to
Rules daemon.

(Should never see)
Memory may be
corrupted.

Shut down Rules
daemon and restart.

-2054 Error comparing old
and new Subscription
Rule Links.

(Should never see)
Memory may be
corrupted.

Shut down Rules
daemon and restart.

-2055 Error Removing Reload
Component from
Reload List in Rules
daemon.

(Should never see)
Memory may be
corrupted.

Shut down Rules
daemon and restart.

Code Message Explanation Response
346 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2056 Error allocating
memory for new Rules
daemon object.

(Should never see) Severe
error. Memory must be
low.

Shut down Rules
daemon and restart.

-2057 Invalid operation in
expression.

Operator type in a rule for
this Rule Set is invalid.

Run Consistency
Checker to check data.

-2058 Duplicate found for
Sibling; cannot
determine correct field.

Message contain two
fields that met criteria for
Sibling relationship; no
way to determine which
field to use.

Check message sent to
eval() and make sure the
Sibling has a unique
value.

-2059 SubString function
failed; possible invalid
parameters.

Substring function may
have been called with a
negative number for the
start or length of the field
value.

Check the expression
for a SubString call with
invalid parameters.

-2060 Internal Error -
Evaluation failure #3

Problem evaluating part
of a rule.

Check system resources.
Run Consistency
Checker to check data.

-2061 Field Name 2 is missing
for a Field-to-Field
comparison

A Rule in the Rule Set is
attempting to perform a
field-to-field comparison
without the second field
name.

Run Consistency
Checker to check data.

-2062 Field Name 1 is missing
for a Field-to-Field
comparison

A Rule in the Rule Set is
attempting to perform a
field-to-field comparison
without the first field
name.

Run Consistency
Checker to check data.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 347
New Era of Networks Rules Programming Reference

Chapter 5
Rules Management Data Errors

Code Message Explanation Response

-2500 No rules management
error

No error.

-2501 DB error Not in use. (Should never see)

-2502 DB error Counter Insert Data may be incorrect to
add new Application
Group.

Run Consistency
Checker to check data.

-2503 DB error Counter
Update

Data may be incorrect to
add new Application
Group.

Run Consistency
Checker to check data.

-2504 DB error Counter
Instance Insert

Data may be incorrect to
add new Rule,
Subscription, and so on.

Run Consistency
Checker to check data.

-2505 DB error Counter
Instance Update

Data may be incorrect to
add new Rule,
Subscription, and so on.

Run Consistency
Checker to check data.

-2506 DB error Application
Group Insert

Problem inserting
Application Group. May
be duplicate.

Run Consistency
Checker to check data.

-2507 DB error message type
insert (format)

Problem inserting
Message Type. May not be
valid format.

Run Consistency
Checker to check data.

-2508 DB error message type
insert

Problem inserting
Message Type. May be
duplicate.

Run Consistency
Checker to check data.

-2509 DB error rule insert Problem inserting Rule.
May be duplicate.

Run Consistency
Checker to check data.

-2510 DB error rule update Problem updating Rule.
Rule may not exist.

Run Consistency
Checker to check data.

-2511 DB error argument op
insert

Problem inserting
operator for rule.

Run Consistency
Checker to check data.
348 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2512 DB error argument
insert (Arg)

Problem inserting
argument for rule.

Run Consistency
Checker to check data.

-2513 DB error argument op
update

Problem updating
argument for rule.

Run Consistency
Checker to check data.

-2514 DB error subscription
list insert

Problem inserting
subscription. May be
duplicate.

Run Consistency
Checker to check data.

-2515 DB error subscription
master insert

Problem inserting
subscription. May be
duplicate.

Run Consistency
Checker to check data.

-2516 DB error action insert Problem inserting action. Run Consistency
Checker to check data.

-2517 DB error application
group read

Problem retrieving
application group. May
have wrong name.

Run Consistency
Checker to check data.

-2518 DB error message type
read

Problem retrieving
message type. May have
wrong parameters.

Run Consistency
Checker to check data.

-2519 DB error rule read Problem retrieving rule.
May have wrong
parameters.

Run Consistency
Checker to check data.

-2520 DB error subscription
list read

Problem retrieving
subscription. May have
wrong parameters.

Run Consistency
Checker to check data.

-2521 DB error subscription
master read

Problem retrieving
subscription. May have
wrong parameters.

Run Consistency
Checker to check data.

-2522 DB error subscription
action read

Problem retrieving
subscription action. May
have wrong parameters.

Run Consistency
Checker to check data.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 349
New Era of Networks Rules Programming Reference

Chapter 5
-2523 DB error message type
read (message id)

Problem retrieving
message type/format.
May have wrong
parameters.

Run Consistency
Checker to check data.

-2524 DB error operator read Problem retrieving
operator. May have wrong
parameters.

Run Consistency
Checker to check data.

-2525 DB error operator type
read

Problem retrieving
operator type. May have
invalid operator.

Run Consistency
Checker to check data.

-2526 DB error argument read Problem retrieving rule
action. May have wrong
parameters.

Run Consistency
Checker to check data.

-2527 DB error counter read Problem retrieving new
application id. May have
wrong parameters.

Run Consistency
Checker to check data.

-2528 DB error counter
instance read

Problem retrieving new
ids for rule, subscription,
and so on. May have
wrong parameters.

Run Consistency
Checker to check data.

-2529 DB error operation read Problem retrieving
argument info. May have
wrong parameters.

Run Consistency
Checker to check data.

-2530 DB error unreferenced
operations

Arguments exist that are
not used in a rule.

Run Consistency
Checker to check data.

-2531 DB error argument
update

Cannot update argument. Run Consistency
Checker to check data.

-2532 DB error subscription
multi-read

Problem retrieving
subscription info. May
have wrong parameters.

Run Consistency
Checker to check data.

-2533 DB error options not
found

No options found for
subscription action.

Run Consistency
Checker to check data.

Code Message Explanation Response
350 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2534 DB error option delete Cannot delete option. Run Consistency
Checker to check data.

-2535 DB error action
resequence

Cannot resequence
actions. May have invalid
sequence parameters.

Run Consistency
Checker to check data.

-2536 DB error option
resequence

Cannot resequence
options. May have invalid
sequence parameters.

Run Consistency
Checker to check data.

-2537 DB error delete all
arguments failed

Cannot delete all
arguments for a rule. May
have wrong parameters.

Run Consistency
Checker to check data.

-2538 DB error delete all list
subscriptions failed

Cannot delete all
subscriptions for a rule.
May have wrong
parameters.

Run Consistency
Checker to check data.

-2539 DB error delete all
subscription masters
failed

Cannot delete all
subscriptions for a rule.
May have wrong
parameters.

Run Consistency
Checker to check data.

-2540 DB error delete all
actions failed

Cannot delete all actions
for a rule. May have
wrong parameters.

Run Consistency
Checker to check data.

-2541 DB error operation
decrement

Cannot reduce the
number of arguments
using a specific operator.

