Rules and Formatter Extension for IBM ® WebSphere Message
Broker for Multiplatforms

New Era of Networks Rules
Programming Reference

Version 6.0

Note: Before using this information, and the product it supports, be sure to read the general
information under notices on page 391.

First edition (August 2005)

This edition applies to Rules and Formatter Extension for WebSphere ™ Message Broker for
Multiplatforms, Version 6.0, for IBM ® WebSphere Message Broker and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your
locality. Publications are not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to
make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright New Era of Networks, Inc., 1998, 2005. All rights reserved.
© Copyright International Business Machines Corporation, 1999, 2005. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Chapter 1: Introductioncccoviiiiiiiiiiiinnnnn. 1
ADOUL thiS DOCUMENT ..ot 1
DOCUMENTALION SEL ..o 2
DOocUMENt CONVENTIONScveveiiiiireeieriee e 2
Chapter 2: OVErVIEWoviiiiiiiiiiiiiiiieiiiiiiiiiaaaa e 3
New Era of Networks Rules COMPONENTScooiiiiiriiiineieeeines e 3
Rules Naming CONVENTIONScccoiiiiiiiiiieeec e 4
APIs and Header FIles. ..o s 4
LEDAITES. ..ttt et et b bbb b et e et ne et ene s 19

Chapter 3: New Era of Networks Rules APIs ..21
Class/Type DefiNitiONS.coiiiiiiiiee e 21
VRUIE ENGINE APIS ..ottt et 23

VRUIE SEIUCTUIESceiiieete et s 25
SUBSCRIPTION ..ottt 25
OPTIONPAIR .ottt 26
RULE ..o 28

VRule SUpPOrting FUNCLIONS...........ooiiiiiie e 29
CreateRUIESENGINEc.ooiiiiiiiece s 29
DeleteRUIEENGINEooiiiiiiiieee e 33

VRule Member FUNCLIONS........c.ooiiiine e 35
BVAD e s 35
getformatterobJect ... 39
OELNITIULE .o s 40
OELNONITIUIE ... s 42
QELSUDSCIIPLION .. s 44
ELOPT o e 46
LoadRUIECOMPONENT ..o e 48
LOAARUIESEL ...t e e 53
populatesubscriptionlistccooeiiiiiiiii s 56

Error HanAliNg ... e 57
GEIEITONNO ... e 57
GEIEITOIMESSAgEocviiiiiieiie ittt e 59

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms i

New Era of Networks Rules Programming Reference

(1) 1 R{=1 0 (0] (R 60

Subscription, Action, OPLioN APIS ... 62
RulesSubscriptionList Member FUNCLIONS..........cccooveveieinie s 64
RulesSubscriptionList CONStrUCLOrcccevvvveieesinre e 64
RulesSubscriptionList DEStruCtorcccccoviveiciiviencnineseeeiinens 65
RulesSubscriptionList Copy CoNnStructorcccccvevvivvervreeinnnnns 66
&operator= Assignment OPeratorcccoeoeverernieeinesienesenns 67
APPENA_DACK ..o s 68
APPENA_FrONT oo 69

CHBAK .. 70
createOWNCOoPYOTDALAc.coveiiiiiiice s 71
DeleteSUDSCIIPLION ..o 72
OELRIISE e s 73
gEtNEWSUDSCIIPLIONcoiiiiiiiiccee e e 74
EEINEXT .o 75

iNSert (SUDSCHIPLION)ccviiiiiiiire e 76

INSEIT (TISL) .o e e 77
NEWECOPY ittt ettt ettt sttt ettt b e bbbt et nbe e eresne e 78
PUSN_TrONT .o 79
PUSH_DACK ... 80

SHZE et 81
RulesSubscription Member FUNCLIONS..........cooiiiiiinii e 82
RulesSubscription CONSIIUCLOrccocoviiieiiiiiiicsee e 82
RulesSubscription DeStrUCLOrccccoveieieiiiiiec e 83
RulesSubscription Copy CONSLIUCTONcccoviiiininiiine e 84
&operator= Assignment OPeratorcccoeoererennieeinesiene e 85
COMPArEBYIA ... s 86
createOWNCOPYOTDALAc.cveviiieiiice s 87
OELACTIONLIST ..o s 88

OELIA e s 89
OEIINAIMIE .o e e 90
NEWECOPY oottt ettt sttt sttt sttt e bbbt et bt e eresne e 91

SEEIA s 92
SEENEMIE .o 93
Subscription, Action, Option Class USAgecccuvririrerinenenienieie e 94
Evaluation Field Value CONTAINEISccociiiiiiiiiiicicesee e 97
NNFieldValueContainer Member FUNCLIONScccoeiiiiiiiinciieeeeae 98
GEtFIEI ..o 98
GEtFIEIASIIING ..eiiieie s 99

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Contents

GEtFIeldCOUNT ...c.ocviiiccceeee e 100
GetINPUEICOESEL ..o 101
GELINPULLOCAIE ...voveveeieceeec e 102
SEtINPULCOAESELcvceececece e 103
SEtINPULLOCAIE ..o 104
NNNameValueList Member FUNCLIONScccccvevvivinienine e 105
NameValueList CONStrUCIONcooeiiviiviieiiicie e 107
~NNNameValueList DeStrUCIOrc.coveevieviiicirieee e 108

A oo 109

REAA ... e 110
UPAALE ..o e 111

DEIBLE .o e 112
ClEATAIL ...t 113

(7= {1) SO P O RRPRRSPRTSROPON 114
GEENEXL ...ttt e tbe e e re e e s ere e e e sbeeeeaes 115
GEtFIEIA oo s 116
GetFIeldCOUNT ..o 117
GetINPUEICOAESEL ..o e 118
GEtINPUELOCAIE ..o 119
GetINPUEICOESEL ..o 120
SEtINPULLOCAIE ... 121
NNName Member FUNCLIONS ... 122
NNNamMe CONSTIUCLOTocoiiiiiiiiie e 123
NNNamMe CONSTIUCLONoooiiiiiiiiec et 123
NNNamMe CONSTIUCLONoooiiiiiiiiec et 124
NNName Copy CONSIIUCIOrcccoviiiiiieiiiee e 125
NNNamMeE DESIIUCIONcoiieeiiieiieee e 126

7= O SO PTROURPRROUR 127

7= O SO PTROURPRROUR 128

(o] o =] g1 (0] (T TR UTUP ORI 129

(o] o =] g 1 0] g TR P TOPTTTOTTPROIN 130

(o] o =] g1 (0] ST TSP OPTPTOTRPRTO 131
ISEMPLY oo 132
GEESIIING ettt e 133
GEELENGLN .o 134
NNValue Member FUNCLIONS..........cccooiiiieecec et 135
NNValue CONSIIUCTONccooivviiieeiec et 136
NNValue CONSIIUCTONccooivviiieeiec et 137
NNValue CONSIIUCTONccooivviiieeiec et 138

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms iii

New Era of Networks Rules Programming Reference

NNValue Copy CONSLIUCLONcocovvveerievesere e 139

NNValue DESLIUCLONccoviiriiiieiriece e 140

OELCOAESEL ..o s 141

OELLOCAIE ...o.vvee e s 142

GELFIEI i 143

L] PP PR PP 144

L] T TSP PTPRTOUR TP 145

L] T TSP PTPRTOUR TP 146

(o] o =] =1 (0] (T TR PUTUP T OPTTTOTRPROIN 147

(o] o =] g1 (0] U TSP OPTUTOTRPRO 148

(o] o =] g1 (0] ST TSP OP PO 149

ISEMIPLY oo 150

GEESIIING ettt e 151

GEELENGLN . 152
Chapter 4: New Era of Networks Rules

Management APIS..........ooiiiiiiannnn. 153

New Era of Networks Rules Management API Structuresccccocvvevrvenene, 155

NINDAELE ..o 155

Overall New Era of Networks Rules Management APls and Macros........... 157

NNRMGEINIT Lo 157

N IR 1Y o @4 o - RS 158

NNR_CLEAR ..ottt 159

Application Group Management APIS.......cccoovvviivrneieeieie e 160

Application Group Management APl Structuresccocooceeverveivseennennn, 160

N LA N o o SR 160

NNRAPPDALAocvviiveiecieseeee e 161

NI NIRVAY o] o R{=T=To | B\ - KRS 162

NI N2 VAN o7 018 oo F-1 - SRS 163

Application Group Management APl FUNCLIONS..........cccoevveivrivcivnnnenene 164

T NTRA1Y [7N [VAN o o SRS 164

N NTRALY [o g 2 ECT=To VAN o] o RS RS 166

NN R o T 1=t T 5 7 AN o o 168

NNRMGIGEtNEXTAPD .ooveeeieereerieeiesieie e esiese et eee e see e seenes 170

N TNTRAIY [T BIUT o] ITor=11=Y AN o] o RS 172

NTNTRAIY [T] oo =1 1=Y AN o o TS 174

NNRMQrDeleteENtIrEAPD «.oovecveveere e 176

Message Type Management APIS ... 178

Message Type Management APl StrUCTUFES.........cccoveevieeevvviee e e e 178

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Contents

NINRIMSG oo 178
NNRMSGDALAccvviveiieierieie e seesnaens 180
NNRMSGREAADALAcevverviiivieieieeeee st 181
Message Type Management APl FUNCLIONScccccocvvvevvrevnieesisesieseaeens 183
NNRMGIrAAAMSQ ...ooviiiiiiiseeseeeee e 183
NNRMQGIREAAMSG ..oveivvviiiieiieieeeeise st 185
NNRMQGFGetFirStMSQ ...ccceoveieieiiiie e 187
NNRMGrGetNEXIMSQccceviiiriiiiieiisiieie st 189
NNRMgrUpdateMsgNamecccocviiinenineie e 191
NNRMQgrDUplicateMSQcccooeiiiiiieriee s 192
NNRMQrDeleteENtireMSgccoovieiiiiiie e 194

Rule Management APIS ... e s 196
Rule Management AP STrUCTUTES..........ocoiiieiireieeeeeer e 196
NNRRUIE ..o 196
NNRRUIEDALAcviieiiiiiie e e 198
NNRRUIEREAADALAccviiviiiiiiieieieee e 200
NNRRUIEUPAALEooveiiiiieiirierericre e e 202

Rule Management APl FUNCHIONSccocooiiiiiiiiineeceee e 204
NNRMGrAAARUIE ..ot 204
NNRMQGIREAARUIEc.coiiiiiiiiiieeee s 207
NNRMQGrGetFirstRUIEcccooiiiiiiiieie e 209
NNRMQGrGetNexXtRUIEcociiiiiiiiiee e 211
NNRMQgrDuplicateRUIEccooviiiiiiiie e 213
NNRMQgrupdateRUIE ..o 215
NNRMgrDeleteENtireRUIEccccoiiiiiiieicc e 218
PermiSSIONS APIS ... e 221
Permission Management APl StrUCUIESccerieiiiiiiniene e 221
NNUSerPermissionDataccccoeviiiiineieiiie e 221
NNPermissionDALaccccviieiiiiiieeieeee s 223
NNRCOMPONENT ..o 224

Overall Permission IMAaCKOcouiiiiiiiiiesise e e e 226
NIN_CLEAR ..ot 226
Permission AP FUNCLIONSccooiiiiiiieee e 227
NNRMQGrGetFirstPErMccccoiiiiie s 227
NNRMGrGetNexXtPerm ... 229
NNRMgrUpdateUSerPerm ... 231
NNRMQGrChangeOWNRNETccoiiieiirieieiese e 233
NNRMgrUpdateOWRNErPEIMccccooiiiieiiiieeie e 235
NNRMgrUpdatePublicPerm ... 237

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms v

New Era of Networks Rules Programming Reference

Vi

Operator ManagemeNt APIS ... 239

Operator Management AP StrUCTUIES..........coveevviiveeiee e 239
NNROPEIALOFoceiiie e sresnaens 239

Operator Management APl FUNCLIONSccccvvvvieneveecne e 240
NNRMQrGetFirstOPEeratorcccoceveeerisieeiesesieseseese s seene e 240
NNRMgrGetNextOPEratorcccccvvievreerineene e e e nee e 242

Expression Management APIS ... 244
Expression Management AP StrUCTUIESccocviiiiiiencineencseniee 246
NINREXD oot 246
NNREXDPDALAocviiiiiiieiiiieiieie et 248

Expression Management APl FUNCLIONS..........cccooiiiiiininieiesc e 249
NNRMgrAddEXPreSSIONccccoieiiiiiiineeeses e 249
NNRMQgrReadEXPreSSIONcccoveiieiiiiiieienieee e 251
NNRMgrUpdateEXPressSionccoooceineeicnenie e 253

Argument Management APIS ... 255
Argument Management APl STrUCTUIeScccciieiiiiine i 255
NINRAIG s 255
NNRAFGDALA ..o 257

Argument Management APl FUNCLIONScccoiiiiiiniiine e 259
NNRMQgrGetFirStArgumMEentccocooeieieiienineeie e s 259
NNRMgrGetNextArgumMENTcccoeiirieniiieneienee e 261
Subscription Management APIS ... s 263
Subscription Management APl STrUCTUIESccocoieiiiiiniiie e 263
NINRSUDS ..o s 263
NNRSUDSDALAccvviiiiiciinieiirieenese e 265
NNRSUDSREAADALAccevrviviriiiiiineiere s 267
NNRSUDSUPALE ..o s 269
Subscription Management APl FUNCLIONSccooeiiiiiiinine e 271
NNRMgrAddSUbSCHPtioN ..o 271
NNRMQgrReadSUbSCription ..o 274
NNRMQgrGetFirstSUDSCIIPLIONccccooiiiiiniieieee e 276
NNRMQgrGetNextSUbsCription ... 279
NNRMgrDuplicateSUbSCriptioncccovviiiviieieireeecee 282
NNRMgrUpdateSubscription ... 284
NNRMgrDeleteSubscriptionFromRuUle ..., 287
NNRMgrDeleteEntireSUbSCriptionccccooiinininieneiinene 289
NNRMgrGetFirstRuleUsingSubs ... 291
NNRMgrGetNextRuleUsingSubs ... 293

ACtion Management APIS.o 295

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Contents

Action Management AP StrUCLUIES..........covvviereveveree e 295
NINRACLION oo 295

NNRACLONDALA ..o 297
NNRACIONREAADALAcoovvvivcreiireeeierseee s 298

NNRACHONUPAALE ..ot 300

Action Management APl FUNCLIONS.........ccccooireieieeiececese e 301
NNRMGFrAAAACLION ... 301
NNRMQGrGetFirStACHIONccooiiiieiecee e 303
NNRMQGrGetNeXtACLIONccccooiiiiiiiie e 305
NNRMQgrResequUenCeACLION ... 307
NNRMQgrUpdateACtioNccccooiieiiiee s 311
NNRMQGrDelete ACLIONccooiiiiiii e 314

Option ManagemMent APIS ... e 316

Option Management APl STrUCTUIESooeiiiiiiiiieiecre e 316
NNROPLION ..oviiiiiiiiie e e 316

NNROPLIONDALAcoiiiiieiiiiie e 318
NNROPtIONReadDALaccccoieieiiiiiiieneee s 319

NNROPLIONUPAALE ..ot 321

Option Management APl FUNCLIONS ..ot 322
NNRMGrAAdOPLION ..o e 322
NNRMQgrGetFirstOPioNccoceviiiiiiii e 324
NNRMQgrGetNextOPtioN ... 326
NNRMQgrResequenceOPLtioNcoooeieireeienenie e 328
NNRMQgrUpdateOptionccccoeveiieiiieneiene e 332
NNRMQGrDeleteOPLioncocccceiiriiineie s 335

New Era of Networks Rules Management Error Handlingc.cccccoeeenee. 337
NNRGELEITOINOc.ooviiiiiiiiiciie s 337
NNRGELEITOrMESSAgEc.eoiviiieiiieiie et 338

Chapter 5: Error Messagescccovvviiiiinnnnnnnnn. 339
Appendix A: Operator TypeS........cvvvvvvveeennn.. 375
AppendixX B: NOtiCeSccooviiiiiiiieeeeeee 385
Trademarks and Service Marks ... 387
INdeX . e 389
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms vii

New Era of Networks Rules Programming Reference

viii Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 1
Introduction

This chapter includes the following information:

About this Document

Documentation Set

About this Document

This programming reference provides descriptions and examples for each
function in NeonRules and NeonRules Management APIs. This document is
divided into two main sections: NeonRules APIs and neonRules Management

APls.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

Chapter 1, Introduction, provides a brief description of NeonRules and
the documentation set and documentation conventions.

Chapter 2, Overview, describes NeonRules components, rules naming
conventions, APIs, header files, and libraries.

Chapter 3, NeoNRules APIs, provides class and type definitions and
contains the NeonRules APIs.

Chapter 4, NeoNRules Management APIs, provides rules management
API structures, rules management APIs and macros.

Chapter 5, Rules Error Messages, contains a list of rules error
messages.

Appendix A, Operator Types, describes the available operator types
for use in rules expressions.

New Era of Networks Rules Programming Reference

Chapter 1

Documentation Set

The Rules and Formatter Extension for IBM ® WebSphere Message Broker for
Multiplatforms documentation set includes:

m System Management Guide

m NeonFormatter Programming Reference

m NeoNRules Programming Reference

m Application Development Guide

m Rules, Formatter, and Visual Tester online help

m [nstallation Readme

Document Conventions

The following document conventions are used in this guide.

Text Convention Example
code courier <user D> <password>
command line courier The message successfully
display parsed.
command line entry courier bold NNFAD-t
command line courier Enter the input file name:
prompt
path regular ora/bin (UNIX)
ora\bin (NT)
book names bold, italic Installation Guide
chapter and section italic NT Installation

names

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Chapter 1
Overview

NEoNRules enables you to evaluate a string of data (message) and react to the
evaluation results. The following overview describes NEoNRules components
and the types of APls available for rule processing.

xeonruless COMpPoNents

The neonRules components are:
= Application groups
m Message types

= Rules

An application group is a logical grouping used to organize rules. For
example, a company can divide rules into groups by projects or split projects
into logical sub-groups.

A message type defines the layout of a string of data. Each application group
can contain several message types and a message type can be in more than
one application group. When using neonFormatter, the message type is the
same as either the input format name or the user-defined neonRules message
type. Message types are defined either in NeonFormatter or in NeonRules.

A rule contains specific actions to be processed by the application if the rule
evaluates to true against a message. These actions can be thought of as

computer commands and the associated parameters required to execute the
rule.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 9
New Era of Networks Rules Programming Reference

Chapter 1

Rules Naming Conventions

When you are creating names for rule components, use the following
conventions:

Create unique, descriptive component names that are easy to
distinguish from one another.

Do not use case differences to distinguish component names. Some
databases do not distinguish case and would interpret both
components ITEM1 and Item1 as having the same name. In this case,
each matching component would conflict during importing.

Do not use the component name, NONE. It is reserved for another
use.

Do not use single quotes, double quotes, or spaces in component
names. These may cause database problems.

Do not exceed the maximum of 120 characters when creating
component names. If you exceed 120 characters, a message box
appears requiring a change.

The maximum number of characters for double byte is 60.

APIs and Header Files

10

Two types of APIs exist for NeonRules: NeoNRules APIs and NeonRules
Management APIs.

Use NeonRules APIs to evaluate rules and retrieve subscription, hit, and no-
hit information. Before you evaluate a rule, the rule must exist and you must
use CreateRulesEngine() to create a VRule object. After that, you can do as
many evaluations and subscription retrievals as needed. When you finish,
destroy the Rules daemon object using DeleteRuleEngine().

Use NeonRules Management APIs to maintain rule information. Add, Read,
and Update APIs are implemented and available as well as APIs to delete an
entire rule or subscription and all their associated information.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Overview

The APIs are made up of classes of objects that have member functions:

Header Files

Object Class

Header File

Description

VRule vrule.h Rules Processing APls
NNRMgr nnrmgr.h Rules Management APIs
— ruleuser.h Evaluation structures

— nnrmerr.h Rules Management errors
— rerror.h Rules error handling

VRule Supporting Functions

Return Type

Function

Arguments

VRule * CreateRulesEngine | (DbmsSession *Session)
VRule * CreateRulesEngine | (NNSesDBBase *Session)
VRule * CreateRulesEngine | (DbmsSession* Session,
int alert=1,
char *logfile=NULL)
VRule * CreateRulesEngine | (NNSesDBBase* Session,
int alert=1,
char *logfile=NULL)
void DeleteRuleEngine (VRule * pEngine)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

11

Chapter 1

12

VRule Member Functions

Return Type Function Arguments

int eval (char *AppName,
char *MsgName,
char *msg,
int msglen,
int log=0)

int eval (char *AppName,
char *MsgName,
char NNFieldValueContainer*,
pFVList)

Formatter getformatterobject None

RULE* gethitrule None

RULE* gethitrule None

char* getlog None

SUBSCRIPTION* getsubscription None

OPTIONPAIR* getopt None

int LoadRuleSet (char *AppGrp,
char*MsgType,
int LoadNow=0)

int LoadRuleComponent (char *AppGrp,
char*MsgType,
NNRComponentTypes
ComponentType,
char* ComponentType,
int LoadNow=0)

int populatesubsriptionlist | (RulesSubscriptionList&
subsContainer)

void ThreadCleanup None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview

SubscriptionList, ActionList, OptionList Functions

Return Type

Function

Arguments

ThisType

&operator=

const ThisType& right

NNSY_NAMESPACE
e SF

append_back

(RulesSubscription*
pSubscription)

NNSY_NAMESPACE
e SF

append_front

(RulesSubscription*
pSubscription)

NNSY_NAMESPACE clear None
e SF
void createOwnCopyOfData | None

NNSY_NAMESPACE
e SF

deleteSubscription

(int subscriptionld)

RulesSubscription getFirst None
RulesSubscriptionList getNewSubscription None
RulesSubscription getNext None
NNSY_NAMESPACE insert (RulesSubscription*
e SF pSubscription)
NNSY_NAMESPACE insert (RulesSubscriptionList*
e SF pSubscription)
RulesSubscriptionList newCopy None
NNSY_NAMESPACE push_front (RulesSubscription*
e SF pSubscription)
NNSY_NAMESPACE push_back (RulesSubscription*
e SF pSubscription)

int size None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

13

Chapter 1

14

Subscription, Action, Option Functions

Return Type

Function

Arguments

ThisType

&operator=

const ThisType& right

NNSY_NAMESPACE
e SF

compareByld

(int subscriptionld)

void createOwnCopyOf | None
Data
RulesSubscription geActionList None

NNSY_NAMESPACE getld (int& subscriptionid)
e SF

NNSY_NAMESPACE getName (const STL_STRING&
e SF subscriptionName)
RulesSubscriptionList newCopy None
NNSY_NAMESPACE set_Id (int& subscriptionid)
e SF

NNSY_NAMESPACE set_Name (const STL_STRING&

e SF

subscriptionName)

NNFieldValueContainer Functions

Return Type

Function

Arguments

char*

GetFieldString

(char* name, int instance=-1)

int

GetFieldCount

(char* name)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NNNameValuelList Functions

Overview

Return Type Function Arguments

int Add (const NNINlame *pName, const
NNValue *pValue)

int Read (const NNINlame *pName, const
NNValue *pValue, int instance)

int Update (const NNINlame *pName, const
NNValue *pValue, int instance)

int ClearAll None

int getFirst (const NNINlame *pName, const
NNValue *pValue)

int getNext (const NNINlame *pName, const

NNValue *pValue)

NNName Functions

Return Type Function Arguments

int set (char* name)

int set (char* name, int length)

bool operator< (const NNIName& namel, const
NNName& name?2)

bool operator== (const NNIName& namel, const
NNName& name?2)

void operator= (const NNName& namel)

bool iISEmpty None

char* GetString None

int GetLength None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

15

Chapter 1

NNValue Functions

Return Type Function Arguments

int set (char* value)

int set (char* value, int length)

bool operator< (const NNValue& valuel, const
NNValue& valuel)

bool operator== (const NNValue& valuel, const
NNValue& valuel)

void operator= (const NNValue& valuel)

bool iSEmpty None

char* GetString None

int GetLength None

Rules Error Handling Functions

Return Type Function Arguments
char* GetErrorNo None
char* GetErrorMessage None
16 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Overview

Application Group Management Functions

Return Type Function Arguments

const long NNRMgrAddApp (NNRMgr *pMgr,

const NNRApp *pRApp,
const NNRAppData
*pRAppData)

const long NNRMgrReadApp (NNRMgr *pMgr,

const NNRApp *pRApp,
NNRAppData *const
pRAppData)

const long NNRMgrGetFirstApp (NNRMgr *pMgr,
const NNRAppReadData *const
pRAppData)

const long NNRMgrGetNextApp (NNRMgr *pMgr,
const NNRAppReadData *const
pRAppData)

const long NNRMgrDuplicateApp | (NNRMgr *pMgr,
const NNRApp* pRApp, *const
char* NewAppName)

const long NNRMgrUpdateApp (NNRMgr *pMgr,

const NNRApp* pRApp, const
NNRAppUpdate
*pRAppUpdate)

const long NNRMgrDeleteEntireA | (NNRMgr *pMgr,
pp const NNRApp* pRAppP)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 17
New Era of Networks Rules Programming Reference

Chapter 1

Message Type Management Functions

Return Type Function Arguments

const long NNRMgrAddMsg (NNRMgr *pMgr,
const NNRMsg *pRMsg,
const NNRMstgData

*pRMsgData)
const long NNRMgrDeleteEntire (NNRMgr *pMgr,
Msg const NNRMsg* pRMsgQ)
const long NNRMgrDuplicateMsg | (NNRMgr *pMgr,

const NNRMsg* pRMsg,
const char *NewAppName)

const long NNRMgrGetFirstMsg (NNRMgr *pMgr,

const NNRMsg *pRMsg,
NNRMsgReadData *const
pRMsgData)

const long NNRMgrGetNextMsg (NNRMgr *pMgr,
const NNRMsgReadData *const
pRMsgData)

const long NNRMgrReadMsg (NNRMgr *pMgr,

const NNRMsg *pRMsg,
NNRMsgData *const
pRMsgData)

const long NNRMgrUpdateMsgN (NNRMgr *pMgr,
ame const char *OldMsgName,
const char *NewMsgName)

18 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Overview

Rules Management Functions

Return Type | Function Arguments
NNRMgr * NNRMgrlnit (DbmsSession *session)
void NNRMgrcClose on (NNRMgr *pMgr)
page 164
N/A NNR_CLEAR on (p)
page 165
N/A NN_CLEAR (p)
const long NNRMgrAddRule | (NNRMgr *pMgr,

const NNRRule *pRRule,
const NNRRuleData *pRRuleData)

const long NNRMgrReadRule (NNRMgr *pMgr,
on page 212 const NNRRule *pRRule,
NNRRuleData* const pRRuleData)
const long NNRMgrGetFirst (NNRMgr *pMgr,
Rule const NNRRule *pRRule,

NNRRuleReadData * const
pRRuleData)

const long NNRMgrGetNext (NNRMgr *pMgr,
Rule NNRRuleReadData * const
pRRuleData)
const long NNRMgrDuplicate (NNRMgr *pMgr,
Rule const NNRRule *pRRule,

const char *NewRuleName)

const long NNRMgrUpdateRule | (NNRMgr *pMgr,
const NNRRule *pRule,
const NNRRuleUpdate
*pRRuleUpdate)

const long NNRMgrDelete (NNRMgr *pMgr,
EntireRule const NNRRule *pRRule)
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 19

New Era of Networks Rules Programming Reference

Chapter 1

Permissions Functions

Return Type Function Arguments

const long NNRMgrGetFirst Perm | (NNRMgr *pRMgr,
const NNRComponent *
pRComponent,

NNUserPermissionData const *
pPermissionData)

const long NNRMgrGetNext Perm | (NNRMgr *pRMgr,
NNUserPermissionData const *
pPermissionData)

const long NNRMgrUpdate (NNRMgr *pRMgr,
UserPerm const NNRComponent *
pRComponent,

const NNPermissionData *
pPermission Data)

const long NNRMgrChange (NNRMgr *pRMgr,
Owner const NNRComponent *
pRComponent,
char *pNewOwner)
const long NNRMgrUpdate (NNRMgr *pRMgr,
OwnerPerm const NNRComponent *
pRComponent,

const NNPermissionData *
pPermission Data)

const long NNRMgrUpdate (NNRMgr *pRMgr const
PublicPerm NNRComponent *
pRComponent,

const NNPermission Data *
pPermission Update)

20 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Operator Management Functions

Overview

Return Type Function Arguments
const long NNRMgrGetFirst (NNRMgr *pMgr,

Operator NNROperator * const pOperator)
const long NNRMgrGetNext (NNRMgr *pMgr,

Operator NNROperator * const pOperator)

Expression Management Functions

Return Type Function Arguments
const long NNRMgrAdd (NNRMgr *pMgr,
Expression const NNRExp * pRExp,
NNRExpData * pRExpData)
const long NNRMgrRead (NNRMgr *pMgr,
Expression const NNRExp * pRExp,
NNRExpData * pRExpData)
const long NNRMgrUpdate (NNRMgr *pMgr,
Expression const NNRExp *pREXxp,

const NNRExpData *pRExpData)

Argument Management Functions

Return Type Function Arguments
const long NNRMgrGetFirst (NNRMgr *pMgr,
Argument const NNRArg * pRArg,
NNRArgData * const
pRArgData)
const long NNRMgrGetNext (NNRMgr *pMgr,
Argument NNRArgData * const
pRArgData)
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 21

New Era of Networks Rules Programming Reference

Chapter 1

Subscription, Action, Option Management Functions

Return Type Function Arguments
const long NNRMgrAdd (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
const NNRSubsData
*pRSubsData)
const long NNRMgrRead (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
NNRSubsData * const
pRSubsData)
const long NNRMgrGetFirst (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
NNRSubsReadData * const
pRSubsReadData)
const long NNRMgrGetNext (NNRMgr *pMgr,
Subscription NNRSubsReadData * const
pRSubsReadData)
const long NNRMgrDuplicate (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
const char * const
pNewSubsName)
const long NNRMgrUpdate (NNRMgr *pMgr,
Subscription const NNRSubs *pRSubs,
const NNRSubsUpdate
*pRSubsUpdate)
const long NNRMgrDelete (NNRMgr *pMgr,
SubscriptionFrom const NNRRule * pRRule,
Rule const char * SubsName)
const long NNRMgrDelete (NNRMgr *pMgr,
EntireSubscription const NNRRule * pRRule)
const long NNRMgrGetFirst (NNRMgr *pMgr,
RuleUsingSubs const NNRSubs *pRSubs,
char* const pRuleName)
22 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Overview

Return Type

Function

Arguments

const long

NNRMgrGetNext
RuleUsingSubs

(NNRMgr *pMgr,
char* const pRuleName)

const long

NNRMgrAddAction

(NNRMgr *pMgr,

const NNRAction *pRAction,
const NNRActionData
*pRActionData,

int *pActionid)

const long

NNRMgrGetFirst
Action

(NNRMgr *pMgr,

const NNRAction * pRAction,
NNRActionReadData * const
pRActionData)

const long

NNRMgrGetNext
Action

(NNRMgr *pMgr,
NNRActionReadData * const
pRActionData)

const long

NNRMgrResequenceAc
tion

(NNRMgr *pMgr,

const NNRAction *pRAction,
int oldPosition,

int newPosition)

const long

NNRMgrUpdate Action

(NNRMgr *pMgr,

const NNRAction *pRAction,
const NNRActionUpdate
*pRActionUpdate,

int position)

const long

NNRMgrDelete Action

(NNRMgr *pMgr,
const NNRAction *pRAction,
int position)

const long

NNRMgrAddOption

(NNRMgr *pMGR,

const NNROption *pROption,
const NNROptionData
*pROptionData)

const long

NNRMgrGetFirst
Option

(NNRMgr *pMgr,

const NNROption * pROption,
NNROptionReadData * const
pROptionData)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 23
New Era of Networks Rules Programming Reference

Chapter 1

Return Type Function Arguments
const long NNRMgrGetNext (NNRMgr *pMgr,
Option NNROptionReadData * const
pROptionData)
const long NNRMgrResequenceO (NNRMgr *pMgr,
ption const NNROption *pROption,

int oldPosition,
int newPosition)

const long NNRMgrUpdate (NNRMgr *pMgr,
Option const NNROption *pROption,
const NNROptionUpdate
*pROptionUpdate,
int position)
const long NNRMgrDelete (NNRMgr *pMgr,
Option const NNROption *pROption,
int Position)

Rules Management Error Handling Functions

Return Type Function Arguments
const int NNRGetErrorNo NNRMgr *pRMgr
const char* NNRGetErrorMessage NNRMgr *pRMgr
24 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

Overview

Libraries

Shared libraries are archived collections of object files. The following is the
path to the libraries that must be linked with the application object files:

In UNIX, the libraries are in {installroot}/bin.

In Windows, the shared libraries and DLLs are in {installroot}\bin. The
libraries needed to compile custom code are in {installroot}\lib.

Refer to the example makefiles for more library information.

Note:
Library file extensions are .sl for HP-UX, .dll for Windows, and .so for AlX.

WARNING!

Do not move the libraries. The executables search for them in a specific
directory or folder. If you move or delete the libraries, the executables are
rendered useless.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 25
New Era of Networks Rules Programming Reference

Chapter 1

26 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 2

NEONRules AP I S

This chapter includes the following information:
m Class/Type Definitions
= VRule Engine APIs
m Subscription, Action, Option APIs

m Evaluation Field VValue Containers

Class/Type Definitions

VRule Class

This class provides a standard interface for handling NeonRules API calls and
allows the user to perform all rule evaluation and subscription retrieval.

See vrule.h in the Zinclude directory.

RulesSubscriptionList, RulesActionList, & RulesOptionList Classes

The RulesSubscriptionList class allows the user to create a
RulesSubscriptionList object. This object can then be passed in the
VRule::populatesubscriptionlist member function to pull the subscriptions
that hit for the active message. The RulesSubscriptionList contains instances
of RulesSubscriptions.

The RulesActionList class allows the user to pull the actions that are valid for
a given subscription. An instance of the RulesSubscription class contains a
RulesActionList object which contains many instances of RulesActions.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 27
New Era of Networks Rules Programming Reference

Chapter 2

28

The RulesOptionList class allows the user to pull the options that are valid
for a given subscription. An instance of the RulesSubscription class contains a
RulesOptionList object which contains many instances of RulesOptions.

RulesSubscription, RulesAction, and RulesOption Classes

The RulesSubscription class allows the user to create a RulesSubscription
object. These objects are generally found inside the RulesSubscriptionLists.
The RulesSubscription is used to traverse the list of subscriptions retrieved
from the VRule::populatesubscriptionlist method.

The RulesAction class allows the user to create a RulesAction object. These
objects are generally found inside the RulesActionLists. The RulesAction is
used to traverse the list of actions retrieved from the
RulesSubscription::getActionList method.

The RulesOption class allows the user to create a RulesOption object. These
objects are generally found inside the RulesOptionLists. The RulesOption is
used to traverse the list of options retrieved from the
RulesAction::getOptionList method.

NNFieldValueContainer Class

The NNFieldValueContainer class is the base class for any class that contains
field values that can be retrieved by name. Formatter and NNNameValueL.ist
classes inherit from this class. Users can input their own object containing
field values into the VRule::eval() API as long as the object inherits from this
NNFieldValueContainer base class and has the correct member functions.

NNValueValuelList Classes

The NNNameValueList class is used to identify field values that can be
retrieved by name. The NNNameValueL.ist contains a list of field name and
value pairs from the NNName and NNValue classes where the name is up to
120 characters and the value can be of any length for rules evaluation.

The NNName class is used for some of the NNNameValueList methods to
identify the object from which field name information is retrieved. This class
enables retrieval of field or object name information without using
NEoNFormatter to parse the information.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

The NNValue class is used for some of the NNNameValueList methods to
identify the value information to retrieve. This class enables retrieval of field
or object value information without using NeonFormatter to parse the
information.

VRule Engine APIs

To use NeonRules APIs, you must include the following header files:

= dbtypes.h NNOT.h
& OR &
ses.h NNSesDBBase.h

m rerror.h

m ruleuser.h

= vruleh

m RulesSubscriptionList.h
m RulesSubscription.h

m RulesActionList.h

= RulesAction.h

= RulesOptionList.h

= RulesOption.h

Note:

THREAD SAFETY: For multithreading, you must also link with the
appropriate thread library matching the NeonRules release. For example, link
with the thread library for Ul threads and pthread for POSIX threads.

A VRule object is a Virtual Rules Engine instance. This class provides a
standard interface for handling neonRules API calls and allows the user to
perform all rule evaluation and subscription retrieval. A VRule object is
created using CreateRulesEngine() and deleted by DeleteRuleEngine().