Run Consistency
Checker to check data.

-2542 DB error delete rule Cannot delete rule. May
have wrong parameters.

Run Consistency
Checker to check data.

-2543 DB error delete
arguments

Cannot delete argument.
May have wrong
parameters.

Run Consistency
Checker to check data.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 351
New Era of Networks Rules Programming Reference

Chapter 5
-2544 DB error delete
operation

Cannot delete argument
information for a rule.
May have wrong
parameters.

Run Consistency
Checker to check data.

-2545 DB error delete actions Cannot delete action. May
have wrong parameters.

Run Consistency
Checker to check data.

-2546 DB error delete
subscriptions

Cannot delete
subscription. May have
wrong parameters.

Run Consistency
Checker to check data.

-2547 DB error resequence
multiple options

Cannot resequence
options. May have invalid
sequence parameters.

Run Consistency
Checker to check data.

-2548 DB error option insert Cannot insert option. May
have wrong parameters.

Run Consistency
Checker to check data.

-2549 DB error get max action Cannot retrieve the
maximum number of
actions. May not have any
actions.

Run Consistency
Checker to check data.

-2550 DB error get max option Cannot retrieve the
maximum number of
options. May not have any
options.

Run Consistency
Checker to check data.

-2551 DB error move action Cannot resequence action.
May have invalid
sequence parameter.

Run Consistency
Checker to check data.

-2552 DB error move option Cannot resequence
option. May have invalid
sequence parameter.

Run Consistency
Checker to check data.

-2553 DB error resequence
multiple actions

Cannot resequence
actions. May have invalid
sequence parameters.

Run Consistency
Checker to check data.

Code Message Explanation Response
352 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2554 DB error update action Cannot update action.
May have wrong
parameters.

Run Consistency
Checker to check data.

-2555 DB error update option Cannot update option.
May have wrong
parameters.

Run Consistency
Checker to check data.

-2556 DB error update
subscription

Cannot update
subscription. May have
wrong parameters.

Run Consistency
Checker to check data.

-2557 DB error option read Cannot retrieve option.
May have wrong
parameters

Run Consistency
Checker to check data.

-2558 DB error get max
argument

Cannot retrieve the
maximum number of
arguments. May not have
any arguments.

Run Consistency
Checker to check data.

-2559 DB error application
group update

Cannot update
application name. May
have wrong old name.

Run Consistency
Checker to check data.

-2560 DB error get version
failed

Cannot retrieve version
information for import/
export.

Run Consistency
Checker to check data.

-2561 DB error update field
name failed

Cannot update the old
name to the new field
name.

Run Consistency
Checker to check data.

-2562 DB error get max
boolean operator

Cannot retrieve the
maximum number of
Boolean operators. May
have wrong parameters.

Run Consistency
Checker to check data.

-2563 DB error boolean
operator add failed

Cannot insert Boolean
operator. May have wrong
parameters.

Run Consistency
Checker to check data.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 353
New Era of Networks Rules Programming Reference

Chapter 5
-2564 DB error boolean
operator update failed

Cannot update Boolean
operator. May have wrong
parameters.

Run Consistency
Checker to check data.

-2565 DB error application
group delete failed.

Cannot delete application
group.

Run Consistency
Checker to check data.

-2566 DB error message type
delete failed

Cannot delete message
type.

Run Consistency
Checker to check data.

-2567 DB error field function
add/update

Error modifying field
functions in the database.

Run Consistency
Checker to check data.

-2568 DB error field instance
add/update

Error modifying field
instance in the database.

Run Consistency
Checker to check data.

-2569 DB error field add/
update

Error modifying field in
the database.

Run Consistency
Checker to check data.

Code Message Explanation Response
354 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
General Rules Management Errors

Code Message Explanation Response

-2600 Invalid application
group parameters

Invalid application group
name.

Check passed-in
application group
name.

-2601 Error application group
already exists

Cannot add application
with duplicate name.

Check passed-in
application group
name.

-2602 Error application group
does not exist

Invalid application group
name.

Check passed-in
application group
name.

-2603 Invalid message type
parameters

Invalid application
group/message type pair.

Check passed-in
application group/
message type name.

-2604 Error message type
already exists

Application group already
has the message type.

Check passed-in
application group/
message type name.

-2605 Error message type does
not exist

Invalid application
group/message type pair.

Check passed-in
application group/
message type name.

-2606 Error format name does
not exist

Message type name must
match an input format
name.

Check passed-in a
message type name
against format names.

-2607 Invalid rule parameters Invalid application
group/message type/rule
name.

Check passed-in
parameters.

-2608 Error rule name already
exists

Application group/
message type pairs cannot
have duplicate rule
names.

Check passed-in
parameters.

-2609 Error rule name does
not exist

Invalid application
group/message type/rule
name.

Check passed-in
parameters.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 355
New Era of Networks Rules Programming Reference

Chapter 5
-2610 Invalid operator
parameters

Invalid operator ID. Check passed-in
parameter.

-2611 Invalid argument
parameters

Invalid parameters to
create/update/retrieve
argument.

Check passed-in
parameters.

-2612 Invalid subscription
parameters

Invalid parameters to
create/update/retrieve
subscription.

Check passed-in
parameters.

-2613 Error subscription name
already exists

Subscription names
cannot be duplicated
within a rule.

Check passed-in
parameters.

-2614 Error subscription name
does not exist

Application group/
message type/rule name/
subscription name not
found.

Check passed-in
parameters.

-2615 Invalid action
parameters

Invalid parameters to
create/update/retrieve
action.

Check passed-in
parameters.

-2616 Error action does not
exist

Application group/
message type/rule name/
subscription name/action
name not found.

Check passed-in
parameters.

-2617 Invalid option
parameters

Invalid parameters to
create/update/retrieve
action

Check passed-in
parameters.

-2618 Error during conversion Conversion of static
argument value failed.

Check passed-in
parameters. Run
Consistency Checker.

-2619 No more actions Not error unless returned
from NNRMgrGetFirst
Action.

Subscription must have
at least one action.

-2620 No more operators Not an error.

Code Message Explanation Response
356 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2621 No more arguments Not error unless returned
from NNRMgrGetFirst
Argument.

Rule must have at least
one argument.

-2622 Invalid rules
management object
passed in

Must call NNRMgrInit()
before calling any other
functions.

Call NNRMgrInit()
prior to calling any
other functions.

-2623 Feature not
implemented

Feature is not
implemented at this time.

-2624 Argument does not
exist

Invalid parameters to
update/retrieve
argument.

Check passed-in
parameters:
AppGrp
MsgType
RuleName
ArgSeq
Fields
Operator

-2625 Operation does not exist Invalid parameters to
update/retrieve argument
information.

Check passed-in
parameters:
AppGrp
MsgType
RuleName
ArgSeq
Fields
Operator

-2626 Unknown operator type Operator may be invalid. Check passed-in
parameters.

-2627 No more subscriptions Not really error unless
returned from
NNRMgrGetFirst
Subscription.

Rule must have at least
one subscription.

-2628 No more rules Not an error.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 357
New Era of Networks Rules Programming Reference

Chapter 5
-2629 Action does not exist Invalid parameters to
update/retrieve action.

Check passed-in
parameters:
AppGrp
MsgType
RuleName
SubName
ActSeq

-2630 Option does not exist Invalid parameters to
update/retrieve option.

Check passed-in
parameters:
AppGrp
MsgType
RuleName
SubName
ActSeq
OptSeq

-2631 App id corrupted Data for Application
Group may be incorrect.

Run Consistency
Checker to check data.

-2632 Msg id corrupted Data for Message Type
may be incorrect.

Run Consistency
Checker to check data.

-2633 No more options Not really error unless
returned from
NNRMgrGetFirst
Option.

Action must currently
have at least one option.

-2634 Export app name failed Export failed during
retrieval, encoding, or
writing to file.

Run Consistency
Checker to check data.

-2635 Export message name
failed

Export failed during
retrieval, encoding, or
writing to file.

Run Consistency
Checker to check data.

-2636 Export rule failed Export failed during
retrieval, encoding, or
writing to file.

Run Consistency
Checker to check data.

Code Message Explanation Response
358 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2637 Export argument failed Export failed during
retrieval, encoding, or
writing to file.

Run Consistency
Checker to check data.

-2638 Export subscription
failed

Export failed during
retrieval, encoding, or
writing to file.

Run Consistency
Checker to check data.

-2639 Export action failed Export failed during
retrieval, encoding, or
writing to file.

Run Consistency
Checker to check data.

-2640 Export option failed Export failed during
retrieval, encoding, or
writing to file.

Run Consistency
Checker to check data.

-2641 No more messages Not really an error.

-2642 No more applications Not really an error.

-2643 Error reading import
file

Import failed to read from
file.

Check file. Recreate file
by exporting again.

-2644 Error importing
application

Import failed during
reading of file, decoding,
or writing to database.

Check file. Run
Consistency Checker to
check data. Try
importing with
overwrite flag.

-2645 Invalid import/export
type

Can only import/export
Rules components.

Should never see this
error.

-2646 Error importing
message type

Import failed during
reading of file, decoding,
or writing to database.

Check file. Run
Consistency Checker to
check data. Try
importing with
overwrite flag.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 359
New Era of Networks Rules Programming Reference

Chapter 5
-2647 Error importing rule Import failed during
reading of file, decoding,
or writing to database.

Check file. Run
Consistency Checker to
check data. Try
importing with
overwrite flag.

-2648 Memory allocation
failure

Cannot allocate memory. Shut down excess items.
Restart import/export.

-2649 Error importing
argument

Import failed during
reading of file, decoding,
or writing to database.

Check file. Run
Consistency Checker to
check data.

-2650 Error importing
subscription

Import failed during
reading of file, decoding,
or writing to database.

Check file. Run
Consistency Checker to
check data. Try
importing with
overwrite flag

-2651 Error importing action Import failed during
reading of file, decoding,
or writing to database.

Check file. Run
Consistency Checker to
check data.

-2652 Error importing option Import failed during
reading of file, decoding,
or writing to database.

Check file. Run
Consistency Checker to
check data.

-2653 Unsupported version of
database

Can only export and
import to version 4.1
databases.

Check version of
NEONRules.

-2654 Decoding failure Cannot decode line in file. Export File may be
corrupt. Recreate file by
exporting again.

-2655 Cannot add permission
if not owner

Rule old owner may not
be a valid user of the
current database.

Check database users.

-2656 No permission to read Cannot read permission.
Read permission not
granted.

Assign permissions to
rules.

Code Message Explanation Response
360 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2657 No permission to
update

Current user does not
have update permission
for the rule.

Have rule owner
change update
permissions for himself
and/or PUBLIC.

-2658 Permission list read
failure

Cannot read permission
list.

Run Consistency
Checker to check data.

-2659 No more permissions Not really an error.

-2660 Error exporting version Cannot retrieve version
for export.

Check install.

-2661 Error exporting
permissions

Cannot export rule
permissions.

Run Consistency
Checker to check data.

-2662 Invalid field name
parameter

The field name provided
is invalid.

Check parameters to
function call.

-2666 Invalid date/time
format in argument

Bad format of static date/
time value.

Check input parameter.
Verify that the Time
portion of a Date value
or the Date portion of a
Time value is zero
padded.

-2667 Invalid non-numeric
date/time value in
argument

Bad format of static date/
time value.

Check input parameter.

-2668 Invalid year in
argument

Bad format of static date/
time value.

Check input parameter.

-2669 Invalid month in
argument

Bad format of static date/
time value.

Check input parameter.

-2670 Invalid day in argument Bad format of static date/
time value.

Check input parameter.

-2671 Invalid hour in
argument

Bad format of static date/
time value.

Check input parameter.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 361
New Era of Networks Rules Programming Reference

Chapter 5
-2672 Invalid minute in
argument

Bad format of static date/
time value.

Check input parameter.

 -2673 Invalid second in
argument

Bad format of static date/
time value.

Check input parameter.

-2674 Unbalanced quotes in
expression after

Invalid Boolean
expression; quotes must
be balanced.

Check input expression
parameter.

-2675 Invalid Rules Operator in expression in
Invalid Rules operator.

Check the Operator list
for spelling/case.

-2676 Expression missing
Rules Operator

Rules expression must
have a Rules Operator.

Check input expression
parameter.

-2677 Rules Operator missing
comparison value or
field name in expression

All Rules operators must
have a second argument
except those checking for
existence.

Check input expression
parameter.

-2678 Unbalanced
parentheses in
expression

Parentheses must be
balanced in Rules
expression.

Check input expression
parameter.

-2679 Expected terminal in
expression

Expression ended
incorrectly.

Check input parameter.

-2680 Arguments must be
active for v5.0 and
newer.

Arguments can no longer
be Inactive.

Change input
expression parameter.

-2681 Must Use NNR
MgrUpdateExpression
to perform update

Cannot use
NNRMgrAddArgument
unless all arguments are
ANDed together.

Use NNRMgrUpdate
Expression.

-2682 Trailing characters
found in expression

Extra characters in the
expression.

Make sure you are using
'&' and '|' for Boolean
operators.

Code Message Explanation Response
362 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2683 Missing operand in
boolean expression
before/after

Two Operands are
required around a Boolean
operator.

Check input expression
parameter.

-2684 Cannot delete item if
not owner.

User not the owner of the
sub/rule Cannot delete.

Delete as owner.

-2685 Subscription is used by
a rule - cannot delete

Subscription is used by a
rule and cannot be
deleted.

Remove subscription
from all associated
rules.

-2686 Invalid component type
as parameter

Invalid component type
parameter.

Check component type -
input parameter.

-2687 Invalid or missing
parameter

May have invalid
parameter.