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 29
New Era of Networks Rules Programming Reference

Chapter 2

VRule.h is defined as follows:

class VRule ({
public:
VRule () {}
virtual ~VRule() ;
virtual int GetErrorNo() = 0;
virtual int eval (char * AppName, char * MsgName,
char * msg, int msglen,
int log=0) = 0;
virtual int eval (char * AppName, char * MsgName,
NNFieldValueContainer *pFBContainer,
int log=0) = 0;
virtual SUBSCRIPTION * getsubscription() = 0;
virtual int populatesubscriptionlist (RulesSubscriptionListé&
subsContainer)
virtual OPTIONPAIR * getopt() = 0;
virtual RULE * gethitrule() =
virtual RULE * getnohitrule () 0;
virtual char * GetErrorMessage() = 0;
virtual void ThreadCleanup() = 0;
virtual int LoadRuleSet (char* AppName, char * MsgName,
int LoadNow = 0) = 0;
virtual int LoadRuleComponent (char* AppGrp, char * MsgType,
NNRComponentTypes ComponentType,
char * ComponentName,

o

7

int LoadNow = 0) = 0;
virtual Formatter *getFormatterobject() = 0;
}i
30 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

VRule Structures

SUBSCRIPTION

Each rule has an associated list of subscriptions, and each subscription has an
associated list of one or more actions. The list of actions for a subscription is a
list of SUBSCRIPTION structures.

When stepping through the list of actions for a specific subscription, the
presence of a new subscription identifier (Subld) signifies that a new
subscription has been reached and that the action is the first associated with
the new subscription.

Syntax

struct SUBSCRIPTION({
long SubId;
char * action;
char * SubName;

}i

Parameters
Name Type Description
Subld long Subscription sequence identifier
action char* Action name
SubName char* Subscription name
Remarks

The action and SubName members point to memory inside the VRule object.
Do not modify their values.

It is recommended that programmers use the new RulesSubscription classes
instead of the SUBSCRIPTION and OPTIONPAIR structures.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 31
New Era of Networks Rules Programming Reference

Chapter 2

Example
The following code fragment illustrates stepping through a list of actions:

while ((p=rules->getsubscription()) {

if (strcmp(p->action,"my funl") == 0){
my funl () ;

}

else if (strcmp(p->action,"my fun2") == 0) {
my fun2 () ;

}

else{

//perform logging or exception handling

}
}

OPTIONPAIR

Each rule has an associated list of subscriptions and each subscription has a
list of one or more actions. Actions are intended to be executed in sequence,
and each action may have one or more associated option name-value pairs.

Option name-value pairs are OPTIONPAIR structures. An option pair can be
unique to an action. A NULL OPTIONPAIR in a subscription option list
signifies the end of the options for that subscription action.

Syntax

struct OPTIONPAIR{
int Sequence;
char * Name;
char * Value;

}i

Parameters
Name Type Description
Sequence int Sequence identifier
Name char* Option name
Value char* Option value
32 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

Remarks

The Name and Value members point to memory inside the VRule object. Do
not modify their values.

Example

The following code segment illustrates walking through a list of options. The
presence of a NULL popt signifies the end of the list of options.

while ((popt=rules->getopt()) {

if (strcmp (popt->Name, "Command Argumentl") == 0){
pCommand Argumentl = strdup (popt->Value) ;
}

else if (strcmp (popt->Name, "Command Argument2") == 0) {
pCommand Argument2 = strdup (popt->Value) ;
}

}

if (pCommand Argumentl && pCommand Argument2) {
my funl (pCommand Argumentl, pCommand Argument2) ;
}

else {
//error handling for missing options to my call

}

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 33
New Era of Networks Rules Programming Reference

Chapter 2

RULE

gethitrule() and getnohitrule() return records of rule information contained in
a RULE structure.

Syntax

struct RULE({
int RuleId;
char *RuleName;

}i

Parameters
Name Type Description
Ruleld int Rule identifier
RuleName char* Rule name
Remarks

The RuleName member points to memory inside the VRule object. Do not
modify their values.

Example

The following code fragment describes how to walk through both a list of
rules that did not hit and a list of rules that hit. It should be noted that these
APIs are called after the Rules eval() API.

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule()))
cout << " " << r->RuleName << endl;

}

cout << "HIT RULES" << endl;
while ((r = rules->gethitrule()))

cout << " " << r->RuleName << endl;
}

34 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

VRule Supporting Functions

CreateRulesEngine
Syntax 1

VRule* CreateRulesEngine (DbmsSession* Session) ;

Description

CreateRulesEngine() creates a VRule object for the application session
provided in the session parameter.

Parameters
Name Type Input/ Description
Output
Session DbmsSession * | Input Name of the open session.
Syntax 2

VRule* CreateRulesEngine (NNSesDBBase* Session) ;

Description

CreateRulesEngine() creates a VRule object for the session provided in the
session parameter.

Parameters
Name Type Input/ Description
Output
Session NNSesDBBase* Input Name of the open session.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 35

New Era of Networks Rules Programming Reference

Chapter 2

Syntax 3

VRule* CreateRulesEngine (DbmsSession* Session,
int alert=1,
char *logfile=NULL) ;

Description

CreateRulesEngine() creates a VRule object for the NeonRules session
provided in the session parameter and enables the user to specify whether
alerts should be sent to a log file.

Parameters

Name Type Input/ Description
Output

Session DbmsSession * Input Name of the open Rules and
Formatter Extension for IBM ®
WebSphere Message Broker for
Multiplatforms session. See
OpenDbmsSession() in the
Application Development Guide.

alert int Input True(1)/False zero(0) option
determining whether or not to send
errors through the alert mechanism.
Defaults to True (1).

logfile char * Input Errors are logged to the logfile.
Only valid if alert is True (1).
Defaults to no file (NULL).

Syntax 4

VRule* CreateRulesEngine (NNSesDBBase* Session,
int alert=1,
char *logfile=NULL) ;

36 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Description

NEONRules APIs

CreateRulesEngine creates a VRule object for the NeonRules and
NEONFormatter session provided in the session parameter and enables the
user to specify whether alerts should be sent to the log file.

Parameters

Name Type

Input/
Output

Description

Session NNSesDBBase*

Input

Name of the open Rules and
Formatter Extension for IBM ®
WebSphere Message Broker for
Multiplatforms session. See
OpenNNSesDBBase() in the Rules
and Formatter Extension for IBM ®
WebSphere Message Broker for
Multiplatforms Application
Development Guide.

alert int

Input

True(1)/False zero(0) option
determining whether or not to send
errors through the alert mechanism.
Defaults to True (1).

logfile char *

Input

Errors are logged to the logfile.
Only valid if alert is True (1).
Defaults to no file (NULL).

Remarks

CreateRulesEngine() must be called prior to rules processing and prior to

calling DeleteRuleEngine().

Return Value

Returns a VRule object if successful; NULL on failure. All error handling of a
failed call to CreateRulesEngine() must be done by the code that calls this

API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 37
New Era of Networks Rules Programming Reference

Chapter 2

Example 1

DbmsSession *session = OpenDbmsSession ("MySesName", DbType) ;

if (!session || !session->0k()) {
cout << "Failed to open rules database session" << endl;
exit (1) ;

}

VRule *rule = CreateRulesEngine (session) ;
if (!rule)
cout << "Error no rules engine created" << endl;

Example 2

DbmsSession *session = OpenDbmsSession ("MySesName", DbType) ;

if (!session || !session->0k()) {
cout << "Failed to open rules database session" << endl;
exit (1) ;

}

VRule *rule = CreateRulesEngine (session,1,"rerrlog.log") ;
if (!rule)
cout << "Error no rules engine created" < endl;

See Also

DeleteRuleEngine

38 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

DeleteRuleEngine

Syntax

void DeleteRuleEngine (VRule * pEngine) ;

Parameters
Name Type Input/ | Description
Output
pEngine VRule* Input Name of the open VRule object.
Remarks

DeleteRuleEngine() must be called after CreateRulesEngine() and after all
rules processing is complete.

Return Value

None

There are no error handling functions for DeleteRuleEngine().

Example
DbmsSession *session = OpenDbmsSession ("MySesName", DbType) ;
if (!session || !session->0k()) {

cout << "Failed to open session" << endl;

exit (1) ;

}

Vrule *rule = CreateRulesEngine (session) ;

if (!lrule) {
cout << "Unable to create rules object" << endl;
exit (2) ;

}

char MessageString[65];

memset (MyMessageString, 0, 65);

strcpy (MyMessageString, "Fieldl|Field2,Field3");

if (lrule-seval ("MyAppGroup", "MyMessageType",

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 39
New Era of Networks Rules Programming Reference

Chapter 2

MyMessageString,
strlen (MyMessageString))){
cout << "Failure" << endl;
exit (3);

}

if (rule)
DeleteRuleEngine (rule) ;

}

if (session) {

CloseDbmsSession (session) ;

See Also

CreateRulesEngine

40 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

VRule Member Functions

eval

There are two uses of the VRule::eval method. One is for use when the
evaluation is based on information received from neonFormatter and the
other is for use when evaluating data derived from a
NNNameValueContainer.

Syntax 1

int VRule::eval (char* AppName,
char* MsgName,
char* msg,
int msglen,
int log=0) ;

Description

Using the application group and message type, eval(), retrieves all associated
active rules, parses the message into fields, and evaluates those fields based
on evaluation criteria.

Parameters
Name Type Input/ | Description
Output

AppName char* Input Application Group Name. This should
be the Application Group in which the
user defined rules for evaluating this
message. This string should not be
empty.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 41

New Era of Networks Rules Programming Reference

Chapter 2

Name Type Input/ | Description
Output
MsgName char* Input Type of message to be evaluated. If

NEONFormatter is used, message type
is the input format name. This name
should be the message type in which the
user defined rules for evaluating this
message. This string should not be
empty.

msg char* Input String containing the message to be
evaluated. This message should be in
the format expected by the message
type. The string should not be empty.

msglen int Input Message length, in bytes, of the message
to be evaluated. msglen should be
greater than zero (0).

log int Input For increased logging capability in a
future release, log defaults to zero (0) for
now.

Syntax 2

int VRule: :eval (char* AppName,
char* MsgName,
char* NNFieldValueContainer* pFVList) ;

Description

This version of eval takes in a NNFieldValueContainer pointer that is used to
retrieve values based on names. New Era of Networks provides the
NNNameValueList and Formatter classes which are
NNFieldValueContainers. Programmers can create their own class derived
from the NNINameValueContainer.

NEoNFormatter is not used if a NNNameValueList is input. In that case, rules
are defined in the same way, but message type’s EvalType is

42 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

RulesMessageType and the field names are not defined in NeoNnFormatter, but
supplied in a separate list of names.

Parameters

Name Type Input/ | Description
Output

AppName char* Input Application Group Name. This should
be the Application Group in which the
user defined rules for evaluating this
message. This string should not be
empty.

MsgName char* Input Type of message to be evaluated. If
NEONFormatter is used, the message
type is the input format name. This
name should be the message type in
which the user defined rules for
evaluating this message. This string
should not be empty.

pFVList NNFieldV | Input A pointer to the
alueConta NNFieldValueContainer object to be
iner* used to retrieve values.

Remarks

eval() should be called after CreateRulesEngine() and before
DeleteRuleEngine(). In addition, eval() should be called prior to returning
subscriptions or hit/no-hit rules.

Return Value

Returns 1 if the rules evaluate completely, regardless of the outcome; zero (0)
if the evaluation fails.

A successful evaluation does not imply that a rule fired, only that all rules
associated with the application group and message type were evaluated
against the message completely.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 43
New Era of Networks Rules Programming Reference

Chapter 2

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Note:

If this is the first eval() call for the specified Application Group/Message
Type, all the rules and subscriptions for this rule set are read into cache.
Subsequent calls to eval() do not reload the data unless LoadRuleSet() or
LoadRuleComponent() were called previously with LoadNow set to FALSE.
Modifications to the data are only reflected if one of the Load APIs is called
prior to the eval() API. SeeLoadRuleSet on page 59 andLoadRuleComponent on
page 54 for more information.

Example

if (!rules->eval (appname, msgname, msg, msglen)) {
cout << "Failure" << endl;

} else {
cout << "Succesg" << endl;

}

See Also

CreateRulesEngine

DeleteRuleEngine
getsubscription
gethitrule

getnohitrule
GetErrorNo

GetRerror
GetErrorMessage
LoadRuleSet

LoadRuleComponent
NNFieldValueContainer

44 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getformatterobject

getformatterobject is a formatter object retrieval function that takes no
parameters and returns the instance of the formatter that the VRule::eval()
function used to parse the last input message. A user may want to use this
function to retrieve the parsed fields and, therefore, not have to parse before a
reformat done after the eval().

This formatter object is destroyed when the DeleteRuleEngine() destroys the
VRule object. Do not access the formatter object after the VRule is deleted.

Syntax

Formatter* VRule::getformatterobject () ;

Parameters

None

Return Value

Returns a pointer to a formatter object.

Example

char *appname;
char *msgname;
char *msg;
int msglen;

DbmsSession *session = OpenDbmsSession("rules", DbType) ;

VRule *rule = CreateRulesEngine (session) ;
Formatter *gFormatter = rule->getformatterobject () ;

if (!rule-seval (appname, msgname, msg, msglen) { // error
if (gFormatter-s>GetErrorCode()) {
// Formatter Error.
cerr << "Formatter Error:"
<< gFormatter->GetErrorCode () << endl;
cerr << "Error Message:"
<< gFormatter->GetErrorMessage () << endl;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 45
New Era of Networks Rules Programming Reference

Chapter 2

46

gethitrule

gethitrule() retrieves one hit rule from the hit rules list created by eval(),
placing it in a RULE structure. When stepping through the hit rules list using
gethitrule(), a NULL indicates the end of the list.

Syntax

RULE *VRule::gethitrule() ;

Parameters

None

Remarks

Call gethitrule() after the eval() function, which should follow a call to
CreateRulesEngine() but precede a call to DeleteRuleEngine(). You must call
gethitrule() before getsubscription() or getopt() because these functions
change the hit rules list. gethitrule() will not work after getsubscription() is
called.

Return Value

Returns a pointer to a single RULE structure with a number and name
indicating which rule was hit. When the return value is NULL, the list of hit
rules has been exhausted. The rules are not returned in any specific order.

Note:
Each time this API is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

The following code fragment describes how to walk through both a list of
rules that did not hit and a list of rules that hit. These APIs are called after the
Rules eval() API.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule()))
cout << " " << r->RuleName << endl;
}

cout << "HIT RULES" << endl;

while ((r = rules->gethitrule()))
cout << " " << r->RuleName << endl;

See Also

getnohitrule

eval

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms a7
New Era of Networks Rules Programming Reference

Chapter 2

48

getnohitrule

getnohitrule() retrieves one no-hit rule from the no-hit rules list created by
eval(), placing it in a RULE structure. Only active rules are retrieved. When
stepping through the no-hit rules list using getnohitrule(), a NULL indicates
the end of the list.

Syntax

RULE *VRule: :getnohitrule() ;

Parameters

None

Remarks

getnohitrule() should be called after the eval() function, which follows a call
to CreateRulesEngine() but precedes a call to DeleteRuleEngine().
getnohitrule() must be called before getsubscription() or getopt() because
these functions change the hit rules list. getnohitrule() will not work after
getsubscription() is called.

Return Value

Returns a pointer to a single RULE structure with a number and name
indicating which rule was not hit. When the return value is NULL, the list of
no hit rules has been exhausted. The rules are not returned in any specific
order.

Note:
Each time this API is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Example

The following code fragment describes how to walk through both a list of
rules that did not hit and a list of rules that hit. These APIs are called after the
Rules eval() API.

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule()))
cout << " " << r->RuleName << endl;
}

cout << "HIT RULES" << endl;
while ((r = rules->gethitrule()))

cout << " " << r->RuleName << endl;
}
See Also
gethitrule
eval
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 49

New Era of Networks Rules Programming Reference

Chapter 2

50

getsubscription

getsubscription() gets an action within a subscription associated with a rule
that evaluated true, retrieving the subscription identifier, subscription name,
and action name. When using this APl within a loop, a change in the Subld
(subscription sequence) of the SUBSCRIPTION structure signifies the end of
one subscription and the beginning of the next.

Note:
By using populatesubscriptionlist method instead of getsubscription and

getopt, all eval data results are retrieved at one time, releasing VRule so that
you can apply a re-evaluation.

Syntax

SUBSCRIPTION* VRule: :getsubscription() ;

Parameters

None

Remarks

getsubscription() should be called after the eval() function, which follows a
call to CreateRulesEngine() but before a call to DeleteRuleEngine().
getaction() should not be called after getsubscription() because it has the same
functionality. getopt() should be called to retrieve the action options.

Return Value

Returns a pointer to a single subscription action with a number indicating
which subscription it belongs to, strictly for the purposes of checking the
current subscription. If previous subscriptions have been retrieved, a
different Subscription Identifier indicates that the action is for a new
subscription. The subscription name and action name are also retrieved for
the user. When the return value is NULL, the list of subscriptions has been
exhausted. The subscriptions are not returned in any specific order.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Each time this APl is called, the returned subscription is removed from the
subscription list for the hit rules.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

The following code fragment illustrates walking through a list of actions:

01dSubId = NULL;

int ActionCount = 0;

char * Actionlist [MY ACTIONS MAX] ;

while ((p=rules->getsubscription()))

if ((p->SubId != 0ldSubId) || (!0ldsSubid)) ({

//this is the first action of the new subscription
01dSubId = p->Subld;
myfun (ActionList,ActionCount) ;
cleanup (ActionList,ActionCount) ;

ActionCount = 0;
Actionlist [ActionCount] = strdup (p->action);
ActionCount++;

//the options should be checked here if options are
//relevant to the action. Options only have meaning if
//the applications programmer has written code to

handle
//options within the program
}
See Also
getopt

populatescriptionlist

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 51
New Era of Networks Rules Programming Reference

Chapter 2

52

getopt

Each subscription can contain several actions, each of which can contain
several options. getopt() gets an option within an action, retrieving the option
sequence number, option name, and option value. When this API is used
within a loop to retrieve all options for an action, a NULL option signifies the
end of the options for that subscription.

Note:

By using populatesubscriptionlist method instead of getsubscription and
getopt, all eval data results are retrieved at one time, releasing VRule so that
you can apply a re-evaluation.

Syntax

OPTIONPAIR *VRule::getopt () ;

Parameters

None

Remarks

getopt() should be called after the CreateRulesEngine(), eval() and
getsubscription() functions are called and before DeleteRuleEngine().