Check passed in
parameters, for
example, NULL values.

-2688 Invalid or missing
change owner
parameter

May have invalid
parameter.

Check passed in
parameter.

-2689 Invalid or missing
component owner
parameter

May have invalid
parameter.

Check passed in
parameter for NULL
value.

-2690 Subscription list read
failure

Failure reading
subscription list.

Run Consistency
Checker to check data.

-2691 Rule list read failure Failure reading rule list. Run Consistency
Checker to check data.

-2692 Error importing
permission

Error importing
permission.

Check file. Run
Consistency Checker to
check data.

-2693 Cannot compare against
empty strings - use
existence operator

Cannot do a comparison
against an empty string.

To compare against an
empty field, use the
EXIST or NOT_EXIST
operator.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 363
New Era of Networks Rules Programming Reference

Chapter 5
-2694 Invalid option value for
putqueue
MQS_FORMAT option

Option can be only 8
characters long.

Change the parameters
sent to NNRMgrAdd
Option or NNRMgr
UpdateOption.

-2695 Invalid option value for
putqueue MQS
_PROPAGATE option

Must be PROPAGATE or
NO_PROPAGATE.

Change the parameters
sent into NNRMgrAdd
Option or NNRMgr
UpdateOption.

-2696 Invalid option value for
putqueue
MQS_PERSIST option

Must be PERSIST or
NO_PERSIST.

Change the parameters
sent into NNRMgrAdd
Option or NNRMgr
UpdateOption.

-2697 Invalid option value for
putqueue
MQS_EXPIRY option

Must be PROPAGATE or
NO_PROPAGATE.

Change the parameters
sent into NNRMgrAdd
Option or NNRMgr
UpdateOption.

-2698 Invalid option value for
reformat option

INPUT_FORMAT must be
a valid input format name
and TARGET_FORMAT
must be a valid output
format name

Change the parameters
sent into NNRMgrAdd
Option or NNRMgr
UpdateOption or add
required formats.

-2699 Invalid integer static
comparison value.

For integer comparison
values, no non-numeric
characters are allowed
except for a (+/-) sign as
the first character.
Decimal point is not
allowed.

Check input to
Argument or
Expression APIs.

-2700 Integer static
comparison value out of
valid range.

Valid INT values are
whole numbers in the
integer range for the
platform used, usually
about -2.1 to about 2.1
billion.

Check input into
Argument or
Expression APIs.

Code Message Explanation Response
364 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2701 Invalid float static
comparison value.

For FLOAT comparison
values, the only non-
numeric characters
allowed are (+/-) sign as
the first character and a
decimal point.

Check input into
Argument or
Expression APIs.

-2702 Float static comparison
value must have a
decimal.

Valid FLOAT comparison
values must contain a
decimal point.

Check input into
Argument or
Expression APIs.

-2703 Float static comparison
value out of valid range.

Valid FLOAT values
include a whole number in
the integer range for the
platform used, -2.1billion
to about 2.1 billion, and a
decimal mantissa with a
maximum of 31 digits.

Check input into
Argument or
Expression APIs.

-2704 Static comparison value
too long.

Static comparison values
cannot exceed 64
characters plus a
terminating NULL.

Check input into
Argument or
Expression APIs.

-2705 Cannot delete all rules
and subscriptions in
application group.

The user might not have
permissions for all the
rules and subscriptions in
the application group.

Check permissions for
rules and subscriptions.
Only the owner can
delete them.

-2706 Cannot delete all rules
and subscriptions in
message type.

The user might not have
permissions for all the
rules and subscriptions in
the message type.

Check permissions for
rules and subscriptions.
Only the owner can
delete them.

-2707 Error linking
subscription to rule.
Subscription does not
exist.

Subscription was not
imported.

See error message as to
why the subscription
was not imported.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 365
New Era of Networks Rules Programming Reference

Chapter 5
-2708 Error importing
expression.

Malformed expression or
problem in the database.

Review the expression
and run Consistency
Checker on the
database.

-2709 Error. -O flag is not
supported in pre 4.10
versions. The -o flag is
used instead.

NEONRules does not
support the –O in import
files from pre 4.10
versions.

Remove the message
types you want to
completely overwrite
using the GUI or
Management APIs prior
to importing.

-2710 Unsupported version of
import file.

Import file was created
from a version of
NNRie.exe that is no
longer supported in
NEONRules.

Check the version in the
import file. This might
require using the
MQSeries Integrator
V1.1 NNCrypt utility.
Check the version of
NNRie used to create
the export file.

-2711 Missing version
information in export
file.

The version of the export
file is missing.

Check the file to see that
the version line is
present. This might
require using the
MQSeries Integrator
V1.1 NNCrypt utility.
Check the version of
NNRie used to create
the export file.

-2712 Missing key
information to the
NNRie export file.

Missing the “R” as the first
non-comment line in the
NNRie export file.

Check the file to see that
the “R” line is present.
This might require
using the MQSeries
Integrator V1.1
NNCrypt utility. Check
the version of NNRie
used to create the export
file.

Code Message Explanation Response
366 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-2713 Nothing was imported
or exported.

There are no valid lines to
import or no data to
export.

Check the database or
the import file to see if it
contains the data
required.

-2714 Argument failed to
parse

Syntax problem with one
of the arguments in the
expression.

Check the syntax.

-2715 Invalid argument
syntax.

Syntax or logic problem
with one of the arguments
in the expression.

Check the syntax.

-2716 Error adding field
function

Problem adding
information to the
database.

Run Consistency
Checker to check data
and check the
NNSYrfStatusLog.

-2717 Invalid field instance Field instance invalid in
context it was used.

Check instance
references in the
expression. Possibly the
field expression does
not have the required
field instance of [*}
contained in it.

-2718 Field function missing
the field

Field function missing
required field name.

Change expression to
add the field name.

-2719 Sibling function invalid
in this context.

Lookup ability for one
field to determine the
instance for another field
must use MIN or MAX
field functions.

Change the Sibling
argument to use the
MIN or MAX field
functions.

-2720 Invalid group for the
operation or function

Operators or function
metadata is incorrect.

Run Consistency
Checker to check data.

-2721 Invalid data types; must
match each other

Data types of the field
functions must match the
data types of the
operators.

Change the data types
of the operators or field
functions so they match.

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 367
New Era of Networks Rules Programming Reference

Chapter 5
-2722 Sibling operation
invalid in this context

Lookup ability for one
field to determine the
instance for another field
must use operators with
the = operator.

Change sibling
argument to use
operators with the =
operator.

-2723 Invalid field function Field function in the
expression invalid.

Check function name
against list of valid field
functions.

-2724 Comparing all instances
of two field is invalid.

Ability to see is any
instance of a field is equal
to another is not a feature
in this version.

Rearrange your
expression to compare
against a static value
instead.

Code Message Explanation Response
368 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
Permission Data Errors

Code Message Explanation Response

-5500 No NEONRules
database error

No error.