Return Value

Returns a pointer to a single name-value option pair composed of an option
name and option value. Each time this function is called, the option is
removed from the list. When the return value is NULL, the list of options for
the subscription action has been exhausted.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Example

The following code fragment illustrates walking through a list of options for a
subscription action. This action finds the occurrences of a word in a file using
the UNIX grep command as the action:

SUBSCRIPTION *psubscription;
OPTIONPAIR *poptionpair;
char string to_find[MAX LENGTH_STRING TO_FIND] ;

VRule * rules = CreateRulesEngine (session) ;
if (!rules){
cout << "ERROR" << endl;
exit (2);

if (psubscription=rules->getsubscription()) {
if (!strcmp(psubscription->action, "UNIX GREP_COMMAND"))

strcpy(action string, psubscription-saction);
strcat (action string, " ");
while ((poptionpair=rules->getopt ()) {
if (!strcmp(poptionpair->Name, "WORD TO FIND"))

strcat (string to find, poptionpair->Value) ;
strcat (action string, " ");
} else if (!strcmp(poptionpair-s>Name, "FILENAME"))
strcat (filename, poptionpair->Value)
}

}
}
!
// Now execute 'grep word filename’

system(action string) ;
DeleteRuleEngine (rule) ;

See Also

getsubscription
populatescriptionlist

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 53
New Era of Networks Rules Programming Reference

Chapter 2

54

LoadRuleComponent

Using the application name, message type name, component type to reload,
component name to reload, and the LoadNow parameter, the
LoadRuleComponent() reloads the specified rule component stored in the
NneonRules memory with the modified component data stored in the database.
The MSG component type reloads the entire rule set (all rules and
subscriptions for the application group/message type) and the SUB
component type reloads the specified subscription. When a single
subscription is reloaded, the data reloaded by the LoadRuleComponent API
includes the subscription information, the subscription actions, options, and
links to rules.

LoadRuleComponent() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). As needed, it should be
called before VRule::eval(). However, it should never be called after an eval()
and before getsubscription(), getopt(), gethitrule(), and so on.

Syntax

int VRule::LoadRuleComponent (char* AppGrp,
char* MsgType,
NNRComponentTypes ComponentType,
char* ComponentName,
int LoadNow=0) ;

Parameters
Name Type Input/ | Description
Output
AppGrp char* Input Application Group Name. Should be

the Application Group for the rule set
to load. If loading a subscription, the
subscription being loaded must reside
in the rule set defined by the
application group. This string should
not be empty.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Name Type Input/ | Description
Output
MsgType char* Input Type of message to be evaluated. If

NEONFormatter is used, message
type is the input format name. Should
be the message type for the rule set to
load. If loading a subscription, the
subscription must reside in the rule
set defined by the message type. This
string should not be empty.

Component | NNR Input Component Type. If NNRCOMP_
Type Component MSG is used, the entire rule set is
Types loaded; if NNRCOMP_SUBS is used,

the given subscription is loaded.
See Permissions APIs on page 226 for
the NNRComponent Types

definition.
Component | char* Input Component Name. If
Name ComponentType is

NNRCOMP_SUBS, this parameter is
the subscription name. If the
ComponentType is
NNRCOMP_MSG, this parameter is
the MsgType name.

LoadNow int Input Indicates when to reload the rule set
or subscription information.

Remarks

If you specify a subscription that does not exist in the database, the
LoadRuleComponent APl removes the designated subscription, along with
the subscription’s actions, options, and rule links, from the rules cache.

If the subscription in the database contains zero actions, it is still cached. If an
associated rule does not exist in the rules cache then the subscription is
loaded without that rule link.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 55
New Era of Networks Rules Programming Reference

Chapter 2

56

If the LoadNow parameter is set (value equals 1), and the rule set is loaded
when the reload request is received, the LoadRuleComponent API
immediately reads the specified subscription from the database and updates
the rules cache. If the rule set is not loaded when the reload request is
received, then the entire rule set loads (performance hit).

If the LoadNow parameter is not set (value equals zero (0)), the rule set is
flagged and reloads the next time eval() is called. When eval() is called for the
rule set, each of the stored reload requests are completed before the eval is
executed. This is the suggested method.

Return Value

Returns 2 if the subscription in the LoadRuleComponent API call resides in a
rule set that has not been loaded into the rules cache or does not exist in the
database. This applies if the LoadNow parameter is not set (equal to 0),
because the information is not checked until eval() is called. Also returns 2 if
the component is not found in the database or cache and LoadNow is set.

Returns 1 if the LoadRuleComponent() succeeds. Returns 0 if the
LoadRuleComponent fails, or if the reload of the rule set fails and removes
the rules from cache. If the LoadNow parameter is set to 1, returns zero (0).

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

// OpenDbmsSession and CreateRulesEngine called already
// Rules (VRule object) has been used for evaluations and
// this call reloads the named Rule Set or Component

char appgrp [APP_NAME LEN] = "TestApp";
char msgtype [MSG NAME LEN] = "TestFmt";
NNRComponentTypes CompType; // £ill in
char ComponentName [SUB_NAME LEN] ; // £ill in

char ComponentType [15];
int LoadImmed = 0;
int ReloadResult = 0;

switch (CompType)
case NNRCOMP MSG:

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

ca

NEONRules APIs

strcpy (ComponentName, msgtype) ;
strcpy (ComponentType, "Message Type") ;
break;

se NNRCOMP_SUB:
strcpy (ComponentType, "Subscription");
break;

case NNRCOMP_ RULE:
case NNRCOMP_APP:
default:
cerr < "invalid component type" << endl;
return O0;
break;
}
if (! (ReloadResult = Rules->LoadRuleComponent (appgrp,
msgtype, CompType, ComponentName, LoadImmed))) {
cerr << "Error reloading rule component: ";
if (CompType == NNRCOMP MSG) {
cerr << "Message Type = "<< appgrp << ", " << msgtype <<
endl;
} else {
cerr << ComponentType << " = "<< appgrp << ", ";
cerr << msgtype << ", " << ComponentName << endl;

}

cerr << "Rules Error String > " ;

cerr << "NNR" << Rules->GetErrorNo() << " <" ;
cerr << Rules->GetErrorMessage() << " <" <<endl;
} else {
cerr << "Reload succeeded for component: ";
if (CompType == NNRCOMP MSG) ({
cerr <<"Message Type = "<< appgrp << ", ";
cerr << msgtype << endl;
} else {
cerr << ComponentType << " = "<< appgrp << ", ";
cerr << msgtype << ", " << ComponentName << endl;
}
if (ReloadResult == 2) {

cerr << "Component not found OR rule set not
currently loaded. ";
cerr << "Reload request ignored." << endl;

}

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules

Programming Reference

57

Chapter 2

58

// subsequent calls to VRule::eval use the new Rules data

Note:

The LoadRuleComponent API returns a value of 2 if the NeonRules Engine
instance has never evaluated a message using the specified application
group/message name pair and LoadNow is not set. In this case, the
LoadRuleComponent API does not load the rule set, instead, the load occurs
when the eval() APl is invoked.

See Also

CreateRulesEngine

DeleteRuleEngine

eval
GetErrorNo
GetRerror

GetErrorMessage

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

LoadRuleSet

NEONRules APIs

Using the application group and message type, LoadRuleSet() sets a flag
indicating that the system should clear any current rule set information and
load the rule set indicated by the AppName and MsgName parameters.

LoadRuleSet() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). It can be called before
VRule::eval(). However, it should never be called after an eval() and before
getsubscription(), getopt(), gethitrule(), and so on.

Syntax

int VRule::LoadRuleSet (char* AppName,
char* MsgName,
int LoadNow=0) ;

Parameters
Name Type Input/ | Description
Output
AppName | char* Input Application Group Name. Should be the
Application Group for the rule set to load.
This string should not be empty.
MsgName | char* Input Type of message to be evaluated. If
NEONFormatter is used, message type is the
input format name. Should be the Message
Type for the rule set to load. This string
should not be empty.
LoadNow | int Input Indicates when to reload the rule set
information.
Remarks

If LoadNow is zero, the default, the system reloads rule set information when
the next eval() is called. If LoadNow is 1, the reload is done immediately,

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 59

New Era of Networks Rules Programming Reference

Chapter 2

60

effectively ending the evaluation cycle, though eval() completes retrieving
subscription, action, and option information if doing so when receiving the
signal to reload. If the rule set has not been loaded previously, LoadRuleSet()
loads it only if LoadNow is set.

Note:

When LoadRuleSet is run, pointers to rule, subscription, and option
information are overwritten. To maintain the pointers and their associated
information, make a copy of the rule, subscription, and option information
before LoadRuleSet is run.

Return Value

Returns 1 if the load was performed or if the reload indicator was set for the
rule set indicated; 2 if the rule set has not been loaded, though the reload
indicator was set correctly; zero (0) if the load cannot be performed.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

// OpenDbmsSession and CreateRulesEngine called already
// Rules (VRule object) has been used for evaluations and this
// call reloads the named RuleSet

char appgrp [APP_NAME LEN] = "TestApp";
char msgtype [MSG NAME LEN] = "TestFmt";
int LoadImmed = 0;

int ReloadResult = 0;

if ((!ReloadResult = Rules->LoadRuleSet (appgrp,msgtype,
LoadImmed))) {

cerr << "Error reloading rule set: " << appgrp << ", ";

cerr << msgtype << endl;

cerr << "Rules Error String > " ;

cerr << "NNR" << Rules->GetErrorNo() << " <"
cerr << Rules->GetErrorMessage() << " <" << endl;
} else if (ReloadResult == 2)

cerr << "Rule Set has not been loaded yet. It will

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

be when eval is called." << endl;
} else {
cerr << "Rule Set Reload succeeded for:

" << appgr <<

n n
’

<< msgtype << endl;

}

// subsequent calls to VRule::eval use the new Rules data

Note:
The LoadRuleSet API returns a value of 2 if the NeonRules Engine instance

has never evaluated a message using the specified application group/
message name pair and the LoadNow is zero. In this case, the LoadRuleSet
API does not load the rule set, instead, the load occurs when the eval() APl is
invoked.

See Also

CreateRulesEngine

DeleteRuleEngine

eval
GetErrorNo
GetRerror

GetErrorMessage

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 61
New Era of Networks Rules Programming Reference

Chapter 2

populatesubscriptionlist

The populatesubscriptionlist function allows a user to retrieve a subscription
list from the neonRules engine. The method pulls the subscriptions, actions,
and options that hit for the active message. The method first pulls a
subscription from the rules object. If a subscription exists, it retrieves the first
action that applies. If the action exists, it loads all options pertaining to the
action and stores them in an option list. When the list is full, options for the
next action are added to the list. After the list of actions for the subscription is
full, the method retrieves the actions and options for the next subscription.
The populatesubscriptionlist method proceeds to load subscriptions, actions,
and options until there are no more in the rules object. Upon completion of
searching all subscriptions that hit and retrieving the applicable actions and
options, the full subscription list is returned to the user via the parameter
passed in the method call.

The populatesubscriptionlist should be used instead of the getsubscription
and getopt methods since it retrieves all eval results once, thereby releasing
VRule so that you can call eval again to apply a re-evaluation on the retrieved
data.

Syntax

int VRule::populatescriptionlist (RulesSubscriptionListé&
subsContainer)

Parameters
Name Type Input/ | Description
Output
subsContain | RulesSubs | input Subscription list from the Rules Object.
er criptionLi | output
St&

62

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Remarks

The user must create a RulesSubscriptionList before this call. This parameter
is passed by reference and the method populates the data.

Return Value
Returns 1 if list is successfully populated and 0 if it is not.

See Also

getsubscription
getopt

Error Handling

GetErrorNo

GetErrorNo() returns the error number associated with the last error that
occurred.

Syntax

int *VRule: :GetErrorNo() ;

Parameters

None

Return Value

Returns the error number associated with the last error that occurred. Zero (0)
or -1000 is returned if no error occurred.

Example

VRule *rules=CreateRulesEngine (session) ;
if (!rules->eval ("Bravo", msgname, msg, msglen)){
cout << "Fail, errno = ";
cout << GetRerror (rules->GetErrorNo()) << endl;
}elsef

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 63
New Era of Networks Rules Programming Reference

Chapter 2

// process Subscription Actions by Subscription
// and process options by Subscription Action

}
See Also

GetRerror

GetErrorMessage

64 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetErrorMessage

GetErrorMessage() returns the last error message, including any specific data
such as an Application Group Name for the current thread. This function
should be used in place of GetRerror().

Syntax

char* VRule: :GetErrorMessage () ;

Parameters

None

Return Value

Returns a pointer to a NULL-terminated string containing the description for
the last error that occurred.

Example

VRule *rule=CreateRulesEngine (session) ;
if (!rules->eval ("Bravo", msgname, msg, msglen)){
cout << "Fail, errno = ";
cout << rules->GetErrorMessage() << endl;
}elsef
// process Subscription Actions by Subscription
// and process options by Subscription Action

}

See Also

GetErrorNo

GetRerror

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 65
New Era of Networks Rules Programming Reference

Chapter 2

66

GetRerror

GetRerror() returns the description for the error number relating to a SQL or
NeoNRules processing error. SQL and neonRules processing errors are shown
in the next section. The static error message is returned with "%s"
representing where the additional data would be placed.

For example, if GetRerror(-1001) is called, it returns the following message:

Rules configuration missing Application Group -- AppGrp - %s, MsgType -
%s

Note:
GetErrorMessage() returns the last error message including additional
information replacing the "%s".

Syntax

char* GetRerror (int ErrorNo) ;

Parameters

Name Type Input/ | Description
Output

ErrorNo int Input Determines the string value containing the
meaning of the error.

Return Value

Returns a pointer to a NULL-terminated string containing the description for
the error number passed into the function.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Example

if (!rules->eval ("Bravo", msgname, msg, msglen)){
cout << "Fail, errno = ";
cout << GetRerror (rules->GetErrorNo()) << endl;

lelse{
// process Subscription Actions by Subscription
// and process options by Subscription Action

See Also

GetErrorNo

GetErrorMessage

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

67

Chapter 2

Subscription, Action, Option APIs

68

The subscription classes enables the VRule::populatesubscriptionlist method
to retrieve subscriptions, actions, and options for rules. Members of the
classes enable creation and manipulation of the data within each class.

There are six classes covered under this API section. Three are list classes and
three are object classes. The methods for each of the list classes are the same
and the methods for each object classes are the same. A description of each
class is provided below. Detailed information on the methods are only
provided for the RulesSubscriptionList class and RulesSubscription class.
Substitute "Subscription” for "Action" or "Option" to use the method to pull
the appropriate action or option information.

List Classes

The RulesSubscriptionList class allows the user to create a
RulesSubscriptionList object. This object can then be passed in the
VRule::populatesubscriptionlist member function to pull the subscriptions
that hit for the active message. The RulesSubscriptionList contains instances
of RulesSubscriptions.

The RulesActionList class allows the user to pull the actions that are valid for
a given subscription. An instance of the RulesSubscription class contains a
RulesActionList object which contains many instances of RulesActions.

The RulesOptionList class allows the user to pull the options that are valid
for a given subscription. An instance of the RulesSubscription class contains a
RulesOptionList object which contains many instances of RulesOptions.

Object Classes

The RulesSubscription class allows the user to create a RulesSubscription
object. These objects are generally found inside the RulesSubscriptionLists.
The RulesSubscription is used to traverse the list of subscriptions retrieved
from the VRule::populatesubscriptionlist method.

The RulesAction class allows the user to create a RulesAction object. These
objects are generally found inside the RulesActionLists. The RulesAction is

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

used to traverse the list of actions retrieved from the
RulesSubscription::getActionList method.

The RulesOption class allows the user to create a RulesOption object. These
objects are generally found inside the RulesOptionLists. The RulesOption is
used to traverse the list of options retrieved from the
RulesAction::getOptionList method.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 69
New Era of Networks Rules Programming Reference

Chapter 2

RulesSubscriptionList Member Functions

The RulesSubscriptionList class allows the user to create a
RulesSubscriptionList object. This object can then be passed in the
VRule::populatesubscriptionlist member function to pull the subscriptions,
actions, and options that hit for an active message.

RulesSubscriptionList Constructor

This constructor allows the user to create an instance of the
RulesSubscriptionList object.

Syntax

RulesSubscriptionList::RulesSubscriptionList ()

Parameters
N/A
Return Value

N/A

70 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

RulesSubscriptionList Destructor

This destructor deallocates the memory for the internal data object if it is not
being shared.

Syntax

RulesSubscriptionList::~RulesSubscriptionList ()

Parameters
N/A
Return Value

N/A

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 71
New Era of Networks Rules Programming Reference

Chapter 2

RulesSubscriptionList Copy Constructor

This copy constructor allows the user to get a shared copy of the
RulesSubscriptionList being passed. This method makes a shallow reference-
counted copy of RulesSubscriptionList data.With the pointer to the internal
data, the calling object references the data rather than making a separate copy
of it. This results in saving memory.

The newCopy method should be used to get an unshared copy.

Syntax

RulesSubscriptionList::RulesSubscriptionList (const ThisType&
orig)

Parameters
Name Type Input/ | Description
Output
orig const Input Pointer for the object to be copied.
ThisType&

72

Return Value

None. If the calling object is passed a NULL object, the new object remains
NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

&operator= Assignment Operator

This member function makes a shallow reference-counted copy of
RulesSubscriptionList data.With the pointer to the internal data, the calling
object references the data rather making having a separate copy of it. This
results in saving memory. The call returns an object of type
RulesSubscriptionList containing the new pointer to ThisType’s data. This
function does not allow passing a copy of itself as a parameter.

Syntax
ThisType RulesSubscriptionList: :&operator=(const ThisType&
right)
Parameters

Name Type Input/ | Description

Output
right const Input Pointer for the calling object to be copied.
ThisType&

Return Value

RulesSubscriptionList object pointing to the shared data.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 73
New Era of Networks Rules Programming Reference

Chapter 2

74

append_back

The append_back method enables adding a RulesSubscription object at the
back of the RulesSubscriptionList object. It inserts a user’s own
RulesSubscriptionList onto the back of the calling RulesSubscriptionList.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::append back
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

append_front

The append_front method enables adding a RulesSubscription object to the
front of the RulesSubscriptionList object. It inserts a user’s
RulesSubscriptionList into the front of the calling RulesSubscriptionList.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::append front
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 75
New Era of Networks Rules Programming Reference

Chapter 2

Clear

The Clear method removes all objects from the RulesSubscriptionList. The
function clears the current list of RulesSubscriptions leaving the calling
RulesSubscriptionList empty of all objects. The RulesSubscription objects in
the list are deleted. Their internal data objects are deleted if they are not
shared by other RulesSubscriptions.

The return value is of type e_SF representing SF_Success when clear
completes successfully or SF_Failure when the clear fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::clear ()

Parameters
N/A
Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

76 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

createOwnCopyOfData

This method is typically used internally to create a new RulesSubscriptionList
for a user. If the internal data is shared, it creates a new copy of internal data
for the calling object.