-5501 Get next id insert error Error getting new ids for
user/permission.

Run Consistency
Checker to check data.

-5502 Get next id update error Error getting new ids for
user/permission.

Run Consistency
Checker to check data.

-5503 Node does not exist Must run on valid 4.1
database with node data
saved.

Check installation.

-5504 Hierarchy does not exist Must run on valid
database with hierarchy
data saved.

Check install. Run
Consistency Checker to
check data.

-5505 Component add failure Cannot add rule
component to permission
system; may be duplicate.

Run Consistency
Checker to check data.

-5506 Component load failure Cannot retrieve rule
component information
from permission system;
may not exist.

Run Consistency
Checker to check data.

-5507 Delete component
failure

Cannot delete rule
component information
from permission system;
may not exist.

Run Consistency
Checker to check data.

-5508 Unable to determine
user

Permission user not a
valid database user.

Run Consistency
Checker to check data.

-5509 Unable to find user in
database

Permission user not a
valid database user.

Run Consistency
Checker to check data.

-5510 Unable to find user in
NEONRules

Permission user not a
valid permission user.

Run Consistency
Checker to check data.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 369
New Era of Networks Rules Programming Reference

Chapter 5
-5511 Unable to add user to
NEONRules

Cannot add permission
user. May not be a valid
database user.

Run Consistency
Checker to check data.

-5512 Unable to add
permission

Cannot add permission -
may be a duplicate.

Run Consistency
Checker to check data.

-5513 Unable to find
permission

Cannot find permission.
May have invalid
parameters.

Run Consistency
Checker to check data.

-5514 Unable to read
permission

Cannot retrieve
permission. May have
invalid parameters.

Run Consistency
Checker to check data.

-5515 Unable to update
permission

Cannot update
permission. May have
invalid parameters.

Run Consistency
Checker to check data.

-5516 User is not a valid user
of the database instance

Permission user not a
valid database user.

Run Consistency
Checker to check data.

-5517 Unable to change the
user for the permissions

The new user may not be
valid or caused a duplicate
permission.

Run Consistency
Checker to check data.

-5518 Unable to delete the
permission set

Invalid parameters to
delete permission set for a
user/rule pair.

Run Consistency
Checker to check data.

-5519 No permissions were
found

Indicates no more
permissions to read for
rule or subscription.

Rule or subscription
must have at least two
permissions.

5520 Component update
failure

Cannot update
permission.May have
invalid parameter.

Run Consistency
Checker to run data.

Code Message Explanation Response
370 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
General Permission Errors

Code Message Explanation Response

-5000 No Errors No error.

-5001 Next id invalid
parameters

Invalid parameters to get
new user/component id
for permission system.

Check passed-in
parameters.

-5002 Update permission
invalid parameters

Invalid parameters to
update permission.

Check passed-in
parameters.

-5003 Get node invalid
parameters

Invalid parameters to
retrieve node information.

Check passed-in
parameters.

-5004 Get hierarchy level
invalid parameters

Invalid parameters to
retrieve hierarchy level
information.

Check passed-in
parameters.

-5005 Get hierarchy invalid
parameters

Invalid parameters to
retrieve hierarchy
information.

Check passed-in
parameters.

-5006 Add component invalid
parameters

Invalid parameters to add
component to permission
system.

Check passed-in
parameters.

-5007 Load component
invalid parameters

Invalid parameters to
retrieve component from
permission system.

Check passed-in
parameters.

-5008 Delete component
invalid parameters

Invalid parameters to
delete component from
permission system.

Check passed-in
parameters.

-5009 Load user invalid
parameters

Invalid parameters to
retrieve user from
permission system.

Check passed-in
parameters.

-5010 Add user invalid
parameters

Invalid parameters to add
user to permission system.

Check passed-in
parameters.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 371
New Era of Networks Rules Programming Reference

Chapter 5
-5011 Add permission invalid
parameters

Invalid parameters to add
permission to permission
system.

Check passed-in
parameters.

-5012 Load permission
invalid parameters

Invalid parameters to
retrieve permission from
permission system.

Check passed-in
parameters.

-5013 Adding permission that
already exists

Duplicate permissions not
allowed for user/
component/permission.

Check passed-in
parameters.

-5014 Changing user invalid
parameters

Invalid parameters to
change the owner for a
certain component.

Check passed-in
parameters.

-5015 Deleting permission set
invalid parameters

Invalid parameters to
delete all permissions for a
user/component.

Check passed-in
parameters.

 -5016 Cannot add permission
if not owner

User is not the owner of
the component. Cannot
add/update permission.

Add as owner of
component.

-5017 No permission to read Read permission not
granted to PUBLIC or
User.

Grant read permission
for component.

-5018 Permission list read
failure

Cannot read permission
list.

Run Consistency
Checker to check data.

-5019 No more permissions Indicates no more
permissions to read for
rule or subscription.

Rules and Subscriptions
must have at least two
permissions.

-5020 No more components. Not really an error.

-5021 No permission to
update

Update permission not
granted to PUBLIC or
User.

Grant update
permission for
component.

Code Message Explanation Response
372 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Error Messages
-5022 Cannot delete item if
not owner

User is not the owner of
the component. Cannot
delete item.

Delete as owner of
component

Code Message Explanation Response
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 373
New Era of Networks Rules Programming Reference

Chapter 5
374 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Appendix A

Operator Types

The following operator types are available for use in rule expressions. These
operator types are described in the subsequent tables:

Existence

Integer

String

Field-to-field integer

Field-to-field string

Float

Case-sensitive string

Field-to-field case-sensitive

Date

Field-to-field date

Time

Field-to-field time

DateTime

Field-to-field DateTime

Note:
Case-sensitive operators do not work correctly on case-insensitive databases.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 375
New Era of Networks Rules Programming Reference

Appendix A
Existence Operators

Integer Operators

String Operators

Operator Symbol Operator
Handle

 Description

NOT_EXIST 0 Required Field Is Not Present

NOT_EXIST_TRIM 104 Required Field Is Not Present
(After Trimming)

EXIST 1 Required Field Is Present

EXIST_TRIM 105 Required Field Is Present (After
Trimming)

Operator Symbol Operator
Handle

 Description

INT= 2 Integer Equals

INT> 3 Integer Greater Than

INT< 4 Integer Less Than

INT>= 5 Integer Greater Than Or Equal To

INT<= 6 Integer Less Than Or Equal To

INT<> 7 Integer Not Equal To

Operator Symbol Operator
Handle

 Description

STRING= 8 String Equal To

STRING_TRIM= 106 String Equal To (After Trimming)

STRING> 9 String Greater Than
376 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Operator Types
Field To Field Integer Operators

STRING_TRIM> 107 String Greater Than (After
Trimming)

STRING< 10 String Less Than

STRING_TRIM< String Less Than (After
Trimming)

STRING_TRIM>= 109 String Greater Than Or Equal To
(After Trimming)

STRING>= 11 String Greater Than Or Equal To

STRING<= 12 String Less Than Or Equal To

STRING_TRIM<= 110 String Less Than Or Equal To
(After Trimming)

STRING<> 13 String Not Equal To

STRING_TRIM<> 111 String Not Equal To (After
Trimming)

Operator Symbol Operator
Handle

 Description

F2FINT= 18 Field To Field Integer Equal To

F2FINT> 19 Field to Field Integer Greater
Than

F2FINT< 20 Field to Field Integer Less Than

F2FINT>= 21 Field to Field Integer Greater
Than Or Equal To

F2FINT<= 22 Field to Field Integer Less Than
Or Equal To

Operator Symbol Operator
Handle

 Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 377
New Era of Networks Rules Programming Reference

Appendix A
Field To Field String Operators

F2FINT<> 23 Field To Field Integer Not Equal
To

Operator Symbol Operator
Handle

 Description

F2FSTRING= 24 Field To Field String Equal To

F2FSTRING_TRIM= 112 Field To Field String Equal To
(After Trimming)

F2FSTRING> 25 Field To Field String Greater
Than

F2FSTRING_TRIM> 113 Field To Field String Greater
Than (After Trimming)

F2FSTRING< 26 Field To Field String Less Than

F2FSTRING_TRIM< 114 Field To Field String Less Than
(After Trimming)

F2FSTRING>= 27 Field To Field String Greater
Than Or Equal To

F2FSTRING_TRIM>= 115 Field To Field String Greater
Than Or Equal To (After
Trimming)

F2FSTRING<= 28 Field To Field String Less Than
Or Equal To

F2FSTRING_TRIM<= 116 Field To Field String Less Than
Or Equal To (After Trimming)

F2FSTRING<> 29 Field To Field String Not Equal
To

Operator Symbol Operator
Handle

 Description
378 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Operator Types
Float Operators

Case Sensitive String Operators

F2FSTRING_TRIM<> 117 Field To Field String Not Equal
To (After Trimming)

Operator Symbol Operator
Handle

 Description

FLOAT= 34 Float Equals

FLOAT> 35 Float Greater Than

FLOAT< 36 Float Less Than

FLOAT>= 37 Float Greater Than Or Equal To

FLOAT<= 38 Float Less Than Or Equal To

FLOAT<> 39 Float Not Equal To

Operator Symbol Operator
Handle

 Description

CSSTRING = 56 Case Sensitive String Equal To

CSSTRING_TRIM= 118 Case Sensitive String Equal To
(After Trimming)

CSSTRING> 57 Case Sensitive String Greater
Than

CSSTRING_TRIM> 119 Case Sensitive String Greater
Than (After Trimming)

CSSTRING< 58 Case Sensitive String Less Than

Operator Symbol Operator
Handle

 Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 379
New Era of Networks Rules Programming Reference

Appendix A
Field To Field Case Sensitive Operators

CSSTRING_TRIM< 120 Case Sensitive String Less Than
(After Trimming)

CSSTRING>= 59 Case Sensitive String Greater
Than Or Equal To

CSSTRING_TRIM>= 121 Case Sensitive String Greater
Than Or Equal To (After
Trimming)

CSSTRING<= 60 Case Sensitive String Less Than
Or Equal To

CSSTRING_TRIM<= 122 Case Sensitive String Less Than
Or Equal To (After Trimming)

CSSTRING<> 61 Case Sensitive String Not Equal
To

CSSTRING_TRIM<> 123 Case Sensitive String Not Equal
To (After Trimming)

Operator Symbol Operator
Handle

 Description

F2FCSSTRING= 62 Field To Field Case Sensitive
String Equal To

F2FCSSTRING_TRIM= 124 Field To Field Case Sensitive
String Equal To (After Trimming)

F2FCSSTRING> 63 Field To Field Case Sensitive
String Greater Than

F2FCSSTRING_TRIM> 125 Field To Field Case Sensitive
String Greater Than (After
Trimming)

Operator Symbol Operator
Handle

 Description
380 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Operator Types
Date Operators

F2FCSSTRING< 64 Field To Field Case Sensitive
String Less Than

F2FCSSTRING_TRIM< 126 Field To Field Case Sensitive
String Less Than (After
Trimming)

F2FCSSTRING>= 65 Field To Field Case Sensitive
String Greater Than Or Equal To

F2FCSSTRING_TRIM>= 127 Field To Field Case Sensitive
String Greater Than Or Equal To
(After Trimming)

F2FCSSTRING<= 66 Field To Field Case Sensitive
String Less Than Or Equal To

F2FCSSTRING_TRIM<= 128 Field To Field Case Sensitive
String Less Than Or Equal To
(After Trimming)

F2FCSSTRING<> 67 Field To Field Case Sensitive
String Not Equal To

F2FCSSTRING_TRIM<> 129 Field To Field Case Sensitive
String Not Equal To (After
Trimming)

Operator Symbol Operator
Handle

 Description

DATE= 68 Date Equal To

DATE> 69 Date Greater Than

DATE< 70 Date Less Than

DATE>= 71 Date Greater Than Or Equal To

Operator Symbol Operator
Handle

 Description
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 381
New Era of Networks Rules Programming Reference

Appendix A
Field To Field Date Operators

Time Operators

DATE<= 72 Date Less Than Or Equal To

DATE<> 73 Date Not Equal To

Operator Symbol Operator
Handle

 Description

F2FDATE= 74 Field To Field Date Equal To

F2FDATE> 75 Field To Field Date Greater Than

F2FDATE< 76 Field To Field Date Less Than

F2FDATE>= 77 Field To Field Date Greater Than
Or Equal To

F2FDATE<= 78 Field To Field Date Less Than Or
Equal To

F2FDATE<> 79 Field To Field Date Not Equal To

Operator Symbol Operator
Handle

 Description

TIME= 80 Time Equal To

TIME> 81 Time Greater Than

TIME< 82 Time Less Than

 TIME>= 83 Time Greater Than Or Equal To

TIME<= 84 Time Less Than Or Equal To

TIME<> 85 Time Not Equal To

Operator Symbol Operator
Handle

 Description
382 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Operator Types
Field To Field Time Operators

DateTime Operators

Operator Symbol Operator
Handle

 Description

F2FTIME= 86 Field To Field Time Equal To

F2FTIME> 87 Field To Field Time Greater Than

F2FTIME< 88 Field To Field Time Less Than

F2FTIME>= 89 Field To Field Time Greater Than
Or Equal To

F2FTIME<= 90 Field To Field Time Less Than Or
Equal To

F2FTIME<> 91 Field To Field Time Not Equal To

Operator Symbol Operator
Handle

 Description

DATETIME= 92 DateTime Equal To

DATETIME> 93 DateTime Greater Than

DATETIME< 94 DateTime Less Than

DATETIME>= 95 DateTime Greater Than Or Equal
To

DATETIME<= 96 DateTime Less Than Or Equal To

DATETIME<> 97 DateTime Not Equal To
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 383
New Era of Networks Rules Programming Reference