Syntax

void RulesSubscriptionList: :createOwnCopyOfData ()

Parameters

N/ZA

Return Value

None.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 77
New Era of Networks Rules Programming Reference

Chapter 2

78

DeleteSubscription

The DeleteSubscripiton method deletes the object in the list with the ID
number provided in the parameter list. This function deletes the subscription
from the calling RulesSubscriptionList object. It uses the integer that gets
passed as a parameter to find the appropriate RulesSubscription. The
RulesSubscription’s internal data object is deallocated if it is not being shared
by another RulesSubscription.

The return value is of type e_SF representing SF_Success when the deletion
completes successfully or SF_Failure when the deletion fails.

Syntax

virtual NNSY NAMESPACE e SF
RulesSubscriptionList::deleteSubscription (int subscriptionId)

Parameters

Name Type Input/ | Description
Output

subscripti | int Input RulesSubscription object Id.

onld

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful deletions or SF_Failure to indicate failed deletion
attempts. Returns SF_Failure if the Subscription Id is not found.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getFirst

The getFirst method returns the first item in the RulesSubscriptionList.

Syntax

virtual RulesSubscription* RulesSubscriptionList::getFirst ()

Parameters

N/ZA

Return Value

RulesSubscription pointer or NULL pointer for an empty list.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 79
New Era of Networks Rules Programming Reference

Chapter 2

80

getNewSubscription

The getNewSubscription method is used to get a new object in the
RulesSubscriptionList. This member function creates a subscription in the
calling RulesSubscriptionList, sets the Id of the new Subscription, and gives a
pointer to the new Subscription to the user. The method fails when the new
subscription is NULL or the Id cannot be set.

Syntax

virtual RulesSubscriptionList*
RulesSubscriptionList: :getNewSubscription ()

Parameters

N/A

Return Value

RulesSubscriptionList subscription pointer

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getNext

The getNext method retrieves the current object pointed to by the iterator and
moves the iterator to the next object in the RulesSubscriptionList.

Syntax

virtual RulesSubscription* RulesSubscriptionList::getNext ()

Parameters
N/A
Return Value

RulesSubscription pointer or NULL pointer for an empty list and when it
reaches the end of the list.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 81
New Era of Networks Rules Programming Reference

Chapter 2

82

insert (subscription)

This insert method enables adding an object before the current iterator
position in the RulesSubscriptionList object. When traversing the list with the
getFirst or getNext iterators, this insert method can be used to place a
subscription before the object retrieved in either "get" call. The parameter
must be a non-NULL RulesSubscription object. The return value is of type
e_SF representing SF_Success when the insert completes successfully or
SF_Failure when the insert fails.

If the current iterator position is equal to the beginning, use the push_front
method to insert a RulesSubscription before the first object.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::insert
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

insert (list)

This insert method inserts a user’s RulesSubscriptionList into the calling
RulesSubscriptionList based on the current iterator position. When traversing
the list with the getFirst or getNext iterators, this insert method can be used to
place the list before the current RulesSubscription.

The parameter must be a non-NULL RulesSubscriptionList object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::insert
(RulesSubscriptionList* pSubscriptionList)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscriptionList object.
tionList riptionList*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 83
New Era of Networks Rules Programming Reference

Chapter 2

newCopy

The newCopy constructor allows the user to get an unshared deep copy of the
RulesSubscriptionList being passed. Use this method to create a personally
owned object of type RulesSubscriptionList. The calling object creates its own
copy of internal data for itself.

Syntax

RulesSubscriptionList* RulesSubscriptionList: :newCopy ()

Parameters

N/ZA

Return Value

A pointer to the new copy of RulesSubscriptionList object with its own date.

84 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

push_front

The push_front method enables adding an object to the front of the
RulesSubscriptionList object. It inserts a subscription into the front of the
subscription list before any existing objects.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::push front
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 85
New Era of Networks Rules Programming Reference

Chapter 2

push_back

The push_back method enables adding an object to the end of the
RulesSubscriptionList object. The subscription is inserted after the "end"
iterator pointer position after any existing objects.

The parameter must be a non-NULL RulesSubscription object. The return
value is of type e_SF representing SF_Success when insert completes
successfully or SF_Failure when the insert fails.

Syntax

virtual NNSY NAMESPACE e SF RulesSubscriptionList::push_back
(RulesSubscription* pSubscription)

Parameters
Name Type Input/ | Description
Output
pSubscrip | RulesSubsc | Input non-NULL RulesSubscription object.
tion ription*

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

86 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

size

The size method returns the number of objects in the RulesSubscriptionList.
Syntax

virtual int RulesSubscriptionList::size()

Parameters

N/ZA

Return Value

Number of objects contained in the calling RulesSubscriptionList.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 87
New Era of Networks Rules Programming Reference

Chapter 2

RulesSubscription Member Functions

The RulesSubscription class allows the user to create a RulesSubscription
object. These objects are generally found inside the RulesSubscriptionLists.
The RulesSubscription is used to traverse the list retrieved from the
VRule::populatesubscriptionlist function.

See RulesSubscription.h

RulesSubscription Constructor

This constructor allows the user to create an instance of the RulesSubscription
object.

Syntax

RulesSubscription: :RulesSubscription ()

Parameters
N/A
Return Value

N/A

88 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

RulesSubscription Destructor

This destructor deallocates the memory for the internal data object if it is not
being shared.

Syntax

RulesSubscription: :~RulesSubscription ()

Parameters
N/A
Return Value

N/A

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 89
New Era of Networks Rules Programming Reference

Chapter 2

RulesSubscription Copy Constructor

This copy constructor allows the user to get a shared copy of the
RulesSubscription being passed. The newCopy method should be used to get
an unshared copy.

Syntax

RulesSubscription: :RulesSubscription (const ThisType& orig)

Parameters
Name Type Input/ | Description
Output
orig const Input Pointer for the object to be copied.
ThisType&

Return Value

None. If the calling object is passed a NULL object, the object remains NULL.

90 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

&operator= Assignment Operator

This member function makes a shallow reference-counted copy of
RulesSubscription data.With the pointer to the internal data, the calling object
references the data rather than making a separate copy of it. This results in
saving memory.

The call returns an object of type RulesSubscription containing the new
pointer to ThisType’s data. This function does not allow passing a copy of
itself as a parameter.

Syntax

ThisType RulesSubscription::&operator=(const ThisType& right)

Parameters
Name Type Input/ | Description
Output
right const Input Pointer for the calling object to the internal
ThisType& data.

Return Value

RulesSubscription object pointing to the shared data.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 91
New Era of Networks Rules Programming Reference

Chapter 2

92

compareByld
The compareByld method compares this subscription id with the id in the int
parameter.

The parameter must be a non-negative integer. The return value is of type
e_SF representing SF_Success when the Ids are equal or SF_Failure when the
the Ids are not the same.

Syntax

NNSY NAMESPACE e SF RulesSubscription::compareById(int
subscriptionId)

Parameters
Name Type Input/ | Description
Output
subscripti | int Input Id of the RulesSubscription object.
onld

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate equality or SF_Failure to indicate inequality. Returns SF_Failure if
NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

createOwnCopyOfData

This method is typically used internally to create a new RulesSubscription for
a user. If the internal data is shared, it creates a new copy of internal data for
the calling object.

Syntax

void RulesSubscription: :createOwnCopyOfData ()

Parameters

N/ZA

Return Value

None.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 93
New Era of Networks Rules Programming Reference

Chapter 2

94

getActionList

The getActionList method retrieves the current action list to the user.

Syntax

RulesActionList* RulesSubscription::getActionList ()

Parameters

N/ZA

Return Value

A pointer to the RulesActionList for this RulesSubsctiption.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getld

The getld method retrieves the subscriptionld via the contents of the int
parameter. It fails when the object’s Id is invalid (empty).

The parameter is set by this method. The return value is of type e_SF
representing SF_Success when the retrieval completes successfully or
SF_Failure when the retrieval fails.

Syntax
NNSY NAMESPACE e_SF RulesSubscription::getId(inté&
subscriptionId)
Parameters
Name Type Input/ | Description
Output
subscripti | int& Output Id of the RulesSubscription object.
onld

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 95
New Era of Networks Rules Programming Reference

Chapter 2

getName

The getName method retrieves the subscription name via the contents of the
STL_STRING parameter. It fails when the object’s value is invalid (empty).

The parameter is set by this method. The return value is of type e_SF
representing SF_Success when the retrieval completes successfully or
SF_Failure when the retrieval fails.

Syntax

NNSY NAMESPACE e_ SF RulesSubscription::getName (const
STL STRING& subscriptionName)

Parameters
Name Type Input/ | Description
Output
subscripti | const Output name of the RulesSubscription
onName STL_STRING& object.

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

96 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

newCopy

The newCopy constructor allows the user to get an unshared deep copy of the
RulesSubscription being passed. Use this method to create a personally
owned object of type RulesSubscription. The calling object creates its own
copy of internal data for itself.

Syntax

RulesSubscriptionList* RulesSubscription: :newCopy ()

Parameters

N/A

Return Value

A pointer to the new copy of the RulesSubscription object with its own data.
Example

RulesSubscriptionList yourRulesSubscriptionList;

//populate this list...

Rules->populatesubscriptionlist (yourRulesSubscriptionList) ;

RulesSubscription *pYourRulesSubscription =
yourSubscriptionList.getFirst () ;

RulesSubscription *pMyRulesSubscription;

pMyRulesSubscription = pYourRulesSubscriptionList->newCopy () ;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 97
New Era of Networks Rules Programming Reference

Chapter 2

98

setld

The setld method sets the subscriptionld to the contents of the int parameter.
It fails when the parameter is invalid (empty).

The parameter must be a non-negative integer. The return value is of type
e_SF representing SF_Success when the update completes successfully or
SF_Failure when the update fails.

Syntax

NNSY NAMESPACE e_SF RulesSubscription::setId(inté&
subscriptionId)

Parameters
Name Type Input/ | Description
Output
subscripti | int& Input Id of the RulesSubscription object.
onld

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

setName

The setName method sets the subscription name to the contents of the
STL_STRING parameter. It fails when the parameter is invalid (empty).

The parameter must be a non-empty string object. The return value is of type
e_SF representing SF_Success when the update completes successfully or
SF_Failure when the update fails.

Syntax

NNSY NAMESPACE e SF RulesSubscription::setName (const
STL STRING& subscriptionName)

Parameters
Name Type Input/ | Description
Output
subscripti | const Input name of the RulesSubscription object.
onName STL_STRING

Return Value

Type e_SF return type, using the NNSY_NAMESPACE, to return SF_Success
to indicate successful inserts or SF_Failure to indicate failed insert attempts.
Returns SF_Failure if NULL.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 99
New Era of Networks Rules Programming Reference

Chapter 2

Subscription, Action, Option Class Usage

The following information provides an example of using these classes. To
view a full code example of the previous description, please see lines 406 to
506 of ruletest.cpp.

Populate Subscription List

After performing a Rules Evaluation where some Rules evaluate to true and
some subscriptions need to be performed, use the VRule method
populatesubscriptionlist to get a complete list of all of the subscriptions that
have hit for the active message.

The method needs a copy of a RulesSubscriptionList with its own memory.
The object should then be passed to the method as a parameter:

RulesSubscriptionList *pSubscriptionList =
newRulesSubscriptionList;
rules->populatesubscriptionlist(*pSubscriptionList)

Traverse the Subscription List

To begin traversing the list, use the RulesSubscription::getFirst method to
obtain the first RulesSubscription from the pSubscriptionList:

RulesSubscription *pSubscription = NULL;
pSubscription = pSubscriptionList->getFirst();

The RulesSubscription ID number and the name can now be retrieved for use
using the getld and getName member functions of the RulesSubsciption class.
Create an integer for the subscription ID and pass the variable to the method
as a parameter. The function writes the result to your integer. For the name,
create an STL_STRING and pass the variable to the method as a parameter.
The function writes the result to your string:

int subscriptionId;

STL STRING subscriptionName;
pSubscription->getId(subscriptionId) ;
pSubscription->getName (subscriptionName) ;

If a RulesSubscription exists in the list, enter a loop to retrieve all of the
actions that may be in the subscription.

100 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Get and Traverse Subscription’s Actions
For each subscription in the list, ask each subscription for its RulesActionList:

RulesActionList = *pActionList = NULL;
pActionList = pSubscription->getActionList();

To begin traversing the list, create a RulesAction with its own memory and
use the RulesActionList::getFirst method to obtain the first RulesAction from
the pActionList;

RulesAction = *pAction = NULL;
pAction = pActionList->getFirst();

The RulesAction ID number and the name can now be retrieved for use using
the getld and getName member functions of the RulesAction class. Create an
integer for the subscription ID and pass the variable to the method as a
parameter. The function writes the result to your integer. For the name, create
an STL_STRING and pass the variable to the method as a parameter. The
function writes the result to your string.

int actionId;
pAction->getId(actionId) ;

STL STRING actionName;
pAction->getName (actionName) ;

If a RulesAction exists in the list, enter a loop to retrieve all of the options in
the action.
Get and Traverse Subscription’s Options
Then for each action, ask the action for its RulesOptionList:
RulesOptionList *pOptionList == NULL;
pOptionList = pAction->getOptionList();
To begin traversing the list, use the RulesOptionList::getFirst method to
obtain the first RulesOption from the pOptionList;

RulesOption *pOption == NULL;
pOption = pOptionList->getFirst();

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 101
New Era of Networks Rules Programming Reference

Chapter 2

102

The RulesOption name and value can now be retrieved for use using the
getName and getValue member functions of the RulesOption class. For the
name, create an STL_STRING and pass the variable to the method as a
parameter. For the value, create an STL_STRING and pass the variable to the
method as a parameter. The function writes the result to your object.

STL) STRING optionName, optionValue;
pOption->getName (optionName) ;
pOption->getValue (optionValue) ;

If a RulesOption exists in the list, enter a loop to retrieve all of the options in
the list. Use the RulesOptionList::getNext method to retrieve all of the options
in for this action by calling it from inside of a loop. The method returns NULL
when no more options exist in the list.

pOption = pOptionList->getNext();
After retrieving all of the options from this particular action, ask you action

list for another action and repeat the process of retrieving this action’s
options.

pAction = pActionList->getNext();

If no more actions exist in this list, ask the subscription list for another
subscription and repeat the process of retrieving this subscription’s actions.

pSubscription = pSubscriptionList->getNext();

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Evaluation Field VValue Containers

The NNFieldValueContainer class is used as the base class for any class that
contains field values that can be retrieved by name. The Formatter and
NNNameValueL.ist classes inherit from this class. Users can input their own
object containing field values into the eval() API as long as the object inherits
from this NNFieldValueContainer base class and has the correct methods.

class NNFieldvValueContainer

{
public:

NNFieldValueContainer () ;
virtual ~NNFieldValueContainer () ;
virtual char* GetFieldString(char* name,int instance=-1)=0;
virtual int GetFieldCount (char *name) = 0;

}i

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 103

New Era of Networks Rules Programming Reference

Chapter 2

NNFieldValueContainer Member Functions

GetField

Gets the field represented by the name in the form of an NDO. The first
instance = 0. All classes that need to pass data to a rules evaluation must
inherit from the NNFieldValueContainer and implement GetField.

Syntax

const NNDOData * GetField(char * name, int instance)

Parameters
Name Type Description
name char* The name identifies the field being
retrieved.
instance int The instance identifies the instance of
the field in the corresponding container
when repeating names exist.

Return Value

A pointer to an NDO Data object. Type of unset when the object is empty and
the field does exist in the container.

104 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetFieldString

This GetFieldString method is used to return values for a specific instance in a
message. This method is used for expressions containing
<fieldname>[<instance>] where the first instance is represented as zero (0).
All classes that need to pass a rules evaluation must inherit from
NNFieldValueContainer and implement GetFieldString.

Syntax

char* NNFieldValueContainer::GetFieldString (char* name, int
instance = -1)

Description of Instance Syntax

For NeonFOrmatter messages, the -1 provides the instruction to retrieve the
current instance. For NNNameValueL.ist data evaluations, the -1 gets
converted to zero (0) to retrieve the first instance.

Parameters
Name Type Description
name char* The name of the field to be evaluated.
instance int The instance of the field that determines
the return value.

Return Value

This returns a null-terminated string representation of the last specific
instance of this field in the evaluation data. NULL or an empty string is
returned if there is no instance of the field.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 105
New Era of Networks Rules Programming Reference

Chapter 2

106

GetFieldCount

This pure virtual member function retrieves an integer for the number of
repeating instances of this field in the active message. A field can have a
NULL or empty value in it; therefore, NULL values get included in count. All
classes that need to pass a rules evaluation must inherit from
NNFieldValueContainer and implement GetFieldCount.

Syntax

int GetFieldCount (char *name)

Parameters
Name Type Description
name char* The name of the field to be evaluated.

Return Value

Returns the number of repeating fields in the active message.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

GetlnputCodeSet

Gets the code set attribute for the active container and returns it to the user
via the codeSetStr parameter.

Syntax

const char * GetInputCodeSet ()

Parameters
N/A

Return Value

Character string representation for the code set name.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 107
New Era of Networks Rules Programming Reference

Chapter 2

GetlnputLocale

Gets the locale attribute for the active container and returns it to the user via
the localeStr parameter.

Syntax

public abstract const char * GetInputLocale()

Parameters
N/A

Return Value

Character string representation of the locale name.

108 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

SetlnputCodeSet

NEONRules APIs

Sets the code set for the active container as an attribute of the object.

Syntax

public abstract int SetInputCodeSet (const char * codeset)

Parameters
Name Type Description
codeset const char* An STL string representation of the
codeSetStr.

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

109

Chapter 2

110

SetlnputLocale

Sets the locale for the active container as an attribute of the object.

Syntax

int SetInputLocale (const char * locale)

Parameters
Name Type Description
locale const char* An STL string representation of the

locale name.

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

NNNameValueList Member Functions

The NNNameValueList class is used to identify field values that can be
retrieved by name. The NNNameValueL.ist contains a list of field name and
value pairs from the NNName and NNValue classes where the name is up to
120 characters and the value can be of any length for rules evaluation.
Multiple instances of each field name can be stored. Access to these instances
is performed with an index starting at 0.

Users are able to input their own object containing field values in the eval()
API as long as the object inherits from the NNFieldValueContainer base class
and has the correct functions. Users creating their own messages to be passed
to a rules eval have to perform their own name length validation before
passing them into a NNNameValueL.ist.

Any call to GetFieldString must be accompanied by an instance for the
NNNameValueList to retrieve the correct value. The instance defaults to -1;
however, the NNNameValueList converts this to a zero and retrieves the first
instance.

class NNNameValueList: public NNFieldValueContainer (
public:
NNNameValueList () ;
~NNNameValueList () ;
int Add(const NNName *pName, const NNValue *pValue) ;
int Read(const NNName *pName, NNValue *pValue) ;
int Update (const NNName *pName, NNValue *pValue) ;
int Delete(const NNName *pName) ;
int ClearAll();
int GetFirst (NNName *&pName, NNValue *&pValue) ;
int GetNext (NNName *&pName, NNValue *&pValue) ;
char* GetFieldString(char *fieldname, int instance);
const NNDOData * GetField(char * fieldname, int instance)
int GetFieldCount (char * fieldname)
const char * GetInputCodeSet ()
const char * GetInputLocale ()
int SetInputCodeSet (const char * codeset)
int SetInputLocale (const char * locale)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 111
New Era of Networks Rules Programming Reference

Chapter 2

Name Type Description
*pName NNName Object name
*pValue NNValue Object value

The NNNameValueList member functions use the NNName and NNValue
classes to add name and value information. The names must be unique to
retrieve the appropriate value. SeeNNName Member Functions on page 128
and NNValue Member Functions on page 141 for more information.

The NNNameValueList contains a list of field name and value pairs where
the name is at most 120 characters and the value can be of any length for rules
evaluation. Validation of the name length is only performed for
NEONFormatter data. Anyone creating their own messages to be passed to a
rules eval has to perform their own length validation before passing them
into a NNNameValueList.

112 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

NameValuelList Constructor

The NameValueList constructor creates an instance of this object to allow
applications to call the methods for this class. The contents of this object is a
list of field name and value pairs where the name is any length up to 120
characters and the value is any length. Currently, the name and value must be
NULL-terminated.

Syntax

void NNNameValueList::NNNameValueList ()

Parameters
N/A

Return Value
N/A

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 113
New Era of Networks Rules Programming Reference

Chapter 2

~NNNameValuelList Destructor

The NameValueList destructor allows applications to remove an instance of

this object. The space for the name and value strings are deallocated by this
destructor.

Syntax

void NNNameValueList: :~NNNameValueList ()

Return Value

NZA.

114 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

Add

The Add member function uses the NNName and NNValue classes to add a
name and value pair to the list of items. The name may be up to 120
characters in length and the value can be of any length. If the name already
exists, the pair is added to the list after the previous pair with the same field

name.
Syntax
int NNNameValueList::Add (const NNName *pName, const NNValue
*pValue)
Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.

Return Value

Returns a 1 if the pair was added successfully.
See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 115
New Era of Networks Rules Programming Reference

Chapter 2

116

Read

The Read member function allows the user to retrieve a value from the list of
items based on the item name. If the name and instance of that name exist, the
value is returned in the pValue parameter.

Syntax

int NNNameValueList::Read(const NNName *pName, const NNValue
*pValue, int instance)

Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.
instance int Instance value when a group of items

exist with the same name.

Return Value

Returns a 1 if the value was found successfully. Otherwise, returns zero (0).

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

Update

The Update member function allows the user to update the value in a name/
value pair inside the list of items. If the name and instance of that name
already exist, the value is updated. If the name and instance of that name do
not exist, it is not added to the list. The Add method is needed to add the
name and value to the list.

Syntax

int NNNameValueList::Update (const NNName *pName, const NNValue
*pValue, int instance)

Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.
instance int Instance value when a group of items
exist with the same name.

Return Value

Returns a 1 if the update was successful.

Returns 0 if the name and instance were not found or the update could not be
performed.

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 117
New Era of Networks Rules Programming Reference

Chapter 2

118

Delete

The Delete member function allows the user to delete a name and value pair
inside the list of items based on the name. If the name and instance of that

name exist, the item is deleted. If the name and instance of that name does not
exist, no changes are made.

Syntax

int NNNameValueList::Delete (const NNName *pName, int instance)

Parameters
Name Type Description
NNName *pName Object name.
instance int Instance value when a group of items

exist with the same name.

Return Value

Returns a 1 if the item was deleted successfully. A return value of 0 means
that no changes were made.

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

ClearAll
The ClearAll member function allows the user to delete the list of items.
Syntax

int NNNameValueList::ClearAll ()

Parameters

N/A

Return Value

Returns a 1 if the items were deleted successfully.
See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 119
New Era of Networks Rules Programming Reference

Chapter 2

120

GetFirst

The GetFirst member function allows the user to retrieve the first name value
pair in the NameValueList. If the name or value does not exist, the function

returns

Syntax

int NNNameValueList::GetFirst (const NNName *pName, const

NNValue *pValue)

Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.

Return Value

Returns a 1 if the NameValue pair was found successfully. Returns a 0 if the

function failed to find a valid pair.

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

GetNext

The GetNext member functions allows the user to retrieve the next
NameValue pair in the NameValue list.

Syntax
int NNNameValueList::GetNext (const NNName *pName, const NNValue
*pValue)
Parameters
Name Type Description
NNName *pName Object name.
NNValue *pValue Object value.
Remarks

GetFirst() should be called prior to calling GetNext().
Return Value

Returns a 1 if the NameValue pair was found successfully.

Returns a 0 if the function failed to find a valid pair or if the GetFirst function
has not been applied.

See Also

NNName
NNValue

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 121
New Era of Networks Rules Programming Reference

Chapter 2

122

GetField

Retrieves an NDO representation of the field value for the given instance of

the name provided.
Syntax

const NNDOData *

GetField (char * fieldname, int instance)

Parameters
Name Type Description
fieldname char* The fieldname identifies the field in the
corresponding container.
instance int The instance identifies the instance of

the field in the corresponding container.

Return Value

NNDOData* is a pointer to the container's NDO representation of the value.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

GetFieldCount

Retrieves an integer representing the number of elements with the given
fieldname in the active container.

Syntax

public int GetFieldCount (char * fieldname)

Parameters
Name Type Description
fieldname char* The fieldname identifies the field in the
corresponding container.

Return Value

An integer for the number of elements with the given fieldname.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 123
New Era of Networks Rules Programming Reference

Chapter 2

GetlnputCodeSet

Gets the code set attribute for the active container and returns it to the user
via the codeSetStr parameter.

Syntax

public const char * GetInputCodeSet ()

Parameters
N/A

Return Value

Character string representation for the code set name.

124 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetlnputLocale

Gets the locale attribute for the active container and returns it to the user via
the localeStr parameter.

Syntax

public const char * GetInputLocale ()

Parameters
N/A

Return Value

Character string representation of the locale name.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 125
New Era of Networks Rules Programming Reference

Chapter 2

126

GetlnputCodeSet

Sets the code set for the active container as an attribute of the object.

Syntax

public int SetInputCodeSet (const char * codeset)

Parameters
Name Type Description
codeset char* An STL string representation of the

codeSetStr.

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

SetlnputLocale

NEONRules APIs

Sets the locale for the active container as an attribute of the object.

Syntax

public int SetInputLocale (const char * locale)

Parameters
Name Type Description
locale char* An STL string representation of the

locale name.

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

127

Chapter 2

NNName Member Functions

The NNName class is used for some of the NNNameValueList methods to

identify the object from which field name information is retrieved. The names
within the object may be up to 120 characters for use within rules. This class
enables retrieval of field or object name information without using the
NEONFormatter to parse the information.

class NNName {
public:
NNName () ;
NNName (char* name) ;
NNName (char* name, int length) ;
NNName (const NNName& Original) ;
~NNName () ;
int set (char* name) ;
int set (char* name, int length);
friend bool operator<(const NNName& namel,
const NNName& name2) ;
friend bool operator==(const NNName& namel,
const NNName& name2) ;
void operator=(const NNName& namel) ;
bool IsEmpty () ;
char* GetString() ;
int GetLength() ;

128 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

NNName Constructor

The default constructor creates an empty NNName object. Use one of the set()
methods to set the name. ISEmpty() returns true, GetLength() returns 0, and
GetString() returns an empty string after NNINlame is created using this
constructor.

Syntax

NNName : : NNName ()

Parameters

N/ZA

Return Value

None

NNName Constructor

This constructor creates a NNName object and sets the name to the NULL-
terminated value given. The character array is copied and the length of the
NNName object is set to strlen(hame).

Syntax

NNName : : NNName (char* name)

Parameters
Name Type Description
name char* NULL-terminated Field name

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 129
New Era of Networks Rules Programming Reference

Chapter 2

NNName Constructor

This constructor creates a NNName object and sets the name to the value
given. The character array is copied and the length of the NNName object is
set to the length given. The character array has a NULL (\0O) placed at the end

when using this method.

Syntax

NNName : : NNName (char* name,

int length)

Parameters
Name Type Description
name char* Field name
length int Data length, in bytes, of the name to be evaluated

130

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

NNName Copy Constructor

This copy constructor creates a NNName object and sets the name to the
name in the passed NNName parameter. The character array is copied and
the length of the NNName object is set to the length given.

Syntax

NNName : : NNName (const NNName &Original)

Parameters
Name Type Description
&Original NNName NNName object to copy

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 131
New Era of Networks Rules Programming Reference

Chapter 2

NNName Destructor

This NNName destructor deallocates the memory used by the character
array.

Syntax

NNName : : ~NNName ()

Parameters
N/A

Return Value

None

132 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

set

This set member function sets the name to the NULL-terminated value given.
The character array is copied and the length of the NNName object is set to
strlen(name). If the NNName was not previously empty, the old name is
deallocated before the new name is copied.

Syntax

int NNName: :set (char* name)

Parameters
Name Type Description
name char* NULL-terminated Field name

Return Value

Return value is always 1.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 133
New Era of Networks Rules Programming Reference

Chapter 2

set

This set member function sets the name to the value given. The character
array is copied and the length given. If the NNName was not previously
empty, the old name is deallocated before the new name is copied. The
character array has a NULL (\O) placed at the end when using this method.

Syntax

int NNName: :set (char* name, int length)

Parameters
Name Type Description
name char* Field name
length int Data length, in bytes, of the name to be evaluated

Return Value

Return value is always 1.

134 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

operator<

This operator compares two NNName instances. Each character in the name
is compared (case-sensitive comparison). If the characters are all the same and
objects are the same length, the NNIName objects are said to be equal. If one
NNName is longer but all the characters up to that point are the same, the
longer NNName is said to be greater.

This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax

bool operator< (const NNName& namel, const NNName& name2)

Parameters
Name Type Description
namel NNName & First object instance against which the second
instance is evaluated
name2 NNName & Second object instance

Return Value

Return value true if the first object is less than the second object Otherwise
false is returned.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 135
New Era of Networks Rules Programming Reference

Chapter 2

136

operator==

This operator function compares two NNName instances. Each character in
the name is compared (case-sensitive comparison). If the characters are all the
same and objects are the same length, the NNName objects are equal. If one
NNName is longer but all the characters up to that point are the same, the
longer NNName is greater.

This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax
bool operator== (const NNName& namel, const NNName& name2)
Parameters
Name Type Description
namel NNName & First object instance against which the second
instance is evaluated
name2 NNName & Second object instance

Return Value

Return value true if the object values are equal. Otherwise false is returned.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

operator=

This assignment operator sets the current NNName value to be the same as
the one passed into the method (right-hand side of the equal sign). If the
current NNIName has data, that memory is cleared and the character array
and length are copied from the NNIName parameter.

Syntax

void NNName: :operator= (const NNName& namel)

Parameters
Name Type Description
namel NNName & Object instance that specifies the setting for the
current NNName value

Return Value

None.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 137
New Era of Networks Rules Programming Reference

Chapter 2

IsEmpty

The IsEmpty method returns true if the NNName is empty (empty string,
length is 0).

Syntax

bool NNName: : IsEmpty ()

Parameters
N/A

Return Value

Returns true if the object is empty. Otherwise false is returned.

138 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetString

The GetString method returns a NULL-terminated string value. If the original
character array has embedded NULL characters, these characters look like the
end of the string. An empty string is returned (") if the NN Name is empty.

Syntax

char* NNName: :GetString/()

Parameters
N/A

Remarks

Do not modify the string returned. If modifications are required, copy the
value into a locally-allocated memory location.

Return Value

Returns a character pointer to the memory inside the object.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 139
New Era of Networks Rules Programming Reference

Chapter 2

GetLength

The GetLength method returns the length of the character array (up to, but
not including, the final NULL-character). This should match
strlen(SetString()).

Syntax

int NNName: :GetLength ()

Parameters
N/A

Return Value

Returns a non-negative whole number for the length of the NNIName; returns
zero (0) if the NNName is empty.

140 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NNValue Member Functions

The NNValue class is used for some of the NNNameValueList methods to
identify the value information to retrieve. The values within the object may be
up of any length. This class enables retrieval of field or object value
information without using the NeonFormatter to parse the information.

class NNValue {
public:

NNValue () ;
NNValue (char * pValue, char * pEncoding = 0, char
pLocale = 0);

NEONRules APIs

*

NNValue (char * pValue, unsigned int & length, char *
pEncoding = 0, char * pLocale = 0);

NNValue (const NNValue& Original) ;

~NNValue () ;

int set (char * pValue, char * pEncoding = 0, char
pLocale = 0);

int set (char* value, int length);

friend bool operator<(const NNValue& valuel,
const NNValue& value2) ;

friend bool operator==(const NNValue& valuel,
const NNValue& value2) ;

void operator=(const NNValue& valuel) ;

bool IsEmpty () ;

char* GetString() ;

int GetLength() ;

NNValue (NNDOData * pNdoData)

const const I18NEncodingContext * getCodeSet ()

const NNDOData * GetField()

const const I18NLocaleContext * getLocale()

int set (NNDOData * pNdoData)

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

*

141

Chapter 2

NNValue Constructor

The default constructor creates an empty NNValue object. Use one of the set()
methods to then set the value. ISEmpty() returns true, GetLength() returns 0,
and GetString() returns an empty string after NNValue is created using this

constructor.
Syntax

public NNValue (NNDOData * pNdoData)

Parameters
Name Type Description
pNdoData NNDOData | The NDO object that used to create a new
NNValue.
Return Value
None
142 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

NNValue Constructor

This constructor creates a NNValue object and sets the value to the NULL-
terminated value given. The character array is copied and the length of the
NNValue object is set to strlen(value).

Syntax

public NNValue (char * pValue, unsigned int & length, char *
pEncoding, char * pLocale)

Parameters

Name Type Description

pValue char* NULL-terminated Field value.

length int Data length, in bytes, of the value to be evaluated.

pEncoding char* The encoding character string to be used for this
object's encoding.

pLocale char* The locale character string to be used for this
object's locale.

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 143
New Era of Networks Rules Programming Reference

Chapter 2

144

NNValue Constructor

This constructor creates a NNValue object and sets the value to the value
given. The character array is copied and the length of the NNValue object is
set to the length given. The character array has a NULL (\0O) placed at the end

when using this method.

Syntax

public NNValue (char * pValue, char * pEncoding, char * pLocale)

Parameters
Name Type Description
pValue char * Field value.
pEncoding char * The encoding character string to be used for this
object's encoding.
pLocale char * The locale character string to be used for this

object's locale.

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

NNValue Copy Constructor

This copy constructor creates a NNValue object and sets the value to the
value in the passed NNValue parameter. The character array is copied and
the length of the NNValue object is set to the length given.

Syntax

NNValue: :NNValue (const NNValue &Original)

Parameters
Name Type Description
&Original NNvalue NNValue object to copy.

Return Value

None

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 145
New Era of Networks Rules Programming Reference

Chapter 2

NNValue Destructor

This NNValue destructor deallocates the memory used by the character
array.

Syntax

NNValue: : ~NNValue ()

Parameters
N/A

Return Value

None

146 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

getCodeSet
Retrieves the I18NEncodingContext object for this object's encoding.
Syntax

public const I18NEncodingContext * getCodeSet ()

Parameters
N/A

Return Value

18NEncodingContext* is a pointer to a globally allocated
118NEncodingContext object.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 147
New Era of Networks Rules Programming Reference

Chapter 2

getLocale

Retrieves the 118N LocaleContext object for this object's locale.

Syntax

public const I18NLocaleContext * getLocale ()

Parameters
N/A

Return Value

118N LocaleContext is a pointer to a globally allocated 118NLocaleContext
object.

148 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetField
Retrieves an NNOData object representation of this object's data contents.
Syntax

public const :: NNDOData * GetField()

Parameters
N/A

Return Value

A pointer to this object's NNDOData attribute.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 149
New Era of Networks Rules Programming Reference

Chapter 2

150

set

Sets this object's attributes with the NDO parameter.

Syntax

public int set (NNDOData * pNdoData)

Parameters
Name Type Description
pNdoData NNDOData | The NDO representation of this object's new data

attributes.

Return Value

An integer representing 0 for failure and 1 for success.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

set

NEONRules APIs

This set member function sets the value to the NULL-terminated value given.
The character array is copied and the length of the NNValue object is set to
strlen(value). If the NNValue was not previously empty, the old value is
deallocated before the new value is copied.

Syntax

public int set(char * pValue, char * pEncoding, char * pLocale)

Parameters
Name Type Description
pValue char * NULL-terminated Field value.
pEncoding char * The character string representation of this object's
new encoding.
pLocale char * The character string representation of this object's

new locale.

Return Value

Return value is always 1.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 151
New Era of Networks Rules Programming Reference

Chapter 2

152

set

This set member function sets the value to the value given. The character
array is copied and the length given. If the NNValue was not previously
empty, the old value is deallocated before the new value is copied. The
character array has a NULL (\O) placed at the end when using this method.

Syntax

public int set (char * pValue, unsigned int length, char *

pEncoding, char * pLocale)

Parameters
Name Type Description
pValue char* Field value
length int Data length, in bytes, of the value to be evaluated
pEncoding char * The character string representation of this object's
new encoding.
pLocale char * The character string representation of this object's

new locale.

Return Value

Return value is always 1.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules APIs

operator<

This operator compares two NNValue instances. Each character in the value
is compared (case-sensitive comparison). If the characters are all the same and
objects are the same length, the NNValue objects are said to be equal. If one
NNValue is longer but all the characters up to that point are the same, the
longer NNValue is said to be greater.

This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax

bool operator< (const NNValue& valuel, const NNValue& value2)

Parameters
Name Type Description
valuel NNValue& First object instance against which the second
instance is evaluated
value2 NNValue& Second object instance

Return Value

Return value true if the first object is less than the second object. Otherwise,
false is returned.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 153
New Era of Networks Rules Programming Reference

Chapter 2

154

operator==

This operator function compares two NNValue instances. Each character in
the value is compared (case-sensitive comparison). If the characters are all the
same and objects are the same length, the NNValue objects are said to be
equal. If one NNValue is longer but all the characters up to that point are the
same, the longer NNValue is said to be greater.

This function returns different values on systems with different character
sets, such as ASCII and EBCDIC systems, which sort characters in different
orders. This function uses the sort order for the local system.