Appendix A
Field To Field DateTime Operators

Operator Symbol Operator
Handle

 Description

F2FDATETIME= 98 Field To Field DateTime Equal To

F2FDATETIME> 99 Field To Field DateTime Greater
Than

F2FDATETIME< 100 Field To Field DateTime Less
Than

F2FDATETIME>= 101 Field To Field DateTime Greater
Than Or Equal To

F2FDATETIME<= 102 Field To Field DateTime Less
Than Or Equal To

F2FDATETIME<> 103 Field To Field DateTime Not
Equal To
384 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Appendix B

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 385
New Era of Networks Rules Programming Reference

Appendix B
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. therefore, the results obtained in other operating environments
386 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Notices
may vary significantly. some measurements may have been made on
develoment-level systems and there is no guarantee that these measurements
will be the same on generally available systems. furthermore, some
mesurements may hve been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

This information includes examples of data and reports used in daily
business operations. To illustrate them as completley as possible, the
examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

this information contains sample application programs in source language,
which illustrate programming techniques on varius operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 387
New Era of Networks Rules Programming Reference

Appendix B
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other

countries, or both. If these and other IBM trademarked terms are marked on

their first occurrence in this information with a trademark symbol (® or ™),

these symbols indicate U.S. registered or common law trademarks owned by

IBM at the time this information was published. Such trademarks may also be

registered or common law trademarks in other countries. A current list of
IBM trademarks is available on the Web at Copyright and trademark
information (http://www.ibm.com/legal/copytrade.shtml).

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java is a registered trademark of Oracle andor its affiliates.
388 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Index

Symbols
&operator 67
&operator copy subscription data 85

A
Action Management API functions

NNRMgrAddAction 300, 313
NNRMgrGetFirstAction 302
NNRMgrGetNextAction 304
NNRMgrResequenceAction 306
NNRMgrUpdateAction 310

Action Management APIs 294
NNRAction 294
NNRActionData 296
NNRActionReadData 297
NNRActionUpdate 299

actions 294
APIs

action management 294
application groups 160
argument management 254
expression management 243
header files 4
member functions 4
message types 178, 182
option management 315
permissions 220
Rules 21
Rules error handling function 4
Rules Management 195
Rules Management APIs 153
Rules Management functions 4
Rules Management macros 4
subscription management 262
VRule member functions 4

append_back 68
append_front 69
Application Group Management API functions 164

NNRMgrReadApp 166
NNRMgrUpdateApp 174

Application Group Management APIs 160
NNRApp 160
NNRAppData 161
NNRAppUpdate 163

application groups 160
Argument Management API functions

NNRMgrGetFirstArgument 258
NNRMgrGetNextArgument 260

Argument Management APIs 254
NNRArg 254
NNRArgData 256

C
class/type definitions 21
Clear subscription list objects 70
client code errors 339
compareById subscription 86
create copy of subscription list data 71
createOwnCopyOfData subscription 87
CreateRulesEngine 23, 29

D
data processing errors 339
definitions 21
DeleteRuleEngine 23, 33
DeleteSubscription 72

E
error codes 339

client code errors 339
data processing errors 339
permission errors 339
Rules Management data errors 339

error handling 57
eval 35
389

Expression Management API functions
NNRmgrAddExpression 248
NNRMgrReadExpression 250
NNRmgrUpdateExpression 252

Expression Management APIs 243
NNRExp 245
NNRExpData 247

G
getActionList of subscriptions 88
GetErrorMessage 59
GetErrorNo 57
GetFieldCount for eval 100
GetFieldString for eval 99
getFirst subscription 73
getformatterobject 39
gethitrule 28, 40
getId of subscription 89
getName of subscription 90
getNewSubscription 74
getNext subscription 75
getnohitrule 28, 42
getopt 46
GetRerror 60
getsubscription 44

H
header files 4

I
insert subscription 76
insert subscription list 77

L
libraries 19
linking to libraries 19
LoadRuleSet 53

M
Message Type Management API functions 182

NNRMgrAddMsg 182, 191, 193
NNRMgrReadMsg 184, 186, 188
NNRMsgData 180, 181

Message Type Management APIs 178
NNRMsg 178

message types 178, 182

N
naming conventions

rules 4
newCopy of subscription 91
newCopy of subscription list 78
NN_CLEAR 223, 225
NNDate 155
NNFieldValueContainer 22, 97
NNFieldValueContainer member functions 98

GeInputCodeSet 101
GetFieldCount 100
GetFieldString 99
GetInputLocale 102
SetInputCodeSet 103
SetInputLocale 104

NNNameValueList 105
NNNameValueList member functions 105

Add name/value pair 109
ClearAll pairs from list 113
Delete name/value pair 112
GetField 116
GetFieldCount 117
GetFirst pair in list 114
GetInputCodeSet 118, 120
GetInputLocale 119
GetNext pair in list 115
NameValueList constructor 107
NNNameValueList destructor 108
Read name/value pair 110
SetInputLocale 121
Update name/value pair 111

NNPermissionData 222
NNR_CLEAR 159
NNRAction 294
NNRActionData 296
NNRActionReadData 297
NNRActionUpdate 299
NNRApp 160
NNRAppData 161
NNRAppUpdate 163
NNRArg 254
NNRArgData 256
390 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NNRExp 245
NNRExpData 247
NNRGetErrorMessage 337
NNRMgrAddAction 300, 313
NNRmgrAddExpression 248
NNRMgrAddMsg 182, 191, 193
NNRMgrAddOption 321, 334
NNRMgrAddRule 203, 212
NNRMgrAddSubscription 270
NNRMgrChangeOwner 232
NNRMgrClose 158
NNRMgrDeleteEntireRule 217
NNRMgrDeleteEntireSubscription 176, 288
NNRMgrDeleteSubscriptionFromRule 286
NNRMgrDuplicateSubscription 172, 281
NNRMgrGetFirstAction 302
NNRMgrGetFirstArgument 258
NNRMgrGetFirstOperator 239
NNRMgrGetFirstOption 323
NNRMgrGetFirstPerm 226
NNRMgrGetFirstRule 208
NNRMgrGetFirstRuleUsingSubs 290
NNRMgrGetFirstSubscription 168, 170, 275
NNRMgrGetNextAction 304
NNRMgrGetNextArgument 260
NNRMgrGetNextOperator 241
NNRMgrGetNextOption 325
NNRMgrGetNextPerm 228
NNRMgrGetNextRule 210
NNRMgrGetNextRuleUsingSubs 292
NNRMgrGetNextSubscription 278
NNRMgrInit 157
NNRMgrReadApp 166
NNRMgrReadExpression 250
NNRMgrReadMsg 184, 186, 188
NNRMgrReadRule 206
NNRMgrReadSubscription 273
NNRMgrResequenceAction 306
NNRMgrResequenceOption 327
NNRMgrUpdateAction 310
NNRMgrUpdateApp 174
NNRmgrUpdateExpression 252
NNRMgrUpdateOption 331
NNRMgrUpdateOwnerPerm 230, 234
NNRMgrUpdatePublicPerm 236
NNRMgrUpdateRule 214
NNRMgrUpdateSubscription 283