Syntax
bool operator== (const NNValue& valuel, const NNValue& value2)
Parameters
Name Type Description
valuel NNValue& First object instance against which the second
instance is evaluated
value2 NNValue& Second object instance

Return Value

Return value true if the object values are equal. Otherwise false is returned.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

operator=

This assignment operator sets the current NNValue value to be the same as
the one passed into the method (right-hand side of the equal sign). If the
current NNValue has data, that memory is cleared and the character array
and length are copied from the NNValue parameter.

Syntax

void NNValue: :operator= (const NNValue& valuel)

Parameters
Name Type Description
valuel NNValue& Object instance that specifies the setting for the
current NNValue value

Return Value

None.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 155
New Era of Networks Rules Programming Reference

Chapter 2

IsEmpty

The IsEmpty method returns true if the NNValue is empty (empty string,
length is 0).

Syntax

bool NNValue: :IsSEmpty ()

Parameters
N/A

Return Value

Returns true if the object is empty. Otherwise false is returned.

156 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules APIs

GetString

The GetString method returns a NULL-terminated string value. If the original
character array has embedded NULL characters, these characters look like the
end of the string. An empty string is returned (") if the NNValue is empty.

Syntax

char* NNValue::GetString/()

Parameters
N/A

Remarks

Do not modify the string returned. If modifications are required, copy the
value into a locally-allocated memory location.

Return Value

Returns a character pointer to the memory inside the object.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 157
New Era of Networks Rules Programming Reference

Chapter 2

GetLength

The GetLength method returns the length of the character array (up to, but
not including, the final NULL-character). This should match
strlen(SetString()).

Syntax

int NNValue::GetLength()

Parameters
N/A

Return Value

Returns a non-negative whole number for the length of the NNValue; returns
zero (0) if the NNValue is empty.

158 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

Chapter 3
wowrues MaNagement APIs

This chapter includes the following information:

NEONRules Management API Structures
Overall NEONRules Management APIs and Macros
Application Group Management APIs
Message Type Management APIs

Rule Management APIs

Permissions APIs

Operator Management APIs

Expression Management APIs

Argument Management APls
Subscription Management APIs

Action Management APIs

Option Management APls

NEONRules Management Error Handling

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

159

NEoNRules Management APls enable users to add, update, delete, and read
rules. To use NeoNRules Management APls, include the following header files
located in the include directory:

nnrmgr.h
nnperm.h
rdefs.h

NeoNRules components must be added in the following order:

1.

2
3
4
5.
6
7
8
9

Application Group
Message Type

Rule

Rule Permission

Rule Expression
Argument

Subscription
Subscription Permission

Action

10. Option

The names of formats and fields should not be changed if they are used by a
rule. The following occurs if format and field names are changed:

If you change a format name or the field names in a format, rules
associated with that format become invalid.

Subscription actions using format names fail if the format name is
changed.

If a field name is changed, the arguments using the field name
become invalid and the rule fails.

See the neonFormatter Programming Reference for information on changing
formats and field names.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 160
New Era of Networks Rules Programming Reference

NEONRules Management APIs

wonrules Management API1 Structures

NNDate

NNDate is passed as part of an argument in several NeonRules Management
functions and should be cleared using NNR_CLEAR prior to use in a function

Currently, dates are defaulted, and this structure is provided for forward

char century;
char year;

char month;
char day;

char hours;
char minutes;
char seconds;
char filler;
short mseconds;

long InitFlag;

call.

compatibility.

Syntax

typedef struct NNDate({
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} NNDate;

Members

Name Type

Description

century unsigned char | Century for the year. Currently, 19 (as in 1997) and
20 (as in 2001) are acceptable values.
year unsigned char | Number for the year, exclusive of the century. For
example, 1996 is saved as 96 and 2001 is saved as 01.
month unsigned char | Numeric month within the year (range 1 to 12).
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 161

New Era of Networks Rules Programming Reference

Chapter 3

162

Name Type Description

day unsigned char | Numeric day of the month (range 1 to 31).

hours unsigned char | Number of hours past midnight in a 24-hour
notation (range 0 to 23).

minutes unsigned char | Number of minutes past the hour (range 0 to 59).

seconds unsigned char | Number of seconds past the minute (range 0 to 59).

filler unsigned char | This field exists to insure proper alignment of the
mseconds field below and is set to zero (0).

mseconds | unsigned char | Number of milliseconds past the second (range 0 to
999).

InitFlag long This field is present so the software can detect if this

structure was preset to zero (0) before use.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Overall «owrues Management APIs and
Macros

NNRMgrinit

When using NeonRules Management APIs, users are expected to initialize
rules management by calling NNRMgrInit(). NNRMgrlInit() initializes the
rules management data access capability and error handling.

Syntax

NNRMgr * NNRMgrInit (DbmsSession *session) ;

Parameters
Name Type Input/ Description
Output
session DbmsSession * | Input Name of the open database session.
Remarks
NEONRules

NNRMgrInit() should be called prior to any neonRules Management API
calls. For information about the DbmsSession Type to use, see
OpenDbmsSession() in Rules and Formatter Extension for IBM ® WebSphere
Message Broker for Multiplatforms Application Development Guide.

Return Value

Returns a pointer to an instance of a NNRMgr object.

See Also

NNRMarClose

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 163
New Era of Networks Rules Programming Reference

Chapter 3

164

NNRMgrClose

When using neonRules Management APIs, users are expected to close rules
management by calling the NNRMgrClose() function. NNRMgrClose()
removes the user’s ability to perform rules management.

Syntax

void NNRMgrClose (NNRMgr *pMgr) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr* | Input Valid NeoNRules Management object
returned from call to NNRMgrlnit().
Remarks

A call to NNRMgrClose() should be the last call made when managing rules.
Once a call to NNRMgrClose() is made, the user cannot manage rules without
calling NNRMgrlnit() again.

Note:
NNRMgrClose() only cleans up resources claimed by NNRMgrInit() and

does not close the DbmsSession.

Return Value

None

See Also

NNRMarlnit

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNR_CLEAR

When using neonRules Management APIs, user must clear structures prior to
invoking each function. Use the NNR_CLEAR macro to clear structures.
NNR_CLEAR clears a structure in such a way that the neonRules
Management APIs can alert the user to a non-initialized structure.

Syntax

NNR_CLEAR (_p)

Parameters
Name Type Input/ | Description
Output
p Any rules Input Any structure used in NEoNRules
management Management API calls except
structure permission structures.
Return Value
None
Example
struct NNRApp app;
NNR_CLEAR (&app) ;
See Also
NN_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 165

New Era of Networks Rules Programming Reference

Chapter 3

Application Group Management APIs

An application group is a logical division of rules. Application Management
APIs are used to create applications and associate the applications with rules,
subscriptions, and user permissions.

Application Group Management API
Structures

166

NNRApp

NNRApp is passed as a pointer as the second parameter of the Application
Group Management APIs. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to
any Application Group Management API calls.

Syntax

typedef struct NNRApp{
char AppName [APP NAME LEN] ;
long InitFlag;

}

Members
Name Type Description
AppName char Name of the application group in which the
[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRuUles
Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NNRAppData

NNRAppData is passed as a pointer as the third parameter of some of the
Application Group Management APIs. The pointer cannot be NULL and
must be cleared using NNR_CLEAR prior to being populated by the user or
Application Group Management API calls. Use of this structure is described
in each Application Group Management API section.

Syntax

typedef struct NNRAppData{
NNDate DateChange;
int ChangeAction;

long InitFlag;

}

NEONRules Management APIs

Members
Name Type Description
DateChange NNDate Defaulted for now, provided for future capability.
ChangeAction int Defaulted for now, provided for future capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRUles
Management API.
See Also
NNR _CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 167

New Era of Networks Rules Programming Reference

Chapter 3

168

NNRAppReadData

NNRAppReadData is passed as a pointer to select functions in the
Application Group Management API. The pointer cannot be NULL and must
be cleared using NNR_CLEAR prior to any Application Group Management

API read calls.
Syntax

typedef struct NNRAppReadData{
char AppName [APP NAME LEN] ;

NNDate DateChange;

int ChangeAction;
long InitFlag;
} NNRAppReadData;

Members
Name Type Description
AppName char Name of the application group in which the user

[APP_NAME_LEN]

is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.

DateChange NNDate | Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNRAppUpdate

NEONRules Management APIs

NNRAppUpdate is a structure designed to pass update information within
the neonRules Management APIs. It must be cleared using NNR_CLEAR
prior to being populated, and must be populated prior to any neonRules

Management APl update calls.
Syntax

typedef struct NNRAppUpdate {

char AppName [APP NAME LEN] ;

NNDate DateChange;
int ChangeAction;
long InitFlag;

}

Members
Name Type Description
AppName char Name of the application group, defined by
[APP_NAME_LEN] the API using this structure. NULL-
terminated string of length 1 to 120 inclusive.
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

169

Chapter 3

Application Group Management API
Functions

NNRMgrAddApp

NNRMgrAddApp() enables the user to define a name for one application
group in NeoNRules. The user creates a name and provides it to
NNRMgrAddApp(), which then saves it in NeonRules. Only after an
application group has been defined can the application name be used in other
NeonRules Management functions.

Syntax

const long NNRMgrAddApp (
NNRMgr *pMgr,
const NNRApp *pRApPD,
const NNRAppData *pRAppData) ;

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Name of a current NEoNRUles
Management object.

pRApp const NNRApp * | Input Must be populated prior to this
function call.

pRAppData | const Input Must be populated prior to this

NNRAppData * function call. DateChange and
ChangeAction should be
populated with NULL values
because they are provided only
for future enhancements.
170 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the application is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrReadApp
NNRMgrUpdateApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 171
New Era of Networks Rules Programming Reference

Chapter 3

NNRMgrReadApp

NNRMgrReadApp() attempts to read all rules defined for a specific
application group name.

Syntax

const long NNRMgrReadApp (
NNRMgr *pMgr,
const NNRApp *pRApPp,
NNRAppData *const pRAppData) ;

Parameters
Name Type Input/ Description
Output
pMagr NNRMgr * Input Name of a current NEONRUlES
Management object.
pRApp const NNRApp * | Input Should be populated prior to this
function call.
pRAppData | NNRAppData Output NNRMgrReadApp populates
* const this structure. If DateChange is
not NULL, it is assumed that the
application group exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the application is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

172 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddApp
NNRMgrUpdateApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 173
New Era of Networks Rules Programming Reference

Chapter 3

174

NNRMgrGetFirstApp

NNRMgrGetFirstApp() provides a way to start iterating through the
application groups that exist in a database. NNRMgrGetFirstApp() must be
called before NNRMgrGetNextApp().

Syntax
const long NNRMgrGetFirstApp (

NNRMgr *pMgr,
NNRAppReadData *const RAppData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules

Management object returned
from call to NNRMgrlnit().

RAppData NNRAppReadData | Output NNRMgrGetFirstApp
*const populates this structure.

Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Return Value

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

See Also

NNRMarlnit
NNR CLEAR

NNRMgrDuplicateApp
NNRMgrDeleteEntireApp
NNRMgrGetNextApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 175
New Era of Networks Rules Programming Reference

Chapter 3

176

NNRMgrGetNextApp

NNRMgrGetNextApp() provides a way of iterating through the application
groups after the first application group has been retrieved.
NNRMgrGetFirstApp() must be called before NNRMgrGetNextApp().

Syntax
const long NNRMgrGetFirstApp (

NNRMgr *pMgr,
NNRAppReadData *const RAppData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules

Management object returned
from call to NNRMgrlnit().

RAppData NNRAppReadData | Output NNRMgrGetNextApp
*const populates this structure.

Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Return Value

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

See Also

NNRMarlnit
NNR CLEAR

NNRMgrDuplicateApp
NNRMgrDeleteEntireApp
NNRMgrGetFirstApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 177
New Era of Networks Rules Programming Reference

Chapter 3

NNRMgrDuplicateApp

NNRMgrDuplicateApp() creates a new application group with the name
specified in the NewAppName syntax.

NNRMgrDuplicateApp() creates the message type in the specified
application group, accesses each subscription in the original application
group/message type pair, and duplicates the subscription and its
components. The rules are then duplicated into the new application/message
type pair in a similar way.

The current user is the owner of the new application group. Read permission
must exist for the application group to be duplicated.

Syntax

const long NNRMgrDuplicateApp (
NNRMgr *pMgr,
const NNRApp* pRApPpP,
const char* NewAppName) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules
Management objectreturned
from call to NNRMgrlnit().

pRApp const NNRApp* | Input This structure must be
populated prior to this
function call.

NewAppName const char* Input Name of the new application
group.

178 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the application group is duplicated successfully; returns zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMarDuplicateApp
NNRMarDeleteEntireApp
NNRMgrGetFirstApp
NNRMarGetNextApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 179
New Era of Networks Rules Programming Reference

Chapter 3

NNRMgrUpdateApp

NNRMgrUpdateApp() enables the user to update an application group name
by providing the name of the application group to change (in the pRApp
structure) and the new application group name to change it to (in the
pRAppUpdate structure).

Syntax

const long NNRMgrUpdateApp (
NNRMgr *pMgr,
const NNRApp *pRApPp,
const NNRAppUpdate *pRAppUpdate) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Name of a current
NEONRules Management
object.
pRApp const NNRApp * Input Must be populated prior to
this function call.
pRAppUpdate | const Input Must be populated prior to
NNRAppUpdate * this function call.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Return Value
Returns 1 if the application group is updated successfully; zero (0) if an error
occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

180 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session);

struct NNRApp key;
struct NNRAppData data;
struct NNRAppUpdate update;
NNR_CLEAR (&key) ;

NNR_CLEAR (&data) ;

NNR_CLEAR (&update) ;

cout << "Enter old app group name \n>";
cin >> key.AppName;

cout << "Enter new app group name \n>";
cin >> update.AppName;

if (NNRMgrUpdateApp (pmgr, &key, &update)) {
cout << endl
<< "\tApp Group Name: "
<< key.AppName << "changed to "
<< update.AppName << endl << endl;
CommitXact (session) ;
} else {
DisplayError (pmgr) ;
RollbackXact (session) ;

}

CloseNNRMgr (pmgr, session) ;
return;

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddApp
NNRMgrReadApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 181
New Era of Networks Rules Programming Reference

Chapter 3

182

NNRMgrDeleteEntireApp

NNRMgrDeleteEntireApp() deletes an application group by deleting each
component for the application group, including application, message type,
rule, expression, and associations with subscriptions. This call depends on
permissions. If the user does not have permission for each component in the
application group, that component and the application group are not deleted.
However, the components that the user does have permission for are deleted.

NNRMgrDeleteEntireApp() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type only deletes if there are not rules and
subscriptions left. The application group only deletes if there are no message
types left.

WARNING!
NNRMgrDeleteEntireApp() deletes all components contained within an

application group.

Syntax

const long NNRMgrDeleteEntireApp (
NNRMgr *pMgr,
const NNRApp *pRApp) ;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Parameters
Name | Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management object
returned from call to NNRMgrInit().
pRApp NNRApp Input The unique identifier for the
application with the message type
name and subscription name.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Return Value

Returns 1 if the application group and its contents are completely removed.
Returns 2 if the application group still remains, but some rules or
subscriptions remain due to mismatched permissions. Returns zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. This does not
report which rules or subscriptions could not be deleted. The user must
retrieve the lists of items to find this information.

See Also

NNRMarlnit

NNR CLEAR
NNRMarDeleteEntireRule
NNRMgrDeleteEntireSubscription
NNRMgrDuplicateApp
NNRMgrGetFirstApp
NNRMgrGetNextApp

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 183
New Era of Networks Rules Programming Reference

Chapter 3

Message Type Management APIs

A message type identifies the type of data to which the rules apply. Message
type is the same as the input format name in NeoNFormatter.

Message Type Management API Structures

NNRMsg

NNRMsg is passed as a pointer as the second parameter of the Message Type
Management APIs. The pointer cannot be NULL, must be cleared (using
NNR_CLEAR) prior to being populated, and must be populated prior to any
Message Type Management API calls.

Syntax

typedef struct NNRMsg{
char AppName [APP_NAME LEN] ;
char MsgName [MSG NAME LEN] ;
long InitFlag;

} NNRMsg;
Members
Name Type | Description
AppName char Name of the application group in which the
[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
MsgName char Name of the message for which the user is
[MSG_NAME_LEN] defining rules for message evaluation. The
message type is the input format name if the
user is using NEONFormatter. NULL-
terminated string of length 1 to 120 inclusive.
184 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type | Description
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 185

New Era of Networks Rules Programming Reference

Chapter 3

186

NNRMsgData

NNRMsgData is passed as a pointer as the third parameter of the Message
Type Management APIs. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to being populated by the user or by Message Type
Management API calls. If the EvalType is empty, NNSYRF_FORMATTER is

assumed.

Use of this structure is described in each Message Type Management API

section.

Syntax

typedef struct NNRMsgData {

char EvalType [EVAL TYPE LEN] ;
NNDate DateChange;
int ChangeAction;
long InitFlag;

} NNRMsgData;

Members
Name Type Description
EvalType char Valid entries are NNSYRF_FORMATTER
[EVAL_TYPE_LEN] and NAME_VALUE.
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNRMsgReadData

NEONRules Management APIs

NNRMsgReadData is passed as a pointer to select functions in the Message
Type Management API. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to any Message Type Management API read calls.

Syntax

typedef struct NNRMsgReadData (
char AppName [APP_NAME LEN] ;
char MsgName [MSG NAME LEN] ;
NNDate DateChange;
int ChangeAction;
long InitFlag;

} NNRMsgReadData;

Members
Name Type Description
AppName char Name of the application group in which the
[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
MsgName char Name of the message for which the user is
[MSG_NAME_LEN] defining rules for message evaluation. The
message type is the input format name if the
user is using NEoNFormatter. NULL-
terminated string of length 1 to 120 inclusive.
DateChange NNDate | Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR_CLEAR
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 187

New Era of Networks Rules Programming Reference

Chapter 3

Message Type Management APl Functions

NNRMgrAddMsg

A message is a string of data to be processed. NNRMgrAddMsg() associates a
message type with a specific application group. The application group and
message type must exist prior to associating the message type to an
application group using NNRMgrAddMsg(). If you are using NeonFormatter,
an input format of this name must exist. Messages must be associated with an
application group prior to adding a rule using NNRMgrAddRule().

If the message type is new (not used in an existing application group), this
function creates a new identifier for the message type.

If no APP_NAME is given in the pRMsg parameter, the message type is
added to the database but not to any specific application group. If the
message type already exists, it is added to the application group if it does not
already belong to that application group. The EvalType is ignored if the
message type already exists in the database and is just added to the
application group.

Syntax

const long NNRMgrAddMsg (
NNRMgr *pMgr,
const NNRMsg *pRMsg,
const NNRMsgData *pRMsgData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlnit().

pPRMsg const NNRMsg * | Input Must be populated prior to this
function call.

188 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Name Type Input/ | Description
Output
pRMsgData | const Input Default the DateChange and

NNRMsgData *

ChangeAction parameters to
NULL. This is provided only for
future enhancements.

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrReadMsg

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 189
New Era of Networks Rules Programming Reference

Chapter 3

NNRMgrReadMsg

NNRMgrReadMsg() enables the user to read a message type.

If no APP_NAME is given in the pRMsg parameter, the message type is read
from the database but not associated with a specific application group.

Syntax

const long NNRMgrReadMsg (
NNRMgr *pMgr,
const NNRMsg *pRMsg,
NNRMsgData *const pRMsgData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().
pPRMsg const NNRMsg * | Input Must be populated prior to this
function call.
pRMsgData | NNRMsgData Output NNRMgrReadMsg() populates
*const thisstructure. If DateChange is not
NULL, the user can assume a
message exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

190 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value
Returns 1 if the message is read successfully; zero (0) if an error occurs.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 191
New Era of Networks Rules Programming Reference

Chapter 3

NNRMgrGetFirstMsg

NNRMgrGetFirstMsg() provides a way to start iterating through the message
types that exist in a database. NNRMgrGetFirstMsg() must be called before
NNRMgrGetNextMsg().

Syntax

const long NNRMgrGetFirstMsg(
NNRMgr *pMgr,
const NNRMsg *pRMsg,
NNRMsgReadData *const pRMsgData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlnit().
pRMsg const NNRMsg * | Input Should be populated prior to this
function call. This must contain
the correct application group
name.
pRMsgData | NNRMsgData Output NNRMgrGetFirstMsg() populates
*const this structure. If DateChange is
non-NULL, the user should
assume a message exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

192 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_MESSAGES, the end of the message type list
was reached.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg
NNRMgrDeleteEntireMsg

NNRMgrDuplicateMsg
NNRMgrGetNextMsg
NNRMgrReadMsg

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 193
New Era of Networks Rules Programming Reference

Chapter 3

194

NNRMgrGetNextMsg

NNRMgrGetNextMsg() provides a way of iterating through the message
types after the first message type has been retrieved. NNRMgrGetFirstMsg()
must be called before NNRMgrGetNextMsg().

Syntax
const long NNRMgrGetNextMsg (

NNRMgr *pMgr,
NNRMsgReadData *const pRMsgData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlnit().
pRMsgData | NNRMsgData Output NNRMgrGetNextMsg() populates
*const thisstructure. If DateChange is not
NULL, the user can assume a
message exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_MESSAGES, the end of the message
type list was reached.

See Also

NNRMarlnit

NNR CLEAR
NNRMgrAddMsg
NNRMarDeleteEntireMsg
NNRMgarDuplicateMsg
NNRMarGetFirstMsg
NNRMgrReadMsg

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 195
New Era of Networks Rules Programming Reference

Chapter 3

NNRMgrUpdateMsgName

NNRMgrUpdateMsgName modifies all NNINameValueList message types
with the name given in the pRMsg parameter with the data given in the
pRMsgData parameter.

The user can change the Message Type name for Name-Value Message
Types.

m For those Message types that refer to Format Name, the Message
Type must be updated if the Format Name is changed.

m Ifthe EvalType is NNSYRF_FORMATTER, the MsgName must refer
to a valid Input Format Name.

Syntax

const long NNRMgrUpdateMsgName (
NNRMgr *pMgr,
const char *OldMsgName,
const char *NewMsgName) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().

OldMsgName const char Input

NewMsgName const char Output

196 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrDuplicateMsg

NNRMgrDuplicateMsg() creates a new message type under the application
group specified in the NewAppName syntax. If the application group entered
in NewAppName does not exist, NNRMgrDuplicateMsg() also creates the
application group.

NNRMgrDuplicateMsg() creates the message type in the application group
specified in the NewAppName syntax, accesses each subscription in the
original application group/message type pair, and duplicates the
subscription and its components.The rules are then duplicated into the new
application/message type pair in a similar way.

The current user is the owner of the new message type. Read permission must
exist for the message type to be duplicated.

Syntax

const long NNRMgrDuplicateMsg (
NNRMgr *pMgr,
const NNRMsg *pRMsg,
const char *NewAppName) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules
Management object returned
from call to NNRMgrlInit().

pPRMsg const NNRMsg * | Input Must be populated prior to
this function call.

NewAppName const char * Input Enter the application group
name for the message type to
be duplicated in.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 197

New Era of Networks Rules Programming Reference

Chapter 3

Remarks

NNRMgrInit() should be called prior to calling NNRMgrDuplicateMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message type and its contents are completely duplicated.
Returns zero (0) if an error occurs, for example, the message type already
exists in the new application group.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg
NNRMgrDeleteEntireMsg
NNRMgrReadMsg

198 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrDeleteEntireMsg

NNRMgrDeleteEntireMsg() deletes a message type by deleting each
component for the message type, including message type, rule, expression,
and associations with subscriptions. This call depends on permissions. If the
user does not have permission for each component of the message type, that
component and the message type are not deleted. However, the components
that the user does have permission for will delete.

NNRMgrDeleteEntireMsg() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type only deletes if there are no rules and
subscriptions left.

Syntax

const long NNRMgrDeleteEntireMsg (
NNRMgr *pMgr,
const NNRMsg *pRMsg) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().

pRMsg const NNRMsg * | Input Should be populated prior to this
function call.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 199

New Era of Networks Rules Programming Reference

Chapter 3

Remarks

NNRMgrInit() should be called prior to calling NNRMgrDeleteEntireMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message type and its contents are completely removed;
returns 2 if the message type still remains, but some rules or subscription
remain due to mismatched permissions; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg
NNRMgrDuplicateMsg
NNRMgrReadMsg

200 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Rule Management APIs

Use Rule Management APIs to create rules that contain expressions and
associate rules with subscriptions and user permissions.

Rule Management API Structures

NNRRule

NNRRule is passed as a pointer as the second parameter for some of the Rule
Management APls. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Rule Management API calls. NNRRule is also part of the permission API
Structures.

Syntax

typedef struct NNRRule({
char AppName [APP_NAME LEN] ;
char MsgName [MSG NAME LEN] ;
char RuleName [RULE NAME LEN] ;
long InitFlag;

} NNRRule;
Members
Name Type Description
AppName char Name of the application group in which the
[APP_NAME_LEN] user is defining rules for evaluation. NULL-
terminated string of length 1 to 120 inclusive.
MsgName char Name of the message for which the user is
[MSG_NAME_LEN] defining rules for message evaluation. If the
user is using NEONFormatter, the message
type is the input format name. NULL-
terminated string of length 1 to 120 inclusive.
Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 201

New Era of Networks Rules Programming Reference

Chapter 3

Name Type Description
RuleName char Name of the rule defined within an
[RULE_NAME_LEN] application group and message name pair.

This rule name is defined by the user. NULL-
terminated string of length 1 to 120 inclusive.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR _CLEAR
202 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRRuleData

NNRRuleData is passed as a pointer as the third parameter of the Rule
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by NeonRules
Management API calls. Use of this structure is described in each Rule
Management API section.

Syntax

typedef struct NNRRuleData{
NNDate DateChange;
int ChangeAction;
int ArgumentCount;
int OrCondition;
int SubscriberIndex;
int RuleActive;
NNDate RuleEnableDate;
NNDate RuleDisableDate;
long InitFlag;

} NNRRuleData;

Members

Name Type Description

DateChange NNDate Defaulted for now, provided for future capability.
ChangeAction int Defaulted for now, provided for future capability.
ArgumentCount | int Number of arguments associated with this rule.
OrCondition int Defaulted for now, provided for future capability.
Subscriberindex int Defaulted for now, provided for future capability.
RuleActive int Value of 1 indicates that the rule is active, a value

of zero (0) indicates that the rule is inactive.

RuleEnableDate NNDate Defaulted for now, provided for future capability.
RuleDisableDate | NNDate Defaulted for now, provided for future capability.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 203
New Era of Networks Rules Programming Reference

Chapter 3

Name Type Description
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRUles
Management API.
See Also
NNR_CLEAR
204 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NNRRuleReadData

NEONRules Management APIs

NNRRuleReadData is passed as a pointer to select functions in the Rule
Management API. The pointer may not be NULL, must be cleared using
NNR_CLEAR prior to any Rule Management API read calls.

Syntax

typedef struct NNRRuleReadData {
char RuleName [RULE NAME LEN] ;
NNDate DateChange;
int ChangeAction;
int OrCondition;

int SubscriberIndex;

int RuleActive;
NNDate RuleEnableDate;
NNDate RuleDisableDate;
long InitFlag;

} NNRRuleReadData;

Members

Name Type Description

RuleName char Name of the rule, previously defined by the

[RULE_NAME_LEN] user. NULL-terminated string of length 1 to
120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

Subscriberindex int Defaulted for now, provided for future
capability.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 205

New Era of Networks Rules Programming Reference

Chapter 3

206

Name Type Description
RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.
RuleEnableDate NNDate Defaulted for now, provided for future
capability.
RuleDisableDate NNDate Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR _CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRRuleUpdate

NNRRuleUpdate is a structure containing rule update information. It must be
cleared using NNR_CLEAR prior to being populated, and must be populated
prior to any Rule Management APl update calls.

Syntax

typedef struct NNRRuleUpdate{
char RuleName [RULE NAME LEN] ;
NNDate DateChange;
int ChangeAction;
int OrCondition;
int SubscriberIndex;
int RuleActive;
NNDate RuleEnableDate;
NNDate RuleDisableDate;
long InitFlag;

} NNRRuleUpdate;

Members

Name Type Description

RuleName char Name of the rule to be evaluated within an

[RULE_NAME_LEN] application group and message type defined
by the user. NULL-terminated string of
length 1 to 120 inclusive.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

Subscriberindex int Defaulted for now, provided for future
capability.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 207

New Era of Networks Rules Programming Reference

Chapter 3

208

Name Type Description
RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.
RuleEnableDate NNDate Defaulted for now, provided for future
capability.
RuleDisableDate NNDate Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a NEoNRules
Management API.
See Also
NNR _CLEAR

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Rule Management API Functions
NNRMgrAddRule

NNRMgrAddRule() enables the user to add a rule associated with a specific
application group and message type pair by providing the unique application
group, message type, and rule name for the rule in the pRule structure and
the new information for the rule in the pRRuleData structure.

Prior to adding a rule, the application group and message type must be
defined and exist in NeonRules using NNRMgrAddApp() and
NNRMgrAddMsg().

When adding the rule, the current user is set as the rule owner for
permissions. The owner is automatically granted Read and Update
permission for the rule. PUBLIC is given read permission.

Syntax

const long NNRMgrAddRule (
NNRMgr *pMgr,
const NNRRule *pRRule,
const NNRRuleData *pRRuleData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlnit().

pPRRule const NNRRule * | Input Should be populated prior to this
function call.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 209

New Era of Networks Rules Programming Reference

Chapter 3

Name Type Input/ | Description
Output
pRRuleData | const Input DateChange, ChangeAction,
NNRRuleData * RuleEnableDate and

RuleDisableDates should be
populated with NULL. These are
provided only for future
enhancements. ArgumentCount
defaults to zero (0).

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

Of the data in the structures passed to NNRMgrAddRule(), not all variables
used in release 4.11 or later need to be populated in the AddRule method.

The following are the variables that are used:

typedef struct NNRRule ({
char

AppName [APP_NAME LEN] ;
char

MsgName [MSG NAME LEN] ;
char

RuleName [RULE_NAME LEN] ;
long InitFlag;

} NNRRule;

typedef struct NNRRuleData {
NNDate DateChange;
int ChangeAction;
int ArgumentCount;
int OrCondition;
int SubscriberIndex;
int RuleActive;
// 1 => rule is active, 0 =>rule is inactive
NNDate

210 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

RuleEnableDate;

NNDate
RuleDisableDate;

long InitFlag;
} NNRRuleData;

Return Value

Returns 1 if the rule is added successfully; zero (0) if an error occurs. An error
can occur if the component cannot be stored, if either the owner or PUBLIC
cannot be stored, or if the Read or Update permissions for both the owner and
PUBLIC cannot be stored.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also
NNRMarlnit

NNR CLEAR
NNRMgrReadRule

NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 211
New Era of Networks Rules Programming Reference

Chapter 3

NNRMgrReadRule

NNRMgrReadRule() enables the user to retrieve rule management
information. Note that this API reads rule maintenance information, not rule
evaluation or subscription information. To read rule evaluation or
subscription information, use NNRMgrReadExpression() or
NNRMgrReadSubscription(). Prior to reading a rule, the application group,
message, and rule maintenance information must be defined and exist in
NeoNRules using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule().

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

Syntax

const long NNRMgrReadRule (
NNRMgr *pMgr,
const NNRRule *pRRule,
NNRRuleData* const pRRuleData) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().

pRRule const NNRRule * | Input Should be populated prior to this
function call.

pRRuleData | NNRRuleData* Output NNRMgrReadRule() populates

const this structure. If DateChange is
not NULL, this rule exists.
212 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms

New Era of Networks Rules Programming Reference

NEONRules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the rule is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddRule

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 213
New Era of Networks Rules Programming Reference

Chapter 3

NNRMgrGetFirstRule

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and application
group pair.

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

Syntax

const long NNRMgrGetFirstRule (
NNRMgr *pMgr,
const NNRRule *pRRule,
NNRRuleReadData *const pRRuleData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrInit().
pRRule const NNRRule * | Input Must be completely populated
except for the RuleName field
prior to this function call.
pRRuleData | NNRRule Output NNRMgrGetFirstRule populates
Read Data *const this structure.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

214 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, no rules were
found for the application group and message type specified in the pRRule
structure.

See Also

NNRMarlnit
NNR CLEAR

NNRMagrUpdateRule
NNRMgrAddRule
NNRMgrReadRule
NNRMarDeleteEntireRule
NNRMarGetNextRule

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 215
New Era of Networks Rules Programming Reference

Chapter 3

216

NNRMgrGetNextRule

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and rule name
pair.

When retrieving rule management information, user permission to read the
rule are checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have read permission.

Syntax
const long NNRMgrGetNextRule (

NNRMgr *pMgr,
NNRRuleReadData * const pRRuleData) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NEoNRuUles Management
object returned from call to
NNRMGgrInit().
pRRuleRead NNRRuleRead Output NNRMgrGetFirstRule
Data Data const * populates this structure.
Remarks

NNRMgrInit() should be called prior to any neonRules Management API
calls. NNRMgrGetFirstRule() must be called before NNRMgrGetNextRule().

Return Value

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_RULES, the end of the rules list has been
reached.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrUpdateRule

NNRMgrAddRule
NNRMgrReadRule
NNRMarDeleteEntireRule
NNRMgrGetFirstRule

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 217
New Era of Networks Rules Programming Reference

Chapter 3

NNRMgrDuplicateRule

NNRMgrDuplicateRule() creates a new rule under the same application
group/message type pair. Specify the new rule name in the NewRuleName
syntax.

The current user is the owner of the new rule. Read permission must exist for
the rule to be duplicated.

Syntax

const long NNRMgrDuplicateRule (
NNRMgr *pMgr,
const NNRRule *pRRule,
const char *NewRuleName) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules Management
object returned from call to
NNRMgrlInit().
pPRRule const NNRRule * | Input Should be populated prior to this
function call.
NewRule const char Input Enter the new rule name. The
Name duplicated rule is created under
the same application group/
message type pair.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrDuplicateRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

218 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value

Returns 1 if the rule and its contents are completely duplicated; returns zero
(0) if an error occurs; for example, the new rule exists.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrReadRule
NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 219
New Era of Networks Rules Programming Reference

Chapter 3

220

NNRMgrUpdateRule

NNRMgrUpdateRule() enables the user to update a rule associated with a
specific application and group/message type pair by providing the unique
application group, message type, and rule name for the rule to be updated in
the pRule structure and the new information for the rule in the
pRRuleUpdate structure.

When updating rule management information, user permission to update the
rule are checked. If the user is the owner or another user with Update
permission for the rule, the user can update the rule information. If the user
does not have Update access, an error is returned indicating that the user
does not have Update permission, and no changes occur.

Syntax

const long NNRMgrUpdateRule (
NNRMgr *pMgr,
const NNRRule *pRule,
const NNRRuleUpdate *pRRuleUpdate) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid NeoNRules
Management objectreturned
from call to NNRMgrlnit().
pRule const NNRRule * Input Must be populated prior to
this function call.
pRRuleUpdate | const Input Should be populated prior to
NNRRuleUpdate * this function call.
Remarks

NNRMgrInit() should be called prior to any NeonRules Management API
calls.

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

Return Value
Returns 1 if the rule is updated successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession (pmgr, session) ;

struct NNRRule key;
struct NNRRuleData data;
struct NNRRuleUpdate update;

NNR_CLEAR (&key) ;
NNR_CLEAR (&data) ;
NNR_CLEAR (&update) ;

cout << "Enter app group name" << endl << ">";

cin >> key.AppName;

cout << "Enter message type name" << endl << ">";

cin >> key.MsgName;

cout << "Enter old rule name" << endl << ">";

cin >> key.RuleName;

cout << "Enter new rule name" << endl << ">";

cin >> update.RuleName;

cout << "Enter rule active (1l->Active, O0->Inactive)"
<< endl << ">";

cin >> update.RuleActive;

if (NNRMgrUpdateRule (pmgr, &key, &update)) {
cout << endl << "\tOld Rule Name: " << key.RuleName <<
endl
<< "\tNew rule name: " << update.RuleName << endl
<< endl;
CommitXact (session) ;
} else {

DisplayError (pmgr) ;
RollbackXact (session) ;

}

CloseNNRMgr (pmgr, session) ;

return;

Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms 221
New Era of Networks Rules Programming Reference

Chapter 3

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddRule

NNRMgrReadRule
NNRMarDeleteEntireRule
NNRMqgrGetFirstRule
NNRMgrGetNextRule

222 Rules and Formatter Extension for IBM ® WebSphere Message Broker for Multiplatforms
New Era of Networks Rules Programming Reference

NEONRules Management APIs

NNRMgrDeleteEntireRule

NNRMgrDeleteEntireRule() deletes a rule by deleting each component for the
rule, including rule, expression, and associations with subscriptions.
Subscriptions can be deleted from the rule set using
NNRMgrDeleteEntireSubscription(). The user provides the application name,
message type, and rule name.

WARNING!
NNRMgrDeleteEntireRule() deletes all components associated with a rule.
The user should only call this API to delete a rule.

When deleting rule management information, user permission to update the
rule is checked. If the user is the owner and has Update permissions for the
rule, the rule can be deleted. If the user is not the owner but does have Update
permission, the rule is set to inactive but not deleted. If the user does not have
Update permission, an error is returned indicatin