NNRMSG 178
NNRMsgData 180, 181
NNROperator 238
NNROption 315
NNROptionData 317
NNROptionReadData 318
NNROptionUpdate 320
NNRRule 162, 195
NNRRuleData 197
NNRRuleReadData 199
NNRRuleUpdate 201
NNRSubs 262
NNRSubsData 264
NNRSubsReadData 266
NNRSubsUpdate 268
NNUserPermissionData 220
NNValueValueList 22

O
Operator Management API functions

NNRMgrGetFirstOperator 239
NNRMgrGetNextOperator 241

Operator Management APIs
NNROperator 238

Option Management API functions
NNRMgrAddOption 321, 334
NNRMgrGetFirstOption 323
NNRMgrGetNextOption 325
NNRMgrResequenceOption 327
NNRMgrUpdateOption 331

Option Management APIs 315
NNROption 315
NNROptionData 317
NNROptionReadData 318
NNROptionUpdate 320

option name-value pairs 26
OPTIONPAIR structures 26
Overall Permission Macro

NN_CLEAR 225
Overview 3

P
Permission API functions 226

NNRMgrChangeOwner 232
NNRMgrGetFirstPerm 226
391

NNRMgrGetNextPerm 228
NNRMgrUpdateOwnerPerm 230, 234
NNRMgrUpdatePublicPerm 236

permission errors 339
Permissions APIs 220
Permissions Management API functions

NNPermissionData 222
NNUserPermissionData 220

Permissions Management API structures 220
populate subscription list 94
populatesubscriptionlist 56
push_back object in subscription list 80
push_front object on subscription list 79

R
Rule Management API functions

NNRMgrAddRule 203, 212
NNRMgrDeleteEntireRule 217
NNRMgrGetFirstRule 208
NNRMgrGetNextRule 210
NNRMgrReadRule 206
NNRMgrUpdateRule 214

Rule Management APIs
NNRRule 162, 195
NNRRuleData 197
NNRRuleReadData 199
NNRRuleUpdate 201

RULE structure
gethitrule 28
getnohitrule 28

Rules
CreateRulesEngine 29
DeleteRuleEngine 33
libraries 19
linking to libraries 19
NN_CLEAR 223
OPTIONPAIR 26
Overview 3
RULE structure 28
SUBSCRIPTION 25
VRule member functions

CreateRulesEngine 29
DeleteRuleEngine 33

VRule supporting functions 29
Rules APIs 21
Rules error codes 339

client code errors 339
data processing errors 339
permission errors 339
Rules Management data errors 339

Rules error handling 57
GetErrorMessage 59
GetErrorNo 57
GetRerror 60

Rules Management
NN_CLEAR 223

Rules Management APIs 153, 195
NNDate 155
NNRMgrClose 158
NNRMgrInit 157

Rules Management data errors 339
Rules Management error handling

NNRGetErrorMessage 337
Rules Management functions 4
Rules Management macros 4

NNR_CLEAR 159
RulesAction class 62
RulesActionList class 62
RulesOption class 63
RulesOptionList class 62
RulesSubscription 22
RulesSubscription class 62
RulesSubscription member functions 82

&operator 85
compareById 86
createOwnCopyOfData 87
getActionList 88
getId 89
getName 90
newCopy 91
RulesSubscription constructor 82
RulesSubscription copy constructor 84
RulesSubscription destructor 83
setId 92
setName 93

RulesSubscriptionList class 62
RulesSubscriptionList member functions 64

&operator assignment operator 67
append_back 68
append_front 69
Clear 70
createOwnCopyOfData 71
DeleteSubscription 72
392 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

getFirst 73
getNewSubscription 74
getNext 75
insert (list) 77
insert (subscription) 76
newCopy 78
push_back 80
push_front 79
RulesSubscriptionList constructor 64
RulesSubscriptionList copy constructor 66
RulesSubscriptionList destructor 65
size 81

S
setId of subscription 92
setName of subscription 93
size of objects in subscription list 81
SUBSCRIPTION 25
subscription classes 62
Subscription Management API functions

NNRMgrAddSubscription 270
NNRMgrDeleteEntireSubscription 176, 288
NNRMgrDeleteSubscriptionFromRule 286
NNRMgrDuplicateSubscription 172, 281
NNRMgrGetFirstRuleUsingSubs 290
NNRMgrGetFirstSubscription 168, 170, 275
NNRMgrGetNextRuleUsingSubs 292
NNRMgrGetNextSubscription 278
NNRMgrReadSubscription 273
NNRMgrUpdateSubscription 283

Subscription Management APIs 262
NNRSubs 262
NNRSubsData 264
NNRSubsReadData 266
NNRSubsUpdate 268

SUBSCRIPTION structures 25
SubscriptionList

populate 94
traverse 94

V
Virtual Rules Engine 23
VRule 21
VRule member functions 4

CreateRulesEngine 29

DeleteRuleEngine 33
eval 35
getformatterobject 39
gethitrule 40
getnohitrule 42
getopt 46
getsubscription 44
LoadRuleSet 53
populatesubscriptionlist 56

VRule supporting functions 29
393

394 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Sending your comments to IBM
Rules and Formatter Extension for WebSphere Message Broker for Multi-
platforms
Application Development Guide

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.
Please limit your comments to the information in this book only and the way
in which the information is presented.

To request additional publications or make comments about the functions of
IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

By mail:

IBM United Kingdom Laboratories
Hursley Park
Winchester
Hampshire
SO21 2JN

By fax:

– From outside the U.K., use your international access code
followed by 44 1962 870229

– From within the U.K., use 01962 816151

Electronically, use the appropriate network ID:

IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

IBMLink: HURSLEY(IDRCF)

Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

The publication number and title

The page number or topic number to which your comment applies

Your name/address/telephone number/fax number/network ID

	New Era of Networks Rules Programming Reference
	Contents
	Introduction
	About this Document
	Documentation Set

	Overview
	NEONRules Components
	APIs and Header Files
	Libraries

	NEONRules APIs
	Class/Type Definitions
	VRule Engine APIs
	Subscription, Action, Option APIs
	Evaluation Field Value Containers

	NEONRules Management APIs
	NEONRules Management API Structures
	Overall NEONRules Management APIs and Macros
	Application Group Management APIs
	Message Type Management APIs
	Rule Management APIs
	Permissions APIs
	Operator Management APIs
	Expression Management APIs
	Argument Management APIs
	Subscription Management APIs
	Action Management APIs
	Option Management APIs
	NEONRules Management Error Handling

	Error Messages
	Operator Types
	Notices
	Trademarks

	Index

